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Abstract

We derive a representation theorem for time preferences (on the prize-time space) which identifies a
novel notion of relative discounting as the key ingredient. This representation covers a variety of time
preference models, including the standard exponential and hyperbolic discounting models and certain non-
transitive time preferences, such as the similarity-based and subadditive discounting models. Our axiomatic
work thus unifies a number of seemingly disparate time preference structures, thereby providing a tractable
mathematical format that allows for investigating certain economic environments without subscribing to a
particular time preference model. This point is illustrated by means of an application to sequential bargaining
theory.
© 2007 Elsevier Inc. All rights reserved.
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1. Introduction

A major branch of intertemporal choice theory examines how one may evaluate the trade-offs
between various alternatives that are obtained at different times. The canonical model in this regard
is, of course, the so-called exponential discounting model.! Owing in part to its simplicity and in
part to its built-in time consistency, this model is adopted in economics almost exclusively. Over the
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I The exponential discounting model was first formulated by Samuelson [31]. The axiomatic foundations of this model
is explored by the definitive works of [15], and [16] in the case of time preferences over consumption streams, and of [8]
in the case of time preferences over the prize-time space.
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last two decades, however, there has been an immense amount of experimental work, carried out
both by economists and psychologists, which suggests strongly that the inherent time preferences
of individuals are time-inconsistent, and hence depart from the exponential discounting model. 2
This has led to the consideration of various alternative models, such as the so-called hyperbolic
discounting model. This model keeps the basic structure of the exponential discounting model,
but takes the per-period discount rate as a decreasing function of time.

However, despite its incipient popularity, it seems rather premature to conclude that the exper-
imental regularities point, unequivocally, in the direction of the hyperbolic discounting model. In
fact, various other time preference models have recently been proposed in the literature, which
depart from this model in radical ways, and yet are consistent with most of the experimental regu-
larities. Two major examples in this regard are the subadditive time preference model of Read [28]
and the similarity-induced time preferences of Rubinstein [30]. Like hyperbolic discounting, these
alternative models incorporate certain behavioral attributes that are ignored by the exponential
discounting model, such as present bias, non-stationarity, etc. Yet, unlike hyperbolic discounting,
they point to the fact that the intertemporal nature of time preferences may well lead to certain
types of preference cycles. For instance, both of these models allow for a situation like

($100, today) > ($250, two weeks from now) > ($200, next week) > ($100, today),

where > stands for the strict preference of the individual (who can commit to a choice today). A
moment’s reflection shows that there is really nothing “too odd” with this situation—the individual
in question views a premium of $50 adequate for a delay of one week, but deems a compensation
of $150 too low for a delay of two weeks. > Similarly, in a face-to-face bargaining situation, one
may view the time delay between two consecutive offers as completely insignificant, and act as
if she is indifferent between two offers like ($10, #) and ($10, # + 1) for any offer period ¢. Yet
this individual would not be indifferent between the offers ($10, ¢) and ($10, z 4 1) for large 7,
unless she is completely insensitive to time delay. All in all, it seems clear that transitivity of
time preferences, which is a precondition for the hyperbolic discounting model, is not really an
innocuous assumption, especially from a descriptive angle. *

Furthermore, because most intertemporal choice problems are sequential in nature, non-
transitive time preferences do not necessarily lead to lack of predictive power. The example above
provides a case in point. Due to the non-transitivity of her preferences, there is no best alternative
for the individual in the feasible set that consists of the three alternatives given above—we are ap-
parently left with no prediction concerning her choice behavior. This is indeed the most common
argument against non-transitive preferences in economic theory, but one that readily applies to
the present framework only when the individual must commit to a choice today. Under the equally
interesting scenario in which she cannot commit to a choice today, the difficulty disappears, for
then, she would realize that her actual choice problem is the sequential one portrayed in Fig. 1,
for which there is a unique time-consistent choice. Indeed, being rational, she knows that waiting

2See [9] for a brilliant survey that documents these anomalies, and provides a detailed examination of the time
discounting models proposed in the literature to cope with them.

3 For some experimental evidence about the presence of such preference cycles, see [28-30], among others.

4 Surprisingly, there are almost no studies on non-transitive time preferences,despite the fact that this property arises
rather naturally in the context of intertemporal choice. One exception is the work of [29] who provide empirical evidence
in favor of the non-transitivity of time preferences. Another notable exception is supplied by Manzini and Mariotti [23],
who propose to model time preferences as interval orders, and allow for non-transitivities to arise even within a fixed time
period.
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Fig. 1.

one week would actually lead to ending up with $250 with a delay of two weeks (assuming her
commitment-preferences do not change in one week), and on the basis her commitment prefer-
ences, therefore, she would settle her choice problem by choosing ($100, today). Consequently,
due to the sequential nature of intertemporal choice problems, non-transitivities that may arise in
the time preferences of an individual with commitment need not lead to unpredictability of choice
behavior.

These elementary observations suggest strongly that disallowing at the outset for preference
cycles (that arise due to the passage of time) may result in considerable loss of generality. This
point is only accentuated by the fact that some major alternatives of the hyperbolic discounting
model portraits non-transitive time preferences (with commitment). It thus seems worth exploring
time preferences at large along the lines of Koopmans [15] and Fishburn and Rubinstein [8], albeit
allowing for cycles that are induced by the passage of time. The search should be guided toward
developing a model general enough to admit, as special cases, the time preference models of
Read and Rubinstein, along with all the standard hyperbolic discounting models proposed in the
literature. Of course, to be useful, this model should not be “too general” in the vague sense that it
should possess strong enough of a structure that could be taken to applications. The main objective
of this paper is to develop such a model axiomatically.

We begin with a major simplification: we consider here only those time preferences that are
defined on the prize-time space. Consequently, our work falls short of saying anything about time
preferences over consumption streams. It rather parallels the work of Fishburn and Rubinstein
[8], and is suitable for applications to bargaining and/or certain timing games. Objects of choice
in the analysis are tuples like (x, ¢), where x corresponds to an (undated) outcome (say, monetary
rewards), and ¢ to the receival time (Section 2.1). We consider time preferences 7~ over such
prize-time tuples that are decreasing in time delay (the so-called “positive time preferences”).
The axioms imposed on - are easily interpretable and are indeed satisfied by a great majority
of time preference models considered in the literature (Section 2.3). They provide us with the
following representation for 7=

(x,0)=(y,s) ifandonlyif U(x)=n(s,t)U(y), (D

where U is a real function on the prize space, and 1 is a real function on date tuples, each satisfying
certain properties that will be explored later (Section 3.1). The novelty of this representation
lies in its provision for the separation of “prize” and “time” aspects of prize-time tuples. Here



E.A. Ok, Y. Masatlioglu / Journal of Economic Theory 137 (2007) 214-245 217

U corresponds to the instantaneous utility function of the individual, and #(s, )—dubbed oo
the “relative discount factor”—captures the significance of time delay. As we shall see, this
representation allows for preference cycles to arise, but only due to the passage of time. Indeed,
the properties of i ensure that the static preferences entailed by (1) are transitive. (In fact, (1)
allows for a preference cycle only if this cycle occurs through three or more periods.)

It is important to note that representation (1) is not couched in terms of a present value cal-
culation. Instead, it considers discounting as a potentially relative matter—hence the title of the
present paper. This model interprets (x, ) > (y, s) as follows:

The worth at time ¢ of the utility of y that is to be obtained at time s is strictly less than the
worth at time 7 of the utility of x that is to be obtained at time ¢.
This relative discounting notion is the main novelty of our representation—instead of looking for
the values of (x, t) and (y, s) at time 0, we make the comparison at time # (or at time s).

We show below that all of the time preference models mentioned above can be represented
precisely as in (1) for suitable choices of U and #. Our axiomatic analysis thus identifies certain
properties common to all such time preference models. Moreover, the representation seems tight
enough to be useful not only for economic applications, but also for experimental testing. This
is important, for the large number of experimental studies that focus on the “estimation” of
discount rates assume particular parametric functional forms, and thus are vulnerable to functional
misspecification errors. Having a general functional representation (that includes several rival
theories within) may, then, help improving the accuracy of empirical work on time preferences.

Perhaps more importantly, representation (1) is quite “tractable.” Even though it is more general
than the models of Read [28] and Rubinstein [30], conducting economic analysis with this model
is significantly easier than with those models. For instance, we show below that, unlike the models
of Read and Rubinstein, it is very easy to identify under what conditions on U and # this model
would entail behavior like transitivity, non-stationarity, present bias, etc. (Sections 3.2—4) and it
generalizes easily to the context of multidimensional prize spaces (Section 4.1). In fact, despite its
generality, the present model is tight enough to be taken directly to applications. Especially when
coupled with the time consistency hypothesis, it allows one to study many interesting economic
problems without subscribing to a particular time preference model. This point is demonstrated in
Section 3.7 by means of an application to the classical Rubinstein bargaining theory. The proofs
of all formal results of the paper appear in the Appendix.

2. Time preferences
2.1. Main definition

Let X be a non-empty set, and interpret this set as an (undated) outcome space. We model
time continuously, and distinguish the members of X from each other according to when they are
received. The preferences of the decision maker are, then, defined over the space

X =X x [0, 00).

(As usual, we metrize [0, co) by the Euclidean metric, and when X is itself a metric space, we
metrize X by the product metric.) An element (x, ¢) of X is interpreted as the situation in which
the agent receives the outcome x in period ?.

Formally speaking, then, the time preference of an individual in this paper is modeled by means
of abinary relation ~ on X'. We interpret the statement (x, #)2-(y, 5) as meaning that the individual
prefers receiving x at time 7 to receiving y at time s in the sense that, if she could commit in period
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0 to one of these, she would choose to commit to consume x at date t. Consequently, one should
view 7 as modeling the commitment-preferences of the agent.

In what follows, the symmetric part of any binary relation 27 on X is denoted by ~, and the
asymmetric part of it by >. Moreover, for each ¢ € [0, 00), by the rth time projection of —, we
mean the binary relation 77, on X defined as x 77,y iff (x, )2Z(y, 7). Consequently, we think of 7

as the preference relation of the individual over (undated) outcomes at present.
The following definition introduces the main objects of the present analysis.

Definition. For any metric space X, a binary relation ~ on X’ is said to be a time preference on
X if it satisfies the following conditions:

(i) 7z is complete and continuous, 5

(if) 7 is complete and transitive,

~

(iii) 77y = 7z, for each t >0.

The completeness and continuity of a time preference ~ are, of course, standard requirements.
While we do not require - to be transitive, we wish to allow for preference cycles that may
arise solely due to the passage of time, so the material preferences of the individual at time O are
assumed to be transitive. The final requirement here is that the material tastes of the agent are
unchanging through time.

