WILLPOWER AND COMPROMISE EFFECT

YUSUFCAN MASATLIIOGLU∗, DAISUKE NAKAJIMA†, AND EMRE OZDENOREN‡

Abstract. This paper provides a behavioral foundation for willpower as a limited
cognitive resource model which bridges the standard utility maximization and the
Strotz models. Using the agent’s ex ante preferences and ex post choices, we derive a
representation that captures key behavioral traits of willpower constrained decision
making. We use the model to study the pricing problem of a profit-maximizing
monopolist who faces consumers with limited willpower. We show that the optimal
contract often consists of three alternatives and the consumer’s choices reflect a form
of the “compromise effect” which is induced endogenously.

1. Introduction

Standard theories of decision making assume that people choose what they prefer and
prefer what they choose. However, introspection suggests that implementation of choice
may not be automatic and there is often a wedge between preferences and actual choices.
Recently psychologists and economists have emphasized the lack of self control in decision
making as an important reason for this wedge. When people face temptation, they make
choices that are in conflict with their commitment preferences.

People do not always succumb to temptation and are sometimes able to overcome tempta-
tions by using cognitive resources. This ability is often called willpower. There is a growing
experimental psychology literature demonstrating that willpower is a limited resource, and it

Date: Feb, 2019.

∗ We would like to thank Kfir Eliaz, Collin Raymond, Larry Samuelson, Joel Sobel, Tomasz Strzalecki,
and Neslihan Uler. We are grateful to the editor, Rani Spiegler, and and three anonymous referees for
the insightful comments and suggestions, which greatly improved the paper. Parts of this research were
conducted while Masatlioglu was visiting the Institute for Advanced Studies at Hebrew University. Nakajima
appreciates the financial support provided by Japan Society for the Promotion of Science (JSPS KAKENHI
Grant Number 26780113).

§ University of Maryland, 3147E Tydings Hall, 7343 Preinkert Dr., College Park, MD 20742. E-mail:
yusufcan@umd.edu.

† Otaru University of Commerce. E-mail: nakajima@res.otaru-uc.ac.jp.

‡ London Business School. Email: eozdenoren@london.edu.

1 Models of self-control problems include quasi-hyperbolic time discounting (e.g., Laibson [1997], O’Donoghue
and Rabin [1999]), temptation costs (e.g., Gul and Pesendorfer [2001, 2004]), and conflicts between selves or
systems (e.g., Shefrin and Thaler [1988], Bernheim and Rangel [2004], Fudenberg and Levine [2006]).
is more than a mere metaphor (e.g., Baumeister and Vohs [2003], Faber and Vohs [2004], Muraven et al. [2006]). Motivated by these experiments economists have used limited willpower to explain patterns of consumption over time (Ozdenoren et al. [2012], Fudenberg and Levine [2012]).

Our goal is to characterize a simple and tractable model of limited willpower that is suitable to study a wide range of economic problems. In many applications a key issue is whether the agents are naive or sophisticated about anticipating their future choices. The evidence suggests that consumers who have self control problems are often, at least partially, naive about this fact. For example, there are “hot-cold empathy gaps” where individuals are not able to recognize the intensity of temptation, or other visceral urges at an ex ante state. Loewenstein and Schkade [1999] review several studies that find people tend to underestimate the influence on their behavior of being in a hot state such as hunger, drug craving, curiosity, sexual arousal, etc. This fact poses a challenge for self-control models that presume that agents can correctly predict their future choices and makes them unsuitable for many applications.

Our characterization uses a novel data set given by the agent’s ex ante preferences (\succsim) and ex post choices (c).2 Temptation and self-control have been studied using the preference over menus framework pioneered by Kreps [1979] and Gul and Pesendorfer [2001] where the agent’s second period choices are inferred from his preferences over menus. In contrast, in our framework the modeller directly observes both components of the data, namely ex ante preferences and ex post choices. Menu preferences framework provides a powerful tool to elicit a very rich set of behaviors at the ex ante stage, but also has limitations as highlighted by Spiegler [2013]. For example, it assumes that the agent can predict the degree of his future temptations and his future choices.3 Although it is useful to study the sophisticated benchmark, many interesting applications with policy related implications emerge from the assumption of naivety. By relying on directly observed rather than predicted behavior our model is tailored to study these applications. This is illustrated in Section 5 where we apply the model to monopolistic contracting – one of the leading applications of self-control – where consumers have limited willpower but are unaware of their willpower problems.

In Section 2, we propose two models. We refer to the more general of the two as the limited willpower model. We refer to the second and simpler model as the constant willpower

2Ahn and Sarver [2013] also use two kinds of behavioral data. As opposed to ours, their data includes both the menu preferences and the random ex post choices from menus.

3Ahn et al. [2019] combine menu preferences with data on ex post choice to detect the agent’s degree of naivety.
model which is based on three ingredients. The first, commitment utility u, represents the agent’s commitment preferences. The other two ingredients are temptation values v and the willpower stock w which jointly determine how actual choices depart from what commitment utility would dictate. The key to determining the actual choice is the willpower constraint. This constraint is determined by the most tempting available alternative and the willpower stock. The agent is able to consider an alternative x in A if he can overcome the temptation, that is, $\max_{y \in A} v(y) - v(x) \leq w$. Otherwise, he does not have enough willpower to choose this alternative. He then picks the alternative that maximizes his commitment utility from the set of alternatives that satisfies the willpower constraint. Formally, the ex post choice from a set A is the outcome of the following maximization problem:

$$\max_{x \in A} u(x) \text{ subject to } \max_{y \in A} v(y) - v(x) \leq w$$

The more general limited willpower model is similar to the constant willpower model except that it allows the willpower stock to depend on the chosen alternative.

The constant willpower model bridges the standard utility maximization and the Strotz model. When the willpower stock is very large, the willpower-constrained agent behaves like a standard agent who chooses the most preferred alternative (according to u). When the willpower stock is lower, the constraint starts to bind and a wedge between preferences and choices appears – the agent can only choose alternatives that are close enough, in terms of temptation, to the most tempting one. In the other extreme, when the willpower stock is very low, the agent behaves like a Strotzial agent who always succumbs to temptation. Notice that the agent’s choice will satisfy WARP in the two extreme cases for different reasons. While in the former choices reflect the ex ante preference alone, in the latter, temptation ranking solely determines the choices. In comparison, in the limited willpower case, the agent might not have enough willpower to choose the least tempting alternative, but might have enough willpower to choose the moderately tempting alternative. Such choices reflect a compromise between the ex ante preference and the temptation ranking and violate WARP. Similar examples of WARP violations feature in Fudenberg and Levine [2006], Dekel et al. [1998], Noor and Takeoka [2010], Chandrasekher [2010]. Lipman and Pesendorfer [2013] point out such behavior can provide a new perspective on the compromise effect.

The costly self control models in Gul and Pesendorfer [2001], Noor and Takeoka [2010, 2015], Grant et al. [2017] are closely related to the constant willpower model. In the costly

In a menu preference framework, Dillenberger and Sadowski [2012] point out that when agents anticipate experiencing guilt or shame when they deviate from a social norm, their choices can also violate WARP.
self control models, the agent experiences a utility cost which can be a convex function of the difference between the temptation values of the most tempting and the chosen alternatives from a menu. One can express a willpower constraint as the limiting case of a convex cost function that is zero if the temptation difference is less than the willpower stock and infinite otherwise. Hence, just as the Strotz model can be viewed as a limiting case of costly self control with linear costs (Gul and Pesendorfer [2001]), the constant willpower model is a limiting case of costly self control with convex costs. Just like the Strotz model, constant willpower is an important special case both methodologically and for applications. Although our functional form is a limiting case, our axiomatic characterization uses a different domain and primitives. In Section 4, we provide a comparison of self control models in terms of their implied second stage choices, and show that any choice behavior generated by a given constant willpower model can be generated from a costly self control model with a piece-wise linear convex cost function whose slope is close enough to zero before a kink point and to infinity after it. We also show, however, that any such model necessarily generates choice behavior that violates our axioms if we expand the set of alternatives.

In Section 5, we solve the pricing problem of a profit-maximizing monopolist who faces consumers with constant willpower. Monopolistic contracting is a key application of self control models and was first studied by DellaVigna and Malmendier (2004). Our treatment is similar to Eliaz and Spigler (2006) who study unconstrained contracting with dynamically inconsistent consumers. We consider a two-period model of contracting between a monopolist and a consumer. In the first period, the monopolist offers the consumer a contract which the consumer can accept or reject. If the consumer accepts the contract, in the second period he chooses an offer from the contract and pays its price to the monopolist. We assume that both parties are committed to the contract once accepted.

This framework fits into many real world situations such as signing up for a phone plan, gym-membership, or a credit card, making a hotel reservation, renting a car, etc. In all these examples, consumers often agree to a contract that specifies a basic level of consumption that can be “upgraded” at the time of consumption. It has been pointed out that these contracts can be exploitative. The literature has focused on contracts that offer two alternatives which we call “indulging contracts”. At the time of signing an indulging contract the consumer believes he will consume a basic and cheaper alternative but ends up choosing the more expensive alternative at the time of consumption. However, in practice, it is common to see contracts that offer more than one upgrade to the consumer. For example, when renting a car consumers often choose a basic car at the time of signing the contract, but they are offered multiple levels of upgrades at the time of picking up the car. Our analysis shows that
such contracts can be optimal for naive consumers who have limited willpower or who have costly self control where the cost function is convex.

Specifically, we show that the optimal contract consists of three alternatives and the consumer’s choices reflect a form of the “compromise effect” which is induced endogenously by the contract offered by the monopolist. Interestingly, the optimal contract includes a tempting alternative that neither the consumer nor the firm believes would be chosen from an ex ante perspective, and indeed is not chosen ex post. When the consumer has limited willpower we show that indulging contracts can never be optimal. We also show that for low levels of willpower, the monopolist exploits the consumer as if he has no willpower. For high enough willpower, the monopolist sells the efficient alternative at an exploitative price. When the consumer’s willpower is very high there is no exploitation and the monopolist uses a commitment contract. Profits are lower and consumer is better off if he has more willpower. In Appendix B we analyze the same problem for convex self control with strictly convex or piece wise linear cost functions and in Section 5.3 we compare the results.

2. Model

The agent’s ex ante preferences \succsim are over a finite set of alternatives X. These preferences can be interpreted as the agent’s commitment preferences. The agent’s ex post choices are captured by a choice correspondence c that assigns a non-empty subset of A to each $A \in \mathcal{X}$ where \mathcal{X} is the set of all non-empty subsets of X.

We say that (\succsim, c) has a limited willpower representation if there exists (u, v, w) where $u : X \rightarrow R$ represents preference \succsim and c is given by

$$c(A) = \arg\max_{x \in A} u(x) \text{ subject to } \max_{y \in A} v(y) - v(x) \leq w(x)$$

where $v : X \rightarrow R$ captures the temptation values and $w : X \rightarrow \mathbb{R}_+$ is the willpower function. If w is a constant function, we call it a constant willpower representation.

In the standard model where there is no willpower problem, a decision maker chooses the alternative that maximizes the commitment utility, u, from any menu. An agent who has constant willpower also maximizes u but faces a constraint. The willpower requirement of alternative x is given by the difference between the temptation value of the most tempting alternative on the menu, $\max_{y \in A} v(y)$, and the temptation value of x. The agent can choose x only if its willpower requirement is less than the willpower stock, w. Otherwise, he does not have enough willpower to choose this alternative. Notice that the willpower requirement is
menu dependent. This is because willpower depletion not only depends on how tempting
the chosen alternative is but also on the most tempting alternative on the menu.

As a simple example suppose a consumer is offered three alternatives at rental car pick-up:
an economy car \((e)\), a mid-size sedan \((m)\) and a luxury car \((l)\). Suppose ex ante \(e \succ m \succ l\),
and \(v(e) = 0, v(m) = 2, v(l) = 4\). Table 1 shows the agent’s choices from two sets, \{\(e, m, l\)\} and \{\(e, m\)\} for varying levels of willpower stock.\(^5\) When willpower stock is high, \(w = 5\), the
agent chooses according to his ex ante preferences. When willpower stock is low the agent
also behaves like a standard preference maximizer, except that he chooses the most tempting
alternative. When the willpower stock is intermediate, \(w = 3\), then the model has interesting
implications – decisions can be driven by a compromise between the ex ante preference and
temptation. To see this suppose all three alternatives are available. The agent is not able to
choose \(e\) since \(v(l) - v(e) = 4 > 3 = w\). In this case he chooses the compromise alternative
\(m\) since \(v(t) - v(b) = 2 < 3\). However when only \(e\) and \(m\) are available, there is no need to
compromise (since \(v(m) - v(e) = 2 < 3\)) and the agent chooses \(e\).

<table>
<thead>
<tr>
<th>(w)</th>
<th>(c(e, m, l))</th>
<th>(c(e, m))</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>(l)</td>
<td>(m)</td>
</tr>
<tr>
<td>3</td>
<td>(m)</td>
<td>(e)</td>
</tr>
<tr>
<td>5</td>
<td>(e)</td>
<td>(e)</td>
</tr>
</tbody>
</table>

Table 1. Choices for different levels of the willpower stock

3. Behavioral Characterization

In this section we introduce the axioms and provide two representation theorems. Our
first axiom is standard.

A 1. \(\succ\) is a complete, transitive and asymmetric binary relation.

The second axiom is Independence from (Unchoosable) Preferred Alternative (IPA); better
options that are not chosen can be removed without affecting the actual choice.

A 2. (IPA) If \(x \succ y\) and \(y \in c(A \cup x)\) then \(c(A) = c(A \cup x)\).

This axiom can be viewed as a relaxation of WARP. Recall WARP allows any unchosen
alternative to be dropped without affecting actual choices. In contrast, IPA allows only
preferred unchosen alternatives to be dropped without affecting actual choices.

\(^5\)We will abuse the notation and write \(c(x, y, \ldots)\) instead of \(c(\{x, y, \ldots\})\). Similarly, we omit braces and
write \(A \cup x\) instead of \(A \cup \{x\}\).
IPA is based on the intuitive notion that when a tempting alternative is also the most preferred available alternative, it should be chosen. Hence any unchosen alternative that is strictly preferred to the chosen one must have a relatively low temptation value. IPA says that dropping such alternatives should not affect the actual choice. Let’s revisit the example in Section 2 with three alternatives, e, m and l with $e \succ m \succ l$. Suppose a mid-size sedan is chosen when all three options are available, i.e. $m = c(e, m, l)$. This means the most preferred alternative (e) is not chosen, and hence, is not the most tempting alternative and is irrelevant in the sense that dropping it from the menu should not affect the choice behavior of the agent. That is, we must have $c(e, m, l) = c(m, l)$. On the other hand, it is possible that removing l, the least preferred alternative, might influence the choice. If m is not as tempting as l, the agent can choose the best alternative e when l is removed, i.e. $e = c(e, m) \neq c(e, m, l)$. Hence, WARP is not satisfied in the presence of limited willpower.

Axiom 1 and Axiom 2 together imply that the choice is unique, $|c(A)| = 1$ for all A. To see this, assume x and y are chosen from A. By Axiom 1, assume $x \succ y$ without loss of generality. Then Axiom 2 implies that $x /\in c(A)$. The next axiom is Choice Betweenness (CB): the choice from the union of two sets is “between” the choices made separately from each set with respect to preference.

A 3. *(Choice Betweenness)* If $c(A) \succ c(B)$ then $c(A) \succ c(A \cup B) \succ c(B)$.

