Weighted Linear Discrete Choice

C. Chambers Y. Masatlioglu P. Natenzon C. Raymond

Chicago Booth Feb, 2024

Motivation

- capturing the probabilistic nature of choice
 - applied work demands randomness
- workhorse model is the logit model (a.k.a. MNL)
 - introduced by Bradley-Terry-Luce, popularized by McFadden
 - tractable: "closed-form solution"
 - probability of choosing x from choice set S is

$$\frac{w(x)}{\sum\limits_{y \in S} w(y)}$$

undesirable implications (Benkard and Bajari, 2001)

Motivation

- capturing the probabilistic nature of choice
 - applied work demands randomness
- workhorse model is the logit model (a.k.a. MNL)
 - introduced by Bradley-Terry-Luce, popularized by McFadden
 - tractable: "closed-form solution"
 - probability of choosing x from choice set S is

$$\frac{w(x)}{\sum\limits_{y \in S} w(y)}$$

• undesirable implications (Benkard and Bajari, 2001)

• offer a simple model of probabilistic choice

- two parameters
- useful in applications: "closed-form solution"
- microfoundation
- bonus: a simple characterization

- offer a simple model of probabilistic choice
- two parameters
- useful in applications: "closed-form solution"
- microfoundation
- bonus: a simple characterization

- offer a simple model of probabilistic choice
- two parameters
- useful in applications: "closed-form solution"
- microfoundation
- bonus: a simple characterization

- offer a simple model of probabilistic choice
- two parameters
- useful in applications: "closed-form solution"
- microfoundation
- bonus: a simple characterization

- offer a simple model of probabilistic choice
- two parameters
- useful in applications: "closed-form solution"
- microfoundation
- bonus: a simple characterization

- application: firm competition
 - closed-form solutions for markups and number of firms
- simulations
- show identification when attributes are observable and the choice set is fixed

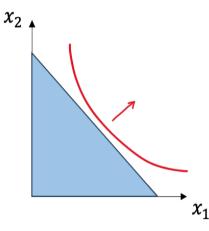
- X: a finite set of outcomes
- $\bullet \ S \subset X:$ available options in the market
- $\rho(x|S)$ is the choice probability of x from S (Market Demand)

• positive demand:
$$ho(x|S) \ge 0$$

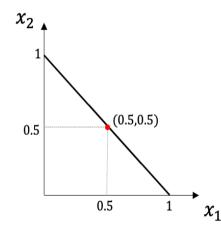
• availability :
$$\rho(x|S) = 0$$
 whenever $x \notin S$

• unit demand:
$$\sum_{x \in S} \rho(x|S) = 1$$

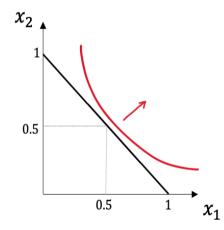
Model



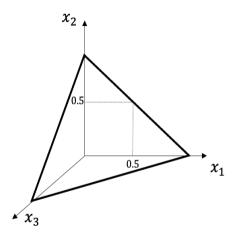
Consumption Bundles



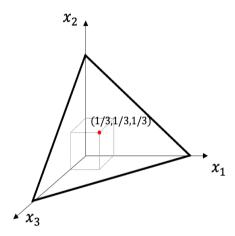
Lotteries with two outcomes



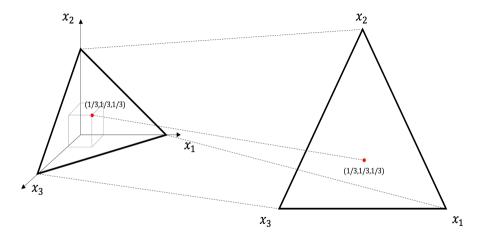
Lotteries



Lotteries with three outcomes

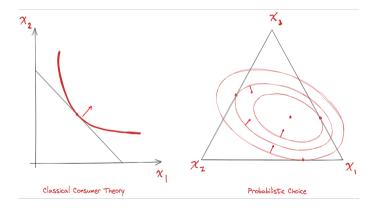


Lotteries with three outcomes



Marshak-Machina Triangle

Machina (1985)

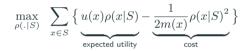


• Which objective function?