The potential non-transitivity of time preferences forces our axiomatic analysis to be of a
different flavor than the related literature, mainly because our definition leaves room for time
preferences that cannot be represented by utility functions defined on X'. Non-transitive prefer-
ences are, of course, studied elsewhere in decision theory; see Fishburn [6] for a survey. Indeed,
a satisfactory theory of representation exists for certain non-transitive preference relations the
strict parts of which are transitive, namely for interval orders and/or semiorders. There are also
some works that study more general representations over product sets (cf. [3,5,34]), where each
term of the product set is treated symmetrically, but unfortunately, the axiomatic bases of the
representation theorems of this literature lack, at large, an intuitive grounding (more on this in
Section 4.2). At any rate, we cannot make use of either of these approaches here.

Indeed, we need to allow for even the strict part of a time preference to be non-transitive (recall
the example given in Section 1). Moreover, because we wish to allow for preference cycles that
arise only due to the passage of time, our model, per force, treats the outcome space X and the time
space [0, 00) asymmetrically. For example, a time preference - on X’ permits the occurrence of a
cycle like (x, 1) > (x,t+2) ~ (x,t 4+ 1) ~ (x, t). Indeed, with the context of bargaining theory
in mind, we surely wish to allow for such cycles. However, our definition of time preference
does not permit a cycle like (xp, #) > (x2,t) ~ (x1,t) ~ (xp, t). For, such a cycle would mean
that the static preferences of the agent are non-transitive, violating the precondition that the non-
transivities arise only due to the passage of time. In fact, in the context of monetary prizes, such
cycles would conflict with the monotonicity of one’s preferences for money. ¢

5 For any metric space A, we say that a binary relation R on A is continuous if it has the closed graph property, that is,
if lim a;; R lim by, holds for all convergent sequences (ay;) and (by;) in A such that a,, R by, for all m.

6 The differential treatment of time and prizes is, of course, natural. Not only is that time is not a commodity to be
consumed, it is altogether a different object than a prize, insofar as its primitive formulation is concerned. In particular,
it is imperative that a time space has, in general, an additive semigroup structure. (Otherwise, for instance, the notion of
“stationarity” would be ill-defined.) By contrast, a prize space obviously need not possess such a structure in general.
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In passing, we should note that in experimental studies and in many applications of the theory
of intertemporal choice, one works with a model in which time is taken to be a discrete vari-
able. Unfortunately, adopting the discrete time framework in the present approach leads to some
technical difficulties, which are best avoided at this stage. We thus work with time preferences
on X in this paper.’ In applications, one can always take the projection of these preferences to
X x{0,1,..., T}, with T being finite, or to X x Z.

2.2. Axioms for time preferences

Throughout this subsection 2~ stands for a binary relation on X x [0, co0), where X is any
non-empty set. All axioms are imposed on 77

(A1) (Time sensitivity) Forany x, y € X andt >0, there exists an s >0 such that (x, 1)7-(y, §).

This axiom says simply that any (feasible) amount of prizes would be undesirable if it is to be
obtained sufficiently late. For example, if X = (0, 00), (A1) says that, one would prefer receiving
$1 at some date ¢ to getting $100 (or $1000, or whatever) at some sufficiently later date s. In
effect, (A1) says that =~ does not ever become insensitive to time delay.

While (A1) conditions - to never become insensitive to time, it allows for it to get insensitive to
outcomes. For instance, (A1) allows an individual to view a given time delay, say 10 time periods
(or 100, or whatever) as so excessive that no feasible amount of a monetary gain can convince
her to wait this long. In most applications, however, one does not impose any upper bound on
monetary gains, and in that case all standard models (in which the utility for money is taken as
an unbounded function) disallow this sort of an insensitivity to monetary outcomes. We do so as
well by means of our next axiom.

(A2) (Outcome sensitivity) For any x € X and s,t >0, there exist y,z € X\{x} such that
(z, )7z (x, Dz, $).

Roughly speaking, this axiom means that “delay” can always be compensated by outcomes.
For example, if X = (0,00) and s > r = 0, then (A2) says that the agent prefers getting a
large “enough” sum of money z at date s to receiving x dollars today, but prefers getting x now to
receiving a small “enough” sum of money y # x at date s. (Of course, what is “enough” depends
on the size of x and the delay s.)

(A3) (Monotonicity) For any x,y,z € X and s, t,r 20, if r <t and zZZgx, then

(x,)Z(y,s) implies (z,r)Z(y, s).

Moreover, if either the antecedent 77, or 7—, holds strictly, then (z,r) > (v, 5).

This property is an ordinal formulation of the idea that ~ is “decreasing” in time and “increasing”
in prizes. (Recall that 7, is the present material preferences.) It is thus unexceptionable for a theory
of positive time preferences in which, by definition, delay is undesirable and prizes desirable.

Our next axiom can be viewed as a separability property which ensures that the disutility of
time delay are independent of the size of outcomes.

(A4) (Separability) For any x, y,z, w € X and sy, s2, 11,12 >0, if

(x, 1) ~ (¥, s1)
and (x,t2) ~ (y,$2) then (z,t) ~ (w, $2). 2)
(z,11) ~ (w, s1).

7 Discrete-time formulation and derivation of all of our results are available from the authors upon request.
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Fig. 2.

This is a separability condition analogues of which are widely used in certain branches of decision
theory. 8 To illustrate its basic content, let X = (0, oo) and suppose the decision maker is indif-
ferent between receiving x today (¢; = 0) and y > x tomorrow (s; = 1), and similarly between
receiving z today and w > z tomorrow. Then y — x may be thought of as the delay premium
for postponing the reward x today for one period, and similarly for w — z. Now suppose we also
know that y — x is the delay premium for waiting s, — #, periods instead of receiving x at time 7,.
If the agent’s evaluation of “time” is independent of the prizes involved in the comparison, then,
exactly w — z should be the delay premium for waiting s, — #> periods instead of getting z at time
ty. Property (A4) ensures precisely this to take place, that is, it separates the premium for delay
from the particular reward (Fig. 2). 9 The structural strength (A4) is somewhat curtailed in the
present context where non-transitivity of intertemporal preferences is allowed. To be able to fully
separate the evaluation of time and prizes, we need an additional independence requirement here
(see Theorem 3). This constitutes our final axiom.
(AS) (Path independence) For any x,y,z, w € X and t1, t2, 13 20, if

(x, 1)~ (¥, 12)
and (y, ) ~ (w,13) then (x, ) ~ (2, 13).
(z,11) ~ (w, 1). 3)

Like (A4), property (AS) too is satisfied by virtually all time preference models used in the
literature (Fig. 3). ' To understand the structure that this axiom introduces into the picture, let
us again take X = (0, 00), and fix any #; < #» < 3. Now consider an individual who declares
(a,t1) ~ (b, 1) and (c, t2) ~ (d, t3). Then, evidently, the fotal delay premium of postponing a
at time #1 by t, — # periods and postponing c at time t, by t3 — t» periods is (b —a) + (d — ¢) for
this individual. Applying this notion to the antecedents of (AS5), therefore, we see that the total

8 In the theory of additive utility representation this property is called either the Reidemaister condition [4,17,35] or
the corresponding tradeoffs condition [13]. It is also commonly used in non-expected utility theory [1,36].

9 Fig. 2 provides a visual illustration of (A4): the presence of the solid indifference curves (i.e. the antecedent in (2))
implies the presence of the dashed indifference curve (i.e. the consequent in (2)).

10 Fig. 3, whose interpretation is identical to that of Fig. 2, provides a visual illustration of (AS).
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premium entailed by (x, t1) ~ (v, t2) and (y, ) ~ (w, 13) is (y —x) +(w —y) = w —x, and that
entailed by (z, 1) ~ (w, 1) and (x, ) ~ (7, 13) is (w — z) + (? — x). Clearly, the two aggregate
premia are the same iff ? = z, that is, (x, ) ~ (z, 13), as is warranted by (AS). In this sense (AS5)
corresponds to a path independence property which requires the aggregate premium for delaying
rewards be independent of the order in which the premia are extracted.

Perhaps another way looking at this path independence property may be worth mentioning here.
Let us agree to say that b is the “price” of postponing the alternative a at time ¢ by s — ¢ periods
if (a, t) ~ (b, s), and write b = price,_, ;(a). Then, assuming (for illustrative purposes) that the
transitivity of /Z, the antecedents of (AS) may be viewed as saying price, _,,, (z) = price,, _,, (x),
both of these numbers being equal to w. In turn, (AS) requires a tight connection between x and
7, namely, it demands z be the price of postponing x by #3 — t» periods. Therefore, for transitive
7, (A5) corresponds to none other than the following path independence property:

price,, _,,, (price,, _,,, (x)) = price, _,, (x)

or, equivalently, price,,_,,, (x) = price,,_,, (price, ., (x)). This property is, of course, intrinsic
to ranking dated outcomes on the basis of present value computations. As we shall show below,
it is consistent with many other methods as well.

As for examples, we note that any discounting model which envisages that “outcomes” and
“time” are separable in such a manner that all outcomes are discounted the same way (such as the
exponential and/or hyperbolic discounting models, among others) would trivially satisfy proper-
ties (A4) and (A5).!'! Moreover, both of these properties enjoy fairly reasonable interpretations,
which at some level, resemble present value computations. It thus seems warranted to explore the
implications of (A4) and (AS5) for the theory of time preferences. Yet (A5) is a more complicated
axiom than (A4), and its appeal is not unquestionable. For this reason, we will explore in Section
4.2 how exactly the theory that emanates from the properties considered in this section would be
altered by the absence of (AS5).

1 Conversely, time preferences that exhibit the so-called magnitude effect (the decrease of the rate of discounting with
the utility value of the outcomes) would in general violate both (A4) and (AS5).
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3. Time preferences over monetary outcomes
3.1. Main results

Our main objective here is to give a complete characterization of the class of time preferences
that satisfy the axioms introduced above, thereby unifying a great variety of time preference
models considered in the literature. In this section we will provide such a characterization in the
case where the prizes are given in monetary terms in the sense that X is a non-empty interval in
R. (A significant generalization is provided in Section 4.1.) The main advantage of this case is
that it warrants the following innocuous assumption which says that an agent strictly prefers the
larger prize to a smaller one, provided that both prizes are to be received today.

(A6) (Monotonicity in prizes) 5 is strictly increasing on X.

The following is our first main result.

Theorem 1. Let X be an open interval in R and 7~ a binary relation on X . 77, is a time preference
on X that satisfies properties (A1)—(A6) if, and only if, there exist an increasing homeomorphism
U : X — R4+ and a continuous map 1 : [R{i — Ry such that, forall x,y € X and s, t >0,

.0z, s) iff Ux) Zn(s, HU(y), (4)
while (i) n(-, t) is decreasing with n(oco, t) = 0, and (ii) (s, t) = 1/n(t, s).

Theorem 1 provides a representation for time preferences over monetary outcomes by means
of separating the “delay” and “prize” aspects. In this representation U simply serves as a utility
function for undated outcomes; we have (x, t)2-(y, 1) iff U(x) >U(y) forallx,y € X and r >0
(since, by (ii), n(z, t) = 1 for each 7). In turn, 7 captures the importance of time for the individual
in question. The model is one of positive time preference; for any x € X, we have (x, 1)7-(x, s)
iff > 5 >0 (since, by (i) and (ii), 0 < y(s, 1) <1 iff 7 <s).

