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Abstract. We investigate experimentally preferences between different ambiguous pro-

cesses generated by two-color Ellsberg urns. By providing symmetric information on urns

with different numbers of beads and keeping the information on the most optimistic,

pessimistic, and equal probability of winning possibilities the same, we elicit subjects’

preferences for the size of an ambiguous urn. Subjects prefer the bets from the ambiguous

urns with more beads. We analyze the role of ambiguity aversion and ratio bias of

subjects in this behavior. We study the restrictions that our findings impose on the

existing ambiguity models.
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1. Introduction

In a two-color urn thought experiment of Ellsberg (1961), a decision maker (DM) prefers

betting on an urn with 5 Black and 5 White beads (the risky urn) rather than an urn

with a total of 10 Black and White beads with an unknown composition (the ambiguous

urn). Ellsberg’s thought experiment has been widely confirmed in numerous laboratory
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experiments (see e.g., Camerer and Weber, 1992 and Machina and Siniscalchi, 2014 for

detailed surveys). In order to explain such behavior, normatively or prescriptively ap-

pealing theories of ambiguity have emerged (see Gilboa and Schmeidler, 1989, Schmeidler,

1989, Ergin and Gul, 2009, Klibanoff et al., 2005, Neilson, 2010, and Seo, 2009 and see

also Machina and Siniscalchi, 2014 for a survey of ambiguity models). These models

commonly predict preferences for betting on known distributions rather than unknown

ones.

In this paper, we investigate whether the number of beads in the Ellsberg’s two-color

urn matters. Note that none of the well-known theories of ambiguity is crafted to make a

prediction regarding the urn size. Consider a DM who decides to place a bet between two

ambiguous Ellsberg’s two-color urns, one with n beads and another with m beads with

m > n, for which the composition of Black and White beads in either urn is unknown.

Other than the total number of beads in each urn, no information about the urns is

provided to the DM. Would the DM prefer the urn with m or n beads, or would she be

indifferent between them?

Our laboratory experiments investigate size effect under ambiguity and its interaction

with the ambiguity attitude and ratio bias. We elicit subjects’ preferences between am-

biguous urns with different sizes, risky urns with different sizes, and risky and ambiguous

urns with the same size. See Figure 1 for the illustration of how this design elicits different

types of size preferences. Our results indicate that there is a preference for larger size

when comparing ambiguous urns; and the preference for the larger urn is mainly driven by

ambiguity averse subjects. Some subjects exhibited preferences for the urn size even when

they compare two risky urns with different sizes but equal chances of winning on each;

indicating ratio bias. We further study in detail the contribution of ambiguity aversion

and ratio bias to the preferences for a larger urn under ambiguity.
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Figure 1. Experimental Design
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Notes: An and Rn denote betting on ambiguous and risky urns with n beads, respectively.

The chance of winning is 50% on risky urns. Top horizontal arrows elicit size effect under

ambiguity, the vertical arrows elicit ambiguity attitude, and the bottom horizontal arrows

elicit size effect under risk (i.e., ratio bias).

The DM may be indifferent between betting on ambiguous urns with different sizes,

as the provided information on each urn is the same, or, alternatively, she may prefer

betting on one ambiguous urn rather than the other, as she may think that her chance of

winning on one of them is higher. For example, say the colors of the beads in an urn are

determined by throwing them into two adjacent black and white paints from a distance

of 20 feet, as in the example of Einhorn and Hogarth (1985). Given this process, the

composition with all black beads or all white beads may be more “probable” in a 2-bead

urn than in a 1000-bead urn, i.e., a DM may think that there must be at least some beads

painted in the color that she had bet on among those 1000 beads. Hence, an ambiguity

averse DM may exhibit a preference for a larger urn. Alternatively, the DM may dislike

having a large number of possibilities in an uncertain situation (see Einhorn and Hogarth,

1986). While in a risky urn with two beads and 50% chance of winning, there is only one

possibility of color composition (i.e., 1 black and 1 white beads), in an ambiguous urn with

2 beads there are 3 color composition possibilities. Similarly, in an ambiguous urn with

1000 beads, there are 1001 possibilities. It may be harder for the DM to contemplate 1001

possibilities than 3 possibilities, and hence, a larger urn may be perceived as less desirable.

