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Recommendation
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Online Shopping
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Endorsements

• “Amazon’s Choice”

• “Superhost”

• “Etsy’s picks”

• “Best Seller”

• “Editor’s pick”

• ...
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Others
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Basic Observation

• Recommending a product increases the sales of recommended products

• Senecal and Nantel (2004): Wine/Calculators

• Gupta and Harris (2010): Computer

• Adomavicius et al (2018): Digital Music

• Kawaguchi et al. (2019): Vending machine

• Farronato et al. (2020): Home services

• Rietveld et al. (2021): Microloans

• Bairathi et al. (2022): Freelance

• ...

• But HOW?
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Two Channels

• Recommendation enlarges awareness set of consumer

• Recommendation signage: Best Seller, Award Winner (e.g. Goodman et al,

2013)

• (electronic) Word-of-mouth (e.g. Gupta and Harris, 2010)

• Uninformative advertising (e.g. Mayzlin and Shin, 2011)

• Recommendation affects consumer’s valuation

• Consumer’s Rating (Cosley et al, 2003)

• Willingness to Pay (Adomavicius et al, 2018)

• Consumer’s utility (Kawaguchi et al, 2021)
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A Puzzle

• Does Recommendation affect choices through attention or preferences?

• Informational: enlarging awareness set of consumer

• Persuasive: increasing consumer’s evaluation
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Aim

• To understand how choice is affected by recommendation

• Distinguish different channels of recommendation from observed choices

• Provide a new theoretical foundation for applied and empirical studies on

recommendation
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How do we proceed?

• Deterministic

• Probabilistic

• Non-Parametric

• Parametric
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Decision Problem

• X: set of alternatives

• a dataset consisting of a single and fixed menu

• variation comes from different recommendation sets

• c : 2X → X, a choice function

• c(R) ∈ X for R ⊆ X
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Decision Problem

• In standard model, c(S) ∈ S

• Here, c(R) ∈ X
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How to model the choice

c(R) =???

• Assuming away the effect of recommendation

• How to model??
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Persuasive Recommendation (PR)

• � - Preference on X

• �? - Preference on X ∪X∗

• The relationship between � and �?

• x∗�? x
• x�? y ⇔ x � y

• Persuasive Recommendation Model (PR)

c(R) = max*(R∗ ∪X,�?)
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Informational Recommendation (IR)
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Limited Attention
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Informational Recommendation (IR)

• � - Preference on X

• Assume limited consideration

• a denotes the best option in her consideration set

• Informational Recommendation Model (IR)

c(R) = max(R ∪ a,�)

• Equivalently,

c(R) = max(R ∪A,�) where a = max(A,�)

• A: awareness set
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Behavioral implication

• Suppose we do not know which one is the correct model

• How do we distinguish them from observed choice behavior?
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Independence of Irrelevant Recommended Alternatives (IIRA)
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If R′ ⊆ R and c(R) ∈ R′, then c(R) = c(R′)
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Independence of Irrelevant Recommended Alternatives (IIRA)

IIRA

If R′ ⊆ R and c(R) /∈ R \R′, then c(R) = c(R′)
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Sandwich Property
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Sandwich Property

Sandwich Property

If R′ ⊆ R ⊆ R′′ and c(R′′) = c(R′), then c(R) = c(R′).
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Axioms
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Characterization

Let D includes all recommendation sets with |R| ≤ 3.

Theorem (Preference Channel)

c has a PR representation on D if and only if c satisfies Axiom IIRA.

Theorem (Attention Channel)

c has a IR representation on D if and only if c satisfies Axiom IIRA, and

Sandwich Property.
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Identification for Preference Channel

• Let c belong to the PR Model

• Revelations on �∗ from choices

• c(∅) must be the best alternative in �
• Preference over the upper contour set of c(∅) is identified

• Preference over the lower contour set of c(∅) is NOT identified
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Identification for Attention Channel

• Let c belong to the IR Model

• Revelations on (a,�) from choices

• c(∅) must be the default option
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Up until here

• Provided a new theoretical framework for recommendation in the

deterministic environment

• Discovered when we can distinguish utility channel from attention channel

• Identify the primitives of the models
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Probabilistic Data