More generally, the representation tells us how the agent would “aggregate” the time and out-
come aspects when comparing two dated outcomes (x, ) and (y, s). For instance, if U (x) > U (y)
and t > s, the agent has to decide whether she should receive the better outcome later, or the
worse outcome sooner. The representation maintains that this is done by comparing the outcome
value U (x) with the outcome value U(y) that is discounted according to the relative receival
dates of x and y. Thus, (s, t) acts as a relative discount factor which tells us exactly how the
agent disvalues the time delay that takes between periods s and ¢. If U(x) > 5(s, t)U(y), the
time difference does not compensate for the value difference in outcomes, so she goes for (x, t)
as opposed to (v, s). If U(x) < (s, 1)U(y), then the time aspect of the comparison outweighs
the prize aspect, and she chooses (y, s) over (x, t). The case U (x) = #(s, t)U (y) corresponds to
the case of indifference.

In the standard discounted utility model, one discounts the utility of a given alternative x to
be received at time ¢ (according to some discount function), and compares the resulting value to
similarly discounted utilities of other outcomes received at possibly other dates. This corresponds
to a notion of absolute discounting in the sense that we may then compare all prize-time tuples
(x, t) by using their present values. By contrast, the representation obtained in Theorem 1 says that
we cannot in general talk about “the” present value of a dated outcome; discounting is a potentially
relative matter. That is, the utility of x can be discounted only relative to its receival date and some
other receival date ¢. Put differently, (x, r) > (y, s) should be interpreted as follows: The worth
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at time ¢ of the utility of y that is to be obtained at time s (i.e. U (y)5(s, t)) is strictly less than the
worth at time ¢ of the utility of x that is to be obtained at time ¢ (i.e. U (x) = U(x)#(t, t)). This
relative discounting notion is the main novelty of our representation; instead of looking for the
values of (x, ) and (y, s) at time O, we make the comparison at time ¢ (or at time s; by property
(ii), this does not matter).

Going back to the evaluation of Theorem 1, we note that the outcome-utility function U found
here is not only continuous and strictly increasing, but it is also unbounded. While the latter
requirement is not innocuous, it hardly seems unacceptable; it is a fair price to pay for assuming
the outcome sensitivity property (A2) (which is, in turn, essential for the “only if” part of Theorem
1). Conditions (i) and (ii) are, on the other hand, easily interpreted. Condition (i) simply says that
the agent prefers getting an outcome earlier than later, and that the value of any given outcome
is negligible, provided that this outcome is to be obtained sufficiently late. Condition (ii) ensures
that “time delay” is evaluated symmetrically back and forth through time. For instance, if s > 7,
then the utility of an outcome that is received at s instead of ¢ is discounted by #(s, t) <1, and
conversely, the utility of an outcome that is received at ¢ instead of s is inversely discounted by
I/n(s,0)=>1.

Insofar as the uniqueness related matters are concerned, one can show that the utility function
U and the relative discount factor 1 found in Theorem 1 are unique up to simultaneous positive
exponential transformations. To state this result in precise terms, we introduce the following bit
of terminology that we shall use later as well.

Definition. Let X be a metric space. We say that a time preference on X’ is represented by (U, 1)
if U : X — R4 is an homeomorphism and # : [Rﬁ_ — R4 is a continuous map such that (4)
and conditions (i) and (ii) of Theorem 1 hold for all x, y € X and s, t > 0.

The following result complements Theorem 1.

Proposition 1. Let X be a metric space, and 7, a time preference on X which is represented by
(U, n). Then - is represented by (V, () if and only if V. = bU“ and { = n* for some a, b > 0.

In the following subsections, we consider a few refinements of the representation given in
Theorem 1 by imposing on = some additional properties such as transitivity, stationarity and
present bias. We then consider some non-transitive time preference models that are covered by
Theorem 1, and explore how one may include in the model a time-neutral outcome (such as the
disagreement outcome in the Rubinstein bargaining model).

3.2. Transitive time preferences over monetary outcomes

As noted above, representation (4) allows for non-transitive time preferences; we will consider
concrete examples below. In fact, it is easily shown that a time preference that is represented as
in Theorem 1 is transitive if and only if

n(t,r)y=n(t, s)n(s,r) forallr s, t>0. 5)

This observation leads to a complete characterization of transitive time preferences that satisfy
(A1)—(A6). It turns out that, under the transitivity hypothesis, the representation becomes one of
absolute discounting, that is, comparison of dated outcomes takes place through a present value
computation.
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Corollary 1. Let X be an open interval in R and - a binary relation on X. 7 is a transitive
time preference on X that satisfies properties (A1)—(A6) if, and only if, there exist an increasing
homeomorphism U : X — Ry and a decreasing and continuous map D : Ry — (0, 1] such
that D(0) = 1, D(oc0) = 0, and

(x, )2, s) iff DOU(x)=D(s)U(y) (6)
forall (x,t), (y,s) € X.

While it is illuminating to see the potential contribution of transitivity to Theorem 1, Corollary
1 is not really a new finding. It parallels closely the characterization of multiplicative discounting
model given by Fishburn and Rubinstein [8]. Conceptually speaking, however, it is a useful
observation, for it shows that all standard models of time preferences over monetary gains are
covered by Theorem 1. To see this more clearly, let X := (0, 00), and let U be an arbitrary strictly
increasing and continuous real function on X with U (0+) = 0 and U (00) = oo. The exponential
discounting model defines a time preference on X by (x, t)>=(y, s)iff ' U (x) > 5*U (y), where § €
(0, 1) is the discount factor. Obviously, such a time preference belongs to the class characterized by
Corollary 1 (where D(t) = &' for all t >0) and hence by Theorem 1 (where U = u and 5(s, t) =
&~ for all s, t >0). Similarly, any commitment-preference of the hyperbolic discounting model
is captured by Corollary 1, and hence by Theorem 1.

3.3. Stationary time preferences over monetary outcomes

One of the main features of the classical exponential discounting model is that of its stationarity.
That is, in that model, the effect of time enters into the comparison of two dated outcomes only
through the difference between the receival times of these outcomes. In the present framework,
this property is defined as follows.

Definition. Let X be a non-empty set. A time preference 7~ on X is said to be stationary if
(x,t) > (y,s) iff (x,24+7)>(y,s+71)
for all (x, 1), (y,s) € X and 7 € Rsuch thats 4+ 7,7 4+ t>0.

The following immediate corollary of Theorem 1 demonstrates the structure of the stationary
relative discounting in the present setup.

Corollary 2. Let X be an open interval in R and = a binary relation on X. 7 is a stationary
time preference on X that satisfies properties (A1)—(A6) if, and only if, there exist an increasing
homeomorphism U : X — Ry and a decreasing and continuous map { : R — Ry such that
{(00) =0, {(a) = 1/{(—a) foralla>=0, and

(e, D2y, s) i Ux) =20 —nU(y) )
forall (x,1), (y,s) € X.

12 Perhaps the most popular such example has it that D(¢t) = 1/(1 + ¢) for all # > 0 in the language of Corollary 1, and
n(s,t) = (1 4+1)/(1 +s) forall s, >0 in the language of Theorem 1.
‘We note that the representation of Theorem 1does not capture the so-called quasi-hyperbolic discounting model of [26,19]
due to a technicality. The discount function of that model is not continuous at 0 (for D(0) = 1 > D(0+)). If one wishes to
adopt our model within a discrete framework, however, that model too becomes a special case of the model characterized
by Corollary 1 (See Fig. 4).
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The next result shows that the only stationary and transitive time preference model that belongs
to the class characterized by Theorem 1 is that of the exponential discounting model. Thus the
axiomatic framework that underlies the representation given in Theorem 1 is a relatively tight
one in that disallowing for non-transitivity and non-stationarity in this framework amounts to
exponential discounting.

Corollary 3. Let X be an open interval in R and - a binary relation on X . 77, is a stationary and
transitive time preference on X that satisfies properties (A1)—(A6) if, and only if, there exist an
increasing homeomorphism U : X — Ry and a 6 € (0, 1) such that

6, DZ,s) i SU@) =8 U Q)
forall (x,1), (y,s) € X.

While it is illuminating to see how the exponential discounting model is embedded in the
class of time preferences characterized by Theorem 1, this result, like Corollary 1, should not be
considered as a new finding. Indeed, apart from a few technical details, Corollary 3 can be thought
of as a special case of the well-known characterization of the exponential discounting model by
Fishburn and Rubinstein [8].

3.4. Present bias

In view of the ample experimental evidence that shows that most individuals attach a special
significance to receiving an outcome “today” (that is, at date 0) as opposed to some later date,
it is of interest to identify which sorts of time preferences that we consider here exhibit such a
present bias. We first need to formulate the idea of “present bias” within our ordinal framework.

Definition. For any non-empty set X, a time preference 2~ on X is said to have present bias if
(x,)=(y,s) implies (x, 0)=(y, s — 1),

forall x, y € X,and s >t >0. Itis said to have strong present bias if it has present bias, and if,
for any s > ¢ > 0, there exist x, y € X such that

(x,t) ~(y,s) and (x,0) > (y,s —1). (8)

The interpretation of this definition is straightforward. If (x,1)2-(y, s), and s > ¢, then we
understand that the delay that occurs between ¢ and s is not compensated by the relative magnitude
of the utility of y over that of x. If the agent has present bias, then it should certainly be the case that
she prefers getting x now as opposed to receiving y after waiting for a period of length s — ¢ > 0.
Strong present bias is similarly interpreted.

The following result identifies the structure of time preferences that belong to the class char-
acterized by Theorem 1 and that have (strong) present bias.

Corollary 4. Let X be an open interval in R and 7 a binary relation on X . = is a time preference
on X that satisfies properties (A1)—(A6) and has (strong) present bias if, and only if, 7 is
represented by some (U, n) such that n(s, t)(>) >n(s — t, 0) holds whenever s >t > 0.

As for examples, we note that any stationary time preference has present bias, but not strong
present bias. For instance, the exponential discounting model exhibits present bias, but not strong
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present bias. By Corollary 4, we also find that any time preference thatis represented as in Corollary
1 has (strong) present bias if and only if D(s)/D(t)(>) > D(s — t) whenever s > t > 0.

3.5. Non-transitive time preferences: examples

The time preferences that we considered in our examples so far have all been transitive. We
have not yet considered any examples of relative discounting models that portrait non-transitive
preference. We examine next a few concrete examples of such preferences under the guideline of
Theorem 1.