• ours is a simple one

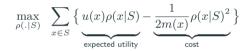
subject to
$$\sum_{x\in S}\rho(x|S)=1$$

- Which objective function?
- ours is a simple one



subject to $\sum_{x\in S}\rho(x|S)=1$

- Which objective function?
- ours is a simple one



subject to
$$\sum_{x \in S} \rho(x|S) = 1$$

• Lagrange

$$\max_{\rho(.|S)} \sum_{x \in S} \left\{ \underbrace{u(x)\rho(x|S)}_{\text{expected utility}} - \underbrace{\frac{1}{2m(x)}\rho(x|S)^2}_{\text{cost}} \right\} + \underbrace{\Lambda(S)\left[1 - \sum_{x \in S}\rho(x|S)\right]}_{\text{constraint}}$$

• FOC

$$u(x) - \frac{\rho(x|S)}{m(x)} - \Lambda(S) = 0$$

• Lagrange

$$\max_{\rho(.|S)} \sum_{x \in S} \left\{ \underbrace{u(x)\rho(x|S)}_{\text{expected utility}} - \underbrace{\frac{1}{2m(x)}\rho(x|S)^2}_{\text{cost}} \right\} + \underbrace{\Lambda(S)\left[1 - \sum_{x \in S}\rho(x|S)\right]}_{\text{constraint}}$$

• FOC

$$u(x) - \frac{\rho(x|S)}{m(x)} - \Lambda(S) = 0$$

• Lagrange

$$\max_{\rho(.|S)} \sum_{x \in S} \left\{ \underbrace{u(x)\rho(x|S)}_{\text{expected utility}} - \underbrace{\frac{1}{2m(x)}\rho(x|S)^2}_{\text{cost}} \right\} + \underbrace{\Lambda(S)\left[1 - \sum_{x \in S}\rho(x|S)\right]}_{\text{constraint}}$$

• FOC

 $\rho(x|S) = m(x)u(x) - \Lambda(S)m(x)$

Probabilistic Choice as Optimization

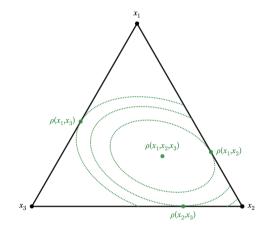
•
$$\Lambda(S) = \frac{\sum m(x)u(x)-1}{m(S)}$$
: the Lagrange multiplier on S

$$\rho(x|S) = m(x)[u(x) - \Lambda(S)]$$

= $\frac{m(x)}{m(S)} + m(x)[u(x) - \bar{u}_m(S)]$

• (u,m) is a WL representation for some ρ iff $u(x) > \Lambda(X)$ for all x.

Probabilistic Choice as Optimization



▲ APU

Model

• $u(x) \in \mathbb{R}$, m(x) > 0

► u: utility

▶ *m*: salience/attractiveness

$$\rho(x|S) = \underbrace{\frac{m(x)}{\sum\limits_{y \in S} m(y)}}_{\text{base probability}} + \underbrace{m(x)[u(x) - \bar{u}_m(S)]}_{\text{comparative probability}}$$

weighted average:
$$\bar{u}_m(S) \equiv \frac{\displaystyle\sum_{y \in S} u(y)m(y)}{\displaystyle\sum_{y \in S} m(y)}$$

$$\rho(x|S) = \underbrace{\frac{m(x)}{\sum\limits_{y \in S} m(y)}}_{\text{base probability}} + \underbrace{m(x)[u(x) - \bar{u}_m(S)]}_{\text{comparative probability}}$$

Weighted Linear Model (WL)

- \bullet two distinct products: x and y
 - u(x) = 3 and m(x) = 0.5
 - u(y) = 2 and m(y) = 0.5
- base probability for x: $\frac{1}{2} = \frac{0.5}{0.5+0.5}$
- comparative advantage of x:

