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Abstract

Recommendations play an undeniable role in decision-making. While the use of recom-
mendations has become widespread across different realms of economic activity, there is no
decision-theoretic work in this area. This paper aims to fill that gap by providing a new the-
oretical foundation for applied and empirical work on recommendations. We consider both
deterministic and stochastic choice under recommendations. The stochastic version of the
model enables us to study aggregate behavior observed in the real world. We also provide
a parametric stochastic model in which the parameters are uniquely identified with minimal
data requirements. This gives us a frugal way to make out-of-sample predictions for appli-
cation purposes. All three characterizations are based on simple and intuitive behavioral

postulates that offer straightforward tests for our models.

1 Introduction

Recommendation is one of the key determinants in decision-making. For instance, we con-
stantly rely on recommendation from our friends, consumer reports, mass media when selecting
a movie to see; a book to read; a car to buy; a school to send our children.! It is not surprising
that many internet sites such as Amazon.com, Netflix, YouTube, LinkedIn, Spotify, Tripadvisor,
and Facebook, incorporated similar tools in their website to help their customer. “Frequently
bought together” and “Best-selling” of Amazon.com, and “the Top Picks’ of Netflix are just a
few examples of these recommendation tools.?

The choices of an individual are directly influenced by the recommendations they receive.

The evidence on recommendations altering choice behavior is conclusive and indisputable across
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The recommender website, such as Angie’s List, HomeAdvisor, Houzz, Thumbtack, shows that people are
willing to pay for recommendations, which capture word of mouth wisdom. In order words, consumers value this
information.

2 According to the 2013 data released by McKinsey & Company, recommendation systems drive 35% of pur-
chases at Amazon. Similarly, 75% of what people watch on Netflix is initiated by their product recommendations.



a wide spectrum of economic activities (e.g. for labour market, Horton (2017); for hospitality
and tourism, Litvin et al. (2008); for music streaming service, Adomavicius et al. (2018) and
Li et al. (2007); for e-commerce (of commodities or goods), Goodman et al. (2013), Haubl
and Trifts (2000), Rowley (2000), Senecal and Nantel (2004), and Vijayasarathy and Jones
(2000)). Despite its practical importance, we still do not understand how recommendation
affects choices. In this paper, we aim at filling the gap by studying theoretically the effect
of recommendations on choices by using revealed preference techniques. We propose a simple
model of recommendation and investigate the empirical implications of aggregate behaviour
of the model. More importantly, viewing choice behavior as resulting from an unobservable
cognitive process, we identify the primitives of the model from observed choices.

We first propose a deterministic model of recommendation. Our deterministic model is
intended to be simple so that we can study the aggregate behavior of such consumers later. In
this model, each decision maker is identified with a pre-recommendation choice and a preference
ordering. The pre-recommendation choice represents the option either previously chosen or the
default. In addition to these, it could be interpreted as the best alternative in her awareness set
according to her preference before receiving any recommendation. Under these interpretations,
it is natural that the pre-recommendation choice is picked if there is no recommendation since
DM perceives no change in her environment. Each decision problem represents a different set
of recommendations while the set of feasible alternatives are always fixed.® If an alternative is
recommended, the decision maker picks the better option between the recommended alternatives
and her pre-recommendation choice according to her preference. In our model, recommendation
cannot hurt since the decision maker can always ignore the recommendation if it is not better
than her pre-recommendation choice. This formulation eliminates any strategic consideration
due to trust concerns about the source and intention of recommendation.* We see this model
as a “rational” benchmark model of recommendation.

Our model is designed with two features in mind. First, a recommendation can only improve
the decision maker’s welfare. Second, we consider a very basic form of recommendation such as
Best Sellers or Award Winners, where a recommendation is a set of alternatives. This type of
recommendation is called recommendation signage. Goodman et al. (2013) examined 52 of the
top 100 US retailers and found that at least 31 (60%) retailers that use these forms of recom-

mendations. Recommendation signage helps customers by creating a consideration set (Gershoff

3 As opposed to the standard choice models, there is no choice set variation in this model. What could vary is
the set of recommended alternatives.

40ur DM does not need to trust the recommendation since she can always ignore the recommendation. Nev-
ertheless, our framework is rich enough to study other channels that recommendation might be operational. The
areas of further research should includes developing more elaborate and complex models of recommendation.



et al., 2001; Gupta and Harris, 2010; Sela et al., 2009; West and Broniarczyk, 1998). There
are other examples of this form of recommendation, such as word-of-mouth, recommendation
on social media, off-site recommendations with email, and uninformative advertising (not men-
tioning any attribute of the product). All of these enlarge the awareness of customers. 92% of
consumers report that a word-of-mouth recommendation is the top reason they buy a product
or service (Nielsen 2012). Abernethy and Butler (1992) show that 37.5% of U.S. TV advertising
has no product attribute information. Mayzlin and Shin (2011) show uninformative advertising
can be seen as an initiation to assess the product through inspection and it could be very effec-
tive for high quality products. In the retail banking industry, Honka et al. (2017) showed that
advertising’s primary role is largely informative as opposed to persuasive. Gupta and Harris
(2010) shows indicate that eeWOM (i.e. electronic word-of-mouth) is likely to result in more
time considering the recommended product.

Oftentimes recommendation inspires consumers to pick products that they otherwise would
not have noticed (Chen et al. (2019) and Kawaguchi et al. (2021)). Hence, in this paper,
recommendation’s primary role is to inform customer about the existence and availability of

> We focus on products where consumers can determine whether they like it or

the products.
not by inspection prior to purchase. Recommendations might not necessarily reflect what the
consumer likes. Due to the possibility of misalignment in preferences, the consumer still needs
to go through the details of the product before making a decision.

Our first result identifies three simple and intuitive postulates which characterize the deter-
ministic model. First note that the final choice in our model could be outside of the recommended
set. This feature makes our model different from standard choice models. Our behavioral pos-
tulates depend on whether or not the final choice belongs to the recommended set. Our first
postulate states that removing some of the unchosen alternatives from the recommendation set
would not influence the final choice as long as the choice belongs to the recommended set. This
postulate is similar to ITA in spirit. The next postulate assumes that if the decision maker
does not follow a particular recommendation set, then she does not follow any subset of it. The
final postulate states that if the decision maker does not follow the recommendation, she always
chooses the same alternative. We show that these postulates characterize the deterministic

model. Moreover, we can identify the pre-recommendation choice and “unique” preferences.

®Recommendation might also affect choices through by changing consumer’s preferences. It is very difficult to
disentangle whether a recommendation is informative or persuasive with naturally occurring data. A recent study
by Kawaguchi et al. (2021) shows that “the recommendations affect total vending machine sales more through
the attention channel than through the utility channel.”

50One prominent reason is the inherent stochasticity of preference, which we will elaborate in the stochastic
version of the model. On the other hand, even if one tries to give an algorithmic recommendation based on
observed behavior, one often faces trade-off between efficiency of computation and quality of recommendation
(Aggarwal, 2016; Hu et al., 2018).



Since, in many examples we have in mind, the data is given in the form of the aggregate
behavior (stochastic choice), we extend our intuition of the deterministic model to this envi-
ronment. The stochastic choice can be interpreted in two ways: It can be interpersonal, where
we observed choice made by different individual; or intrapersonal, where the same individual
makes choices under potentially different circumstances. Therefore, in section 3, we introduce a
parametric model of recommendation where we capture all the information about the model’s
predictions with a finite set of alternative-specific parameters. The parametric model is based
on two simple motives: Firstly, preference can be stochastic, where we observe the outcome of
random preference of individual, 7 or we observe the outcome of a group of (heterogeneous)
agents. Secondly, pre-recommendation can also be stochastic: an individual may base their
pre-recommendation choice on different channels under different occasions (e.g. their friend
suggestion, their last bought items or the recommendation they received last time and etc); on
the aggregate level, people generally do not share the same opinions on what to choose when
they receive no recommendation. To capture these two sources of randomness, we utilize two
sets of alternative-specific parameters: d(z) > 0 and w(x) > 0. d represents the likelihood
of being the pre-recommendation choice, hence ) .y d(x) = 1. w is a crude measure of the
utility value. The higher the w is the higher the choice probability of that alternative. We
combine the intuition of our deterministic model and the Luce model to describe the choice
probabilities. Given a pre-recommendation choice, non-recommended alternatives are chosen
with zero probability except for the pre-recommendation choice. The probabilities of choosing a
recommended item depends on its own weight proportional to the total weight of recommended
alternatives and the pre-recommendation choice. Since being the pre-recommendation choice
is also probabilistic, thus, the odds of selecting an unrecommended alternative, ¢ R, is the
probability of being the pre-recommendation choice times the choice probability when it is the
pre-recommendation choice.

Our parametric model of recommendation has three advantages: i) being tractable, hence
very useful in applications, ii) possessing strong uniqueness properties for identifying of the un-
derlying parameters, iii) can function well under limited data scenario. To investigate into the
model, we first consider the model under full data assumption. We show that this paramet-
ric model is characterized by three simple behavioral tests. The first condition says that all
recommended alternatives are chosen with positive probability. The second one is Luce’s ITA
for recommended alternatives: the odds of choosing a recommended item over another recom-

mended item do not depend on the other items in the recommended set. One would suspect that

"In the traditional economics wisdom, there could be unobserved underlying factors (e.g. weather) changing
the preference.



a similar axiom must hold for off-recommended alternatives. It turns out that that property does
not hold for non-recommended alternatives. Instead, there is another well-known property called
conditional choice. That is, p(a, R)p(R U a, X) is independent of R. In the classical domain,
this axiom is equivalent to Luce’s IIA. However, in our framework, this axiom does not hold
for alternatives in R. On the other hand, this axiom holds for non-recommended alternatives.
Then, we work with limited data. We show that testing the model under limited data requires
a stronger axiom, which has two key behavioral implications. It says that an non-recommended
item would be chosen less when more items are recommended; and the rate it decreases depends
on the relative choice frequencies of the item and each of its rival if they are both recommended.
Lastly, assuming the model is correct, we show that we can uniquely identify the parameters
of the model with only two data points.® This is helpful for real-life applications since it offers
a frugal way to make out-of-sample prediction for the effect of recommending different sets of
items.

Instead of assuming two sources of independent randomness on pre-recommendation choice
and preference in R-Luce, one may suspect there could be potential dependency between the two.
To answer this question, we propose the R-RUM model, where we assume a joint distribution
on preference and pre-recommendation. Here, stochastic choice data is observed by aggregating
a group of different individuals in the same environment, provided that each of them may differ
on their default options and their preferences. Our model resembles the classical random utility
model (RUM), where the heterogeneous utility types are not observable and they need to be
derived from the stochastic choice data. In our model, the type space is more complicated: each
type is a pair of the default option and a preference ¢ = (a,>). Each type corresponds to a
particular deterministic model of recommendation. Each distribution of such types gives rise to
a stochastic choice data set. In other words, the choice probability of an alternative is the sum
of probabilities of choice functions which select that alternative. We denote this model R-RUM.