Example 1 (A non-transitive stationary time preference). Let X := (0, 0o), define # on Ri as

s =0 ifs—1>1,
nis, 1) = {1 if1>s —1>0,

and (s, 1) := 1/5(¢, s) if t > s (see Fig. 4), and consider the binary relation 2~ on X" defined by
(x, )7 (v, s) iff x >n(s, t)y. Such an individual does not discount a time period of length less
than 1; she does not perceive any cost to delaying the receipt of a prize for this long a time period.
However, she considers delays of more than one period costly. In particular, a delay of two time
periods halves the value of the prize for her. It is readily checked that 2~ is a time preference that
belongs to the class characterized by Corollary 2. Yet even the strict part of 2~ is not transitive. For
instance, (6,2) = (5,1) = (4,0) but (4,0) = (6, 2). Since = is stationary, it has present bias,
but not strong present bias.

Example 2 (Subadditive discounting). In an interesting study, Read [28] observes that non-
stationary phenomena like strong present bias may be explained by means of subadditive dis-
counting (as opposed to hyperbolic discounting). Subadditive discounting corresponds to the idea
that the total discounting over a given period may be greater than the sum of discounting when
that period is divided into two parts. In the language of the present model, this means that, for
any r > s > t20,if (x,r) ~ (y,t) and (x,r) ~ (z,5) ~ (w, 1), then w >¢ y. While Read
[28] discusses possible causes of subadditive discounting, and provides experimental evidence
in support of its presence, he does not provide a concrete time preference model that incorpo-
rates subadditive discounting. The notion of relative discounting, however, can be readily used
to obtain various specific subadditive discounting models. Indeed, if - is represented by (U, 1),
and if n(¢, r) > n(t, s)n(s, r) for any r > s > ¢t >0 (compare with (5)), then = corresponds to
a subadditive discounting model. !> One can also use Theorem 1 in a similar fashion to obtain
hybrid models where, for instance, short time intervals are subject to additive discounting, and
longer ones to subadditive discounting.

Example 3 (The Rubinstein time preference model). In his critique of hyperbolic discounting,
Rubinstein [30] points to the fact that decision-making procedures based on similarity relations

13 For example, if f : R4+ — Ry is any convex and strictly increasing function with f(0) = 0 and f(co) = oo, and 1
exp f (|t —s]) if s <1,
1/exp f(It —s|) ifs >1t,
Theorem 1) entails subadditive discounting. Fig. 4 depicts how this particular discounting model compares with those of
the other time preference models considered so far.

is defined on Ri as n(s,t) == { then the associated (stationary) time preference (given by



E.A. Ok, Y. Masatlioglu / Journal of Economic Theory 137 (2007) 214-245 227

Exponential Discounting Quasi-Hyperbolic Discounting

n(st) n(s.t)

5 t
s 0
Hyperbolic Discounting D(t)=1/(1+t) A Non-quasitransitive Time Preference
n(s.tb)
n(s.h
5 5 5 S
t
s 0 t S 0
Rubinstein Time Preference Subadditive Discounting
s,t
n(s.t) nish
5 % ° s % i
s 0 t s 0 t

Fig. 4.

may better explain the experimental findings. One way of formalizing this suggestion in the
present context is as follows.

Let ~x and ~7 be reflexive and symmetric binary (i.e. similarity) relations on X := (0, co)
and [0, 00), respectively. (We interpret x ~x y as the agent viewing the alternatives x and y as
“similar.” The expression ¢t ~7 s is interpreted analogously.) Let 77 be a binary relation on X,
and consider the following postulates:

(R1) If x >0 y and t <s, then (x, t) > (v, s).
(R2) If t ~7 s, then (x, 1) (y, s) iff x>0y, 4
(R3) Ifr ~7 s does not hold, but x ~x y, then (x, )77 (y, s) iff # <s.

Rubinstein [30] views the above properties as a procedure in which the agent first checks if (R1)
applies, then (R2) and then (R3), but leaves unspecified how the decision is made when none of
these properties apply. To complete the model, we assume here that the agent uses a particular

14 we depart slightly from the original formulation of Rubinstein here, which, in fact, leaves unspecified how the
decision maker behaves when both  ~7 s and x ~y y hold. We presume here that rewards are the decisive factor in
such circumstances.
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rule to aggregate the utility of outcome and the disutility of delay. Formally, we posit that there
exists a continuous function V : X — R such that (x, t)Z(y, s) iff V(x,1)>V(y, s) for any
(x,t) and (y, s) that fail to satisfy any of the antecedents of (R1)—(R3). Thus, -~ is completely
identified by the list (27, ~x, ~r, V), which we will refer to as a Rubinstein time preference
model.

It turns out that a variety of Rubinstein time preference models are indeed models of relative
discounting, and hence, are captured by Theorem 1. To illustrate, let U be any increasing home-
omorphism that maps X onto Ry, and define /7, as the preference relation on X represented
by U. Also assume that &y is any similarity relation on X such that there exists an ¢ > 1 such

that ég ZE;; <& whenever x Xy y. Now take any strictly decreasing f : Ry — R4 with
f(s

f(o00) =0, and fix any similarity relation ~7 on [0, c0) such that %g (Z; <& whenever s ~p t

does not hold. Finally, define V : X — Rby V(x, ) := f(r)U (x). It can be checked that the time
preference - identified by the Rubinstein time-preference model (2, ~x, ~r, V) is represented

by (U, ), where n(s,t) ;== 1if s =7 t, and n(s, t) := % otherwise. (See Fig. 4.) Depending

on the structure of the time-similarity relation ~7, 2~ may or may not have strong present bias.

~

Finally, we consider a model of time preferences which is not a relative discounting model.

Example 4 (Time preferences with contemplation costs). Let X := (0,00) and U : X — R44
be an increasing homeomorphism. A version of the time preference model considered by Benhabib
et al. [2] posits that 7~ is represented on X" as follows:

(x, DZ(y,8) iMf DOUx) —c(t) ZD()U(y) — cls).

Here D : Ry — (0, 1] is astrictly decreasing (discount) function with D(0) = 1 and D(oc0) = 0,
and ¢ : Ry — Ry is an increasing function. (One may interpret c(¢) as the contemplation cost
associated with planning about ¢ periods ahead.) Obviously, - is a time preference that reduces to
the model characterized in Corollary 1 when c(¢) = 0 for all z. However, in general, - need not
satisfy either (A4) or (AS5), and hence lies outside of the class of time preferences characterized

by Theorem 1.
3.6. Time preferences with a delay-neutral outcome

In many economic applications, one stipulates the presence of a time-independent “worst
outcome” for the involved agents. (For instance, in the classical Rubinstein bargaining game
and its variants, such an outcome serves as the disagreement point in which gains from trade are
nil.) In the formalism of the present model, this outcome, let us denote it by x,, must satisfy the
following:

(X4, 1) ~ (x4, 5) and (x,1) > (x4, s) forall x € X\{x,} and s, € [0, 00). O]

By contrast, the structure of time preferences characterized by Theorem 1 does not allow for
the presence of such an outcome, precisely due to the time sensitivity property (Al). While this
may at first seem problematic, it is, in fact, easily dealt with upon attaching x, as the mini-
mum element to X and asking (A1) to apply to all undated alternatives but x... More precisely,
where X = [x4, x*) with x, < x*<o0, all we need is to replace (Al) with the following

property.
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(A1*) (Time sensitivity) For any x,y € X\{x4} and t >0, there exists an s >0 such that

(x, D2y, ).
The resulting relative discounting model is outlined in the following offspring of Theorem 1.

Corollary 5. Let X = [x,, x™), x, < x*< 00, and let 7, be a binary relation on X. 77 is a time
preference on X that satisfies properties (A1%)—(A6) if, and only if, there exist an increasing
homeomorphism U : X — Ry and a continuous map 1 : IR%r — Ry such that (4) and (1) and
(i1) of Theorem 1 hold for all x,y € X and s, t > 0.

The existence of a time-neutral outcome is thus consistent with the axiomatic system that
is adopted in Theorem 1 (with (A1*) replacing (Al)). The only modification in the result-
ing representation is that this outcome is now assigned the utility value of zero (i.e. U(xy) =
0) while the utility of any other alternative is strictly positive. Needless to say, this formula-
tion is duly consistent with the way time-neutral outcomes are commonly modeled in applied
work.

3.7. An application to bargaining theory

A major advantage of the hyperbolic discounting model is that, when combined with the time
consistency principle, it turns in a rather tractable model of intertemporal choice which portraits
a good deal of predictive power. At least in the case of certain economic problems, the same is
true for the relative discounting model envisaged by Theorem 1 as well. To illustrate this point,
and to show how the general time preferences studied here can be used in practice, we revisit in
this section the Rubinstein bargaining model by using such time preferences.

Consider two players who are engaged through the standard alternating offers bargaining game
in which time is discrete and the set A of all agreements is the set of all divisions of a unit cake:
A :={(a,1 —a) : 0<a < 1}. We model the preferences of the players over [0, co) x [0, 00) as
represented by a pair (U, #) as in Corollary 5 with x,, = 0, x* = oo and U being strictly increasing
and strictly concave. These preferences are extended to A x Z in the obvious way: Player 1,
for instance, prefers ((a, 1 — a),t) to ((b, 1 — b), s) iff U(a) >n(s, t)U(b). If no agreement is
ever reached, each player receives the worst outcome 0. We refer to the resulting game as the
generalized Rubinstein (U, n)-bargaining game, or for short, (U, n)-bargaining game. If =
corresponds to an exponential time discounting model (i.e. when 5 (s, t) = 6*~' for all s and ¢,
with 0 < § < 1 being the discount factor), then we refer to this game as the standard Rubinstein
(U, 0)-bargaining game.

We are interested in the equilibria of the (U, y)-bargaining game that would obtain when the
players determine their strategies in a time consistent manner. In line with the standard notion of
time consistency, therefore, we treat each player at time  as a different person. !> The preferences
of these “selves” of the players are defined in the obvious way: the period ¢ ““self” of player 1 prefers
((a,1—a), 1) to (b, 1 =b), T)iff U(a) =n(t—t,7 —1)U(b), where 7,7 € {t,t+1,...}. 1 We

15 The idea goes back to [33,26], and is adopted routinely in applications. In this sort of a formulation, time consistency
is defined as (possibly a refinement) of the subgame perfect equilibria of the induced game played by the “selves” of the
agent. See, for instance, [10,11,14,25].

16 The preferences of this “self”” over agreements reached before time ¢ are irrelevant; for concreteness we may assume
that this player receives O (or any a € [0, 1]) if the game ends before period ¢ is reached.
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refer to any (stationary) subgame perfect equilibrium of the resulting (infinite-player) game as a
time consistent (stationary) subgame perfect equilibrium of the (U, 1)-bargaining game.

Clearly, the subgame perfect equilibrium of the standard Rubinstein (U, J)-bargaining game
is the unique time consistent subgame perfect equilibrium of the (U, y)-bargaining game, where
n(s,t) = 6" foralls, t € Z . This fact generalizes to an arbitrary (U, 17)-bargaining game with
n(1,0) < 1.

Proposition 2. There is a unique time consistent subgame perfect equilibrium of any generalized
Rubinstein (U, n)-bargaining game with (1, 0) < 1. This equilibrium equals the unique subgame
perfect equilibrium of the standard Rubinstein (U, y(1, 0))-bargaining game.