• market share of x

- \bullet two distinct products: x and y
 - u(x) = 3 and m(x) = 0.5
 - u(y) = 2 and m(y) = 0.5
- base probability for x: $\frac{1}{2} = \frac{0.5}{0.5+0.5}$
- comparative advantage of x:

market share of x

- \bullet two distinct products: x and y
 - u(x) = 3 and m(x) = 0.5
 - u(y) = 2 and m(y) = 0.5
- base probability for x: $\frac{1}{2} = \frac{0.5}{0.5+0.5}$
- comparative advantage of *x*:

• market share of x

- \bullet two distinct products: x and y
 - u(x) = 3 and m(x) = 0.5
 - u(y) = 2 and m(y) = 0.5
- base probability for x: $\frac{1}{2} = \frac{0.5}{0.5+0.5}$
- comparative advantage of x:

• weighted average utility is
$$\frac{5}{2} = \frac{0.5*3+0.5*2}{0.5+0.5}$$

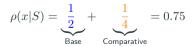
- ullet market share of x

- \bullet two distinct products: x and y
 - u(x) = 3 and m(x) = 0.5
 - u(y) = 2 and m(y) = 0.5
- base probability for x: $\frac{1}{2} = \frac{0.5}{0.5+0.5}$
- comparative advantage of x:

• market share of x

- \bullet two distinct products: x and y
 - u(x) = 3 and m(x) = 0.5
 - u(y) = 2 and m(y) = 0.5
- base probability for x: $\frac{1}{2} = \frac{0.5}{0.5+0.5}$
- comparative advantage of x:

 $\bullet\,$ market share of x



• lower m(x) to 0.25

• market shares

	base probability	comparative	Total
x	1/3	1/6	0.50
y	2/3	-1/6	0.50

• trade-off

WL-Model

- *u*: utility
- *m*: salience/attractiveness

$$\rho(x|S) = \underbrace{\frac{m(x)}{\sum\limits_{y \in S} m(y)}}_{\text{Base Probability}} + \underbrace{m(x)[u(x) - \bar{u}_m(S)]}_{\text{Comparative Probability Transfer}}$$

$$\rho(x|S) = \frac{m(x)}{\sum_{y \in S} m(y)} + m(x)[u(x) - \bar{u}_m(S)]$$

 $ar{m{u}}$ constant

$$\rho(x|S) = \frac{m(x)}{\sum\limits_{y \in S} m(y)} + \underbrace{m(x)[\overline{u} - \overline{u}]}_{0}$$

 $\bar{u}_m(S) = \overline{\mathbf{u}}$

$$\rho(x|S) = \frac{m(x)}{\sum_{y \in S} m(y)} + m(x)[u(x) - \bar{u}_m(S)]$$

 $ar{m{m}}$ constant

$$\rho(x|S) = \frac{1}{|S|} + \overline{m}[u(x) - \overline{u}(S)]$$

simple average $\overline{u}(S)$

 $ar{m}$ constant

$$\rho(x|S) = \frac{1}{|S|} + \overline{\boldsymbol{m}}[\boldsymbol{u}(x) - \overline{\boldsymbol{u}}(S)]$$

$\overline{u}(S)$: simple average

• linear demand system featured prominently in many models of monopolistic competition

Shubik and Levitan, 1980; Spence, 1976; Dixit and Stiglitz, 1977

 $ar{m}$ constant

$$\rho(x|S) = \frac{1}{|S|} + \overline{\boldsymbol{m}}[\boldsymbol{u}(x) - \overline{\boldsymbol{u}}(S)]$$

 $\overline{u}(S)$: simple average

- linear demand system featured prominently in many models of monopolistic competition
- Shubik and Levitan, 1980; Spence, 1976; Dixit and Stiglitz, 1977

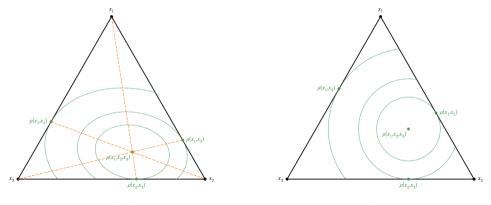
 $ar{m}$ constant

$$\rho(x|S) = \frac{1}{|S|} + \bar{m}[\bar{p}_S - p_x]$$

• \bar{p}_S is average price in S

- $\bullet~\bar{m}$ is a measure of market friction
 - if small, then price differences have little influence on demand
 - if large, market share is determined almost entirely by prices