We identify all the behavioral implications of R-RUM. We show that three simple tests
determine whether stochastic choice data can be represented by R-RUM. The empirical content
of the standard RUM is investigated by Falmagne (1978), Barbera and Pattanaik (1986) and
McFadden and Richter (1990). The non-negativity of the Block-Marshak polynomials (BM)
from Block and Marschak (1959) is equivalent to the choice data being generated by RUM.
In our environment, the classical BM are defined for the recommended alternatives. We need
to introduce an analogue of BM for the alternatives that are not recommended. We show

that the non-negativity of BM for off-recommendation and on-recommendation is necessary but

8While d’s are uniquely identified, the weights w’s are unique up to a scale factor.



not sufficient. Since being recommended has positive effect, the BM of on-recommendation is
always greater than the corresponding BM of off-recommendation. Finally, since we treat the
default option as if it is always recommended in the deterministic model, there is no difference
between on-recommendation and off-recommendation when the only recommended alternative is
the default option. These three simple tests fully characterize the empirical content of R-RUM.

Our method of proof is constructive: it offers an algorithm to construct a rationalizing
distribution of choice types from the observed choice probabilities. The uniqueness properties
of R-RUM can be recovered by that algorithm. The uniqueness result of R-RUM is similar to
that of RUM, which is a weaker form of ordinal uniqueness. Given two possible representations,
certain marginal distributions of the preferences are essentially unique in our model. This is
helpful to gauge the effectiveness of a recommendation from a policy maker perspective.

In all of our models, we utilize the idea that modelers can observe consumers’ choice data as
a function of their recommendation set. The idea of a recommendation set is a distinct notion
from that of a choice set as choices can be outside of a recommendation set. Hence our choice
function is both conceptually and mathematically different from the classical choice function.
This new choice object, to the best of our knowledge, has yet to be explored in the choice
theory literature. Our paper, in terms of modelling strategy, naturally separates itself from
other theories in the standard domain, and, in terms of interpretation, enables us to take a fresh
perspective into choice data with some of our traditional economic intuition. In the following,
we provide a brief discussion for related literature. The classical Luce model, while being a
cornerstone model of consumer behavior, attracts a wealth of scholarly attention into developing
different generalizations (e.g. Ahumada and Ulkii, 2018; Echenique and Saito, 2019; Echenique
et al., 2018; Fudenberg et al., 2015; Gul et al., 2014; Kovach and Tserenjigmid, 2019, 2021;
Tserenjigmid, 2021). All of these models involve different relaxations of the Luce ITA axiom. In
our environment, with an aim to provide a simple, applicable and tractable parametric model,
we employ the Luce ITA axiom for the on-recommendation data and the Luce Choice axiom for
the off-recommendation data. On the other hand, there are several different strands of research
departing from choice-set variation in the standard model. For example, some studies utilize list
variation to study choices (e.g. Guney (2014) and Ishii et al. (2021)) and approval rate (Manzini
et al. (2021)); Natenzon (2019) studies how “non-choosable” phantom options affect choices.
With a similar spirit to our models, these lines of research are also augmenting the standard

choice environment to enhance our understanding of human behaviors.



2 Deterministic

As we mentioned in the introduction, our deterministic model is intended to be simple so
that we can study the aggregate behavior of such consumers later. However, our framework is
flexible enough to study more involved models of recommendation capturing different aspects
of the recommendation process.

In this paper, the set of feasible alternatives is fixed, denoted by X (e.g., all documentaries
available at Netflix or all 65 Inch Smart TVs sold at Amazon.com).® Hence there is no variation
in terms of choice set in our model. The decision maker receives a recommendation in the form
of a set of alternatives, say R, which is the source of variation in our model. Any subset of
X could constitute a decision problem, including the empty set (no recommendation). While
a recommendation can influence choices, it does not constrain it. To capture this, we define a
choice rule ¢ to be a function of recommendation set, R, but allow for ¢(R) to be outside of R.
Hence, the only restriction we impose is ¢(R) € X. Notice that our choice function is different
from the one used in the choice theory literature where ¢(R) is always in R. This distinction
will be important when we introduce behavioral properties. In addition, we allow that c is
observable only for some recommendation sets but not others. This assumption aims to capture
some real world environments where the collection of recommended set is just a fraction of the
entire product space. Let D C 2% denote all possible recommendation sets we have the data for,
for instance single alternative recommendations. The following definition captures the choice

rule under this framework.

Definition 1. A deterministic choice rule ¢ on domain D is a mapping from D to X such that

¢(R) € X for all R € D.

In our model, each decision maker is identified with a pre-recommendation choice and a
preference ordering (a,>), where > is a linear order. The pre-recommendation choice might
have different interpretations. It could be either previously chosen, or easily identified. The
default option itself could be a previously obtained recommendation.’® In addition to these
interpretations, the pre-recommendation choice could be seen as the best alternative in DM’s
initial awareness set according to her preference before receiving any recommendation. Hence

it is natural that the pre-recommendation choice option is picked if there is no recommenda-

9We impose this assumption to capture possible data restriction in naturally occurring data. Having said that,
this framework is flexible enough to allow set variations by assuming ¢(R, S) € S and R € X where S represents the
set of feasible alternatives and R is the recommended set. This formulation allows the recommended alternatives
being unavailable in order to capture “out of stock” concept when R\ S # 0.

ODefaults help consumers to reduce the need of engaging deliberative decisions. They also eliminates difficult
trade-offs (Thaler & Sunstein, 2008). Use of default is also related decision task complexity (Redelmeier & Shafir,
1995), conflict (Tversky & Shafir, 1992), and/or emotionally difficult decisions (Luce, 1998).



tion. We use the terminologies default option and pre-recommendation choice interchangeably
throughout the paper. In this model, when the decision maker receives a recommendation, R,
the decision maker picks the best option among R U a according to her preference. The deci-
sion maker will consider all the recommended alternative before making a final decision. In our
model, recommendation brings the recommended alternatives into active consideration (Court
et al., 2009; Goodman et al., 2013; Gupta and Harris, 2010). However, the decision maker

deliberately assesses each recommended alternative before making a decision. Formally,

Definition 2. A deterministic choice rule ¢ has a recommendation representation on D if there

exist a preference > and a default option a such that
c(R) = max(RUa, ) 1= ¢(q)(R)

for all R € D.11

In this model, the decision maker is both willing to and capable of considering all the rec-
ommended alternatives. This feature of the model is shared by the classical rational choice
model where the decision maker maximizes her preferences among all available alternatives.
Because of full consideration, we see this model as a “rational” benchmark model of recom-
mendation. In other words, the consideration set is equal to the recommendation set including
the pre-recommendation choice. Notice that the “rationality” requirement is not as severe as
the classical model due to the fact that we require that only a limited number of alternatives
are recommended in our data. Nevertheless, in the supplementary material of the paper, we
study a model where the consideration set may be different from the recommended set to study
behavioral factors in this environment.

Two special cases of our model are worth mentioning. The first one is when the pre-
recommendation choice is the best alternative according to the DM’s preference. In that case,
C(a,-)(R) = a for all R € D. In other words, choices are not influenced by recommendations.
The second one is when the pre-recommendation choice is the worst alternative according to
preference. In that case, the decision-maker behaves as if she is a classical preference maximizer:
C(a,-)(R) = max(R, =) € R where the recommendation dictates the chosen alternative. In our
model, a recommendation is effective if it offers improvement over the pre-recommendation
choice. Otherwise, the recommendation does not influence choices.

For the sake of completeness, we provide a characterization for our simple deterministic

1 One might interpret R U a as the consideration set. We would like to highlight that the actual consideration
set could be larger than R U a. For example, the union of R and the lower counter set of a with respect to >
could be the actual consideration set of the decision maker.



model of recommendation. This characterization will serve as a benchmark for future works to
model bounded rationality in this topic. The first axiom is the famous ITA in the choice theory
literature.'? It states that removing some of the unchosen alternatives from the recommendation
set will not influence the final choice. Note that this axiom is satisfied by our model. If the
chosen alternative is not the default option, it must be better than all the other recommended
alternative including the default. Hence, it will stay the best alternative if we remove some of

the unchosen alternatives from the recommended set.
Axiom 1 (ITA). If ¢(R) € R’ C R then ¢(R) = ¢(R).

The next axiom requires that when a decision maker is presented with a recommendation
set, if they do not choose within that recommendation set, then, when the decision maker is
presented with any subset of that recommendation set, they will also not choose within that
recommendation set. In our model, this means that the decision maker chooses the default
option. If the chosen alternative is the default option, then it must be the best alternative in the
larger recommendation set. Hence, it is also the best alternative in the smaller recommendation

set.
Axiom 2 (weak-ITA). If ¢(R) ¢ R then ¢(R') ¢ R’ for all R' C R.

The last axiom states that if the decision maker does not follow the recommendation, then

she always chooses the same alternative.
Axiom 3 (Consistency). If ¢(R) ¢ R and ¢(R') ¢ R’ then ¢(R) = ¢(R').

We assume that D includes all recommendation sets with |R|< 3.1 Then our deterministic

model is characterized by these three simple axioms.

Theorem 1 (Characterization). Let D includes all recommendation sets with |R|< 3. Then ¢

satisfies Axioms 1-3 if and only if ¢ has a recommendation representation.

As far as we know, this is the first characterization of decision-making under recommenda-
tion. As we stated before, this is a “rational” benchmark model of recommendation. Here, the
decision maker’s consideration set includes all the recommended alternatives. We hope that this
characterization will guide future research on recommendations.

We now discuss identification and uniqueness properties of our model. It is clear that the
pre-recommendation choice must be the choice when there is no recommendation a := ¢((}). Simi-

larly, if = is chosen when R is recommended, then x is revealed to be preferred to every alternative

12This property is also known as Sen’s « axiom (Sen, 1971), Postulate 4 of Chernoff (1954), C3 of Arrow (1959),
the Heritage property of Afzerman and Aleskerov (1995), or the Heredity property of Aleskerov et al. (2007).
13The characterization also works for D = 2.



in R. If x is different from ¢(()), = is also revealed to be preferred to the pre-recommendation

choice. The next proposition states all the uniqueness properties of our deterministic model.

Proposition 1 (Uniqueness). If (aq,>1) and (a2, =2) represents the same choice rule, then
i) a1 = ag := a,
ii) Ly, (a) = Ly, (a) := L, and

iii) 2 =1 y if and only if =9 y for all z,y € X \ Ly."

This proposition states that the pre-recommendation choice is unique, and the preference is

uniquely identified as long as it matters for the choice.

3 A Parametric Stochastic Choice

In the last section, we studied the deterministic environment where we observe the choice
made by a single (type of) individual. In this section, we focus on stochastic choice. One
interpretation of this randomness is that there is a group of individuals whose types are unknown
and we can only observe their aggregate behavior (interpersonal). The other interpretation is
the choices of a single individual in different situations (intrapersonal). Hence, our model can be
interpreted as both intrapersonal and interpersonal stochastic choice. In the classical choice-set
variation framework, this format of data has been well studied. In our framework, to incorporate
the idea that decision makers can choose outside of the recommendation R, we must also extend

the idea of a (stochastic) choice rule just as we did in our deterministic setting.
Definition 3. A choice rule p is a mapping from X x D to [0, 1] such that >_ v p(z, R) = 1.1°

We first study a parametric model of recommendation with stochastic data based on the logit
model of Luce (1959). All the information about the model’s predictions will be summarized
by a finite set of parameters depending only on alternatives. As is typically the case with
parametric models, our parametric model offers three advantages over a more general version
we study in the next section. First, the model is very tractable, which is a desirable property
for applications. Second, this model possesses strong uniqueness properties. Third, it allows for
identification and characterization under limited data.