Under the proviso of time consistency, therefore, the nature of a (U, n)-bargaining game with
n(1,0) < 11is identical to the standard Rubinstein model. Due to the highly stationary nature of
this game, how one models time preferences turns out to be irrelevant for the main conclusions
that stem from the Rubinstein model, provided that each player discounts even a single-period
strictly. 18

A different scenario obtains in the case where #(1,0) = 1, that is, when waiting for one
more period at time zero is deemed costless. For concreteness, we only consider the case where
n(1,0) = 1 > y(2,0). (The generalization to the case where (1,0) = --- = 5(¢,0) =1 >
n(t+1,0) forsomet € N is straightforward.) Under this specification the time preferences of the
players are necessarily non-transitive. For instance, player 1 may be indifferent between getting
an outcome at time 0 and 1, and between 1 and 2, while she strictly prefers to obtain that outcome
now as opposed to waiting for it for two periods. As noted in the Introduction, the plausibility of
these sorts of preference cycles is in fact one of the main motivations for our analysis.

The following result complements Proposition 2.

Proposition 3. Forevery 0<a <1, there is a time consistent stationary subgame perfect equilib-
rium of any (U, n)-bargaining game with n(1,0) = 1 > y(2, 0) in which the outcome (a, 1 — a)
is agreed upon in either period 0 or 1. There is no stationary equilibrium of such a game which
exhibits a delay of more than one period.

To see this, fix any 0<a < 1, and consider the strategy profile in which any (proposing) self of
player 1 always offers (a, 1 —a) while any (responding) self of her accepts a proposal (b, 1| —b) € A
iff b > a. Similarly, any (proposing) self of player 2 always offers (a, 1 —a) while any (responding)
self of her accepts a proposal (b, 1 —b) € A iff b<a. Given that #(1, 0) = 1, this profile is easily
checked to be an equilibrium in which (a, 1 — a) is agreed upon in period 0.

17.0f course, here we identify the equilibrium action of the period # “self” of player i in the former game with the action
of the player i in period 7 in the (U, 1)-bargaining game, i = 1, 2.

18 The proof of Proposition 2 follows from the standard analysis of the Rubinstein bargaining game. For any pair of
agreements (x*, y*) € A2 such that player 1 is indifferent between (x*, 1) and (y*, 0), and player 2 is indifferent between
(x*,0) and (y*, 1), there is a subgame perfect equilibrium of the induced infinite-player game in which all “selves” of
player 1 always propose x* and accept a proposal x € A iff U(x)) > U(yi“), while all “selves” of player 2 always
propose y* and accept a proposal x € A iff U(x2) > U (x3). Moreover, the standard Shaked-Sutton argument applies to
the present setting without alteration, and hence all one needs to verify here is that there exists a unique (xi‘, yi‘) e [0, 1]%
such that (1, 0)U (x{) = U(y{) and n(1,0)U(1 — y}) = U(1 — x}). This is established by a standard fixed-point
argument; we omit the details.
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Now consider the strategy profile in which all selves of player 1 and all but period O selves of
player 2 behave exactly as in the previous profile. The period 0 self of player 2 accepts a proposal
(b,1 —b) € Aiff b < a. This profile is an equilibrium in which (a, 1 — @) is agreed upon in
period 1. (We leave the proof of the final assertion of Proposition 3 as an exercise.)

Many other results derived about the Rubinstein bargaining model and its numerous ramifi-
cations can be studied with the relative discounting model derived in Corollary 5. Our objective
here was only to illustrate the “applicability” of this model. While it is quite general, the structural
simplicity of this model enhances its usability in the context of a variety of economic problems.
Adopting this model may validate certain findings that are obtained via the exponential discount-
ing model in some applications (as in Proposition 2), and in others it may lead to new results,
identifying the restrictions imposed by that model more crisply (as in Proposition 3).

4. More general models of time preferences
4.1. Characterization of time preferences over multidimensional prize spaces

The results of the previous section are all based on assumption (A6) which implies that the
agent is not indifferent between any two distinct (undated) prizes. Consequently, those results are
not applicable in a context in which the prize space consists of, say, commodity bundles. A useful
generalization of the analysis outlined so far would obtain, then, by extending it to the case where
the prize space X is a subset of an arbitrary Euclidean space. The following result provides such
a generalization.

Theorem 2. Let n € N, X a non-empty open box in R*, and - a binary relation on X.° = is
a time preference on X that satisfies properties (A1)—-(A6) if, and only if, there exist continuous
surjections U : X — Ry andn : Rﬁ_ — Ry such that U is strictly increasing, (4) holds on
X, and

(1) n(, t) is decreasing with n(oco, t) = 0 for any t >0,
(1) n(s,t) = 1/n(t,s) forany s, t >0.

Moreover, V. : X — Ry; and { : R%_ — Ry4 also satisfy these properties if and only if
V =bU% and { = n® for some a, b > 0.

The interpretation of this result is identical to that of Theorem 1. Moreover, all of the corollaries
of Theorem 1 that we considered above are easily extended to the case covered by Theorem 2;
we omit repeating the arguments.

4.2. Path-dependent time preferences

The strongest assumption that we imposed on time preferences in Theorem 1 is arguably the
path-independence requirement (AS5). It is thus of interest to find out how exactly this theorem
would modify in the absence of this assumption. The following result provides the answer to this

query.

19 By an open box in R", we mean the cartesian product of n open intervals (with the product topology).
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Theorem 3. Let X be an open interval in R and 7~ a binary relation on X . 77, is a time preference
on X that satisfies properties (A1)—(A4) and (A6) if, and only if, there exist an increasing home-
omorphism u : X — R and continuous maps F : R> — Ry and n : X* — Ry such that, for
allx,y € X and s, t >0,

(e, 0y, s)  iff Fu(x), u(y))=n(s, 1), (10)
while:

(1) n(-,t) is decreasing with n(oco, t) = 0, and n(s, t) = 1/y(t, s);
(i) F(., p) is strictly increasing, surjective, and F («, f) = 1/F (o, p) for each o, f € R.%°

This result shows formally that the main function of (AS) is to make sure that the relative
discount factor 7 we find in Theorem 1 can properly be interpreted as “discounting” the utility
function of a given agent. Without this assumption, the agent ranks two dated outcomes (x, )
and (y, s) by separately comparing the relative utilities of x and y and the receival times s and
t, and then aggregating these comparisons in an additive fashion. While this model is probably
“too general” to be useful for most applied purposes—the analysis of the Rubinstein bargaining
model with these sorts of preferences is, for instance, much harder than the one we presented
in Section 3.7—it may still be useful in isolating the implications of the separability property in
certain contexts.

5. Open problems

Time preferences and risky outcomes: The time preference theory presented here treats the
preferences over undated outcomes in an ordinal way, and hence it is not suitable for intertemporal
choice models in which current and/or future outcomes may obtain in risky environments. An
important item in the related future research agenda should thus concern how to extend the
present theory to the case where (1) the time projections admit an expected (or non-expected)
utility representation, and/or (2) time preferences are defined over lotteries on the entire prize-time
space.

Time preferences over consumption streams: We have considered here only the time preferences
that are defined on the prize-time space. While this structure is sufficient for some interesting
economic applications, it does not apply to numerous dynamic situations, such as the capital
accumulation problem, search models, repeated games, etc. An important next step is, therefore,
to extend the present analysis to the case of time preferences defined over consumption streams
through time. This extension is likely to be highly non-trivial, for it is not even clear what is, if
any, the natural generalization of the present model to this case.
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Appendix A. Proofs
A.1. An observation on systems of Abel functional equations

As it will be explained in the next subsection, the so-called Abel functional equation plays a
crucial role in the proof of Theorem 1. This equation is studied extensively in the literature on
iterative functional equations (see [18]). Its general form is

Y(f(x)) —Y(x) = constant forall x € C,

where Cis acone in a Banach space, and the “known” function fis a self-map on C. The “unknown”
of the equation is the function i € R¥.

There are relatively fewer studies on systems of such equations (but see [24,37,12]). We state
below the main existence result obtained for such systems in the literature, but we need to introduce
some terminology first.

For any topological spaces X and Y, we denote the set of all homeomorphisms that map X onto
Y by Hom(X, Y), but we write Hom(X) for Hom(X, X). If fis a self-map on X (that is, f € XX),
then Fix(f) denotes the set of all fixed points of f, thatis, Fix(f) :={x € X : x = f(x)}. We
denote the identity function on X by idy.

Let G be any group, and § € G. The smallest subgroup of G that contains S is called the group
generated by S, and denoted as (S). It easy to show that s € (S) if and only if there are finitely
many sy, ..., S, € G such thats = s1 ---s, and either s; € Sorsl._l € Sforeachi =1,...,n.

Consider the following set of real maps

A:={f € Hom(R) : Fix(f) = %},

and let F be any non-empty subset of .4. The subgroup generated by F under the composition
operation is denoted by (F). The F-orbit of a € R is defined as

Or(a)={(fio---ofy)a):neNand f,..., f € F}.

We let L £ (a) denote the set of limit points of Q r(a), thatis, b € L (a) iff there is a sequence
(a) in Q F(a)\{b} such that a,,, — b.

We are now ready to state the following fundamental existence theorem for simultaneous Abel
functional equations.

Theorem A.1 (Jarczyk et al. [12]). Let F be any non-empty subset of A which contains a map
g € Awith g > idg. If (F) is Abelian, then

m
n

vg(f):zsup[ :(m,n)erNcmdgm<f"}7éO forall f € (F).
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Moreover, if

(i) (F) is Abelian and the only member of (F) that has a fixed point is idg, and
(1) there is some a € R such that either L r(a) = {—00, 00} or Lr(a) = R, then there exists a
continuous bijection F : R — R such that

Fof—F=v,(f) forall feF.

Proof. This statement obtains upon combining Propositions 1 and 2, and Theorem 1 of Jarczyk
etal. [12]. O

A.2. A primer on the Proof of Theorem 1

This section outlines the basic idea of the proof of Theorem 1, thereby demonstrating the
significance of Abel functional equations for the present work. To simplify things, let us focus
here on the case where X := (0, co0). Take any time preference 2~ on X, and for a first pass,
assume momentarily that there are only two time periods to consider, 0 and 1. One can show by
means of relatively standard arguments that for each x € X there exists an f(x) € X such that
(f(x),0) ~ (x, 1). By (A3) we must have f(x)<x for each x. To flesh out the basic argument,
let us assume that f(x) < x for all x € X.

We now pose the following question: Does there exist a constant #(1,0) > 0 and a strictly
increasing U : X — R4y such that U(f(x)) = n(1,0)U(x) for each x > 0. If the answer is
yes to this question, by using (A3) and (A6) we may easily conclude the proof of the desired
representation (with, of course, only two time periods). In turn, the answer to this question is yes
iff there exist a real number ¢ and a strictly increasing u : X — R such that u(f(x)) —u(x) =c¢
for each x > 0, that is, u o f — u = constant. But the latter equation is none other than an Abel
functional equation (where u is the unknown function).

