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Motivation

Many models of salience/attention (List A)
I Gabaix and Laibson [2006]
I Koszegi and Szeidl [2013]
I Bhatia and Golman [2013]
I Bordalo, Gennaioli, and Shleifer [2013]
I Cunningham [2013]
I Gabaix [2014]
I Schwartzstein [2014]
I Bushong, Rabin and Schwartzstein et al. [2015]



Motivation

Bordalo, Gennaioli, and Shleifer [2013] (BGS)
Taylor and Thompson [1982] says

“[S]alience refers to the phenomenon that when one’s
attention is differentially directed to one portion on the
environment rather than to others, the information contained
in that portion will receive disproportionate weighing in
subsequent judgments.”



Motivation

Understand the basic intuition behind BGS
Introduce a stripped-down version of BGS
Regional Preference Model (RPM)
Uncover surprising relationships between existing models



An Overview

Bordalo, Gennaioli, and Shleifer [2013] (BGS)
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Salience Function

Salience function σ(a, b)
I measures the salience of a compared to b
I independent of both products and attributes

The average level is the reference point

I Salience level of (x1, x2) in attribute 1: σ(x1, x̄1)

I Salience level of (x1, x2) in attribute 2: σ(x2, x̄2)
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Salience Function

Salience function σ(a, b)
I measures the salience of a compared to b
I independent of both products and attributes

The average level is the reference point

I Salience level of (x1, x2) in attribute 1: σ(x1, x̄1)
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Salience

Attribute 1 is salient for good x if
σ(x1, x̄1) > σ(x2, x̄2)

attribute 1

attribute 2

Attribute 2 is salient for good x if
σ(x1, x̄1) < σ(x2, x̄2)
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Salience Function

σ is symmetric and continuous
Three additional properties

I Ordering: Salience increases in contrast: For ε, ε′ ≥ 0 with
ε+ ε′ > 0

If x > x̄, then σ(x+ ε, x̄− ε′) > σ(x, x̄)
If x < x̄, then σ(x− ε, x̄+ ε′) > σ(x, x̄)

I Diminishing Sensitivity: Salience decreases as the value of
an attribute uniformly increases for all goods: For ε > 0,

σ(x+ ε, x̄+ ε) < σ(x, x̄)

I Homogeneity: For all α > 0,

σ(αx, αx̄) = σ(x, x̄)



Bordalo, Gennaioli, Shleifer
[2013]

To illustrate this model, consider the salience function proposed by
BGS,

σ(a, b) = |a− b|
a+ b
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Attr. 2 salient
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Attr. 2 salient

Attr. 1 salient
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Utility Function

Attribute 1 of option x attracts more attention than attribute 2
and receives greater “decision weight” when attribute 1 “stands
out”

VBGS(x|r) :=
{
wx1 + (1− w)x2 if attribute 1 is salient
(1− w)x1 + wx2 if attribute 2 is salient

where w ∈ (1/2, 1)
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Regions of BGS

r = (r1, r2) the reference good
Rk(r) be the set of products that are k-salient for the
reference point r
Rk(r) as the k-salient region.



Some Questions

How do these pictures change as the underlying salience
function changes?
Given a salience function σ, what are the properties of
regions, R1(r) and R2(r), it generates?



Regions of BGS

S0 no bundle is both 1-salient and 2-salient, and almost every
bundle is either one or the other.

S1 making a bundle’s less salient attribute closer to the reference
point does not change the salience of the bundle.

S2 if every attribute of a good differs from the reference point by
the same percentage, then none of the attributes stands out.

S3 there is no bundle completely surrounded by k-salient bundles
that is not an k-salient bundle itself.



Regions of BGS

S0 (Basic) For any r ∈ X: R1(r)
⋂
R2(r) = ∅ and R1(r)

⋃
R2(r)

is dense in X.
S1 (Moderation) For any λ ∈ (0, 1] and r ∈ X:

if x ∈ Rk(r), yk = xk, and y−k = λx−k + (1− λ)r−k, then
y ∈ Rk(r).