To understand this axiom take the union of two choice sets $A \cup B$ and w.l.o.g. suppose A contains one of the chosen alternatives from $A \cup B$. Consider two (not necessarily mutually exclusive) cases. First, suppose A contains the most tempting item in $A \cup B$. In this case, the agent should not be able to choose a strictly better alternative from A (since he needs to overcome the same temptation from $A \cup B$ as from A) but should still be able to choose the alternative originally chosen from $A \cup B$, i.e., $c(A) \sim c(A \cup B)$. Note that in this case the axiom is automatically satisfied since $c(A \cup B)$ must be in between $c(A)$ and $c(B)$ in terms of preference. As a second case suppose B contains the most tempting item in $A \cup B$. In this case the agent should be able to choose at least as preferred an alternative from A as he can from $A \cup B$ since he needs to overcome a weaker temptation from A. Moreover, the alternative chosen from B cannot be strictly preferred since the most tempting alternative is contained in B. Thus, the axiom should be satisfied in this case as well.

6Implicit in these arguments is that only the most tempting alternatives matter in influencing the agent’s choices. Clearly, this is also the case in the representation since only the alternative with the highest v value matters in determining which alternatives are choosable from a choice set.
In fact, \(c(A \cup B) \) can be strictly between \(c(A) \) and \(c(B) \). Continuing with our earlier example, let \(A = \{ e, m \} \) and \(B = \{ l \} \). Recall that both \(e \) and \(m \) are strictly better than \(l \), so \(c(A) \succ c(B) \). The choice from all three options, \(m \), is strictly better than \(l \), the worst alternative, so \(c(A \cup B) \succ c(B) \). Moreover, from the set \(A \), \(e \) is chosen, thus \(c(A) \succ c(A \cup B) \succ c(B) \).

Next, we present our first representation theorem.

Theorem 1. \((\succ, c)\) satisfies A1-A3 if and only if it admits a limited willpower representation.

Theorem 1 provides a characterization of the limited willpower with three simple and intuitive behavioral postulates in a novel domain. Even though the axioms are simple, the proof of the theorem uses a new approach in this literature, which relies on the concept of interval orders, so we provide a sketch of the proof next. Suppose \(P \) is a binary relation. Let \(\Gamma_P(A) \) be the set of undominated alternatives according to \(P \) in \(A \). The key result we use is that a binary relation \(P \) is an interval order (i.e. it is irreflexive and \(xPb \) or \(aPy \) holds whenever \(xPy \) and \(aPb \)) if and only if there exist functions \(v \) and \(w \) such that

\[
\Gamma_P(A) = \{ x \in A : \max_{y \in A} v(y) - v(x) \leq w(x) \}.
\]

In our framework, a natural binary relation to consider is \(\succ' \). We say that \(x \succ' y \) if \(y \succ x = c(x, y) \). Whenever this happens, we say \(x \) "blocks" \(y \). We interpret this situation as \(x \) is much more tempting than \(y \) so that \(x \) is chosen even though \(y \) is better with respect to the ex ante preference. This relation is not an interval order because it cannot identify all the blocking pairs. Specifically, there are situations where \(x \) is more tempting than \(y \) (hence, it should block \(y \)) but \(x \) is better than \(y \) according to ex ante preference. To identify these pairs, we introduce a second binary relation \(\succ'' \). We say that \(x \succ'' y \) if \(x \succ y \) and there exist \(a \) and \(b \) such that \(a \succ' y \), \(x \succ' b \), and \(a \not\succ' b \). To see the intuition, assume \(a \succ' y \) and \(a \not\succ' b \). Then \(a \) is much more tempting than \(y \) but not tempting enough to block \(b \). Since \(x \) blocks \(b \), it must block \(y \). Since \(x \) is better than \(y \), our original relation cannot identify this. Our new relation \(\succ'' \) identifies all these cases. Then the bulk of the proof shows that \(\succ'' \cup \succ' \) is an interval order, which characterizes the temptation ranking and willpower stock. The utility ranking comes from the ex ante preference.

Our next goal is to characterize the constant willpower model. To do this we need one more assumption. Consider four alternatives \(x, y, z, t \in X \). Suppose, \(y \succ c(y, z) \), that is the agent prefers \(y \) to \(z \) but is unable to choose it. Intuitively this means that \(z \) is more tempting than \(y \). If, in addition, \(c(t, z) = t \), then \(t \) must be more tempting than \(y \) as well,
otherwise the agent would not be able to choose \(t \). If \(x \succ c(x, y) \), then the agent prefers \(x \) but cannot choose it against \(y \) because \(y \) is too tempting. Since \(t \) is even more tempting than \(y \), the agent should not be able to choose \(x \) against \(t \) either. This intuitive conclusion would hold for the constant willpower model but it is not implied by IPA and CB. This is our next axiom, Consistency.

A 4. (Consistency) Let \(y \succ c(y, z) \) and \(c(t, z) = t \). If \(x \succ c(x, y) \) then \(c(x, t) = t \).

Now, we are ready to state the main representation theorem.

Theorem 2. \((\succ, c)\) satisfies A1-A4 if and only if it admits a constant willpower representation.

The proof of Theorem 2 relies on the concept of semiorders (\(P \) is a semiorder if it is an interval order and \(xP t \) or \(tP z \) for any \(t \) whenever \(xPyPz \)). The key result we use is that a binary relation \(P \) is a semiorder if and only if there exists a function \(v \) and a scalar \(w \) such that

\[
\Gamma_P(A) = \{ x \in A : \max_{y \in A} v(y) - v(x) \leq w \}.
\]

We use Consistency axiom to show that one can construct a semi order by properly modifying the interval order we created in the proof of Theorem 1.

We now discuss how to identify the utility and temptation ranking in our model. The utility ranking is ordinally unique. Although the temptation ranking is not, we now discuss the extent to which it can be identified. As we discussed before, in our model, whenever \(y \succ x = c(x, y) \) (i.e. \(x \triangleright' y \)), we can conclude that \(x \) is more tempting than \(y \) by at least amount of \(w \), i.e., \(v(x) - v(y) \geq w(y) > 0 \). Hence, in these cases, it is safe to claim that \(x \) is more tempting than \(y \) (\(v(x) > v(y) \)). This revelation is true for both of our models.

There are in fact more non-trivial revelations about the temptation ranking coming from \(\triangleright'' \). To illustrate this, consider the following data: \(y = c(y, t) \triangleright x = c(x, y) \triangleright z \triangleright t = c(z, t) \). This data immediately reveals that \(x \) is more tempting than \(y \) and \(t \) is more tempting than \(z \). In addition, in the general model, \(x \) must be more tempting than \(t \). To see this, assume \(v(t) \geq v(x) \). Then we have

\[
v(t) \geq v(x) > v(y) + w(y)
\]

which implies we must have \(t = c(y, t) \), which is a contradiction. Therefore we can conclude that

\[
v(x) > v(t) > v(z) \text{ and } v(x) > v(y)
\]
This example also illustrates the limits of what the choice data is able to reveal about the temptation ranking. Here, we cannot reveal the temptation ranking of y compared to t or z.

In the constant willpower model we can further identify the temptation ranking. For example, $y = c(y,t) > x > z = c(x,z) > t = c(z,t)$ immediately reveals that t is more tempting than z, which is more tempting than x. However, in the general model, this data cannot reveal the temptation ranking of y relative to all other alternatives. Either y is the most tempting alternative or y is the least tempting alternative but with high w. On the other hand, in the constant willpower model, it is revealed that y is more tempting that both z and x. To see this, assume $v(z) \geq v(y)$. Then we have

$$v(t) - w > v(z) \geq v(y)$$

which implies we must have $t = c(y,t)$, which is a contradiction. Therefore we can conclude that

$$v(y), v(t) > v(z) > v(x)$$

Almost all rankings are identified except the ranking between y and t. While there are 24 different possible temptation rankings in this example, only two of them are consistent with our data.

4. Related Literature

In this section we compare our model with the existing models of Gul and Pesendorfer [2001], Noor and Takeoka [2010, 2015], Grant et al. [2017]. At the methodological level, these models operate under different domains (lotteries) and primitives (preferences over menus). We consider generic and abstract alternatives and a novel data set consisting of ex ante preferences (\succ) and ex post choices (c). Avoiding any a priori structure on alternatives and focusing on ex post choices enhances the potential testability of our model.

As far as we know, there is no axiomatic characterization of self-control driven models in our domain and, more importantly, with our primitives. This makes a direct comparison difficult. To make the comparison easier, we consider ex post choices (second-stage) for models based on menu preferences. To do this, we will consider the following general formulation:

(1)

$$c(A) = \arg\max_{x \in A} \left\{ u(x) - \psi\left(\max_{y \in A} v(y)\right)\phi\left(\max_{y \in A} v(y) - v(x)\right)\right\}$$

where u represents the ex ante preference \succ, v is the temptation value, ϕ measures the cost of temptation which is an increasing function of temptation frustration, $\max_{y \in A} v(y) - v(x)$ and ψ is the level of temptation which is an increasing function of the highest level of temptation.
First, we translate our model in the language of Equation 1. In our model, the agent can resist temptation as long as willpower stock permits. Hence our cost and level functions are written as

\[
\phi_W(a) = \begin{cases}
0 & a \leq w \\
\infty & a > w
\end{cases}
\] and \(\psi_W \equiv \text{constant} \)

Gul and Pesendorfer [2001] provides a characterization for a linear costly self-control model, that is, \(\phi_L(a) = a \) and \(\psi_L \equiv 1 \). Noor and Takeoka [2010] provides two models of costly-self control. In the first model, the cost function is more general the one in Equation (1). In this formulation, the cost of choosing the product in choice set is a function of both the product and the most tempting alternative. They impose other assumptions so that this function can be interpreted as a cost function. Their second model is in line with Equation (1) where the cost function is strictly increasing and convex with \(\phi_C(0) = 0 \) and \(\psi_C \equiv 1 \). Noor and Takeoka [2015] also consider a similar model where the cost function is menu dependent where \(\phi_M(a) = a \) and \(\psi_M \) is arbitrary.

Finally, Grant et al. [2017] consider a hybrid model of both costly self-control and limited willpower. In this model, the cost function is a combination of cost functions of linear costly self-control and limited willpower.

\[
\phi_H(a) = \begin{cases}
 a & a \leq w \\
\infty & a > w
\end{cases}
\] and \(\psi_W \equiv 1 \)

Next we compare our model with the implied choices generated by the models of Gul and Pesendorfer [2001] and Noor and Takeoka [2010]. We impose two assumptions: i) there is a finite set of alternatives and ii) \(\succ \) is a linear order. Hence, Axiom 1 is automatically satisfied by all the models.

In Gul and Pesendorfer [2001], the agent’s choices, naturally implied by the model, are given by

\[
c(A) = \arg\max_{x \in A} \{ u(x) + v(x) \}.
\]

Notice that in this model, ex post choices satisfy WARP. Consider \(A = \{x, y\} \) such that \(u(x) > u(y) \) and \(u(x) + v(x) = u(y) + v(y) \). They imply that \(x \succ y \) and \(c(A) = A \). Hence \(c(A) \) cannot be equal to \(c(y) \), is a violation for Axiom 2. If \(u + v \) is a one-to-one function, this type of examples cannot be generated, hence the model satisfies Axiom 2.

When it satisfies Axiom 2, there is a strong equivalence between linear costly self-control model and our model. Take a linear costly self-control model defined by the \((u, v)\) pair of real functions defined on \(X \) where both \(u \) and \(u + v \) are one-to-one. Suppose \(c \) defined on
A is generated by \((u, v)\). Then the constant willpower model \((u, u + v, w = 0)\) generates the same choices, and hence linear self-control model satisfies Axiom 3 and 4. Moreover, if we expand the set of alternatives, the constant willpower model \((u, u + v, w = 0)\) always generates choices that are consistent with the linear self control model.

We now consider the convex self-control model of Noor and Takeoka [2010]. In this model, the second stage choice can be written as

\[
c(A) = \arg\max_{x \in A} \left\{ u(x) - \phi(\max_{y \in A} v(y) - v(x)) \right\}
\]

Similar to the linear model, this model also violates Axiom 2 unless \(u(x) - \phi(\max_{y \in A} v(y) - v(x))\) has a unique maximizer. We will impose this assumption. First, we can show that any choice behavior generated by our model can be constructed by using a piece-wise linear cost function:

\[
\phi_{(l,k,w)}(x) = \begin{cases}
lx & \text{if } x \leq \hat{w} \\
k(x - \hat{w}) + lw & \text{if } x > \hat{w}
\end{cases}
\]

where \(k > 1 \geq l > 0\). The parameter \(\hat{w}\) determines the position of the kink which is the point where the consumer’s temptation cost starts increasing more rapidly and can be interpreted as the analogue of the willpower stock in the constant willpower model.

Suppose \(c\) defined on \(A\) is generated by a limited willpower \((u, v, w)\). Suppose \(0 \leq v(y) - v(x) \leq w\). Then choose \(l > 0\) such that \(u(x) - l(v(y) - v(x)) > u(y)\) if \(u(x) > u(y)\), otherwise \(u(x) - l(v(y) - v(x)) < u(y)\). The second inequality holds for any \(l > 0\). If the first inequality holds for \(l\), it also holds for any \(l'\) such that \(0 < l' < l\). Since we have finitely many inequalities (hence finitely many \(l'\)’s), chose \(l^* > 0\) as the smallest one. Similarly, for any \(x, y\) such that \(v(y) - v(x) > w\), choose \(k > 0\) such that \(u(x) - k(v(y) - v(x) - w) + l^* w < u(y)\). If the inequality holds for \(k\), it also holds for \(k' > k\). Since we have finitely many inequalities (hence finitely many \(k'\)’s), chose \(k^* > 0\) as the largest one. To finish the construction let \(\hat{w} = w\). The costly self control model \((u, v, \phi_{(l^*, k^*, \hat{w})})\) generates the same choices as the limited willpower \((u, v, w)\). Notice that this equivalence heavily relies on the finiteness of the set of alternatives and the choice of \((l^*, k^*)\) depends on \(A\). For different finite sets of alternatives, we must provide different sets of piece-wise linear cost functions. When \(X\) is finite, this equivalence still holds since we can always choose the smallest \(l^*\) and largest \(k^*\) over all \(A \subseteq X\). However, when \(X\) is not finite, \(l^*(k^*)\) might converge to zero (\(\infty\)). In these cases the resulting model \((u, v, \phi_{(l^*, k^*, \hat{w})})\) is outside the class characterized by Noor and Takeoka [2010].
One might wonder whether any choice behavior generated by \((u, v, \phi_{(l,k,\hat{w})})\) is consistent with the limited willpower model if we expand the set of alternatives. It turns out the answer is no. Consider the following table:

<table>
<thead>
<tr>
<th></th>
<th>(x)</th>
<th>(y)</th>
<th>(z)</th>
<th>(t)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(u)</td>
<td>(l(a + \hat{w}) + \epsilon + \delta)</td>
<td>(l\hat{w} + \epsilon)</td>
<td>(la + \delta)</td>
<td>0</td>
</tr>
<tr>
<td>(v)</td>
<td>0</td>
<td>(a)</td>
<td>(\hat{w})</td>
<td>(a + \hat{w})</td>
</tr>
</tbody>
</table>

Table 2. Utility and Temptation Values

We show that if we choose the parameters \(a, \delta\) and \(\epsilon\) such that \(\hat{w} > a > 0\) and \((k-l)a > \delta > \epsilon > 0\), the model generates the choice pattern \(c(x, z) = x\), \(c(y, t) = y\), and \(c(x, y, z, t) = z\), violating Axiom 3. Note that in the convex self control model we have \(c(x, z) = x\) if \(l(a + \hat{w}) + \epsilon + \delta - l\hat{w} > la + \delta\) and \(c(y, t) = y\) if \(l\hat{w} + \epsilon - l\hat{w} > 0\). Moreover, \(c(x, y, z, t) = z\) if i) \(la + \delta - la > l(a + \hat{w}) + \epsilon + \delta - ka - l\hat{w}\), ii) \(la + \delta - la > l\hat{w} + \epsilon - l\hat{w}\) and, iii) \(la + \delta - la > 0\). It is easy to see that given our choice of \(a, \delta\) and \(\epsilon\), all these inequalities are satisfied. Hence, for every \((l, k, \hat{w})\), this specification of convex costly self-control model always generates choice behavior inconsistent with the limited willpower model, even though it can match the choice behavior given by a fixed finite \(X\) and \((u, v, w)\). This result is not due to piece-wise linearity of the cost function. In Appendix, we demonstrate that for any strictly convex \(\phi_C\), the convex cost model violates Axiom 3.

