Decision Making with Recommendations

Paul Cheung and Yusufcan Masatlioglu UT Dallas and University of Maryland

UCLA

Nov 17, 2022

- "Amazon's Choice"
- "Superhost"
- "Etsy's picks"
- "Best Seller"
- "Editor's pick"
- ...

- Recommending a product increases the sales of recommended products
 - Senecal and Nantel (2004): Wine/Calculators
 - Gupta and Harris (2010): Computer
 - Adomavicius et al (2018): Digital Music
 - Kawaguchi et al. (2019): Vending machine
 - Farronato et al. (2020): Home services
 - Rietveld et al. (2021): Microloans
 - Bairathi et al. (2022): Freelance
 - ...

- Recommending a product increases the sales of recommended products
 - Senecal and Nantel (2004): Wine/Calculators
 - Gupta and Harris (2010): Computer
 - Adomavicius et al (2018): Digital Music
 - Kawaguchi et al. (2019): Vending machine
 - Farronato et al. (2020): Home services
 - Rietveld et al. (2021): Microloans
 - Bairathi et al. (2022): Freelance
 - ...
- But HOW?

- Recommendation enlarges awareness set of consumer
 - Recommendation signage: Best Seller, Award Winner (e.g. Goodman et al, 2013)
 - (electronic) Word-of-mouth (e.g. Gupta and Harris, 2010)
 - Uninformative advertising (e.g. Mayzlin and Shin, 2011)
- Recommendation affects consumer's valuation
 - Consumer's Rating (Cosley et al, 2003)
 - Willingness to Pay (Adomavicius et al, 2018)
 - Consumer's utility (Kawaguchi et al, 2021)

• Does Recommendation affect choices through attention or preferences?

- Does Recommendation affect choices through attention or preferences?
 - Informational: enlarging awareness set of consumer
 - Persuasive: increasing consumer's evaluation

• To understand how choice is affected by recommendation

- To understand how choice is affected by recommendation
- Distinguish different channels of recommendation from observed choices

- To understand how choice is affected by recommendation
- Distinguish different channels of recommendation from observed choices
- Provide a new theoretical foundation for applied and empirical studies on recommendation

• Deterministic

- Deterministic
- Probabilistic

- Deterministic
- Probabilistic
 - Non-Parametric
 - Parametric

- X: set of alternatives
 - a dataset consisting of a single and fixed menu
 - variation comes from different recommendation sets

- X: set of alternatives
 - a dataset consisting of a single and fixed menu
 - variation comes from different recommendation sets
- $c: 2^X \to X$, a choice function
- $c(R) \in X$ for $R \subseteq X$

- In standard model, $c(S) \in S$
- Here, $c(R) \in X$

How to model the choice

c(R) = ???

$$c(R) = \max(X, \succ)$$

 $c(R) = \max(X,\succ)$

- Assuming away the effect of recommendation
- How to model??

• \succ - Preference on X

• \succ - Preference on X

• \succ^* - Preference on $X \cup X^*$

• \succ - Preference on X

• \succ^{\star} - Preference on $X \cup X^*$

- The relationship between \succ and \succ^*
 - $x^* \succ^* x$
 - $x \succ^{\star} y \Leftrightarrow x \succ y$

• \succ - Preference on X

• \succ^{\star} - Preference on $X \cup X^*$

- The relationship between \succ and \succ^*
 - $x^* \succ^* x$
 - $x \succ^{\star} y \Leftrightarrow x \succ y$
- Persuasive Recommendation Model (PR)

$$c(R) = \max^*(R^* \cup X, \succ^*)$$

Informational Recommendation (IR)

Limited Attention

Limited Attention

Limited Attention

• \succ - Preference on X

- \succ Preference on X
- Assume limited consideration
- \boldsymbol{a} denotes the best option in her consideration set
- \succ Preference on X
- Assume limited consideration
- a denotes the best option in her consideration set
- Informational Recommendation Model (IR)

 $c(R) = \max(R \cup a, \succ)$

- \succ Preference on X
- Assume limited consideration
- a denotes the best option in her consideration set
- Informational Recommendation Model (IR)

 $c(R) = \max(R \cup a, \succ)$

• Equivalently,

$$c(R) = \max(R \cup A, \succ)$$
 where $a = \max(A, \succ)$

• A: awareness set

• Suppose we do not know which one is the correct model

- Suppose we do not know which one is the correct model
 - How do we distinguish them from observed choice behavior?

