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Abstract: In the context of choice with limited consideration, where the decision-maker may1

not pay attention to all available options, the consideration function of a decision maker is path-2

independent if her choice cannot be manipulated by the presentation of the choice set. This paper3

characterizes a model of choice with limited consideration with path independence, which is4

equivalent to a consideration function that satisfies both the attention filter and consideration5

filter properties from [1] and [2], respectively. Despite the equivalence of path-independent6

consideration with the consideration structures from [1] and [2], we show that in order to have a7

choice with limited consideration that is path-independent, satisfying both axioms on the choice8

function that characterize choice limited consideration with attention and consideration filters9

unilaterally (from [1] and [2]) is necessary but not sufficient.10

Keywords: Revealed Preferences; Limited Attention; Consideration Set; Choice Reversals; Path11

Independence12

1. Introduction13

Individuals do not always compare all alternatives in making a decision, particularly14

when a decision problem is complex or contains many alternatives. For instance, [3]15

report that 22% of new car customers consider only one brand out of more than 100 car16

brands available in USA. Instead, a decision maker (DM) often forms a consideration set,17

a subset of her actual feasible set, and ignores the rest (see e.g., [4]).18

The issue of limited consideration shakes the main principle of revealed preferences19

and raises the following question: how can we identify the DM’s preference by observing20

her choice under limited attention? It is not straightforward to answer this question by21

the standard revealed preference tools since the revealed preference implicitly relies on22

the knowledge of consideration, which is not observable in real life. [1] and [2] managed23

to provide answers the above question when she picks her most preferred item from24

her consideration set, not from her actual entire feasible set. These two papers impose25

certain assumptions on the consideration set and employ the feasible set variations to26

reveal preferences.27

The conditions on the formation of consideration sets contemplated by [1] and28

[2] are called attention filter and competition filter. According to the attention filter, the29

consideration set is not affected when overlooked alternatives are removed from her30

feasible set; whereas the competition filter requires that if she ignores some alternatives,31

she will also do so when her feasible set expands. Attention filter is plausible when her32

inattention is based on unawareness, while for a competition filter, the alternatives are33

competing for DM’s attention (such as in a large supermarket).34

The consideration set formation in both models are vulnerable to manipulation.35

To illustrate a manipulation possibility in a simple example, consider the following36

consideration set formation which is an attention filter (but not a competition filter).37

There are three products x, y, and z, where z is considered only when both x and y are38
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present.1 The consideration set of such DM is {x, y, z} if everything is presented at once.39

On the other hand, when x and z are offered first and then y, z is never considered.40

Hence, the consideration set of a DM may be manipulated by way the choice problem is41

presented.242

More precisely, if instead of presenting a large menu, A, the choice problem is43

divided into sub-menus, S and T where S∪ T = A and first the sub-menu S is presented.44

Once a DM forms her consideration based on S, then the sub-menu T is presented. Now,45

the DM forms her consideration based on the sub-menu T and the consideration set of S.46

If this consideration set is different than presenting the large menu A as a whole, a firm,47

that is responsible for presenting DMs with menus, may have the ability to manipulate48

the DMs’ consideration sets.49

In this paper, we are interested in situations where the formation of consideration50

sets are free from this kind of manipulation. This non-manipulability requirement is51

captured by the well-known property of choice theory, path-independence, proposed by [5],52

which imposes a “consistency” requirement on how consideration sets are determined53

across comparable situations. Path-independence requires that the consideration set54

cannot be manipulated by changing the presentation of the set of alternatives.55

Our model rests on the realistic assumption of path-independence and thus offers a56

better understanding non-manipulation in the consideration set formation. This property57

not only will eliminate manipulation examples mentioned above but also makes the58

revealed preference analysis more complete.59

In the literature, the formation of the consideration sets has been motivated by60

behavioral reasons, such as shortlisting in [6]3, rationalization in [16], and categorization61

in [17]. At first glance, the path-independence property may be normatively plausible62

but does not sound behaviorally plausible. However, the path-independence property is63

equivalent to consideration set formation satisfying both the attention filter by [1] and the64

competition filter by [2]. Therefore, the path-independence property, though it appears65

to be demanding, has a behavioral background, too. In Section 2, we provide a list of66

heuristics generating a consideration set satisfying the path-independence property.67

