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Abstract. We introduce a new model of stochastic choice. The model assigns each
choice option an utility, and, in addition, a salience parameter reflecting economic
frictions involved in choice. The model is consistent with many classical approaches,
including preference maximization as in Machina (1985) as well as classic random
utility. We characterize our model behaviorally and investigate its comparative statics
properties. The model generates intuitive closed-form solutions in equilibrium settings
where firms can choose price, quality, and advertising, is consistent with data that
many typical discrete choice approaches cannot accommodate, and allows for simple
preference parameter identification.

1. Introduction

The primary goal of this paper is to introduce a simple and tractable yet flexible
model of probabilistic discrete choice, which we call the weighted linear (WL) model
of discrete choice. In our model, each choice option is described by two parameters:
one can be seen as reflecting the underlying quality or utility of an item, while the
second reflects the ease of choosing an item, thinking about it, or how salient it is.
Thus, it can capture experimental findings from cognitive science and psychology (e.g.,
Milosavljevic et al. (2012)) regarding the importance of salience-based considerations
in choice. Although it adds a single parameter to describe each option compared to the
widely used Luce model (also called the multinomial logit model), the WL approach
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can also accommodate behavior that is considered anomalous in many other widely
used discrete choice models in industrial organization and consumer choice. Thus the
WL model can sidestep some of the “counter-intuitive implications” of commonly used
models that Berry and Pakes (2007) highlight (see also Benkard and Bajari (2001)).
For example, it can generate flexible cross-price substitution effects, as well as intuitive
choice probability responses when new products enter a market. We aim to provide
a model that simultaneously incorporates well-known psychological factors such as
salience into choice, but which can also be used to address consumer and firm behavior
in markets.

Despite this added explanatory power, the WL model also remains identifiable:
under standard assumptions, the parameters can be estimated from market shares via
a set of simple linear equations. The salience parameter of the WL model allows us to
analyze the behavior of firms who can compete by manipulating the salience of out-
comes, such as via advertising, and we can derive closed-form solutions for oligopolistic
competition. Thus, while many other models have been developed that both relax
some of the restrictions of the multinomial logit choice approach, and are identifiable,
we believe that our model also benefits from being tractable in applied settings.

Although there are many models that generalize the Luce model we will demon-
strate that our model has particularly strong explanatory and predictive power in
environments where existing products respond asymmetrically to the introduction of
new products. Our model can explain outcomes in markets with dominant products
— those that have relatively high utility but low salience — that cannot be typically
explained by other leading alternative models of random choice (such as logit, nested
logit and probit). These products benefit in terms of relative market share when choice
sets grow larger. For example, the WL model can explain why dominant products can
maintain positive market share, even when the number of inferior products can grow
to infinity. Not only does the WL model explain behavior in these markets better, but
they also generate better predictions when conducting counterfactual demand estima-
tions relative to alternative formulations of random choice.

Section 2 introduces the WLmodel. We formulate the probabilistic choice behavior
in the model as the solution to a simple utility maximization problem subject to the cost
of choosing items too frequently. As in other recent models of deliberate randomization,
in this formulation, the decision-maker chooses the probability with which each option
is realized. Her goal is to maximize the expected utility of the chosen object, while
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keeping down costs that are quadratic in individual probabilities. The marginal cost
of choosing an option is directly proportional to it’s current choice probability, and
inversely proportional to its salience. Hence, in our formulation the scale of the cost
depends on the salience of each alternative.1

Outcomes in our model are therefore ranked by two orderings: a utility function
u, which captures “how good” an item is, and a salience function, m, which captures
“how salient” an item is.2 Under a simple condition on these parameters, the decision
maker’s problem has an interior solution, where the probability of choosing x from S

is equal to
ρ(x|S) = m(x)∑

y∈Sm(y)︸ ︷︷ ︸
Base Probability

+ m(x)[u(x)− ūm(S)]︸ ︷︷ ︸
Comparative Probability Transfer

.

Here, ūm(S) is the weighted average utility of outcomes in S with respect to m; that
is ūm(S) =

∑
y∈Sm(y)u(y)∑
y∈Sm(y) . The probability of choosing x is the sum of two compo-

nents: a base probability plus a comparative probability transfer. The first, the base
probability, reflects how easy it is to think of x compared to the rest of the choice set
and mirrors Luce’s choice rule (Luce, 1959). The comparative probability transfer, in
line with Fechernian stochastic choice (Fechner, 1860), reflects the difference in utility
between the item and a weighted average of other items in the choice set, where the
weights depend on the salience of the item. The salience of x then scales this difference.
A variety of papers in cognitive science and psychology have found that the salience
of items (often visual, although not exclusively) influences their chance of being cho-
sen, independent of preferences (e.g., Milosavljevic et al. (2012); Towal et al. (2013);
Janiszewski et al. (2013); Weingarten and Hutchinson (2017); Dai et al. (2020)). Our
approach can not only capture this important facet of choice, but can also match some
of the stylized comparative statics in the literature (e.g., Milosavljevic et al. (2012)
find that salience is particularly influential in large choice sets or when preferences are
weak).

At the same time, our approach is the stochastic choice equivalent of a linear
demand system, widely used in economics. In our model, demand for a product reflects:
(i) a base component independent of the utility of the item and (ii) a component that

1A general form of quadratic preferences over lotteries is given decision-theoretic foundations in Chew
et al. (1991, 1994).
2m might have other interpretations: psychological factors, such as attention or noticeability, or
physical costs of choice, such as search frictions.
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reflects the difference in utility between the item and the average item scaled by some
number that represents the friction in the market (as the number gets bigger, the best
items eventually attract the entire market). The approach of linear demand systems has
been used extensively in applied settings (early references include Shubik and Levitan
(1980), Dixit and Stiglitz (1977), Spence (1976), and Singh and Vives (1984)).3 We
also discuss the comparative statics embodied in our model.

TheWLmodel has the advantage of simple behavioral foundations that correspond
to natural generalizations of Luce’s model. Section 3 demonstrates that three simple
axioms summarize all behavioral implications of the WL model. Structurally, the
behavioral content of the model is characterized by a novel type of acyclicity condition.
These axioms connect the (unobserved) components of the model to observed choice
behavior. We show that identification can be achieved by observing choices on relatively
few choice sets.

Section 4 compares the WL to the random utility model (RUM) and the additive
perturbed utility (APU) approach of Fudenberg et al. (2015). Although logically dis-
tinct from the APU, our model has a non-trivial intersection with it, which nests both
the multinomial logit model as well as the simple linear demand approach described
above. And although our model has a relatively novel representation in terms of choice
probabilities, in fact, it is a subset of the well-known class of RUMs (characterized by
Falmagne (1978)). It also shares a common interpretation with most existing models
of random choice (including discrete choice models).

Section 5 shows what kinds of empirical regularities the WL model can accommo-
date, not just relative to the multinomial logit approach, but a wide range of discrete
choice models. We start by showing that the binary choice comparisons in our model
satisfy an appropriate notion of stochastic transitivity, accommodating widely observed
phenomena that cannot be explained with the stronger notions of transitivity satisfied
by models like logit and APU. We also show that, unlike multinomial logit, but like
many of its generalizations, our model can allow for much richer patterns of cross-price
substitution. In addition, our model can capture many important behaviors that stem
from the introduction of new products. First, the WL model can generate the similar-
ity effect. Second, unlike most widely used discrete choice models, our model allows
a dominant firm to maintain a non-negligible market share in the face of introducing

3Our model naturally nests the multinomial logit model, as well as the “simple” version of linear
demand systems, where all firms are symmetric in their ease of choice.
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a wide variety of inferior products. Third, it can also effectively capture situations
where new entrants drive some, but not all, of the existing products out of the market.
Finally, we show how the WL model easily extends to a simple setting that allows
for strategic interactions among firms. We demonstrate that the WL model naturally
can capture consumers’ responses to competition among firms in multiple dimensions:
price, advertising, and quality. Despite this richness, the model is tractable enough to
lead to simple closed-form solutions for firms’ strategies and payoffs. These solutions
capture valuable intuitions about firm behavior, including the relationship between
advertising, markups, the size of the market, and the number of firms.

Section 6 compares the usefulness of the WL model in applications to some of
the most well known models in discrete choice estimation, namely classic logit, nested
logit and (covariance) probit. To assess the strengths of each model in a variety of
situations, we use simulated data. We estimate each model in 14,850,000 different
datasets, covering the entire range of demand systems that come from a population
of heterogeneous rational agents, indexed by their level of extremeness or polarization
of tastes. We compare the out of sample predictions of these models using several
standard metrics. The overall picture that emerges from the simulations is that, while
retaining the simplicity and the tractability of the logit model, the WL is able to
outperform more complex models across a wide range of situations.

Finally, Section 7 concludes. The Appendices include proofs and discuss other
relevant ideas, such as behavioral properties of the analog of our model, which allows
for zero probabilities.

2. Model

We initially describe our model in an abstract environment, and then in later
sections apply it to particular settings. Let X be a finite set of alternatives. Let X
be the set of all probability measures in X. That is, ρ(·|X) ∈ X implies ρ(x|X) ≥ 0
and ∑

x∈X
ρ(x|X) = 1. Let D denote the set of non-empty subsets of X. For every

S ∈ D, denote by S the elements in X which naturally induce probability measures on
S, i.e., ρ(·|S) ∈ S means ρ(x|S) ∈ X and ρ(x|S) = 0 whenever x /∈ S. ρ(x|S) denotes
the choice probability (market share) of x in S. We also denote the sum of choice
probabilities in T ⊂ S as ρ(T |S). Similarly, for any real function f on X, f(S) denotes
the sum of f(x) for all x ∈ S. We will denote binary choices as ρ(x, y) instead of
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ρ(x|{x, y}). A stochastic choice (sometimes called stochastic choice rule or stochastic
choice function) is a family {ρ(·|S)}S∈D, where each ρ(·|S) ∈ S.

We now introduce our parametric model of stochastic choice. In this model, each
alternative x is represented by two values: its utility u(x), and its salience m(x).
Motivated by the “stochastic choice as optimization” paradigm of Machina (1985) and
Cerreia-Vioglio et al. (2019), we suppose that for any set S, probabilities arise as the
solution to maximizing expected utility less quadratic cost:

P(S) = argmax
ρ(.|S)∈S

∑
x∈S

(
u(x)ρ(x|S)− 1

2m(x)ρ(x|S)2
)

(1)

The objective function in (1) describes individuals who want to maximize util-
ity but face the cost of assigning too much weight to one particular product. The
marginal benefit of choosing option x is given by its utility u(x); while the marginal
cost is ρ(x|S)/m(x). Hence, the marginal cost is directly proportional to the current
probability of choosing x and inversely proportional to its salience m(x). Thus, we can
interpret those items with high salience (high m) as those with a low penalty attached
to choosing them. Our key assumption is that salience is always positive: m(x) > 0
for all x.

Figure 1 illustrates the model graphically for X = {x1, x2, x3}. The point inside
the triangle represents the choice probabilities from X, and is denoted by ρ(x1, x2, x3).
Each green elliptical curve represents an indifference curve in the simplex. The pref-
erence is increasing towards ρ(x1, x2, x3). The DM maximizes his utility at this point
when he is free to choose from the entire simplex. When x3 is not available, the DM
maximizes his utility subject to being on the x1 − x2 edge. The choice from {x1, x2}
is determined by the highest level curve having an intersection with this line, denoted
by ρ(x1, x2).

We will focus on situations where the solution to (1) features only positive prob-
abilities. Then, the first order conditions to (1) are

u(x)− 1
m(x)ρ(x|S) = Λ(S) for all x ∈ S

where Λ(S) is the Lagrange multiplier of the constraint that the probabilities add up
to 1. Summing across the elements of S and a bit of algebra implies

Λ(S) =
∑
y∈Sm(y)u(y)− 1∑

y∈Sm(y) .
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Figure 1. Choice probabilities in the WL model are obtained as a so-
lution to the maximization of expected utility minus quadratic costs.
The point ρ(x1, x2, x3) is optimal when all three options are available.
When x2 is removed from the choice set, optimal choice probabilities
ρ(x1, x3) lie on the indifference curve tangent to the edge of the simplex
that contains x1 and x3.

Plugging back into FOC, we get ρ(x|S) = m(x)(u(x)− Λ(S)) or

ρ(x|S) = m(x)
m(S) +m(x)[u(x)− ūm(S)](2)

where ūm(S) ≡
∑

y∈S u(y)m(y)
m(S) is the weighted utility with respect to m in S.

Definition 1. A stochastic choice ρ is consistent with a weighted linear (WL) model
on D if there exist functions u : X → R and m : X → R++ such that (2) holds for all
S ∈ D. We also say (u,m) represents ρ, or (u,m) is a WL representation of ρ.

Not every pair of functions (u,m) generates strictly positive choice probabilities as
the solution to (1); hence, not every pair u,m generates a stochastic choice ρ with (2).
It is straightforward to characterize the set of options that are chosen with positive
probability in (1) for any pair (u,m) (see Appendix B). This characterization is directly
related to shadow prices. We show in the appendix that the solution to the optimization
problem (1) is unique. Moreover, we show that the set of options chosen with strictly
positive probability is the unique subset S such that the utility of each option in the
set is strictly larger than the shadow price for that set; that is, u(x) > Λ(S) for every
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x ∈ S. Finally, we also show that if an option is chosen with strictly positive probability
from the grand set X, then it must be chosen with strictly positive probability in every
subset in which it appears. This directly leads to a necessary and sufficient restriction
on any pair u,m to be the parameters of a WL model:

Proposition 1. (u,m) is a WL representation for some ρ iff u(x) > Λ(X) for all x.

The closed-form solution (2) that defines our model has an intuitive interpretation.
The model suggests that each product has a base probability of attracting consumers
m(x)/m(S). This can be thought of how easily the product comes to the mind of
consumers or the salience of the product in the marketplace. Of course, not all products
might be available at any given time. So, conditional on a particular choice set S,
the probability of product x getting noticed or x’s presence in the market (given the
set of available products) is proportional to m(x). While this component is context-
dependent, the relative base probabilities are fixed across different choice sets.