Closely related to our Axiom 3 is Gul and Pesendorfer’s Set Betweenness (SB). Although at first glance Axiom 3 seems like a translation of SB to our domain, the two axioms are independent. To make this point precise, denote non-empty subsets of \(X\) by \(\mathcal{X}\) and suppose \(\succsim_0\) is a preference relation over \(\mathcal{X}\). We say \(\succsim_0\) satisfies SB if \(A \succsim_0 B\) implies \(A \succsim_0 A \cup B \succsim_0 B\). We let \(x \succsim y\) if and only if \(\{x\} \succsim_0 \{y\}\). Noor and Takeoka [2010] is an example of a model where \(\succsim_0\) satisfies SB but the implied second stage choices violate Axiom 3.

We will now provide an example where the implied second stage choices satisfy Axiom 3 but \(\succsim_0\) violates SB. Suppose \(\succsim_0\) is represented by a function \(W : \mathcal{X} \rightarrow \mathbb{R}\) defined as follows. If \(A\) has 2 or more elements:

\[
W(A) = \max_{x \in A} u(x) - \left(\max_{y,z \in A, y \neq z} (v(y) + v(z)) - v(x) \right)
\]

and for singleton sets \(W(\{x\}) = u(x)\) where \(u, v : X \rightarrow \mathbb{R}\). The above model is a variation of Gul and Pesendorfer [2001] where the self-control cost is linear but the agent is tempted by not just the most tempting but also the second most tempting alternative in the set. (See Dekel et al. [2009], Stovall [2010] for behavioral characterizations of multiple-temptations...
models.) The agent’s choices are given by

\[c(A) = \arg\max_{x \in A} (u(x) + v(x)). \]

It is easy to see that \((\succ, c)\) satisfies Axiom 3. To see that \(\succ_0\) violates SB, let \(X = \{x, y, z\}\), \(u(x) = 7, u(y) = 3, u(z) = 2, v(x) = 0, v(y) = 1\) and \(v(z) = 2\). Then, \(\{x, y\} \succ_0 \{x, z\} \succ_0 \{x, y, z\}\).

Remark 1. The costly self-control model with convex cost function might violate the Consistency axiom. To see this consider the following example. Suppose \(\varphi(a) = a^2\), \(u(x) = 9, u(t) = 4.9, u(y) = .9, u(z) = 0, v(x) = 0, v(t) = 2, v(y) = 3, v(z) = 4\). In this case direct calculation shows that \(x \succ y = c(x, y) \succ z = c(y, z), c(t, z) = t\) and \(c(x, t) = x\), hence Consistency is violated.

5. **Monopoly Pricing**

In this section, we apply our representation to the pricing problem of a profit-maximizing monopolist who faces consumers with limited willpower. Our results extend the existing literature on contracting with consumers with self-control problems (DellaVigna and Malmendier (2004), Eliaz and Spigler (2006), Heidhues and Koszegi (2010)). Previous literature highlighted that monopolist can exploit naive consumers by offering them indulging contracts with two alternatives. One of the alternatives is a bait that the consumer believes he will choose at the time of signing the contract. At the time of consumption the consumer ends up choosing the other more indulging alternative. Our analysis extends these results in two ways. First, for the limited willpower preferences, we show that the optimal contract may require three alternatives which we call compromising. The consumer believes he will choose the bait, but at the time of consumption is unable to do so due to the existence of a tempting alternative. Instead, he chooses the third compromise alternative. Hence, consumers’ choices reflect a form of the “compromise effect” which is induced endogenously by the contract offered by the monopolist. To our knowledge exploitation of the compromise effect by the monopolist has not been studied previously. Second, we show that for limited willpower preferences, indulging contracts are never optimal and are dominated by compromising contracts. Third, we show that when the consumer has sufficient willpower exploitation and efficiency can go hand in hand. The monopolist uses a compromising contract to sell the product that would be sold under a commitment contract at an exploitative price. Finally, this application shows how willpower stock can be used as a natural comparative static for
the consumer’s level of self control. We provide a comparison with related models of self control in Section 5.3 where we further discuss this point.

Like the previous literature we focus on naive consumers who do not necessarily recognize the extent of their self-control problem. In our model, this means that consumers believe that they have more willpower than they actually do. We assume that the monopolist knows that consumers have limited willpower and characterize the contract that best exploits the consumers’ naivety about their willpower limitation.

Let’s denote the finite set of alternatives available to the monopolist by X. A contract C is a menu of offers where each offer is an alternative with an associated price, i.e., $C = \{(s, p(s)) : s \in S \subset X\}$.\footnote{We assume that a contract cannot offer the same alternative with two different prices. That is, if (x, p) and (x, p') are both in C, then p must be equal to p'.} We consider a two-period model of contracting between a monopolist and a consumer. In the first period, the monopolist offers the consumer a contract C. The consumer can accept or reject the contract. If the consumer accepts the contract, in the second period he chooses an offer from the contract and pays its price to the monopolist. If the consumer rejects the contract then he receives his outside option normalized to zero. We assume that both parties are committed to the contract once accepted.

We denote the cost to the monopolist of providing alternative s by $c(s)$, its utility to the consumer by $u(s)$, and its temptation value by $v(s)$. We assume that the consumer’s utility and temptation values are both quasilinear in prices. Broadly speaking, the idea that temptation would decrease in price seems reasonable in many situations. When the price of a good increases, the consumer must forego other potentially tempting goods. Moreover, when the price is sufficiently high the good might become unaffordable. Quasilinearity of temptation values in prices is clearly a partial equilibrium way of capturing the impact of prices on temptation and a restrictive assumption. Yet it provides tractability and is implicitly invoked in the literature on changing tastes where it is usually assumed that both the present and future utilities are quasilinear in prices. We denote $U(s, p(s)) = u(s) - p(s)$ and $V(s, p(s)) = v(s) - p(s)$.

The monopolist’s profit from selling alternative s at price $p(s)$ is $p(s) - c(s)$. The production cost is incurred only for the service that the consumer chooses from the menu. Following Eliaz and Spiegler [2006] and Spiegler [2011] we assume that the consumer is naive in the sense that he believes he has no self-control problem, i.e., he believes that from a contract C he will choose the offer $(s, p(s))$ that maximizes $U(s, p(s))$. In reality, the consumer’s second period choices are governed by the limited willpower model, that is, he might be tempted by
the other offers in the contract \(C \). This means that from \(C \) the consumer chooses the offer \((s, p(s))\) that maximizes \(U(s, p(s)) \) subject to

\[
\max_{(s', p(s')) \in C} V(s', p(s')) - V(s, p(s)) \leq w
\]

where \(w(s) \) is the consumer’s willpower stock which can depend on the chosen alternative. We assume that the monopolist knows that the consumer has limited willpower and can predict perfectly the consumer’s second period choices.\(^8\)

To simplify the analysis we assume that \(u - c \) and \(v - c \) have unique maximizers \(x^u \) and \(x^v \) in \(A \). In other words, \(x^u \) and \(x^v \) are the most efficient alternatives with respect to \(u \) and \(v \). To make the problem interesting we assume that \(x^u \neq x^v \). We define the difference between the temptation value and the utility value of an alternative \(s \) as its excess temptation, and denote it by \(e(s) \equiv v(s) - u(s) \). We further assume that \(e \) has a unique maximizer, \(z^* \), and a unique minimizer, \(y^* \), in \(A \). Then it is easy to see that

\[
e(x^v) = v(x^v) - u(x^v) = v(x^v) - c(x^v) - [u(x^v) - c(x^v)]
\]

\[
> v(x^u) - c(x^u) - [u(x^u) - c(x^u)]
\]

\[
> v(x^u) - c(x^u) - [u(x^u) - c(x^u)] = v(x^u) - u(x^u) = e(x^u).
\]

Therefore, we have

\[
e(z^*) \geq e(x^v) > e(x^u) \geq e(y^*).
\]

Figure 1 illustrates the model graphically which we use below to provide intuition for our results. We also use this figure in Appendix B to give a graphical analysis of various alternative models of self control within the context of the application. In this figure, the vertical axes measures price and the horizontal axes measures the temptation value \(v \). On the horizontal axes, we indicated the excess temptation values \(e(z^*) \), \(e(x^v) \), \(e(x^u) \) and \(e(y^*) \). Any other alternative, \(x \), corresponds to a point between these two values on the horizontal axes in terms of its excess temptation \(e(x) \). We call the dotted lines with slope \(-1\), iso-\(e \) lines where \(e \) refers to excess temptation. Consider an alternative \(x \) with excess temptation \(e(x) \) and price \(p = u(x) + \Delta(p) \). In the figure, the point \((\Delta(p), e(x) - \Delta(p)) \) corresponds to this alternative. By moving down the iso-\(e \) line, we can read its excess temptation value \(e(x) \). In other words, excess temptation is given by the sum of the two coordinates. Its \(y \)-coordinate,\(^8\)

\[^8\]More precisely, we solve for the optimal contract for the monopolist given its beliefs about the consumer’s behavior. To do this we do not need to know whether the monopolist (or the consumer) holds correct beliefs about the consumer’s second period behavior.
$\Delta(p)$ captures the difference between its price $p = u(x) + \Delta(p)$ and its utility value $u(x)$. Its x-coordinate, $e(x) - \Delta(p)$, captures its temptation value at price p.

On the figure we also illustrate an iso-profit line for the firm. As we described above, any point (a, b) corresponds to an alternative $e^{-1}(a + b)$ with price $u(e^{-1}(a + b)) + a$. Hence corresponding profit is given by $u(e^{-1}(a + b)) + a - c(e^{-1}(a + b))$. The red iso-profit line traces all points with constant profit. The iso-profit lines have two important properties. First, on the iso-\(e\) line for x^u, iso-profit lines have zero slope. Second, on the iso-\(e\) line for x^v, iso-profit lines have infinite slope. These properties are illustrated in Figure 1. Profits increase as the iso-profit lines move northwest.

Optimal Contract with Sophisticated Consumers. As a benchmark case, consider a consumer who perfectly understands what he chooses once he accepts the contract. In this case, monopolist’s maximization problem is

$$\max_{s \in A, p(s) \geq 0} p(s) - c(s)$$

subject to

$$u(s) - p(s) \geq 0. \quad (2)$$

\footnotetext[9]{We assume that the excess temptation function is invertible. This is without loss of generality since we can restrict attention to alternatives with largest excess temptation.}
Clearly, due to the participation constraint, the firm sets the price of s equal to $u(s)$. In other words, the monopolist extracts the entire surplus (in terms of u.) Then the optimal contract offers only the efficient alternative $x^u = \arg\max u(s) - c(s)$ at price $u(x^u)$.

Optimal Contract with Naive Consumers. Next, we solve for the optimal contract with a naive consumer. We do this in three steps. First, we show that, without loss of generality, we can restrict attention to contracts that offer at most three alternatives. That is, for any contract that sells x at price $p(x)$, there is another contract that sells x at the same price which contains at most three of the alternatives from the original contract. Second, for each alternative x, we find a contract that sells x at the highest possible price. Third, we identify the profit maximizing alternative and the associated optimal contract that sells this alternative.

To establish the first step, let $C = \{(s, p(s)) : s \in S \subset X\}$ be an arbitrary contract that sells x at price $p(x)$. This means that (i) $(x, p(x))$ is offered in C, (ii) the consumer accepts the contract, i.e., there exists an offer $(s^*, p(s^*))$ in C such that $u(s^*) - p(s^*) \geq 0$ and, (iii) $(x, p(x))$ is the best offer for the consumer given his willpower constraint. Now identify two offers from the contract C such that

$$y = \arg\max_{(s, p(s)) \in C} u(s) - p(s) \quad \text{and} \quad z = \arg\max_{(s, p(s)) \in C} v(s) - p(s)$$

We illustrate that the contract $C' = \{(x, p(x)), (y, p(y)), (z, p(z))\}$ sells x at price $p(x)$. First of all, this contract is a subset of C and $(x, p(x))$ is offered. The consumer accepts this contract since $u(y) - p(y) \geq u(s^*) - p(s^*) \geq 0$. Finally since the most tempting offer is the same, the constraint he faces is unaffected. Therefore, $(x, p(x))$ is still the best offer for the consumer.

When x, y and z are distinct, the consumer believes he will choose $(y, p(y))$, but cannot because he does not have enough willpower to choose $(y, p(y))$ when $(z, p(z))$ is available. However, rather than completely indulging in $(z, p(z))$, the consumer chooses the second best $(x, p(x))$ in terms of U. We refer to a contract with these features as a *compromising contract*. If x is equal to y, then the contract could be simpler. Indeed, the contract $\{(x, p(x))\}$ sells x.

We refer to a contract that includes a single offer as a *commitment contract*. If x is equal to z, then the contract reduces to $\{(x, p(x)), (y, p(y))\}$. In this case, the consumer believes he will choose $(y, p(y))$, which provides the highest utility. But he actually chooses $(x, p(x))$.

\[\footnote{Note that the the contract $\{(x, p(x))\}$ does not always sell x because it may not be acceptable at time 0 by the consumer. However, when x is equal to y, given that the original contract is acceptable, $\{(x, p(x))\}$ is also acceptable.}\]
because the consumer does not have enough willpower to choose \((y, p(y))\) when \((x, p(x))\) is available. We refer to this type of contract as an indulging contract.

We now investigate the revenue-maximizing contract that sells \(x\) by focusing on the three types of contracts we identified.

The Commitment Contract: The monopolist’s problem is to maximize \(p(x)\) subject to \(u(x) \geq p(x)\). Then the monopolist sets the price \(p(x)\) equal to \(u(x)\). Hence the highest revenue from selling \(x\) using a commitment contract is \(u(x)\).

The Indulging Contract: The monopolist’s problem is to choose \(p(x), y, p(y)\) to maximize \(p(x)\) subject to

\[
\begin{align*}
(3) & \quad u(y) - p(y) \geq 0 \\
(4) & \quad v(x) - p(x) \geq v(y) - p(y) + w
\end{align*}
\]

Constraint (3) guarantees that the naive consumer is willing to accept the contract. Constraint (4) implies that the consumer does not have enough willpower to resist the temptation to choose \((x, p(x))\). Clearly, both constraints are binding so the maximization problem is equivalent to choose \(p(x), y\) and \(p(y)\) to maximize \(v(x) - e(y) - w\). The monopolist sets \(y = y^*\) to minimize \(e(y) + w\), which implies \(p(y^*) = u(y^*)\) by constraint (3). Then constraint (4) implies that the optimal price for selling \(x\) with an indulging contract is

\[
(5) \quad p^{ind}(x) = v(x) - e(y^*) - w.
\]

The Compromising Contract: The monopolist’s problem is now to choose \(p(x), y, p(y), z\) and \(p(z)\) to maximize \(p(x)\) subject to

\[
\begin{align*}
(6) & \quad u(y) - p(y) \geq 0 \\
(7) & \quad v(z) - p(z) \geq v(y) - p(y) + w \\
(8) & \quad v(x) - p(x) + w \geq v(z) - p(z) \\
(9) & \quad u(x) - p(x) \geq u(z) - p(z)
\end{align*}
\]

Constraints (6) and (7) guarantee that the consumer signs the contract believing that he will choose \(y\) but does not actually do so. Constraint (8) implies that the consumer has enough willpower to choose \(x\) over \(z\) and constraint (9) means that choosing \(x\) over \(z\) is also desirable. It is easy to see that the first two constraints (6) and (7) are binding, which implies

\[
p(y) = u(y) \quad \text{and} \quad p(z) = v(z) - e(y) - w
\]
The remaining two constraints become

\[p(x) \leq v(x) - e(y) \quad \text{and} \quad p(x) \leq u(x) - e(y) + e(z) - w \]

Clearly both constraints can be relaxed by choosing \(y = y^* \), and the second constraint can be relaxed by choosing \(z = z^* \). Thus the optimal price for selling \(x \) with a compromising contract is

\[
p^{\text{comp}}(x) = \min \left\{ v(x) - e(y^*), u(x) - e(y^*) + e(z^*) - w \right\}.
\]

Figure 2 illustrates the revenue maximizing commitment (A), indulging (B) and compromising (C) contracts for selling \(x \).

