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Limited Attention

B So many options

B People do not pay attention to all products
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Consideration Set

Marketing, Finance and Psychology Literatures: Howard and Sheth 1969, Wright
and Barbour 1977, Hauser and Wernerfelt 1990, Nedungadi 1990, Alba et al. 1991,
Roberts and Lattin 1991, Shocker et al. 1991, Roberts and Nedungadi 1995, Chiang et
al 1999, Punj and Brookes 2001, Swait et al. 2002, Goeree 2008, and many more.

Consideration Set

The consideration set is made up of products that are taken seriously by the consumer
in his or her purchase decision.
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Limited Attention

B Two-stage Choice

Choice

Consideration
            Set

Choice
   Set

Choice

Choice
   Set

Masatlioglu, Nakajima, and Ozbay (2012), and many...
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Random Attention

Choice

Consideration
            Sets

Choice
   Set
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Random Attention

Choice

Consideration
            Sets

Choice
   Set

Model:

Consumer is able to rank options,

Consumer chooses the best option in his consideration set,

Randomness in choices comes from random attention,

Stochastic Choice Monotonic Attention RAM Identification Inference Estimation 5/58



Domain and Data

Domain
• X = {a1, a2, . . . , aK}: finite and abstract,

Data
• π(ak|S): the probability that ak is chosen from S ⊂ X,

π(ak|S) ≥ 0 for all ak ∈ S∑
ak∈S

π(ak|S) = 1
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Random Attention

Choice

Consideration
            Sets

Choice
   Set

µ(T |S): frequency of considering T when the feasible set is S

µ(T |S) ≥ 0 for all T ⊂ S∑
T⊂S

µ(T |S) = 1
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Random Attention: Examples

Full Attention

T : Consideration Sets
{a1, a2, a3} {a1, a2} {a1, a3} {a2, a3} {a1} {a2} {a3}

S

{a1, a2, a3} 1 0 0 0 0 0 0
{a1, a2} 1 0 0
{a1, a3} 1 0 0
{a2, a3} 1 0 0
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Random Attention: Examples

Deterministic Attention

T : Consideration Sets
{a1, a2, a3} {a1, a2} {a1, a3} {a2, a3} {a1} {a2} {a3}

S

{a1, a2, a3} 0 1 0 0 0 0 0
{a1, a2} 1 0 0
{a1, a3} 0 0 1
{a2, a3} 0 1 0

Stochastic Choice Monotonic Attention RAM Identification Inference Estimation 9/58



Random Attention: Examples

Non-Deterministic Attention

T : Consideration Sets
{a1, a2, a3} {a1, a2} {a1, a3} {a2, a3} {a1} {a2} {a3}

S

{a1, a2, a3} 0 0.5 0 0 0.5 0 0
{a1, a2} 1 0 0
{a1, a3} 0 0.6 0.4
{a2, a3} 0.4 0.3 0.3
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Stochastic Choice

Choice

Consideration
            Sets

Choice
   Set

π(ak|S) =
∑
T⊂S,

ak is �-best in T

µ(T |S)

Unobservables

• � - complete and transitive
• µ - ???????
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Attention Filter

Masatlioglu, et al (2012): Deterministic Attention

Consideration set is unchanged when an alternative to which consumer does not

pay attention becomes unavailable.

ak 6∈ Γ(S) ⇒ Γ(S) = Γ(S − ak)

What is the corresponding condition for µ?
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Attention Filter

ak 6∈ Γ(S) ⇒ Γ(S) = Γ(S − ak)

Assume Γ({a1, a2, a3}) = {a1, a2}

µ(T |S) {a1, a2, a3} {a1, a2} {a1, a3} {a2, a3} {a1} {a2} {a3}
{a1, a2, a3} 0 1 0 0 0 0 0
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Attention Filter

ak 6∈ Γ(S) ⇒ Γ(S) = Γ(S − ak)

Assume Γ({a1, a2, a3}) = {a1, a2}
By the property, Γ({a1, a2}) = {a1, a2} (since a3 /∈ Γ({a1, a2, a3}))