Probabilistic Choice as Optimization



Uniqueness

Theorem

Let (u,m) be a WL representation of ρ . Then (u',m') is a WL representation of ρ if and only if u' = au + b and $m' = \frac{1}{a}m$ where a > 0.

u unique up to affine transformations

• *m* unique up to scalar multiplication

Theorem

Let (u,m) be a WL representation of ρ . Then (u',m') is a WL representation of ρ if and only if u' = au + b and $m' = \frac{1}{a}m$ where a > 0.

- *u* unique up to affine transformations
- \bullet *m* unique up to scalar multiplication

Accommodating Empirical Patterns

- demand with the introduction of new products
 - "red bus-blue bus" problem
 - introducing a new product
 - larger choice sets
 - zero market demand
- cross-price substitution patterns

• "Red Bus-Blue Bus" problem (Debreu, 1960)

• "Red Bus-Blue Bus" problem (Debreu, 1960)

• what happens when a blue bus is introduced?

• "Red Bus-Blue Bus" problem (Debreu, 1960)

• MNL predicts

#1: Introducing Replicas

• MNL predicts

• our model predicts

- $\blacktriangleright \ u(Car) \ge u(Bus) \to 0.33 \le A \le 0.5$
- $\blacktriangleright \ u(Car) \leq u(Bus) \rightarrow 0 \leq A \leq 0.33$

#1: Introducing Replicas

• MNL predicts

• our model predicts

- $\blacktriangleright \ u(Car) \geq u(Bus) \rightarrow 0.33 \leq A \leq 0.5$
- $u(Car) \le u(Bus) \to 0 \le A \le 0.33$

#1: Introducing Replicas

• MNL predicts

• our model predicts

$$\blacktriangleright \ u(Car) \geq u(Bus) \rightarrow 0.33 \leq A \leq 0.5$$

▶ $u(Car) \le u(Bus) \rightarrow 0 \le A \le 0.33$

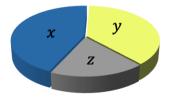
• what happens to the market demand for existing products when a new product is introduced?

Revisit the Example

- \bullet two distinct products: x and y
 - ▶ u(x) = 2 and $m(x) = \frac{1}{4}$

▶
$$u(y) = 1$$
 and $m(y) = \frac{1}{2}$

- introduce z: u(z) = 1 and $m(z) = \frac{1}{4}$
 - \blacktriangleright low u low m
 - relatively bad competitor



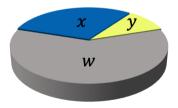
• introducing a third option increases the relative demand for the higher utility item

Revisit the Example

- \bullet two distinct products: x and y
 - ▶ u(x) = 2 and $m(x) = \frac{1}{4}$

▶
$$u(y) = 1$$
 and $m(y) = \frac{1}{2}$

- introduce w: u(w) = 2 and $m(w) = \frac{1}{2}$
 - \blacktriangleright high u high m
 - relatively good competitor



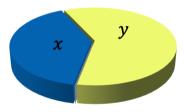
• introducing a third option increases the relative demand for the higher utility item

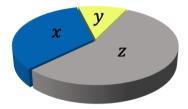
• larger choice sets increase the relative demand for the higher utility item

Proposition

Suppose $u(x) \ge u(y)$. Then $\rho(x|S) \ge \rho(y|S)$ implies $\rho(x|S \cup T) \ge \rho(y|S \cup T)$.

• reversal is also possible





• What happens as choice sets get VERY large?