Figure 2 illustrates the revenue maximizing commitment, indulging and compromising contracts for selling \(x \) for relatively low willpower stock \(w \) so that \(e(x) - e(y^*) > w \). The commitment contract sells the alternative \((x, u(x)) \) (\(x \) at price \(u(x) \)). This is represented by the point A in the figure. In the indulging contract, the firm chooses the price of \(x \) in a way that the consumer does not have the willpower to choose \((y^*, u(y^*)) \) over \((x, p^{\text{ind}}) \). Hence the monopolist increases the price of \(x \), moving up its iso-\(e \) line until its temptation value reaches the vertical dashed line on the right which corresponds to constraint (4). Hence, the indulging contract contains \(y^* \) at price \(u(y^*) \) and \(x \) at price \(p^{\text{ind}} \) which is represented by the point B. Finally, in the compromising contract, the firm uses a third alternative, \((z^*, p(z^*)) \), to eliminate alternative \((y^*, p(y^*)) \). Hence the monopolist increases the price of \(z^* \), moving

\(^{11}\)When the second constraint is not binding it may not be necessary to set \(z = z^* \) in the contract. In this case monopolist can choose any \(z \) that satisfies \(e(z) \geq e(x) + w \).
up its iso-\(e\) line until its temptation value reaches the vertical dashed line on the right. The consumer can choose all the points on the iso-\(e\) line of \(x\) to the right of the dashed vertical line on the left which corresponds to constraint (8). Moreover, only the alternatives below the horizontal dashed line can be chosen because the consumer prefers \((z^*, p(z^*))\) to any alternative above this line which corresponds to constraint (9) (notice that this constraint does not bind for this particular \(x\)). Hence, the indulging contract contains \(y^*\) at price \(u(y^*)\), \(z^*\) at price \(p(z^*)\) and \(x\) at price \(p^{\text{comp}}\) which is represented by the point \(C\).

Figure 2 makes it clear that either constraint (8) or constraint (9) binds. If \(e(z^*) - e(x) \geq w\), constraint (8) is binding and the revenue is \(v(x) - e(y^*)\). On the other hand, if \(e(z^*) - e(x) \leq w\), constraint (9) is binding and the revenue is \(u(x) - e(y^*) + e(z^*) - w\). Hence the highest revenue from selling \(x\) using a compromising contract is

\[
\begin{align*}
 v(x) - e(y^*) & \quad \text{if} \quad e(z^*) - e(x) \geq w \\
 u(x) + e(z^*) - e(y^*) - w & \quad \text{if} \quad e(z^*) - e(x) \leq w
\end{align*}
\]

In the former case, when constraint (8) is binding, product \(x\) has low excess temptation (an item that has relatively good \(u\) value but is not too tempting). The monopolist must lower its price sufficiently below its temptation value \(v(x)\) to make sure that the consumer has enough willpower to choose it. In the latter case, when constraint (9) is binding, product \(x\) has high excess temptation, and the consumer has enough willpower to choose it. The monopolist must now lower its price sufficiently below its utility value \(u(x)\) to make sure that the consumer finds it worthwhile to buy.

From Figure 2, when \(e(z^*) - e(x) \geq w\), comparing the price of \(x\) under different contracts we see that the compromising contract generates the highest revenue and the commitment contract generates the least revenue. When \(e(z^*) - e(x) \leq w\) then constraint (4) implies that the price of \(x\) must be lower than \(u(x)\) so that the consumer does not have the willpower to choose \((y^*, u(y^*))\). Hence, the commitment contract dominates the indulging contract. Nevertheless, as long as \(w \leq e(z^*) - e(y^*)\) compromising contract still generates strictly higher revenue then the commitment contract. Finally, when \(w > e(z^*) - e(y^*)\) constraint (9) becomes very stringent and gets violated as soon as price of \(x\) goes above \(u(x)\). In this case, the commitment contract \(\{(x, u(x))\}\) becomes weakly better than the compromising contract.

The next proposition summarizes the discussion above.
Proposition 1. If \(e(z^*) - e(y^*) < w \), the revenue-maximizing contract is the commitment contract \(\{(x,u(x))\} \). If \(e(z^*) - e(y^*) \geq w \), then the revenue-maximizing contract is the compromising contract \(\{(x, p^{\text{comp}}), (y^*, u(y^*)), (z^*, v(z^*) - e(y^*) - w)\} \).

5.1. The Optimal Contract. Now that we have identified the revenue-maximizing contract for each alternative, the remaining task is to find which alternative the monopolist should sell to maximize its profit. From Proposition 1, we know that if \(e(z^*) - e(x) \leq w \) then monopolist’s revenue is either \(u(x) \) or \(u(x) + e(z^*) - e(y^*) - w \). Hence, from the set \(\{x : e(z^*) - e(x) \leq w\} \), it is optimal to sell the maximizer of \(u(x) - c(x) \). If, on the other hand, \(e(z^*) - e(x) \geq w \) then the monopolist’s revenue is \(v(x) - e(y^*) \). Hence, from the set \(\{x : e(z^*) - e(x) \geq w\} \), it is optimal to sell the maximizer of \(v(x) - c(x) \). Hence the optimal contract sells either

\[
\text{argmax}_{x : e(z^*) - e(x) \leq w} u(x) - c(x) \quad \text{or} \quad \text{argmax}_{x : e(z^*) - e(x) \geq w} v(x) - c(x)
\]

whichever generates the higher profit shown by Proposition 1. These observations lead to the following proposition.

Proposition 2.
(1) For any \(e(z^*) - e(x^w) \geq w \), the optimal contract is the best compromising contract selling \(x^w \) at \(v(x^w) - e(y^*) \). The consumer’s welfare is the same as when he had no willpower at all.

(2) For any \(e(z^*) - e(x^w) < w < e(z^*) - e(x^u) \), the optimal contract is the best compromising contract which sells an alternative other than \(x^u \) or \(x^v \).

(3) For any \(e(z^*) - e(x^u) \leq w < e(z^*) - e(y^*) \), the optimal contract is the best compromising contract that includes \(y^* \) and \(z^* \) but actually sells the efficient service \(x^u \) at a price exceeding \(u(x^u) \). The consumer is exploited but the degree of the exploitation drops as his willpower goes up.

(4) For any \(e(z^*) - e(y^*) \leq w \), the optimal contract is the commitment contract selling the efficient service \(x^u \) at price \(u(x^u) \). The consumer is not exploited even though he is naive.

Figure 3 illustrates the optimal contract in each of the four cases of Proposition 2 which characterizes the optimal contract as the willpower stock \(w \) increases. The dashed lines in each case correspond to constraints (8) and (9). Figure 3a is when only (8) is binding and the optimal contract sells \(x^w \). Figure 3b is when both constraints are binding and the optimal contract sells a product with excess temptation between \(e(x^u) \) and \(e(x^w) \). Figure 3c is when only (9) is binding and the optimal contract sells \(x^u \) at an exploitative price. Finally,
Figure 3. Optimal contracts for different levels of willpower stock

Figure 3d, when willpower stock is high enough, both constraints disappear and the optimal contract is the commitment contract that sells x^u without exploitation.

Now, we shall consider how the optimal contract, the profit, and the naive consumer’s welfare (measured with respect to his ex ante preference u) varies with the consumer’s willpower stock. To do this we use Figure 4 which packs information about the optimal contract, monopolist’s profit and consumer’s welfare as w varies. Starting from the red dot on the upper left corner, the thick red line, which we call the contract curve, traces the product sold and its price as w increases. For any point on the contract curve, by moving down the iso-e line, we can find out the product sold to the consumer by the optimal contract. The y-coordinate of the point gives us the price of this product in excess of its
utility value. Hence as we move down the contract curve monopolist’s profit declines and consumer’s welfare increases.

We highlight an interesting feature of our model. When the willpower stock is below a certain level, the product sold under the optimal contract and its price remain the same, which indicates that a small amount of willpower does not help the consumer at all. This happens on the upper-left corner of the contract curve in Figure 4 which corresponds to \(w \in [0, e(z^*) - e(x^v)] \). In this range, since monopolist sells \(x^v \) at the same price, both the monopolist’s profit and consumer’s welfare do not change.

As the \(w \) increases we enter the range \((w \in (e(z^*) - e(x^v), e(z^*) - e(x^u))) \) which corresponds to the vertical portion of the contract curve. In this range the excess temptation of the product sold goes down from \(e(x^v) \) to \(e(x^u) \), its price and the monopolist’s profit drop, and the consumer’s welfare increases.

The next range \((w \in [e(z^*) - e(x^u), e(z^*) - e(y^*)]) \) corresponds to the linear decreasing portion of the contract curve. Here, efficiency and exploitation go hand in hand since the optimal contract sells the efficient alternative \(x^u \) at an exploitative price exceeding its utility value. In this range the excess temptation of the product remains constant at \(e(x^u) \), its price and the monopolist’s profit drop, and the consumer’s welfare increases.

Lastly, at the lower-right hand corner of the contract curve \((w \in [e(z^*) - e(y^*), \infty)) \), the nature of the optimal contract changes since the monopolist sells the efficient alternative
using a commitment contract and there is no exploitation. When the consumer’s willpower stock exceeds a certain level, the naivety does not hurt the consumer at all.

The next proposition summarizes the key points of above discussion.

Proposition 3.

1. The monopolist’s profit is weakly decreasing (strictly decreasing if \(w \in (e(z^*) - e(x^v), e(z^*) - e(y^*)) \)) in consumer’s willpower,
2. The consumer’s welfare is weakly increasing (strictly increasing if \(w \in (e(z^*) - e(x^v), e(z^*) - e(y^*)) \)) in his willpower,
3. If the consumer’s willpower is below a threshold \(w \in [0, e(z^*) - e(x^v)] \), the monopolist can earn the same profit when the consumer has no willpower at all,
4. For relatively high willpower, the firm sells efficient product with an exploitative price,
5. When the consumer has high enough willpower, there is no exploitation despite the consumer’s naivete.

5.2. Partial Naivety About the Willpower Stock. In this section, we briefly consider the case where the consumer is partially naive about his future behavior. Our approach is analogous to the one in the Strotzian case where a partially naive consumer understands that his preferences change, but underestimates the extent of the change (see Chapter 4, in Spiegler [2011]). Similarly, our consumer understands that he needs willpower to resist the offers that are more tempting than the one he initially plans to choose but overestimates his willpower stock. We assume that the firm knows the true willpower stock. It turns out that in our model, as in the Strotzian case, the optimal contract with a partially naive consumer is the same is the one with a fully naive consumer. The key observation is that partial naivety does not affect how the consumer behaves after signing the contract, since his behavior is determined by the true willpower stock. However, it will affect how the consumer evaluates a contract before signing it which depends on how much willpower he believes he has. The optimal contract for fully naive consumers set prices so that \(y^* \) is marginally not choosable over \(z^* \). Thus, anyone who overestimates his amount of willpower still believes that he can choose \(y^* \). Thus, he is willing to sign the contract, the optimal contract does not change and all previous results go through as long as consumer overestimates his willpower.

5.3. Optimal Contracting under Related Models. In this section we compare our results with those that obtain under other related models of self control.

We begin with optimal contracting under convex self control preferences. In Appendix B, we present the contracting problem and prove two key results. First, compromising contracts are always strictly optimal (i.e. strictly better than both the commitment and the
indulging contracts) when the cost function is strictly convex. This result shows that using compromising contrasts is a robust feature of optimal contracting when consumers have self control problems and using only indulging contracts which happens when consumers have linear self control cost is a knife-edge case. Second, with convex self control costs exploitation always sacrifices efficiency. This is because in costly self control models, in contrast to the limited willpower models, consumers never become u-maximizers in the second stage.

The general version of the costly convex cost model does not have an obvious analogue of the willpower parameter that controls the consumer’s level of self-control. However, it has the following intuitive special case:

$$
\varphi(x) = \begin{cases}
 lx & \text{if } x \leq \hat{w} \\
 k(x - \hat{w}) + l\hat{w} & \text{if } x > \hat{w}
\end{cases}
$$

where $k > 1 > l > 0$. As we discuss in Section 4, in this specification \hat{w} can be interpreted as the analogue of the willpower stock in the constant willpower model. We provide an explicit solution for this case in Appendix B.2. As one would expect, when l goes to zero, and k goes to ∞ the solution to the contracting problem presented in Proposition 4 in the appendix approaches the solution given in Proposition 2.

\begin{figure}[h]
\centering
\includegraphics[width=\textwidth]{contract_curves.png}
\caption{Contract Curves for Different Models}
\end{figure}

In Figure 5, the thick blue line is the contract curve for the piece-wise linear model. For comparison, the figure also shows the contract curve for the constant willpower model (thick red line). The two curves show that optimal contracts share many properties.\footnote{Figure 5 also displays the contract curve for the Grant et al. [2017] (thick yellow line) which provides a hybrid solution.} For example,
when \hat{w} is below a certain level, the product sold under the optimal contract and its price remain the same. As \hat{w} increases monopolist’s profits decrease and the consumer’s welfare increases. But there are also some differences. For example, in the piece-wise linear model indulging contract can be optimal when \hat{w} is large enough (represented by the blue dot at the bottom of the contract curve.) In contrast, in the constant willpower model indulging contacts are never optimal. (Instead, when the consumer has enough willpower commitment contracts become optimal.) We also see that the optimal contract in the piece-wise linear model never sells the u-efficient or v-efficient alternative.

6. Conclusion

Starting from Kreps [1979], researchers have been studying a two-period choice model, in which an agent picks a menu among several menus in the planning period under the assumption that he is going to make a choice from each menu in the consumption period. This new and rich data set allows researchers to study phenomena like temptation, guilt, shame, etc.

In this paper, to derive the limited willpower representation, we use a novel data set: ex ante preferences and ex post choices. Revealing the ex ante preferences over alternatives is a simpler and more natural task than revealing ex ante preferences over all menus of alternatives. More importantly, our data set allows us to remain agnostic about whether the agent is sophisticated or naive about anticipating his ex post choices. To derive the representation, we introduce a new axiom called Choice Betweenness. We show that this axiom is independent of the Set Betweenness axiom that is commonly invoked in the menu preferences domain.

Although the model is simple and tractable, it is rich enough to generate new insights in applications. We demonstrate this in an application to monopolistic contracting. Finally, we would like to highlight an important avenue for exploration in future work which is the implications of limited willpower in a dynamic setting with multiple tasks. In the current manuscript, we consider a model where willpower is needed in a single choice task. In fact, people often use willpower in multiple tasks, and using more willpower in one task might mean less willpower is left for another. Moreover, the model is static. In reality, there are dynamic effects in the sense that the amount of willpower used in one period can affect the willpower stock in the next period. Incorporating these considerations in an axiomatic framework can lead to new insights about behavior and a rich set of testable implications.
References

Proofs of Theorem 1 and 2. Before we provide the proofs of Theorem 1 and 2, we provide a brief sketch. To prove Theorem 1, we first define a binary relation \succ'. We say that $x \succ' y$ if $y \succ x = c(xy)$. In words, x blocks y if x is worse than y but agent cannot choose y when x is available. Next, we define a second binary relation \succ''. We say that $x \succ'' y$ if $x \succ y$ and there exist a and b such that $a \succ' y$, $x \succ' b$, and $a \not\succ' b$. We say that $x \succ y$ if $x \succ' y$ or $x \succ'' y$. Next we show that \succ is an interval order, i.e. it is irreflexive and $x \succ b$ or $a \succ y$ holds whenever $x \succ y$ and $a \succ b$. The binary relation \succ is an interval order if and only if there exist functions v and w such that

$$\Gamma_{\succ}(S) = \{x \in S : \max v(y) - v(x) \leq w\}.$$

Finally, to complete the proof of the first step, we show that S is indifferent to the \succ-best element in $\Gamma_{\succ}(S)$.