The base probabilities are not the only determinants of choice probabilities in
our model. The utility of each product also plays an important role. Products gain
or lose consumers in proportion to the difference between their utility u(x) and the
weighted average utility in the market ūm(S). The individuals’ impression of what
the average utility is in the market is influenced by the presence or salience of the
products. The deviation from ūm(S) captures the market influence on probabilistic
demand. In this formulation, the choice probability of a product increases linearly
in its own utility. If a product offers a higher utility than the market average, it
enjoys additional choice probability. Otherwise, being less than the market average
reduces choice probabilities. Similarly, the probability of choice is linearly decreasing
in the utility of other products. Unlike the base probabilities, there exists a non-trivial
context dependence in this component.

Our formulation is a specific case of a larger class of demand functions where choice
probabilities (i.e., market shares) are linear in the net utility of a product, which are
often used in applications. Early examples are Shubik and Levitan (1980), Dixit and
Stiglitz (1977), Spence (1976), and Singh and Vives (1984), while Choné and Linnemer
(2020) provides a survey.

A novel feature of our approach is the importance of salience or market presence
in determining choice probabilities. Salience in our model could take several forms. It
could be that some products are more salient because of advertising (Yi, 1990), due to
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defaults (Miceli & Suri, 2023), product placement, ordering search results, or physical
proximity.4

There is an interesting interplay between u and m in our model. As emphasized
in Milosavljevic et al. (2012), the effects of salience on choice are particularly strong
when preferences are weak. One can easily see that this happens in our model: in
the extreme, if the utilities of all items are the same, then choice probabilities are
determined solely by salience considerations. Towal et al. (2013) shows that economic
decisions are better predicted using both salience and quality (utility).

Two Special Cases. Our formulation nests two important special cases. The first
one is when the utility function is constant but salience differs across alternatives. If
u(x) = u(y) for all x, y, the second term in the representation disappears and the choice
probabilities are solely driven by m:

ρ(x|S) = m(x)
m(S)

Clearly, this is the classical model of Luce (1959). Thus, if utility is constant,
the ties in utility are broken by salience, and we obtain Luce choice probabilities.
In fact, this is the only way to obtain Luce choice probabilities in our framework:
it is straightforward to verify that ρ is a WL where u(x) = u(y) for all x, y ∈ X

if and only if it has a Luce representation.5 This implies that our model provides
an alternative characterization for the Luce model, which arises as the solution of
minimizing quadratic cost:

ρLuce(x|S) = argmin
ρ(.|S)∈S

∑
x∈S

ρ(x|S)2

2m(x)(3)

The other extreme case is where salience remains constant, m(x) = m̄ for all x. In
this case, the first term is simply 1/|S|, each alternative attracts attention uniformly.
Then, the weighted utility average becomes the ordinary average, ūm(S) = ū(S), and

4In cognitive science and psychology salience is often manipulated visually (e.g., Milosavljevic et al.
(2012); Towal et al. (2013); Janiszewski et al. (2013); Weingarten and Hutchinson (2017); Dai et al.
(2020)). However, other approaches, such as cognitive salience, have also been used (e.g., Weingarten
and Hutchinson (2017)).
5Our model is also distinct from the nested logit where alternatives within a nest must satisfy Luce’s
IIA, although the idea of nests can be introduced in our framework. Kovach and Tserenjigmid (2022)
provides several characterizations for the nested logit and its generalizations.
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we have
ρ(x|S) = 1

|S|
+ m̄[u(x)− ū(S)]

This is equivalent to the basic linear demand system that features prominently in
many models of monopolistic competition.6 To see this more clearly, without loss we
define u(x) = ū− p(x). If we call p(x) the price of x, then we can define demands as

ρ(x|S) = 1
|S|

+ m̄[p̄(S)− p(x)]

Although this equation abstracts away from the possibility of demand which is
zero, a few points are worth mentioning. The equation is intended to measure the
market share for each firm x. Each firm gets a base share 1

|S| , and the residual arises
from the deviation of their price from the average market price. The level of this
deviation is influenced by the parameter m̄, which we suggest can be interpreted as a
cardinal measure of market friction. This means that, by lowering the price, each firm
can steal some of the market share, but that amount depends on the friction in the
market. As m̄ marginally increases, all firms with prices lower than the average receive
a positive gain in market share. On the other hand, if m̄ gets very small, consumers
tend to purchase equally across all firms, ignoring price.

Comparative Statics. In order to increase our understanding of the model, we now
formally discuss its comparative statics. First, we establish that increasing either u(x)
or m(x) will result in an increase in the corresponding choice probability. For both
of these changes, there is a direct effect of the change in the parameter, as well as an
indirect effect, which emerges because of the change in ūm(S). Given that ρ(x|S) > 0,
algebra shows that

∂ρ(x|S)
∂u(x) = m(x)m(S \ x)

m(S) and ∂ρ(x|S)
∂m(x) = m(S \ x)

m(x)m(S)ρ(x|S)

Viewed as a function of u, for a given S ∈ D, ρ(x|S) is linear. This implies that
reducing u(x) by enough will result in x being chosen with probability 0. Similarly,
increasing u(x) enough will eventually lead to all other items being chosen with 0
probability. Unlike utility u, the effect of salience m on choice probabilities is non-
linear. If u(x) ≥ ūm(S), then the probability of x being chosen will go to 1 as m
6Linear probability models are popular for their tractability in discrete choice estimation (e.g. section
4.2 in (Ben-Akiva & Lerman, 1985)) and appear in solution concepts with boundedly rational players
in noncooperative games Rosenthal (1989), Voorneveld (2006).
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increases. If not, the probability of x being chosen converges to an upper bound
strictly below 1. As m(x) decreases, the probability of x being chosen falls to 0. Our
comparative statics with respect to m are in line with experimental evidence. Observe
that (holding the initial choice probability constant) the effect of a change in salience
on choice is larger when m(S) is larger — e.g. when the choice set is large. This is
in line with the evidence from Milosavljevic et al. (2012), who find that salience is
particularly influential in large choice sets.

We can also consider cross-parameter effects. As u(y) changes, ρ(x|S) changes in
a linear fashion as well, but in the opposite direction with respect to changes in u(x).
Moreover, we have symmetry as

∂ρ(x|S)
∂u(y) = ∂ρ(y|S)

∂u(x) = −m(x)m(y)
m(S) ,

analogous to the Slutsky substitution patterns.7 We do not have symmetric responses
for cross-m changes:

∂ρ(x|S)
∂m(y) = − m(x)

m(y)m(S)ρ(y|S)

This should be relatively intuitive. The effect of changing y’s salience should depend on
the choice probability of y, ρ(y|S), since items chosen with higher probability benefit
more from increased salience.

3. Characterization, Uniqueness and Identification

We now discuss behavioral implications of our model. The first behavioral postu-
late is the often invoked notion of positivity. Positivity says that every alternative is
chosen with positive probability.8

Axiom 1. [Positivity] ρ(x|S) > 0 for every x ∈ S and S ∈ D.

The next behavioral postulate is a well-known property in the stochastic choice
literature. It states that when the competition gets fiercer among alternatives, choice
probabilities strictly decrease.

Axiom 2. [Strict Regularity] ρ(y|S) < ρ(y|S \ {x}) for every x ∈ S and S ∈ D.
7Positive semidefiniteness follows as well, because this matrix of substitution patterns is obviously
diagonally dominant, with positive diagonal elements.
8As discussed, this assumption cannot be rejected by any finite data set but we relax it in the Appendix.
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To provide the third behavioral postulate, we first define an auxiliary function

rS,T (x, y) := ρ(x|S)− ρ(x|T )
ρ(y|S)− ρ(y|T )

provided that x, y ∈ S ∩ T and ρ(y|S) 6= ρ(y|T ). The quantity rS,T (x, y) measures the
relative probability change of x and y from S to T . Given S and T , we only define
this function for (x, y) such that ρ(y|S) 6= ρ(y|T ). This ratio resembles the ratio that
appears in the Luce IIA axiom. The difference is that this is a ratio of relative levels
rather than the absolute levels as in Luce’s IIA.

This function has several interesting properties: i) rS,T (x, y) = rT,S(x, y) for all
S and T , ii) rS,T (x, y)rS,T (y, x) = 1, and iii) rS,T (x, x) = 1. In the Luce model, this
function is constant for any pair (x, y). That is, the ratio is independent of choice of
decision problems: rS1,T1(x, y) = rS2,T2(x, y). Indeed, in the Luce model, both relative
and absolute ratios are constant. In contrast, while the absolute ratio might not be
constant, the relative ratio is constant in our model. However, this constancy is not
strong enough to be sufficient in our model. The next behavioral postulate is a stronger
version of this idea. The postulate states that this ratio is not only constant but also
enjoys a simple transitivity property.

(4) rS1,T1(x, z) = rS2,T2(x, y)rS3,T3(y, z)

Notice that the function r might not be well-defined for some sets due to dividing
by zero. To account for this possibility, we postulate a different form of the same idea.
To state our next axiom, we define d(x|S, T ) := ρ(x|S) − ρ(x|T ), where S 6= T and
x ∈ S ∩ T . The quantity d(x|S, T ) is simply the change in the probability of choosing
x as the choice set T changes to S.9

Axiom 3. [Relative-IIA] For any x, y, z and Si, Ti ∈ D,

d(x|S1, T1)d(y|S2, T2)d(z|S3, T3) = d(z|S1, T1)d(x|S2, T2)d(y|S3, T3)

whenever the expressions are well-defined.

Observe that if all differences are non-zero, the axiom is equivalent to the tran-
sitivity condition in (4). This axiom states that the multiplication of differences in
probabilities of x→ y → z is the same that of z → x→ y.

9Note that d is only defined for (x, S, T ) where S 6= T and x ∈ S ∩ T . We abuse notation and denote
d(x|{x, y}, X) by d(x, y).
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In terms of interpretation, the property states that this product of probability
differences depends only on the collection of elements with respect to which differences
are taken. It does not, however, depend on how these elements are assigned to the
given budgets.

It is easy to show that if Axiom 3 holds in the whole domain, then the axiom
implies that an analogous condition holds for products of differences of length n, for
any n > 3. A weaker condition (independence of cycle of 2) is not strong enough to
deliver the characterization. That is, d(x|S1, T1)d(y|S2, T2) = d(y|S1, T1)d(x|S2, T2).
This is the property we discuss above (rS1,T1(x, y) = rS2,T2(x, y)). At the same time, as
can be seen by taking y = z, Axiom 3 implies this property.

We now state our characterization. We would like to highlight that our character-
ization requires very few observations, all menus with sizes 2 and 3. Comparing this to
other models, our model is far less data-hungry. The concept of data hungriness refers
to the domain size needed for a model to generate a prediction with high accuracy. For
example, given our domain, RUM makes highly inaccurate predictions for larger sets.

Theorem 1. Suppose D contains all menus with size 2 and 3. Then a stochastic choice
function ρ has a WL representation on D if and only if it satisfies Axioms 1-3.

The idea of the proof for sufficiency is as follows. We first define the salience of
each alternative by using rS,T where S and T are menus with size 2 and 3. Then,
instead of directly constructing the utility function, we define the “shadow values” for
an optimization problem, for each set in the domain. This step helps us to define the
utility function. We then show that the data can be represented by the WL model.

Theorem 1 provides two simple tests for our model. While Axiom 2 is innocuous,
Axiom 3 is based on a principle similar in spirit to Luce’s IIA. In our axiom, the ratio
of relative levels are important rather than the absolute levels as in Luce’s IIA.

3.1. Uniqueness. Our model enjoys strong uniqueness properties. If (u,m) represents
ρ, then (au + b, 1

a
m) also represents ρ for a > 0 and b. We also show that if (u,m)

and (u′,m′) represent the same choice data, they are equivalent up to the same class of
transformations. The utility function is unique up to an affine transformation, whereas
the salience function is unique up to a scale transformation. The scale parameter of
utility is the inverse of the scale parameter of salience.
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Theorem 2 (Uniqueness). Let (u,m) be a WL representation of ρ. Then (u′,m′) is a
WL representation of ρ if and only if u′ = au+ b and m′ = 1

a
m for a > 0.

3.2. Identification and out-of-sample prediction. We examine what can be in-
ferred about the primitives of the model based on observed choices. This is important
for understanding the underlying model and its predicted behavior, as well as for mak-
ing out-of-sample predictions. We consider an analyst who observes stochastic choice
data. The analyst posits that the data is generated by the weighted linear model.
The analyst would like to answer what are the utility and the salience parameters for
each alternative. We show in this section how this question can be answered within
the framework of our model. Moreover, we would like to illustrate that we can make
out of sample predictions (outside D) given that our representation is unique.10 This
illustration will also help the reader to understand the proof of Theorem 1 better.

Consider four alternatives X ≡ {x, y, z, t}, and suppose that D consists of all sets
containing at most three elements. Imagine the choice probabilities from binary and
ternary sets satisfy the following conditions:

(1) Choices from pairs are equiprobable: for all a, b ∈ X, ρ(a, b) = 0.50,
(2) For any triple, if y, z, t are members of the triple, then they are chosen with

equal probabilities,
(3) x is chosen with probability 0.30 from any triple.

These are our choice data on D. Since X /∈ D, choices from the entire set X are not
observed. Our goal is (i) to identify u,m values for each and (ii) to predict choice
probabilities from X.

When two alternatives, a and b, are both chosen with positive probability from
two sets, and the probability that they are chosen differs in both sets, then it becomes
easy to identify the ratio of their salience parameters: m(a)

m(b) = rS,T (a, b) where both S
and T including a and b. For example, we have

m(x)
m(y) = ρ(x|{x, y})− ρ(x|{x, y, z})

ρ(y|{x, y})− ρ(y|{x, y, z}) = 4
3

So, by symmetry among y, z, t, we may conclude directly that m(y) = m(z) = m(t) =
(3/4)m(x). We may normalize up to scale, so let us suppose that m(x) = 4, and that

10The parameters of the models are derived from the domain D.
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m(y) = m(z) = m(t) = 3. Once m is identified up to scale, we can use the equality

u(a)− u(b) = ρ(a|S)
m(a) −

ρ(b|S)
m(b)

to identify u. Since we may normalize u up to translation, this allows us to choose
u(x) = 0. In so doing, it becomes apparent that u(y) = u(z) = u(t) = 1/24. This is the
full identification of our model. With these identifications in hand, we may directly
conclude that ρ(x|{x, y, z, t}) = 5/26, whereas ρ(y|{x, y, z, t}) = ρ(z|{x, y, z, t}) =
ρ(t|{x, y, z, t}) = 7/26, thus affording an out of sample prediction.