In that case, an ambiguity averse DM may exhibit a preference for a smaller urn. In this

paper, we elicit subjects’ preferences on Ellsberg’s two-color urns with different number
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of beads. If the urn size is playing a role in the decision, this information, as a measure

of the size of the ambiguous state space or complexity of the source of ambiguity, can be

incorporated into the ambiguity models.

In many decision problems, individuals decide among different ambiguous situations

where the size of the possible possibilities may have an effect on the perception of ambi-

guity. For example, imagine a DM selecting a day laborer outside a home improvement

retailer, where workers congregate, for a job that does not require many qualifications (see

Valenzuela Jr, 2003 for the U.S. day laborer market). Suppose that each worker is either

good or bad. The DM does not know the distribution of workers’ types, and she will pick

the first worker in the line at the retail location. If more workers gather at one retail

location than another, would the size of the crowd (as the size of an Ellsberg urn) matter

for the DM even if this information did not indicate anything about the chance of getting

a better service? Alternatively, consider a situation where a prize is randomly assigned

to a lucky winner, similar to Charlie’s decision problem in the story of “Willy Wonka

& the Chocolate Factory.” Charlie wants to buy a Wonka chocolate bar because some

of these bars include a Golden Ticket for a full tour of a mysterious chocolate factory

as well as a lifetime supply of chocolate. Charlie may go either to a small store that

carries few Wonka Bars or to a giant store that carries a lot of Wonka Bars. Which store

would Charlie prefer to purchase his Wonka Bar? Our experiment explicitly addresses

this type of questions in a context-free environment, focusing on the number of different

compositions of winning/losing possibilities controlling for all other effects.

Based on our experimental findings, we revisit the existing models and discuss what our

results impose on these models. We argue that multi-prior models and source models are

too flexible and they can explain any behavior in our setup. On the other hand, two-stage

models such as the smooth ambiguity model of Klibanoff et al. (2005) can accommodate

our data on size effect under ambiguity and its interactions with ambiguity attitude.1

Finally, we provide some calibrations based on the smooth ambiguity model for the size

premium under ambiguity in order to quantify our findings.

1This framework is similar to Segal (1987) where ambiguous prospects are analyzed as lotteries with two
stages, the Reduction of Compound Lotteries axiom is relaxed, and a rank dependent expected utility
model (Quiggin, 1982 and Yaari, 1987) is applied at each stage by using the same utility function.
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There are other ambiguity experiments that require subjects to compare different am-

biguous processes (see Pulford and Colman, 2008, Halevy and Feltkamp, 2005, Abdellaoui

et al., 2011, Epstein and Halevy, 2018, and Chew et al., 2017). Among those, Chew

et al. (2017) is the most closely related design to ours as they also vary the possible

compositions of the ambiguous urns and their decision problems complement ours. We

discuss these experiments in detail in Section 5. Pulford and Colman (2008) repeated the

standard Ellsberg experiment varying the urn sizes. Although our focus is to understand

the preferences between two ambiguous urns with different sizes, we also ask the standard

Ellsberg questions varying the urn size. We confirm their findings for 2- and 10-bead

urns. However, when the size of the urn is very large, particularly 1000 - a size that

they do not investigate-, we find that the percentage of subjects choosing the risky urn

is significantly smaller. We discuss the differences between our design and theirs in more

detail in Section 5.

Finally, we conduct an empirical investigation to assess the extent to which our evidence

on the set of possible compositions of an ambiguous urn being a relevant component of

decision exists in an application where ambiguity models are often used. Specifically,

we investigate whether investors take the number of assets held by a mutual fund into

account while investing. The resolution of uncertainty regarding a fund’s performance

is admittedly not identical to our abstract two-color Ellsberg urn in the experiment.

However, in loosely speaking, one may argue that the number of assets held by a mutual

fund may be considered as a measure for the size of the ambiguous state space in this

environment. Controlling for the commonly used determinants of fund flows, we find

that investors prefer mutual funds with more holdings even though this does not result

in better investment performance.