In this model, each alternative z is represented by two parameters: d(x) > 0 and w(z) > 0. d
represents the likelihood of being the pre-recommendation choice, hence - .y d(z) =1. wis a
crude measure of the utility value. An alternative with a high w will be chosen more often than

an alternative with a low w. We follow the Luce-logit model to describe the choice probabilities

M Throughout the paper, we denote the lower contour set of a with respect to preference > as Ly (a).
15This is different from the classical stochastic choice model where p(z, R) = 0 for = ¢ R.

10



given a default. To mimic our deterministic model, for a fixed default, all non-recommended
alternatives are chosen with zero probability except the default. The probabilities of choosing a
recommended item depends on its own weight proportional to the total weight of recommended
alternatives and the default option. Hence, we first define choice probabilities given a fixed

default. The choices for a given pre-recommendation choice, a, can be expressed as:

% ifre AUa
Wa(l',A) = ZzGAan(Z)

0 otherwise

Note that W), is itself a parametric choice model where ) Wy (z, A) = 1. According to this
formulation, only the recommended alternatives and the préifecommendation choice are chosen
with positive probability. W, captures the randomness in preferences as in the logit model. Note
that the deterministic model of Section 2 is a limit case of this model since deterministic model
has no randomness in preferences.'® Therefore, we expand on this intuition by also assuming
that being default is probabilistic. Let d(z) be the probability of = being the default. Then the
choice probability of any alternative is defined as a mathematical expectation: the probabilities

of a given default option times the conditional choice probability given that default option.

Formally, we have the following.

Definition 4. A choice rule p has a Luce recommendation representation (R-Luce) if there

exists functions w: X — Ry and d: X — R4 with ) d(z) =1 such that for z € X,
rzeX

p(z,R) =Y d(a)Wa(z, R)

aeX

for all R € D.

R-Luce model has inherently two types of randomness. While d captures the randomness in
pre-recommendation choice, w represents the randomness in preferences. Note that the odds of
selecting an non-recommended alternative, = ¢ R, is the probability of being default times the

conditional choice probability when it is the default, that is, for any = ¢ R

= S wy) = d(x)W,(z, R)

yERUz

16T5 see how W, reduces (or, approaches) to deterministic case where DM’s type is (a, >), we first enumerate
all alternatives according to >, x1 > @2 --- > xn. We assign w(xz;) =¢' for ¢ > 1 and w(z1) =1—-3 " ,¢'. By

taking e to zero, (a,>) becomes the limit case of W,.

11



When = ¢ R, p(x, R) is always zero in the standard random utility model since R represents
the set of feasible alternatives. However, in our model, the set of alternatives are always the
same and R represents only the recommended alternatives. The effective weight of  becomes
d(z)w(zx), which is strictly less than w(x) if d(x) < 1. This can be interpreted as the value of
non-recommended alternatives is discounted while the recommended ones stay the same.

For recommended alternatives, x € R, our formula is more involved:

d(z)w(z)
(z,R) = —_—
e % 5,

We now study the empirical content of this model. Our first property requires that all
recommended alternatives be chosen with positive probability. This is due to the fact that
we assume w(z) > 0. Then the recommended alternatives are always positively chosen in W,

independent of the default. Hence, they must be chosen with strictly positive probability.
Axiom 4 (Positivity). For z € R, p(z, R) > 0.

The second condition is the same as Luce’s ITA for recommended alternatives. Remember
Luce’s ITA says that the odds of choosing one alternative over another one do not depend on the

feasible set. Our next property requires that Luce’s ITA holds for all recommended alternatives:

Axiom 5 (Recommended ITA). For x,y € RN R/,

plz, R) _ p(z, R)

p(y,R)  p(y, R

One would suspect that a similar axiom must hold for off-recommended alternatives. It
turns out that this property does not hold for non-recommended alternatives. Instead, another

well-known property is satisfied with a caveat. The property is known as Luce’s Choice Axiom:

pla, R)p(R, R/) = p(a, R/)

This property says that the probability of choosing a from R’ is equal to the conditional prob-
ability that a is chosen from R given that the choice from R’ belongs to R. Here, we slightly
modify Luce’s Choice Axiom. The property says that, for z ¢ R and RUxz C R/, the probability
of choosing x first when R is recommended and then choosing R U x when R’ is recommended
is independent of R. This property holds for non-recommended alternatives. That is our next

axiom.

12



Axiom 6 (Off-Recommendation Path Independence). For x ¢ R and RUxz C R/,

p(z, R)p(RUx, R') is independent of R

As long as probabilities are strict, Luce’s ITA and Luce’s Choice Axiom are equivalent in the
usual choice domain where p(R, R) = 1 for all R. Surprisingly, this equivalence does not hold
in our domain since p(R, R) could be strictly less than 1 for R # X. This discussion highlights
that equivalence of these two properties depends on the domain to which they apply. Here, we
show that recommended and non-recommended alternatives obey different rules. These three

properties summarize the entire empirical content of our parametric model.

Theorem 2 (Characterization). Assume D = 2%. Then p satisfies Axiom 4-6 if and only if p

has a R-Luce representation.

We now demonstrate that we can provide a similar characterization of this model with limited
data. Suppose D includes all recommendation set with |R|< 2. Under limited data, we need to
impose a stronger axiom on the off-recommendation data. The reason why we need this axiom
is because Axiom 6 is not strong enough in this limited domain. This concern does not exist
if we have full data. To see why we need an additional axiom, consider the following example
in Table 1 with X = {a,b,c,d}. Notice that Axiom 4 and 5 are immediately satisfied. One
can even check that Axiom 6 is also satisfied.!” However, none of these axioms govern how
p(c,{a,b}) behaves: Axiom 6 puts restriction on p(c,{a,b}) only if we also observe data on
some other recommendations that includes all a,b and ¢.'® Nonetheless, we might not observe
a recommendation including all three alternatives due to the limited data assumption. Hence,
to check for the validity of the model under limited data, we need to impose a stronger axioms.
{a,b} {a,c} {a,d} {bc} {b,d} {c,d} {a} {b} {c} {d} 0
5/12  5/12 5/12 1/12 1/12 1/12 3/8 1/8 1/8 1/8 1/4
5/12  1/12  1/12 5/12 5/12 1/12 1/8 3/8 1/8 1/8 1/4

0 5/12 1/12 5/12 1/12 5/12 1/8 1/8 3/8 1/8 1/4
2/12  1/12 5/12 1/12 5/12 5/12 1/8 1/8 1/8 3/8 1/4

Q6 o Qe

Table 1. A stochastic choice data satisfying Axiom 4-6 but it does not have R-Luce representation under
limited data

The off-recommendation path independence axiom revolves around the fact that the choice

probability of an unrecommended alternative under recommendation set R is tightly related to

"Since the data are symmetric, we consider a. Note that p(a,®)p(a,{a,b}) = p(a,0)p(a,{a,c}) =
pla,0)p(a, {a, d}) = pla, {b})p({a,b}, {a,b}) = pla, {chp({a,c}, {ac}) = pla, {d})p({ad}, {a,d}) = . Hence
it satisfies Axiom 6.

80n the other hand, one can immediately see that this data does not have a R-Luce representation. Suppose
it does, then p(c, {a,b}) = 0 implies d(c) = 0. Yet, p(c,®) = 1/4 implies d(c) = 1/4. This is a contradiction.
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its choice probability when recommended with the set R. It turns out that this dependency

can be made more explicit. With the help of Axiom 5, we define the following shorthand:

r(z,x) == Z E;ﬁ; for some A including x and z. Each r(z,z) captures exactly the choice ratio of

z and z when both of them are recommended.

Axiom 7 (Off-recommendation Independence). For x ¢ R,

plz, R)(1+ Z r(z,z)) is independent of R
zER

The intuition behind this axiom is that, there is a fixed amount for how often x can be
chosen when z is not recommended. Notice that as recommendation set R grows, the markup
> .cr (2, ) will be greater and in turns p(x, R) will be smaller. Therefore, this axiom dictates
that z must be chosen less as more and more alternatives are recommended while z is not
included in the recommendation. Also, the rate that p(z, R) decreases also depends on how
“likable” x is when both x and his rival z are both recommended. i.e. it depends on the r(z, x).
In particular, it will decreases less if x is chosen much more often than z when both of them are
recommended.

It is clear that the above example violates Axiom 7. Consider the choice probability of ¢ under
the recommendation set {a,b} and 0, we get p(c,0)) = 1 # 0 = p(c,{a,b})(1 + r(a,c) +r(b,c)).
Moreover, we can also see that Axiom 5 and 7 imply Axiom 6: Since 7(z, ) can be represented
with any recommendation set as long as they include both z and x, we consider arbitrary R’ such
that U R C R'. Then, by simplification, we can get 1+ > __p7(2,2) = p(RUx, R')/p(z, R'),

which basically implies Axiom 6.

Theorem 3. Let D includes all recommendation sets with |R|< 2. Then, p satisfies Axiom 4-5

and 7 if and only if p has a R-Luce representation.

Theorem 3 provides a similar characterization with limited data. Theorem 3 eliminates
arguably unrealistic data requirements of Theorem 2. Indeed, many models in decision theory
require a similar rich data set, typically choices from all decision problems. In Theorem 3, we
are able to show that the identification of the parameters of our model can be inferred from
recommendation sets up to size 2. We show that we can identify the parameters of the model

uniquely. While d’s are uniquely identified, the weights are unique up to a scale factor.

Proposition 2 (Uniqueness). If (wy,d;) and (wg, d2) represent the same choice rule p, then
i) d1 = dQ, and

ii) w1 = aws for some a > 0.
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Identification

One important advantage of our parametric model is that it has strong identification prop-
erties, which offers a frugal way to make out-of-sample prediction. Here, we assume the data is
very limited: D = {0, {a}} for some a € X. We now illustrate that observations from only two
such simple recommendation sets are sufficient for unique identification for our model. We first

state our result.

Proposition 3. If p(x,0) > p(x,{a}) and p(z,0) > 0 for all x € X \ a, the parameters of the
model are fully identified.

There are two requirements here. The first requirement has a normative appeal. It says
that when a is recommended, x will be chosen less compared to when there is no recom-
mendation. The reason behind this is that there is a non-zero probability that those whose
pre-recommendation choice is x switched to choosing a just because they discovered that a is
better due to recommendation. On the other hand, we need to impose the assumption that
p(x,0) > 0 so that we are able to observe w(z) even when z is not recommended.'® Since the
procedure is simple enough, we will demonstrate the identification here in the main text. Firstly,
let d(x) := p(z,0) for every € X. Then, we identify w. Note that w is unique up to a scaling

factor, we let w(a) = 1. Note that, for z € X \ a, we define

p(z,{a})
p(z,0) — p(z, {a})

w(x) =

From this definition, one can immediately see the necessity of the condition p(z,0) >

p(x,{a}). Note that, by re-arrangement, we have

plz; {a})(w(a) + w(z)) = d(z)w(z)

gy @)

Hence, this definition fulfills the model.

Discrete Choice

In the following, we consider the model from the discrete choice perspective. In the framework

of discrete choice, a decision maker’s random utility is defined as

U(z) =v(z) +e(z)

19This positivity property, as argued by McFadden, 1973, cannot be refuted based on any finite data set.
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where e(z) is known as “random utility shock”. From the standard RUM perspective, the event
that an alternative is chosen in a choice set is equated to the event that an alternative has the
highest realized utility in that choice set. However, from the recommendation set perspective,
we cannot equate these two events since not only does an alternative need to achieve the highest
utility within the recommendation set, but it also needs to 1) be better than the default option,
and 2) be inside the recommendation set or be the default option. Here, we assume independence
between the distribution of default options and the random utility shock. Formally, we define a
probability space (Q, F,IP) for the random variable £ : Q@ — RX. We define the following event

where x achieves the highest utility within a set A,
we A ={w € Q:v(z)+eu(z) > v(y) +eu(y) for all y € A}

Then, we write down the discrete choice model based on the idea of recommendation set.