µ(T |S) {a1, a2, a3} {a1, a2} {a1, a3} {a2, a3} {a1} {a2} {a3}
{a1, a2, a3} 0 1 0 0 0 0 0
{a1, a2} 1 0 0
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Monotonic Attention

Monotonic Attention:

µ(T |S) ≤ µ(T |S − ak)
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Monotonic Attention

Monotonic Attention:

µ(T |S) ≤ µ(T |S − ak)

ak 6∈ Γ(S) ⇒ Γ(S) = Γ(S − ak)
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Monotonic Attention

Monotonic Attention: µ(T |S) ≤ µ(T |S − ak)

For example, “Uniform Attention”

µ(T |S) {a1, a2, a3} {a1, a2} {a1, a3} {a2, a3} {a1} {a2} {a3}
{a1, a2, a3} 1/7 1/7 1/7 1/7 1/7 1/7 1/7
{a1, a2} 1/3 1/3 1/3
{a1, a3} 1/3 1/3 1/3
{a2, a3} 1/3 1/3 1/3

Does µ satisfy monotonicity?
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Monotonic Attention

Monotonic Attention: µ(T |S) ≤ µ(T |S − ak)

µ(T |S) {a1, a2, a3} {a1, a2} {a1, a3} {a2, a3} {a1} {a2} {a3}
{a1, a2, a3} 1/7 1/7 1/7 1/7 1/7 1/7 1/7
{a1, a2} 1/3 1/3 1/3
{a1, a3} 1/3 1/3 1/3
{a2, a3} 1/3 1/3 1/3
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Monotonic Attention

Monotonic Attention: µ(T |S) ≤ µ(T |S − ak)

µ(T |S) {a1, a2, a3} {a1, a2} {a1, a3} {a2, a3} {a1} {a2} {a3}
{a1, a2, a3} 1/7 1/7 1/7 1/7 1/7 1/7 1/7
{a1, a2} 1/3 1/3 1/3
{a1, a3} 1/3 1/3 1/3
{a2, a3} 1/3 1/3 1/3

YES, µ is monotonic.

More examples coming...
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Random Attention Model (RAM)

Choice

Consideration
            Sets

Choice
   Set

π(ak|S) =
∑
T⊂S,

ak is �-best in T

µ(T |S)

� - complete and transitive

µ - monotonic
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Random Attention Model (RAM)

RAM accommodates well-documented and seemingly anomalous behaviors.
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Attraction Effect

Probabilistic Attraction Effect
• a1 and a2 are equally chosen in a binary comparison,
• a3 is a decoy for a1,

π(a|S) {a1, a2, a3} {a1, a2} {a1, a3} {a2, a3}
a1 1 1/2 1
a2 0 1/2 1
a3 0 0 0

π(a1|X) > π(a1|X − a3)
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Violation of Regularity

Random Attention Model allows

π(ak|S) > π(ak|S − al)

• Removing an alternative can decrease the choice probability
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Prediction Power

Is the model too general?

The random attention model can be falsified.

• For example, the following π is outside of the model.

π(a|S) {a1, a2, a3} {a1, a2} {a1, a3} {a2, a3}
a1 1/3 1 0
a2 1/3 0 1
a3 1/3 1 0
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RUM vs RAM

Random Utility satisfies Regularity

RAM is more general
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Richness of Model

To illustrate the richness of model, we provide some examples which satisfy
monotonicity.
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Examples

. Fixed Independent Consideration (MM, 2014): Consider a
decision maker who pays attention to each alternative with a fixed
probability γ.
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Examples

. Logit Attention: (BR, 2017) Consider a decision maker who assigns a
positive weight, wD, for each non-empty subset of X.

µ(T |S) =
wT∑

T ′⊂S
wT ′

Psychologically wT measures the strength associated with the subset T .

Stochastic Choice Monotonic Attention RAM Identification Inference Estimation 28/58



Revealed Preference

How can we deduce preferences under random attention?

