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Motivation

capturing the probabilistic nature of choice
I applied work demands randomness

workhorse model is the logit model (a.k.a. MNL)
I introduced by Bradley-Terry-Luce, popularized by McFadden
I tractable: “closed-form solution”
I probability of choosing x from choice set S is

w(x)∑
y∈S

w(y)

undesirable implications (Benkard and Bajari, 2001)
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Aim of Today’s Talk

offer a simple model of probabilistic choice

two parameters

useful in applications: “closed-form solution”

microfoundation

bonus: a simple characterization
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Things that might be covered today

application: firm competition
I closed-form solutions for markups and number of firms

simulations

show identification when attributes are observable and the choice set is fixed
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Some Notation

X: a finite set of outcomes

S ⊂ X: available options in the market

ρ(x|S) is the choice probability of x from S (Market Demand)

I positive demand: ρ(x|S) ≥ 0

I availability : ρ(x|S) = 0 whenever x /∈ S

I unit demand:
∑
x∈S

ρ(x|S) = 1
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Model



Choice as Optimization

Consumption Bundles
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Choice as Optimization

Lotteries with two outcomes
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Choice as Optimization

Lotteries
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Choice as Optimization

Lotteries with three outcomes
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Choice as Optimization

Lotteries with three outcomes
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Choice as Optimization

Marshak-Machina Triangle
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Choice as Optimization

Machina (1985)
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Probabilistic Choice as Optimization

Which objective function?
ours is a simple one

max
ρ(.|S)

∑
x∈S

{
u(x)ρ(x|S)︸ ︷︷ ︸
expected utility

− 1
2m(x)ρ(x|S)2︸ ︷︷ ︸

cost

}

subject to
∑

x∈S ρ(x|S) = 1
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Probabilistic Choice as Optimization

Lagrange

max
ρ(.|S)

∑
x∈S

{
u(x)ρ(x|S)︸ ︷︷ ︸
expected utility

− 1
2m(x)ρ(x|S)2︸ ︷︷ ︸

cost

}
+ Λ(S)

[
1−

∑
x∈S

ρ(x|S)
]

︸ ︷︷ ︸
constraint

FOC
u(x)− ρ(x|S)

m(x) − Λ(S) = 0
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Probabilistic Choice as Optimization

Λ(S) =
∑

m(x)u(x)−1
m(S) : the Lagrange multiplier on S

ρ(x|S) = m(x)[u(x)− Λ(S)]

= m(x)
m(S) +m(x)[u(x)− ūm(S)]

(u,m) is a WL representation for some ρ iff u(x) > Λ(X) for all x.
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Probabilistic Choice as Optimization

APU
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Model

u(x) ∈ R, m(x) > 0
I u: utility

I m: salience/attractiveness

ρ(x|S) = m(x)∑
y∈S

m(y)︸ ︷︷ ︸
base probability

+ m(x)[u(x)− ūm(S)]

︸ ︷︷ ︸
comparative probability

weighted average: ūm(S) ≡

∑
y∈S

u(y)m(y)∑
y∈S

m(y)
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Weighted Linear Model (WL)

ρ(x|S) = m(x)∑
y∈S

m(y)︸ ︷︷ ︸
base probability

+ m(x)[u(x)− ūm(S)]

︸ ︷︷ ︸
comparative probability

Weighted Linear Model (WL)
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An Example

two distinct products: x and y
I u(x) = 3 and m(x) = 0.5
I u(y) = 2 and m(y) = 0.5

base probability for x: 1
2 = 0.5

0.5+0.5

comparative advantage of x:

I weighted average utility is 5
2 = 0.5∗3+0.5∗2

0.5+0.5

I 0.5(3− 5
2 ) = 1

4

market share of x

ρ(x|S) = 1
2︸︷︷︸

Base

+ 1
4︸︷︷︸

Comparative

= 0.75
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An Example

lower m(x) to 0.25
I u(x) = 3 and m(x) = 0.25

I u(y) = 2 and m(y) = 0.50

market shares
base probability comparative Total

x 1/3 1/6 0.50
y 2/3 -1/6 0.50

trade-off
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WL-Model

u: utility
m: salience/attractiveness

ρ(x|S) = m(x)∑
y∈S

m(y)︸ ︷︷ ︸
Base Probability

+ m(x)[u(x)− ūm(S)]

︸ ︷︷ ︸
Comparative Probability Transfer
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Special Case: I