Definition 5. A choice rule p has a R-logit representation if there existsv : X - R, d: X — R4
with >, .y d(z) = 1 and € : Q — R¥ which follows a Gumbel distribution with noise parameter

A and is i.i.d. across x € X such that

> d(a)P(we,ra) HrER
,0(1', R) — { aeX

d(z)P(wy R) ifx¢ R

Notice that although we break the equivalence between p and IP, it does not prevent us from
finding the closed-form solution for IP according to the standard technique. In fact, as one may

immediately expect, the closed-form solution for IP(w, 4) is, for every z € A,

ev(r)/)\

Plosa) = s Gom

Therefore, the relationship between R-Luce and R-logit are analogous to the relationship

between Luce and logit in the classical choice-set variation domain.

4 A General Stochastic Choice

In the section, we introduce our most general model in this framework. In the last section, we
assume that a parametric model where the randomness of types are described by two functions.
In this section, stochastic choice data is observed by aggregating a group of different individuals
in the same environment, provided that each type differs on both their pre-recommendation

choice and their preferences. In other words, this general model would allow for potential
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dependence between preference and pre-recommendation choice, whereas R-Luce assumes inde-
pendence.?? To define the type space, firstly, let P be the set of all (linear order) preference and
T be the set of all pairs of (a,>) where € P and a € X, with typical type denoted by ¢. In
this paper, a random utility function is a probability measure y on 7 such that ), - u = 1,
where py := p({t}). Then, we state the definition of the model.

Definition 6. A choice rule p has a Recommendation representation under Random Utility

(R-RUM) if there exists a random utility function g on 7 such that

pla, R) = p({t| c:(R) = x})

for every R € D.

Above definition mimics the classical random utility. As in RUM, R-RUM tests the hy-
pothesis of a group of preference maximizing individuals. In RUM, consumers’ tastes vary
explicitly. In R-RUM, not only their taste differ but also their pre-recommendation choices.
Hence, R-RUM enjoys a much richer type space. In other words, R-RUM is a much richer
model compared to RUM. We later consider a subclass of R-RUM where each type shares the
same pre-recommendation choice, hence types differ only with respect to their preferences.

In RUM framework, Falmagne (1978) answered the question whether individual preference
maximization has any implication for aggregate data. For characterization of RUM, Falmagne
(1978) utilizes a well-known concept in that literature: the Block-Marschak polynomials, named
after Block and Marschak (1959)’s seminal work on the random utility model. It has shown
that a stochastic choice data has a RUM representation if and only if its Block-Marschak poly-
nomials are non-negative. The necessity was originally obtained by Block and Marschak (1959).
Falmagne (1978) showed that they are also sufficient.

In our framework, we also utilize Block-Marschak (BM) polynomials. Let g,(a, R) be the

Block-Marschak polynomials. i.e. for a € R,

0@ R) = 3 (~1)P\Flp(a, B)
BDR
Note that the Block-Marschak polynomials are defined with respect to choice data p. Through-
out the paper, we mostly skip denoting p and write g(a, R) unless specified otherwise. Interest-

ingly, this definition can be applied to off-recommendation data as well and, as we shall see, it

*0Notice that our model has a close connection with the standard random utility model (RUM) in the classical
domain where p(z, A) =0 if x ¢ A.
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has a important role in R-RUM. We define for a ¢ R,

yola, R) = > (=1)P\lp(a, B)
a¢BDOR
Again, we will skip denoting p and write y(a, R) unless specified otherwise.

Figure 1 generalizes the classical network representation of partial order sets for our purposes.
Each node represents a subset of the set of alternatives. Each black solid line indicates a subset
relationship among subsets. The Block-Marschak polynomials can be thought of as the amount
of flow on each black line. In the original network of this Hasse diagram, the degree of each node
is equal to the number of alternatives, and inflow and outflow of black lines are always equal for

each node.

> gpla,R) = q,(b,RUD)

a€R b¢R

In RUM, each preference ranking corresponds a path starting from the empty set and ending at
the grand set. For example, ) — {c} — {b,c} — {a, b, c} would represent a =1 b =1 c.2! We first
highlight that the above equality is no longer true in our model. But we will discuss below how
to recover a similar equality and provide a similar visual representation for types in R-RUM.

As opposed to RUM, R-RUM has two sets of BM conditions: one for recommended alter-
natives, ¢, and one for non-recommended alternatives, y. To represent the new BM conditions,
y’s, we introduce new flows, which are represented by dashed red lines. These are always the
outflows (or “leakages”) from the network. We abuse notation and denoted both nodes and the
flows with the same notation. y,(a,{c}) denotes both the phantom node and the flow to the
that node. Interestingly, if we also take into account y’s, we recover the equality of inflow and

outflow of all black and red lines.?? That is,

> gp(a,R)+ ) ypla,R) = qy(b, RUD)

a€R a¢R b¢R

Given this equality, we can represent each type in R-RUM by a path in the new Hasse
diagram. Similar to RUM, each type corresponds a path starting from a phantom node and
ending at the grand set. For example, y,(c,0) — 0 — {c} — {b,c} — {a,b,c} would represent
a =1 b >1 ¢ with ¢ being the pre-recommendation choice, hence the type is (¢,>1). Note
that here the pre-recommendation choice is the worst alternative according to ;. Similarly,

yp(b,{c}) — {c} — {b,c} — {a,b, c} would represent the type is (b, >1). Each of these two paths

210ne can refer to Fiorini (2004) for a network analysis of RUM.
*2This result is stated as Lemma 1, which is a generalization of Falmagne (1978)’s Theorem 3. We believe that
this lemma could be of independent interest since it is model-free. We provide the proof for it in the Appendix.

18



corresponds a unique type. However, the path y,(a, {b,c}) — {b,c} — {a,b,c} corresponds two
types (a, >1) and (a, >2) where a =2 ¢ =2 b. Notice that these two types cannot be distinguished
because they always choose a. This will be a trivial non-uniqueness of R-RUM.

From the diagram, if y(a, A) = 0 for every a,A # 0 and a ¢ A, our model is behav-
iorally /mathematically equivalent to the standard RUM.?3 As one shall see in Proposition 4,
by assuming the model is correct, this is equivalent to say that every p, . = 0 for a not being

—-worst, i.e. it must be that every consumer’s default option is the worst alternative. Note that

a similar case also holds for our deterministic model.

{a,b,c}

q(b, {a, b, c})

<
S
=

Figure 1. Hasse Diagram of R-RUM for three alternatives

In the following, we introduce the axioms of the model. The first axiom is a non-negative
axiom of BM polynomials in the standard domain. This non-negativity is closely related to the
non-negativity of BM polynomials in the standard domain. Similar to the idea in RUM, the
necessity of the non-negativity of y(a, R) revolves around the fact that y(a, R) itself is a marginal
distribution over the type space, in the case where the model is correct. Hence, it must not be

negative. One is able to see the actual marginal distribution in Proposition 4.
Axiom 8 (Non-negativity). For a ¢ R, y(a, R) > 0.

We so far only apply non-negativity on g’s but not ¢’s. By introducing the second axiom,

one will see we impose more than just non-negativity on ¢’s. Being also a marginal distribution,

2 A caveat is that we also need ¢(a,a) = y(a,®) as in Axiom 10.
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q represents a fraction of the types. More importantly, the difference g(a, R) — y(a, R\ a) has
a specific economic meaning in our framework: It captures a marginal effect of introducing a
to the set R\ a for the alternative a. Note that introducing a will only make an impact for
a consumer if a is better than their default option and other recommended items. While the
difference of p(a, R) and p(a, R\ a) represents the aggregate effect of introducing a to R\ a, the
difference of ¢(a, R) and y(a, R \ a) provides a finer detail: it represents the fraction of those
consumers who are marginally better off (i.e. who ranks a just above R\ {a}) and happen to

switch their choice to a exactly because a is recommended. Therefore, it must not be negative.
Axiom 9 (Positive marginal recommendation effect). For a € R, q(a, R) > y(a, R\ a).

The last axiom is an equality axiom, which requires that the weak inequality in Axiom 9
must be equality when R is singleton. Interestingly, we can also understand the intuition of this
axiom through the idea of marginal recommendation effect. Notice that the difference between
q(a,a) and y(a,) represents the consumers who rank a above only “nothing” and happen to
switch their choice to a because a is recommended. However, ranking a only above nothing
means that a is the least preferred alternative. In such case, those consumers would always

prefer to choose their default option instead. Hence, the difference will always be zero.
Axiom 10 (Emptiness). For all a, ¢(a,a) = y(a, ).

Since the model is general, we need a rich data set for characterization. For the next theorem,

we assume that D = 2X 24

Theorem 4 (Characterization). p satisfies Axioms 8-10 if and only if p has a R-RUM repre-

sentation.

The sufficiency proof of the theorem is constructive. We provide an algorithm to compute
a full distribution of types in the R-RUM representation. The algorithm is certainly helpful in
application if one would like to have an estimate of the type distribution. However, just as RUM
in the standard choice domain, there is generally not a unique distribution over types which gives
rise to R-RUM data. Yet, there are several uniqueness properties of the model which are useful
for policy recommendation. To do this, we first uniquely identify certain marginal distributions
from the choice data. Let L. (a) represent strict lower contour set of a according to . We state

the uniqueness result in the following proposition.

Proposition 4 (Uniqueness and identification). If 4! and p? represent the same choice rule p,

then for every A C X, b¢ A andi=1,2,

24This full data assumption is standard for RUM models.
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D) yp(b, 4) = ' ({(6, )| A = L (0)})
ii) (b, AUD) = m({(a, VA = Ly (b),a € AU b})

Here, property i) says that, y,(b, A) must equal to the probability that b is the default while b
is exactly and only better than the set of alternatives A. On the other hand, property ii) says that
(b, A) must equal to the probability that b is exactly and only better than the set of alternatives
A and the default is within A Ub. Note that (i) and (i7) imply that g,(b, AUb) — y,(b, A) =
N({(a, =)A= Ly (b),a € A}), where the LHS is exactly the object from our Axiom 9. From
here, one can immediately see that it captures the fraction of people who rank b exactly above
A while their default is in A. Surely, this fraction of people will switch to b if b is included in

the recommendation set. Based on this uniqueness result, we have the following observation.
Remark 1. Suppose p is a R-RUM. For every b, u({(b, =)|=€ P}) = p(b,0) = > y(b, R).
R

We first take a look at u({(b,>)|>€ P}) = p(b,()). Similar to the intuition from the de-
terministic case, when nothing is recommended, it must be that the DM is only choosing her
default option, which captures the fraction of consumer with default 6. On the other hand,
pw({(b,>)|=€ P}) = y(b, A) can be understood through Proposition 4 in terms of the marginal
distribution. We tak:e4 summation over all marginal distributions under the condition that b is
the default. Even though the previous two observations immediately imply p(b, ) = > y(b, A),
there is another perspective to look at it. It can be understood through the impliedArecursive

structure of the definition of BM polynomials,?’ i.e. for every b ¢ B

y(b7B) = p(b, B) - Z y(ba A)
ADB

One can see immediately it has to hold by putting B = ().