This argument shows how Abel functional equations arise naturally in the present analysis.
Of course, considering only two time periods was only for illustrative purposes — in our actual
setup this argument would result in a system of Abel equations. To see this, for any s, r >0 define
fs.t + X — Ry through the indifference (f; ,(x), t) ~ (x, s). It is not difficult to show that f; ;
is well-defined (even though =~ is not transitive) by using (A1)-(A3) and continuity. Again, to
simplify things, let us assume that f; ;(x) # x unless s = ¢. The question now becomes: Given
any s, t >0, can we find a constant #(s, ) > 0 and a strictly increasing U : X — R, (which
does not depend on s and ¢) such that U (f (x)) = (s, t)U (x). The answer to this question is yes
iff, for any s, # >0, there exist a real number ¢, ; and a strictly increasing u : X — R such that
u(fs1(x)) —u(x) = cg,; foreach x > 0, that is,

uo fsr—u=cse, s,120. (A.11)

Thus, the main problem in proving Theorem 1 is to “solve” the system of continuum many Abel
equations given in (A.11). Of course, this is possible only if there is a certain consistency across
these equations. The fact that we are essentially free in the choice of the constants c; ; allows us
to tackle this problem by invoking Theorem A. Adopting the terminology of that theorem, we set
F = A{fsr:5,t20}, g ;== fo1,and define ¢y ; := vg(f;,,) foreach s, > 0. (Since we assume in
this informal argument that fy 1 (x) # x for all x, (A3) ensures that g > idR.) 21 This brings us

21 In the general case, we would find a specific s and 7 (by (Al)) such thats < ¢ and f ;(x) 7 x for atleastone x € X.
By using (A4), we then find f§ ;(x) # x for all x € X, thatis, by (A3), f; ; > idg. In this case setting g := fy,; would
thus suffice.
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well within the coverage of Theorem A, but of course, we still need to verify that (F) is Abelian,
and that the only member of (F) with a fixed point is idg. This is accomplished by using (A4)
and (AS). (Condition (ii) of Theorem A is an easy consequence of (Al).)

A.3. Proof of Theorem 1
[=1] Let 77, be a time preference on X’ that satisfies (A1)—(A6).

Claim 1. Forany x,y € X and s, t >0 such that (x,t) > (v, s), there exist z, w € X such that
(x,t) = (z,t) = (y,s) and (x,t) > (w,s) > (y, s).

Proof. DefineA :={we X : (x,t) > (w,t)}and B:={w e X : (w, 1) > (y,s)}. While A #
since 7, = 7 is strictly increasing and X is open, we have B # ) because x € B by hypothesis.
Since 77, is upper semicontinuous, A is open in X, and since 7~ is lower semicontinuous, B is
open in X. We next claim that X € A U B, that is, for any @ € X, either (x,7) > (w, ) or
(w, 1) > (y,s). This is true, because if (w, 1)75(x, 1), that is, wZZyx, is the case, then given that
(x,1) > (y,5), (A3) implies (w, t) > (v, s). Thus X = A U B. Since X is an interval, therefore,
we must have A N B # (. The second claim is proved analogously. [

Claim 2. Foranyy € X and s, t >0, there exists a unique x € X such that (x,t) ~ (y, s).

Proof. By (A2), there exists an w € X such that (w, t)7-(y, s), sO
A={weX: (050, 0.

Take any increasing u € Hom(X, R). If inf u(A) = —oo, then, by (A6), for any z € X we can
find an w € A with u(z) > u(w), thatis, (z,1) > (@, 1)7(y, s). Thus in this case (A3) implies
that (z,1) > (y, s) for all z € X, but this violates (A2). It follows that inf #(A) is a real number,
so by surjectivity of u, there exists a z € X such that u(x) = inf u(A).

Now if (y, s) > (x, t), then there exists a w € X such that (y, s) > (w, ) > (x,t) by Claim
1. Since x ¢ A and u is injective, we have inf u(A) = u(x) ¢ u(A), so we can find a sequence
() € A such that u(wy) > u(wy) > --- and u(w,) — u(x). Since, by (A6), u represents
;> we have u(w) > u(x), so there exists an mg € N such that u(w) > u(wp,) > u(x). Then
(y,8) > (w, 1) > (wp,, 1), and it follows from (A3) that w,,, ¢ A, a contradiction. Since 77 is
complete, we thus obtain (x, 1)2-(y, s). However, if (x,7) > (y,s), then there exists a z € X
such that (x, ) > (z,1) > (y, s) by Claim 1, and this contradicts the fact that u(x) = inf u(A).
Therefore, (x, t) ~ (y, s), which settles the existence part of the claim.

To see the uniqueness part, notice that if (x, r) ~ (y, s) and (x, t) ~ (y, s) forsome x, x" € X,
then (A3) and (A6) entail that neither x” > x nor x > x’ canhold. [

Claim 3. Foranyt>0and x,y € X with y > x, there exists an s >t such that (x,t) ~ (y, s).

Proof. Obviously, we can restrict attention to the case where y > x. Let A := {r>0 :
(x,1)=(y,r)}, and note that A # ¢ by (Al). Define s := inf A. By upper semicontinuity of
7, Ais closed, and hence (x, )7 (y, s). Moreover, if we had (x, ) > (v, s), lower semicontinuity
of 7~ would entail the existence of some r < s with (x,7) > (y,r), which is impossible by
definition of s. It follows that (x, ) ~ (y, s). By (A3) and the fact that y >¢ x, we must have
s>t. O
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For any s, 1 >0, we define the self-map y, , : X — X by the statement
3s8) ~ (s (), 1),y €X.

By Claim 2, y , is well-defined for any s, # > 0. The following two claims report further properties
of these self-maps.

Claim 4. y, , is a bijection and ,{:,1 = s foranys,t>0.
Proof. Apply Claim 2 and the definitions of z, , and 7, ;. [

Claim S. For any increasing u € Hom(X, R), the map (s, t,y) > u(y,(y)) is continuous,
decreasing in s, increasing in t, and strictly increasing in y.

Proof. Define H : Ri xX — Rby H(s,t, y) := u(y, ,(y)). To see that H is decreasing in its first
component, take any y € X and 7 >0. If 51 > 52 >0, since (y, s1) ~ (%,.,(¥), 1), then (A3) gives
Lspt (), 1) ~ (y, sz)z(xsl (), ). Applying (A3) and (A6), we then find y,, ,(v) = %;, ,(¥), and
hence H(s2,1,y) = u(ys, ,(¥)) Zu(ys, (v)) = H(s1,1,y). By Claim 4, this also implies that
H is increasing in its second component. Finally, fix any s, r >0, and take any z, y € X with
z > y. Suppose y,,(¥) =1, () is true. Then applying (A3) and (A6) (along with the fact that
(15.0(2), 1) ~ (z,5)) yields (xs‘,(y), 1)7-(z, s). But, again by (A3) and (A6) (along with the fact
that (y,s) ~ (%,.,(¥), 1)), we have (z,s5) > (x;,(»), 1), contradiction. It follows that we must
have y, ,(z) > 7,,(y), and hence H (s, t,z) > H(s, 1, y).

To establish that H is continuous, let (s,,) and (7,,) be any non-negative real sequences with
finite limits s and ¢, respectively, and let (y,,) be any real sequence with finite limit y. Since ()
must be a bounded sequence, r, := inf r,,, and r* := supry,, are finite numbers, r = s, t. More-
over, Y := {y, y1, y2, ...} is a compact set, so by Weierstrass’ Theorem, y, := minu(Y) € R
and y* := maxu(Y) € R. By the monotonicity properties of H that we established above,
we have H (sg, t*, y*) > H (s;, ty, ym) = H(s*, 4, y) for all m. Then, since X is an interval,
o = limsup H (Sp, t, Ym) € [H (4, t*, ¥*), H(s*, 1., y+)] € X. Clearly, there exists a strictly
increasing sequence () of natural numbers such that H (s, , tm;, ym,) — o Letz := u N
and zx i= u” (H (Smy g Ym)) = X,y s, Omy) forall k = 1,2,... . Since u~" is contin-
uous, then, zx — z, so (zk, tm,) — (z,t) as k — oo. We also have (yu,, Sm,) — (v, s) and
Vmgs Smy) ~ (k. tm,) as k — oo. By continuity of - it then follows that (y, s) ~ (z, ), that
is, by Claim 2, z = y, ,(y) = uY(H, 1, v)). That is, lim sup H (S, tn, Ym) = o = H(s, t, y).
Since one can similarly show that liminf H (s;,, ty,, ym) = H(s,t,y), we conclude that H is
continuous. [

From now on we will work with a fixed increasing u € Hom(X, R). Of course, by (A6), this
function represents 7. For any s, 7 >0, we define

. -1
Ssp i =uoy ,ou .

Claim 6. f;; € Hom(R) and fsftl = fi.s foranys,t >0. Moreover, ift > s >0, then f;; >idR.

Proof. Fix any s,¢>0. That f;, is a continuous bijection is immediate from Claims 4 and 5.
Moreover, by Claim 4,

—1 N -1 _
Jfor =uoys,ou =uoyou = frs,



E.A. Ok, Y. Masatlioglu / Journal of Economic Theory 137 (2007) 214-245 237

so since f; s is continuous, f5,; € Hom(R). Moreover, Claim 4 implies that y, , = idx for any
t20,s0by Claim 5, f;, > f;; =idr. O

Now define
Ii={(s,1) € R} : g, # idx}),

and note that (t,7) ¢ I for any r >0. If I' = #, then the proof is completed by letting U := e
and 77 := 1, so we assume in what follows that I’ # . Observe that if (x,s) ~ (x,t) for
some x € X and s, >0, then (A4) and (A6) ensure that (z,s) ~ (z,t) for all z € X, that is,
(s,1) ¢ I'. (Indeed, we have (z,s) ~ (x;,(2),1), (x,5) ~ (x,1) and (x,5) ~ (x,s5), s0 (Ad)
entails (z, s) ~ (x,(2), 5), 80 z = 1, ,(2) by (A6).) It follows that:

I'={(s,1) € R} : Fix(y,,) = 4}, (A.12)
and hence

F =A{fs1:(s,t) e} S {f € Hom(R) : Fix(f) = 0}
by Claim 6. We shall demonstrate below that F satisfies the other requirements of Theorem A as
well. We need the following auxiliary observation for that purpose.
Claim 7. Foranyx,y,z,w € X and s1,52,t1,to € T, if

(x, 1) ~ (¥, s1)
and (w, ) ~ (v, s2) then (z,1) ~ (x, 52).
(z, 11) ~ (w, s1)

Proof. Without loss of generality, let w > y, and use Claim 3 to find an s >0 such that (y, s1) ~
(w, s). Applying (AS), then, we find (x, s;) ~ (z,s). Combining these observations with the
hypothesis that (y, s2) ~ (w, t2) and (A4), then, we obtain (x, s2) ~ (z, 7). U

Fix an arbitrary (s*, t*) € I" with s* < ¢*, and define

g = forrx.