Even outside of this particular situation, our approach allows for a very transparent
identification of the two parameters. The key function introduced above, rS,T (x, y),
identifies m up to a scale factor: rS,T (x, y) = m(x)

m(y) . Given our identified m’s, we can
then identify the ranking of u’s by defining u(x)− u(y) = 1

m(x)ρ(x|S)− 1
m(y)ρ(y|S).

Our identification result is based on choice set variations observed in the data. In
Appendix, we discusses how our model can be easily identified in choice settings with
a fixed choice set (no choice set variation) but with observable attributes of outcomes.
In particular, we can show that one can identify the parameters via solving a set of
simple linear equations. This identification will improve the applicability of our model
in different environments.

4. Relation to APU and RUM

Relation to APU. Our formulation as a solution to maximizing expected utility mi-
nus costs in (1) brings to mind the Additive Perturbed Utility (APU) model (Fudenberg
et al., 2015). APU is a random choice model for which

ρ(x|S) ≡ arg max
p∈S

∑
x∈S

[u(x)p(x)− k(p(x))] ,

where k is some strictly convex and smooth function. Although this formulation is
similar to our approach, the distinction is twofold:11

11In their working paper, Fudenberg et al. (2014) weaken the first condition, and consider the more
general model:

ρ(x|S) ≡ arg max
p∈S

∑
x∈S

[u(x)p(x)− k(p(x), x)]

which nests our approach. Unlike our model, this model does not have a closed-form solution.
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(1) In APU, the cost of probability is independent of the alternative in question,
that is, k depends only on the probability of choosing each x but does not vary
across alternatives.

(2) In APU, the cost function k need not be quadratic.

In terms of the generated choice behavior, APU and WL have a non-trivial inter-
section. For example, taking k to be quadratic in the APU is equivalent to assuming
constant salience function m in the WL. That is exactly the situation where we recover
simple linear demands.

Another example of intersection is that APU and WL both nest the classic logit
model. We note, however, that logit arises in two very different ways. APU becomes
logit when the cost k(p) is equal to a multiple of p log p, and the choice probability of
each option x is proportional to the exponential of its utility eu(x). In contrast, we saw
that the WL produces logit choice probabilities if and only if utility is constant and ties
are broken by salience, whereby the choice probability of each option x is proportional
to its salience m(x).

Despite having a non-trivial intersection, the APU and WL models are logically
independent. In Section 5, below, we show that WL allows more flexible patterns of
choice in binary comparisons. APU, like logit, satisfies a strong form of transitivity of
binary comparisons, while the WL relaxes it to a moderate form of transitivity. On
the other hand, Fudenberg et al. (2015) show the APU can violate the Block-Marschak
inequalities that characterize the random utility model Barbera and Pattanaik (1986),
Falmagne (1978). We now show that the WL is a RUM; hence, despite being defined
as a solution to the individual maximization problem (1), perhaps surprisingly, the
WL also represents the choices of a heterogeneous population of standard rational
individuals. In that sense, our model provides some additional flexibility without
sacrificing the rationality assumed in the predominant paradigm of applied discrete
choice estimation.

Relation to RUM. The most well-known generalization of the Luce model is the
random utility model (RUM). In order to define the class of RUMs first let R be the
set of all possible linear orders (rankings) on X and π be a probability distribution over
rankings. π(�) represents the probability of � being realized as the preference. Given
a set of available alternatives A, the probability of an alternative x being chosen is
determined by the probability of a ranking for which x is at the top of A. Let R(a,A)
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be the set of rankings of X which rank a at the top of A, that is, R(a,A) := {�∈ R :
a � b for all b ∈ A\a}. The RUM stochastic choice associated with π is ρπ defined by:

ρπ(a|A) =
∑

�∈R(a,A)
π(�)

Our model is a RUM. Thus, although it is more general than Luce, it still fits
within the most classic paradigm of random choice.

Proposition 2. If ρ has a WL representation then it is a RUM.

Let (u,m) be a WL representation of ρ. We now show how to construct a RUM
representation for this ρ. First, we normalize u by subtracting Λ(X), the shadow price
for the grand set. Theorem 2 implies that (ũ,m) is also a WL representation of ρ,
where ũ = u−Λ(X). With this normalization, we have ρ(x|X) = ũ(x)m(x) for each x
and therefore ∑[ũ(x)m(x)] = 1.

Next, to each ranking of alternatives, with the n alternatives enumerated as x1 �
x2 � · · · � xn, our RUM representation assigns the following probability:

(5) π(�) = ũ(x1)m(x1) m(x2)
m(X \ x1)

m(x3)
m(X \ {x1, x2})

· · · m(xn)
m(xn) .

This construction mimics the construction of Theorem III.6 in Block and Marschak
(1959). It is then standard to show that ρ = ρπ.12

Equation (5) helps us to understand our model in terms of the relative frequency
of preference types in the population. Consider two types � and �′, who only differ
in terms of the first two alternatives, i.e., x1 � x2 and x2 �′ x1, otherwise �=�′. The
relative frequency of these two types is ũ(x1)[m(X\x2)]

ũ(x2)[m(X\x1)] . Now consider a similar comparison
whereby x2 � x3 and x3 �′ x2, otherwise �=�′. Then, the relative frequency of these
types is m(X\x1)−m(x3)

m(X\x1)−m(x2) . More generally, whenever we are comparing individuals who
have the same rankings except for a reversal between x and y and neither option is
ranked first, then only m-ratios are involved in the relative odds. Hence, the u-ratio
of items only occurs when we consider the relative odds of rankings that differ in their
best item.

In the Luce model, these relative frequencies are functions of m alone. To see this,
recall that Luce is a special case of the WL model with constant utility u(x) = ū. In

12This representation is not unique in general. See Turansick (2021) for details.
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this special case, ũ = ū−Λ(X) = 1/m(X), and the first term in equation (5) becomes

ũ(x1)m(x1) = m(x1)
m(X) .

Hence, the additional parameter in the WL model generalizes the Luce case only in
the relative probability of the top-ranked alternative.

The RUM is the reigning paradigm for discrete choice estimation in applied work.
However, in its most general formulation the RUM can sometimes prove too unruly
for practical use. With n alternatives, there are n! possible rankings (or types) in
a population. A probability distribution over types thus has n! − 1 free parameters,
and these cannot be identified from stochastic choice. In applications, practitioners
often employ special cases of RUM that (i) facilitate identification; (ii) provide more
tractable and interpretable functional forms; and (iii) provide sharper out-of-sample
predictions.

Figure 2 compares the number of free parameters in the WL model to the full
RUM and to some of the best known special cases of RUM in the literature. Each one
of these models attempts to provide a good balance between generality and practical
use. The classic Logit model is the most extreme example of tractability and simplicity,
with n − 1 free parameters. More general models like Nested Logit and Covariance
Probit provide more flexibility at the expense of having more parameters, being less
tractable, requiring more data for identification and producing less sharp predictions
out of sample.

Compared to some of these alternatives, the WL model is closer in terms of sim-
plicity and tractability to the classic logit model. In particular, WL, like logit, has a
closed-form formula for choice probabilities, and its number of parameters increases
linearly with the number of alternatives. In the next section, we show the WL adds
enough flexibility to accommodate a wide range of relevant empirical phenomena; in
Section 6, we also shows it performs extremely well in out-of-sample prediction.

5. Explaining Empirical Patterns

We now turn to demonstrating the explanatory power of our model. We want to
highlight how our model can better explain stylized facts and well-known empirical
patterns better than not just the multinomial logit approach, but also many other
widely used discrete choice models (i.e., any discrete choice model with unbounded and
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Figure 2. Comparing the WL to other special cases of RUM: number
of free parameters as a function of the number of choice alternatives.

continuous support for utility shocks— i.e. essentially all the discrete choice models
in the applied literature). Although the limitation of the multinomial logit model are
well known, a more recent literature has highlighted that even within a broader class
of discrete choice models there are common choice patterns can not be rationalized.

We will focus on demonstrating how letting some items have a relatively high u
and a relatively low m is key for the added explanatory power of our model (in many
ways, this is where our model is “most” distinct from other approaches that rely on a
single parameter).

Working through a series of examples, we demonstrate particular situations where
our model may represent a material improvement over existing approaches. We turn to
binary choice, cross-price substitution, changes in relative market shares, and market
shares in large market. We demonstrate that our model can better match at least
some of these patterns than many other leading contenders, including multinomial
logit, nested logit, generalized extreme value, random coefficients logit models, additive
peturbed utility, XXX: probit?. Recall that we have already discussed in the previous
section how our model naturally leads to mark-ups that converge to 0 as the market
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size grows (a prediction that multinomial logit, generalized extreme value, and random
coefficients logit models cannot generate).

Binary Choice and Stochastic Transitivity. Since Thurstone (1927), binary com-
parisons have been a key focus of research on random choice. If both alternatives are
chosen with strictly positive probability, a simple calculation, plus the substitution
U(x) = 2u(x)− 1

m(x) , demonstrates that in the WL model:

(6) ρ(x, y) =
u(x)− u(y) + 1

m(y)
1

m(x) + 1
m(y)

= 1
2 + 1

2
U(x)− U(y)

1
m(x) + 1

m(y)

In the literature, stochastic binary choices are often taken as indicating the strength
of preference among alternatives. Researchers have used various notions of stochastic
transitivity to evaluate the explanatory power of random choice models relative to
experimental data. Weak, moderate and strong transitivity are the most important
notions in the literature.

Weak transitivity is the mildest of these notions. It requires the relation �ρ,
defined by x �ρ y if and only if ρ(x, y) ≥ 1/2, to be transitive. Equation (6) shows
that ρ(x, y) ≥ 1/2 if and only if U(x) ≥ U(y). Thus, the WL model satisfies weak
transitivity and one can interpret U as the “implied” utility function in a setting with
binary choice sets.

In fact, the WL model satisfies a more demanding notion of moderate transitivity:
if ρ(x, y) ≥ 1/2 and ρ(y, z) ≥ 1/2, then ρ(x, z) ≥ min{ρ(x, y), ρ(y, z)}, where the last
inequality is strict, unless ρ(x, z) = ρ(x, y) = ρ(y, z). This again follows from equa-
tion (6), which shows the WL model belongs to the class of moderate utility models
(Halff (1976)). He and Natenzon (2024) show this class is characterized by moder-
ate transitivity and achieves a useful compromise between explanatory and predictive
power.

Crucially, the WL model does not conform to the most demanding notion of strong
transitivity. This postulate requires ρ(x, z) ≥ max{ρ(x, y), ρ(y, z)} when ρ(x, y) ≥ 1/2
and ρ(y, z) ≥ 1/2. The departure from strong transitivity distinguishes the binary
choices in the WL model from the classic logit model, as well as the APU model (Fu-
denberg et al., 2015). Relaxing strong transitivity gives the WL model the flexibility to
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accommodate widespread and systematic violations of this postulate found in empirical
settings (Mellers et al., 1992; Rieskamp et al., 2006).

Rieskamp et al. (2006) discusses how the most frequent violations of strong tran-
sitivity arise from settings where options present trade-offs across multiple dimensions.
Likewise, in the WL model these violations are captured by options that have opposite
ordinal ranking in utility and salience. To illustrate, consider two options x and y that
are equally likely to be chosen in a binary comparison: ρ(x, y) = 1/2. In this case,
strong transitivity requires that x and y have the same probability of being chosen
in a binary comparison against any third alternative z. From equation (6) we have
ρ(x, y) = 1/2 in the WL model if and only if

2u(x)− 1/m(x) = U(x) = U(y) = 2u(y)− 1/m(y).

Hence, x may have higher a utility u(x) > u(y) exactly offset by a lower salience
m(x) < m(y) in order to generate a fifty-fifty choice against y. This allows x to perform
differently from y against a third option z: while the numerators U(x) − U(z) =
U(y) − U(z) in equation (6) are the same, the denominators 1/m(x) + 1/m(z) >

1/m(y) + 1/m(z) are different. In particular, the more salient option y has a smaller
denominator and a more extreme choice probability against z than the less salient
option x. In other words, increased salience makes the decision-maker more sensitive
to the same U difference.

Polarization of tastes. Recall that the RUM describes choices by a population of
heterogeneous consumers, assigning probability π(�) to each strict preference � over
X. For a given RUM π, we define the degree of polarization of tastes for each option
x ∈ X, denoted by P (x, π), as the sum of the proportion of consumers that rank option
x as their first (best) option and as their last (worst) option among all the options.
Formally,

P (x, π) := π{�∈ R : x � y for all y 6= x}+ π{�∈ R : y � x for all y 6= x}.

Using results from Block and Marschak (1959), it is easy to show that, whenever
ρ = ρπ is a RUM, polarization is uniquely recovered from choice as follows:

P (x, π) = ρ(x|X) +
∑
A:x∈A

(−1)|A\{x}|ρ(x|A)
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In particular, while the RUM representation is not unique, we must have P (x, π) =
P (x, π′) whenever ρπ = ρπ′ . Hence, for a given RUM ρ our polarization measure is well
defined, hence we could write P (x, ρ) instead of P (x, π) whenever ρ belongs to RUM.

For example, when X = {x, y, z} has three options we have

P (x, π) = 1− [ρ(x, y)− ρ(x|{x, y, z})]− [ρ(x, z)− ρ(x|{x, y, z})]

which shows a direct relationship between the degree of polarization of tastes for x
and the size of the market share that x gains (loses) when other options are removed
(introduced). The first term in brackets is the change in x’s market share when z is
removed from X; it is precisely the proportion of consumers that rank z � x � y.
Likewise, the second term in brackets is the proportion of consumers that rank y �
x � z.

In the extreme case P (x, π) = 1, every consumer either loves or hates option x

—nobody ranks option x between y and z— and therefore x retains the same market
share throughout, that is, ρ(x, y) = ρ(x|{x, y, z}) = ρ(x, z).

In models where market shares depend on a single utility parameter, such as
logit, the extreme polarization case ρ(x, y) = ρ(x|{x, y, z}) = ρ(x, z) only occurs when
ρ(x, {x, y, z}) is either zero (everybody hates option x) or one (everybody loves op-
tion x), nothing in between. The WL model, however, is able to accommodate high
polarization with any value of ρ(x|{x, y, z}).