If $R' \subseteq R$ and $c(R) \in R'$, then c(R) = c(R')

Independence of Irrelevant Recommended Alternatives (IIRA)

IIRA

If $R' \subseteq R$ and $c(R) \notin R \setminus R'$, then c(R) = c(R')

Sandwich Property

Sandwich Property

If $R' \subseteq R \subseteq R''$ and c(R'') = c(R'), then c(R) = c(R').

Let \mathcal{D} includes all recommendation sets with $|R| \leq 3$.

Theorem (Preference Channel)

c has a PR representation on $\mathcal D$ if and only if c satisfies Axiom IIRA.

Theorem (Attention Channel)

c has a IR representation on $\mathcal D$ if and only if c satisfies Axiom IIRA, and Sandwich Property.

• Let ${\color{black} c}$ belong to the PR Model

- $\bullet~$ Let ${\color{black} c}$ belong to the PR Model
- Revelations on \succ^* from choices

- $\bullet~$ Let ${\color{black} c}$ belong to the PR Model
- Revelations on \succ^* from choices
 - $c(\emptyset)$ must be the best alternative in \succ
 - Preference over the upper contour set of $c(\emptyset)$ is identified
 - Preference over the lower contour set of $c(\emptyset)$ is NOT identified

• Let ${\color{black} c}$ belong to the IR Model

- Let ${\color{black} c}$ belong to the IR Model
- Revelations on (a, \succ) from choices

- Let ${\color{black} c}$ belong to the IR Model
- Revelations on (a, \succ) from choices
 - $c(\emptyset)$ must be the default option
 - Preference over the upper contour set of $c(\emptyset)$ is identified
 - Preference over the lower contour set of $c(\emptyset)$ is NOT identified

- Provided a new theoretical framework for recommendation in the deterministic environment
- Discovered when we can distinguish utility channel from attention channel
- Identify the primitives of the models

Probabilistic Data

- Real-world data often comes in the form of probabilistic choice
 - Aggregate data
 - Repeated choice

- Real-world data often comes in the form of probabilistic choice
 - Aggregate data
 - Repeated choice
- Building based on deterministic models
 - Non-parametric models (à la RUM)
 - Parametric models (à la Luce)

Probabilistic Data

- $\rho(x, R)$: frequency of x being chosen when R is the recommended set
- A single and fixed menu (no menu variation)
 - variation comes from different recommendation sets
- $\sum_{x \in X} \rho(x, R) = 1$

Non-Parametric Model

Think of a stochastic choice coming from a heterogeneous population

Think of a stochastic choice coming from a heterogeneous population

Classical Random Utility Model (RUM)

• μ : a probability distribution over all preference types

$$ho(x,R) = \sum_{x ext{ is the best in }\succ} \mu(\succ)$$

• the randomness in choices is attributed to the variation in tastes or types

- Each type is denoted by \succ^* (as in the PR Model)
- μ : probability measure over the set of all \succ^* on $X \cup X^*$

$$ho(x,R) = \sum_{\substack{x ext{ is chosen} \ ext{by type } \succ^{\star}}} \mu(\succ^{\star})$$

- Each type is denoted by \succ^* (as in the PR Model)
- μ : probability measure over the set of all \succ^* on $X \cup X^*$

$$ho(x,R) = \sum_{\substack{x ext{ is chosen} \ ext{by type} \succ^{\star}}} \mu(\succ^{\star})$$