Impact of Recommendation

In the following, we tackle the problem regarding which alternative the policy maker should
recommend if he has access to certain estimates of the choice data. In our framework, rec-
ommendation always improve welfare since a recommendation does nothing more than make
a consumer aware of a product. One immediate implication is that the policy maker should
recommend everything. However, this may not be feasible in practice since it may be costly
to make a recommendation to a consumer. Also, as the recommendation set gets bigger, the

decision maker might suffer from limited consideration issue.?® Here, we focus our analysis by

250ne can refer to Barbera and Pattanaik (1986) for some discussions of the recursive nature of BM polynomials.
26We explore this issue in the supplementary material.
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restricting recommendation to only one alternative.

We first consider the following example in Table 2. Consider two types of individuals with
default option ¢ but with preference a =1 b =1 ¢ and b =9 ¢ =2 a. The populations as a
whole will benefit regardless of whether a or b is recommended. Supposedly, if « is closely to
1, the policy marker might want to recommend a. In this case, those who ultimately stick to
¢ (i.e. people with preference »~2) are choosing their second-best, and those who choose a due
to recommendation is choosing their first-best. On the other hand, if « is close to zero, the
policy marker may recommend b and the opposite scenario will apply. Therefore, by making

an utilitarian assumption, the policy marker will recommend a if o > 0.5, and recommend b if

a <0.5.
~1 2
Default | ¢ c
a b
b c
c a
7 ‘ o ‘ l-«a

Table 2. A simple example

Notice that the discussion so far only concern about the ex post welfare distribution of the
population. However, in the recommendation framework, there is a second dimension where the
policy marker might also care about. i.e. the scope of impact of a recommendation. Notice
that recommending b causes both types to change behaviors and enjoy welfare improvement.
Therefore, taking these into consideration, the policy maker might still recommend b even if «
is greater than 0.5. In fact, he might set a new threshold a* > 0.5 such that he recommends b
if and only if a < a*. One possible functional assumption to support this a* would be a simple
weighted average as the criterion, where a parameter 8 € [0, 1] will determine the weight put on

the scope of impact.

B * Scope of impact for recommending a + (1 — ) * f(Welfare distribution of recommending a)

Notice that although the example above is consider only two preferences ordering under
three possible alternatives, one can easily apply the criterion to discuss general case. Depending
on the specific functional assumption on f and the choice of 3, one can find the corresponding
optimal recommendation. However, the key concern here is that the policy maker does not have
access to the underlying type distribution, i.e. u, such that the policy maker can not perform
the maximization exercise to find out which recommendation to make. Nevertheless, due to

the uniqueness results, it turns out the ingredients for the criterion function can be uniquely
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identified from choice data p. Firstly, to estimate the scope of impact for recommending a, it is
basically the fraction of decision makers who switch to choose a if a is recommended compared
to the case of no recommendation. Therefore, it is simply p(a,{a}) — p(a,?). Secondly, for the
ex pose welfare distribution, we need to know the fraction of decision makers choosing their
nth best after getting recommended a. We can recover it from the following formula. We let
P(n) C 2% be the collection of sets containing exactly n elements. Therefore, the fraction who

chooses nth best after recommending a can be uniquely identified by

Yo glad) —ya A+ D oy A+ D> > ybA)

A€EP(N—n) A€P(N—n) beX\a A€P(N—n)lacA

/

fraction who switches to a fraction who does not switch choices

The above formula can be decomposed into two parts. The first part captures the fraction of
DMs who switches to a as their nth best. Notice that this utilizes the marginal recommendation
effect as discussed in the characterization, which captures the fraction of subjects who switch
to a exactly because a is recommended and a is ranked exactly above the set A. It is straight-
forward to see that if we sum across all sets that contain N — n elements, we get can the total
fractions who switches to a as their nth best alternative. Secondly, the latter part contains two
sub-parts. The first sub-part are those whose default option is a as nth best alternative and does
not switch their choice; and the second sub-part captures those having another default options
and the alternative a happens to be in their lower contour set which contains exactly N —n

elements.

R-Luce

It is a well-known fact that Luce is a special case of RUM. In this recommendation environ-
ment, one might wonder whether R-Luce belongs to R-RUM. It turns out that it is, which we

state in the following.
Theorem 5. Every choice rule p that has a R-Luce representation has a R-RUM representation.

As far as we know, there are more than one way to show R-Luce is R-RUM. In the proof, we
examine the relationship from the behavioral tests offered by the characterization of R-RUM,

where we exploit the fact that Luce is a special case of RUM.

Fixed Default

In some scenario, one might suspect that the default option can be fixed while the individual

can have a random preference. To capture this, we only needs to impose the following axiom,
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which basically says that any alternative outside of the recommendation set, other than the

default, must be chosen with zero probability.
Axiom 11. There exists a € X such that p(X \ a,0) = 0.

Intuitively, this axiom will serve the purpose of having only one default option. To see this is
the case, we utilize Remark 1. Since u({(b, >)[>€ P}) = p(b,0) = 0 for every b € X \ a, hence,
for any preference >, the probability measure p will assign zero probability to (b, =) whenever

b is not the fixed default a. We put this observation into the following Remark.

Remark 2. p satisfies Axiom 8 to 11 if and only if p has a R-RUM representation where p

assigns positive probability only on one default.

Fixed Preference

Instead of fixing the default, one might want to investigate the case that the individual
has a fixed preference. In this case, we can actually perform revealed preference exercise from
the individual choice. We also make the assumption that every default must received positive

probability to simplify the exposition of the result. Firstly, we let
x Py if there exists y and R such that p(y|R) > p(y|R U x)

Notice that under a fixed preference, we are able to reveal the preference in this model. The
idea is that, if an alternative is chosen less when an alternative is introduced to the recommended
set, it must be because the alternative is worse than the new item. What’s more, if every
alternative can be the default option, we can fully reveal the preference. Therefore, we make

the following axiom.
Axiom 12. P is complete, transitive and asymmetric.

On the other hand, we must also make sure we can shut down all other possible channels
where the choice probability reflect the effect coming from other types. To do this, we need to

assume that the marginal effect from other types are zero. Thus, we have the following axiom.
Axiom 13. ¢(a, A) =0 for all a, A except for A\ a = Lp(a).

We then state our following characterization results. From the construction, imposing these
two axioms, we actually can pin down the weights such that u({(a, P)}) = y(a, A) where A =
Lp(a).?"

2THowever, one should note that the model is inherently indistinguishable regarding lower contour set of the
default option. Therefore, even though both axioms are imposed, the data may still be generated by two different
preferences, where the preference differs only under the lower contour set of the default option. Nonetheless, we
do have full control over the upper contour set of the default option.
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Remark 3. p satisfies Axiom 8 to 10, 12 and 13 if and only if p has a R-RUM representation

where p assigns positive probability only on one preference.

5 Conclusion

Recommendation is abundant and prevalent in our lives. In this paper, we consider a rational
benchmark model of recommendation: recommendation enlarges the decision maker’s consid-
eration set. Based on the recommendation, the decision maker compares it to her default and
make the best choice. Supported by our deterministic model of behavior, we introduce stochastic
choice models with the idea of aggregate choice data in mind. We propose parametric versions
of our general model for tractability and applicability. We show that our models, R-RUM and
R-Luce, have a close connection to the classic well-known standard stochastic choice models,
RUM and Luce model.

While R-RUM and R-Luce are rational benchmark models of recommendation, just as RUM
and Luce are in the standard choice domain, we expect that they can be subject to refinement
or generalization according to specific needs under different circumstances. Our framework is
rich enough to study other channels that recommendation might be operational. The areas of
further research should includes developing more elaborate and complex models of recommenda-
tion including strategic recommendations, limited consideration, status quo, behavioral search,
satisficing, and temptation.?® Therefore, we believe that this paper also paves a palpable path
for fruitful future research and applications where we can apply the economic wisdom that have

accumulated throughout the years for the standard models to this setting.

28In the supplement material, we provide several recommendation models under limited considerations.
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6 Appendix

In this Appendix, we will provide proofs for the main text.

Proof of Theorem 1

Proof. We first identify the default option a. We set a := ¢(0). If ¢(R) ¢ R then by Axiom 3,
we have ¢(R) = a. Hence, a is unique. For every distinct x,y € R U a, we write

xPy if z = ¢(R)

First we need to show P is asymmetric: for two distinct = and y, if (x,y) € P then (y,z) ¢ P.
Assume not. Then there exist R and R’ such that z = ¢(R) and y = ¢(R') and {z,y} C
(RN R')Ua. By Axiom 1 and 2, we must have z = ¢({z,y}) = y, a contradiction.

Note that if the default option is preferred to two distinct alternatives, we cannot reveal
the relative ranking of these alternatives. In other words, aPx and aPy then (z,y) ¢ P or
(y,x) ¢ P. While P is incomplete for the lower counter set of a, P is complete in the upper
counter set of a. To show this, assume xPa and yPa. In other words, there exist R and R’ such
that x = ¢(R) and y = ¢(R). If z € R’ or y € R, we would reveal yPz or zPy, respectively.
Assume not. Then consider {x,y} as the recommended set. First, a cannot be chosen from
c({z,y}). Otherwise, a = ¢({z}) by Axiom 2. Then by Axiom 1, z cannot be chosen from ¢(R).
Hence, either x Py or yPx, P is complete for the upper counter set of a.

Claim 1. If xPy and x # a then xPa.

Proof. xPy implies that there exists R such that z,y € R and x = ¢(R). Since {z} C R, Axiom
1 implies ¢({z}) = x implying zPa. [

Claim 2. If xPyPz then zPz.

Proof. First note that x cannot be a since P is incomplete for the lower counter set of a. If z
is equal to a, by Claim 1, we have zPz. If y = a, then ¢({z}) is equal to x and ¢({z}) is equal
to a. Hence c¢({z, z}) must be z by Axiom 1 and 2. Finally, we assume that z,y, z are distinct
from a. Then we consider c¢({z,y, z}). It cannot be a by Axiom 2 and Claim 1. It cannot be
z since Axiom 1 and z = ¢({y, z}). Finally, it cannot be y since Axiom 1 and z = c({z,y}).
Hence, xPz. |

Take any completion of P, say . It is routine to show that ¢ = ¢(4x). |

Proof of Proposition 1

Proof. (a1,>1) and (ag, >2) represents the same choice rule. For i), note that it is immediate
that a; = ¢()) = a;. For ii), suppose not, there exists b such that b € L. (a) but b ¢ L., (a).
Then, we know that cq -, ({b}) = a # b = ¢4, ({b}). Contradiction arises. For iii), suppse not,
there exists z,y € X \ L, such that > y but y >2 . Then, we have ¢, ({z,y}) =z #y =
Ca,o ({2, y}). Contradiction arises. [ ]
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Proof of Theorem 2

Proof. We first prove the necessity of the axioms. Suppose the model is correct. The necessity of
Axiom 4 is immediate due to assumption of w(z) > 0. We then prove the necessity of Axiom 5.
Note that, for z,y € B

p(z, B)
p(y, B)

|:Zz€B ﬂ?)w(w’) + 2 ¢n wfléﬂz)w(fv)]
S 000 + T o)
(o) S 5+ S 505

d(z d(z
)| Secs 2 + S wug@]
_w(a)
w(y)

Since B is arbitrary, it immediately implies Axiom 5. We then prove the necessity of Axiom 6.
We make the following claim.