ρ(x|S) = m(x)∑
y∈S

m(y)
+m(x)[u(x)− ūm(S)]

ū constant

ρ(x|S) = m(x)∑
y∈S

m(y)
+m(x)[ū− ū]︸ ︷︷ ︸

0

ūm(S) = ū
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Special Case: II

ρ(x|S) = m(x)∑
y∈S

m(y)
+m(x)[u(x)− ūm(S)]

m̄ constant

ρ(x|S) = 1
|S| + m̄[u(x)− ū(S)]

simple average ū(S)
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Special Case: II

m̄ constant

ρ(x|S) = 1
|S| + m̄[u(x)− ū(S)]

ū(S): simple average

linear demand system featured prominently in many models of monopolistic competition
Shubik and Levitan, 1980; Spence, 1976; Dixit and Stiglitz, 1977
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Special Case: II

m̄ constant

ρ(x|S) = 1
|S| + m̄[p̄S − px]

p̄S is average price in S

m̄ is a measure of market friction
I if small, then price differences have little influence on demand
I if large, market share is determined almost entirely by prices
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Probabilistic Choice as Optimization

constant u constant m
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Uniqueness



Uniqueness

Theorem

Let (u,m) be a WL representation of ρ. Then (u′,m′) is a WL representation of ρ if and only
if u′ = au+ b and m′ = 1

a
m where a > 0.

u unique up to affine transformations

m unique up to scalar multiplication
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Accommodating Empirical Patterns



Accommodating Empirical Patterns

demand with the introduction of new products
I “red bus-blue bus” problem
I introducing a new product
I larger choice sets
I zero market demand

cross-price substitution patterns
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#1: Introducing Replicas

“Red Bus-Blue Bus” problem (Debreu, 1960)
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#1: Introducing Replicas

“Red Bus-Blue Bus” problem (Debreu, 1960)

what happens when a blue bus is introduced?
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#1: Introducing Replicas

“Red Bus-Blue Bus” problem (Debreu, 1960)

MNL predicts
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#1: Introducing Replicas

MNL predicts

our model predicts

I u(Car) ≥ u(Bus)→ 0.33 ≤ A ≤ 0.5
I u(Car) ≤ u(Bus)→ 0 ≤ A ≤ 0.33
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#2: Introducing New Product

what happens to the market demand for existing products when a new product is introduced?
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Revisit the Example

two distinct products: x and y
I u(x) = 2 and m(x) = 1

4

I u(y) = 1 and m(y) = 1
2

introduce z: u(z) = 1 and m(z) = 1
4

I low u low m

I relatively bad competitor

introducing a third option increases the relative demand for the higher utility item
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Revisit the Example

two distinct products: x and y
I u(x) = 2 and m(x) = 1

4

I u(y) = 1 and m(y) = 1
2

introduce w: u(w) = 2 and m(w) = 1
2
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#2: Introducing New Product

larger choice sets increase the relative demand for the higher utility item

Proposition

Suppose u(x) ≥ u(y). Then ρ(x|S) ≥ ρ(y|S) implies ρ(x|S ∪ T ) ≥ ρ(y|S ∪ T ).
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#2: Introducing New Product

reversal is also possible
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#3: Larger Choice Sets

What happens as choice sets get VERY large?
I ρ(x|S)→? as |S| → ∞

Benkard and Bajari (2001) show
I Multinomial logit, nested logit and random coefficients predict
I ρ(x|S)→ 0 as |S| → ∞

WL model can allow for non-negligible market shares
I ρ(x|S) away from 0 as |S| → ∞
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#4: Zero Market Demand

Many models predict that the market share of any item must be positive
I Benkard and Bajari (2001) show true whenever the conditional error distributions have unbounded

upper support and a continuous upper tail
WL model can easily allow for 0 probabilities
I Entrants can drive some, but not other products out
I Need to reformulate axiomatic foundation
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#5: Cross-Substitution

In MNL model,

∂ρ(x|S)
∂m(y) = − m(x)

m(S)2

I the same for all y
I At odds with empirical evidence
I Very restrictive

In WL model,

∂ρ(x|S)
∂m(y) = − m(x)

m(y)m(S)ρ(y|S)

axioms

conclusion
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Relation to APU



APU

WL
max
ρ(.|S)

∑
x∈S

{
u(x)ρ(x|S)− 1

m(x)ρ(x|S)2}

Additive Perturbed Utility (Fudenberg et al., 2015)

max
ρ(.|S)

∑
x∈S

{
u(x)ρ(x|S)− k(ρ(x|S))

}
where k is a strictly convex and smooth function.

