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@ capturing the probabilistic nature of choice

» applied work demands randomness

o workhorse model is the logit model (a.k.a. MNL)
» introduced by Bradley-Terry-Luce, popularized by McFadden
» tractable: “closed-form solution”
» probability of choosing = from choice set S is
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» applied work demands randomness

o workhorse model is the logit model (a.k.a. MNL)
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» tractable: “closed-form solution”
> probability of choosing  from choice set S is

@ undesirable implications (Benkard and Bajari, 2001)
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Aim of Today’s Talk

@ offer a simple model of probabilistic choice
@ two parameters

@ useful in applications: “closed-form solution”
@ microfoundation

@ bonus: a simple characterization



Things that might be covered today

@ application: firm competition

> closed-form solutions for markups and number of firms

@ simulations

@ show identification when attributes are observable and the choice set is fixed



Some Notation

e X: a finite set of outcomes

@ S C X: available options in the market

@ p(z|9) is the choice probability of « from S (Market Demand)

» positive demand: p(z|S) >0
> availability : p(z|S) = 0 whenever = ¢ S

» unit demand: Z p(z]S) =1
z€S



Model



Choice as Optimization

v

Consumption Bundles



Choice as Optimization

A

0.5,0.5
0.5 ( )

.
>

0.5 1 Xq

Lotteries with two outcomes



Choice as Optimization

A

0.5

v

0.5 1 Xq

Lotteries



Choice as Optimization

X3

Lotteries with three outcomes




Choice as Optimization
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Lotteries with three outcomes
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Choice as Optimization

X2 4 X2

(1/3,1/3,1/3)

(1/31/3,1/3)

X3 X1

Marshak-Machina Triangle
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Choice as Optimization

Machina (1985)

Classical Consumer Theory Probabilistic Choice
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Probabilistic Choice as Optimization

@ Which objective function?
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@ Which objective function?

@ ours is a simple one

max Z { u(x)p(x|S) — %P(I‘S)Q }

m(z)

expected utility cost
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Probabilistic Choice as Optimization

@ Which objective function?

@ ours is a simple one

S}

expected utility cost

1
max Z { u(z)p(z|S) — S

subject to ) < p(x|S) =1

13



Probabilistic Choice as Optimization

o Lagrange

zeS

gy 2 {v@etals) - 3y P97} + A1 D ptals)]
—_——— —/ —

expected utility cost
constraint
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Probabilistic Choice as Optimization

o Lagrange
1 2
‘ , A(S)[1—
mas Z{u palS) = 55 plalS) F + A1 =D p(al9)]
, zeS
expected utility cost constraint
e FOC
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Probabilistic Choice as Optimization

o Lagrange

e FOC

max 3 {ule)p(elS) - #@)pmsf LA 1= p(al9)]

TES e — N——— — zES

expected utility cost

constraint

p(z]S) = m(z)u(z) — A(S)m(z)
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Probabilistic Choice as Optimization

e A(S) = %: the Lagrange multiplier on S

p(zlS) = m(x)[u(z) — A(S)]
= m(l) m(x)|u(x) — u,

@ (u,m) is a WL representation for some p iff u(z) > A(X) for all z.
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Probabilistic Choice as Optimization

*1

Pxg,X9,%3)

° 'p(XpXQ)

X3

X2
/’(xgxxg)
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o u(r) e R, m(z) >0
> u: utility

> m: salience/attractiveness

mix _
p(al$) = % T @) — @n(S)]
yeSs
base probability comparative probability

> ulym(y)

— yES

weighted average: um (S) = W
yEeS
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Weighted Linear Model (WL)

mix _
plals) = - fngy) T (@) — @n(S)]
yeSs
base probability comparative probability

Weighted Linear Model (WL)
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An Example

@ two distinct products: = and y
» u(z) =3 and m(z) =0.5

> u(y) =2 and m(y) = 0.5
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An Example

@ two distinct products: = and y
» wu(x) =3 and m(z) =0.5

> u(y) =2 and m(y) = 0.5

g 1l _ 05
o base probability for z: 5 = 55555

@ comparative advantage of z:

5 _ 0.5%340.5%2

> weighted average utility is 5 “SEros

> 05(3-3)=1
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An Example

@ two distinct products: = and y
» wu(x) =3 and m(z) =0.5
> wu(y) =2 and m(y) =0.5

@ base probability for x: % = “i)ﬁ
@ comparative advantage of z:
> weighted average utility is % = %
55 _ 5y _ 1
> 0.5(3 — 5’) =7
@ market share of =
1 1
p(z|S) = 5 + 1 =0.75
~—~ ~—
Base Comparative
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An Example

o lower m(z) to 0.25

@ market shares

o trade-off

base probability = comparative | Total
1/3 1/6 0.50
2/3 -1/6 0.50
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WL-Model

o u: utility

e m: salience/attractiveness

m(x _
p(alS) = <2y m(@)lu(e) — n(S)]
> m(y)
yeSs
Base Probability Comparative Probability Transfer
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Special Case: |

m(x)

> m(y)

yeSs

+ m(z)[u(x) — un(S9)]