More generally, in a RUM the level of polarization may take any value in the range

(7) ρ(x|X) ≤ P (x, π) ≤ 1

where ρ(x|X) is the market share of option x in X. For example, when ρ(x|X) = 1/2,
one-half of the population ranks x as its first (best) option; and P (x, π) can vary from
1/2 to 1 according to how much probability π assigns to rankings where x is the worst
(last) option.

To see that the WL can flexibly accommodate the entire range of polarization
of tastes for an option x given by (7), let (u,m) be a WL representation of ρ. By
Theorem 2, we may subtract the shadow value Λ(X) from u, if necessary, so that,
without loss of generality, we have ∑y∈X u(y)m(y) = 1 and market shares given by
ρ(x|X) = u(x)m(x). Accordingly, the RUM π that represents ρ, which we explicitly
provided in equation (5), gives probability u(x)m(x) to rankings where x is the first
(best) option.
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The probability that x is ranked second,∑
y 6=x

u(y)m(y)m(x)
m(X \ y)

is increasing in m(x) but, crucially, it does not depend on u(x). When m(x) goes
to zero, this probability goes to zero; conversely, when m(x) goes to infinity, this
probability goes to ∑y 6=x u(y)m(y) = 1− u(x)m(x).

Thus, it is easy to see that an increase in the utility u(x) of an option x accompa-
nied by a proportional decrease in its saliencem(x) will (i) keep u(x)m(x) constant and
therefore x will maintain the same market share ρ(x|X) in the grand set; while at the
same time (ii) decrease the probability that x is ranked k-th for every k = 2, . . . , n− 1
and increase the polarization of tastes for option x. In particular, such proportional
changes in utility and salience allow the polarization of tastes for option x to cover the
entire range in (7) allowed by the RUM.

Duopoly Markets. Building on the insights of the previous two subsections, we now
demonstrate how our model can tractably model the impact of polarization in a equi-
librium duopoly environment where firms are price setters. Substantively, we show
that polarization of goods impacts prices and profits of firms differentially, and leads
to polarization of prices and profits. Thus, polarization has real impacts on observable
firm behavior. Methodologically, we show that our model can tractably be extended
to generate closed form analytic results in standard equilibrium frameworks.

Although our model can allow for a richer set of behaviors relative to e.g., multi-
nomial logit, we will demonstrate that it still retains the same analytic tractability.

We consider two firms i = {1, 2} who are engaging in price competition. We make
the substantive assumption that prices impact the u value of items. In particular, each
firm has a product with underlying attributes ũi,mi, marginal cost of production k

(which is the same across firms) and sets price pi. pi impacts ui so that ui = ũi − pi.
The alternative assumption, that pi impacts mi, generates somewhat counterfactual
results.13

Using Equation 6 we can then write profits for firm i as

13In fact, one can show that if we make this assumption that in equilibrium prices are set precisely
as if the consumers had logit demand. In other words, we cannot distinguish on the basis of relating
prices to underlying characteristics whether consumers have logit or have WL demand. Of course,
this means prices do not reflect u values, which seems somewhat odd.
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(pi − k)
ũi − pi − ũj + pj + 1

mj
1
mi

+ 1
mj

The first order condition for firm i is pi = 1
2 [ 1
mj

+ k + pj + ũi − ũj], which gives
equilibrium prices of

pi = 1
3

(
1
mi

+ 2
mj

+ 3k + ũi − ũj
)
.

Profits for firm i, πi can easily be found by substituting the price back into the
market share equation.

Not surprisingly, equilibrium prices reflect both the u and the m values of the
items (as well as the marginal cost of production). The simplest comparative statics
are clear from the equilibrium prices: pi is increasing in ui and decreasing in uj, while
pi is increasing in both mi and mj. The comparative statics with respect to u are
likely unsurprising. The reason that prices increase in both m’s is because as either
m increases, the firms have more initial market power — consumers are less likely to
move from a firm with high u to a firm with a low u; allowing them to increase prices.

Our main interest will focus on what happens as a good (here we focus on good
1) becomes more polarized. In particular,let z =

ũ1−ũ2+ 1
m2

1
m1

+ 1
m2

. z represents the market
share of good 1, if both the prices of both goods were equal (i.e. symmetric). We will
focus on situations where parameters adjust such that z would stay constant, and see
how firms’ pricing adjusts.

We can make good 1 more symmetric-price-polarizing by increasing ũ1 and de-
creasing m1 so that z is constant (i.e. the market shares of the two goods, if prices
were symmetric, would not change). Recall that this implies that in the RUM repre-
sentation, if prices are symmetric, more consumers place good 1 at the top and the
bottom of their preference ranking.

Proposition 3. Suppose good 1 becomes more symmetric-price-polarizing. Then prices
for both goods increase, and profits for both firms increase. However,p1− p2, as well as
π1 − π2, increases if and only if z ≥ 0.5.

Thus, prices and profits at both firms increase when good 1 becomes more symmetric-
price-polarizing. Given the micro-foundations the fact that p1 and π1 can increase
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when good 1 becomes more symmetric-price-polarizing is not surprising. Individuals
who prefer it to good 2 exhibit a “stronger” preference for it, allowing it to raise prices.
(in particular, an individual experiences lower benefits, and higher costs, of switching
choice to good 2). Of course, the converse is also true — individuals who prefer good
2 to good 1 also increase their strength of preference, allowing good 2 to raise prices
and profits.

Although both firms thus benefit from the increase in the quality of good 1, we can
also identify who benefits “more,” by looking at the difference in prices, and profits,
between firm 1 and firm 2. These difference increase with a symmetric-price-polarizing
change in good 1 if and only if good 1 initially held more market share. In other words,
making good 1 more polarizing differentially benefits firm 1 more if and only if good
1 was initially “better.” Notice that firm 1 initially had a higher price and profits if
and only if z > 1. In other words, more polarization exacerbates the initial differences
between firms.

Cross-Price Substitution Patterns. We next show that the WL model allows for
flexible patterns of cross-price substitution. It can thus be used in many situations
where other models of discrete choice impose restrictive assumptions on cross-price
substitution patterns, and so can fail to match observed data.

It is well known that in the multinomial logit model, the cross-price elasticity of
item x for item y does not depend on x, a condition that is at odds with both intuition
and reality: we would expect that cross-price effects to be much more variable. Like
other alternative models (such as nested logit, or random coefficients) our model can
allow for much more flexible patterns.

We build off the previous subsection and suppose that u(x) = ũ − p(x) and let
m(x), ũ(x) and the set of products, S, be fixed. Denote ρ(x) as the market share of x.
The cross price elasticity of x for y is

εx,y = p(y)m(y)m(x)
ρ(x)m(S)

Thus, the WL model allows for any given pair of items x and y to have a distinct
cross-price elasticity, which not only distinguishes it from multinomial logit but also
generalizations nested logit. The cross-price elasticities of x to y are increasing in the
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price of y as well as the salience of both x and y, but decreasing in the existing market
share of x.

That said, our model still imposes restrictions on relationships between pairs of
cross-price elasticities. In particular the ratio of εx,y to εx,z is equal to the ratio p(y)m(y)

p(z)m(z) ,
and so is independent of x. Similarly, the ratio of εx,y to εz,y is independent of y.

Demand with the Introduction of New Products. We now turn to explaining
how our model can more naturally capture the reaction of market shares to the intro-
duction of new products compared to a wide variety of discrete choice models where the
support of the error terms is continuous and unbounded above (including multinomial
logit).

We first describe an immediate implication of our model in the presence of changing
choice sets: larger choice sets benefit (in terms of choice probabilities) higher utility
items. For example, assume that two distinct products are receiving equal market
share in a binary choice set. That is, x 6= y and ρ(x, y) = 0.5. Then the product with
higher utility will get more market share compared the other alternative when a third
alternative is introduced. That is, ρ(x|{x, y, z}) ≥ ρ(y|{x, y, z}) whenever u(x) ≥ u(y).
This intuition extends more broadly, as the next result shows.

Proposition 4. Suppose u(x) ≥ u(y). Then ρ(x|S) ≥ ρ(y|S) implies ρ(x|S ∪ T ) ≥
ρ(y|S ∪ T ).

This proposition implies that the larger set is always beneficial for higher utility
products. Indeed it is possible that while a lower utility product enjoys a higher market
share in a smaller set (u(x) > u(y) and ρ(y|S) > ρ(x|S)), enlarging the product variety
favors the higher utility product (ρ(x|S ∪ T ) ≥ ρ(y|S ∪ T )).

One particular way of increasing the choice set is by adding replicas of existing
products. A replica only differs from the original product in terms of seemingly unim-
portant attributes, such as in the famous “red bus, blue bus” example (Debreu, 1960).
Assume two distinct products, a C (car) and BB (blue bus), are receiving equal market
share in a binary comparison. Introducing a third option RB (red bus) that closely
resembles BB does not alter the likelihood of choosing C. One can show that, in our
model, if we have u(C) ≥ u(BB) = u(RB), then the choice probability of the car could
be any number between 0.33 and 0.5 after introducing RB. While the lower limit is



27

the same as the prediction of the Luce model in this setting, the higher limit is in line
with Debreu’s argument that the likelihood of choosing C should stay the same.

We can also consider what happens when the initial outcomes do not have equal
utility. In line with our previous proposition, introducing a replica of a lower utility
product reduces the average utility in the market. This is beneficial for the higher
utility product due to a higher deviation from the weighted average.

Proposition 5. For all x, if ρ(x|S) > 0, and denoting Tn as S with n replicas of x,
then for all y ∈ S, limn→∞ ρ(y|Tn) > 0 if and only if u(y) > u(x).

The addition of lower utility items to a menu highlights a key implication of our
model compared to most models of discrete choice used in the literature. As Benkard
and Bajari (2001) note, almost all discrete choice models in markets with large numbers
of items predict that demand for any one item must converge to 0.14 In contrast, the WL
model can also allow for non-negligible market shares even as the number of products
grows infinitely large. Moreover, this can happen even when each of the additional
products attracts strictly positive probability.

Suppose the market is composed of a (fixed) set of “dominant” products and a
set of “inferior” products. In the WL model, as the number of inferior products in the
market grows, each additional inferior product is chosen with a positive probability,
but this probability goes to 0 with the number of inferior products. In contrast, the
dominant products continue to be chosen with a probability bounded strictly away from
0. To see that this can happen, suppose we initially consider choice set A = {x, y}
where ρ(x|A) > ρ(y|A) > 0. Moreover, suppose that u(x) > u(y) (so that y is an
inferior item). Now, we increase the choice set by adding replicas of y. Because y
was chosen with positive probability from A, we know that the replicas will also all
be chosen with positive probability. Thus, denoting Sn as x along with n replicas of
y, Λ(Sn) converges to u(y). In the limit ρ(x|Sn) will go to m(x)[u(x)− u(y)] which is
positive and bounded away from 0.15 Thus, our model can address situations where
the addition of new products does not necessarily displace dominant products.
14They show this is true, (focusing on the case of where there is an outside good present) in the
models where, in addition to mild technical conditions, the support of the error terms is continuous
and unbounded above. This not only nests the multinomial logit approach but almost all other widely
used approaches, such as nested logit and random coefficients.
15More generally, so long as m(x)[u(x) − Λ(Sn)] (the probability of choosing x from S) is bounded
away from 0 for all choice sets, even when many additional inferior products are added, then the
choice probably of x will be strictly positive.
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A distinct concern with many well-known discrete choice problems is in large
markets the share that any one item has must strictly positive. Thus, the introduction
of a new product cannot drive an existing product out of the market. In particular,
so long as the net utility of any item is positive, it must be chosen with positive
probability.16 Although this is a well-known property of the multinomial logit model,
Benkard and Bajari (2001) shows that under very mild assumptions (always satisfied
in applications of discrete choice models), this issue extends to any model where the
conditional error distributions have unbounded upper support and a continuous upper
tail.

The WL model can allow for new entrants to drive some, but not all, incumbent
items out of a market.17 Observe that even if u(x) − p(x) > 0, if it is small enough
we can construct choice sets T and S where T ⊂ S and where u(x) − p(x) − Λ(S) <
0 < u(x) − p(x) − Λ(T ). Thus x will be chosen with positive probability in T but
with 0 probability in S, despite it generating strictly positive net utility, conditional
on purchase. At the same time, there could also be a y ∈ T such that y is chosen with
positive probability in both T and S.

Markups and Advertising. We now show how the WL model can naturally gener-
ate intuitive results around markups, advertising, and the relationship between them.
Here, we extend the equilibrium setting of our duopoly subsection, allowing for many
firms, and for firms to both impact utility ui via choice of price, and affect salience mi

via advertising, but also assuming that firms are ex-ante symmetric (unlike the duopoly
example). Again, we show that the WL model allows for both tractable closed form
equilibrium solutions, which match stylized facts from the literature. Just as before, we
assume each firm i offers a single item, and that the item has an underlying exgenous
quality ũi. The firms can compete by setting prices, pi, and the total utility a consumer
gets from item i is then ui = ũi − pi. However, we also allow the firms to compete on
another margin: they can adjust the salience of items. In line with our interpretation
of m, we suppose that increasing mi reduces the mental friction required to purchase i.

16Many specifications of the multinomial logit model require that net utilities (i.e. gross utility less
price) are always positive (e.g. if the probability of choosing x is ev(x)−p(x)∑

y
ev(y)−p(y) ).

17However, our approach still puts some structure on zero probability choice — e.g., if firm x has
0 demand facing a set of competitors S, then adding additional competitors can never increase its
demand above 0.
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This can occur because, e.g., advertising raises the salience of an item.18 The flexibility
embodied in our model viam allows us to easily capture these novel considerations, like
competition on salience, outside of the typical one-parameter random utility models.19

In order to endogenize entry in the market, we allow for n firms (we refer to the
set of firms as N). We normalize the size of the market to 1. All firms face a marginal
cost of production k. We will think of mi as being proportional to the amount of
advertising — so that higher mi corresponds to more advertising. We will assume that
the cost of advertising mi is γ(mi) = gm2

i , where g is the marginal cost of increasing
advertising.