However, richness does not help us much
• More degree of freedom
• Allowing many possibilities
• Less revelations
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Multiple Representations

Multiple Representations

(�1, µ1), (�2, µ2), (�3, µ3), . . . , (�n, µn)

Definition

ak is revealed to be preferred to al if �i ranks ak above al for all i.
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Revealed Preference

Finding all possible representations
• hard and cumbersome

Need to look for a short-cut
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Revealed Preference

Observation: π(ak|S) > π(ak|S − al) implies “ak is better than al”
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Revealed Preference

PROOF:

π(ak|S) =
∑
T⊂S,

ak is �-best in T

µ(T |S)

=
∑

al∈T⊂S,
ak is �-best in T

µ(T |S) +
∑

al /∈T⊂S,
ak is �-best in T

µ(T |S)

≤
∑

al∈T⊂S,
ak is �-best in T

µ(T |S) +
∑

al /∈T⊂S,
ak is �-best in T

µ(T |S − al) (by monotonicity)

≤
∑

al∈T⊂S,
ak is �-best in T

µ(T |S) + π(ak|S − al)
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Revealed Preference

PROOF continues...

π(ak|S)− π(ak|S − al) ≤
∑

al∈T⊂S,
ak is �-best in T

µ(T |S)

If π(ak|S)− π(ak|S − al) > 0 then there exists at least one T such that

al ∈ T
ak is �-best in T

µ(T |S) 6= 0

Hence, ak is revealed to be preferred to al. DONE
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Revealed Preference

Assume π(ak|S) > π(ak|S − al) and π(al|S′) > p(al|S′ − am)

• Directly, “ak is better than al” and “al is better than am”

• Indirectly, “ak is better than am”
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Revealed Preference

akPal if π(ak|S) > π(ak|S − al)

Let P̄ be the transitive closure of P

akP̄al implies “ak is better than al”
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Revealed Preference

While P̄ informs us about preference, do we miss some revelation?

Theorem (Revealed Preference)

Let π have a RAM representation. Then ak is revealed to be preferred
to al if and only if akP̄al.

P̄ provides all the information we need to know.
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Characterization

Characterization

A stochastic choice π has a RAM representation
iff

P̄ has no cycle.
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Related Literature
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Manzini and Mariotti (2014),

Echenique, Saito, and Tserenjigmid (2014),

Brady and Rehbeck (2016),

Yildiz (2016),

Li and Tang (2016).
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Warp-Up

An rich framework,

Alternative to RUM,

Revealed Preference is a powerful tool,

It can be applied

• both rational and boundedly rational behavior,
• both deterministic and stochastic choice.
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Inference and Estimation
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Data Generating Process

S T a is �-best in T

µ(T |S)

Attention Rule

�

Preference

Choice Problem Consideration Set Choice

π(a|S)

Choice Rule

Observable: choice problem and choice (solid line).
Unobservable: attention rule, consideration set and preference (dashed line).
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Facts

Choice rule π(·|·) is identified (consistently estimable): we observe the
choice problems and choices.

Attention rule µ(·|·) is not identified: we do not observe the consideration
sets.

• Dimension of π(·|S): |S|.

• Dimension of µ(·|S): 2|S| − 1� |S|.

In realistic cases, preference � is partially identified.

Definition (Identified Set Θπ)

Θπ is the collection of preferences such that

π(x|S) =
∑
T⊂S

1(x is �-best in T ) · µ(T |S),

for some µ satisfying monotonicity.
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Outline

1 Identification

2 Inference

3 Estimation
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Identification: Equivalent Form 1

π(x |S) > π(x |S − y) ⇒ x � y.

Hard to implement in practice.

π being estimated makes it more difficult.

Example (Is x � y?)

(1) Check π(x |S) ≤ π(x |S − y) for all S.

(2) Check π(x |S) ≤ π(x |S − z) and π(z |S) ≤ π(z |S − y) for all
z 6= x,y and S.

(3) · · · (Check for even longer “chains”)
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Identification: Equivalent Form 2

U: feasible attention rules, defined by Rµ ≤ 0.

Given �, a mapping from attention rules to choice rules:

C� :
∑
T⊂S

1(k is �-best in T ) · µ(T |S).

Hence �∈ Θπ if and only if π ∈ C�U = {C�µ : Rµ ≤ 0}.