U constant
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Special Case: Il

m constant

simple average u(5)
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Special Case: Il

m constant

p(@]S) = = + mlu(z) — a(S)]

u(S): simple average
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Special Case: Il

m constant

p(alS) = rg7 + mlu(a) ~ ()

u(S): simple average

@ linear demand system featured prominently in many models of monopolistic competition

@ Shubik and Levitan, 1980; Spence, 1976; Dixit and Stiglitz, 1977
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Special Case: Il

m constant

1 e
p(z|S) = ot m[ps — pa]

@ pg is average price in S

@ m is a measure of market friction

» if small, then price differences have little influence on demand
> if large, market share is determined almost entirely by prices
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Probabilistic Choice as Optimization

| .
' Tyg)

Pyxg)

constant u constant m

27



Uniqueness




Uniqueness

Let (u,m) be a WL representation of p. Then (u’,m’) is a WL representation of p if and only
if ' = au+ b and m' = Lm where a > 0.
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Uniqueness

Let (u,m) be a WL representation of p. Then (u’,m’) is a WL representation of p if and only
1

if u' = au+band m' = >m where a > 0.

@ u unique up to affine transformations

@ m unique up to scalar multiplication
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Accommodating Empirical Patterns

@ demand with the introduction of new products

> “red bus-blue bus” problem
» introducing a new product
> larger choice sets

» zero market demand

@ cross-price substitution patterns
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#1: Introducing Replicas

o “Red Bus-Blue Bus” problem (Debreu, 1960)
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#1: Introducing Replicas

@ “Red Bus-Blue Bus” problem (Debreu, 1960)

& KL

050 050

@ what happens when a blue bus is introduced?

& HiE R

2 2 2
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#1: Introducing Replicas
o MNL predicts

033 033 033

@ our model predicts

& Hh HR

B B

> u(Car)
> u(Car)

u(Bus) -+ 0.33 < A <05

IN IV

u(Bus) -+ 0< A <0.33
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#2: Introducing New Product

@ what happens to the market demand for existing products when a new product is introduced?
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Revisit the Example

@ two distinct products: z and y

> u(z) =2 and m(z) = i

SIS

> u(y) =1and m(y) =

e introduce z: u(z) =1 and m(z) = %

> low u low m

> relatively bad competitor

@ introducing a third option increases the relative demand for the higher utility item
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Revisit the Example

@ two distinct products: z and y

> u(z) =2 and m(z) = i

SIS

> u(y) =1and m(y) =

e introduce w: u(w) =2 and m(w) = %
> high u high m

> relatively good competitor

@ introducing a third option increases the relative demand for the higher utility item
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#2: Introducing New Product

o larger choice sets increase the relative demand for the higher utility item

Suppose u(z) > u(y). Then p(z|S) > p(y|S) implies p(z[SUT) > p(y|SUT).
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#2: Introducing New Product

@ reversal is also possible
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#3: Larger Choice Sets

@ What happens as choice sets get VERY large?
> p(z|S) =7 as |S| = oo
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#3: Larger Choice Sets

@ What happens as choice sets get VERY large?
> p(z]S) =7 as |S| = oo

@ Benkard and Bajari (2001) show

» Multinomial logit, nested logit and random coefficients predict
> p(z|S) — 0 as |S| — oo

@ WL model can allow for non-negligible market shares
> p(z|S) away from 0 as |S| — oo
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#4: Zero Market Demand

@ Many models predict that the market share of any item must be positive

> Benkard and Bajari (2001) show true whenever the conditional error distributions have unbounded
upper support and a continuous upper tail

@ WL model can easily allow for O probabilities

» Entrants can drive some, but not other products out
» Need to reformulate axiomatic foundation

38



#5: Cross-Substitution

@ In MNL model,

» the same for all y
> At odds with empirical evidence
> Very restrictive
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#5: Cross-Substitution

@ In MNL model,

» the same for all y
» At odds with empirical evidence
» Very restrictive

@ In WL model,
dp(x|S) m(z)

om(y) - _m(y)m(S) PylS)
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Relation to APU




o WL

pCi%) ; {u(@)p(e]S) - ——

1

(z

)p(wIS)Q}
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o WL 1
max Z {u@p(alS) - - rs5p(lS)’}

o Additive Perturbed Utility (Fudenberg et al., 2015)

max Z{u $|S — k( p(”c\S))}

p(-19)

where k is a strictly convex and smooth function.
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o WL

1 2
max Z {u@p(alS) - - rs5p(lS)’}

o Additive Perturbed Utility (Fudenberg et al., 2015)

max Z{u $|S — k( p(”c\S))}

p(-19)

where k is a strictly convex and smooth function.