Probabilistic Data

• Real-world data often comes in the form of probabilistic choice

• Aggregate data

• Repeated choice

• Building based on deterministic models

• Non-parametric models (à la RUM)

• Parametric models (à la Luce)
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Probabilistic Data

• ρ(x,R) : frequency of x being chosen when R is the recommended set

• A single and fixed menu (no menu variation)

• variation comes from different recommendation sets

•
∑
x∈X

ρ(x,R) = 1

26



Non-Parametric Model



Heterogeneous Population

Think of a stochastic choice coming from a heterogeneous population
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Heterogeneous Population

Think of a stochastic choice coming from a heterogeneous population
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Classical Random Utility Model (RUM)

• µ: a probability distribution over all preference types

ρ(x,R) =
∑

x is the best in �

µ(�)

• the randomness in choices is attributed to the variation in tastes or types
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PR-RUM (Preference Channel)

• Each type is denoted by �? (as in the PR Model)

• µ: probability measure over the set of all �? on X ∪X∗

ρ(x,R) =
∑

x is chosen
by type �?

µ(�?)

• Rich type space

• If n = 3, 90 types in PR-RUM vs 6 types in RUM

• If n = 4, 2520 types in PR-RUM vs 24 types in RUM
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IR-RUM (Attention Channel)

• Each type is denoted by (a,�) (as in the IR Model)

• µ: probability measure over the set of all (a,�) where � on X

ρ(x,R) =
∑

x is chosen
by type (a,�)

µ(a,�)

• Rich type space

• If n = 3, 18 types in IR-RUM vs 6 types in RUM

• If n = 4, 96 types in IR-RUM vs 24 types in RUM
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IR-RUM (Attention Channel)

• Each type is denoted by (a,�) (as in the IR Model)
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Behavioral Implications of RUM

• Remember RUM

• Has preference maximization any implications for aggregate data?

• For RUM in the standard environment,

• The Block-Marschak polynomials are non-negative.

• Given ρ,

qρ(x, S) :=
∑
B⊇S

(−1)|B\S|ρ(x,B) ≥ 0

• Choice data can be represented by RUM iff qρ(x,R) ≥ 0.
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Behavioral Implications of RUM

• Given ρ,

qρ(x, S) :=
∑
B⊇S

(−1)|B\S|ρ(x,B) ≥ 0

• qρ(x, S): the probability of types who rank x behind the elements of X \ S
and ahead of the elements in S

• For example, if X = {a, b, c, d}, then q(b, {b, c}) identifies the probability of

a � d � b � c and d � a � b � c

• Hence µ({a � d � b � c, d � a � b � c}) = q(b, {b, c})
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Block-Marschak Polynomials

For x ∈ R,

qρ(x,R) :=
∑
B⊇R

(−1)|B\R|ρ(x,B)

A new object

For x /∈ R,

yρ(x,R) :=
∑

x/∈B⊇R

(−1)|B\R|ρ(x,B)
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Behavioral Implication

Non-negativity of BM

For a ∈ R, q(a,R) ≥ 0 and y(a,R \ a) ≥ 0.

Positive Marginal Recommendation

For a ∈ R, q(a,R) ≥ y(a,R \ a).
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Characterization

Assume D = 2X

Theorem

ρ is a PR-RUM if and only if ρ satisfies Non-negativity of BM.

Theorem

ρ is an IR-RUM if and only if ρ satisfies Non-negativity of BM and

Positive Marginal Recommendation.

Proof

36



Identification for Preference Channel

• Revelations on µ defined over �∗ from choices

• yρ(a, ∅): the probability of types who rank a as the best alternative in � and

b∗ �∗ a for all b

• qρ(a, {a}): the probability of types who rank a∗ above b for all and below b∗

for all b
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Identification for Attention Channel

• Revelations on µ defined over (a,�) from choices

• yρ(b, A): the probability of types who rank b just above A and b is their

default

• qρ(b, A ∪ {b}): the probability of types who rank b just above A and their

default is within A ∪ {b}

Note that yρ(a, ∅) = qρ(a, {a})
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So far

• Distinguish utility channel from attention channel in probabilistic world

• Identification of types

• No parametric assumptions...
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Parametric