I cost: item-specific, but quadratic cost function
I no closed-form solution
I satisfies Strong Stochastic Transitivity, but outside of RUM
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Does WL belong to RUM?
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Model Comparisons



Number of Parameters

MNL (RUM) is the most (least) parsimonious model
WL and MNL’s number of parameters increase linearly
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Explanatory Power

binary choices given
ask possible trinary choices for each model
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Explanatory Power

binary choices given
ask possible trinary choices for each model
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Explanatory Power-RUM

44



Explanatory Power-Luce

45



Explanatory Power-WL
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Explanatory Power-WL

Conclusion
47



Polarization



No Polarization in MNL

For products {a, b, c, d}
MNL does not allow polarization
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Polarization in WL

a and b are polarized options
WL allows polarization
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Simulations



Simulations
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Simulations

Conclusion
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Axiomatic Foundations



Axiomatic Foundations

Three axioms
First axiom is positivity
I Every alternative is chosen with positive probability

Axiom 1: ρ(x|S) > 0 for every x ∈ S and S ∈ D.
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Axiomatic Foundations

Second axiom is strict regularity
I When the competition gets fiercer among alternatives (i.e. more alternatives), choice probabilities for

any given alternative strictly decrease.

Axiom 2: ρ(y|S) < ρ(y|S \ {x}) for every x ∈ S.
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Axiomatic Foundations

For today’s talk, assume x, y ∈ S ∩ T and ρ(y|S) 6= ρ(y|T )

Consider a new auxiliary function

rS,T (x, y) = ρ(x|S)− ρ(x|T )
ρ(y|S)− ρ(y|T )

I measures the relative probability change of x and y from S to T
I the relative probability levels rather than the absolute levels (as in Luce’s IIA)
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Axiomatic Foundations

This function is independent of decision problems

rS1,T1 (x, y) = rS2,T2 (x, y)

a stronger version is needed
transitivity condition on the function

Axiom 3: For any x, y, z and Si, Ti ∈ D,

rS1,T1 (x, z) = rS2,T2 (x, y)rS3,T3 (y, z)
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Axiomatic Foundations

Characterization

Suppose D contains all menus with size 2 and 3. Then a stochastic choice function ρ has a WL
representation on D if and only if it satisfies Axioms 1-3.

Conclusion
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Intuition of Proof

We first define the salience of each alternative by using rS,T where S and T are menus with size 2
and 3
I Fix y∗ ∈ X and define m(y∗) = 1
I Then define m(x) := r{x,y∗},{x,y∗,z}(x, y∗)

Show that m(a)
m(b) = rS,T (a, b)

I Axioms guarantee that m is well defined

Using the fact that the “shadow value” of a choice set is the same across all items chosen in the
set, can define utility function
I u(a)− u(b) = ρ(a|S)

m(a) −
ρ(b|S)
m(b)

I Again, axioms guarantee this is well defined

Show that data can be represented by WL model with constructed parameters

Conclusion
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Identification with Attributes

Empirical identification exercises typically fix a choice set
Items have observable attributes
Attributes enter into parameters in linear fashion
Different than axiomatic approach previously
Show how WL works in this environment
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Empirical identification exercises typically fix a choice set

Items have observable attributes

Attributes enter into parameters in linear fashion

Different than axiomatic approach previously

Show how WL works in this environment
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Identification with Attributes

A set of observable attributes of cardinality k

ai denotes the vector of attributes for product i

Includes not only things that affect product quality, but also things like price, advertising, etc.

Assume that there exists a vector β such that ui = βai for each i

Similarly there exists a vector α such that ci = αai for each i.
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Identification with Attributes

Proposition

Suppose that ui = βai and ci = αai where ai is a k × 1 vector. Suppose that we have at least 2k
linearly independent observations of (ρ(i)ai − ρ(j)aj , ai − aj) for i, j ∈ S. Then β and α are identified
from choices in S up to positive scalar multiplication.

Key intuition: from the first order conditions of an optimization problem, we know that
β[ρ(i)ai − ρ(j)aj ] = α[ai − aj ]

Have a set of linear equations
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Conclusion

WL model is a simple model of stochastic choice
Nests well-known existing models: Luce and linear monopolistic competition
Deliberate randomization
Closed-form solution
Tractable in applications
Can capture well-known empirical phenomena
Simple axiomatization
easy to estimate
Identifiable in standard empirical applications
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