By Claim 6, g >idp, so since (s*, t*) € I', we must have g > idp.
Now take any (s, 1), (s2,72) € I', and any y € X. Let w = y,, ,,(¥), 2 := ), 4 (w) and
X := %5, .1 (¥). Then by definition of y, ,, and Claim 7, we have

Asi,t (st,[2 ) = sy, (w)y=z= syt (x) = st (XSIJI ).

Since y is arbitrary in X, this shows that y,, , and y, ,, commute, and it follows easily from this
observation that so do f, ;, and f;, ,,. Since (s, #1) and (s2, #2) are arbitrary in I', it follows that
(F) must be an Abelian group.

We will next show that if f € (F) and Fix(f) # ¥, then f = idg. To this end, we need to
introduce some further terminology. Let n € {2, 3, ...}, and denote the generic element of Ri”
by (si, ;)}_,. For any x € X, we say that (s;, #;)_, is an x-cycle if there exist y1, ..., y,—1 € X
such that

(.X, tl) ~ ()’1751)» (yla t2) ~ ()’2’52)a M) (yn—la tn) ~ (-xasn)'
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Claim 8. Foranyn € {2,3,...}andx € X, if (s;, t;)!_, is anx-cycle, then (s;, ;)7_, is a z-cycle
forany z € X.

Proof. Take any z € X, n>2, and an x-cycle (s;, #;)!_,. By applying Claim 2 n times we find
wi, ..., w, € X such that

(z,t1) ~ (wi, 51), (W1, 12) ~ (W2, 82), - . ., (Wy—1, n) ~ (Wy, Sn).

By Claim 3, there exist s, t >0, (x, ) ~ (z, s). Then Claim 7 implies (y1, t) ~ (w1, s). Applying
Claim 7 one more time, we then get (y2,7) ~ (wa, s). Proceeding inductively, therefore, we
obtain (x,#) ~ (wp,s). Since (x, 1) ~ (z,s), Claim 2 then gives z = wy, 50 (s;, ;)}_; is a
z-cycle. O

Now take any f € (F). By definition, there exist ann € N and (s, #1), ..., (s,, t,) € I such
that f = f5,., 00 fs,.1,- If n = 1, then Fix(f) = ¥ by definition of F. If n>2 and a = f(a)
for some real a, then

-1
a= (u O Ysyty O O Asyuty OU ) (a),

so letting x := u~!(a) € X, we then get x = (Xsl,tl 0---0 Xsn,tn) (x). But by Claim 8, this
implies that z, , ooy, , = idy, so it follows that f = u oidy o u™' = idg. That is, the
only member of (F) that has a fixed point is Idg.

Finally, take an arbitrary real number, say 0, and let x := u~'(0). Forany b € R, let y :=
u~1(b), and observe that, by (A1), there exist (s, ¢) € I' such that y ,(y) = x. Butthen f; ,(0) =
u(;(”(u’l (0))) = b. Since b is an arbitrary real number here, it follows that ( J{f(0) : f € F} =
R\{0}, and hence Q r(a) :=J{f(0): f € (F)} =R.

We have verified that F satisfies all requirements of Theorem A. Define ¢ : I' — R by
(s, 1) = vg(fs,r), where v, is defined as in Theorem A. By this theorem, ¢(s, ) # 0 for all
(s, 1) € I', and there exists a continuous bijection F : R — R such that

F(fs:(a)) — F(a) = @(s,t) forall (a,(s,1)) e RxT. (A.13)

Claim 9. Forany (s,t) € I', we have
@(s,t) =—q@(t,s) and (s —1t)p(s,t) <O.

Proof. Let (s, ) € I', and take any a € R. By (A.13) and Claim 6, we have

F(fsi(a)) — F(a) = (s, 1)
= F(fo.:(fi @) = F(f;; (@)
= F(a) — F(fi,5(a))
=—q(t,s).
To prove the second claim, assume that s > ¢. Then we have g > idgr > f;;, so for any

(m,n) € Zy x N we have g" > idg > f{;. Thus by the first part of Theorem A, we have
@(s, 1) = vg(fs,1) <0, as we sought. [

Take any a € R and let b := g(a). By Claim 9, we have F(b) = F(a) + @(s*,t*) > F(a).
Since g > idg, we have b > a, so it follows that F cannot be strictly decreasing. Since F is
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bijective, therefore, it must be strictly increasing. We now define V : X — Rby V := F ou, and
extend ¢ to Rf_ by setting ¢| R2\I °= 0. It will be shown next that V and ¢ satisfy the requirements
made of them in Theorem 1.

Because F is continuous, surjective and strictly increasing, V is a continuous bijection that
represents 7. Since any such function on a real interval has a continuous inverse, we also have
V € Hom(X, R). Moreover, since f; ; = idg forall # > 0 by Claim 4, we have, for any fixeda € R,
@(s,t) = F(fs:(a)) — F(a) for all s, ¢ >0. Since F is continuous and strictly increasing, Claim
5 and the definition of f; ; immediately show that ¢ is a continuous function which is decreasing
in its first component and is continuous. Moreover, by Claim 9, we have ¢(s, ) = —¢(¢, s) for
all s, ¢t >0.

Now define U := ¢" and # := ¢?. Obviously, U € Hom(X, R, ) and 7 : [Rﬁ_ — Riyisa
continuous function that satisfies (i) and (ii) of Theorem 1. To verify (4), take any (x, t), (v, s) €
X x Ry. Clearly, (x, 1) > (~)(y, s) holds if and only if (x, ) > (~)(y,s) ~ (%,.,(¥), ). Thus,
by completeness of -, (A3), we have

-

(x, 1) (v,s) iff (x, 1) { - } (s ). D)

~

Since U represents =, = 7Z,, we thus have

~0 = Ao
p- . U(x) > U(Xs,t(y))
O~ J0 { - } U
Butif a := V(y), then by (A.13),
Ut () ~
U exp (V (2. () = V()
=exp (F(V (1, (V™ @) = F(V()
=exp (F(fs.i(a)) — F(a))
=exp ¢(s, 1)
=n(s, 1)
provided that (s, t) € I'. If, on the other hand, (s, #) ¢ T, then Ls. = idx, so
% =exp (V1 (0) — V() =1 =exp (s, 1) = (s, 1).

Combining these observations, we conclude that

U%y,;(y» = (s, t) foral s, 7 >0, and hence

»)

(x, 1) { - } (y.s) iffU) { - }n(s,t)U(y),

which establishes (4).

It remains to prove that 5(oo, t) = 0 for any ¢ >0. To this end, fix any # >0 and choose any
¢ > 0. Now let x :== U '(¢) and y := U~!(1), and apply (A1) to find an s >0 such that
(x, )z (v, s), thatis, e = U (x) =n(s, 1)U (y) = n(s, t). Since ¢ > 0 is arbitrary here, and 7(-, t)
is decreasing, we must have lim;_, o, 7(s, ) = 0, as we sought.

[«<] Assume that 7 is a binary relation on X’ such that there exist an increasing U € Hom(X,
R44+) and a continuous map # : [Rﬁ_ — R4+ such that (4) holds for all (x, t) and (y, s) in X, and 5§
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satisfies properties (i)—(ii) asserted in Theorem 1. It is obvious that - is complete and continuous.
On the other hand, by property (ii), we have 5(z, t) = 1, so by (4), U represents -, for all # >0.
Thus, - is a time preference on X'. Given (4), ~ satisfies (A4) and (A5) obviously, (A1) because
n is surjective, (A2) because U is surjective, (A3) and (A6) because U is strictly increasing and 5
satisfies (i) and (ii).

A.4. Proof of Proposition 1

“If” part is trivial, so we focus only on the “only if” part of the claim. Let 7~ be a time
preference on X, which is represented by both (U, 1) and (V, {). Clearly, both U and V are
homeomorphisms on X that represent 7, so there exists a strictly increasing f € Hom(Ri1)
suchthat V. = foU.Forany y € X and s, r >0, by surjectivity of U, there exists an x € X such
that U (x) = y(s, 1)U (y). Since (x, 1) ~ (y, 5), this implies also that f (U (x)) = {(s, 1) f (U (y)).
Therefore,

FGs, DU ) =Ls, 1) f(U(y)) forally € X and s,720. (A.14)
Choosing y := U~ '(1) and letting b := f(1) > 0, we then have

f(s, 1) =bl(s,t) foralls,r>0. (A.15)
Letting g := f/b and using this observation in (A.14),

fs,HU(y)) = gn(s, 1)) f(U(y)) forally € X ands,t>0.

Conditions (i) and (ii) guarantee that 7 is surjective. Thus, dividing both sides of the above equation
by b, and using the surjectivity of 1 and U, we find that g(mn) = g(m)g(n) for all m,n > 0,
that is, g satisfies the multiplicative Cauchy functional equation on Ry . Then, given that g is
strictly increasing, there must exist an a > 0 such that g(«) = a for all & > 0. Therefore, since
V = foU,wehave V = bU’. Moreover, it follows from (15) that { = n“.

A.5. Proofs of Corollaries 1-5

In any one of the Corollaries 1-5, the non-trivial part of the assertion concerns the “only if”
part, so we focus on this part alone.

Proof of Corollary 1. Apply Theorem 1 to find a (U, #) that represents 7, (with U being increas-
ing). Define D : Ry — (0, 1] by D(k) := n(k, 0). Then, by continuity of # and conditions (i)
and (ii) of Theorem 1, D is decreasing, continuous, D(0) = 1 and D(oo) = 0. Finally, by (5) and
(i1) of Theorem 1, we have 7(s, t) = n(s, 0)n(0,t) = D(s)/D(¢) for all s, >0, so (6) follows
from (4) for all (x, 1), (y,s) €e X. O

Poof of Corollary 2. Apply Theorem 1 to find a (U, 1) that represents 2~ (with U being increas-
ing). Define { : R — R4 as {(k) := n(k, 0) if k>0, and {(k) := n(0, —k) if k < 0. Then { is
continuous, decreasing, {(co) = 0, and {(¢t) = 1/{(—t) for all # >0, because # is continuous and
satisfies conditions (i)—(ii) of Theorem 1. Finally, (7) follows from (4) and stationarity of . [J

Proof of Corollary 3. Let U and D be as found by Corollary 1. By stationarity of -, we have
D(t)/D(s) = D(t — 5)/D(0) for all r >s >0. Changing variables and recalling that D(0) = 1,
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we find D(r +s) = D(r)D(s) for all r, s >0. Since D is continuous, by a well-known theorem
of Cauchy, there must then exist a 6 € R such that D(r) = & for all +>0. Since D >0 and
D(o0) =0,wehave 0 <0 < 1. [

Proof of Corollary 4. Straightforward. [J

Proof of Corollary 5. Apply Theorem 1 on the outcome space (x4, x*) to find an increasing
homeomorphism U : (x4, x*) — R4 and a continuous map # : Ri — R4+ such that (4) and
(1) and (ii) of Theorem 1 hold for all x, y € X\{x,} and s, r > 0. We next extend U to X by setting
U (x4) := 0. All we need to show is that (4) holds when x, € {x, y}. In turn, to establish this, it
is enough to show that x,. satisfies (9).