S2 (Equal Salience) For any x, r ∈ X: if x1
r1

= x2
r2

or x1
r1

= r2
x2
,

then x /∈ Rk(r) for k = 1, 2.
S3 (Regular regions) For all r ∈ X and k = 1, 2: Rk(r) is a

regular open set.



Regions of BGS

Theorem
The following are equivalent:
(i) The functions R1 and R2 satisfy S0-S3
(ii) There exists a salience function σ s.t.

x ∈ Rk(r) ⇐⇒ σ(xk, rk) > σ(x−k, r−k)

(iii) For any salience function σ,

x ∈ Rk(r) ⇐⇒ σ(xk, rk) > σ(x−k, r−k)

no need for the functional form assumptions
all salience functions lead to the same regions
our figure independent of the salience function



Regions of BGS

Theorem
The following are equivalent:
(i) The functions R1 and R2 satisfy S0-S3
(ii) There exists a salience function σ s.t.

x ∈ Rk(r) ⇐⇒ σ(xk, rk) > σ(x−k, r−k)

(iii) For any salience function σ,

x ∈ Rk(r) ⇐⇒ σ(xk, rk) > σ(x−k, r−k)

no need for the functional form assumptions
all salience functions lead to the same regions
our figure independent of the salience function



BGS

what are behavioral implications of the salient thinking model?

properties of choices (c(S))?



Axioms for BGS

First axiom is a version of WARP
Consider two budget sets S1 and S2

x1 ∈ c(S1) and x2 ∈ S1

x2 ∈ c(S2) and x1 ∈ S2

Then WARP implies x1 ∈ c(S2)



Axioms for BGS

Consider two budget sets S1 and S2

x1 ∈ c(S1) and x2 ∈ S1

x2 ∈ c(S2) and x1 ∈ S2

The salience of products does not change when the menu
changes from S1 to S2

I E.g., x1 is 1-salient in both sets and x2 is 2-salient in both sets
Then x1 ∈ c(S2).
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Axioms for BGS

Axiom (Salience-SARP)
For any finite sequences of pairs (xi, Si)n

i=1 such that xi ∈ c(Si),
xi+1 ∈ Si, and xi+1 ∈ Rk(A(Si)) ∩Rk(A(Si+1)) for some
k ∈ {1, 2} for every i = 1, . . . , n− 1:
if xn ∈ c(Sn), x1 ∈ Sn, and x1 ∈ Rk(A(S1))

⋂
Rk(A(Sn)) for

some k, then x1 ∈ c(Sn).



Axioms for BGS

Axiom (Regional Linearity)
For α ∈ (0, 1], take S and y such that S ⊂ Rk(A(S)) and
αS + (1− α){y} ⊂ Rk(A(αS + (1− α){y})) for some k. Then,
x ∈ c(S) if and only if αx+ (1− α)y ∈ c(αS + (1− α){y}).

. Provided all alternatives have the same salient attribute in both
menus, choice obeys the usual linearity axiom.
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Axioms for BGS

Axiom (Regional Monotonicity)
For any x, y ∈ S with x 6= y, if x ≥ y and x, y ∈ Rk(A(S)) for
some k, then y /∈ c(S).

. Choices respect the usual monotonicity axioms for alternatives
within the same salient region
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Axioms for BGS

. The indifference curves in Region 1 should be steeper than in
Region 2

Axiom (Salient Dimension Overvalued (SDO))
For x, y ∈ S

⋂
S′ with xk > yk and y−k > x−k, if

x, y ∈ Rk(A(S)), x, y ∈ R−k(A(S′)), and y ∈ c(S), then
x /∈ c(S′).
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Axioms for BGS

. both salience and preference treat attributes symmetrically,
permuting the attributes of all objects in the same way does not
change rankings.