 $\blacktriangleright \ \rho(x|S) \to ? \text{ as } |S| \to \infty$

Benkard and Bajari (2001) show

Multinomial logit, nested logit and random coefficients predict

• ho(x|S)
ightarrow 0 as $|S|
ightarrow \infty$

- WL model can allow for non-negligible market shares
 - ho(x|S) away from 0 as $|S|
 ightarrow \infty$

- What happens as choice sets get VERY large?
 - $\blacktriangleright \ \rho(x|S) \to ? \text{ as } |S| \to \infty$
- Benkard and Bajari (2001) show
 - Multinomial logit, nested logit and random coefficients predict
 - $\blacktriangleright \ \rho(x|S) \to 0 \text{ as } |S| \to \infty$
- WL model can allow for non-negligible market shares
 - ho(x|S) away from 0 as $|S| \to \infty$

- What happens as choice sets get VERY large?
 - $\blacktriangleright \ \rho(x|S) \to ? \text{ as } |S| \to \infty$
- Benkard and Bajari (2001) show
 - Multinomial logit, nested logit and random coefficients predict
 - $\blacktriangleright \ \rho(x|S) \to 0 \text{ as } |S| \to \infty$
- WL model can allow for non-negligible market shares
 - $\rho(x|S)$ away from 0 as $|S| \to \infty$

- Many models predict that the market share of any item must be positive
 - Benkard and Bajari (2001) show true whenever the conditional error distributions have unbounded upper support and a continuous upper tail
- WL model can easily allow for 0 probabilities
 - Entrants can drive some, but not other products out
 - Need to reformulate axiomatic foundation

• In MNL model,

$$\frac{\partial \rho(x|S)}{\partial m(y)} = -\frac{m(x)}{m(S)^2}$$

- \blacktriangleright the same for all y
- At odds with empirical evidence
- Very restrictive
- In WL model,

$$\frac{\partial \rho(x|S)}{\partial m(y)} = -\frac{m(x)}{m(y)m(S)}\rho(y|S)$$

conclusion

• In MNL model,

$$\frac{\partial \rho(x|S)}{\partial m(y)} = -\frac{m(x)}{m(S)^2}$$

- \blacktriangleright the same for all y
- At odds with empirical evidence
- Very restrictive
- In WL model,

$$\frac{\partial \rho(x|S)}{\partial m(y)} = -\frac{m(x)}{m(y)m(S)}\rho(y|S)$$

Relation to APU

• WL

$$\max_{\rho(.|S)} \sum_{x \in S} \left\{ u(x)\rho(x|S) - \frac{1}{m(x)}\rho(x|S)^2 \right\}$$

Additive Perturbed Utility (Fudenberg et al., 2015)

$$\max_{\rho(.|S)} \ \sum_{x \in S} \left\{ u(x)\rho(x|S) - k(\rho(x|S)) \right\}$$

where k is a strictly convex and smooth function.

- cost: item-specific, but quadratic cost function
- no closed-form solution
- satisfies Strong Stochastic Transitivity, but outside of RUM

• WL

$$\max_{\rho(.|S)} \sum_{x \in S} \left\{ u(x)\rho(x|S) - \frac{1}{m(x)}\rho(x|S)^2 \right\}$$

• Additive Perturbed Utility (Fudenberg et al., 2015)

$$\max_{\rho(.|S)} \sum_{x \in S} \left\{ u(x)\rho(x|S) - k(\rho(x|S)) \right\}$$

where k is a strictly convex and smooth function.

- cost: item-specific, but quadratic cost function
- no closed-form solution
- satisfies Strong Stochastic Transitivity, but outside of RUM

• WL

$$\max_{\rho(.|S)} \sum_{x \in S} \left\{ u(x)\rho(x|S) - \frac{1}{m(x)}\rho(x|S)^2 \right\}$$

• Additive Perturbed Utility (Fudenberg et al., 2015)

$$\max_{\rho(.|S)} \sum_{x \in S} \left\{ u(x)\rho(x|S) - k(\rho(x|S)) \right\}$$

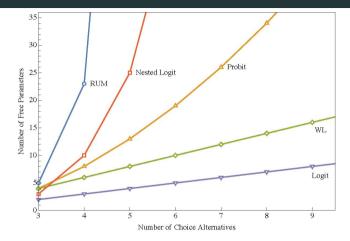
where k is a strictly convex and smooth function.