• Rich type space

- If n = 3, 90 types in PR-RUM vs 6 types in RUM
- If n = 4, 2520 types in PR-RUM vs 24 types in RUM

IR-RUM (Attention Channel)

- Each type is denoted by (a, \succ) (as in the IR Model)
- μ : probability measure over the set of all (a, \succ) where \succ on X

$$ho(x,R) = \sum_{\substack{x ext{ is chosen} \\ ext{ by type } (a,\succ)}} \mu(a,\succ)$$

- Each type is denoted by (a, \succ) (as in the IR Model)
- μ : probability measure over the set of all (a, \succ) where \succ on X

$$ho(x,R) = \sum_{\substack{x ext{ is chosen} \ ext{by type } (a,\succ)}} \mu(a,\succ)$$

• Rich type space

- If n = 3, 18 types in IR-RUM vs 6 types in RUM
- If n = 4, 96 types in IR-RUM vs 24 types in RUM

- Remember RUM
- Has preference maximization any implications for aggregate data?
- Remember RUM
- Has preference maximization any implications for aggregate data?
- For RUM in the standard environment,
 - The Block-Marschak polynomials are non-negative.
 - Given ρ ,

$$q_{\rho}(x,S) := \sum_{B \supseteq S} (-1)^{|B \setminus S|} \rho(x,B) \ge 0$$

• Choice data can be represented by RUM iff $q_{\rho}(x, R) \ge 0$.

$$q_{\rho}(x,S) := \sum_{B \supset S} (-1)^{|B \setminus S|} \rho(x,B) \ge 0$$

$$q_{\rho}(x,S) := \sum_{B \supseteq S} (-1)^{|B \setminus S|} \rho(x,B) \ge 0$$

• $q_{\rho}(x, S)$: the probability of types who rank x behind the elements of $X \setminus S$ and ahead of the elements in S

$$q_{\rho}(x,S) := \sum_{B \supseteq S} (-1)^{|B \setminus S|} \rho(x,B) \ge 0$$

- q_ρ(x, S): the probability of types who rank x behind the elements of X \ S and ahead of the elements in S
- For example, if $X = \{a, b, c, d\}$, then $q(b, \{b, c\})$ identifies the probability of $a \succ d \succ b \succ c$ and $d \succ a \succ b \succ c$

$$q_{\rho}(x,S) := \sum_{B \supseteq S} (-1)^{|B \setminus S|} \rho(x,B) \ge 0$$

- q_ρ(x, S): the probability of types who rank x behind the elements of X \ S and ahead of the elements in S
- For example, if $X = \{a, b, c, d\}$, then $q(b, \{b, c\})$ identifies the probability of $a \succ d \succ b \succ c$ and $d \succ a \succ b \succ c$
- Hence $\mu(\{a \succ d \succ b \succ c, d \succ a \succ b \succ c\}) = q(b, \{b, c\})$

For $x \in R$,

$$q_{\rho}(x,R) := \sum_{B \supseteq R} (-1)^{|B \setminus R|} \rho(x,B)$$

For $x \in R$, $q_{\rho}(x,R) := \sum_{B \supseteq R} (-1)^{|B \setminus R|} \rho(x,B)$

A new object

For $x \notin R$,

$$y_{\rho}(x,R) := \sum_{x \notin B \supseteq R} (-1)^{|B \setminus R|} \rho(x,B)$$

Non-negativity of BM

For $a \in R$, $q(a, R) \ge 0$ and $y(a, R \setminus a) \ge 0$.

Non-negativity of BM

For $a \in R$, $q(a, R) \ge 0$ and $y(a, R \setminus a) \ge 0$.

Positive Marginal Recommendation

For $a \in R$, $q(a, R) \ge y(a, R \setminus a)$.

Assume $\mathcal{D} = 2^X$

Theorem

 ρ is a PR-RUM if and only if ρ satisfies Non-negativity of BM.

