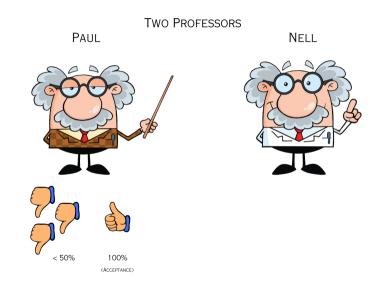
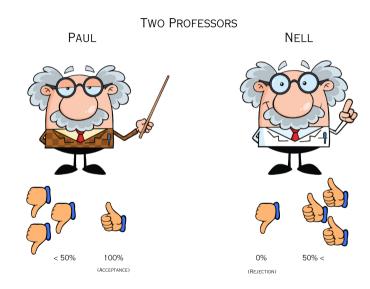
Skewness and Preferences for Non-Instrumental Information

Yusufcan Masatlioglu Yeşim Orhun Collin Raymond

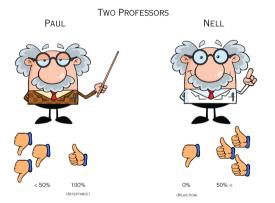
CCC conference May 24, 2023

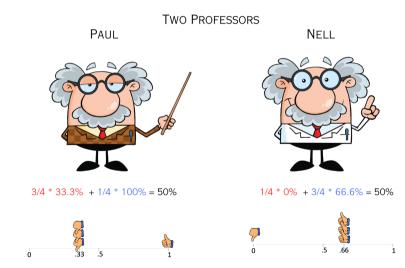
Curiosity, Creativity, and Complexity




- In Economics,
 - Information is desirable only when it can help them make better decisions
 - Demand for Instrumental Information
- Recent research from Biology, Psychology, Neuroscience, and Economics
 - Information itself is intrinsically valuable, even if it cannot alter future events
 - Demand for Non-instrumental Information
 - Early versus Late (more versus less informative)

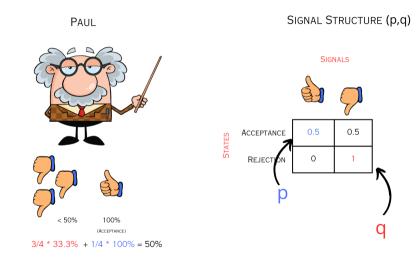
- 1. What type of Non-instrumental information? (Skewness)
- 2. How much Non-instrumental information? (Informativeness)
- 3. How are these two related?

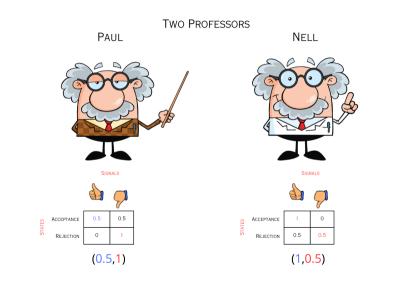


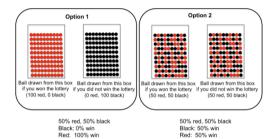


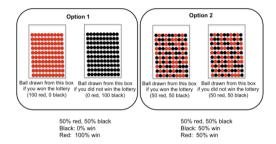
 Positively skewed (Paul): Eliminates more uncertainty about a desired outcome if it generates a good signal, but unlikely to generate a good signal

 Negatively skewed (Nell): Eliminates more uncertainty about an undesired outcome if it generates a bad signal, but unlikely to generate a bad signal

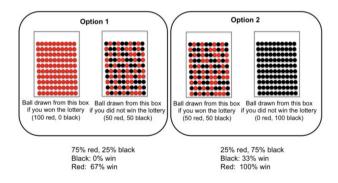



• Same Mean and Same Variance


- Common in many settings: Medical tests, bosses, news, earnings guidance...
- Belief-based utility: Information impacts utility through expectations
- People may avoid information, even when it is useful


- Conduct three lab experiments (1182 participants)
 - Experiment 1 (700, between-subject design)
 - Experiment 2 (250, within-subject design)
 - Experiment 3 (232, between-subject design)
- Two field studies (1,226 individuals)
 - Alzheimer's Disease (626, stated preferences)
 - IQ Test (600, stated preferences)