The organization of this paper is as follows: Section 2 introduces notations and68

the model, Section 3 provides our characterization, Section 4 analyzes the revealed69

preference.70

2. Model71

We denote the set of alternatives by X, which is an arbitrary non-empty finite set.72

X denotes the set of all non-empty subsets of X with cardinality at least 2. Each subset73

of X is a choice problem. Let c be a choice function: c : X → X and c(S) ∈ S for all74

S ∈ X . Our DM assigns a unique alternative for each choice problem S. Let � be a75

complete, transitive and antisymmetric binary relation (a linear order) over X. max(�, S)76

represents the best element in S with respect to �.77

Let Γ : X → X be a self-map on X , that is, Γ(S) ⊂ S for all S ∈ X . Γ(S) represents78

the consideration set under S ∈ X ; that is, the set of alternatives is considered when the79

DM is facing feasible set S. Since the DM can only consider options that are available,80

Γ(S) must be a subset of S.81

The next definition describes the behavior of DM with limited consideration. that is,82

the DM picks her most preferred alternative within her consideration set, not the entire83

feasible set.84

1 This example is from page 2198 in [1] called “pairwisely unchosen”.
2 A DM who has a competition (but not an attention) filter can be manipulated in a similar manner. For instance, suppose she ignores y when x is

present and z when y is given. This is a competition filter but not an attention filter. She considers only x when all of the three are presented at once.
On the other hand, she will considers x and z when she first sees x and y (so discards y) and then is given z, as y has been already gone.

3 For the extensions of the shortlisting procedure, see also [7], [8], [9], [10], [11], [12], [13], [14] and [15].
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Definition. A choice function c is a choice with limited consideration (LC) if there exists a
linear order � and a consideration mapping Γ such that

c(S) = max(�, Γ(S))

The LC model is very broad. Indeed, without further condition on Γ, any choice85

behavior has an LC representation. [1] and [2] propose two conditions on consideration86

sets. [1] requires that a DM who overlooks some feasible alternative, has the same87

consideration set if that alternative is removed. This property is called Attention Filter88

(AF).489

AF : If x 6∈ Γ(S ∪ x) then Γ(S ∪ x) = Γ(S)

[2] imposes that when the size of the opportunity set gets larger, DMs tend to90

overlook more options. This property is called Competition Filter (CF).591

CF : If for all x and y, x /∈ Γ(S) then x /∈ Γ(S ∪ y).

It turns out that if a consideration function satisfies both AF and CF, then it also92

satisfies the well-known path independence condition. In consideration context, path93

independence would mean that the final consideration set is independent of the way the94

alternatives were initially presented.95

PI : Γ(S ∪ T) = Γ(Γ(S) ∪ T) for all S and T.

Path independent imposes a consistency property on how the consideration sets are96

determined. An important benefit of PI is the elimination of manipulation possibilities.97

That is, the consideration set of our DM cannot be altered by different ways of presenting98

the available set of alternatives. We now define our model formally.99

Definition. We say c is a π-LC model if c is a choice with limited consideration and Γ satisfies100

path independence.101

Before we state our main result, we first state the result of [28] stating that AF and102

CF together is equivalent to PI. Then we provide a list of examples of consideration set103

formations satisfying path independence.104

Theorem 1. ([28]) A consideration set Γ is path independent if and only if it satisfies AF and105

CF.106

There are several examples of non-manipulable heuristics. For example, in elimina-107

tion by aspects of ([29]), at each stage, the DM selects an aspect perceived and eliminates108

alternatives lacking that attribute. The DM continues selecting aspects and eliminating109

products. The process stops at stage n when there is no alternative left. The consideration110

set is the set of alternatives survived at stage n− 1. Additional examples can be listed as111

follows: The DM considers112

• only the three cheapest suppliers in the market ([30]).113

• the products that appear on the first page of the web search and/or sponsored links114

([31]).115

• the first N available alternatives according to an exogenously given order ([32]).116

• only a job candidate if she is the best in a program. Or consider the top-two job117

candidates from all first-tier schools and the top candidate from second-tier schools.118

4 Equivalent properties have been considered in the literature on choice functions: Postulate 5∗ of [18], Axiom 2 of [19], the strong superset’s axiom of
[20], the Outcast Property of [21], Axiom 2 of [22], and the irrelevance of rejected contracts of [23].