Theorem

 ρ is an IR-RUM if and only if ρ satisfies Non-negativity of BM and

Positive Marginal Recommendation.

 \mathbf{Proof}

• Revelations on μ defined over \succ^* from choices

- Revelations on μ defined over \succ^* from choices
 - $y_{\rho}(a, \emptyset)$: the probability of types who rank a as the best alternative in \succ and $b^* \succ^* a$ for all b

 q_ρ(a, {a}): the probability of types who rank a* above b for all and below b* for all b

• Revelations on μ defined over (a,\succ) from choices

- Revelations on μ defined over (a, \succ) from choices
 - $y_{\rho}(b, A)$: the probability of types who rank b just above A and b is their default
 - q_ρ(b, A ∪ {b}): the probability of types who rank b just above A and their default is within A ∪ {b}

Note that $y_{\rho}(a, \emptyset) = q_{\rho}(a, \{a\})$

- Distinguish utility channel from attention channel in probabilistic world
- Identification of types
- No parametric assumptions...

Parametric

- tractable
- strong uniqueness properties
- sharp identification results for application purposes

- Most used parametric model
- Specifies a utility u(x) for each alternative x
- Probability of choosing an alternative x in a set X

$$\frac{u(x)}{\sum_{y \in X} u(y)}$$

• We now apply this idea to a model with recommendations

- u'(x): the utility of x with recommendation
- u(x): the utility of $x \le u/0$ recommendation
- $u'(x) \ge u(x)$: positive recommendation
- When x is recommended

$$\frac{u'(x)}{\sum\limits_{y \in R} u'(y) + \sum\limits_{y \in X \setminus R} u(y)}$$

- u'(x): the utility of x with recommendation
- u(x): the utility of $x \le 0$ recommendation
- $u'(x) \ge u(x)$: positive recommendation
- When x is recommended

$$\frac{u'(x)}{\sum\limits_{y \in R} u'(y) + \sum\limits_{y \in X \setminus R} u(y)}$$

• When x is not recommended

$$\frac{u(x)}{\sum\limits_{y \in R} u'(y) + \sum\limits_{y \in X \setminus R} u(y)}$$

Positivity: $\rho(x, R) > 0$ even if $x \notin R$

Positivity: $\rho(x, R) > 0$ even if $x \notin R$

Definition

A choice rule ρ has a persuasive Luce recommendation representation (PR-Luce) if there exists functions $u, u' : X \to \mathbb{R}_{++}$ such that for $x \in X$, $u'(x) \ge u(x)$ and

$$o^{PR}(x,R) := \begin{cases} \frac{u'(x)}{\sum\limits_{y \in R} u'(y) + \sum\limits_{y \in X \setminus R} u(y)} & \text{if } x \in R\\ \frac{u(x)}{\sum\limits_{y \in R} u'(y) + \sum\limits_{y \in X \setminus R} u(y)} & \text{otherwise} \end{cases}$$

for all $R \in \mathcal{D}$.

• Alternatively, we can write u'(x) = u(x)r(x)

• $r(x) \ge 1$ captures the increase in weight for alternative x

IR-Luce

Fix the default: a,

Probability being chosen :=
$$\begin{cases} \frac{u(x)}{\sum_{z \in R \cup a} u(z)} & \text{if } x \in R \cup a \\ 0 & \text{otherwise} \end{cases}$$

Fix the default: a,

Probability being chosen :=
$$\begin{cases} \frac{u(x)}{\sum_{z \in R \cup a} u(z)} & \text{if } x \in R \cup a \\ 0 & \text{otherwise} \end{cases}$$

and

d(a): probability of a is being the default

Definition

A choice rule ρ has a informational Luce recommendation representation (IR-Luce) if there exists functions $u: X \to \mathbb{R}_{++}$ and $d: X \to \mathbb{R}_{++}$ with $\sum_{x \in X} d(x) = 1$ such that

$$\rho^{IR}(x,R) = \begin{cases} \sum\limits_{z \in X} d(z) \frac{u(x)}{\sum\limits_{y \in R \cup z} u(y)} & \text{if } x \in R \\ d(x) \frac{u(x)}{\sum\limits_{y \in R \cup x} u(y)} & \text{otherwise} \end{cases}$$

for $x \in X$ and $R \in \mathcal{D}$.