Given these assumptions, and letting Λ =
∑

j
mj(ũj−pj)−1∑

j
mj

, the profit function for
the firm is

(pi − k) (mi(ũi − pi − Λ))− gm2
i − hu2

i

We will focus on symmetric equilibria, and so will suppose that exogenous variables
are the same across all firms (i.e. that k is the same for all firms, and that ũiū for all
i), and that all firms play the same strategies. We initially suppose that n firms exist
in the market, but will later consider what happens when there is entry and exit. We
also suppose k is small enough so that an equilibrium with positive firms profits exists
for a fixed n.20

To solve, we take the first order conditions for pi and mi:

mi(ũi − pi − Λ) +M(pi − k)mi(−1− Λp(N)) = 0

(pi − k)((ũi − pi − Λ)−miΛm) + 2gmi = 0

Since we focus on symmetric equilibria, we assume pi = p and mi = m. Then we
have Λ = ũ−p− 1

mn
and Λp = − 1

n
, Λm = − 1

m2n2 . Substituting back into the first order
conditions, we obtain the following proposition.21

18As Bagwell (2007), points out, advertising has been seen by economists as having three approaches:
persuasive, informative, and complementary. Our model is closest in spirit with the informative
approach to advertising, where advertising helps raise “awareness” of a product.
19In fact, our model can also be extended to allow for endogenous choice of quality, ũ as well, while
still being able to generate closed form solutions for the equilibrium.
20Therefore, in a symmetric equilibrium all products will be purchased with positive probability.
21The equilibrium pi also characterizes the solution where mi is exogenous.
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Proposition 6. With n firms the symmetric equilibrium has the following solution:
pi = k + 1

mi(n−1) , mi = 1
(2gn2)

1
3
.

Our model has several interesting, and empirically relevant, implications. First,
suppose that the number of firms, n, is exogenous. As n gets large, markups pi − k,
must go to 0; which is in contrast to the equilibrium in the multinomial logit model.22

Thus, the WL captures the intuition that in markets with a large number of firms, no
firm has market power.

Second, we can also use the results to understand firm entry. Suppose that firms
face a fixed cost of entry f . Then firm profits are g

1
3 (n+1)

2
2
3 (n−1)n

4
3
. As the cost of advertising

grows (i.e. g increases), we see a larger number of firms (n increases). The increase in
g and n jointly cause mi to fall for all firms; implying that advertising falls. Because
mi falls and n increases, it isn’t immediately obvious what happens to markups. But
algebra (using the fact mi depends on n and g, and that the 0 profit condition allows
us to write g as a function of m), shows that mi(n − 1) is falling in the equilibrium
number of firms, implying price, and markups, increase.

Therefore, in equilibrium we observe price and markups being positively correlated
with the equilibrium number of firms n, but negatively correlated with the degree of
advertising (mi). Intuitively high advertising costs means firms cannot use advertising
as effectively to gain market share by increasing their salience. This in turn means that
firms compete less with each other on price. This means profits increase, and more
firms enter.

This result, a correlation between low prices and high levels of advertising, is
reminiscent of results that emerge in completely different contexts in Robert and Stahl
(1993) and Bagwell and Ramey (1994) (who find that advertising is greater when prices
are lower), and which have been extensively investigated in the literature (see Bagwell
(2007) for a relatively recent survey). Our result is also in line with the empirical
evidence in Syverson (2019), which indicates that reductions in market frictions (i.e.,
increases in mi) prompt customers to shift towards larger, lower-cost sellers, creating
higher market concentration but lower markups.

The microfoundations of our model also allow us to understand the degree to which
advertising is changes welfare (as in a large literature beginning with Butters (1977)).
22As Benkard and Bajari (2001) point out, this issues applies more generally to GEV and random
coefficients logit models, although probit models can avoid these implications.



31

In our setting, advertising, by reducing the mental frictions involved in thinking about,
and purchasing, a particular item, can generate consumer surplus (related mechanisms
are developed in other papers, e.g., by Grossman and Shapiro (1984) in a horizontally
differentiated market). Moreover, in equilibrium, because increases in advertising are
associated with reductions in advertising costs, they are also correlated with reductions
in markups, generating an additional channel of welfare gains. Thus, our model can
directly link the amount of advertising in the market to consumer surplus via changes
both in price and the mental costs associated with choice.

6. Simulations

In this section, we turn to showing when, and how, the WL model does well at
predicting choice. We compare our models to other widely used approaches and aim to
provide two insights. First, our model has transparent identification, is computationally
tractable, and has fewer degrees of freedom relative to some well-known alternative
specifications. Second, our model performs well at out-of-sample prediction relative
to many alternatives. We show this in two ways. First, it outperforms any of the
alternative approaches we consider when a subset of the outcomes are dominant (i.e.,
they tend to maintain market share in larger markets) compared to others. Although
our model may not perform as well as other models, such as correlated probit, in other
situations, because of its computational simplicity, and far fewer number of parameters,
it still may be preferred.

Setting. The set of choice alternatives is X = {1, 2, 3, 4}. We choose n = 4 choice
options because it is the smallest number that allows enough choice menu variation
to identify the parameters of all the models that we consider, and also allows us to
carry out prediction exercises with both increases in the number of options (entry) and
decreases in the number of options (exit/mergers).

Data generating process. We simulate choice data from heterogeneous populations
of standard rational consumers. Each consumer in each population is described by
strict ranking � over the choice options. With n = 4 options, a population is divided
into n! = 24 possible types, that is, strict rankings over X. As before, R denotes the
set of types. A population is a probability π over R, identified with an element of the
23-dimensional simplex ∆(R).
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P (3, π) 1− P (2, π)

P (2, π)

2 2 3 3
1 4 1 4
4 1 4 1
3 3 2 2

2 2 2 2 1 1 4 4
1 4 3 3 3 4 3 1
3 3 1 4 4 3 1 3
4 1 4 1 2 2 2 2

1− P (2, π)

3 3 3 3 1 1 4 4
1 4 2 2 2 4 2 1
2 2 1 4 4 2 1 2
4 1 4 1 3 3 3 3

1 1 4 4
2 3 2 3
3 2 3 2
4 4 1 1

Table 1. A population of consumers is a probability π over the 24
preference types displayed. Each preference ranking is shown with the
best option at the top and the worst option at the bottom. P (2, π), our
measure of polarization of tastes for option 2, is the probability given by
π to types in the first row of the table; while P (3, π) is the probability
given by π to types in the first column.

We slice ∆(R) according to the level of extremeness or polarization of the tastes
in the population. Table 1 categorizes the 24 types in R according to taste polarization
for options 2 and 3. Each preference is represented as a column vector where the best
option is located at the top and the worst option is located at the bottom. The degree
of polarization of tastes for the second option, P (2, π), is the probability given by π to
rankings in the top row, while P (3, π) is the probability given by π to rankings in the
left column.

We cover the entire range of possible levels of polarization P (2, π) and P (3, π) in
a discrete grid {1/100, . . . , 99/100}2. To draw a random population conditional on a
fixed level of P (2, π) and P (3, π), we mix independent uniform draws over the rankings
from each cell in Table 1. We treat the events that options 2 and 3 are polarizing as
independent: the weight given to the draw from the uniform distribution over the
rankings in the first column and first row is P (2, π)× P (3, π), and so on.

Note that we can freely vary the level of polarization of tastes for up to two options
across ∆(R), but not three. For example, when P (2, π) and P (3, π) are close to one,
π gives probability close to one to the first cell in the Table, and that implies both
P (1, π) and P (4, π) must be close to zero. Intuitively, we can only have two “poles”
when tastes are highly polarized.
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Leave-one-out prediction. Our setup with n = 4 choice options has six binary
choice problems {1, 2}, {1, 3}, {1, 4}, {2, 3}, {2, 4}, {3, 4}, four ternary choice problems
{1, 2, 3}, {1, 2, 4}, {1, 3, 4}, {2, 3, 4} and one quaternary choice problem {1, 2, 3, 4}. We
perform three leave-one-out prediction exercises: fit each model to binary and ternary
to predict quaternary choice data; fit each model to binary and quaternary to predict
ternary choice data; and fit each model to ternary and quaternary to predict binary
choice data.

Comparison models. We compare the predictions of the WL model to three well-
known and often used discrete choice workhorse models in the literature: the classic
multinomial Logit, the Nested Logit and the Covariance Probit, described in any stan-
dard discrete choice estimation textbook, e.g., Train (2009). Figure 2 shows when
n = 4 Logit has three parameters to be estimated, WL has six, Probit has eight, and
Nested Logit has ten. We review how each model is parameterized in Appendix D.

Estimation. Each draw from the data generating process described above produces
a stochastic choice function ρ over X. We estimate the parameters θ of each model p
by maximizing the log likelihood:

max
θ

∑
i,A

ρ(i, A) ln p(i, A, θ)

with we sum over each option i and each in-sample menu A. The maximization above
is equivalent to drawing N data-point choices from each in-sample menu A according
to ρ and taking the limit N → ∞. This allows us to cleanly compare the flexibility
and prediction power of different models without interference from the finite-sample
properties of any particular estimator.

Computation. We estimated the parameters of each model in the 3 leave-one-out
exercises, for 9,801 polarization levels, and with 1,000 iid draws for each polarization
level. Taking advantage of the symmetry between the demand from a population
with polarization levels (P (2, π), P (3, π)) and the demand from a population with the
reverse levels (P (3, π), P (2, π)), we reduced the number of estimations to 3× 4, 950×
1, 000 = 14, 850, 000 for each model. Maximum likelihood was obtained with off-the-
shelf optimization routines in Mathematica software. Estimating the parameters for
WL, Logit and Nested Logit took roughly a week on a (vintage 2023) desktop computer.
Estimating the Covariance Probit, however, took several weeks running in parallel in
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Washington University’s RIS cluster computer and Amazon’s Elastic Cloud Computing
cluster. Replication code is available as an online appendix.

Results. For each fixed polarization level P (i, π) and P (j, π) for two options (which
we label i and j throughout), we compare the empirical distribution of market share
prediction errors for each model. We use several standard prediction metrics to compare
the accuracy of the predictions: the median absolute error (Figures 5 and 6), mean
absolute error (Appendix E), root mean square error (Appendix E) and, in addition,
we simply compare the proportion of datasets in which the WL model makes a smaller
prediction error than each alternative model (Figures 3 and 4).

The top row in Figure 3 shows how often the WL model makes a more accurate
prediction than Logit. The left panel shows results for predicting binary choice, the
middle panel shows ternary choice, and the right panel shows quaternary choice pre-
diction. WL makes more accurate predictions (denoted by a light blue or dark blue
color) for almost all polarization levels in the three prediction exercises. Logit only
becomes equally likely or slightly more likely to make a better prediction (denoted by
a white or light yellow color) in a small region towards the center of the graph, when
polarization levels are fixed close to 1/2. The advantages of the WL over logit are the
most pronounced for predicting quaternary choice.

The middle row of Figure 3 shows that the Nested Logit model performs only
slightly better than Logit against the WL model. The improvement is most noticeable
for quaternary choice, when the polarization for one option is fixed closed to 1/2.

The bottom row of Figure 3 compares the WL with the covariance Probit model.
WL does better at ternary choice prediction (middle panel) while probit does better at
quaternary choice prediction (right panel). For binary choice, WL outperforms probit
for extreme levels of polarization (close to zero or close to one for both options) and
when polarization has intermediate levels for both options.

Figure 4 shows the same metric as Figure 3 along the diagonal P (i, π) = P (j, π)
in which options i, j have the same level of taste polarization. This allows stacking the
performance for binary, ternary and quaternary choice predictions into a single panel,
facilitating their comparison. The WL performs the best for polarization levels close to
zero and close to one, where it outperforms all the other models in binary and ternary
choice prediction, and is only outperformed by the probit model in quaternary choice
predictions.
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Figure 5 depicts the median absolute prediction error in each prediction exercise
for the WL (top row), Logit (second row), Nested Logit (third row) and Probit (last
row). For the Logit model, the left panel (binary choice prediction) and right panel
(quaternary choice prediction) show significant areas of red, denoting a median error
of 0.10 or larger in market share prediction. Nested Logit again shows a moderate
improvement over Logit. WL and Probit have more modest errors across the three
prediction exercises and across almost all levels of polarization.

To more clearly see the comparison across models, Figure 5 plots median absolute
prediction errors across the diagonal P (i, π) = P (j, π) in which options i, j have the
same level of taste polarization. Logit and Nested Logit only display the lowest errors
in binary choice prediction, and for a narrow range of polarization levels around 1/2.
In all other cases, either WL or Probit have smaller prediction errors.

WL has the lowest median absolute prediction errors throughout in the case of
predicting ternary choice data, shown in the middle panel of Figure 5. Probit has the
lowest prediction errors throughout for quaternary choice (bottom panel), thought WL
is a very close contender in that case. It is noteworthy that for polarization levels of
exactly 1/2 all four models have the same median absolute errors.

In sum, these results show that taste polarization is an important measure to track
the prediction performance of the WL model versus the alternatives. When polarization
is close to the middle value of 1/2, all models become close in prediction performance
including the simplest classic Logit model. Classic logit becomes heavily disadvantaged
once polarization moves away from 1/2. Nested Logit improves prediction over Logit
somewhat, but the WL and the Probit model clearly perform in a class of their own.
While the WL does not clearly dominate the Probit model, and performs slightly
worse in some cases, it could prove a better model to use given it’s smaller number of
parameters, closed form choice probabilities, and easy interpretation.

7. Conclusion

This paper has introduced a new model of stochastic choice: the weighted linear
model of discrete choice. The choice probabilities of any given product depend on two
dimensions, the utility of an item, and the salience of an item. The model sits at the
intersection of the classic models of random utility and models of deliberate stochastic
choice.
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Figure 3. Leave-one-out prediction comparison between the WL model
and Logit, Nested Logit and Probit. The axes display the fixed level of
preference polarization for two different options. The color scale repre-
sents the proportion of the simulated demand systems in which the WL
model makes a closer market share prediction than the other model.
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Figure 4. Leave-one-out prediction comparison between the WL model
and Logit, Nested Logit and Probit. The horizontal axis displays the
fixed level of preference polarization set equal for two options. The ver-
tical axis displays the proportion of the simulated demand systems in
which the WL model makes a closer market share prediction than the
other model.
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for WL, Logit, Nested Logit and Probit. The axes display the fixed level
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The weighted linear model represents a generalization of the classic model of Luce,
and, as such, provides more explanatory power. It is closely related to well-known
models in which demand is linear in the utility differences between products. The
importance of salience for choice has been recognized by researchers (not just in eco-
nomics but also marketing, cognitive science and psychology). Our model presents one
way of incorporating such considerations. The WL also overcomes many potentially
concerning implications of other random/discrete choice approaches used to capture
consumer behavior in market settings. At the same time, it is quite tractable. The
model lends itself naturally to describing consumers who experience some frictions in
being able to choose the best item (whether they be physical or attentional frictions).
When used in models of strategic firm interactions, it can generate intuitive closed
form solutions that shed light on advertising, quality choice, and the number of firms
serving a market.