- cost: item-specific, but quadratic cost function
- no closed-form solution
- satisfies Strong Stochastic Transitivity, but outside of RUM

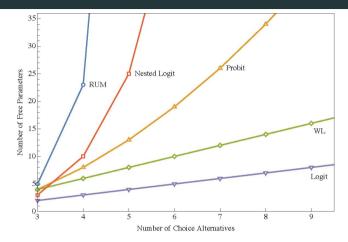
Does WL belong to RUM?

Model Comparisons

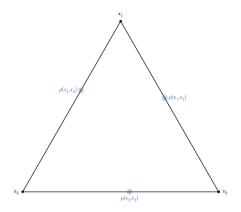
Number of Parameters



- MNL (RUM) is the most (least) parsimonious model
- WL and MNL's number of parameters increase linearly

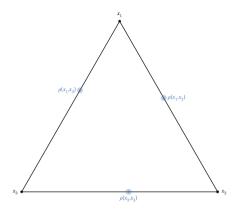


- MNL (RUM) is the most (least) parsimonious model
- WL and MNL's number of parameters increase linearly



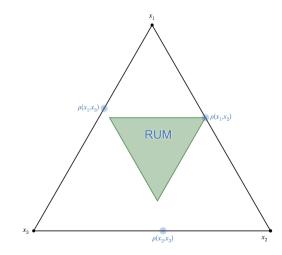
binary choices given

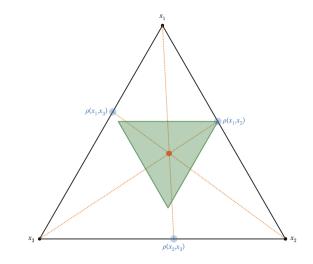
• ask possible trinary choices for each model

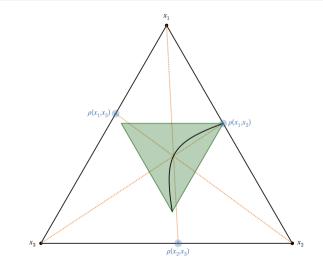


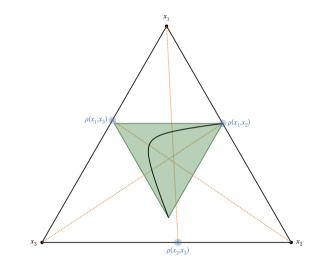
• binary choices given

• ask possible trinary choices for each model

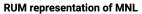




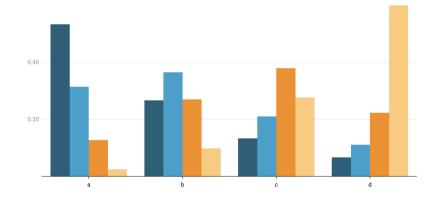




Polarization



1st 2nd 3rd 4th

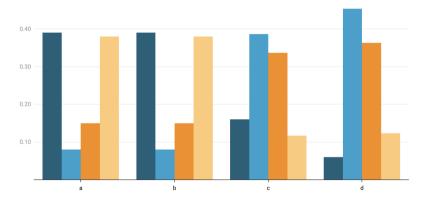


- For products $\{a, b, c, d\}$
- MNL does not allow polarization

Polarization in WL

RUM representation of WL

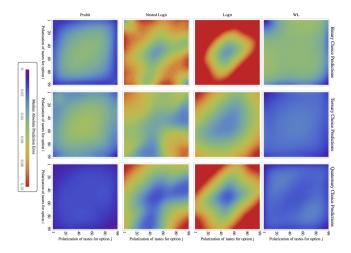
📕 1st 📕 2nd 📕 3rd 📕 4th



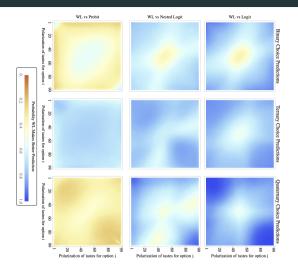
- $\bullet \ a$ and b are polarized options
- WL allows polarization

Simulations

Simulations



Simulations



Axiomatic Foundations

• Three axioms

• First axiom is positivity

Every alternative is chosen with positive probability

Axiom 1: $\rho(x|S) > 0$ for every $x \in S$ and $S \in \mathcal{D}$.