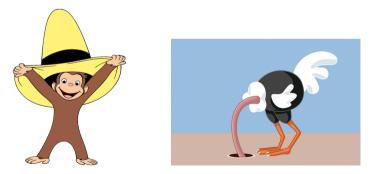
- Period 0
 - Risky lottery with binary outcomes: H (\$10) and L (\$0)
 - chance of winning 50%
- Period 1
 - Two signals: G (Good) and B (Bad)
 - Information structures (p,q) where p=p(G|H) and q=p(B|L)
 - Make pairwise choice(s) between (p,q) versus (p',q')
 - "Willingness to Pay" for $x \in [0, 50]$ cents, accept to see a ball drawn from alternative instead
 - Receive a signal. Realizations are G (good) or B (bad). Sit with posteriors for approx. 30 minutes
- Period 2
 - Observe whether the ticket won; receive payment



N	Preferences	Percentage	p-value	Info. Premia	
Early vs. Late					
79	$(1,1) \succ (0.5,0.5)$	70%	0.001	7.6¢	

Representation of information structures

• Choice between negatively (1,0.5) (Nell) and positively (0.5,1) (Paul) skewed options with same posterior mean and variance


N	Preferences	Percentage	p-value	Info. Premia	
Early vs. Late					
79	$(1,1) \succ (0.5,0.5)$	70%	0.001	7.6¢	
Positively Skewed vs. Negatively Skewed					
78	$(0.5,1) \succ (1,0.5)$	79%	0.000	20.5¢	
78	$(0.6, 0.9) \succ (0.9, 0.6)$	74%	0.000	12.3¢	
83	$(0.3, 0.9) \succ (0.9, 0.3)$	67%	0.002	7.5¢	

N	Preferences	Percentage	p-value	Info. Premia
Positively Skewed vs. Late				
75	$(0.5,1) \succ (0.5,0.5)$	87%	0.000	24.2¢
68	$(0.3, 0.9) \succ (0.5, 0.5)$	82%	0.000	15.5¢
Negatively Skewed vs. Late				
57	$(1, 0.5) \succ (0.5, 0.5)$	72%	0.001	11.3¢
60	$(0.9, 0.3) \succ (0.5, 0.5)$	77%	0.000	7.6¢
(Symmetric) Gradual vs. Late				
63	$(0.79, 0.79) \succ (0.5, 0.5)$	81%	0.000	16.3¢
59	$(0.63, 0.63) \succ (0.5, 0.5)$	75%	0.000	13.8¢

N	Preferences	Percentage	p-value	Info. Premia
Positively Skewed vs. Late				
75	$(0.5,1) \succ (0.5,0.5)$	87%	0.000	24.2¢
68	$(0.3, 0.9) \succ (0.5, 0.5)$	82%	0.000	15.5¢
Negatively Skewed vs. Late				
57	$(1,0.5) \succ (0.5,0.5)$	72%	0.001	11.3¢
60	$(0.9, 0.3) \succ (0.5, 0.5)$	77%	0.000	7.6¢
(Symmetric) Gradual vs. Late				
63	$(0.79, 0.79) \succ (0.5, 0.5)$	81%	0.000	16.3¢
59	$(0.63, 0.63) \succ (0.5, 0.5)$	75%	0.000	13.8¢

- Widespread preference:
 - 1. Positively skewed (Paul) over Negatively skewed (Nell) (controlling for informativeness)
 - 2. More information over Less information
 - 3. Subjects trade-off informativeness and skewness

- Within-subject design and multiple questions
- Whether positively skewed signals may be a remedy for information avoidance
- Classify participants as "information takers" (Early > Late) and "information avoiders" (Early < Late)

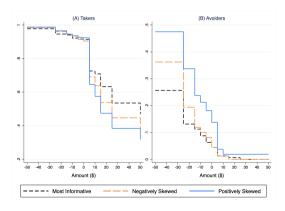
- Within-subject design and multiple questions
- Whether positively skewed signals may be a remedy for information avoidance
- Classify participants as "information takers" (Early > Late) and "information avoiders" (Early < Late)

- Within-subject design and multiple questions
- Whether positively skewed signals may be a remedy for information avoidance
- Classify participants as "information takers" (Early > Late) and "information avoiders" (Early < Late)