Claim 3. For every x € B and z ¢ A C B, we have p(x, A)p(AUz, B) = p(z,0)p(x, B).
Proof.

,O(fL‘, A)p(A Uz, B) - p(:L‘, @)p(m, B)
_ w(z)
=d(@) w(AUx)

:%[w(@pm, B) — w(A)p(x, B)]

[o(x, B) + p(A, B)] — p(z, B)

Note that where

x)p(A, B
[Z *2 w(i?(gg y)w(A)]
€B y¢B
[ )t Z B U 0" )]
=w(A)p( B)
Hence, since A is arbitrary, the above claim immediately implies Axiom 6. |

For sufficiency, we define
d(x) := p(x,0) > 0 and w(z) := p(z, X) >0
First, Axiom 6 implies that

p(z, A)p(AUz, X) = p(z,0)p(z, X)
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Hence we have representation for off-recommendation, i.e. = ¢ A:

z€AUx

p(m‘, A) = p(.’L‘, (Z))

For on-recommendation alternative, we first make the following claim.

Claim 4. Axiom 6 implies that for ) # A # X,

(A, A) = p(A,0) = p(A, X)) Zﬁj }?

Proof. To prove this, fix a A, we first consider x ¢ X \ A. By Axiom 6, we have, for every
¢ X\ A,

pla, A)(p(xz, X) + p(A, X)) = p(z,0)p(z, X)

pla, A) + jj((x jgp(A, X) = plx,0)

Summing all z ¢ A, we have

5 (ple )+ B0, ) = 3 sl

¢ A ¢ A
p(z, A)
—p(A, A) + p(A, X =1-p(4,0
AN+ oA 1) T T =1 = (A D
p(A, A) — p(A,0) = p(A, X) Z”
|
By Axiom 5, if x € A then
ply,A) _ ply, X)
p(z, A)  plz, X)
By summing all y € A, we have
p(A,A)  p(A X)
then (A, A)pla. X)
p(A, A)p(z,
z, A) = PP A)
ol 4) (A, X)
Hence, for x € A, by Claim 4 and p(z, A) = P4, é}lf’)((x)’X) we have
_ p(z, X) Py
p(:z:,A)—p(A’X)[(A@-l-pAXZp ]
y¢A
pz, X)
= A A X)
ST A+ o Z/; Au,y, >}
Since p(y, A) = p(y,0) (( ) jfory ¢ A
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p(4,0) p(y,0)
= +
oy ; SAUy. X))
— Z d(y)w(x) w(x Ay)w(z) By construction of d and w
w(z E w(z)

ved Jcu VEA AU
=) d(a)Wa(z

acX

The proof is complete. |

Proof of Theorem 3

Proof. The proof for necessity of Axiom 4-6 is proven in Theorem 2. We prove necessity of
Axiom 7. Suppose the model is correct, let x ¢ A,

p(z,0)

ZzéAUx T(Z, IL’)

d
:¢ By the necessity proof of Axiom 5

ZZEAUJJ ng;
d(x)w(z)
= D) e a
ZZEAUx ’LU(Z)
Since A is arbitrary, it is proven.
We then prove the sufficiency. We first let, for every z € X, d(z) := w(z, (). We arbitrarily
designate zp € X as an “anchored” element. And let w(zp) = 1. Since we have all the binary
recommendation sets in our data, we let for every x € X,

ple, {z, 20})

W) = e { 20))

Then, we prove the following claim.

Claim 5. For any x,y € A with |A|< k — 1, we have 28”33 = zgz; And similarly, for any

z € A and B C A we have ((éi)) = If((é))

Proof. Note that, firstly, for any set A O {x, 20}, we have w(x) = p((ZO )) by Axiom 5. Then, for
any z,y € A, we have

By Axiom 5

Hence, the first part is proven. The second part is immediate. |

We first show that the representation holds for off-recommendation set. Let = ¢ A, by
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Axiom 7, we have

p(z,0)
1+ ZzeA T‘(Z, ‘T)

d
__d@) By Claim 5

ZZEAU:C 1“;(72
_ d(@)u(a)
w(AUx)

plz, A) =

Hence, the representation holds for off-recommendation alternative.
Then, we show that the representation holds for on-recommendation set (i.e. x € A). The

representation for p(x, A) is immediately proven if |A|= 1. Let |A|> 2, then for every x € A, we
have

p(x, A+ > py, A+ Y ply,A) =1

yeA\z yeX\A
plx, A) + Z p(x, A) Ey’ }2 z{; 1- Z p(y, A) By Axiom 5
yeA\x yeX\A
p(x, A) + Z p(x, A) EZ; 1-— Z p(y, A) By Claim 5
yeA\z yeX\A
e )2 1= Y ply.a)
yeX\A
v [~ du)
o)=L ! P w10y

By construction of p(y, A) for y ¢ A

Then, we prove the following claim.

Claim 6. For x € A with |A|> 2

w(z) [ diy)w(y) | _ [ AA) d(y)
w(4) [l 2 w(AUyJ ”[w DR w(Auw]

€X\A yeX\A
Proof.
wz) [, dy)w(y) | _ o] dA) d(y)
el 2 errl R oy P ftin]
1—d(4) d(y)w(y) d(y)
| 2 Loy mevml
—w(z L wy 1
! )L;Ad‘y“ww Sty i)
=0
Hence, this claim is proven. |
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Hence, we have shown that

d(A d
Pl ) =) s+ Y GGy

yeX\A

By re-arrangement, one can see that it is the representation for p(z, A) where x € A. It is
proven.

Proof of Proposition 2

Proof. Suppose that (wi,d;) and (ws,ds) represent the same choice rule. Then, by definition,
for every x € X, dy(z) = p(x,0) = da(z). Also, for every z € X, we have

e pz, X) = )
> zex wi(@) > wex w2(T)
Hence, wy = %wg, where % > 0 by definition. |

Proof of Theorem 5

Proof. 1t suffices to show that it satisfies Axiom 8 to 10. In the following, for notational ease,
we denote w(A) := Y, w(x). For Axiom 8, we prove it by using standard results from the
relationship between RUM and Luce model. Notice that, for x ¢ R,

y(@, R = 3 (~)PE (e, B)

z¢ BDOR
- _)IB\RI gy 2(®)
a:gé%;R( 2 A )w(BUx)
— d(z A\ (Ruay W(E)
d( )A;:w( 1) o (4]

It is a well-known result that every Luce model has a RUM representation. Hence, the term

> (—1)‘A\(Rux)|% is guaranteed to be non-negative since it is exactly the standard block
ADRUzx
Marschak polynomials of a Luce model.

For Axiom 9 and 10, we first make the following auxiliary claim.

Claim 7. For every AC X and z ¢ A, B;A(—1)|B\A|w(§UZ) =0
Proof.
P !
= w(BU z)
=3 (-2l !
= w(BU z)
1
= (-1 )\B\A\i + T [AY I —
2¢BoA (B Uz) E%;A w(BU2)
1
_ Z ( )|C\AUz\ + Z \B\ (AUz)|+1
CDAUz BDAUz w(B)
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Then, we make the following claim. To prove this, we utilize the following expression of
p(x, A) for z € A,

o, A) = pla, A\ )+ S A a0 o) Z PaTC

ze€A\z w (Z)

Claim 8. For everyx € A,

a4 =y, A\ )+ 3 Uy a0 )

z€A\z ’LU(Z)
Proof.
q(z, A) = Z (=1)IBMIp(a, B) By definition
BDA
= S e B\a) 4 T B\ + Y (e, )]
B2A B z€B\z U}(Z) Z¢B Z

S PR D < O IR R D S VOV IS IS DE= e8]

BDOA z€A\z U}(Z) z€B\A w(z) 2¢B (Z)
—ye Vo) + T B A+ Y (- 'B\A'[ > S B+ Y ,Bﬂ
zeA\z BDA z€B\A 2¢B

By applying the definition of y on the first two terms

It remains to show that the last sum is zero. Note that

Z(—l)'B\Ai[ 3 Zg) (2. B\ 2) Z z‘ }

BDA z€B\A
—u(e) Y0 (0PSB )
BDOA 2€X\A (Z)
=w(z) Z (—1)/B\Al Z 1 w(z)d(z) By the definition of p(z, B)
ey XA w(z) w(BU z)
Z d(z Z |B \l (Blu::) By switching summation sign
2€X\A BDA
=0 by Claim 7
[ |

Hence, Claim 8 is proven. Hence, to show that Axiom 9 is satisfied, we have

q(z,A) —y(x, A\ z) = Z w(x)y(z,A\z) >0

z€A\z w<z)

Also, Axiom 10 is immediately satisfied by putting A = () into the expression in Claim 8. W
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Proof of Theorem 4

Proof. For the necessity proof, we suppose the data follows the model. We introduce the nota-
tion, for a,b € X and b ¢ A,

M(ab,A) = p({(a, =) € T: A= L (b)})
where L, (a) is the strict lower contour set of a according to >.

Claim 9. Forz ¢ A,
Z) M(l‘,l‘,A) = y(.%’,A)

i) Y. M(a,z,A) =q(z,AUu{z})
acAU{z}

Proof. For i), we prove by strong induction by “stepping down”. For A = X \ {z}, we have,
y(x, X \ {z}) = p(x, X \ {z}) By definition of y

— M({(:r, =) X\ {z} = L>(x)})
=M(z,z, X \ {z})

So, i) is true for size of A equals to |X|—1. Suppose i) is true for size of k + 1, k + 2,...,|N|—1.
Let |A|l=k

y(x7A):C(x7A)_ Z y(.%',B)

x¢BDA
= Z M(x,z,B) — Z M(x,z,B) by Definition and induction hypothesis
z¢BDA a¢BOA
=M(z,z,A)

Hence, the proof is complete for i).
For i), we also prove by strong induction by “stepping down”. For A = X \ {z}, we have,

q(z, X) = p(z, X) By definition
= > w(f@): X\ {o} = L (@)})

acAU{z}

=Y M(a,z, X\ {z})

aeX

So, ii) is true for size of A equals to |X|—1. Suppose i) is true for size of k + 1, k + 2,....N — 1.
Let |A|l=k

a(z, AU{a}) = c(z, AU{z}) = ) ala,B)

BOAU{z}
= > D> MawB\{z})~ > > Maz,B\{z})
BDAU{z}aeB BDAU{z}aeB
by Definition and induction hypothesis
= Z M(a,z,A)
a€AU{z}
Hence, the proof is complete for ii). [ ]
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From this claim, we immediately show Axiom 8 and Axiom 9 since for x ¢ A, we have

y(x,A) = M(z,z,A) >0

q(z, Au{z}) — Z M(a,z,A) — M(z,z,A) ZMCLSL‘A
a€AU{z} acA

Moreover, by putting in A = () into Claim 1, we have

y(z,0) = M(z,2,0) = ZMax@):(x:E)

ac{z}
Hence, Axiom 10 is proven. The necessity proof is complete.
For the sufficiency, we need to first prove a lemma for later use.