Our hope is that the flexibility of our model, its intuitive approach to choice as
depending on both utility and salience, and its tractability can help economists better
understand market interactions between firms and consumers. In particular, the fact
that our model allows for intuitive empirical patterns, such as flexible patterns of
cross-price substitution patterns, or the existence of dominant market shares in large
markets, can lead to new insights in many markets where these kinds of behavior need
to be captured. We also think that empirical work geared towards understanding which
kind of product attributes affect utility versus salience (e.g., does advertising increase
the perceived utility of an item versus changing the cost of choosing it) could help shed
useful insights into the structure of consumer choice.
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Appendix A. Proofs

A.1. Proof of Proposition 1.

Proof. Our goal is to establish a method whereby, given u, m, and S ⊆ X, we can
find the condition to guarantee all alternatives chosen with positive probability in the
solution to the problem (1). We start by proving a useful lemma.

Lemma 1. Λ(S) T u(x) if and only if Λ(S \ x) T Λ(S).

Proof. ∑
y∈S u(y)m(y)− 1

m(S) T u(x)∑
y∈S

u(y)m(y)− 1 T u(x)m(S)

m(x)

1−
∑
y∈S

u(y)m(y)

 S −u(x)m(x)m(S)

∑
y∈S

u(y)m(y)− 1

 (m(S)−m(x)) S m(S)

∑
y∈S

u(y)m(y)− u(x)m(x)− 1


∑
y∈S

u(y)m(y)− 1

m(S \ x) S m(S)

 ∑
y∈S\x

u(y)m(y)− 1


Λ(S) S Λ(S \ x)

�

Since ρ(a|X) = m(x)(u(x)−Λ(X)), we have u(x) > Λ(X) for all x given ρ(x|X) >
0. To show the other direction, Lemma 1 shows that if u(x) is greater than the Lagrange
multiplier for any set S, then the elimination of x from the set lowers the Lagrange
multiplier for S \ x. Hence if we guarantee an interior solution for the grand set
(u(x) > Λ(X) for all x), we have an interior solution for all sets. �

A.2. Proof of Theorem 2.

Proof. Observe that for any S,

argmax
p∈∆(S)

∑
x∈S

(
ρ(x)(au(x)+b)− a

2m(x)ρ(x)2
)

= argmax
p∈∆(S)

a[
∑
x∈S

(
ρ(x)u(x)− 1

2m(x)ρ(x)2
)
]+b,

the result follows as strictly monotone transformations of objective functions preserve
maxima.
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To show the other way, take two different representations of ρ: (u,m) and (v, n).
For any arbitrary representation ρ, (u,m), we can find a(u,m) > 0 and b(u,m) such that
u′ = a(u,m)u+ b(u,m) and m′ = m

a(u,m)
such that∑

x∈X
(u′(x)m′(x)) = 1 and

∑
x∈X

m′(x) = 1

For such representations, we must have

ρ(x|X) = m′(x)
m′(X) +m′(x)[u′(x)− ū′m′(X)] = m′(x) +m′(x)[u′(x)− 1] = m′(x)u′(x)

Hence, u′(x)m′(x) = v′(x)n′(x) for all x, call this condition (∗).
Note that ρ(x|X) > 0 for all x by the condition (u(x) > Λ(X) for all x). Hence

u′(x), v′(x) 6= 0 for all x.
Moreover, since (u′,m′) and (v′, n′) represents ρ, we must have

m′(x)
m′(S) +m′(x)[u′(x)− ū′m′(S)] = n′(x)

n′(S) + n′(x)[v′(x)− v̄′n′(S)]

Since (∗),
m′(x)
m′(S) −m

′(x)ū′m′(S) = n′(x)
n′(S) − n

′(x)v̄′n′(S)

m′(x)
m′(S) [1−

∑
x∈S

u′(x)m′(x)] = n′(x)
n′(S) [1−

∑
x∈S

v′(x)n′(x)]

Since u′, v′ 6= 0 and m′, n′ > 0, then ∑x∈X\y(u′(x)m′(x)) 6= 1. Let Sz denote X \z.
Then we must have

m′(x)
m′(Sy)

= n′(x)
n′(Sy)

for all x ∈ Sy

Therefore,
m′(x)
n′(x) = 1−m′(y)

1− n′(y)
which implies

m′(x)− n′(x) = m′(x)n′(y)− n′(x)m′(y)

Similarly, we have
m′(y)
n′(y) = 1−m′(x)

1− n′(x)
which yields

m′(y)− n′(y) = m′(x)n′(y)− n′(x)m′(y)
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Therefore, we have m′(x) − n′(x) = m′(y) − n′(y) for all x, y. If m′(x) − n′(x) 6= 0
then we get a contradiction, so m′ = n′. This proves that u′ = v′. This implies
that m(x) = a(u,m)

a(v,n)
n(x) and u(x) = a(v,n)

a(u,m)
v(x) + b(v,n)−b(u,m)

a(u,m)
. By letting a = a(v,n)

a(u,m)
and

b = b(v,n)−b(u,m)
a(u,m)

, we get the desired result. �

A.3. Proof of Theorem 1.

Proof. Let D be the domain of stochastic choice functions containing all menus with
size 2 and 3. Necessity of the axioms is straightforward.

For sufficiency, select any y∗ ∈ X and define binary sets Bz := {z, y∗} and ternary
sets Tzz′ := {z, z′, y∗}, which belong to our domain. We use these sets to define

m(x) := d(x|Bx, Txz)
d(y∗|Bx, Txz)

= d(x|{x, y∗}, {x, y∗, z})
d(y∗|{x, y∗}, {x, y∗, z})

for some z different from x and y∗. First note that Axiom 2 implies that both the
denominator and the numerator are strictly positive. Hence, the ratio is well-defined
and positive. Axiom 3 implies that d(x|S, T )d(y|S, T ′) = d(y|S, T )d(x|S, T ′) for all T
and T ′ such that x, y ∈ S ∩ T ∩ T ′, hence the choice of z does not alter the ratio.
Therefore, these observations guarantee that m is well-defined and strictly positive for
any x. Notice that m(y∗) = 1. Since m is non-zero, we can define c(x) := 1

m(x) .

Claim 1. For all S 6= T ∈ D and x, y ∈ S ∩ T , c(x)d(x|S, T ) = c(y)d(y|S, T ).

Proof. Consider distinct S, T ∈ D and x, y ∈ S ∩ T distinct from y∗. By Axiom
3, d(x|S, T )d(y|By, Tyz)d(y∗|Bx, Txy) = d(y|S, T )d(y∗|By, Tyz)d(x|Bx, Txy). Hence, by
Axiom 2, we get the desired result: c(x)d(x|S, T ) = c(y)d(y|S, T ). �

We now recursively define λ for every element in D by the following formula
Λ(S) := c(x)d(x|T, S) + Λ(T )

Given S, to define Λ(S), we first must find a set T such that S ∩ T 6= ∅. Hence, in the
first step, we define λ for all S with y∗ as a member. Denote this set by A0 := {S ∈
D | y∗ ∈ S 6= ∅}. Then S ∈ A0, Λ(S) is defined as 1 − ρ(y∗|S). In the second step,
we define λ for the rest of the subsets, denoted by A1 := {S ∈ D | y∗ /∈ S 6= ∅}. Take
S ∈ A1 and find T ∈ A0 such that S ∩T 6= ∅, and define Λ(S) := c(x)d(x|T, S) + Λ(T )
for some x in S ∩ T .

Claim 2. λ is well-defined and Λ(S)+c(x)ρ(x|S) = Λ(T )+c(x)ρ(x|T ) for all x ∈ S∩T .

Proof. We need to show that λ is well-defined (i.e., Λ(S) is independent of the choice
of x and T ). By Claim 1, Λ(S) is independent of the choice of x for a given T . Now
we establish independence of T . Take two overlapping sets S and T . If S, T ∈ A0, by
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definition we get Λ(S) = c(y∗)d(y∗|T, S) + Λ(T ) (note that c(y∗) = 1). By Claim 1,
(8) Λ(S) = c(x)d(x|T, S) + Λ(T ) for all x ∈ S ∩ T
This establishes that the equation holds on A0. Now take S ∈ A1 and assume that
T, T ′ ∈ A0 such that x ∈ S ∩ T, x′ ∈ S ∩ T ′. Then

Λ(S) = c(x)d(x|T, S) + Λ(T )
= c(x)d(x|T, S) + c(x)d(x|{x, x′, y∗}, T ) + λ({x, x′, y∗}) by Eq (8)
= c(x)d(x|{x, x′, y∗}, S) + λ({x, x′, y∗})
= c(x′)d(x′|{x, x′, y∗}, S) + λ({x, x′, y∗}) by Claim 1
= c(x′)d(x′|T ′, S) + c(x′)d(x′|{x, x′, y∗}, T ′) + λ({x, x′, y∗})
= c(x′)d(x′|T ′, S) + λ(T ′) by Eq (8)

This establishes that λ is well-defined on A0 ∪A1. Finally, we must show that Λ(S) =
c(x)d(x|T, S) + Λ(T ) holds for S, T ∈ A1. Let x be an alternative in S ∩T . Since Bx ∈
A0, we have Λ(S) = c(x)d(x|Bx, S) + λ(Bx) and Λ(T ) = c(x)d(x|Bx, T ) + λ(Bx). Sub-
tracting these two equations yields Λ(S)− Λ(T ) = c(x)d(x|Bx, S)− c(x)d(x|Bx, T ) =
c(x)d(x|T, S). �

Now define u(x) := c(x)ρ(x|S) + Λ(S). u is well-defined by Claim 2. Note that
Λ(S) < u(x) for all x ∈ S ∈ D since c(x)ρ(x|S) > 0. Then we have ρ(x|S) =
m(x)[u(x)−Λ(S)] where Λ(S) = ūm(S)− 1

m(S) . Therefore, (u,m) is a WL representation
of ρ. �

A.4. Proof of Proposition 2.

Proof. Let (u,m) be a WL representation of ρ. First, we normalize u by subtracting
the shadow price for the grand set. Theorem 2 implies that (ũ,m) is also a WL
representation of ρ, where ũ = u−Λ(X). This normalization implies that ∑[ũ(x)m(x)]
is equal to 1 and ρ(x|X) = ũ(x)m(x), which we define as w(x). Then we have

ρ(x|S) = w(x) + (1− w(S))m(x)
m(S) .

Let us write the BM polynomial for this model: ∑S′:S⊆S′(−1)|S′\S|ρ(x|S). Non-
negativity is obvious for S = X. Assume S 6= X, then the BM polynomial for (x, S)
is ∑

S′:S⊆S′
(−1)|S′\S|w(X \ S ′)

m(S ′) m(x).
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Now let us rewrite this, indexing by elements not in S. Then we get
∑
z /∈S

w(z)
 ∑
S⊆S′⊆X\{z}

m(x)
m(S ′)(−1)|S′\S|


Observe the term in parentheses for a given z:∑

S⊆S′⊆X\{z}

m(x)
m(S ′)(−1)|S′\S|

Observe that this expression is exactly the BM-polynomial for (x, S), given a Luce
rule defined on X\{z} with weightsm. Therefore, this expression is non-negative given
that Luce has RUM representation. Since w(z) > 0 for all z ∈ X, we obtain∑

S′:S⊆S′

w(X \ S ′)
m(S ′) m(x)(−1)|S′\S| ≥ 0

Thus the WL model is RUM. �

A.5. Proof of Proposition 3.

Proof. Because z =
ũ1−ũ2+ 1

m2
1
m1

+ 1
m2

, then 1
m1

=
(1−z) 1

m2
+ũ1−ũ2

z
.

We can substitute this back into our original equilibrium pricing equations, giving
p1 =

1
m2

+ũ1−ũ2− z
m2

+3kz+ũ1z−ũ2σ1

3z and p2 =
2
m2

+2ũ1−2ũ2− z
m2

+3kz−ũ1z+ũ2z

3z . The derivative of
p1 and p2 with respect to ũ1 is then 1+z

3z and 2−z
3z respectively. Notice that these are

both positive since z ∈ [0, 1]. Moreover, the difference between them is 2z−1
3z which is

positive if and only if z ≥ 0.5.

Profits, as a function of z for Firms 1 and 2 are
( 1
m2

+ũ1−ũ2)(1+z)2

9z and
( 1
m2

+ũ1−ũ2)(z−2)2

9z

respectively. The difference in profits π1 − π2 is then
( 1
m2

+ũi−ũ2)(−1+2z)
3z

Notice that, not surprisingly, firm 1 has higher profits than firm 2 only if z is
greater than 1. More interestingly, notice that the derivative of this with respect to ũ1
is 2z−1

3z , from which the result follows. �

A.6. Proof of Proposition 4.

Proof. We prove this claim by contradiction. Assume ρ(x|S) ≥ ρ(y|S) > 0 and ρ(x|S∪
T ) < ρ(y|S ∪ T ). Then we have

u(x)− Λ(S)
u(y)− Λ(S) ≥

m(y)
m(x) >

u(x)− Λ(S ∪ T )
u(y)− Λ(S ∪ T )

Then
u(y)(Λ(S ∪ T )− Λ(S)) > u(x)(Λ(S ∪ T )− Λ(S))
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Since Λ is increasing, then Λ(S ∪ T ) − Λ(S) > 0, which implies that u(y) > u(x), a
contradiction. �

A.7. Proof of Proposition 5.