Ν	Preferences	Percentage	p-value	
Information Takers				
92	$(0.76, 0.76) \succ (0.3, 0.9)$	71%	0.000	
104	$(0.67, 0.67) \succ (0.1, 0.95)$	64%	0.002	
Information Avioders				
27	$(0.55, 0.55) \succ (0.3, 0.9)$	33%	0.974	
27	$(0.66, 0.66) \succ (0.5, 1)$	56%	0.351	

- Information Takers exhibit monotonic preferences
 - They prefer More Information over Positive Skew
- Information Avioders exhibit non-monotonic preferences
 - They prefer Positive Skew over Less Information

- Experiment 3 (varies prior): subjects exhibit a preference for positive skew for all priors, stronger for high priors
- Preferences robust to prior


- Benefits of lab come from control
- Non-instrumental information
- Set known priors
- Control informativeness
- Identify preferences for skewness
- Do findings generalize to field contexts where information may be useful, but is avoided?

- Focus on settings where information avoidance documented as a concern (health, intelligence)
- Provide natural information structures: (1) no information, (2) very informative signal, (3) positively skewed, less informative signal, (4) negatively skewed, less informative signal
- Minimize confounding preferences for skewness vs. informativess

- 626 MTurkers, 40 years or older (avg. 53 yo)
- APOE gene pairs, three variants (neutral, risky, protective)
- Natural context for partially informative skewed signals, with common priors
 - Neg. Skew: Carry (at least one copy of) risky variant
 - Pos. Skew: Carry (at least one copy of) protective variant
 - Most Info: Exact combination of genes
- Negative skew arguably more instrumental
- Willingness to pay \$X, X ranging -50 and 50

Alzheimer's Disease Study

- Those who want to learn about exact combination of genes (takers) do not tradeoff information and skewness
- Among avoiders, 19% indicate demand for positive skew (only 4% for negative) and 9.25% would even pay for it

- 600 MTurkers first take a test (fluid intelligence: verbal and visual reasoning)
- We elicit individual priors μ regarding their rank among 100 randomly chosen participants
- Personalized information structures, with $topcut_{\mu} = \mu \delta_{\mu}$ and $bottomcut_{\mu} = \mu + \delta_{\mu}$ where $\delta_{\mu} = \frac{1}{4}min\{\mu, 100 \mu\}$

NoInfo Receive no information about how your score ranks you relative to other people

- MostInfo Learn whether your score ranked topcut or better, ranked between topcut + 1 and bottomcut 1, or ranked bottomcut or worse
- PosSkew Learn whether your score ranked topcut or better
- NegSkew Learn whether your score ranked bottomcut or worse

- 600 MTurkers first take a test (fluid intelligence: verbal and visual reasoning)
- We elicit individual priors μ regarding their rank among 100 randomly chosen participants
- Personalized information structures, with $topcut_{\mu} = \mu \delta_{\mu}$ and $bottomcut_{\mu} = \mu + \delta_{\mu}$ where $\delta_{\mu} = \frac{1}{4}min\{\mu, 100 \mu\}$
- Elicit (incentivized) ranking of information structures
 - 1st ranked 60%, 2nd ranked 30%, 3rd ranked 10%, 4th ranked 0% chance of being implemented

- · Positive skew and full info are similarly preferred
- 82% most info > no info
- 81% pos. skew > no info
- 75% neg. skew > no info
- Among avoiders, positive skew is the best kind of information
- Among 32.7% of avoiders who do not rank no info as 1st choice, big majority (74%) ranks pos. skew 1st
- Providing pos. skew in addition to the most info. one would increase information uptake from 82.2% to 86.5%

Implications

- Models of intrinsic information preference
- Large informational premia implies important role of belief-based preferences
- Positive skew reducing information resistance
- Provides support for (Caplin and Eliaz, 2003; Eliaz and Spiegler, 2006; Schweizer and Szech, 2013; Dillenberger and Segal, 2017)
- Implies restrictions on commonly used Kreps-Porteus preferences where $u_1 \circ u_2^{-1}$ is inverse S-shaped
- Information Design
- When accuracy is achieved at a cost, maximize positive skew for any given level of accuracy
- When multiple signals can be offered, adding a positively skewed information structure to a fully revealing option increases number of individuals acquiring information