Axioms

Axiom: Recommended Luce-IIA

For $x, y \in R \cap R'$,

$$\frac{\rho(x,R)}{\rho(y,R)} = \frac{\rho(x,R')}{\rho(y,R')}$$

Axiom: R-Path Independence

For $x \notin R$ and $x \cup R \subseteq R'$,

 $\rho(x, R)\rho(x \cup R, R')$ is independent of R

Axiom: R-Regularity

For $x \notin R$, $\rho(x, R) \leq \rho(x, R \setminus y)$.

• It is implied by R-Path Independence.

Axiom: Strong Luce-IIA

For $x, y \in R \cap R', t, z \notin R \cup R',$ $\frac{\rho(x, R)}{\rho(x, R')} = \frac{\rho(y, R)}{\rho(y, R')} = \frac{\rho(t, R)}{\rho(t, R')} = \frac{\rho(z, R)}{\rho(z, R')}$

• It (immediately) implies Recommended Luce-IIA.

R-Path Ind.: For $x \notin R$ and $R \cup x \subseteq R'$, $\rho(x, R)\rho(R \cup x, R')$ is independent of RRec. Luce-IIA: For $x, y \in R \cap R'$, $\frac{\rho(x, R)}{\rho(y, R)} = \frac{\rho(x, R')}{\rho(y, R')}$

R-Path Ind.: For $x \notin R$ and $R \cup x \subseteq R'$, $\rho(x, R)\rho(R \cup x, R')$ is independent of RRec. Luce-IIA: For $x, y \in R \cap R'$, $\frac{\rho(x, R)}{\rho(y, R)} = \frac{\rho(x, R')}{\rho(y, R')}$

Axioms

R-Path Ind.: For $x \notin R$ and $R \cup x \subseteq R'$, $\rho(x, R)\rho(R \cup x, R')$ is independent of RRec. Luce-IIA: For $x, y \in R \cap R'$, $\frac{\rho(x, R)}{\rho(y, R)} = \frac{\rho(x, R')}{\rho(y, R')}$ Strong Luce-IIA: For $x, y \in R \cap R'$, $t, z \notin R \cup R'$, $\frac{\rho(x, R)}{\rho(x, R')} = \frac{\rho(y, R)}{\rho(y, R')} = \frac{\rho(t, R)}{\rho(t, R')} = \frac{\rho(z, R)}{\rho(z, R')}$

R-Path Ind.: For $x \notin R$ and $R \cup x \subseteq R'$, $\rho(x, R)\rho(R \cup x, R')$ is independent of R

R-Path Ind.: For $x \notin R$ and $R \cup x \subseteq R'$, $\rho(x, R)\rho(R \cup x, R')$ is independent of R

IR-LUCE

Theorem (Preference Channel)

Let \mathcal{D} includes all recommendation sets with $|R| \leq 2$. Then, ρ has a PR-Luce representation if and only if ρ satisfies Axiom R-Regularity and General Luce-IIA.

Theorem (Attention Channel)

Assume $\mathcal{D} = 2^X$. Then, ρ has an IR-Luce representation if and only if ρ satisfies Axiom Recommended Luce-IIA and R-Path Independence.

Proposition

Suppose ρ is IR-Luce. Let \mathcal{D} includes recommendation sets \emptyset and $\{a\}$ for some a, then we can fully identify the parameters of the models.