The paper is organized as follows. Section 2 describes our experimental design, and

Section 3 presents the results. Section 4 discusses some existing models in the context of

our decision problems. Section 5 summarizes other experiments that are closely related

to ours. Section 6 discusses the relevance of the number of assets in a mutual fund in

an investment decision based on an empirical analysis. Section 7 concludes. Additional
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analysis that is not included in the main text is presented in Appendix A, B, and C. The

instructions for the experiment are presented in Appendix D.

2. Experimental Design and Procedures

The experiments were conducted at the Experimental Laboratory of the School of

Information, University of Michigan where 120 University of Michigan students partici-

pated.2 The sessions lasted approximately 40 minutes. Subjects were paid in cash at the

conclusion of the experiment and average earnings were approximately $24 (including a

$7 participation fee). This experiment was conducted with pencil and paper.

Before the experiments started, we prepared six urns filled with Black and White beads.

The urns R2, R10, and R1000 involved only risk where half of the beads in these urns

were Black and half of the beads were White. These urns contained 2, 10, and 1000 beads

in total, respectively. The subjects were informed about the exact content of these urns

and had the chance to check the urns to make sure that they understood the objective

probability of drawing a black or white bead. The urns A2, A10, and A1000 were the

ambiguous ones. These urns also contained 2, 10, and 1000 beads in total, respectively.

The subjects were told the total number of Black and White beads in each of these

ambiguous urns, but not the exact number of Black or White beads in any of them.

We also did not tell them the procedure we used to fill these urns until the end of the

experiment. Moreover, the subjects were not allowed to check the content of these urns.

All urns were placed on a tall desk, which could be seen by each subject clearly, and once

the experiment started no one (even the experimenter) could touch the urns.

At the beginning of a session, each subject signed an informed consent form and received

the written instructions provided in Appendix D. Subjects were given time to read the

instructions and then an experimenter read the instructions aloud as well.

We asked subjects to make binary comparisons between bets on these urns. We chose

this well accepted methodology of eliciting ordinal rather than cardinal preferences to

2Note that our subject size is comparable to sample size of a single treatment of other ambiguity
experiments in the literature. For example, Crockett et al. (2019) have 122 subjects in their largest
treatment, Halevy (2007) has 104 subjects in the main treatment, Epstein and Halevy (2018) have 153
subjects in the largest treatment, Abdellaoui et al. (2015) have 115 subjects in their largest treatment.
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avoid complications introduced by other mechanisms.3 The subjects were asked seven

binary decision problems, and there were two versions of each problem (Versions A and B),

as explained below. Hence, the subjects made 14 decisions in total. We paid the subjects

only for one decision they made, and the paying decision was determined before the

subjects made the decisions.4 In order to determine the paying problems, the experimenter

rolled a die, noted the outcome on a piece of paper, and put it in a sealed envelope.

Then the envelopes were distributed to the subjects. The subjects knew that the paying

decision problem had been determined before they made decisions, and they knew that

they would learn the paying decision problem after the experiment was finalized. This

prevented subjects from hedging over the randomization between problems.

After we introduced the six urns, we asked subjects to pick a color to bet on for each

urn. The purpose of the selection was twofold: (i) to convince the subjects that the

experimenters did not have any bias toward a particular color, and (ii) to have the same

bet for an urn when that urn was presented in different decision problems to avoid hedging

(see Epstein and Halevy, 2018 for further discussion). The selection of colors was entered

by the subjects.

A typical alternative in a binary decision is a bet on an urn that pays a positive prize

if the initially selected color of the subject for this urn matches the color of the randomly

drawn bead from the urn at the end of the experiment. If the subject’s selection of color

and the experimenter’s draw for that urn do not match, then the subject receives zero

from this bet. We used $30 or $30.25 as the prize for a bet.