Parametric

• tractable

• strong uniqueness properties

• sharp identification results for application purposes
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The MNL (Luce) Model

• Most used parametric model

• Specifies a utility u(x) for each alternative x

• Probability of choosing an alternative x in a set X

u(x)∑
y∈X u(y)

• We now apply this idea to a model with recommendations

41



PR-Luce

• u′(x): the utility of x with recommendation

• u(x): the utility of x w/o recommendation

• u′(x) ≥ u(x): positive recommendation

• When x is recommended

u′(x)∑
y∈R

u′(y) +
∑

y∈X\R
u(y)

• When x is not recommended

u(x)∑
y∈R

u′(y) +
∑

y∈X\R
u(y)
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PR-Luce

Positivity: ρ(x,R) > 0 even if x /∈ R

Definition

A choice rule ρ has a persuasive Luce recommendation representation

(PR-Luce) if there exists functions u, u′ : X → R++ such that for x ∈ X,

u′(x) ≥ u(x) and

ρPR(x,R) :=


u′(x)∑

y∈R
u′(y)+

∑
y∈X\R

u(y)
if x ∈ R

u(x)∑
y∈R

u′(y)+
∑

y∈X\R
u(y)

otherwise

for all R ∈ D.

• Alternatively, we can write u′(x) = u(x)r(x)

• r(x) ≥ 1 captures the increase in weight for alternative x
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IR-Luce

Fix the default: a,

Probability being chosen :=


u(x)∑

z∈R∪a u(z)
if x ∈ R ∪ a

0 otherwise

and

d(a) : probability of a is being the default
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IR-Luce

Definition

A choice rule ρ has a informational Luce recommendation representation

(IR-Luce) if there exists functions u : X → R++ and d : X → R++ with∑
x∈X

d(x) = 1 such that

ρIR(x,R) =


∑
z∈X

d(z) u(x)∑
y∈R∪z

u(y)
if x ∈ R

d(x) u(x)∑
y∈R∪x

u(y)
otherwise

for x ∈ X and R ∈ D.
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Axioms

Axiom: Recommended Luce-IIA

For x, y ∈ R ∩R′,
ρ(x,R)

ρ(y,R)
=
ρ(x,R′)

ρ(y,R′)
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Axioms

Axiom: R-Path Independence

For x /∈ R and x ∪R ⊆ R′,

ρ(x,R)ρ(x ∪R,R′) is independent of R

47



Axioms

Axiom: R-Regularity

For x /∈ R, ρ(x,R) ≤ ρ(x,R \ y).

• It is implied by R-Path Independence.
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Axioms

Axiom: Strong Luce-IIA

For x, y ∈ R ∩R′, t, z /∈ R ∪R′,

ρ(x,R)

ρ(x,R′)
=

ρ(y,R)

ρ(y,R′)
=

ρ(t, R)

ρ(t, R′)
=

ρ(z,R)

ρ(z,R′)

• It (immediately) implies Recommended Luce-IIA.
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Axioms

R-Path Ind.: For x /∈ R and R ∪ x ⊆ R′, ρ(x,R)ρ(R ∪ x,R′) is independent of R

Rec. Luce-IIA: For x, y ∈ R ∩R′, ρ(x,R)
ρ(y,R)

=
ρ(x,R′)
ρ(y,R′)
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PR-LUCE
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IR-LUCE
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Characterization: Parametric

Theorem (Preference Channel)

Let D includes all recommendation sets with |R| ≤ 2. Then, ρ has a

PR-Luce representation if and only if ρ satisfies Axiom R-Regularity and

General Luce-IIA.

Theorem (Attention Channel)

Assume D = 2X . Then, ρ has an IR-Luce representation if and only if ρ

satisfies Axiom Recommended Luce-IIA and R-Path Independence.
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Identification: Parametric

Proposition

Suppose ρ is IR-Luce. Let D includes recommendation sets ∅ and {a} for

some a, then we can fully identify the parameters of the models.

Proposition

Suppose ρ is PR-luce. Let D includes all recommendation sets with

|R| ≤ 1, then we can fully identify the parameters of the models.