- Three axioms
- First axiom is positivity
 - Every alternative is chosen with positive probability

Axiom 1: $\rho(x|S) > 0$ for every $x \in S$ and $S \in \mathcal{D}$.

- Second axiom is strict regularity
 - When the competition gets fiercer among alternatives (i.e. more alternatives), choice probabilities for any given alternative strictly decrease.

Axiom 2: $\rho(y|S) < \rho(y|S \setminus \{x\})$ for every $x \in S$.

- \bullet For today's talk, assume $x,y\in S\cap T$ and $\rho(y|S)\neq\rho(y|T)$
- Consider a new auxiliary function

$$r_{S,T}(x,y) = \frac{\rho(x|S) - \rho(x|T)}{\rho(y|S) - \rho(y|T)}$$

measures the relative probability change of x and y from S to T
 the relative probability levels rather than the absolute levels (as in Luce's IIA)

• This function is independent of decision problems

$$r_{S_1,T_1}(x,y) = r_{S_2,T_2}(x,y)$$

- a stronger version is needed
- transitivity condition on the function

Axiom 3: For any x, y, z and $S_i, T_i \in \mathcal{D}$,

$$r_{S_1,T_1}(x,z) = r_{S_2,T_2}(x,y)r_{S_3,T_3}(y,z)$$

Characterization

Suppose \mathcal{D} contains all menus with size 2 and 3. Then a stochastic choice function ρ has a WL representation on \mathcal{D} if and only if it satisfies Axioms 1-3.

Conclusion

Intuition of Proof

- \bullet We first define the salience of each alternative by using $r_{S,T}$ where S and T are menus with size 2 and 3
 - Fix $y^* \in X$ and define $m(y^*) = 1$
 - Then define $m(x) := r_{\{x,y^*\},\{x,y^*,z\}}(x,y^*)$
- Show that $\frac{m(a)}{m(b)} = r_{S,T}(a,b)$
 - Axioms guarantee that m is well defined
- Using the fact that the "shadow value" of a choice set is the same across all items chosen in the set, can define utility function
 - $\blacktriangleright u(a) u(b) = \frac{\rho(a|S)}{m(a)} \frac{\rho(b|S)}{m(b)}$
 - Again, axioms guarantee this is well defined
- Show that data can be represented by WL model with constructed parameters

Conclusion

- Empirical identification exercises typically fix a choice set
- Items have observable attributes
- Attributes enter into parameters in linear fashion
- Different than axiomatic approach previously
- Show how WL works in this environment

- Empirical identification exercises typically fix a choice set
- Items have observable attributes
- Attributes enter into parameters in linear fashion
- Different than axiomatic approach previously
- Show how WL works in this environment

- $\bullet\,$ A set of observable attributes of cardinality k
- a_i denotes the vector of attributes for product i
- Includes not only things that affect product quality, but also things like price, advertising, etc.
- Assume that there exists a vector β such that $u_i = \beta a_i$ for each i
- Similarly there exists a vector α such that $c_i = \alpha a_i$ for each *i*.

Proposition

Suppose that $u_i = \beta a_i$ and $c_i = \alpha a_i$ where a_i is a $k \times 1$ vector. Suppose that we have at least 2k linearly independent observations of $(\rho(i)a_i - \rho(j)a_j, a_i - a_j)$ for $i, j \in S$. Then β and α are identified from choices in S up to positive scalar multiplication.

- Key intuition: from the first order conditions of an optimization problem, we know that $\beta[\rho(i)a_i \rho(j)a_j] = \alpha[a_i a_j]$
- Have a set of linear equations

- WL model is a simple model of stochastic choice
- Nests well-known existing models: Luce and linear monopolistic competition
- Deliberate randomization
- Closed-form solution
- Tractable in applications
- Can capture well-known empirical phenomena
- Simple axiomatization
- easy to estimate
- Identifiable in standard empirical applications