Proof. Since ρ(x|S) > 0, we have u(x) > Λ(S). Since Λ(Tn) approaches to u(x)
from below, as n goes to infinity, for all y ∈ S, ρ(y|Tn) = m(y)[u(y) − Λ(Tn)] >
m(y)[u(y)− u(x)] > 0 if and only if u(y) > u(x). �
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Appendix B. Allowing Zero Probabilities

Our goal is to establish a method whereby, given u, m, and S ⊆ X, we can recover
the alternatives chosen with positive probability in the solution to the problem (1).

Observe first that Λ can be explicitly calculated by summing across the alterna-
tives that are chosen with positive probabilities. We first denote the set of alterna-
tives chosen with positive probability in S by suppρ(S). That is, suppρ(S) := {x ∈
S| ρ(x|S) > 0}. Summing across elements of suppρ(S), we must have Λ(suppρ(S)) =∑

y∈suppρ(S) u(y)m(y)−1∑
y∈suppρ(S) m(y) .

We now describe a simple algorithm that outputs the support for a given set of
parameters u and m and budget S. The following result describes the procedure.
Intuitively, what we do is for any given set S, we find a subset Q such that if elements
of Q are the only ones chosen with positive probability, then given the implied Λ(Q),
for all y ∈ Q, u(y) ≥ Λ(Q), and for all z ∈ S\Q u(z) ≤ Λ(Q).

Proposition 7. For all u, m > 0, and S ⊆ X, there is a unique ∅ 6= Q ⊆ S for which
Q = {x ∈ S| Λ(Q) < u(x)}. Furthermore, by setting S1 := S and defining recursively
Sk+1 := {x ∈ Sk| Λ(Sk) < u(x)}, there is a finite K∗ for which Q = SK∗, so that for
all k ≥ K∗, Q = Sk.

Proof. Define MS ≡ arg maxx∈S u(x). Observe that for any ∅ 6= T ⊆ S, and any
x ∈ MS, we have Λ(T ) < u(x). Initialize S1 := S, and observe MS ⊆ S1. Given
MS ⊆ Sk, define Sk+1 := {x ∈ Sk| Λ(Sk) < u(x)}. First, observe that MS ⊆ Sk+1.
Second, observe that if x ∈ Sk\Sk+1, it follows that u(x) ≤ Λ(Sk), from which we obtain
(using repeated applications of Lemma 1) that Λ(Sk) ≤ Λ(Sk+1). DefineQ(S) := ⋂

k Sk;
clearly MS ⊆ Q(S). We claim that x ∈ Q(S) if and only if u(x) > Λ(Q(S)). By
finiteness, there is K∗ for which Q(S) = SK∗ = Sk for all k ≥ K∗. Suppose that
u(x) > Λ(Q(S)); then u(x) > Λ(SK∗) and so x ∈ SK∗+1 = Q(S). Conversely, suppose
that x ∈ Q(S); then x ∈ SK∗+1, so that u(x) > Λ(SK∗) = Λ(Q(S)).

Next, we claim that Q is unique. Assume by means of contradiction that there
exist two distinct subsets of S, say T1 and T2, such that

T1 = {x ∈ S| Λ(T1) < u(x)} and T2 = {x ∈ S| Λ(T2) < u(x)}.
Without any loss of generality, assume x ∈ T1 \ T2. This implies that Λ(T1) < u(x) ≤
Λ(T2). Hence, T2 is a proper subset of T1. Since u(z) > Λ(T1) for all z ∈ T1 \ T2, by
repeated applications of Lemma 1, Λ(T2) ≤ Λ(T1), a contradiction. �

Accordingly, let us define Q(S) to be the unique Q ⊆ S for which Q = {x ∈
S : Λ(Q) < u(x)}. As demonstrated, Q(S) can be explicitly constructed from the
primitives u, m and S via an iterative algorithm. Obviously, this algorithm must
terminate in at most |S| − 1 steps.
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B.1. Weak WL Model. Our characterization provided by Theorem 1 is based on the
positivity assumption. Since our general formulation in equation (1) allows for zero
probability choice, we show how to extend our characterization to this general case.23

We first define a weaker version of our model allowing alternatives chosen with zero
probability.

Definition 2. A stochastic choice ρ function is a weak WL stochastic choice (WWLSC)
if there exist a utility function u : X → R and a salience function m : X → R++ such
that for all S ⊂ X

ρ(x|S) =
{
m(x)u(x)−m(x)Λ(Q(S)) x ∈ Q(S)
0 x /∈ Q(S)

where Q(A) is the unique subset of A satisfying Q(A) = {x ∈ A| Λ(Q(A)) < u(x)}
and Λ(A) =

(∑
y∈A u(y)m(y)− 1

)
/
∑
y∈Am(y) .

It should be clear from the results above that ρ is a WWLSC with representation
(u,m) if and only if ρ is the solution to Equation (1) with parameters (u,m). Hence
WWLSC captures the full range of solutions to Equation (1).

B.2. Characterization. We now provide two characterizations when zero probabili-
ties are allowed. These characterizations differ in terms of how much they relax positiv-
ity. In the first one, we assume that positivity holds for menus with size 2 and 3. This
will capture the example given at the end of Section 3. In Appendix B.3, we provide
another characterization which entirely drops the positivity requirement. This charac-
terization is based on linear programming duality. We provide both characterizations
because, while the second is more general, the axioms used in the first characterization
have a simpler behavioral interpretation, and as such, are useful for gaining intuition
for the model.

For the first characterization, we modify our original axioms. The next axiom
requires that the positivity holds for pairs and triples. In addition, the axiom also states
that the strict regularity holds for these sets. Hence, the next axiom is a weakening of
both Axiom 1 and Axiom 2.

Axiom 1∗. For all binary and ternary set S, ρ(x|S) > 0 and ρ(x|S) < ρ(x|S \ y).

The next axiom requires that the choice probabilities are not affected by removing
alternative chosen with zero probability. If there is an alternative that is chosen with
zero probability, removing it should not change the choice probabilities of the remaining
items. This axiom is novel.
23In classical demand theory, demand with nonnegativity constraints for quadratic preferences is
studied in Wegge (1968). In decision theory, Ahumada and Ulku (2018), Echenique and Saito (2018),
Horan (2021), Matějka and McKay (2015) propose discrete choice models that accommodate zero
probability choice.
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Axiom Z. For all S, S \ x ∈ D, if ρ(x|S) = 0 and z ∈ S \ x then ρ(z|S) = ρ(z|S \ x).

The next axiom is a version of Axiom 3. There are two differences. First, without
positivity, we explicitly assume that some choice probabilities are positive. Second, the
implication of the axiom is weaker now. The equality of Axiom 3 is replaced by an
inequality. Other than these difference the intuition of the axiom stays the same: the
ratio of relative levels of choice are important rather than the absolute levels.

Axiom 3∗. For any list of three quadruples ((x1, x2, S1, T1), (x2, x3, S2, T2), (x3, x4, S3, T3))
such that x4 = x1, xi, xi+1 ∈ Si∩Ti and ρ(x1|S1), ρ(x2|T1) > 0 and ρ(xi|Ai), ρ(xi+1|Ai) >
0 for all i ∈ {2, 3} and Ai ∈ {Si, Ti},

d(x1|S1, T1)d(x2|S2, T2)d(x3|S3, T3) ≤ d(x2|S1, T1)d(x3|S2, T2)d(x1|S3, T3)

Our first characterization in is as follows.

Theorem 3. Suppose D contains all menus with size 2 and 3. Then a stochastic choice
function ρ has a weak WL representation (u, c) on D such that Λ(S) < minx∈Su(x) for
all |S| ≤ 3 if and only if it satisfies Axiom 1∗, 3∗ and Axiom Z.

This theorem also enjoys the same uniqueness results observed in Theorem 1.

Proof. Necessity of the axioms is straightforward. We now illustrate sufficiency.
Since the domain of stochastic choice functions contains all menus with size 2 and

3 and positivity holds for these sets, we can define c the same way as we did in the
proof of Theorem 1. That is,

c(x) := d(y∗|Bx, Txz)
d(x|Bx, Txz)

= d(y∗|{x, y∗}, {x, y∗, z})
d(x|{x, y∗}, {x, y∗, z})

for some z different from x and y∗. We showed that c is well-defined and strictly
positive for any x. Notice that c(y∗) = 1.

Now define the support of choice data for each set S,
Q(S) := {x ∈ S| ρ(x|S) > 0}

By Axiom Z, if x /∈ Q(S) then Q(S \ x) = Q(S). Hence, |Q(S)| ≥ 3 for every set S
with |S| ≥ 3 by Axiom 1∗.

Claim 3. If ρ(x|S) > 0 and ρ(y|T ) > 0 then
c(x)[ρ(x|S)− ρ(x|T )] ≤ c(y)[ρ(y|S)− ρ(y|T )]

Proof. Consider distinct S, T ∈ D and x, y ∈ S ∩ T . Axiom 1∗ implies that all choice
probabilities in binary and ternary sets are different from zero. Since ρ(x|S) and ρ(y|T )
are positive, Axiom 3∗ yields

d(x|S, T )d(y|By, Tyz)d(y∗|Bx, Txy) ≤ d(y|S, T )d(y∗|By, Tyz)d(x|Bx, Txy)
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This implies c(x)d(x|S, T ) ≤ c(y)d(y|S, T ). �

Claim 4. If x, y ∈ Q(S) ∩Q(T ) then
c(x)[ρ(x|S)− ρ(x|T )] = c(y)[ρ(y|S)− ρ(y|T )]

Proof. Applying Claim 3 twice yields c(x)d(x|S, T ) = c(y)d(y|S, T ). �

We now recursively define λ for every element in D by the following formula
Λ(S) := c(x)d(x|T, S) + Λ(T )

Given S, to define Λ(S), we first must find a set T such that Q(S) ∩ Q(T ) 6= ∅.
Hence, in the first step, we define λ for all S with y∗ as a member and ρ(y∗|S) > 0.
Denote this set by A0 := {S ∈ D | y∗ ∈ Q(S)}. Then for all S ∈ A0, Λ(S) is
defined as 1− ρ(y∗|S). In the second step, we define λ for the set of subsets, denoted
by A1 := {S ∈ D | y∗ /∈ Q(S)}. Take S ∈ A1 and for all T ∈ A0 such that
Q(S)∩Q(T ) 6= ∅, and define Λ(S) := c(x)d(x|T, S) + Λ(T ) for some x in Q(S)∩Q(T ).
Existence of such T is trivial since Bx ∈ A0 whenever x ∈ Q(S). Since A0 ∪ A1 = D,
λ is defined for the entire choice problems.
Claim 5. λ is well-defined and Λ(S) + c(x)ρ(x|S) = Λ(T ) + c(x)ρ(x|T ) for all x ∈
Q(S) ∩Q(T ).

Proof. We need to show that λ is well-defined (i.e., Λ(S) is independent of the choice
of x and T ). By Claim 4, Λ(S) is independent of the choice of x for a given T . Now
we establish independence of T . Take two sets S, T such that Q(S) ∩ Q(T ) 6= ∅. If
S, T ∈ A0, by definition we get Λ(S) = c(y∗)d(y∗|T, S)+Λ(T ) since Λ(S) = 1−ρ(y∗|S),
Λ(T ) = 1− ρ(y∗|T ) and c(y∗) = 1. By Claim 4,
(9) Λ(S) = c(x)d(x|T, S) + Λ(T ) for all x ∈ Q(S) ∩Q(T )
This establishes that the equation holds on A0. Now take S ∈ A1 and assume that
T, T ′ ∈ A0 such that x ∈ Q(S)∩Q(T ), x′ ∈ Q(S)∩Q(T ′). Such alternatives exist since
|Q(S)| ≥ min{3, |S|} for every set S. Then

Λ(S) = c(x)d(x|T, S) + Λ(T )
= c(x)d(x|T, S) + c(x)d(x|Txx′ , T ) + λ(Txx′) by Eq (9)
= c(x)d(x|Txx′ , S) + λ(Txx′)
= c(x′)d(x′|Txx′ , S) + λ(Txx′) by Claim 4
= c(x′)d(x′|T ′, S) + c(x′)d(x′|Txx′ , T ′) + λ(Txx′)
= c(x′)d(x′|T ′, S) + λ(T ′) by Eq (9)

This establishes that λ is well-defined on A0 ∪A1. Finally, we must show that Λ(S) =
c(x)d(x|T, S) + Λ(T ) holds for S, T ∈ A1. Let x be an alternative in Q(S) ∩ Q(T ).
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Since Bx ∈ A0, we have Λ(S) = c(x)d(x|Bx, S) + λ(Bx) and Λ(T ) = c(x)d(x|Bx, T ) +
λ(Bx). Subtracting these two equations yields Λ(S) − Λ(T ) = c(x)d(x|Bx, S) −
c(x)d(x|Bx, T ) = c(x)d(x|T, S). �

By Axiom Z, Q(S) = Q(Q(S)). In other words, the choice probabilities in S and
Q(S) are the same by Axiom Z. This means that d(x|S,Q(S)) = 0 for all x in Q(S).
This then gives us that Λ(S) = λ(Q(S)) for all S. Now define u(x) := c(x)ρ(x|S)+Λ(S)
for some S such that x ∈ Q(S). u is well-defined by Claim 5. Note that Λ(S) =
λ(Q(S)) < u(x) for all x ∈ Q(S) since c(x)ρ(x|S) > 0. Hence, for x ∈ Q(S), the
representation holds for those alternatives. Now assume x /∈ Q(S). That is, ρ(x|S) = 0.
We need to show that u(x) ≤ λ(Q(S)). Take y ∈ Q(S). Then by definition, we have
Λ(S) = c(y)d(y|{x, y}, S) +λ({x, y}) and u(x) = c(x)ρ(x|{x, y}) +λ({x, y}). Then we
have

Λ(S)− u(x) = c(y)d(y|{x, y}, S)− c(x)ρ(x|{x, y})
Λ(S)− u(x) ≥ c(x)d(x|{x, y}, S)− c(x)ρ(x|{x, y}) by Claim 3
Λ(S)− u(x) ≥ −c(x)ρ(x|S) = 0

Since Λ(S) = λ(Q(S)), the representation holds.
Finally, for all S such that |S| ≤ 3, by Axiom 1∗, we have Q(S) = S and

minx∈Su(x) > Λ(S).
�

B.3. A Characterization without Positivity. Axiom 1∗ still imposes a weak ver-
sion of positivity. In this subsection we do not impose any positivity requirement. The
intuition behind our result is that if we allow for arbitrary zero choice probabilities,
the characterization holds if and only if there exists (i) a c(x) > 0, (ii) a u(x), (iii) a
µ(x|S) ≥ 0 only if ρ(x|S) = 0, and otherwise µ(x|S) = 0, and (iv) γ(S) so that for all
(x, S):
(10) c(x)ρ(x|S)− u(x)− γ(S)− µ(x|S) = 0.
Here, µ is the Kuhn-Tucker multiplier on the non-negativity constraint for choice prob-
abilities and γ is the constraint on probabilities summing to one (we have one constraint
for each S).