• IR-Luce requires less data to fully identify the parameters.
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Summary: Parametric

• Provide a framework to study the effect of recommendation

• Distinguish between attention and preference channels

• Fully distinguish between utility and attention
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To conclude

• Provide a framework to study the effect of recommendation

• Distinguish between attention channel and preference channel

• Characterize probabilistic choice models for real-world application

• More to come

• e.g. Choice effects, Spillover effects, Bounded Rationality
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Ideas of Proof



Hasse diagram

∅

{a}{b}{c}

{b, c} {a, c} {a, b}

{a, b, c}

q(
a,

{a
})

q
(
b
,
{
b
}
)

q(c, {c})

q
(
b
,
{
a
,
b
}
)

q
(
b
,
{
b
,
c
}
)

q(c, {a, c})

q(
a,

{a
, b

})
q(c, {b, c})

q(
a,

{a
, c

})

q(c, {a, b, c})

q
(
b
,
{
a
,
b
,
c
}
)

q(
a,

{a
, b

, c
})

Number of sinking paths: 3! = 6
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Hasse diagram

∅

{a}{b}{c}

{b, c} {a, c} {a, b}

{a, b, c}

y(c, ∅)
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∅
)
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∅)

y
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q
(
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b
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(
b
,
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b
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q(c, {a, c})

q(
a,
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, b

})
q(c, {b, c})

q(
a,

{a
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})

q(c, {a, b, c})

q
(
b
,
{
a
,
b
,
c
}
)

q(
a,

{a
, b

, c
})

Number of outgoing paths:
∑3
k=1 C

3
k ∗ k ∗ k! = 33

Number of outgoing paths with q(x,R)→ y(x,R \ x):
∑3
k=1 C

3
k ∗ k! = 15
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Appendix: Luce’s Axiom back

In the standard Environment, the followings are equivalent

Luce’s IIA

ρ(x,R)

ρ(y,R)
=
ρ(x,R′)

ρ(y,R′)

Luce’s Choice Axiom

ρ(a,R)ρ(R,R′) is independent of R

Here, we apply one on recommended, and one on non-recommended.

Recommended IIA

For x, y ∈ R ∩R′,

ρ(x,R)

ρ(y,R)
=
ρ(x,R′)

ρ(y,R′)

R-Path Independence

For x /∈ R and R ∪ x ⊆ R′,

ρ(x,R)ρ(R ∪ x,R′) is independent of R
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Stronger Axiom 6* back

Due to Recommended IIA, for some recommendation set A that includes x

and z, we let

r(z, x) :=
ρ(z,A)

ρ(x,A)

Axiom: 6* (Off-recommendation Independence). For x /∈ R,

ρ(x,R)(1 +
∑
z∈R

r(z, x)) is independent of R
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Discrete Choice perspective

Random utility is defined as

U(x) = v(x) + ε(x)

where ε(x) is known as “random utility shock”.

Let a probability space (Ω,F ,P). Event where x achieves the highest

utility in a set A,

ωx,A = {ω ∈ Ω : U(x) ≥ U(y) for all y ∈ A}
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R-logit

A choice rule ρ has a R-logit representation if there exists v : X → R,

d : X → R+ with
∑
x∈X d(x) = 1 and ε : Ω→ R

X which follows Gumbel

distribution with noise parameter λ and is i.i.d. across x ∈ X such that

ρ(x,R) =


∑
a∈X d(a)P(ωx,R∪a) if x ∈ R

d(x)P(ωx,R) if x /∈ R

Remark. The closed-form solution for P(ωx,A) is,

P(ωx,A) =
ev(x)/λ∑
z∈A e

v(z)/λ

63



R-logit

A choice rule ρ has a R-logit representation if there exists v : X → R,

d : X → R+ with
∑
x∈X d(x) = 1 and ε : Ω→ R

X which follows Gumbel

distribution with noise parameter λ and is i.i.d. across x ∈ X such that

ρ(x,R) =


∑
a∈X d(a)P(ωx,R∪a) if x ∈ R

d(x)P(ωx,R) if x /∈ R

Remark. The closed-form solution for P(ωx,A) is,

P(ωx,A) =
ev(x)/λ∑
z∈A e

v(z)/λ

63


	Persuasive Recommendation (PR)
	Informational Recommendation (IR)
	Probabilistic Data
	Non-Parametric Model
	Parametric
	Ideas of Proof