Fix any s, t € [0, 00). To derive a contradiction, assume first that (x,, s) > (x, t). Since, by
(A2), there exists a y € X\{x,} such that (x.,7)7Z(y, s), (A3) yields in this case that x,=,y,
which contradicts (A6) since 7o, = 27 and y > x,. Therefore, we have (x4, 1) ~ (x4, s) as is
sought. The proof of the second claim in (9) is similar. Indeed, if (x., s)2Z(x, f), then (A3), (A6)
and the fact that x > x, imply (x4, s) > (x4, t), which contradicts the first part of (9). U

A.6. Proof of Theorem 2

The proof of the “if”” part of this result is identical to that of the “if”” part of Theorem 1, while
the proof of the uniqueness claim is identical to that of Proposition 1. We will thus only prove here
the “only if” part. To this end, let us fix the numbers —co<a; < b; <oo,i = 1,...,n, and let
X := (a1, b1) x -+ X (ay, by). In what follows 2~ stands for a time preference on X that satisfies
(A1)—-(AS).

Claim 10. There exists a strictly increasing and continuous surjection w : X — Ry that
represents . Moreover, w™ admits a continuous selection f (that is, a continuous map f
Riy — X with f(w) € w™ ) for all » > 0).

Proof. By using the Debreu Representation Theorem one can show that there exists a continuous
surjectionw : X — R, thatrepresents 7=,. 22 Foreachi = 1, ..., n, take any strictly increasing
sequence (a; ) in (a;, (@; + b;)/2) such that a; ,, — a;. Similarly, for each i, take any strictly
decreasing sequence (b; ;) in ((a; + b;)/2, b;) such that b; ,, — b;. Let

ay = @ims---sanm) and by =01 m,....0pm), m=1,2,....
We define f] : [w(a;), w(b;)] — X by the equation
{fi(@)} = cofar, bi} Nw™ (o).
Since w is a strictly increasing and continuous surjection, a straightforward argument based

on the Intermediate Value Theorem shows that f is well-defined and continuous. Now define

22 By the Debreu Representation Theorem, there exists a continuous map v : X — R that represents /(. Since X is open,
v must be strictly increasing, and neither o := inf v(X) nor f := sup v(X) belongs to v(X). We define w : X — Ryt
v(x)—o

by w(x) = = ifo, f € R, by w(x) := ﬁ ifo = —ocoand ff € R, by w(x) :=v(x) —aifx € Rand ff = oo,

and by w(x) = e*®) otherwise.
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f> : [w(az), w(by)] — X by the equation

co{az,a;} N w N w) ifw@) <o < w),
{f2(0)} == 1 {fi(w)} if w(a;) <o<w(by),
co{by, b2} N w_l(a)) if wp) < w<w(by).

It is again easily checked that f> is well-defined and continuous. Proceeding this way inductively,
we obtain a sequence ( f;,) such that, foreachm = 1,2, ...,

1) fm : [w(am), w(b,)] — X is a continuous function;
(i1) fin+1 1s an extension of f,;;
(iii) fu(®) € w™(w) for all w(a,) <w<w(by,).

To complete the proof, define f : R4+ — X by
f(w) := fu(w) forany m € N such that w(a,,) <o <w(by,).

Since w is strictly increasing, the choice of (a,,) and (b,,) warrants that lim w(a,,) = inf w(X) =
0,andlim w(b,,) = sup w(X) = oo. Thus, by continuity of w, we have (lim w(a,,), lim w(b,,)) =
R4. Consequently, (ii) guarantees that f is well-defined. Moreover, by (i), f is a continuous
function. Finally, (iii) ensures that fis a selection from the correspondence w~!. [J

Let w and f'be as found in Claim 10, and define the binary relation &> on R4 x [0, c0) as

(a, Db, s) iff (f(a),DZ(f (D), s).

It is obvious that B> is complete, I>( is complete and transitive, and > = >, for each 7. Moreover,
continuity of fimplies that of >, and hence > is a time preference on R4 x [0, 00). One can
also check easily that > satisfies (A1)—(A6). By Theorem 1, therefore, there exists an increasing
V € Hom(R44) and a continuous map 7 : [R{i — Ry such that

(a,t)>(b,s) iff V(a)=n(s,t)V(b)

foralla, b > 0and s, r >0, and conditions (i) and (ii) of Theorem 2 hold. Since, forany x, y € X,
we have f(w(x)) ~o x and f(w(y)) ~o ¥, an easy application of (A3) yields

(e, D2y, s) i (f(wx), DE(f (W), )
for all s, t >0. But

(f (w@), DE(f(w(y)), s) iff (wx), HE(w(y), s) iff V(w(x)) Zn(s, )V (w(y)),
so, by letting U := V o w, we find (x, 1)75(y, s) iff U(x)=n(s,t)U(y) for all x,y € X and
s,t>0. Since U is a strictly increasing and continuous surjection from X onto R4, we are done.

A.7. Proof of Theorem 3

The proof of the “if” part of this result is easy, so we focus only on the “only if” part. Let =~ be
a time preference on X that satisfies (A1)—(A4) and (A6), and adopt the notation of the proof of
Theorem 1. We shall need the following auxiliary fact in the subsequent arguments.

Claim 11. f;, is a strictly increasing surjection for any s, t >0. Moreover, if f (a) = fy v (a)
forsomea € Rand s, s’ t,t' >0, then fs; = fy ..
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Proof. For any 5,720, Claim 5 entails that y, , is strictly increasing, and hence f;, must be
a strictly increasing surjection (Claim 6). To prove the second assertion assume that f;;(a) =
b = fy.(a) for some a,b € Rands,s’,t,¢'>0. Let y := u~'(a) and x := u~'(b). Then,
u(ys,(y)) = ux) = u(yy (y)), thatis, (y,s) ~ (x, ) and (y, s") ~ (x,t). Since, for any
z € X we have (z, 5) ~ (1, (2)., 1), therefore, (A4) entails (z, s") ~ (x,(z), 1), thatis, y, ,(z) =
s (2) by (A3). Hence, u(y ,(2)) = u(yy p(z)) for all z € X, and the claim follows from the
fact that u is an injection. [J

Define 7 : Ri — R4y as
n(s,t) :=e* foranya € R with f;,(—a) = a.

The first part of Claim 11 ensures that, for any s, r >0, the graph of f; ; intersects the inverse
diagonal {(—a, a) : a € R} exactly once. Thus # is well-defined. Moreover, for any s, >0, if
n(s,t) = e%, then —a = fg,l (a) = frs(a), son(t,s) = e * = 1/n(s,t). Now fix any ¢ >0.
(A3) ensures that 7(-, t) is decreasing. To show that 7(oco, t) = 0, take any @ < 0, and define
x 1= u"'(a) and y := u~'(—a). By Claim 3, there exists an s, >0 such that (x, 1) ~ (v, s4).
Thus y,, ,(y) = x, and hence, f(—a) = u(y,, ,(y)) = u(x) = a, thatis, n(sq, 1) = e“. Since
a is an arbitrary negative number here, it follows that 77(co, #) = 0. (This also shows that  is
surjective.)
Next, define F : R> — R, as

F(a, ) :=n(s,t) foranys,t>0 with f; ¢(o) = p.

The second part of Claim 11 readily establishes that F is well-defined. Moreover, surjectivity of
n readily ensures that F (-, f§) is surjective for any € R. Finally, for any «, f € R, F(o, f) =
(s, t) implies f; s(o) = f sothat f; () = a (because ft’_s1 = fs.1), and we thus have F(f§, o) =
n(t, s) = 1/n(s, 1) = 1/F (o, p).

Now fix any (x, #) and (y, s) in X. If (x, #) ~ (¥, 5), then y, ,(x) = y and hence f; ;(u(x)) =
u(y), that is, F(u(x), u(y)) = n(s, t). Now suppose (x,t) > (y,s), and let F(u(x), u(y)) =
n(s’, ") which means y = y,, /(x) by definition of F. Let z := y,,(y) so that y = y, ((z) and
F(u(z), u(y)) = n(s, t). Since (x, 1) > (y,s) ~ (z,1), (A3) implies that x > z and since y;
is strictly increasing, we have y, (x) =y =z, ,(2) < y; 4(x). It follows from (the proof of)
the second part of Claim 11, therefore, fy ¢ < f; s, thatis, fy, > fs:. We now claim that
n(s’, 1) > n(s, t). If this was not the case, then there would exist real numbers a > b such that
a = fs;(—a)and b = fy y(—b), and since fy ;s is increasing and fyr ;» > f;,;, we would obtain

b= fs’,t’(—b)>fs’,t’(—a) > fs,l(_a) =a,

a contradiction. Thus, F(u(x), u(y)) = n(s’, t') > n(s, t), as we sought. Conversely, if F(u(x),
u(y)) =n(s, t) but (y, s) > (x, ), then, by what is just established, we get

1 1
Fa). 20)) Fu(y), u(x)) > n(t,s) .
contradicting F (u(x), u(y)) >n(s, t). Thus, we conclude that (10) holds for all x,y € X and
s, t >0. In turn, it follows from this representation and (A3) that F (-, ) is strictly increasing and
n(-, t) is decreasing for all § € R and ¢ >0.
It remains to show that both # and F are continuous functions. We shall do this only for 5
as the argument for F is analogous. Take any convergent sequences (s,) and (#,) in R4, and
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let s := lims,, and ¢ := lim¢,. By definition of 7, there exists a real sequence (a,) such
that fs, ;. (—am) = ap and y(sy, t,) = e for each m. Define x,, := u_l(—am) and y,, =
u! (am) so that (x,,, ty) ~ (Ym, Sm) for each m. Now let @ := lim sup a,,,, and assume, to get a
contradiction, a = oo. In this case there exists a subsequence (a,,, ) of (a,) that diverges to oo.
Notice that

(xmk» t*)i(xmk, tmk) ~ (ymk» smk)/-é(yn”;a S*)a k=1,2,...,

where t, := inf{t,, :m = 1,2, ...} and s* := sup{s,, : m = 1,2, ...}. Now take any x € X, and
use Claim 2 to find a y € X such that (x, t,) ~ (v, s*). Then, if k is large enough to guarantee that
—ap, < u(x)and a,, > u(y), we have (X, ts+) < (¥m,,s*) by (A3), contradiction. A similar
argument establishes that ¢ = —oo is impossible, so a is a real number. But then, by Claim 5 and
continuity of u,

(m)) = u(iy (™ (@) = fyi(@).

a = lima;,, = lim frmk,tmk (—am) = Hmu(%smk,tmk
Thus lim sup (s, t,) = e* = n(s, t). Since one can similarly show that liminf n(s,, t,,) =
n(s, t), we conclude that # is continuous.
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