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How do we do it

• Attention and memory are stochastic.
• Three sets of unobservables govern choice:

• Preferences
• Awareness sets
• Consideration sets

• Simple model with two sets of parameters
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Summary of results

• We can distinguish between preferences, awareness sets and consideration sets from choices.

• We provide behavioral foundations for the attention and memory model.
• The model is conceptually and observationally distinct from related models of
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Stochastic Choice

• X = {x, y, z, ...}

• S ⊆ X - a choice set
• Outside option o
• p(x,S) > 0 - probability that x is chosen from S ∪ {o}
• Stochastic choice is a consequence of stochastic attention and memory.
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Choice procedure

First stage: Awareness (Manzini & Mariotti, 2014)

• γ(x) is the probability of paying attention to the product x.

Γ(T,S) =
∏
x∈T

γ(x)
∏

y∈S\T

(1 − γ(y))
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Choice procedure

Second stage: Memory

• Forgetting is modeled after the observation that memories fade with time.

• Alternatives are investigated at different times - more recently observed alternatives are more
likely to be recalled at the time of choice.

• DM observes every alternative in awareness set T in an order→ list ▷
• The list is assumed to be fixed and observable.
• Example: IKEA
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Choice procedure

Final stage: Choice

• DM maximizes a strict preference relation ≻ over the alternatives she initially paid attention to
and she can recall.



Model

Model

A random choice rule p associated with list ▷ has attention and memory representation if
there exists ≻, γ, and q such that

p(x,S) =
∑
T⊆S

∑
C⊆T

Γ(T,S)︸ ︷︷ ︸
awareness set is T

π▷(C,T)︸ ︷︷ ︸
consideration set is C

1(x is ≻-best in C)



Example: Choice Reversals

Regularity: p(x,S) ≥ p(x,S ∪ {y})

• Huber, Payne and Puto (1982): Adding a decoy to the choice set can consistently violate
regularity.

• Random utility model cannot accommodate regularity violations.
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Example: Choice Reversals

Attention and memory model allows regularity violations.

x ≻ y ≻ z, x ▷ y ▷ z, γ(x) = γ(y) = γ(z) = 0.9, q(x) = 0.8, q(y) = 0.9

S p(x,S) p(y,S) p(z,S) p(o,S)
{x, y} 0.74 0.25 - 0.01
{x, y, z} 0.61 0.33 0.06 0



Example: Choice Reversals

Recall probability x y
{x, y} q(x) 1
{x, y, z} q(x)2 q(y)

• The effect on the recall probability of x boosts the choice probability of y
• The effect on the recall probability of y decreases the choice probability of y
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Example: Choice Reversals

When does the attention and memory model predict a regularity violation in y when z is added to
choice set {x, y}?

• Relevant parameters: q(x), q(y), γ(x)
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• The size of the regularity violation is

• Increasing in q(y), γ(x)
• Increasing then decreasing in q(x)
• Conditional on observing a regularity violation, increasing in γ(y), γ(z)
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Revealed preference

• Classical revealed preference theory: if x is chosen when y is available, then x is revealed to be
preferred to y.

• Under random attention and memory, an alternative not being chosen can be due to
1. the presence of a more preferred alternative
2. the alternative not being considered (initially paid attention to and forgotten, or not paid attention to)
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Revealed preference

• In the attention and memory model, when do we observe

p(x, {x}) = p(x, {x, y})

• It must be that x appears in the list after y (no memory effects)
• Otherwise, x is recalled with probability q(x) < 1 when the awareness set is {x, y}
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Revealed preference

• What if we observe p(x, {x}) ̸= p(x, {x, y}) and p(y, {y}) ̸= p(y, {x, y}) ?

• Preference and list ranking of x and y must coincide.
• The order ▷ is observable.
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Revealed preference

Define a binary relation P on X,

xPy if one of the following is observed: (i) p(x, {x}) = p(x, {x, y}), or
(ii) p(y, {y}) ̸= p(y, {x, y}) and x ▷ y



Identifying the consideration set distribution

Choice probabilities from singleton sets reveal attention parameters

γ(x) = p(x, {x})



Identifying the consideration set distribution

How to identify memory parameters?
If xPy and x ▷ y

p(x, {x, y}) = γ(x)γ(y)q(x)︸ ︷︷ ︸
awareness set is {x,y}

+ γ(x)(1 − γ(y))︸ ︷︷ ︸
awareness set is {x}

q(x) = p(x, {x, y})− p(x, {x})(1 − p(y, {y})
p(x, {x})p(y, {y})
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• With some probability, x causes y to be forgotten.



Characterization

Axiom 1
If x appears in the list after y, then p(y, {y}) > p(y, {x, y}).

• With some probability, x causes y to be forgotten.



Characterization

Axiom 1
If x appears in the list after y, then p(y, {y}) > p(y, {x, y}).

• With some probability, x causes y to be forgotten.



Characterization

Axiom 2
The revealed preference relation is transitive.