U C�−→ C�U
?
3 π︸ ︷︷ ︸

Testing Problem

A J-test. Alternatively, can show: C�U = {π : R�π ≤ 0}.

• Unclear how to construct R� from C� and U.
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Identification: Equivalent Form 3

We cannot identify µ since

• Consideration sets are not observed.

• µ has much higher dimension than π.

That is, the mapping:

C� :
∑
T⊂S

1(k is �-best in T ) · µ(T |S).

is many-to-one.

Restrict the class of attention rules.

• Forward engineering: test if π ∈ C�U.

• Backward engineering: (1) construct a attention rule (in the restricted class)
from π and �; and (2) test if the monotonicity assumption holds.
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Identification: Equivalent Form 3 (Cont’d)

Example (Triangular Attention Rule)

Take a preference b � c � e � d � a. µ is triangular with respect to � if,
for any menu S, it puts weights only on lower contour sets:{

S ∩ {b, c, e, d, a}, S ∩ {c, e, d, a}, S ∩ {e, d, a}, S ∩ {d, a}, S ∩ {a}
}
.

Construct a unique µ from π. For the previous example,

π(b|S) = µ({b, c, e, d, a}|S), π(c|S) = µ({c, e, d, a}|S), etc.

Theorem (Identification)

The following are equivalent:

(1) �∈ Θπ;

(2) The triangular attention rule constructed from π and � satisfies the
monotonicity assumption.
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Main Identification Result

For each preference �, we can construct a matrix R�, such that �∈ Θπ if
and only if R�π ≤ 0.

R� = RC−1
� :

• C−1
� : maps choice rules back to triangular attention rules.

• R: restrictions imposed by the monotonicity assumption.

Example

Four elements in the grand set X = {a, b, c, d}.

(1) S = {{a, b, c, d}, {b, c, d}}. Then b � d � c � a gives no constraint.
b � d � a � c gives one constraint.

(2) S = {{a, b, c, d}, {b, c, d}, {a, b, c}, {b, c}}. Then b � d � a � c gives ?
constraints.
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How Many Constraints?

Five elements: X = {a, b, c, d, e}.

S Dim. of π Restrictions in R�

{X} 5 0

All subsets of size 5 and 4 25 10

All subsets of size 5, 4 and 3 55 50

All subsets of size 5, 4, 3 and 2 75 105

2X\{∅} 80 131
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Outline

1 Identification

2 Inference

3 Estimation
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Testing H0 : �∈ Θπ

Construct R� = MC−1
�

Data: {(yi, Yi), 1 ≤ i ≤ N}

• i’s choice = yi ∈ Yi = choice problem offered to i.

For each S and each a ∈ S, estimate the choice rule by

π̂(a|S) =

∑N
i=1 1(Yi = S, yi = a)∑N

i=1 1(Yi = S)

Reject H0 if R�π̂ ≤ 0 is violated.

Test statistic: maximum of elements in R�π̂ or 0

T =
√
N max

{
R�π̂, 0

}
.
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Critical Values

We need to approximate the distribution of T :

T = max
{√

NR�π̂, 0
}

= max
{√

NR�(π̂ − π)︸ ︷︷ ︸
Asy. Normal

+
√
NR�π︸ ︷︷ ︸

Unknown, ≤ 0 under H0

, 0
}
.

T ? = max
{
Normal(0, V̂)︸ ︷︷ ︸

Simulate

+
√
N û︸ ︷︷ ︸

Plug-in Something

, 0
}
.

Then reject H0 : �∈ Θπ if T > cα.

cα = inf
{
t : P?[T ? > t] ≤ α

}
.

Stochastic Choice Monotonic Attention RAM Identification Inference Estimation 51/58



Least Favorable Method: û = 0

Motivation: H0 : �∈ Θπ ⇒ R�π ≤ 0, hence replace by the conservative
upper bound 0.

T = max
{√

NR�(π̂ − π)︸ ︷︷ ︸
Asy. Normal

+
√
NR�π︸ ︷︷ ︸

Unknown, ≤ 0 under H0

, 0
}
.