In the proof of Theorem 2 we use consistency to show that we can construct a semi order \succ (i.e., \succ is an interval order and if $x \succ y \succ z$ then $x \succ t$ or $t \succ z$ for any t) by properly modifying \succ such that S is indifferent to the \succ-best element in $\Gamma_{\succ}(S)$. To complete the proof we note that the binary relation \succ is a semi order if and only if there exist a function v and a scalar w such that

$$\Gamma_{\succ}(S) = \{x \in S : \max v(y) - v(x) \leq w\}.$$

Proof of Theorem 1. We first show that Axiom 1-3 imply an important implication of our model.

Claim 1. Suppose (\succ, c) satisfies Axiom 1-3. Then, If $x \succ c(A \cup x)$ then $c(B) = c(B \cup x)$ for all $B \supset A$.

Proof. Let L(n) stand for the statement of Claim 1 that is restricted to when $|B - A| \leq n$. Notice that Axiom 2 is L(0). First, we shall show L(1). That is, $x \succ c(A \cup x)$ (so $c(A) = c(A \cup x)$ by Axiom 2) implies $c(A \cup y) = c(A \cup x \cup y)$ for any y.

Case 1: $y \succ c(A \cup x \cup y)$: By Axiom 2, $c(A \cup x) = c(A \cup x \cup y)$. By the assumption, we have $x \succ c(A \cup x) = c(A \cup x \cup y)$. By applying Axiom 2, we get $c(A \cup y) = c(A \cup x \cup y)$.

Case 2: $y \prec c(A \cup x \cup y)$: By Axiom 3, $y \prec c(A \cup x \cup y) \prec c(A \cup x) \prec x$. By Axiom 1 we get $c(A \cup x \cup y) \prec x$. Then by Axiom 2, we get the desired result, $c(A \cup y) = c(A \cup x \cup y)$.

Case 3: $y \sim c(A \cup x \cup y)$: We have three sub-cases:

- If $y = c(A \cup y)$, then $c(A \cup y) = c(A \cup x \cup y)$.
- If $y \succ c(A \cup y)$, then Axiom 2 implies $c(A \cup y) = c(A) = c(A \cup x)$. Applying Axiom 3, we get $c(A \cup x \cup y) = c(A \cup y)$, which is a contradiction because $c(A \cup x \cup y) = y \succ c(A \cup y)$.
- If $y \prec c(A \cup y)$, then Axiom 3 implies $c(A \cup y) = c(A) \prec c(A \cup y)$. Applying Axiom 3 again, it must be $c(A \cup x \cup y) \prec c(A \cup y) \succ y$, which is a contradiction because $c(A \cup x \cup y) = y$.

Now suppose that L(k) is true up when $1 \leq k \leq n - 1$. We shall prove L(n). Assume $x \succ c(A \cup x)$ and let $B = A \cup \{y_1, y_2, \ldots, y_n\}$ where all of y_i’s are distinct and excluded from A. Our goal is to show $c(B) = c(B \cup x)$. Without loss of generality, assume $y_1 \succ y_2 \succ \cdots \succ y_n$.

Appendix A. Proofs
Case 1: \(y > c(A \cup x \cup y) \) for some \(y \in \{y_1, y_2, \ldots, y_n\} \): Since \((B \setminus y) \cup x \supset A \cup x \)
and the difference of their cardinality is \(n - 1\), we can utilize \(L(n - 1)\). Then we get \(c((B \setminus y) \cup x) = c((B \setminus y) \cup x \cup y)(= c(B \cup x))\). Applying \(L(1)\) to \(x \succ A \cup x\), we have \((y >)c(A \cup x \cup y) = c(A \cup y)\). Applying \(L(n - 1)\) to this yields \(c(B \setminus y) = c((B \setminus y) \cup x) = c(B)\). Notice that \(c(B \setminus y) = c((B \setminus y) \cup x)\) because \(x \succ c(A \cup x)\) and \(L(n - 1)\). These three equalities imply \(c(B) = c(B \cup x)\).

Case 2: \(y < c(A \cup x \cup y) \) for some \(y \in \{y_1, y_2, \ldots, y_n\} \): By Axiom 3 we have \((A \cup x) \succ c(A \cup y)\). Since \(x \succ c(A \cup x)\) and Axiom 1, we have \(x \succ c(A \cup x \cup y)\). Because \(|B \setminus (A \cup y)| = n - 1\), by applying \(L(n - 1)\) we have \(c(B) = c(B \cup x)\).

Case 3: \(y_i = c(A \cup y_i \cup x) \) for all \(i = 1, \ldots, n \): In this case, we have \(y_1 = c(A \cup y_1 \cup x) \succ y_2 = c(A \cup y_2 \cup x) \succ \cdots \succ y_n = c(A \cup y_n \cup x)\)

Since \(c(A \cup y_i \cup x) = c(A \cup y_i)\) by \(L(1)\), the above relations still hold when \(x\) is removed:

\[y_1 = c(A \cup y_1) \succ y_2 = c(A \cup y_2) \succ \cdots \succ y_n = c(A \cup y_n)\]

Recursively applying Axiom 3 implies

\[(c(A \cup y_1 \cup x) =)y_1 \succ c(A \cup \{y_1, y_2, \ldots, y_n\})(= c(B)) \succ y_n (= c(A \cup y_n \cup x))\]

In other words,

\[c(A \cup y_1 \cup x) \succ c(B) \succ c(A \cup y_n \cup x)\]

Since \((A \cup y_1 \cup x) \cup B = B \cup x\), Axiom 3 implies \(c(B \cup x) \succ c(B)\). Similarly, since \((A \cup y_n \cup x) \cup B = B \cup x\), Axiom 3 implies \(c(B) \succ c(B \cup x)\). Therefore, by Axiom 1, \(c(B) = c(B \cup x)\).

For any binary relation \(R\), let \(\Gamma_R(S)\) be the set of \(R\)-undominated elements in \(S\), that is,

\[\Gamma_R(S) = \{x \in S: \text{there exists no } y \in S \text{ such that } yRx\}\]

Instead of constructing \(v\) and \(w\), we shall construct a binary relation over \(X\), denoted by \(\triangleright\) such that \(c(S) \) is the \(\triangleright\)-best element in \(\Gamma_{\triangleright}(S)\).\(^{13}\) It is known (Fishburn [1970]) that, if (and only if) \(\triangleright\) is an interval order\(^{14}\), there exist functions \(v\) and \(\epsilon\) such that

\[\Gamma_{\triangleright}(S) = \{x \in S: v(y) - v(x) \leq w \forall y \in S\} = \{x \in S: \max_{y \in S} v(y) - v(x) \leq w\}\]

so that we can get the desired representation.

Now, for any \(x \neq y\), we define \(x \triangleright y\) when either \(x \triangleright' y\) or \(x \triangleright'' y\) where \(\triangleright'\) and \(\triangleright''\) are defined as follow:

1. \(x \triangleright' y\) if \(y \succ x = c(xy)\)
2. \(x \triangleright'' y\) if \(x \succ y\) and there exist \(a\) and \(b\) such that \(a \triangleright' y\), \(x \triangleright' b\), and \(a \not\triangleright' b\).

Note that \(x \triangleright' y\) and \(x \triangleright'' y\) cannot happen at the same time. In addition, \(\triangleright'\) and \(\triangleright''\) are both irreflexive.

\(^{13}\)In our framework, the \(\succ\)-best element is equal to the \(\succsim\)-best element.

\(^{14}\)\(\triangleright\) is called an interval order if it is irreflexive and \(x \triangleright b\) or \(a \triangleright y\) holds whenever \(x \triangleright y\) and \(a \triangleright b\).
We need to show that (i) \triangleright is an interval order and (ii) the \triangleright-best element in $\Gamma_{\triangleright}(S)$ is equal to $c(S)$.

Claim 2. \triangleright' is asymmetric and transitive.

Proof. By construction, $x \triangleright' y$ and $y \triangleright' x$ cannot happen at the same time. Suppose $x \triangleright' y$ and $y \triangleright' z$, i.e., $z \triangleright c(yz) = y \triangleright c(xy) = x$. Then by Claim 1, $c(xyz) = c(xz)$ because $y \triangleright c(xy)$. By Axiom 3, $(z \triangleright) c(yz) \geq c(xyz) \geq c(xy)$. Hence, we have $z \triangleright c(xyz) = c(xz)$. Hence we have $z \triangleright x = c(xz)$, so $x \triangleright' z$. \square

Claim 3. If $x \triangleright' y$ and $a \triangleright' b$ but neither $x \triangleright' b$ or $a \triangleright' y$, then it must be $x \triangleright'' b$ or $a \triangleright'' y$ but not both.

Proof. First we shall show that $x \triangleright'' b$ and $a \triangleright'' y$ cannot happen at the same time. Suppose it does. Then by definition of \triangleright' and \triangleright'', we have $y \triangleright x \triangleright b \triangleright a \triangleright y$. Axiom 1 is violated.

Now, we shall show that either $x \triangleright'' b$ or $a \triangleright'' y$ must be defined. Suppose not. Then, along with the definition of \triangleright', we have $b \triangleright x = c(xy)$, and $y \triangleright a = c(ab)$. Therefore, $c(xyab)$ must be weakly worse than x or a because it must be weakly worse than $c(xy)$ or $c(ab)$ by Axiom 3.

Since neither (x, b) nor (a, y) belongs to \triangleright' or \triangleright'', we have $c(xb) = b \triangleright x$, and $c(ay) = y \triangleright a$. By Axiom 3, $c(xyab)$ must be weakly better than $c(xb)$ or $c(ay)$ so it must be weakly better than y or b.

Hence, either x or a must be weakly better than either y or b. Since we have already seen $b \triangleright x$ and $y \triangleright a$, the only possibilities are $a \triangleright b$ or $x \triangleright y$, neither of which is possible because $a \triangleright' b$ and $x \triangleright' y$. \square

Claim 4. \triangleright is an interval order.

Proof. We need to show that \triangleright is irreflexive. By definition, we cannot have (i) $x \triangleright' y$ and $y \triangleright' x$, (ii) $x \triangleright' y$ and $y \triangleright'' x$, or (iii) $x \triangleright'' y$ and $y \triangleright'' x$. Hence \triangleright is irreflexive.

Next we show that $x \triangleright b$ or $a \triangleright y$ holds whenever $x \triangleright y$ and $a \triangleright b$. We shall prove this case by case:

Case 1: $x \triangleright' y$ and $a \triangleright' b$: If we have $x \triangleright' b$ or $a \triangleright' y$, then we are done. Assume not, then Claim 3 implies we must have $x \triangleright'' b$ or $a \triangleright'' y$ (not both). Then $x \triangleright b$ or $a \triangleright y$.

Case 2: $x \triangleright' y$ and $a \triangleright'' b$: In this case, by definition of \triangleright'' and Claim 3, there exist s and t such that $a \triangleright' t$ and $s \triangleright' b$ but not $s \triangleright t$. Focus on $x \triangleright' y$ and $a \triangleright' t$, we must
have either $a \succ y$ (it is done in this case) or $x \succ t$ (so either $x \succ t$ or $x \succ" t$). If $x \succ t$, then by looking at $x \succ t$ and $s \succ b$ Claim requires $x \succ b$ because it is not $s \succ t$. Thus, we consider the final sub-case: $x \succ" t$. If so, we have $x \succ y$ and $s \succ b$ so it must be either $x \succ b$ (then done) or $s \succ y$. If $s \succ y$, then it must be $s \succ y$ (i.e. not $s \succ" y$) because $y \succ x \succ y \succ a \succ b \succ s$. Therefore, we have $s \succ y$ and $a \succ t$ with not $s \succ t$. Hence it must be $a \succ y$.

![Figure 7. The Proof of Claim 4](image)

Case 3: $x \succ" y$ and $a \succ" b$: By definition of $\succ"$, there exist s and t such that $x \succ t$ and $s \succ y$ with not $s \succ t$. Then by focusing on $x \succ t$ and $a \succ" b$, we must have either $x \succ b$ (done) or $a \succ t$. Suppose the latter. Then we have $s \succ y$ and “$a \succ t$ or $a \succ" t,”” so the previous two cases are applicable so we conclude $a \succ y$ because it is not $s \succ t$.

Claim 5. $c(S)$ is equal to the \succ-best element in $\Gamma_{\succ'}(S)$.

Proof. First, we prove that $\Gamma_{\succ'}(S)$ does not include any element that is strictly better than $c(S)$. Suppose $x \in \Gamma_{\succ'}(S)$. Let S' and S'' be the subsets of $S \setminus x$ consisting of elements that are better than x and strictly worse than x, respectively. That is,$$
S' := \{y \in S : y \succ x\} \quad \text{and} \quad S'' := \{y \in S : x \succ y\}.
$$Then, we have $c(S' \cup x) \succ x$ by definition of c and $x = c(xy) \succ y$ for all $y \in S''$ by the definition of \succ'. Then by applying Axiom 3 we get $c(S' \cup x) = x$. Thus, $c(S' \cup x) \succ c(S'' \cup x)$ implies $c((S' \cup x) \cup (S'' \cup x)) = c(S) \succ x$ again by Axiom 3.

Next, we shall show that $c(S) \in \Gamma_{\succ'}(S)$. Suppose not. Then, there exists $y \in \Gamma_{\succ'}(S)$ such that $y \succ' c(S)$ by Claim 2 (especially \succ' is transitive). That is $c(S) \succ c(a) = y$. Thus, by Claim 1, we have $c(S \setminus c(S)) = c(S \setminus c(S)) \cup c(S)) = c(S)$, a contradiction.

Combining the first and second results, the \succ-best element in $\Gamma_{\succ'}(S)$ is equal to $c(S)$.

Claim 6. $c(S)$ is equal to the \succ-best element in $\Gamma_{\succ}(S)$.

Proof. Since $\succ \supseteq \succ'$ by construction, we have $\Gamma_{\succ}(S) \subseteq \Gamma_{\succ'}(S)$. Therefore, by Claim 5, it is enough to show is that the \succ-best elements in $\Gamma_{\succ'}(S)$ (which is $c(S)$) is included in $\Gamma_{\succ}(S)$. Suppose $c(S) \notin \Gamma_{\succ}(S)$. Since \succ is an interval order, it is automatically transitive. Therefore, there exists $y \in \Gamma_{\succ}(S)$ such that $y \succ c(S)$ but not $y \succ' c(S)$. Therefore, it must be $y \succ" x$ so $y \succ c(S)$. Since $y \in \Gamma_{\succ'}(S)$, y cannot be strictly better than $c(S)$ (see the proof of Claim 5).
(The Representation ⇒ The Axioms)

Showing that the first axiom is necessary is straightforward. For the second axiom, if \(x \succ c(A \cup x) \) then \(A \) must have an element \(y \) with \(v(y) > v(x) + w(x) \), so its superset \(B \) also includes \(y \) so \(\Gamma(A) = \Gamma(B) \), so \(c(A) = c(B) \).

The third axiom: Let \(x^* \) be the \(u \)-best element in \(\Gamma(A \cup B) \). Then it must be in \(\Gamma(A) \) or \(\Gamma(B) \) as well so it is not possible that \(A \cup B \) is strictly preferred to both \(A \) and \(B \). Now we show that the union cannot be strictly worse than both. Let \(x_A \) and \(x_B \) be the \(u \)-best elements in \(A \) and \(B \), respectively, and take \(v_A \) and \(v_B \) be the maximum values of \(v \) in \(A \) and in \(B \), respectively. Then we have

\[
v_A \leq u(x_A) + \varepsilon(x_A) \quad \text{and} \quad v_B \leq u(x_B) + \varepsilon(x_B)
\]

Therefore the maximum value of \(v \) in \(A \cup B \) is the higher one between \(v_A \) and \(v_B \), either \(x_A \) or \(x_B \) must be in \(\Gamma(A \cup B) \) so \(c(A \cup B) \) must be weakly better than either \(c(A) \) or \(c(B) \).