Observe that, with knowledge of ρ(x|S) for each x, S, equation (10) is a linear
constraint. Here, γ is obviously −λ, but writing it in positive form makes the charac-
terization slightly easier to state and helps us clearly distinguish the case allowing for
zero probabilities compared to when probabilities are non-zero.

We will use the notation α(x|S) to refer to a multiplier on the constraint in equa-
tion (10). The unknowns are: (i) c(x) for each x, u(x) for each x, (ii) γ(S) for each S,
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and (iii) µ(x|S) for each (x, S) with x ∈ S. Furthermore, we have the restrictions that
(i) µ(x|S) = 0 if ρ(x|S) > 0, and otherwise, µ(x|S) ≥ 0, and (ii) that c(x) > 0. These
form a system of homogeneous linear inequalities.

The following is an application of Motzkin’s Theorem of the Alternative.

Theorem 4. The stochastic choice ρ has a WL representation with zero probabilities
if and only if for any system of numbers α(x|S) ∈ < for which:

• For every x ∈ X, ∑S:x∈S α(x|S) = 0 (cycle condition across sets)
• For every A ⊆ X, ∑x:x∈S α(x|S) = 0 (cycle condition across alternatives)
• If ρ(x|S) = 0, then α(x|S) ≥ 0
• For every x ∈ X, ∑S:x∈S α(x, S)ρ(x|S) ≤ 0

it follows that for every x ∈ X, ∑S:x∈S α(x|S)ρ(x|S) = 0.

Proof. We apply Motzkin’s Theorem of the Alternative (see Mangasarian (1994)). Let
α(x|S) be the multiplier on the constraint specified by equation (10), let β(x|S) be
the multiplier on the constraint on µ(x|S) ≥ 0 when ρ(x|S) = 0, and let η(x) be the
multiplier on the constraint that c(x) > 0. Observe that there is no WL representation
with zeroes if and only if there is α(x|S) for each x, S with x ∈ S, β(x|S) ≥ 0 for each
x, S where x ∈ S and ρ(x|S) = 0, and finally η(x) ≥ 0 for each x and where there
exists x∗ for which η(x∗) > 0, for which:

• For every x ∈ X, ∑S:x∈S α(x|S) = 0
• For every S ⊆ X, ∑x:x∈S α(x|S) = 0
• For every (x, S) with x ∈ S and ρ(x|S) = 0, −α(x|S) + β(x|S) = 0
• For every x, η(x) +∑

S:x∈S α(x|S)ρ(x|S) = 0.

By eliminating the multipliers η and β,24 we get that the preceding is equivalent
to the existence of α(x|S) for which

• For every x ∈ X, ∑S:x∈S α(x|S) = 0
• For every S ⊆ X, ∑x:x∈S α(x|S) = 0
• If ρ(x|S) = 0, then α(x|S) ≥ 0
• For every x ∈ X, ∑S:x∈S α(x|S)ρ(x|S) ≤ 0
• There exists x∗ ∈ X for which ∑S:x∈S α(x|S)ρ(x|S) < 0.

Observe that the last of these properties is exactly what is ruled out by the con-
clusion of the statement in Theorem 4. Consequently, the satisfaction of this system
must be equivalent to a violation of the statement listed in Theorem 4. �

24For example, we note that η(x)+
∑

S:x∈S α(x|S)ρ(x|S) = 0 implies
∑

S:x∈S α(x|S)ρ(x|S) = −η(x) ≤
0.
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To see how this result relates to Theorem 1, we will show how it implies that
d(x1|S1,T1)
d(x2|S1,T1)

d(x2|S2,T2)
d(x1|S2,T2) = 1; the related condition on multiplicative cycles of triples or cycles

of larger length follows similarly.
To this end, first define an auxiliary function d(x|S, T ) = ρ(x|S)− ρ(x|T ), where

S 6= T and x ∈ S ∩ T . Let us assume that d(x|S, T ) 6= 0 for all relevant sets. Then
take α(x1|S1) = 1 = −α(x1|T1) and α(x1|S2) = −d(x1|S1,T1)

d(x1|S2,T2) = −α(x1|T2), and for each
set E, α(x2|E) = −α(x1|E). All remaining coefficients are zero.

Observe that the constraints listed in Theorem 4 are satisfied, and in particular
that α(x1|S1)ρ(x1|S1) + α(x1|S2)ρ(x1|S2) + α(x1|T1)ρ(x1|T1) + α(x1|T2)ρ(x1|T2) = 0.

Now, we claim that α(x2|S1)ρ(x2|S1) + α(x2|S2)ρ(x2|S2) + α(x2|T1)ρ(x2|T1) +
α(x2|T2)ρ(x2|T2) = 0. To this end, observe that Theorem 4 implies that α(x2|S1)ρ(x2|S1)+
α(x2|S2)ρ(x2|S2)+α(x2|T1)ρ(x2|T1)+α(x2|T2)ρ(x2|T2) ≥ 0. If we had α(x2|S1)ρ(x2|S1)+
α(x2|S2)ρ(x2|S2) + α(x2|T1)ρ(x2|T1) + α(x2|T2)ρ(x2|T2) > 0, then by choosing the sys-
tem with coefficients −α instead of α, we would obtain a contradiction.

In particular now observe that the fact that α(x2|S1)ρ(x2|S1)+α(x2|S2)ρ(x2|S2)+
α(x2|T1)ρ(x2|T1) + α(x2|T2)ρ(x2|T2) = 0 implies:

−ρ(x2|S1) + d(x1|S1, T1)
d(x1|S2, T2)ρ(x2|S2) + ρ(x2|T1)− d(x1|S1, T1)

d(x1|S2, T2)ρ(x2|T2) = 0.

This implies d(x2|S2, T2)d(x1|S1,T1)
d(x1|S2,T2) = d(x2|S1, T1). Conclude d(x1|S1,T1)

d(x2|S1,T1)
d(x2|S2,T2)
d(x1|S2,T2) =

1. �
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Appendix C. Identification with Attributes

Our previous results on identification relied on variation in choice sets. This
raises questions of how to identify the parameters in our model where the choice set is
fixed (the standard situation in many empirical industrial organizational papers), but
where product attributes are observable.25 Here, we turn to discussing identification of
our model in precisely this setting — with a fixed choice set, but observable product
characteristics.26 We demonstrate that even in this setting we can leverage the micro-
foundations we provided earlier to generate simple conditions that allow for transparent
identification using a set of linear equations.

Of course, as the previous results should make clear, given a single set S and choice
probabilities ρ(i|S) for all x ∈ S we can always construct a WL model that rationalizes
the data. In other words, with no additional information our model is not falsified by
observing any single choice set. Similarly, we cannot uniquely identify u and c with
such data.

However, if we assume (as is typical) that both u and c are functions of observable
attributes, then identification proceeds in a clear manner. In particular, suppose that
there is a set of observable attributes, of cardinality m, with ai denoting the vector of
attributes for product i. ai includes not only things that affect product quality, but
also things like price, advertising, etc.

Typically utility is assumed to be a linear function of attributes. We maintain the
same assumption here and extend it to c. Thus, we assume that there exists a vector
β such that ui = βai for each i. Similarly there exists a vector α such that ci = αai for
each i. Thus, we assume that attributes affect utility in the same way for all products,
and similarly for costs. The only difference between products is the value that each
attribute takes on. Given this assumption, under relatively mild conditions our model
is identified using standard linear equations.
Proposition 8. Suppose that ui = βai and ci = αai where ai is a m×1 vector. Suppose
that we have at least 2m linearly independent observations of (ρ(i)ai − ρ(j)aj, ai − aj)
for i, j ∈ S. Then β and α are identified from choices in S up to positive scalar
multiplication.

Proof. We know that within a choice set it must be the case that: ρ(i)ci−ui = −Λ(S) =
ρ(j)cj − uj or ρ(i)ci − ui = ρ(j)cj − uj. This means ρ(i)αai − βai = ρ(j)αaj − βaj or
α[ρ(i)ai−ρ(j)aj] = β[ai−aj]. Denote PA(i, j) = ρ(i)ai−ρ(j)aj and A(i, j) as ai−aj.
Suppose for all pairs PA(i, j) and A(i, j) are linearly independent. With at least 2m
pairs the model is then identified. �

25An additional consideration in typical applications is that there may be endogenous, unobserved,
characteristics to products. Given that there is extensive discussion of this issue in the literature, we
abstract away from it, and suppose that all attributes are observable to the researcher.
26Allen and Rehbeck (2019) proposes an axiomatic theory in such a framework.
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For identification of the preference parameter vectors β and α, corresponding to
the weights c and u put on each attribute, one simply finds the solutions to the system
of equations: β[ρ(i)ai−ρ(j)aj] = α[ai−aj] (where there is one equation for each pair of
outcomes). The equations are linear in the attributes, making this a computationally
simple problem.27

Notice that we obtain one equation for each pair of outcomes. Thus, fixing a
number of attributesm, as long as there are (i) enough products and (ii) enough linearly
independent combinations of attributes across products, the model is identified. In
particular, if the choice set has |S| products we will have |S|(|S|−1)

2 pairwise comparisons.
If all pairs of comparison are linearly independent then all we need for identification is
that |S|(|S|−1)

2 ≥ 2m.
Recall that u, c is unique up to transformations of the type κu+γ, κc where κ > 0

and for any γ. Observe that because we assume that ui = αai, we impose that γ = 0.
Thus, the representation is unique up to transformations of the form κu, κc. Notice
that this occurs if and only if α, β are unique up to transformation κα, κβ.

In order to highlight our approach, we will consider a stylized example. Suppose we
have products with two attributes, and there are four products (the minimum needed
for identification). Moreover we observe choices from the grand choice set (again,
necessary for identification), and ρ(1|{1, 2, 3, 4}) = 0.273, ρ(2|{1, 2, 3, 4}) = 0.197,
ρ(3|{1, 2, 3, 4}) = 0.121, and ρ(4|{1, 2, 3, 4}) = 0.409. Moreover, suppose a1 = (4, 2);
a2 = (4, 1); a3 = (2, 8); a4 = (4, 8). Then we have 6 pairwise comparisons. One can
show that each of the six entries in the (ρ(i)ai−ρ(j)aj, ai−aj) are linearly independent
of all the others. Thus, our conditions are met. Using any subset of 4 of the pairwise
comparisons delivers the result that, using α1 as the “numeraire” coefficient, β1 = 3α1,
β2 = α1 and α2 = 2α1. In this world, we can do out of sample predictions, which
include introducing a new product or improving existing product. For example, if
product 1 is improved in terms of attribute 1 (i.e., a11 ≥ 6), product 2 will be driven
out of the market.

Appendix D. Estimated models

Logit. Each option x has a value v(x) and choice probabilities are given by

ρ(x|S) = ev(x)∑
y∈S ev(y)

27Our approach is distinct from that typically used for discrete choice models, as outlined in Berry
(1994). In fact, Armstrong and Vickers (2015), building on the work of Jaffe and Weyl (2010) and Jaffe
and Kominers (2012), show that although linear demands (which our model is an example of) can be
consistent with a model of discrete choice, they fail some standard assumptions about the distribution
of the utility shock, assumptions which are used to ensure identification in standard discrete choice
approaches (i.e. continuity and full support assumptions on the error term).
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we estimate v values normalizing the value of one option v(x) = 0.

Nested Logit. Alternatives are partitioned into K nests B1, . . . , BK . Each option x
has a value v(x) and each nest Bk has an associated parameter 0 ≤ λk ≤ 1. Choice
probabilities for an option x ∈ Bk in the menu S are given by

ρ(x|S) = ev(x)/λk

(∑
y∈S∩Bk e

v(y)/λk
)λk−1

∑K
`=1

(∑
y∈S∩B` e

v(y)/λ`
)λ`

and setting λ` = 1 for all nests yields the classic logit model as a special case. Note
that we can always normalize one of the values to v(x) = 0.

The partition of options into nests is a degree of freedom chosen by the analyst.
With four alternatives X = {1, 2, 3, 4} the analyst can employ seven different nest
specifications, namely, {{1, 2, 3}, {4}}, {{1, 2, 4}, {3}}, {{1, 3, 4}, {2}}, {{2, 3, 4}, {1}},
{{1, 2}, {3, 4}}, {{1, 3}, {2, 4}}, and {{1, 4}, {2, 3}}. Additional partitions are sub-
sumed by one of the seven nest specifications above. For example, the nest specification
{{1}, {2}, {3, 4}} is a special case of {{1, 2}, {3, 4}}, when the parameter λ{1,2} = 1.
We estimate v’s and λ’s separately for each of the seven nest specifications, and in each
prediction exercise we take the best fitting nest specification to make predictions.

Covariance Probit. The random utilities of each option U1, U2, . . . , U4 are assumed
to have a joint Gaussian distribution with mean vector µ and covariance matrix Σ.
Choice probabilities maximize random utility

ρ(x|S) = P{Ui ≥ Uj for all j ∈ S}
which is an integral that has no closed-form but can be numerically calculated. For
identification, we do a normalization

Zi = Ui − U4√
Var(U1 − U4)

and note the Gaussian variables Z1, . . . , Z4 represent the same choice behavior, with
eight parameters to estimate:

µ̃ =


µ1
µ2
µ3
0

 and Σ =


1 σ12 σ13 0
σ12 σ2 σ23 0
σ13 σ23 σ3 0
0 0 0 0

 .

Appendix E. Additional simulation prediction metrics
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Figure 7. Root mean square prediction errors for the WL model and
for Logit, Nested Logit and Probit. The axes display the fixed level of
preference polarization for two different options.
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Figure 8. Mean absolute prediction error comparison for the WL model
and for Logit, Nested Logit and Probit. The axes display the fixed level
of preference polarization for two different options.
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