Lemma 1. For R C X and choice rule p,

> (@, R)+ > ypla,R)=> qy(b, RUD)

aER a¢R b¢R

Proof. We need to show that, for every R C X,

ZQ(avR) + Zy(a7R) = ZQ(baRU b)

a€R a¢R bER
We prove by strong induction by “stepping down”. For R = X \ {z}, we have

RHS = ¢q(z, X) = p(z, X)
LHS = > g(a,X\{z})+ Y yla,X\{z})

acX\{z} agX\{z}
= Y qla, X\ {z})+p(, X\ {x})
a€X\{z}
= 2 e\ ) = oo 0] + o X o)
a€X\{z}
=Y @, X\{zh) = > pla,X)
acX aeX\{z}
=1- Z p(a,X)
a€X\{z}
:p(a:,X)

Suppose that equality holds for size of k+ 1,k +2,...N — 1. Let |R|=

LHS — RHS

:Zq(a,R) + Zy(a,R) — Zq(b,RUb)
acR a¢R b¢R

=Y (ser) - X atwm) + X (star) - X ves)) - Xt RUb
a€ER BDR a¢R a¢BDR b¢R
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- [Z YoalaB)+Y . > y(a,B)Jqu(b,RUb)]

acERBDR

a¢Ra¢BDR

b¢R

Since > p(a, R) =1, it remains to show that the latter term in the above expression equals 1.

aeX

We denote Dgr(i) as the collection of superset of R with ¢ element. Hence, we can rewrite

2 D a@B) )

a€RBOR

N

2 2
i=|R|+1 BEDR(i)
N

2 2
i=|R|+2 BEDR(i)
N
22

i=|R|+2 BEDR(4)

> 3

i=|R|+2 BEDR(4)

B

a¢Ra¢BDR b§§R
Z a,B)+ Y y(a,B)
LaeR a¢B
Z a,B)+ Y y(a,B)
LaeR a¢B

+

+

y(a,B)+ Y q(b,RUb)

By rearrangement

|

> Y 4B)

BeDg(|R|+1) a¢R

3 [Zq<a,B>+2y<a,B>

BeDgr(|R|+1) -a€B a¢B

y taking i = |R|+1 from the 1st term and summing it to the second term

Z aB—i—Z aB

“a€R a¢B

acR a¢B

S g(a,B)+ Y yla. B)

_l’_

Z Zq(a,BUa)

BEeDR(|R|+1) a¢ B
By induction hypothesis

] + Z Z q(a,B) By rearrangement

BEDr(|RI+2) af R

...(repetitively applying induction hypothesis)

N
Y ¥ [T+ Tuen)+
i=N BeDg(i) ~a€R a¢B
= Z Q(av X)
acX
= Z (CL, X)
acX

=1

Hence, it is proven.

ZZ&B

BEeDR(|N|) agR

By definition of ¢

Then, we need to introduce new notation. For any R C X, we write IIg for the set of |R)|!
permutations on R, with typical element mr. We write II for ITx. Let mgr(i) refers to the ith
element on the permutation. The type space is now instead specified by X x II, with element
(a,m), where a € X and 7 € IL.

For the sufficiency proof, we first construct F'(a,a, A) := y(a, A) for A C X \ {a}. In the
following, for every mg, we denote amp as the lengthen element of mg in g g, where a is
inserted at the beginning of the permutation, and similarly, we denote mrb as the lengthen
permutation of mr where b is inserted at the end of the permutation. Anaglously, we denote
amrb where a and b are inserted at the beginning and the end, respectively. Then, we construct,
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recursively, for a,b ¢ RUA, RN A=( and brra € HRrufapy

F(a,mra, A)(q(b,RU AU {a,b}) —y(b, RUAU{a}))
F(a,brra, A) = Z:pGRUAU{a} q(z, RUAU {a})

0 otherwise

if denominator is non-zero

Firstly, note that F' > 0 by Axiom 8 and 9.
Claim 10. For every a, A, F(a,Tra, A) =3 4e x\ puaufa} F'(@, bTRa, A)
Proof.

Z F(a,mra, A)(q(b,RU AU {a,b}) —y(b, RUAU{a}))

F A) =
> Flobmrad) > e ronoqe 4@ RUA U {a})

beX\AURU{a} beX\RUAU{a}
2 bex\ruaufa}(@(b, RUAU{a,b}) — y(b, RU AU {a}))
= F(a,mra, A)
erRuAu{a} Q(:Ea RUAU {a})
= F(a,mra, A) by Lemma 1

We show two more properties of F.

Claim 11. For every non-empty A and x ¢ A,

VDD VDY F(amBmA\(BUa))=b§Q(57A)

a€A BCA\{a} np€llp

i) Yy >, F(a,zmpa,A\ (BUa)) =q(z,AU{z}) — y(z, A)

a€A BgA\{a,} TI'BGHB

Proof. Note that by expanding the LHS of i) and ii) with the definition of F', one can show that

Z Z Z (a,mpa, A\ (BUa)) ZFaaA\{a})

acA BgA\{a} wp€llp a€EA

PRSI ZF(a,cha,C\(BUa)):{c}:A\C}

CCA { a€C BCC\{a} mp€llp
|CI=[A]-1

and also

Z Z Z F(a,xmpa, A\ (BUa)) = <$ALZJ:{z}bA y(z, 4) Z Z Z (a,mpa, A\ (BUa))

a€A BCA\{a} mp€llp beA a€A BCA\{a} mp€llp

Based on this observation, we prove i) and ii) together by induction by the size of A.

For |A|=1, we let A = {a}. Then, for i), we have

S Y Y Fla,mpa, A\ (BU)) = F(a,a,0)

a€A BCA\{a} mpellp
= y(a, ) by construction
q(a,a) by Axiom 10
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For ii), we have

Z Z Z F(a,zmpa, A\ (BUa)) = F(a,za,)

a€A BCA\{a} mB€Ellp
o F(a’ a, (D)(Q($’ {SU, CL}) B Q(xv {a})
q(a,a)

by construction

= q(z,{z,a}) — q(z, {a}) by Axiom 10

Hence, i) and ii) are true for size of A equals 1. Suppose i) and ii) are true for size of k — 1.
Let |A|= k. Then, for i), we have, by using ()

> > > F(a,mpa, A\ (BUa))

a€A BCA\{a} mpellp
=Y Fla,a,A\{a})+ > {Z Y>> Fla,empa,C\ (BUa)):{c} = A\C}
acA CCA ac€C BCC\{a} mp€llp
Cl=[4]-1
=Y yla, A\{a})+ > {q(c,CU {c}) —y(c,C) : {c} = A\C}
el CITAl-1

by construction and induction hypotheses where |C|=k — 1

=Y yla, A\{a})+ > (q(a, A) = y(a, A\ {a}))

a€A a€A

= Z q(a> A)

a€A

Hence, it is confirmed that ) is true for size of k. Then, for ii), by using (xx)

> > Y F(a,ampa, A\ (BUa))

acA BCA\{CL} wg€llp

(:c AUZ{Z}bA y(x, A) Z Z Z (a,mpa, A\ (BUa))

beA acA BCA\{a} wg€llp

_ale AUED —ule ) 5

=q(z, AU {z}) —y(z, A)

since ) is true for size of A to be k

Hence, by induction, i) and ii) hold. [ |

We then define each individual weight. For 7 € II, we first write 7¢(®) as the “truncated”
sequence of 7 up to a and does not include a. Also, we write Lr(a) as the strict lower contour
set of a according to m. Hence, we define

1
| Lr(a)l!

Firstly, note that ftaqc > 0 due to the fact that F© > 0. On the other hand, notice that
the fraction @ ( 3 reflects the fact that the model does not distinguish weights when other
alternatives are worse than the default. Here, for succinctness, we assume even weights. Yet, it
is non-inconsequential for the construction to work.

fla.r = F\(a, Wt(“)a, Lr(a))
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In the following, we introduce the notation, for a,b € X and b ¢ A,

M(a,b,A) = {fiar: A= Lr(b)}

Claim 12. Forz ¢ A,
i) M (z, 7, A) = y(, A)

ii) %M(a, z,A) = q(z, AU {z}) —y(z, A)

Proof. For i), by using Claim 10, one can show that
M(z,x,A) = F(z,z, A)

Hence, by construction of F it is proven. For ii), by expanding and using Claim 10, one can see
that, for a # x,

M(a,z,A) Z Z (a,zmpa, A\ (BUa))

BQA\{a} wg€llp

Hence, by putting > on both side and applying Claim 11(i), it is proven. |
acA

Since the weight are constructed, we have, for x € R,

= Z Z M(a,z, A\ {z}) by Definition

ADRacA
=Y [ a\ @)+ ¥ N A\ (o)
ADR acA\{z}
= 3 |vle AN D) +ale A) — y(o 4\ D) By Clim 12
ADR
= Z x, A)
ADR
= p(z, R) By Mobius Inversion
for z ¢ R,
plx, R) = Z M(z,z, B) by Definition
ag¢ BOR
= > y(=B) By Claim 12(i)
ag¢ BOR
= p(z, R) By Mobius Inversion

Hence, the constructed weights explain the data. Since it explains the data, it is immediately

that > > fiqr = 1. The sufficiency proof is complete.

aeX well
[ |

Proof of Proposition 4

Proof. 1t is proven in Claim 9. |
Fact 1. Aziom 5 and Axiom 6 are independent.

Proof. Consider the following two choice rules
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p(.) a b c
{a,b,c} | 1/3|1/3 | 1/3

p() | a | b {a,b} | 1/3|5/9|1/9
{a,b} | 5 | 5 {a,c} | 1/3|1/9|5/9
{fa} | 1| 0 {bye} |1/9]1/3|5/9
by | 0| 1 {a} |2/3|1/6|1/6

O |.75].25 {by |1/6|2/3|1/6

{c} |1/6|1/6]|2/3
0 1/31/3 | 1/3

In the left choice rule, Axiom 5 is trivially satisfied. Axiom 6 is violated since

pla,D)p({a},{a,b}) = .375 # 0 = p(a, {b})p({a, b}, {a, b})

In the right choice rule, Axiom 5 is violated since % =1# % = %. Axiom 6 is

satisfied, since we have
pla, A)p(AUa, X) = = for every A such that a ¢ A

p(b, A)p(AUb, X) = — for every A such that b ¢ A

Ol O~ ©Ol-

p(c, A)p(AUc, X) = — for every A such that ¢ ¢ A
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Supplementary Materials:

Limited Consideration with Recommendation

1 Introduction

It is well-recognised that recommendation tends to alter behavior in the way that aligns with
recommendation (Adomavicius et al. (2018), Goodman et al. (2013), Haubl and Trifts (2000),
Horton (2017), Li et al. (2007), Litvin et al. (2008), Rowley (2000), Senecal and Nantel (2004),
and Vijayasarathy and Jones (2000)). One obvious implication is that recommended alternative
tends to be chosen more frequently when compared to no recommendation. We call this positive
recommendation effect. In the full consideration perspective, we show that this effect has been
embedded in every versions of the recommendation model.?’

On the other hand, researchers have also found that sometimes recommendation can cause
some other alternatives to be chosen more frequently, whereas these alternatives might not even
be recommended in the first place (e.g. Helmers et al. (2019) and Kawaguchi et al. (2021)).
This effect is known as the spillover effect. To have a better understanding of this effect, we
need to take a deeper dive into the cognitive process of the decision maker, with the help of the
conceptual foundation on consideration set mapping.