Proof of Theorem 2. We are now done proving the sufficiency of the axioms for the representation in Theorem 1. Next, we show the sufficiency of Axioms 1-4 for the representation in Theorem 2.

Claim 7. If \(x \succ c(xy) \succ c(yz) \) then, for all \(t \), \(c(xyzt) \) is either \(c(xt) \) or \(c(yzt) \).

Proof. Assume \(x \succ c(xy) \succ c(yz) \), then it must be \(x \succ y \succ z \). Consider \(c(zt) \). If \(c(zt) = t \) then by Axiom 4 we get \(c(xt) = t \). Since \(y \succ c(yzt) \), by Claim 1, we have \(c(zt) = c(yzt) \). By Axiom 3 we have \(c(xt) = c(xyzt) = c(yzt) \). Hence \(c(xyzt) = c(xt) \).

Now assume \(c(zt) = z \). Since \(x \succ c(xy) \), by Claim 1, we have \((z = c(yz) = c(xyz) \). By Axiom 3, we have \(c(zt) = c(xyzt) = c(xyz)(= c(yzt)) \). Hence \(c(xyzt) = c(yzt) \). \(\square \)

Again as in the proof of Theorem 1, instead of defining \(v(.) \) and \(w > 0 \), we shall construct a binary relation over \(X \), denoted by \(\succ \) such that \(c(S) \) is equal to the \(\succ \)-best element in \(\Gamma_S(S) \) (i.e. the set of \(\succ \)-undominated elements in \(S \)). It is known (Fishburn [1970]) that if (and only if) \(\succ \) is a semi order\(^{15} \), which is a special type of an interval order, there exist function \(v \) and positive number \(w \) such that

\[
\Gamma_S(S) = \{ x \in S : \max_{y \in S} v(y) - v(x) \leq w \}
\]

so we get the desired representation.

Next we define \((i, j)\)-representation of an arbitrary binary relation \(P \).

Definition 1. Two functions \(i : X \to N \) and \(j : X \to N \) where \(i(x) \geq j(x) \) for all \(x \in X \) represents a binary relation \(P \) if \(xPy \) if and only if \(i(x) < j(y) \).

Let \(\succ \) be the interval order that is defined in the proof of Theorem 1. First, we argue that \(\succ \) has an \((i, j)\)-representation without any gaps as described in the following claim.

Claim 8. Any interval order, \(P, \) has an \((i, j)\)-representation (see Figure 8) if there exist two functions \(i : X \to N \) and \(j : X \to N \) such that

\(^{15} \) \(\succ \) is a semi order if it is an interval order and if \(x \mathrel{\succ} y \mathrel{\succ} z \) then \(x \mathrel{\succ} t \) or \(t \mathrel{\succ} z \) for any \(t \).
i) For all \(x \in X \), \(i(x) \geq j(x) \).

ii) The ranges of \(i \) and \(j \) have no gap: That is if there exist \(x \) and \(y \) such that \(i(x) > i(y) \) then for any integer \(n \) between \(i(x) \) and \(i(y) \) there is \(z \) with \(i(z) = n \). Similarly for \(j(\cdot) \).

iii) \(xP_y \) if and only if \(i(x) < j(y) \).

Proof. The following proof is based on Mirkin [1979]. Given an interval order, \(P \), \(xP_y \) and \(zPw \) imply \(xPw \) or \(zPy \) we can show that, for all \(x \) and \(y \) in \(X \), \(L(x) \subseteq L(y) \) or \(L(y) \subseteq L(x) \), and, \(U(x) \subseteq U(y) \) or \(U(y) \subseteq U(x) \), where \(L(x) \) and \(U(x) \) are lower and upper contour sets of \(x \) with respect to \(P \), respectively. That is, \(L(x) = \{ y \in X \mid xPy \} \) and \(U(x) = \{ y \in X \mid yPx \} \).

Irreflexivity indicates that there is a chain with respect to lower contour sets (this is also true for upper contour sets), i.e., relabel elements of \(X \), \(|X| = n \) such that \(L(x_i) \subseteq L(x_i) \) for all \(1 \leq i \leq j \leq n \). Moreover, we can include strict inclusions such as there exists \(s \leq n \) such that \(\emptyset = L(x_s) \subseteq L(x_{s-1}) \cdots L(x_2) \subseteq L(x_1) \) where \(\{ x_1, x_2, \ldots, x_s \} \subseteq X \). For all \(k \leq s \), Define

\[I_k = \{ x \in X \mid L(x_k) = L(x) \} \]

\(I_k \) is not empty for any \(k \) since \(x_k \in I_k \) by construction. Clearly, the system \(\{ I_k \}_1^s \) is a partition of the set \(X \), i.e. \(\bigcup_{k=1}^s I_k = X \), \(I_k \cap I_l = \emptyset \) when \(k \neq l \). Define

\[i(x) := k \text{ if } L(x) = L(x_k) \text{ for some } x_k \text{ in } X. \]

Now construct another family of non-empty sets \(\{ J_m \}_1^s \), as follows

\[J_s = L(x_{s-1}) \setminus L(x_s), \quad \cdots, \quad J_2 = L(x_1) \setminus L(x_2), \quad J_1 = X \setminus L(x_1) \]

Clearly, the system \(\{ J_m \}_1^s \) is another partition of the set \(X \). Most importantly, we have \(\emptyset = U(y_1) \subseteq U(y_2) \cdots U(y_{s-1}) \subseteq U(y_s) \) where \(y_i \in J_i \) for all \(i \leq s \). Define

\[j(x) := k \text{ if } x \in J_k. \]

Figure 8. The graph of the \((i, j)\)-representation. Condition ii) implies every row and column (not every cell) includes at least one alternative. Condition iii) implies \((x, y) \in P \) but \((x, z) \notin P \).
To see Condition (i) holds, let \(i(x) = i \). That means \(x \in I_i \). If there exists no element \(z \) such that \(zPx \), i.e. \(U(x) = \emptyset \), then \(j(x) = 1 \leq i(x) \). Otherwise find the largest integer \(j \) such that \(x \in L(x_j) \). Note that \(j \) must be strictly less than \(i \). Then by definition, \(j(x) = j + 1 \), which is less than \(i = i(x) \).

Since both \(\{I_k\} \) and \(\{J_k\} \) are partitions of \(X \), there is no gap (Condition (ii)). Finally, we have Condition (iii) since \(xPy \iff y \in L(x) \iff j(y) \geq i(x) + 1 > i(x) \).

\(\square \)

Let \(\triangleright \) be the interval order that is defined in the proof of Theorem 1. By Claim 8, it has an \((i,j)\)-representation. We now modify the \((i,j)\)-representation of \(\triangleright \) so that the resulting binary relation is a semiorder, say \(\triangleright \), such that \(c(S) \) is equal to the \(\triangleright \)-best element in \(\Gamma_{\triangleright}(S) \). In other words, we construct a semiorder based on the interval order we created without affecting the representation. To do this, we prove several claims relating the \((i,j)\)-representation with the preference \(\triangleright \).

Claim 9. If \(i(x) = j(y) - 1 \), it must be \(y \triangleright x \).

Proof. Since \(i(x) < j(y) \) we know that \(x \triangleright y \). If \(x \triangleright y \) then we are done since in that case \(y \triangleright x = c(xy) \). So suppose that \(x \triangleright^" y \). Then by definition of \(\triangleright^" \), there exist \(\alpha \) and \(\beta \) such that \(\alpha \triangleright^" y \) and \(x \triangleright^\prime \beta \) and \(\alpha \triangleright^\prime \beta \). Moreover, by Claim 3 \(\alpha \triangleright^\prime \beta \). So \(\alpha \triangleright \beta \). Since \(\alpha \triangleright \beta \) and \(x \triangleright \beta \), \(i(\alpha) < j(y) \) and \(i(x) < j(\beta) \). Since \(\alpha \triangleright \beta \), \(i(\alpha) \geq j(\beta) \). Therefore it must be \(i(x) \leq j(y) - 2 \), a contradiction. \(\square \)

Definition 2. \((i,j)\) is called a prohibited cell if there exists \(z \) such that \(i(z) < i \) and \(j(z) > j \). Otherwise, it is called a safe cell (see Figure 9a).

To obtain a semi-order representation, we need to move each alternative that is in a prohibited cell to a safe cell and still the representation holds. The next definition describes a way in which alternatives can be moved.

Figure 9. Prohibited and movable cells

Definition 3. An alternative \(x \) can be moved to the cell \((i,j)\) where \(i \geq j \) if (a) \(i \leq i(x) \) and \(j \geq j(x) \), (b) \(x \triangleright y \) for all \(y \) with \(i < j(y) \leq i(x) \), (c) \(z \triangleright x \) for all \(z \) with \(j(x) \leq i(z) < j \).

Definition requires that the alternatives in prohibited cells must move up and right (Condition (a)). As an outcome \(x \) is moved a new cell, \((i,j)\), it is possible that there exists \(y \)
such that $i(x) \geq j(y)$ but $i < j(y)$. Condition (b) requires that in this case $x \succsim y$. Suppose to the contrary that $y \succ x$. Since $i < j(y)$, in the new representation $x \succ y$. But in the original representation we have $x \not\succ y$. So the two representations must represent different preferences. Condition (c) can be understood similarly.

![Figure 10. Examples of movable cells with different preferences](image)

(A) Movable cells if $x \succ z, y$
(B) Movable cells if $y, z \succ x$
(C) Movable cells if $y \succ x \succ z$

To understand this definition, we provide three examples (Figure 10). In Figure 10a, we have $x \succ y, z$. Since we have $z \not\succ x$ and $x \succ z$, x cannot be moved a cell where z will eliminate x (Condition (c)). That is, $j \leq i(z) = 3$. On the other hand, since $x \succ y$, there is no restriction on movement on i. In Figure 10b, we have completely opposite situation $y, z \succ x$. Since we have $x \not\succ y$ and $y \succ x$, x cannot be moved a cell where x will eliminate y (Condition (b)). That is, $i \geq j(y) = 5$. On the other hand, since $z \succ x$, there is no restriction on movement on j. Finally, we provide an example where both Condition (b) and (c) induce restrictions because we have $y \succ x \succ z$.

Claim 10. Suppose $\beta \succ y \succ \alpha$ and $\alpha \succ y \succ \beta$. If there exists x such that $x \not\succ \beta$ and $\alpha \not\succ x$, then $x \succ \beta$ or $\alpha \succ x$.

Proof. Suppose $\beta \succ x \succ \alpha$ and we shall get a contradiction. Then we have $\beta = c(\beta x)$ and $c(\alpha x) = x$ because $x \not\succ \beta$ and $\alpha \not\succ x$. By the assumption, we have $\beta \succ c(\beta y) \succ c(\alpha y)$. By Claim 7, $\alpha \beta xy$ must be equal to either $c(\beta x) = \beta$ or $c(\alpha y) = \alpha$. Consider $c(\beta y)$ and $c(\alpha x)$, both of which are strictly worse than β and strictly better than α. Axiom 3 dictates that $\beta \succ \beta y \succsim c(\alpha \beta xy) \succsim x \alpha \succ \alpha$. Hence, $c(\alpha \beta xy)$ cannot be equal to β or α, which is a contradiction. \[\square\]

Given the assumptions of Claim 10, we have $j(x) \leq i(\alpha) < j(y)$ and $i(y) < j(\beta) \leq i(x)$. This means that $(i(x), j(x))$ is a prohibited cell because of y. This means that x needs to be moved. Claim 10 illustrate that x can be moved because $x \succ \beta$ or $\alpha \succ x$. The next claim shows that there is a unique way to move x. That is, x can be moved to either $(i(y), j(x))$ or $(i(x), j(y))$ but not to both.

Claim 11. Let exist two alternatives x and y such that $i(x) > i(y)$ and $j(x) < j(y)$. Then x can be moved to either $(i(y), j(x))$ or $(i(x), j(y))$ but not to both.
Proof. There exist two alternatives α and β such that $i(\alpha) = j(y) - 1$ and $j(\beta) = i(y) + 1$.\footnote{This is because since neither $i(y)$ is the smallest nor $i(y)$ is the largest integer within the range of i.} By Claim 8 and 9, we have $\beta \succ y \succ \alpha$ and $\alpha \succ y \succ \beta$. Since $j(\beta) \leq i(x)$ and $j(x) \leq i(\alpha)$, $x \not\preceq \beta$ and $\alpha \not\preceq x$ by Claim 8. Thus, by Claim 10, we have $x \succ \beta \succ \alpha$ (so x cannot be moved to $(i(x), j(y))$ because of α) or $\beta \succ \alpha \succ x$ (so x cannot be moved to $(i(y), j(x))$ because of β). Therefore, all we need to show is that x can be moved to either of them.

Case I: $x \succ \beta$. We show that x can be moved to $(i(y), j(x))$. First, Condition (a) holds trivially: $i(y) \leq i(x)$ and $j(x) \geq j(y)$. For Condition (b), take an element z such that $i(y) < j(z) \leq i(x)$ (so $y \succ z$ but $x \not\succ z$). Then, it must be either $y \succ z$ (which implies $x \succ z$) or $z \succ y = c(yz)$ in which case we have $z \succ y \succ \alpha$ and $\alpha \succ y \succ z$ (with $x \not\preceq z$ and $\alpha \not\preceq x$). By Claim 10, we should have $x \succ z$ or $\alpha \succ x$. Since we are considering the case $x \succ \beta(\succ \alpha)$, it must be $x \succ z$. Condition (c) is trivially satisfied because $j = j(x)$.

Case II: $\alpha \succ x$: Condition (a) and (b) will be now trivial while Condition (c) can be proven in the same way how we prove Condition (b) in case I.\hfill \square

Claim 12. Let

$$U_x = \{y : i(x) > i(y), \ j(x) < j(y) \text{ and } x \text{ can be moved to } (i(y), j(x))\} \cup \{x\}$$

$$R_x = \{y : i(x) > i(y), \ j(x) < j(y) \text{ and } x \text{ can be moved to } (i(x), j(y))\} \cup \{x\}$$

and let

$$i_x = \min_{y \in U_x} i(y) \quad \text{and} \quad j_x = \max_{y \in R_x} j(y)$$

Then (i) x can be moved to (i_x, j_x), and (ii) (i_x, j_x) is a safe cell. That is, there is no z with $i(z) < i_x$ and $j(z) > j_x$.

Proof. Notice that by the definitions of movability, $i_x \leq i(x)$ and $j_x \geq j(x)$.

(i) Clearly, $i_x \leq i(x)$ and $j_x \geq j(x)$ as $x \in U_x, R_x$. First, we show that $i_x \geq j_x$. Take an alternative $y \in U_x$ such that $i(y) = i_x$. Since $y \in U_x$, x cannot be moved to $(i(x), j(y))$ by Claim 11. By the definition of movability, x cannot be moved to $(i(x), j)$ if $j \geq j(y)$. Hence for all $z \in R_x \setminus \{x\}$, $j(z) < j(y)$, which means $j_x = \max_{z \in R_x} j(z) \leq j(y)$. Since $i(y) \geq j(y)$, we have $j_x \leq j(y) \leq i(y) = i_x$.

Figure 11

![Figure 11](image-url)
Since x can be moved to $(i_x, j(x))$, then the second condition of the movability is satisfied. Similarly, we can prove the third requirement as well. Therefore, x can be moved to (i_x, j_x).