Axiom 1 and 2→ revealed preference relation P is complete, transitive, and asymmetric
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Characterization

Axiom 3
If x is revealed to be preferred to y and z, and x appears in the list before y and z,

p(x, {x, y}) − p(x, {x})(1 − p(y, {y}))
p(x, {x})p(y, {y})

=
p(x, {x, z}) − p(x, {x})(1 − p(z, {z}))

p(x, {x})p(z, {z})
> 0



Characterization

“Divide-and-conquer”

• Break down a choice problem {x, y, z} into smaller problems {x, y} and {x, z}

• When can we divide-and-conquer choosing x?
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Characterization

• x is the most preferred alternative in {x, y, z}

p(x, {x, y, z}) = γ(x)γ(y)γ(z)q(x)∇(x,{x,y,z})
+ γ(x)(1 − γ(y))γ(z)q(x)∇(x,{x,z})

+ γ(x)γ(y)(1 − γ(z))q(x)∇(x,{x,y})

+ γ(x)(1 − γ(y))(1 − γ(z))

=
[γ(x)γ(y)q(x)∇(x,{x,y}) + γ(x)(1 − γ(y))][γ(x)γ(z)q(x)∇(x,{x,z}) + γ(x)(1 − γ(z))]

γ(x)

=
p(x, {x, y})p(x, {x, z})

p(x, {x})

• p(x, {x, y, z}) is independent from the probability of y/z being forgotten
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) − (1 − q(y)∇(y,{x,y})
)
]



Characterization

p(x, {x, y, z})− p(x, {x, y})p(x, {x, z})
p(x, {x})

= γ(x)γ(y)γ(z)q(x)∇(x,{x,y,z})
[
(1 − q(y)∇(y,{x,y,z}))− (1 − q(y)∇(y,{x,y}))

]

• Divide-and-conquer if ∇(y, {x, y, z}) = ∇(y, {x, y})
• if z appears in the list before y
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Characterization

• The next axiom formalizes this observation and extends to sets with |S| > 3.

• How to divide S when |S| > 3?
• Let ▷1 and ▷2 denote the first and second alternative in list ▷, in choice set S respectively.
• Partition S as {x,▷i} and S \ {▷i} where

▷i =

▷1 if x ̸= ▷1

▷2 if x = ▷1
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Characterization

• The next axiom formalizes this observation and extends to sets with |S| > 3.
• How to divide S when |S| > 3?
• Let ▷1 and ▷2 denote the first and second alternative in list ▷, in choice set S respectively.
• Partition S as {x,▷i} and S \ {▷i} where

▷i =

▷1 if x ̸= ▷1

▷2 if x = ▷1



Characterization

Axiom 5
If x is revealed to be preferred to ▷i

then we can divide-and-conquer choosing x in S as S \ {▷i} and {x,▷i}.



Characterization

Axiom 6
In any choice set, we can divide-and-conquer choosing the outside option into singleton sets.



Characterization

• What about alternatives that do not satisfy divide-and-conquer?

• We define a function fx(S) that is closely related to p(x,S)− p(x,{▷i,x})p(x,S\{▷i})
p(x,{x})

• The idea behind fx(S) - isolate the choice probability of x when the awareness set is S.
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Characterization

• What about alternatives that do not satisfy divide-and-conquer?
• We define a function fx(S) that is closely related to p(x,S)− p(x,{▷i,x})p(x,S\{▷i})

p(x,{x})

• The idea behind fx(S) - isolate the choice probability of x when the awareness set is S.



Characterization

Axiom 7
If ▷1 is revealed to be preferred to x

fx(S)∑
y∈L(x,S) fy(S)

= q(x)∇(x,S)

where L(x,S) is the lower counter set of x in S with respect to P and q(x) is the observable
counterpart of q(x).



Characterization

• Recall the case with three alternatives and yPx

p(x, {x, y, z})− p(x, {x, y})p(x, {x, z})
p(x, {x})

= γ(x)γ(y)γ(z)q(x)∇(x,{x,y,z})
[
(1 − q(y)∇(y,{x,y,z}))− (1 − q(y)∇(y,{x,y}))

]



Characterization

Axiom 7
If x = ▷1 and ▷2 is revealed to be preferred to x

fx(S)∑
y∈L(x,S) fy(S)

= q(x)∇(x,S)−1

where L(x,S) is the lower counter set of x in S with respect to P and q(x) is the observable
counterpart of q(x).



Characterization

Theorem
A random choice rule p associated with list ▷ has an attention and memory representation if and
only if (p,▷) satisfies Axiom 1-7.



Wrap-up

• A parametric model to study how the allocation of attention to different options and the
accessibility of options from memory affect decision making.

• Three sets of unobservables that govern choice; preferences, awareness sets and consideration
sets can be distinguished from each other.

• We provide behavioral foundations for the attention and memory model.
• Future work: application to monopoly pricing and list design



Wrap-up

• A parametric model to study how the allocation of attention to different options and the
accessibility of options from memory affect decision making.

• Three sets of unobservables that govern choice; preferences, awareness sets and consideration
sets can be distinguished from each other.

• We provide behavioral foundations for the attention and memory model.
• Future work: application to monopoly pricing and list design



Wrap-up

• A parametric model to study how the allocation of attention to different options and the
accessibility of options from memory affect decision making.

• Three sets of unobservables that govern choice; preferences, awareness sets and consideration
sets can be distinguished from each other.

• We provide behavioral foundations for the attention and memory model.

• Future work: application to monopoly pricing and list design



Wrap-up

• A parametric model to study how the allocation of attention to different options and the
accessibility of options from memory affect decision making.

• Three sets of unobservables that govern choice; preferences, awareness sets and consideration
sets can be distinguished from each other.

• We provide behavioral foundations for the attention and memory model.
• Future work: application to monopoly pricing and list design