5 In the choice theory literature, this property is mainly known as Sen’s α axiom ([24]), Postulate 4 of [18], C3 of [25], the Heritage property of [21], or
the Heredity property of [26]. See also [27] for a detail discusuion for these properties on choice functions.
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• only the cheapest car, the safest car, and the most fuel-efficient car on the market.119

3. Characterization120

In this section, we provide necessary and sufficient conditions for our model where121

the consideration set mapping satisfies path independence. In other words, we ask how122

one could decide whether choice data is consistent with the π-LC model.123

The weak axiom of revealed preference (WARP) characterizes the preference maxi-124

mization. However, WARP does not distinguish between “being feasible” and “being125

considered.” Therefore, one cannot decide that an alternative is chosen from a choice126

problem without confirming that the alternative is considered. The question is how127

we can infer that an alternative is considered. The answer for this question depends128

on the structure imposed on the consideration set. [1] and [2] provided two axioms129

characterizing their models. We now state each of them.130

In [1], if removing an alternative from a set changes the DM’s choice, they infer this131

alternative is considered. which is the additional requirement for x∗ to be chosen from T.132

[1] introduced the following axiom.133

WARP-AF: For any nonempty S, there exists b∗ ∈ S such that, for any T
including b∗,

c(T) = b∗ whenever (i) c(T) ∈ S, and
(ii) c(T) 6= c(T \ b∗)

An alternative way to state this axiom is through revealed preferences. Whenever134

the choices change as a consequence of removing an alternative, the initially chosen135

alternative is preferred to the removed one. Formally, for any distinct x and y, define:136

xPAFy if there exists T such that c(T) = x 6= c(T \ y). (1)

WARP-AF indeed guarantees that the binary relation PAF defined in (1) is acyclic137

and it fully characterizes the class of choice functions generated by an attention filter.138

The lemma from [1] states that WARP-AF is equivalent to the fact that PAF has no cycle.139

Lemma 1 ([1]). PAF is acyclic if and only if c satisfies WARP-AF.140

Given this result, we now illustrate that the just observing the following two choice
reversals falsifies WARP-AF.

c(S1) = x 6= c(S1 \ y), and c(S2) = y 6= c(S2 \ x).

These observations reveal that xPAFy and yPAFx, which is a cycle. By Lemma 1,141

WARP-AF is violated.142

In [2], if an alternative is considered in larger set, then it must be considered in a143

smaller set. That is, if b∗ = c(T′) for some T′ ⊃ T, then b∗ ∈ Γ(T′) since a necessary144

condition for choice is that the b∗ is considered. Since Γ is a competition filter, b∗ ∈ Γ(T).145

The following axiom of [2] summarizes this discussion.146

WARP-CF For any nonempty S, there exists b∗ ∈ S such that for any T
including b∗,

c(T) = b∗ whenever (i) c(T) ∈ S, and
(ii) b∗ = c(T′) for some T′ ⊃ T

Similar to above, we can state this axiom through revealed preference. Whenever a147

DM’s choices from a small set and a larger set are inconsistent, the former reflects her148

true preference under CF more than the latter. Formally, for any distinct x and y, define149

the following binary relation:150
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xPCFy if x = c(S) and y = c(T) such that {x, y} ⊆ S ⊂ T (2)

Similar to [1], the binary relation PCF defined in (2) is acyclic and it fully character-151

izes the class of choice functions generated by an attention filter. The lemma from [2]152

states that WARP-CF is equivalent to the fact that PCF has no cycle.153

Lemma 2 ([2]). PCF is acyclic if and only if c satisfies WARP-CF.154

Only three observations can falsify this axiom. For example, consider the following
choice pattern:

c({x, y, z, t}) = y, c({x, y, z}) = x and c({x, y}) = y.

The first two observations imply that xPCFy. Similarly, the last two observations155

indicate yPCFx, which leads a cycle of two. By Lemma 2, the axiom is violated.156

Since each axiom characterizes the corresponding model, and the path-independence157

is equivalent to an AF and CF, it is tempting to claim that WARP-AF and WARP-CF158

would characterize the π-LC model where the consideration structure satisfies both AF159

and CF. However, that is not the case. The following example satisfies the both axioms160

but it cannot be represented a pair of preference and consideration set satisfying path161

independence.162

Consider the following “choosing pairwisely unchosen” pattern (the chosen alter-
native from {x, y, z} is never chosen in any binary comparisons):

c({x, y, z}) = x, c({x, y}) = y, c({y, z}) = y, c({x, z}) = z.