Axiom (Reflection)
For any S ∈ X , if (a, b) ∈ c(S) and T is the reflection of S, then
(b, a) ∈ c(T ).
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Axioms for BGS

Axiom (Regional Continuity)
Let yn → y, xn → x, and x, y /∈ S. Then
i) if xn ∈ c(S ∪ {xn}) for all n, then x ∈ c(S ∪ {x}), and
ii) if z ∈ c(S ∪ {yn}) for all n, then z ∈ c(S ∪ {y})



Characterization of BGS

Theorem
The choice correspondence c(·) satisfies Axioms 1-6 if and only if it
has a salient thinking representation.



BGS



Regional Preference Model
(RPM)

Consider a strip down version of BGS



Motivating Questions

What are the behavioral implications of RPM?
Which models belong to this class? (List A?)



Setup

Domain X = I1 × I2 for open intervals I1 and I2
I x = (x1, x2)
I Each attribute desirable
I xαy denotes the coordinate-by-coordinate mixture of x and y,

i.e. [xαy]i = αxi + (1− α)yi for all i



Setup

Regions:
Every region is “well behaved” and non-empty

I If x in region, so are all points close enough to x
I A path between points in a region

All regions surround the reference point
Almost everything is in a region
Nothing is in two regions
As the frame changes, regions change smoothly



Setup

Definition
A vector-valued function R = (R1, R2, . . . , Rn) is a regional
function if each Ri : X → 2X satisfies the following properties:

1 Ri(r) is a non-empty open set and Ri(r)
⋃
{r} is connected

2 r ∈
⋂n

i=1 bd(Ri(r))
3

⋃n
i=1Ri(r) is dense

4 Ri(r)
⋂
Rj(r) = ∅ for all i, j

5 Ri(·) is continuous.



Regional Preference Model

Within a given region:
I Indifference curves are straight lines
I The relative ranking of two alternatives are the same as long

as both of the alternatives lie in the same region

I Affine functions u1(·|r), u2(·|r), · · · , un(·|r)
I ui(·|r) is a positive affine transformation of ui(·|r′)

r
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Regional Preference Model

Definition
{%r}r∈X is a RPM under R if

∃ positive, strictly increasing, affine functions ui(·|r)
ui(·|r) is a positive affine transformation of ui(·|r′)

such that for all x ∈ Ri(r) and y ∈ Rj(r),

x %r y iff ui(x|r) ≥ uj(y|r).



List B

Classical Theory
Tversky and Kahneman [1991] (TK)
Koszegi and Rabin [2006] (KR) (without expectation)
Masatlioglu and Ok [2005] (MO)
Bordalo, Gennaioli, and Shleifer [2013] (BGS)



Tversky and Kahneman [1991]

Extends Prospect Theory to the case of riskless consumption
bundles

The workhorse of modeling behavior in risk-less environment

Loss Aversion

5339 Google citations (as of Oct 2017)

Exogenous reference point



Tversky and Kahneman [1991]

VT K(x|r) =


(x1 − r1) + (x2 − r2) if gain-gain
λ1(x1 − r1) + (x2 − r2) if loss-gain
(x1 − r1) + λ2(x2 − r2) if gain-loss
λ1(x1 − r1) + λ2(x2 − r2) if loss-loss

Losses hurt: λ1 and λ2 are greater than 1
Constant Loss Aversion

loss-gain

loss-loss
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Masatlioglu and Ok [2005,2014]

Status Quo Bias

Psychologically constrained utility maximization

The status quo imposes a psychological constrain on decision
makers (Q(r))



Masatlioglu and Ok [2005,2014]

VMO(x|r) :=
{

x1 + x2 if x ∈ Q(r)
x1 + x2 − c(r) otherwise

r

MO
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better
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Comparing Models

loss-gain

loss-loss

Attr. 1
salient

Attr. 2 salient
r rr

TK MO

Attr. 2 salient

Attr. 1 salient

gain-gain

gain-loss

unambiguously 
better

Attribute 1

Attribute 2

Attribute 1 Attribute 1BGS

Attribute 2 Attribute 2

r rr

TK MO
Attribute 1 Attribute 1 Attribute 1BGS

Attribute 2 Attribute 2Attribute 2



Comparing Models

Consider three properties
I Strong Frame Independence

• Reference point does not affect ranking, only the regions do

I Monotonicity
• More is better

I Cancellation



Comparing Models

Strong Frame Independence
I Reference point does not affect ranking, only the regions