Figure 2 presents an example of the two versions of a decision problem. In this sample

decision problem, the decision maker chooses between an ambiguous urn with two beads

(A2) and an ambiguous urn with ten beads (A10). We elicit the preference of the decision

3The cardinal valuations of the bets is typically elicited by mechanisms such as BDM mechanism of Becker
et al. (1964), which is used by Halevy (2007), or a choice list method used by Abdellaoui et al. (2011)
and Abdellaoui et al. (2015). These methods introduce other complexities that we wanted to avoid.
4Random incentive system is the commonly used mechanism to prevent subjects from hedging over
the randomization between problems. The incentive compatibility of this mechanism has been recently
challenged (see e.g. Bade, 2015). Baillon et al. (2015) provide the sufficient conditions for this to be
incentive compatible, and it is used in Epstein and Halevy (2018), and Loomes et al. (1989). The
resolution of this randomization in our design was made in advance to satisfy the sufficient conditions,
and it is identical to Loomes et al. (1989) and Epstein and Halevy (2018).
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Figure 2. Versions of a Sample Decision Problem

Version A: Please put a check mark ( √	 )  for the urn 
that you want to bet 

  

  

If the color of the bead 
drawn from this urn matches 
with the color you specified 
for this urn initially then you 
will be paid  

$30.25 

If the color of the bead 
drawn from this urn 
matches with the color you 
specified for this urn initially 
then you will be paid  

$30 

	

	
	

	
	

(a) Version A

Version B: Please put a check mark ( √	 )  for the urn 
that you want to bet 

  

  

If the color of the bead 
drawn from this urn 
matches with the color you 
specified for this urn initially 
then you will be paid  

$30 

If the color of the bead 
drawn from this urn 
matches with the color you 
specified for this urn initially 
then you will be paid  

$30.25 

	

		
	

	
	

Version A: Please put a check mark ( √	 )  for the urn 
that you want to bet 

  

  

If the color of the bead 
drawn from this urn matches 
with the color you specified 
for this urn initially then you 
will be paid  

$30.25 

If the color of the bead 
drawn from this urn 
matches with the color you 
specified for this urn initially 
then you will be paid  

$30 

	

	
	

	
	

(b) Version B

maker between A2 and A10.5 The only difference between the two versions is that urn

A2 pays $30 in one version and $30.25 in the other. Similarly, the prizes for urn A10

change in the two versions. If a subject chooses A2 over A10 in both versions, given that

subjects prefer more money, it is reasonable to interpret this behavior as A2 being strictly

preferred to A10. On the other hand, if she prefers A2 in version A and A10 in version B,

then she chooses the urn with $30.25 all the time. This might be because she thinks that

her chances of winning are the same on these two urns; hence the prize determines her

choice. Such a subject is always expected to pick the higher prize urn even if the prize

difference was smaller than $0.25. It might also be the case that she actually thinks her

chance of winning is higher on one urn, say A2, but $0.25 additional prize cancels this

out, and she chooses A10 in version B. Such a subject would pick A2 if the prize difference

was small enough not to cancel out the likely effect. Even though observing a subject

choosing the urn with a higher prize in both versions does not reveal anything about the

preferences between urns, we believe that $0.25 was a small enough prize difference to

elicit strict preferences of most subjects between urns with different sizes. Finally, if a

subject picks the urn that pays $30 in both versions, she leaves money on the table.

5We labeled the urns with letters L, M, N, P, R, and S rather than A2, R2, etc. in the experiment.
Moreover, we called them jars rather than urns.
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Figure 1 in Section 1 summarizes the seven binary comparisons presented to the sub-

jects. Remember that there were two versions of each comparison. The horizontal arrows

on the top (A2 vs. A10 and A10 vs. A1000) are to elicit preferences for the size of

ambiguous urns. The horizontal arrows at the bottom (R2 vs. R10 and R10 vs. R1000)

elicit preferences for the size of risky urns (ratio bias). Finally, the three vertical arrows

(A2 vs R2, A10 vs. R10, and A1000 vs. R1000) elicit ambiguity attitude varying the urn

size. We presented the decision problems in different orders to the subjects to control for

the potential order effect. We had four different orders of the decision problems. In each

ordering, versions A and B of the same decision problem were presented on the same page;

three ambiguity attitude problems were always asked the last (as they are not our main

decision problems). In two orderings we first elicited preferences for the size of ambiguous

urns, then elicited preferences for the size of risky urns. In the other two orderings we

switched this order. We randomized which urn was presented on the left in a decision

problem; hence, it was not the case that always a larger urn or always a smaller urn was

presented on the left hand side. Note that the subjects were allowed to choose whichever

order they wanted to answer questions as all the decision problems were handed in the

same package.