(ii) If $z \notin U_x, R_x$, then by Claim 11, it must be $(i_x \leq i(x) \leq i(z))$ or $(j(z) \leq j(x) \leq j_x)$. If $z \in U_x$, then $i(z) \geq i_x$. If $z \in R_x$ then $j(z) \leq j_x$.

Now, define $x \triangledown y$ if and only if $j_y > i_x$.

Claim 13. \triangledown is a semi-order.

Proof. Since $i_x \geq j_x$ by Claim 12 for all x, \triangledown is an interval order.

Next, we shall show that if (i, j) is a safe cell, there is no element x such that $i_x < i$ and $j_x > j$. Suppose there is such x. Notice that it must be $i \leq i(x)$ or $j \geq j(x)$ because (i, j) is a safe cell so it must be $i_x < i(x)$ or $j > j(x)$. Suppose $i_x < i(x)$. Then there exists y such that $i(y) = i_x$ and $j(x) < j(y)$ such that x can be moved to $(i(y), j(x))$. By Claim 11, x cannot be moved to $(i(x), j(y))$, so it cannot be moved to $(i(x), j')$ for any $j' \geq j(y)$. Since (i, j) is a safe cell and $i(y) = i_x < i$, it must be $j(y) \leq j(x) < j_x$. Hence, x cannot be moved to $(i(x), j_x)$, which contradicts the definition of j_x unless $j_x = j(x)$. But if so, $j(y) > j_x > j$ but this contradicts that (i, j) is a safe cell. Analogously, we can show a contradiction if $j > j(x)$.

By Claim 12, all elements have been moved to safe cells, so there is no pair of elements x and y such that $i_x < i_y$ and $j_x > j_y$. Therefore, if $i_x < j_y \leq i_y < j_z$ (i.e. $x \triangledown y \triangledown z$) then for any w, it must be either $j_w > j_y$ or $i_w \leq i_y$, which implies $j_w > i_x$ or $i_w < j_z$ (i.e. $x \triangledown w$ or $w \triangledown z$). Therefore, \triangledown is a semiorder.

Claim 14. If $x \triangledown y$ then $x \triangledown y$.

Proof. By definitions of i' and j', $i_x \leq i(x)$ and $j_x \geq j(x)$ for all x. Therefore, if $x \triangledown y$, then $i_x \leq i(x) < j(y) \leq j_y$ so we have $x \triangledown y$.

Claim 15. If $x \triangledown y$ but not $x \triangledown y$, then $x \triangledown y$.

Proof. First, we shall note that both x and y must be in prohibited cells. If neither of them is in, $i_x = i(x)$ and $j_y = j(y)$ so $x \triangledown y$ and not $x \triangledown y$ cannot happen at the same time. If only x is in a prohibited cell, then $i_x < j(y) \leq i(x)$ so x cannot be moved to (i_x, j_x). Similarly we can prove that it is not possible that only y is in a prohibited cell.

Next we shall show that $i_x < i(x)$ and $j_x > j(y)$. Since x can be moved to (i_x, j_x) while $y \triangledown x$, it must be $i_x \geq j(y)$ because $j(y) \leq i(x)$ (i.e. not $x \triangledown y$). Combined with $x \triangledown y$, we get $j_y > j(y)$. Flipping x and y, one can prove $i_x < i(y)$.

Therefore, there must exist z and z' with $i(z) \in [j(y), j_y - 1]$ and $j(z') \in [i_x - 1, i(x)]$ (notice that these intervals are non-empty). Furthermore, we can take such z and z' so that $i(z) = j(z') - 1$ because $i_x - 1 < j_y - 1$ and $i(x) > j(y)$. Thus, $z' \triangledown z$ by Claim 9. Since x is movable to (i_x, j_x), we have $x \triangledown z'$. Similarly, we have $z \triangledown y$. Therefore, we conclude $x \triangledown y$.

Claim 16. $c(S)$ is equal to the \triangledown-best element in $\Gamma_{\triangledown}(S)$.
Proof. We know \triangleright is transitive, $\triangleright\triangleright$ and $x \succ y$ whenever $x \triangleright y$ but not $x \triangleright\triangleright y$. It is easy to see that this claim can be proven in the exactly same way as Claim 6.

(Representation \Rightarrow Axioms 1-4) Showing that the first axiom is necessary is straightforward. Let

$$\Gamma(A) = \{ x \in A : \max_{y \in A} v(y) - v(x) \leq \overline{w} \}$$

For Axiom 2, if $x \succ c(A \cup x)$ then A must have an element y with $v(y) > v(x) + \overline{w}$, so it is clear that $\Gamma(A) = \Gamma(A \cup x)$ so $c(A) = c(A \cup x)$.

Axiom 3: Let x^* be the u-best element in $\Gamma(A \cup B)$. Then it must be in $\Gamma(A)$ or $\Gamma(B)$ so it is not possible that $c(A \cup B)$ is strictly preferred to both $c(A)$ and $c(B)$. Now we show that the union cannot be strictly worse than both. Let x_A and x_B be the u-best elements in $\Gamma(A)$ and $\Gamma(B)$, respectively, and take v_A and v_B be the maximum values of v in A and in B, respectively. Then we have

$$v_A \leq v(x_A) + \overline{w} \text{ and } v_B \leq v(x_B) + \overline{w}$$

Therefore the maximum value of v in $A \cup B$ is the higher one between v_A and v_B, either x_A or x_B must be in $\Gamma(A \cup B)$ so $c(A \cup B)$ must be weakly better than either $c(A)$ or $c(B)$.

Finally we show that the representation implies Axiom 4. Suppose $x \succ c(xy) \succ c(yz)$, then it must be $x \succ y \succ z$, $v(y) - v(x) > \overline{w}$ and $v(z) - v(y) > \overline{w}$. Therefore, $v(z) - v(x) > 2\overline{w}$.

Since $c(tz) = t$, we must either “$z \succ t$ and $v(t) - v(z) > \overline{w}$” or “$t \succ z$ and $v(z) - v(t) \leq \overline{w}$.” In both cases, we have $v(t) - v(x) > \overline{w}$, hence we have $c(xt) = t$.

Strict Convex Model violates Axiom 3. To see this consider the following table: We will show that it is always possible to choose $a > 0$ and $b > 0$ so that $c(x, z) = x$, $c(y, t) = y$, and $c(x, y, z, t) = z$, a pattern that violates Axiom 3. Note that in the convex self control model $c(x, z) = x$ iff $3 - \phi(b) > 1$ and $c(y, t) = y$ iff $2 - \phi(b) > 0$. Moreover, $c(x, y, z, t) = z$ iff $1 - \phi(a) > 3 - \phi(a + b)$, $1 - \phi(a) > 2 - \phi(b)$ and $1 - \phi(a) > 0$.

This means that to construct an example that violates Axiom 3, we need to find $a > 0$ and $b > 0$ such that $\phi(a), \phi(b) < 2$, $\phi(b) - \phi(a) > 1$ and $\phi(a + b) - \phi(a) > 1$.

Define $a(\epsilon) = \phi^{-1}(1 - 2\epsilon)$, $b(\epsilon) = \phi^{-1}(2 - \epsilon)$ for $1/2 > \epsilon > 0$. Note, $\phi(a(\epsilon)) = 1 - 2\epsilon < 1$, $\phi(b(\epsilon)) = 2 - \epsilon < 2$ and $\phi(b(\epsilon)) - \phi(a(\epsilon)) > 1 + \epsilon > 1$. Let

$$H(\epsilon) = \phi(a(\epsilon) + b(\epsilon)) - \phi(a(\epsilon)) - 2$$

$$= \phi(\phi^{-1}(1 - 2\epsilon) + \phi^{-1}(2 - \epsilon)) - 3 + 2\epsilon.$$

Since ϕ is strictly convex, we have $H(0) = \phi(\phi^{-1}(1) + \phi^{-1}(2)) - \phi(\phi^{-1}(1)) - \phi(\phi^{-1}(2)) = \phi(\phi^{-1}(1) + \phi^{-1}(2)) - 3 > 0$. Since H is continuous $H(\epsilon) > 0$ for ϵ small enough. Fix such
an ϵ and let $a = a(\epsilon)$ and $b = b(\epsilon)$. Clearly, a and b satisfy all the conditions. This proves that Axiom 3 is violated for any strict convex costly self-control model. Hence, there is no specification of the costly self-control representation such that its implied second-period choice would coincide with our model.\footnote{A similar proof strategy would work not just for strict convex but for any non-linear convex cost function.}

Proof of Proposition 1.

Proof. We first show that, for any x, the best compromising contract is strictly better than the best indulging contract as long as $w > 0$ and $x \neq z^*$. Indeed, it is easy to see that, if $w = 0$ then the two contracts generate the same revenue and if $x = z^*$, the compromising contract reduces to an indulging contract. Now suppose $w > 0$ and $x \neq z^*$. If the revenue from the compromising contract is $v(x) - e(y^*)$, the result is immediate. Suppose the revenue from the best compromising contract is $u(x) + e(z^*) - e(y^*) - w$. Since, by definition of z^*, $u(x) + e(z^*) \geq v(x)$, it exceeds $v(x) - e(y^*) - w$ which is the revenue from the best indulging contract.

Now, let us compare the best commitment contract and the best compromising contract. If $e(z^*) - e(x) > w$, then the best compromising contract yields $v(x) - e(y^*)$, which is weakly greater than $u(x)$ since $e(x) \geq e(y^*)$. If $e(z^*) - e(y^*) > w \geq e(z^*) - e(x)$, the best compromising contract yields $u(x) + e(z^*) - e(y^*) - w$. Since $e(z^*) - e(y^*) - w > 0$, the best compromising contract is strictly better than the best commitment contract.

If $e(z^*) - e(y^*) \leq w$, then $e(z^*) - e(x) \leq e(z^*) - e(y^*) \leq w$. This means the best compromising contract yields $u(x) + e(z^*) - e(y^*) - w$. Since $e(z^*) - e(y^*) - w \leq 0$, the best commitment contract is better. \hfill \square

Proof of Proposition 2.

Proof.

(1) Assume $e(z^*) - e(x^v) \geq w$. By Proposition 1, the optimal contract must be a compromising contract. Since $e(z^*) - e(x^v) \geq w$, x^v provides the highest revenue among the alternative satisfying $e(z^*) - e(x) \geq w$. Now consider x such that $e(z^*) - e(x) < w$. Then we have $e(z^*) - v(x) + u(x) < w$. This implies that $u(x) + e(z^*) - e(y^*) - w < v(x) - e(y^*)$. By definition, $u(x) + e(z^*) - e(y^*) - w < v(x) - e(y^*) \leq v(x^v) - e(y^*)$ for all x such that $e(z^*) - e(x) < w$. This establishes the fact that x^v provides the highest revenue overall.

(2) Assume $e(z^*) - e(x^u) < w < e(z^*) - e(x^u)$. By Proposition 1, the optimal contract must be a compromising contract.

(3) Assume $e(z^*) - e(x^u) \leq w < e(z^*) - e(y^*)$. By Proposition 1, the optimal contract must be a compromising contract. Since $e(z^*) - e(x^u) \leq w$, x^u provides the highest revenue among the alternative satisfying $e(z^*) - e(x) \leq w$. Now consider x such that $e(z^*) - e(x) > w$. Then we have $e(z^*) - v(x) + u(x) > w$. This implies that $u(x) + e(z^*) - e(y^*) - w > v(x) - e(y^*)$. By definition, $u(x) + e(z^*) - e(y^*) - w > u(x) + e(z^*) - e(y^*) - w > v(x) - e(y^*)$ for all x such that $e(z^*) - e(x) > w$. This establishes the fact that x^u provides the highest revenue overall. The price, which is $u(x^u) + e(z^*) - e(y^*) - w$, is strictly higher than $u(x^u)$ since $w < e(z^*) - e(y^*)$. Therefore, the efficient service x^u is sold at a price exceeding $u(x^u)$.
(4) Assume \(e(z^*) - e(y^*) \leq w \). By Proposition 1 the optimal contract is the commitment contract selling the efficient service \(x^u \) at price \(u(x^u) \).

□

Proof of Proposition 3.

Proof. To see part (i), recall that, by Equation 10, the maximum revenue for selling \(x \) is \(\min[v(x) - e(z^*), u(x) - e(y^*) + e(z^*) - w] \). Hence, the monopolist’s revenue for selling any alternative is weakly decreasing in \(w \). This implies that the monopolist’s optimal profit is weakly decreasing in \(w \).

Next we show part (ii). That is, we show total surplus is weakly increasing in \(w \). Suppose \(w > w' \). If \(w \geq e(z^*) - e(y^*) \), the optimal contract sells \(x^u \) at price \(u(x^u) \). This maximizes the total surplus \((u - c) \) and gives 0 to the consumer. Clearly, the optimal contract under \(w' \) does not generate more total surplus or consumer’s ex ante welfare. Thus, we focus on the case where \(w < e(z^*) - e(y^*) \).

Let

\[
E_1 = \{ s : v(s) - e(y^*) - c(s) \leq u(s) - e(y^*) + e(z^*) - w - c(s) \}
\]

\[
E_2 = \{ s : u(s) - e(y^*) + e(z^*) - w - c(s) \leq v(s) - e(y^*) - c(s) \leq u(s) - e(y^*) + e(z^*) - w' - c(s) \}
\]

\[
E_3 = \{ s : u(s) - e(y^*) + e(z^*) - w' - c(s) \leq v(s) - e(y^*) - c(s) \}
\]

Clearly, these three sets cover the entire alternative set. With this definition, notice that the monopolist’s highest profits from selling \(s \) is given by

when the willpower is \(w \):

\[
v(s) - e(y^*) - c(s) \quad \text{when } s \in E_1 \quad u(s) - e(y^*) + e(z^*) - w - c(s) \quad \text{when } s \in E_2 \cup E_3
\]

and when the willpower is \(w' \):

\[
v(s) - e(y^*) - c(s) \quad \text{when } s \in E_1 \cup E_2 \quad u(s) - e(y^*) + e(z^*) - w' - c(s) \quad \text{when } s \in E_3
\]

Let \(x \) and \(x' \) be the alternative sold in the optimal contract and \(\pi \) and \(\pi' \) the profit generated by the optimal contract under \(w \) and \(w' \), respectively.

Case 1: \(x, x' \in E_1 \)

In this case, the both of them maximize \(v(s) - e(y^*) - c(s) \). By the assumption (the uniqueness of the optimal alternative), \(x = x' \). Thus the total surplus must be equal.

Case 2: \(x \in E_1, x' \in E_2 \)

In this case, \(x \) maximizes \(v - e(y^*) - c \) in \(E_1 \) while \(x' \) maximizes the same object in \(E_1 \cup E_2 \). Thus, \(\pi \leq \pi' \). By Proposition 3 (1), it must be \(\pi = \pi' \). Since the monopolist can earn the same profit by selling \(x \) under \(w' \), it must be \(x = x' \) (so \(x, x' \in E_1 \cap E_2 \)) by the assumption.

Case 3: \(x \in E_1, x' \in E_3 \)

Since \(x \in E_1, \pi = v(x) - e(z^*) - c(x) \leq u(x) - e(y^*) + e(z^*) - w - c(x) \). If \(x' \) was sold under \(w, \) it would generate \(u(x') - e(y^*) + e(z^*) - w - c(x') \), which must be smaller than \(\pi \). Thus \(u(x) - c(x) > u(x') - c(x') \).

Case 4: \(x \in E_2 \cup E_3, x' \in E_1 \)

In this case, \(\pi = u(x) - e(y^*) - e(z^*) - w - c(x) \leq v(x) - e(y^*) - c(x) \) and \(\pi' = v(x') -
case, \(\pi = \pi' \) by the assumption, \(x = x' \).

Case 5: \(x, x' \in E_2 \cup E_3 \)

In this case, \(\pi = u(x) - e(y^*) + e(z^*) - w - c(x) \). By selling \(x' \) under \(w \), the monopolist’s profit would be \(u(x') - e(y^*) + e(z^*) - c(x') - w \), which cannot be greater than \(\pi \) so \(u(x) - c(x) \geq u(x') - c(x') \).