First, note that c satisfies both WARP-AF and WARP-CF. To see this, note c involves163

just two choice reversals: when y or z is removed from {x, y, z}. Therefore, the revealed164

preference generated by AF is just xPAFy and xPAFz and the one by CF is only yPCFx165

and zPCFx. Neither of them contains a cycle so c satisfies the both axioms. Nevertheless,166

x must be best in AF and worst in CF, which is not compatible so c cannot be represented167

by Γ satisfying AF and CF simultaneously. In other words, there is no (Γ,�) pair that168

can rationalize this data, where Γ satisfies PI.169

The axiom we propose is a stronger version of both WARP-AF and WARP-CF.170

Remember that both axioms requires that every set S has the “best” alternative x∗ and171

it must be chosen from any other decision problem T as long as it attracts attention.172

Remember that, with an attention filter, an alternative, say x∗, attracts attention at a173

choice set, T, when removing it changes the choice, i.e., c(T) 6= c(T \ x∗). Now that we174

assume that the consideration set is path independent, we can also conclude it when175

we know x∗ is paid attention to at some bigger decision problem T′ ⊃ T by observing176

c(T′) 6= c(T′ \ x∗). Therefore, we need to state that if the removal of x∗ changes the177

choice in some superset of T, then it attracts attention at T.178

(WARP-PI) For any nonempty S, there exists x∗ ∈ S such that for any T 3 x∗,

c(T) = x∗ whenever (i) c(T) ∈ S, and
(ii) c(T′) 6= c(T′ \ x∗) for some T′ ⊃ T

It turns out that WARP-PI is the necessary and sufficient condition for the π-LC179

model.180

Theorem 2. (Characterization) A choice function satisfies WARP-PI if and only if it is a π-LC181

model.182

Theorem 2 characterizes a special of class of choice behavior we studied earlier.183

The characterization involves a single behavioral postulate which is stronger than both184

WARP-AF and WARP-CF. We show that this model has higher predictive power, which185
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comes with diminishing explanatory power: “choosing pairwisely unchosen” is no186

longer within the model.187

We finalize this section by considering Attraction Effect type choice pattern:

c({x, y, z}) = y, c({x, y}) = x, c({y, z}) = y, c({x, z}) = x.

It is routine to verify that this choice behavior satisfies WARP-PI.6 Hence Theorem 2188

implies that it is consistent with a π-LC model. The choice reversal between {x, y, z} and189

{x, y} yields that her preference must be x � y � z. This implies that we can uniquely190

pin down preference for this choice behavior. Note that this is not true for the models of191

[1] and [2].192

In addition to unique preference, we can also reveal the unique consideration set193

mapping. To see this, consider the set {x, y, z}. First of all, the choice, which is y, must194

be in the consideration set. Since removing z changes the choice, therefore z is also in195

it (attention filter). Finally, we know x is better than the choice from above discussion,196

x does not belong the consideration set of {x, y, z}. Hence Γ({x, y, z}) = {y, z}. In197

addition, path independence requires that y and z attract attention whenever they are198

available, which pins down the consideration set mapping uniquely for this example.199

Γ({x, y, z}) = {y, z}, Γ({x, y}) = {x, y}, Γ({y, z}) = {y, z}, and Γ({x, z}) = {x, z}.

Theorem 2 states that it is possible to test our model non-parametrically from ob-200

served choice behaviour even when the consideration sets themselves are unobservable.7201

4. Revealed Preference202

In this section, we discuss the revealed preference of our model. One might suspect203

that PAF ∪ PCF should be the revealed preference of this model. The following example204

illustrates that this is not the case. The example shows that there is an additional205

preference revelation, which cannot be captured even by the transitive closure8 of206

PAF ∪ PCF.207

Example 1. [Hidden Revelation] Consider the following behavior with four alternative208

x, y, z, t: A DM chooses z whenever z is available except in two occasions {x, z, t} and209