T ?
= max

{
Normal(0, V̂)︸ ︷︷ ︸

Simulate

+ 0︸︷︷︸
Least Favorable

, 0
}
.

�∈ Θπ ⇔ R�π ≤ 0: T ? first order stochastically dominates T

lim
N
P[T > cα] ≤ lim

N
P?[T ? > cα] = α (size control).

�6∈ Θπ ⇔ R�π 6≤ 0: T
p→ +∞ while T ? remains bounded in probability

lim
N
P[T > cα] = 1 (consistency).
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(Don’t!) Plug-in Method: û = (R�π̂)−

(Bad) Motivation: since π is unknown, replace by its estimate π̂.

T = max
{√

NR�(π̂ − π)︸ ︷︷ ︸
Asy. Normal

+
√
NR�π︸ ︷︷ ︸

Unknown, ≤ 0 under H0

, 0
}
.

T ?
= max

{
Normal(0, V̂)︸ ︷︷ ︸

Simulate

+
√
N(R�π̂)−︸ ︷︷ ︸

Plug-in consistent estimate

, 0
}
.

Fails if R�π = 0

• P[
√
N(R�π̂)− � 0]→ c > 0.

• With positive probability, T dominates T ?, hence quantiles computed from
T ? is too small for T .

Also fails if R�π < 0 but close to 0 (relative to the sample size).

• Lack of uniformity: for each sample size N , it is possible to find some DGP
R�π < 0 such that the rejection probability is strictly larger than α.
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Plug-in Method with Shrinkage: û = 1
κN

(R�π̂)−

Motivation: shrink the naive plug-in method by a factor κN
slowly→ ∞.

T = max
{√

NR�(π̂ − π)︸ ︷︷ ︸
Asy. Normal

+
√
NR�π︸ ︷︷ ︸

Unknown, ≤ 0 under H0

, 0
}
.

T ?
= max

{
Normal(0, V̂)︸ ︷︷ ︸

Simulate

+

√
N

κN
(R�π̂)−︸ ︷︷ ︸

Plug-in consistent estimate

, 0
}
.
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Comparison of Three Methods

T = max
{√

NR�(π̂ − π)︸ ︷︷ ︸
Asy. Normal

+
√
NR�π︸ ︷︷ ︸

Unknown, ≤ 0 under H0

, 0
}
.

T ?
= max

{
Normal(0, V̂)︸ ︷︷ ︸

Simulate

+
√
Nû︸ ︷︷ ︸

Plug-in Something

, 0
}
.

�∈ Θπ ⇔ R�π ≤ 0

Least Favorable û = 0 P[T > cα] ≤ α+O

(
1
√
N

)
Plug-in û = (R�π̂)− P[T > cα] ≤ α+O

(
1
√
N

+ 1

)
Shrinkage û =

1

κN
(R�π̂)− P[T > cα] ≤ α+O

(
1
√
N

+
1

κN

)
.

�6∈ Θπ ⇔ R�π 6≤ 0

• (R�π̂)− ≤ 1
κN

(R�π̂)− ≤ 0

• Power (ability to rule out improbable preferences): PI > S > LF.
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Other Methods for Critical Values

Different choices of û are proposed in order to

• Improve power (rule out improbable preferences) relative to the LF method.

• Maintain size control (false rejection when �∈ Θπ).

Review on testing moment inequalities: ? and ?.
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Outline

1 Identification

2 Inference

3 Estimation
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Confidence Set

C(α) is constructed by inverting the test:

C(α) =
{
� : T� ≤ cα,�

}
.

Covers preferences in the identified set Θπ:

lim
N

min
�∈Θπ

P
[
�∈ C(α)

]
≥ 1− α.
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This Paper

Generalizes Masatlioglu Nakajima Ozbay (2012) to accommodate random
attention scenario.

Provides conditions under which the preference is partially identified from
choice data, without observing consideration sets.

Constructs test statistics facilitating estimation and inference:

• Reformulates identification as testing moment inequalities.

There is a large literature on testing moment inequalities and inference in
partially identified models.

Other test statistics and methods for critical values can be easily adapted.

• Provides uniformly valid distributional approximations and critical values.

• Implements in R and Matlab.
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