We included the urn with 10 beads because that was the size of urns typically used

in ambiguity experiments (see for example, Halevy, 2007 and Epstein and Halevy, 2018).

We chose size two as well because it is also used in the literature (Abdellaoui et al., 2015

and Epstein and Halevy, 2018) and it is the smallest even number where we can generate

a 50% chance of winning for each color for the urns with pure risk. We used size 1,000

because in most of the psychology experiments on ratio bias phenomena, the researchers

report frequencies to subjects in a sample of 1,000 (Barratt et al., 2005; Pinto-Prades

et al., 2006).

After the subjects made their choices on the binary decision problems, the experimenters

collected their choice sheets and then drew the beads from the urns while the subjects

observed. After that, the subjects were allowed to open the sealed envelopes to see the

decision problem for which they would be paid. Each subject met the experimenter

individually to find out what she had chosen for her paying decision problem and whether
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the color she initially had bet on for her chosen urn in that problem matched the color

of the bead drawn from that urn. If they matched, she received the specified prize in

addition to her participation fee of $7. Otherwise, she received only the participation fee.

3. Experimental Results

Out of 120 subjects, three subjects were excluded from the following analysis for

choosing the smaller prize in both versions of the decision problem, and one subject

was excluded for not answering all of the questions. Hence, the analyses are based on 116

subjects.6 In our analysis, p-values are based on multinomial logistic regressions unless it

is specified.

3.1. Size Preferences under Ambiguity and under Risk. We start with reporting

the aggregate data on Table 1. Each column represents a set of binary questions. For

example, the first column reports subjects’ preferences when they compared urn A2 and

urn A10. The cells that contain the majority of the subjects for a given decision problem

are highlighted. The first two rows report the percentages of subjects who preferred larger

and smaller urns, respectively, in the corresponding decision problem. Recall that if a

subject chose to bet on the same urn in two versions of a decision problem, we concluded

that she has a strict preference for that urn. The third row presents the percentage

of subjects who chose the urn with the higher prize ($30.25) in both versions of the

corresponding decision problem. Even though those subjects who are indifferent between

the two urns are reported in that row, being in that group does not imply indifference.

Hence, our identification of strict preference is conservative.

Note that when ambiguous urns are compared (in the first two columns of Table 1),

the majority of subjects strictly prefer the larger urn to the smaller urn (62.93% in A2

vs. A10 (p = 0.000) and 59.48% in A10 vs. A1000 (p = 0.000). This evidence indicates

that the underlying process generating ambiguous events matters, and the preference is

toward larger urns even though we have utilized a conservative measure in this analysis.

6Choosing the smaller prize in both versions of the decision problems implies that the subject violates
either monotonicity or transitivity. Our results do not change if we include these subjects.



11

A few subjects preferred the smaller urn to the larger one (8.62% in A2 vs. A10 and

10.34% in A10 vs. A1000).7 Approximately one third of the subjects chose the higher

prized urn under ambiguity. Table A1 in Appendix A reports the relation between the

size preferences measured on A2 vs. A10 and A10 vs A1000.

Even though some subjects showed strict preferences for the urn size in pure risk

questions, the majority of the subjects chose the urn with the higher prize in both versions

of these decision problems, i.e. R2 vs. R10 and R10 vs. R1000, and the percentage of

subjects choosing the higher prize is greater than those choosing larger urn and smaller

urn (for all such comparisons p < 0.01).8 Table A2 in Appendix A reports the relation

between the size preferences measured on R2 vs. R10 and R10 vs. R1000.