{z, t}, from which the DM chooses t. When z is not available, the DM chooses t whenever210

t is available. Lastly, the DM chooses x from {x, y}. It is routine to show that this choice211

behaviour satisfies WARP-PI, hence it is a π-LC model.9212

Let X be {x, y, z, t}. Consider the following choice behaviour on X: A DM chooses213

z from whenever z is available except from {x, z, t} and {z, t}, x from {x, y}, and t from214

the rest of decision problems.215

The DM exhibits only one choice reversal: c({x, y, z, t}) = z 6= c({x, z, t}) = t. This216

implies that we must have zPAFy and tPCFz. This implies that t must be better than217

z and z is better than y (of course, t is better than y). However, there is no revelation218

between x and y according to PAF ∪ PCF.219

We now illustrate that in our model, we reveal that x must be better than y. To220

see this, c(x, y, z, t) = z and c(x, z, t) = t implies y ∈ Γ({x, y, z, t}). Then we must have221

y ∈ Γ({x, y}). Since x is chosen from {x, y}, x must be better than y. Yet, this is not222

captured by either PCF or PAF.223

6 One can show that x serves the role of x∗ for {x, y, z}. For the rest, c(S) does the job.
7 There are two recent papers which provide similar characterizations under stronger data requirements. While [33] assumes that ex-ante menu

preferences are observable, [34] assumes both preferences and choices are observable.
8 We can conclude x must be preferred to z when xPAFy and yPCFz. The revealed preference illustrated in this example is not captured even by this

process.
9 The following � and Γ represent the choice behavior: t � z � x � y and Γ(X) = {x, y, z}, Γ({y, z, t}) = {y, z}, and Γ(S) = S for all other S. Clearly,

Γ satisfies AF and CF property.
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Given this observation, we provide a characterization for the revealed preference224

when Γ is known to be path independent. To do this, we consider cyclical choice225

behavior: c({x, y, z}) = x, c({x, y}) = x, c({y, z}) = y, c({x, z}) = z. Here, we226

can uniquely pin down the preference for the cyclical choice example when Γ is path227

independent. To see this, first note that c({x, y, z}) = x implies that the DM pays228

attention to x at {x, y, z}, so she does at {x, z} (revealed attention due to competition229

filter). Since she picks z from {x, z}, we can conclude that she prefers z over x (revealed230

preference). Since c({x, y, z}) 6= c({x, z}), y must attract attention at {x, y, z} (revealed231

attention due to attention filter). Since she picks x from {x, y, z}, we can conclude that232

she prefers x over y (revealed preference). Therefore, her preference is uniquely pinned233

down: z � x � y.234

Now we generalize this observation. Suppose c(T) 6= c(T \ y) and c(T) 6= y. Then235

we conclude that y must be paid attention to at T, hence c(T) � y. Since Γ is path236

independent, c(T) must attract attention at any decision problem S smaller than T237

including c(T). Therefore, if c(S) 6= c(T), c(S) is revealed to be preferred to c(T), hence238

c(S) � c(T) � y. Formally, for any distinct pair of x and y define:239

xPPIy if there exist S and T such that (i) {x, y} ⊂ S ⊂ T and x = c(S)
(ii) c(T) 6= c(T \ y)

Note that the second condition in the definition of PPI holds trivially when y is240

equal to c(T). This implies that c(T) must have been considered not only at T but also241

at any decision problem S smaller than T including c(T) since Γ satisfies PI. Therefore,242

whenever c(T) ⊆ S ⊂ T and c(T) 6= c(S), we have x = c(S) � c(T) = y.243

As before, if xPPIy and yPPIz for some y, we also conclude that she prefers x to244

z even when xPPIz does not hold. The following proposition states that the transitive245

closure of PPI , denoted by PPI
R is the revealed preference.246

Proposition 1. Suppose c is a π-LC model. Then, x is revealed to be preferred to y if and only if247

xPPI
R y.248

Proof. The if-part has been already demonstrated. The only-if part can be shown249

paralleled with Theorem 2, where we shall show that any � including PPI
R represents c250

by choosing Γ properly.251

Finally, note that PPI must include both PAF and PCF, but it might include more.252

To show this, we revisit Example 1 and illustrate that PPI captures x is better than y,253

which was missed by both PAF and PCF. Let T = {x, y, z, t} and S = {x, y}. Since254

c(T) 6= c(T \ y) and c(S) = x, we must have xPPIy. Hence our model reveals more255

preference information than the combined models of [1] and [2].256
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Appendix A Proofs263

The Proof of Theorem 2264

Define xPPIy if and only if there exist T and T′ with x, y ∈ T ⊂ T′ such that

x = c(T) and c(T′) 6= c(T′ \ y)

Lemma A1. xPPI is acyclic if and only if c satisfies WARP-PI.265

The proof of Lemma A1 is completely analogous to the proofs of Lemmas 1 and 2266

(see [1,2]), hence we skip it here.267

Let PPI
R be the transitive closure of PPI and let � be any arbitrary completion of268