Theories on consideration set mapping, which can be traced back to Masatlioglu et al.
(2012), make the simple assumption that people cannot pay attention to all products. This idea
flourishes and sparks a plethora of literature to study different aspects and properties underneath
the consideration process (e.g. Brady and Rehbeck (2016), Cattaneo et al. (2020), Cherepanov et
al. (2013), Lleras et al. (2017), and Manzini and Mariotti (2014)). However, one cannot directly
import knowledge from the limited consideration literature into the recommendation framework.
After-all, the limited consideration literature were not intended to take into consideration the
possible external impact of recommendation. In this framework, we are interested in finding out,
given a set of recommended alternatives, what alternatives will finally fall into the consideration
set of the individual. To achieve this, formally, we consider a correspondence I' : D — X
as consideration correspondence. Given R, T'(R) is the set of alternatives the decision maker
considers.

We do not impose any restriction on the consideration correspondence I'. Firstly, recom-

mended items might not be considered. i.e. we can have I'(R) N R # I'(R). Secondly, un-

2Notice that Positive Marginal Recommendation Effect axiom implies immediately Positive Recommendation
Effect. Since the parametric and deterministic are special cases of the general model, the Positive Recommendation
Effect holds everywhere.
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recommended items might be considered. i.e. we can have I'(R) N R # (). While the former
captures the cases where the decision maker ignores some of the recommended alternative, the
latter can cover attentional spillover effect where the recommendation attract attention towards
to non-recommended alternatives. Hence, in terms of theoretical construct, I' is more general

than the usual consideration set mapping in the limited consideration literature.

2 Deterministic

Note that, however, this representation alone does not help us to make further inference or
prediction about decision maker’s behavior or consideration. In fact, any choice rule can be ra-
tionalized under this framework, where the decision maker only considers the chosen alternative.

We put this observation into the following remarks.

Remark 4. Any deterministic choice rule has a recommendation representation under limited

consideration.

Definition 7. A deterministic choice rule ¢ has a recommendation representation under limited

consideration on D if there exist a preference > and consideration correspondence I' such that

c(R) = max(['(R), =) := ¢ ) (R)

for all R € D.

Therefore, we need to put meaningful behavioral restriction into the unobserved considera-
tion. In the following, we consider two non-parametric conditions.
Irrelevance of Recommending Considered Alternative (IRC)

Note that in the recommendation domain, it seems reasonable to impose the following con-
dition on consideration mapping. The property dictates that recommending already considered

alternative does not affect the consideration set.
x € T'(R) implies T'(RUx) =T'(R)

We call this condition as Irrelevance of Recommending Considered Alternative (IRC). This
condition is saying “what can be considered while non-recommended, if recommended, would

not changed my consideration”. Another way of stating this condition is:

I'RUx) # I'(R) implies =z ¢ I'(R)
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In this way, it says, “if my consideration changes with an additional recommended item, this
item was not considered before”. Note that this condition is vacuous if we assume I'(R) C R.

One of the implications of this property is

If R C (@) then T'(R) = ['(().

There are several examples of this consideration set mapping under recommendations.

Example 1 (Thorough consideration and/or ignoring recommendation). These two examples
is under the umbrella of “constant consideration set”. On one extreme, the decision maker
considers everything before making a decision (I'(R) = X for all R); on the other extreme, the
decision maker ignore recommendation altogether and focuses attention on one particular set
(I'(R) = A for all R). It is clear that in either case an recommending an considered item will

not change the decision maker’s consideration. |

Example 2 (Consider only the recommended). The decision maker might only consider the
recommended item. In this case, recommending an considered item does not even change the

recommendation itself (I'(R) = RUT(0) for all R). _

Example 3 (Spill-Over consideration of similar item). A recommendation might activate con-
sideration of the similar items for the decision maker. For example, Coca-cola and Pepsi might
always come together into decision maker’s consideration set even if only one of them is recom-
mended. Therefore, if both of them are recommended, it will not change the consideration set.
Formally, let {C;} be a partition of X, where each C; correspondences category i. The decision
maker only consider the first category in the absence of any recommendation (I'(})) = C;). The
decision maker considers all the categories as long as some alternative is recommended in that

category (I'(R) is the union of all categories intersecting with R and C1). J

It turns out this condition is fully characterized by one axiom. We call this axiom as Dynamic
Consistency. After initial choice, if the decision maker is allowed to make choice again with the

same recommendation including her choice, she will make the same choice.
Axiom 14 (Dynamic Consistency). ¢(R) = c¢(RUc(R)).
Again this axiom trivially holds in the standard choice environment where ¢(R) € R.

Theorem 6. c satisfies Axiom 14 if and only if ¢ has a recommendation representation under

limited consideration with IRC.
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Proof. Necessity is obvious. For sufficiency, let I'(R) be {¢(R)} for all R € D. Take any
preference >, then (I', =) immediately explains the data. Then, to check IRC, we let z € I'(R).
Note that by construction, I'(R) = {¢(R)} and I'(RU ¢(R)) = {¢(RUc¢(R))}. By Axiom 14, we
have ¢(R U ¢(R)) = ¢(R). Hence, the proof is complete. [ |

The proof of the theorem makes it clear that this axiom is clearly the basic assumption in
this environment. However, this restriction does not allow us to make any inference about the
decision-maker’s preferences. To be able to make inference, we will impose a property used in

the consideration set literature, called Attention Filter (AF). That is,
x ¢ T(RUx) implies '(RUxz) =T'(R)
or, equivalently,
I'(RUzx) #I'(R) implies x € T'(RU )

Notice that this condition capture almost the same intuition from the unawareness argument
when availability set varies. It turns out that, if we want to jointly characterize these two
conditions for one consideration mapping, we only need one additional axiom from Masatlioglu

et al. (2012). Firstly, we let
yPux if there exists R such that y = ¢(RU x) # ¢(R).

This axiom is simply that P must be acyclic, which appears in Masatlioglu et al. (2012).
Axiom 15. P has no cycle.

Theorem 7. c satisfies Axiom 14 and 15 if and only if ¢ has a recommendation representation

under limited consideration with IRC and AF.

Proof. Necessity is immediate. For sufficiency, we let yPxz if there exists R such that y =

c(RUx) # c¢(R). Let > be a completion of the transitive closure of P. Then, we let

T(R) := {c(R)} U ({t: ¢(R) = t} N R)

(T, >) trivially explains the data. We need to show that I' satisfies IRC and AF. To show AF,
assume ['(R U z) # I'(R). We now show that  must be in I'(R U z). If ¢(RU ) # ¢(R), then
we must have ¢(RU z)Px (¢c(RUz) = x). Hence, x € T(RUz). If ¢((RUz) = ¢(R) then, by
the definition of I', the only alternative belonging the set I'(R U z) \ I'(R) must be x. Hence,
rel(RUx).
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To show IRC, assume z € I'(R). By the definition of I', i) ¢(R) > z and = € R, or ii)
¢(R) = x. The later and Axiom 14 imply that ¢(R) = ¢(RU z). Hence, '(RUx) = I'(R). The
former case implies that we cannot have xPc(R). Hence, we must have ¢(RU x) = ¢(R). Since

x € R, T(RUxz) =T(R) by the definition of I". This completes the proof. [ |

3 Stochastic Choice

Above our limited attention model was deterministic, which potentially limits the applica-
bility of the model when the naturally occurring data is stochastic. In this section, we consider
cases where the decision maker pays attention to the different subset of options every time she
is confronted with the same recommendations. We call a mapping p: X x X — [0, 1] attention

rule if Y ey w(T|R) =1 for all R € X.

Definition 8. A choice rule p has a recommendation representation under limited consideration

on X if there exist a preference > and an attention rule p such that
plalR) =) 1(ais =-best in T) - u(T|R)
Tex

foralla e Rand R e X.

Positive Recommendation and Attention Diversion

It turns out that to generalize IRC into the stochastic domain we only need the following

condition,
For any x € T, u(T|R) < u(T|R U x)

We call this condition Positive Recommendation in Consideration (PRC). On the other hand,

from Cattaneo et al. (2020), we know that AF can be generalized in the following condition:
For any x ¢ T, u(T|R) > uw(T|R U x)

which we will call Attention Diversion. In the following, we demonstrate the two conditions
in Table 3. We label the inequalities driven by Attention Diversion in Red and the inequalities
driven by Positive Recommendation in Attention in Blue.

We can see that \ reflects the idea positive recommendation effect in attention, where every
set which contains the newly recommended item will get more attention. This condition permits
us to also capture spillover effect discussed in the literature. For example, you only consider

the drinks on the same row as the recommended item on a vending machine, where items as the
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T {a} | {0} | {c} | {a,b} | {a,c} | {b,c} | {a,b,¢}
p(-[{a;b;c})

A | AWV A Vi \V; Vi
p(-{a,b})
AW AT \Vi AF Vi \Vi
n(-{a})
Vo AR | AT \V; WV AF* WV

p(-10)

Table 3. An illustration of two conditions. Note that A* is not captured in the standard domain.

recommended item are having spilled over attention. On the other hand, A\ captures an idea of
crowding out effect: If the set does not contain the new recommended alternative, it is meant
to get less attention.

To fully characterize these two conditions, it turns out that we also only need two simple
condition. Firstly, the following condition is simple, which says that an item must be weakly

chosen more if it is recommended.
Axiom 16 (Positive Recommendation). p(z|R) < p(z|R U x).

Note that this axiom alone can fully characterize the model with only the IRC. Since we
are also assuming Attention Diversion, we must also need an additional axiom. To achieve this,

similar to deterministic case, we let
yPux if there exists R such that p(y|R) < p(y|RU x)

Similar to the deterministic case, we only need P to be acyclic, from Cattaneo et al. (2020).
Axiom 17. P has no cycle.

Theorem 8. p satisfies Axiom 16 and 17 if and only if p has a recommendation representa-
tion under limited consideration with Positive Recommendation in Consideration and Attention

Diversion.

Proof. Necessity is immediate. For sufficiency, we let yPx if there exists R such that p(y|R) <
p(y|RU x). Let = be a completion of the transitive closure of P. Define L. (z) be the lower

contour set of z according to > and we set

p(x|R) if there exists z € T's.t. T =2 U (Ly(z) N R)
W(T|R) :=

0 otherwise

We first check whether it is well-defined. Suppose it is not, i.e. there exists x,2’ € T such
that 2’ # 2z and T =2 U (L. (x) N R) = 2’ U (Ly(2’) N R). Then we must have z € L, (/) N R

and 2’ € Ly (z) N R, which imply x > 2’ and 2’ > x. It is a contradiction.
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(u,>) clearly explains the data, hence the representation holds. We now show u satisfies
our two properties. We first check Attention Diversion. We let ¢ T and we want to show
p(T|R) > w(TIRUz). If u(T|RU=x) = 0, then the condition holds trivially. Suppose not, i.e.,
p(T|R U x) > 0. By definition, there exists y € T such that T = y U (L. (y) N (RU z)) and
p(T|RUz) := p(y|RUz). Then, since z ¢ T', it means that z ¢ L, (y) and 7' =y U (L (y) N R).
Hence, by definition, it must be that u(T|R) := p(y|R). Since = > y, (y,x) does not belong to
P, which implies p(y|R) > p(y|R U ). Hence, u(T|R) > pu(T|R U x).

To verify PRC, let © € T. We want to show u(T|R) < p(T|RUx). If z € R, there is nothing
to prove, hence assume x ¢ R. If u(T|R) = 0, then the condition holds trivially. Suppose
w(T|R) > 0. By definition, there exists y € T such that T =y U (L. (y) N R)) and u(T|R) :=
p(y|R). Note that since x € T' but x ¢ R, we must have x = y. Therefore, by definition, it must
be that u(T|RUz) := p(x|RUz). By Axiom 16, we know that p(z|RUz) > p(x|R). The proof

is complete. |
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