I If x ∈ Ri(r)
⋂
Ri(r′) and y ∈ Rj(r)

⋂
Rj(r′)

x %r y iff x %r′ y

Monotonicity
I More is better

I If y ≥ x, then y %r x, strictly whenever y 6= x.

Cancellation



Comparing Models

Cancellation

Attribute 1

Attribute 2
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Comparing Models

Cancellation
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Comparing Models

? ? ? ?
Monotonicity 3 7 3 3

Strong FI 3 3 7 3

Cancellation 3 7 3 7



Comparing Models

Classical BGS TK MO
Monotonicity 3 7 3 3

Strong FI 3 3 7 3

Cancellation 3 7 3 7

Monotone

Strong	FI Cancellation

TK
CT

MO

BGS



BGS and Monotonicity

Attr. 1
salient

Attr. 2 salient
r

Attr. 2 salient

Attr. 1 salient

Attribute 2

r

Attribute 1

Attribute 2

Attribute 1

What causes BGS to violate monotonicity?
Is there a model “close” to BGS that satisfies it?



RPM and Monotonicity

A version of RPM that
I satisfies SFI,
I satisfies Monotonicity
I permits “salience” to affect preference

Salience reweighs utilities through regions
No region uniformly better or worse
An RPM has salience utilities if different slopes in different
regions



RPM and Monotonicity

Proposition
Suppose there exists some x such that (x, x) ∈ X.
If {%r}r∈X is a RPM under R with at least two regions, has
salience utilities and satisfies SFI, then %r violates Monotonicity
for some r.

No way to specify regions and weights that prevents violations
of Monotonicity



Literature Review



Wrapping up

BGS enjoys a nice characterization
RPM generalizes the main idea behind BGS
Other salience/attention models are outside of RPM (List A)
⇒ BGS offers vey distinct way of modeling salience
Uncover surprising relationships (List B)
Tradeoffs between SFI and Monotonicity



Wrapping up

Stark contrast between
I attention to attributes (RPM, BGS)
I attention to alternatives (Masatlioglu et al. [2012])
I attention to information (Ellis [2013])



THANK YOU



Axioms for RPM

Simply restrict usual axioms to within regions
I Regional Frame Independence
I Regional Monotonicity
I Regional Continuity
I Regional Linearity



Axioms for RPM

A1 (Regional Frame Independence) If x, y ∈ Ri(r) ∩Ri(r′), then
x %r y ⇐⇒ x %r′ y.

A2 (Regional Monotonicity) For any x, y ∈ Ri(r),
if y ≥ x, then y %r x, strictly whenever y 6= x.

A3 (Regional Continuity) For any x and region Ri(r), the sets
{y ∈ Ri(r) : y �r x} and {y ∈ Ri(r) : x �r y} are open.

A4 (Regional Linearity) For any x, y, a, b ∈ X, r ∈ X and
α ∈ (0, 1] such that x, xαy, y ∈ Ri(r) and a, aαb, b ∈ Rj(r):
if x %r a and y %r b, then xαy %r aαb, strictly if x �r a



Representation Theorem

Theorem
Let R be a regional function. Then ({%r}r∈X ,R) satisfies A1-A4
if and only if {%r}r∈X is RPM under R.

Proof outline:
Each region contains a mixture space
Use the mixture space to get a “within representation”
Stitch together the within representations using Regional
Linearity and Transitivity; show still affine

I tougher, especially if two regions have no indifference points
Regional Frame Independence and continuity of the regional
function allow us to show indifference curves have same slope
across frames
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Continuous Salience
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