Finally, to see part (iii), note that consumer’s welfare is total surplus minus monopolist’s profit. Since total surplus is weakly increasing and profit is weakly decreasing, consumer’s welfare is weakly increasing in \(w \).

□

Appendix B. Contract Design with Costly Convex Self-Control

We assume that the consumer has costly convex self-control preferences where the cost function is given by \(\varphi : \mathbb{R}^+ \to \mathbb{R}^+ \). We assume that \(\varphi \) is a convex, continuous, strictly increasing function such that \(\varphi(0) = 0 \). As in the main text, we assume that the consumer is naive in the sense that he believes he has no self-control problem, i.e., he believes that from a contract \(C \) he will choose the offer \((s, p(s))\) that maximizes \(U(s, p(s)) = u(s) - p(s) \). In reality, the consumer’s second period choices are governed by the costly convex self-control model. This means that from \(C \) the consumer chooses the offer \((s, p(s))\) that maximizes

\[
U(s, p(s)) - \varphi \left(\max_{(s', p(s')) \in C} V(s', p(s')) - V(s, p(s)) \right)
\]

where \(V(s, p(s)) = v(s) - p(s) \).

Figure 12. Alternatives indifferent to \((x, p(x))\) when they are the most tempting in a menu.

Next we introduce Figure 12 that we use extensively in the analysis below. Fix an arbitrary alternative \((x, p(x))\) with excess temptation \(e(x) \) (the red point). For any \(v \geq v(x) - p(x) \),
the blue line corresponds to \(p(x) - u(x) + \phi(v - v(x) + p(x)) \). Thus if \((x, p(x))\) is in a menu where the temptation value of the most tempting alternative is \(v \), the light blue line gives the negative of the overall utility of \((x, p(x))\). Suppose \((x, p(x))\) is in a menu where the most tempting alternative is \((z, p(z))\) with excess temptation \(e(z) \) (the black point). Then we have \(v = v(z) - p(z) \) and the negative of the overall utility of \((x, p(x))\) is \(p(x) - u(x) + \phi(v(z) - p(z) - v(x) + p(x)) \). At the same time, from the iso-\(e \) line we see that \(p(z) - u(z) = p(x) - u(x) + \phi(v(z) - p(z) - v(x) + p(x)) \), which is the negative of the overall utility of \((z, p(z))\) (which has no temptation cost). But this means that \((x, p(x))\) and \((z, p(z))\) are indifferent. Hence, the blue line traces all the alternatives which are indifferent to \((x, p(x))\) when they are the most tempting alternative in the menu.

As in the main text, we look for the revenue maximizing contract that sells an alternative \(x \). It is easy to show using an argument similar to the one in the main model that one can restrict attention to three types of contracts: commitment, indulging and compromising.

Commitment Contract: In this case, the monopolist sells \(x \) at price \(p(x) = u(x) \).

Indulging Contract: Monopolist chooses \(x, p(x), y \) and \(p(y) \) to maximize \(p(x) \) subject to

\[
\begin{align*}
 u(y) - p(y) & \geq 0 \\
 u(x) - p(x) & \geq u(y) - p(y) - \varphi(v(x) - p(x) - v(y) + p(y))
\end{align*}
\]

For a given \(y \), increasing \(p(y) \) relaxes the second constraint, hence the first constraint must be binding. This implies that:

\[
 u(x) - p(x) \geq -\varphi(v(x) - p(x) - e(y)).
\]

This means that we choose \(y \) to minimize \(e(y) \). Hence \(y^* \) and \(p(y^*) = u(y^*) \). The second constraint is also binding implying that:

\[
 \text{(12) } p^{ind}(x) = u(x) + \varphi(v(x) - p(x) - e(y^*)).
\]

Compromising Contract: Monopolist chooses \(p(x), y, p(y), z, p(z) \) to maximize \(p(x) \) subject to

\[
\begin{align*}
 u(y) - p(y) & \geq 0 \\
 u(x) - p(x) - \varphi(v(z) - p(z) - v(x) + p(x)) & \geq u(y) - p(y) - \varphi(v(z) - p(z) - v(y) + p(y)) \\
 u(x) - p(x) - \varphi(v(z) - p(z) - v(x) + p(x)) & \geq u(z) - p(z)
\end{align*}
\]

Note that the consumer prefers \((x, p(x))\) to both \((y, p(y))\) and \((z, p(z))\). As usual \((y, p(y))\) is the bait. In the indulging contract \((x, p(x))\) has dual roles. It is both the chosen and the tempting alternative. In the compromising contract, the role of the tempting alternative is instead given to \((z, p(z))\). While we cannot solve the optimal compromising contract explicitly, we illustrate it graphically. This helps us to show that in this model the compromising contract always dominates the indulging contract for strictly convex cost functions.

In this model, all three constraints are always binding and \(y = y^* \) and \(z = z^* \). Figure 13 illustrates how to construct the optimal contract. First note that since constraint (13) is always binding and \(u(y^*) = p(y^*) \). Since (14) and (15) bind, the consumer must be indifferent between all three contracts in the optimal contract. This means that the
monopolist (i) sets the price of \(z^* \) as \(p(z^*) \) such that \((y^*, u(y^*)) \) and \((z^*, p(z^*)) \) lie on the blue line starting from \((y^*, u(y^*)) \), and (ii) sets the price of \(x \) as \(p^{\text{comp}} \) such that \((x, p^{\text{comp}}) \) and \((z^*, p(z^*)) \) lie on the blue line starting from \((x, p^{\text{comp}}) \). Hence, the optimal contract is \{\((x, p^{\text{comp}}), (y^*, u(y^*)), (z^*, p(z^*)) \}\} and the prices are given by two implicit equations:

\[
\begin{align*}
 p(z^*) &= u(z^*) + \varphi(v(z^*) - p(z^*) - e(y^*)) \\
 p^{\text{comp}} &= u(x) + p(z^*) - u(z^*) - \varphi(v(z^*) - p(z^*) - e(x)) + p^{\text{comp}}.
\end{align*}
\]

To find the indulging contract to sell \(x \), the monopoly needs to set the price of \(x \) at \(p^{\text{ind}} \) such that \((x, p^{\text{ind}}) \) and \((y^*, u(y^*)) \) lie on the blue line starting from \((y^*, p(y^*)) \) (see Equation (12)). As can be seen from the figure, the compromising contract generates higher revenue compared to both the indulging and the commitment contracts for each \(x \). If the cost function is strictly convex, then it strictly dominates the others.

Figure 15 illustrates the optimal contract. Given the above discussion, we know that it is a compromising contract. We plot for each \(x \) the optimal compromising contract selling \(x \) which is the dark blue line in the figure. Since the cost function is convex, this line must be concave. The product sold in the optimal contract is illustrated by the point \(D \), where the dark blue line is tangent to the iso-profit line. Recall that the iso-profit line has zero (infinite) slope at the point where it crosses the iso-\(e \) line for \(x^u \) (\(x^v \)). Since the slope of the blue line is strictly positive and finite, \(D \) must have excess temptation strictly between \(e(x^u) \) and \(e(x^v) \). Hence, the optimal contract always sacrifices efficiency for exploitation.

B.2. Solving the Revenue Maximizing Contract for a Piecewise Linear Cost Function. The analysis in the previous section provides two useful insights into optimal contracts when the consumer has costly convex self-control preferences. First, we show that compromising contracts are strictly optimal when the cost function is strictly convex, and second,
there is always loss of efficiency. However, convex cost function does not lend itself to comparative static analysis since there is no obvious analogue of the willpower parameter that controls the consumer’s level of self-control. In this section, we propose a piece-wise linear and weakly convex cost function. The position of the kink is where the consumer’s temptation cost starts increasing more rapidly and can be interpreted as the analogue of the willpower stock in the constant willpower model. Specifically, we solve for the revenue maximizing contract for the specification given in (11).

Indulging contract: In this case the monopolist offers \(y^* \) at price \(p(y^*) = u(y^*) \). We find \(p^{ind} \) by solving (12) as

\[
(18) \quad p^{ind} = \begin{cases}
\frac{u(x) + l(v(x) - e(y^*))}{u(x) + \frac{1 + l}{1 + k}(v(x) - e(y^*)) - w} & \text{if } e(x) - e(y^*) \leq (1 + l)w \\
\frac{u(x) + \frac{1 + l}{1 + k}(v(x) - e(y^*)) - w + lw}{1 + k} & \text{if } e(x) - e(y^*) > (1 + l)w
\end{cases}
\]

We now show that the indulging contract is better than the commitment contract. Suppose \(x \neq y^* \) so that the indulging contract is distinct from the commitment contract. Assume \(e(x) - e(y^*) \leq (1 + l)w \). By definition,

\[
v(x) - u(x) > e(y^*)
\]

if and only if

\[
u(x) + l(v(x) - e(y^*)) > (1 + l)u(x).
\]

if and only if indulging contract is strictly better.

\[
v(x) - u(x) > e(y^*).
\]

Assume \(e(x) - e(y^*) > (1 + l)w \), which implies \(e(x) - e(y^*) - w > 0 \) if and only if \(k(v(x) - u(x) - e(y^*) - w) > 0 \) if and only if \(u(x) + k(v(x) - e(y^*) - w) + lw > ku(x) + u(x) \).
if and only if
\[u(x) + k(v(x) - e(y^*)) - w + lw > (1 + k)u(x) \]
if and only if the indulging contract is strictly better. Hence the indulging contract is strictly better than the commitment contract.

Figure 15. Optimal Contract

Compromising Contract: To solve for the compromising contract, we first need to solve for \(p(z^*) \) from (16), which gives us:

\[
p(z^*) = \begin{cases}
\frac{u(z^*) + l(v(z^*) - e(y^*))}{1 + l} & \text{if } e(z^*) - e(y^*) \leq (1 + l)w \\
\frac{u(z^*) + k(v(z^*) - e(y^*) - w) + lw}{1 + k} & \text{if } e(z^*) - e(y^*) > (1 + l)w
\end{cases}
\]

Substituting \(p(z^*) \) in each range into (17) and solving the resulting equation, we get

\[
p_{\text{comp}} = \begin{cases}
\frac{u(x) + l v(x)}{1 + l} + \frac{k - l}{(1 + k)(1 + l)} e(z^*) - \frac{k}{1 + k} e(y^*) - \frac{k - l}{1 + k} w & \text{if } e(z^*) - e(x) \leq (1 + l)w \\
\frac{u(x) + k v(x)}{1 + k} - \frac{k}{1 + k} e(y^*) & \text{if } e(z^*) - e(x) > (1 + l)w
\end{cases}
\]

We next compare the compromising and the indulging contracts. If \(e(z^*) - e(y^*) \leq (1 + l)w \) (which implies \(e(x) - e(y^*) \leq (1 + l)w \)), the indulging and the compromising contracts generate the same revenue. This happens since the most tempting alternative cannot “block” the “bait alternative” which is \(y^* \). Hence, w.l.o.g. the contract that maximizes revenue is an indulging contract and sells \(x \) at price

\[
p_{\text{ind}} = \frac{u(x) + l(v(x) - e(y^*))}{1 + l}
\]
If \(e(z^*) - e(y^*) > (1 + l)w \), comparing the revenue in all possible cases we see that the contract that maximizes revenue is a compromising contract and sells \(x \) at price:

\[
p^{\text{comp}} = \begin{cases}
\frac{u(x) + lv(x)}{1 + l} + \frac{k - l}{1 + k} e(z^*) - \frac{k}{1 + k} e(y^*) - \frac{k - l}{1 + k} w & \text{if } e(z^*) - e(x) \leq (1 + l)w \\
\frac{u(x) + kv(x)}{1 + k} - \frac{1 + l}{1 + k} e(y^*) & \text{if } e(z^*) - e(x) > (1 + l)w
\end{cases}
\]

B.2.1. Optimal Contract. Next we find which alternative the monopolist should sell to maximize its profit. From the set \(\{ x : e(z^*) - e(x) \leq (1 + l)w \} \), it is optimal to sell the maximizer of \(\frac{u(x) + lv(x)}{1 + l} - c(x) \). From the set \(\{ x : e(z^*) - e(x) \geq (1 + l)w \} \), it is optimal to sell the maximizer of \(\frac{u(x) + kv(x)}{1 + k} - c(x) \). Hence the optimal contract sells either

\[
\arg\max_{x : e(z^*) - e(x) \leq (1 + l)w} \frac{u(x) + lv(x)}{1 + l} - c(x) \quad \text{or} \quad \arg\max_{x : e(z^*) - e(x) \geq (1 + l)w} \frac{u(x) + kv(x)}{1 + k} - c(x)
\]

whichever generates the higher profit. Hence we get the following result.

Proposition 4.
(1) For any \(e(z^*) - e(x_k) \geq (1 + l)w \), the optimal contract is the best compromising contract selling \(x_k \) at

\[
p(x_k) = \frac{u(x_k) + kv(x_k) - ke(y^*)}{1 + k}
\]

(2) For any \(e(z^*) - e(x_k) < (1 + l)w < e(z^*) - e(x_i) \), the optimal contract is the best compromising contract, which sells an alternative between \(x_i \) and \(x_k \).

(3) For any \(e(z^*) - e(x_i) \leq (1 + l)w < e(z^*) - e(y^*) \), the optimal contract is the best compromising contract that sells \(x_i \) at

\[
p(x_i) = \frac{u(x_i) + lv(x_i)}{1 + l} + \frac{k - l}{1 + k} e(z^*) - \frac{k}{1 + k} e(y^*) - \frac{k - l}{1 + k} w.
\]

(4) For any \(e(z^*) - e(y^*) \leq (1 + l)w \), the optimal contract is the indulging contract selling \(x_i \) at

\[
p(x_i) = \frac{u(x_i) + l(v(x_i) - e(y^*))}{1 + l}.
\]

Now, we shall consider how the optimal contract, the profit, and the naive consumer’s welfare changes as the consumer’s willpower changes. In Figure 16, the red line is the contract curve for the constant willpower model. The blue line is the contract curve for the piece-wise linear model. For any point on the contract curve, by moving down the iso-\(e \) line, we can find out the product sold to the consumer by the optimal contract. The \(y \)-coordinate of the point gives us the price of this product in excess of its utility value. Hence as we move down the contract curve monopolist’s profit declines and consumer’s welfare increases.

When \(w \) is below a certain level, the product sold under the optimal contract and its price remain the same, which indicates that a small increase in \(w \) does not help the consumer at all. This happens on the upper-left corner of the contract curve in Figure 16 which corresponds
to \(w \in [0, \frac{e(z^*) - e(x^k)}{1+l}] \). In this range, since monopolist sells \(x^k \) at the same price, both the monopolist’s profit and consumer’s welfare do not change.

As the \(w \) increases we enter the range \((w \in (\frac{e(z^*) - e(x^k)}{1+l}, \frac{e(z^*) - e(x^l)}{1+l})) \) which corresponds to the positive-sloped portion of the contract curve. In this range the excess temptation of the product sold goes down from \(e(x^k) \) to \(e(x^l) \), its price and the monopolist’s profit drop, and the consumer’s welfare increases.

The next range \((w \in (\frac{e(z^*) - e(x^l)}{1+l}, \frac{e(z^*) - e(y^*)}{1+l})) \) corresponds to the linear decreasing portion of the contract curve. Unlike the constant willpower model, here, exploitation requires inefficiency since the optimal contract sells the inefficient alternative \(x^l \) at an exploitative price exceeding its utility value. In this range the excess temptation of the product remains constant at \(e(x^l) \), its price and the monopolist’s profit drop, and the consumer’s welfare increases.

Lastly, at the lower-right hand corner of the contract curve \((w \in [\frac{e(z^*) - e(y^*)}{1+l}, \infty)) \), the nature of the optimal contract changes since the monopolist sells the inefficient alternative \(x^l \) using the indulging contract at an exploitative price. Independent of willpower, the naivety always hurts the consumer.