Proposition

Suppose ρ is PR-luce. Let \mathcal{D} includes all recommendation sets with $|R| \leq 1$, then we can fully identify the parameters of the models.

• IR-Luce requires less data to fully identify the parameters.

- Provide a framework to study the effect of recommendation
- Distinguish between attention and preference channels
 - Fully distinguish between utility and attention

- Provide a framework to study the effect of recommendation
- Distinguish between attention channel and preference channel
- Characterize probabilistic choice models for real-world application
- More to come
 - e.g. Choice effects, Spillover effects, Bounded Rationality

Ideas of Proof

Hasse diagram

Number of sinking paths: 3! = 6

Hasse diagram

Number of outgoing paths: $\sum_{k=1}^{3} C_k^3 * k * k! = 33$ Number of outgoing paths with $q(x, R) \to y(x, R \setminus x)$: $\sum_{k=1}^{3} C_k^3 * k! = 15$

In the standard Environment, the followings are equivalent

In the standard Environment, the followings are equivalent

Here, we apply one on recommended, and one on non-recommended.

Recommended IIAR-Path IndependenceFor $x, y \in R \cap R'$,For $x \notin R$ and $R \cup x \subseteq R'$, $\rho(x, R) \\ \rho(y, R) = \frac{\rho(x, R')}{\rho(y, R')}$ $\rho(x, R)\rho(R \cup x, R')$ is independent of R

Due to Recommended IIA, for some recommendation set A that includes x and z, we let

$$r(z,x) := \frac{\rho(z,A)}{\rho(x,A)}$$

Due to Recommended IIA, for some recommendation set A that includes x and z, we let

$$r(z,x) := \frac{\rho(z,A)}{\rho(x,A)}$$

Axiom: 6* (Off-recommendation Independence). For $x \notin R$,

$$\rho(x, R)(1 + \sum_{z \in R} r(z, x))$$
 is independent of R

Random utility is defined as

$$U(x) = v(x) + \epsilon(x)$$

where $\epsilon(x)$ is known as "random utility shock".

Random utility is defined as

$$U(x) = v(x) + \epsilon(x)$$

where $\epsilon(x)$ is known as "random utility shock".

Let a probability space $(\Omega, \mathcal{F}, \mathbb{P})$. Event where x achieves the highest utility in a set A,

$$\omega_{x,A} = \{ \omega \in \Omega : U(x) \ge U(y) \text{ for all } y \in A \}$$

R-logit

A choice rule ρ has a R-logit representation if there exists $v: X \to \mathbb{R}$, $d: X \to \mathbb{R}_+$ with $\sum_{x \in X} d(x) = 1$ and $\epsilon: \Omega \to \mathbb{R}^X$ which follows Gumbel distribution with noise parameter λ and is i.i.d. across $x \in X$ such that

$$\rho(x,R) = \begin{cases} \sum_{a \in X} d(a) \mathbb{P}(\omega_{x,R \cup a}) & \text{if } x \in R \\ d(x) \mathbb{P}(\omega_{x,R}) & \text{if } x \notin R \end{cases}$$

R-logit

A choice rule ρ has a R-logit representation if there exists $v: X \to \mathbb{R}$, $d: X \to \mathbb{R}_+$ with $\sum_{x \in X} d(x) = 1$ and $\epsilon: \Omega \to \mathbb{R}^X$ which follows Gumbel distribution with noise parameter λ and is i.i.d. across $x \in X$ such that

$$\rho(x,R) = \begin{cases} \sum_{a \in X} d(a) \mathbb{P}(\omega_{x,R \cup a}) & \text{if } x \in R \\ d(x) \mathbb{P}(\omega_{x,R}) & \text{if } x \notin R \end{cases}$$

Remark. The closed-form solution for $\mathbb{P}(\omega_{x,A})$ is,

$$\mathbb{P}(\omega_{x,A}) = \frac{e^{v(x)/\lambda}}{\sum_{z \in A} e^{v(z)/\lambda}}$$