PPI
R . For every S, we call B ⊂ S a minimum block of S if and only if c(S) 6= c(S \ B) but269

c(S) = c(S \ B′) for any B′ ( B. Given this, define Γ recursively as follows:270

1. Γ(X) consists of the �-worst element of each of X’s minimum blocks.271

2. Suppose Γ has been already defined for all proper supersets of S. Then, define Γ(S)272

(a) First, put x ∈ S into Γ(S) if x ∈ Γ(T) for some T ) S.273

(b) If there is a minimum block of S that does not have an element in Γ(S)274

according to the above, add the �-worst element into Γ(S).275

Lemma A2. For any S,276

(i) c(S) is a minimum block of S. There is no other minimum block that includes c(S).277

(ii) If B is a minimum block of S other than c(S), then c(S) � x for all x ∈ B.278

(iii) If c(T) 6= c(S) and T ) S, then T has a minimum block that is a subset of T \ S.279

Proof. Part (i) and (iii) are trivial. For Part (ii), let B′ = B \ x (it may be empty). Then we
have

c(S) = c(S \ B′) 6= c((S \ B′) \ x)

Therefore, we have c(S)PPI x so it must be c(S) � x.280

Claim 1. Γ is path independent.281

Proof. Γ satisfies CF by construction so we shall prove that Γ satisfies AF. Suppose not,282

i.e., x /∈ Γ(S) and Γ(S) 6= Γ(S \ x). Since Γ satisfies CF, we must have Γ(S) ⊆ Γ(S \ x).283

Hence Γ(S) ( Γ(S \ x), that is, there exists y ∈ S such that y /∈ Γ(S), but y ∈ Γ(S \ x).284

Then there exists T ⊃ S such that (i) T \ x has a minimum block B and y is the worst285

element in B and (ii) none of elements in B are included in Γ(T′) for any T′ ) T \ x.286

Then, we must have c(T) = c(T \ x). Otherwise {x} is a minimum block of T′ so
we have x ∈ Γ(T′) that implies x ∈ Γ(S). Therefore, we have

c(T) = c(T \ x) 6= c((T \ x) \ B) = c(T \ {{x} ∪ B})

Therefore, by Lemma A2 (iii), T has a minimum block that is a subset of x ∪ B so at least287

one element in x ∪ B must be in Γ(T), which is a contradiction.288

Now we want to show that (�, Γ) represents c. Since Lemma A2 (i) implies that289

c(S) ∈ Γ(S), all we need to show is that c(S) � y for all y ∈ Γ(S) \ c(S).290

Claim 2. If y ∈ Γ(S) and y 6= c(S), then c(S) � y.291

Proof. Since y ∈ Γ(S), there exists T ⊃ S such that y ∈ Γ(T). Furthermore, T has a292

minimum block B where y is the worst element and none of elements in B is in Γ(T′)293

for any T′ ) T. There are three easy cases: (i) if c(S) = c(T) then by Lemma A2 (ii) we294

have c(S) = c(T) � y, (ii) if y = c(T) then we have c(S)PPIy so it must be c(S) � y,295

and finally (iii) if c(S) ∈ B, then c(S) � y by construction. Therefore, we only need to296
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investigate the case when y 6= c(T) 6= c(S) and c(S) /∈ B. Note that c(T) � y in this case297

by Lemma A2 (ii).298

Now let S′ = S \ B. Since y ∈ B, S′ is a proper subset of S.299

Case I: c(S′′) 6= c(S) for some S′′ where S′ ⊂ S′′ ⊂ S.300

By Lemma A2 (iii), S has a minimum block B′ that is a subset of S \ S′′ ⊂ B. Since301

c(S) /∈ B′(⊂ B), every element in B′ is worse than c(S) by Lemma A2 (ii). Since y is the302

worst element in B that is a superset of B′, we conclude c(S) � y.303

Case II: c(S′′) = c(S) for all S′′ where S′ ⊂ S′′ ⊂ S.304

Since y 6= c(T) = c(T \ {B \ y}) 6= c(T \ B), and c(S \ {B \ y}) ∈ {T \ {B \ y}}, we305

have c(S \ {B \ y}) PPI y. Therefore, c(S) � y because of c(S \ {B \ y}) = c(S).306
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