P cost: item-specific, but quadratic cost function
» no closed-form solution

> satisfies Strong Stochastic Transitivity, but outside of RUM
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Does WL belong to RUM?
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Model Comparisons




Number of Parameters

30

Probit

25 Nested Logit

20

Number of Free Parameters

0 I 1 1 1 I !
3 4 5 6 7 8 9

Number of Choice Alternatives
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Number of Parameters

) Probit
Nested Logit

Number of Free Parameters

Number of Choice Alternatives

o MNL (RUM) is the most (least) parsimonious model

@ WL and MNL's number of parameters increase linearly
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Explanatory Power

plxgx3)
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Explanatory Power

@ binary choices given

@ ask possible trinary choices for each model
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Explanatory Power-RUM

1

Pl
Plx;x5)

RUM

X3

PlxgXs) *2
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Explanatory Power-Luce

*1

Plxgx3)
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Explanatory Power-WL

1

Plrgx3)

6



Explanatory Power-WL

X

plxyx3)

X P %5)

X3

X2

plxy,xs)
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Polarization




No Polarization in MNL

RUM representation of MNL
Wist @2nd [H3rd | 4th

@ For products {a,b, ¢, d}
@ MNL does not allow polarization



Polarization in WL

RUM representation of WL
Ml 7st Wi2nd [W3rd | 4th

@ a and b are polarized options
o WL allows polarization



Simulations




(2]
c
2
-
10
=
=
(]

Binary Choice Predictions ‘Ternary Choice Predictions Quaternary Choice Predictions

Nested Logit

Polarization of tastes for option i Polarization of tastes for option i Polarization of tastes for option i

Median Absolute Prediction Error

0. 002 004 006 008 010

Polarization of

Polarization of tastes for option j
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WL vs Nested Logit WL vs Logit

WL vs Probit

Binary Choice Predictions

L

120 4 6 80 9%
Polasization of tastes for option i

Ternary Choice Predictions

0 40 60 80 9

Polarization of tastes for option i

Quaternary Choice Predictions

|

A

20 4 6
Polarization of tastes for

Probability WL Makes Better Prediction

8

%

2
Polarization of tastes for option

40

20

Polarization of tastes for option

Polaization of tastes for option j
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Axiomatic Foundations

@ Three axioms
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Axiomatic Foundations

@ Three axioms
@ First axiom is positivity

» Every alternative is chosen with positive probability

Axiom 1: p(z|S) > 0 for every z € S and S € D.
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Axiomatic Foundations

@ Second axiom is strict regularity

» When the competition gets fiercer among alternatives (i.e. more alternatives), choice probabilities for
any given alternative strictly decrease.

Axiom 2: p(y|S) < p(y|S \ {z}) for every x € S.
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Axiomatic Foundations

e For today's talk, assume z,y € SN T and p(y|S) # p(y|T)

o Consider a new auxiliary function

» measures the relative probability change of = and y from S to T’
> the relative probability levels rather than the absolute levels (as in Luce’s I1A)
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Axiomatic Foundations

@ This function is independent of decision problems

s, 11 (T, Y) = 755,12 (2, Y)
@ a stronger version is needed

@ transitivity condition on the function
Axiom 3: For any z,y,z and S;,T; € D,

751,11 (T, 2) = 785,175 (2, Y) 755,15 (Y, 2)
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Axiomatic Foundations

Suppose D contains all menus with size 2 and 3. Then a stochastic choice function p has a WL
representation on D if and only if it satisfies Axioms 1-3.
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Intuition of Proof

@ We first define the salience of each alternative by using s+ where S and T" are menus with size 2
and 3

> Fix y* € X and define m(y*) =1
> Then define m(z) := r; v} (2,y*, 23 (@, ¥)

@ Show that :Z((‘;; =rsr(a,b)

» Axioms guarantee that m is well defined

Using the fact that the “shadow value” of a choice set is the same across all items chosen in the
set, can define utility function

> u(a) o u(b) _ P7§l¢1(|’l~5;) o Pygfgli)

» Again, axioms guarantee this is well defined

@ Show that data can be represented by WL model with constructed parameters

< Conclusion
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Identification with Attributes

o Empirical identification exercises typically fix a choice set

@ Items have observable attributes

Attributes enter into parameters in linear fashion
o Different than axiomatic approach previously

Show how WL works in this environment
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e Empirical identification exercises typically fix a choice set

@ Items have observable attributes

Attributes enter into parameters in linear fashion

Different than axiomatic approach previously

Show how WL works in this environment
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Identification with Attributes

@ A set of observable attributes of cardinality k&
@ a; denotes the vector of attributes for product 7

@ Includes not only things that affect product quality, but also things like price, advertising, etc.

Assume that there exists a vector  such that u; = fa; for each ¢

Similarly there exists a vector « such that ¢; = aa; for each i.
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Identification with Attributes

Proposition

Suppose that u; = fa; and ¢; = «aa; where a; is a k X 1 vector. Suppose that we have at least 2k
linearly independent observations of (p(i)a; — p(j)aj,a; —aj) fori,j € S. Then 8 and « are identified
from choices in S up to positive scalar multiplication.

o Key intuition: from the first order conditions of an optimization problem, we know that
Blp()ai — p(j)a;] = alai — a;]

@ Have a set of linear equations
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Conclusion

@ WL model is a simple model of stochastic choice

@ Nests well-known existing models: Luce and linear monopolistic competition
@ Deliberate randomization

@ Closed-form solution

@ Tractable in applications

@ Can capture well-known empirical phenomena

@ Simple axiomatization

@ easy to estimate

o Identifiable in standard empirical applications
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