Table 1. Preferences for the Urn Size under Ambiguity and Risk, N = 116

Preferences for A2 vs. A10 A10 vs. A1000 R2 vs. R10 R10 vs. R1000
Larger Urn 62.93% 59.48% 24.14% 31.03%
Smaller Urn 8.62% 10.34% 16.38% 12.93%
Higher Prize 28.45% 30.17% 59.48% 56.03%

Any decision making under risk procedure that is based on probabilities predicts indif-

ference between urns R2, R10, and R1000. A violation of this prediction is identified as

ratio bias in the literature (Kirkpatrick and Epstein (1992)). Psychologists define ratio

bias as the tendency for people to judge a low probability event as more likely when

presented as a large-numbered ratio, such as 20/100, than as a smaller-numbered but

equivalent ratio, such as 2/10.9 According to our elicitation method, those subjects who

7The orders of presentation of the decision problems do not have a significant effect on the preference for
the urn size under ambiguity (in A2 vs A10, χ2(6) = 2.62, p = 0.855; in A10 vs A1000, χ2(6) = 2.52, p =
0.866).
8The orders of presentation of the the decision problems do not have a significant effect on the preferences
for the urn size under risk (in R2 vs R10, χ2(6) = 7.45, p = 0.281; in R10 vs R1000, χ2(6) = 7.00, p =
0.320).
9While controlling for ratio bias, our design approach differs from the psychology experiments in three
ways. First, we incentivize the subjects for revealing their true preferences with methods used more
frequently by economists than psychologists. Second, our subjects can reveal their indifference between
alternatives to a certain degree. Third, our risky urns are filled with 50% Black and 50% White beads;
hence, we do not have low probability events. To the best of our knowledge, the only paper on ratio bias
in the economics literature is Lefebvre et al. (2011). They argue against ratio bias and conclude that its
relevance for economic applications is questionable. They use a completely different methodology where
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do not have ratio bias need to choose the higher prize in both versions of the decision

problems that involve only risk. This is indeed the case for the majority of our subjects

(59.48% on R2 vs. R10 and 56.03% on R10 vs. R1000 in Table 1). While we observe less

ratio bias than documented in the psychology literature10, this might be because we use

different methodology and incentivized the decisions rather than providing fixed rewards,

which differs from the common practice in psychology experiments. It may also be due

to the fact that the chance of winning is not small in our risky urns (the probability of

winning is 0.5) but that probabilities are typically less than 0.2 in the literature (e.g.

Denes-Raj and Epstein, 1994).

The preferences for the urn size under risk and ambiguity are observed at different

degrees in the data. We will discuss the interaction between the two size effects in

Subsection 3.3. Here, note that while no probability based theory can explain ratio

bias, the ambiguity models are flexible enough to predict size effect under ambiguity. As

noted by Figure 1, if the size effect is differentiated under risk and ambiguity, it will have

implications for the ambiguity attitude when it is measured on a smaller versus a larger

urn. Next we look at the relation between the urn size and ambiguity attitudes.

3.2. Ambiguity Attitudes. Table 2 reports the percentages of the preferences in three

sets of decision problems, R2 vs. A2, R10 vs. A10, and R1000 vs. A1000. The percentages

of subjects choosing the risky urn are 74.14%, 73.28% and 63.79% on 2-, 10-, 1000-bead

urns, respectively. Based on Wilcoxon matched-pairs signed-ranks tests, the percentages

of subjects preferring the risky urn on 2-bead urns and 10-bead urns are not significantly

different (p = 0.819). However, the percentage of subject preferring the risky urn on 1000

bead urns is significantly lower (p < 0.05).

subjects made sequential binary comparisons between urns. In their experiment, the small urn always
offers 1−in−10 chance of winning a prize and the large urn starts with 10−in−100 chance of winning and
gradually decreases to 9−in−100, 8−in−100, . . ., 3−in−100. They find that the percentage of subjects
who prefer the larger urn when the probabilities are equal depends on which order this choice problem
is presented. Their subjects have to express a strict preference between the two urns, and this might be
an issue, as we discuss in our design.
10Denes-Raj and Epstein, 1994 report between 54% to 61% ratio bias when the winning chance is around
10%, and Dale and Rudski, 2007 report 41% ratio bias controlling for errors.
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Table 2. Ambiguity attitudes, N = 116

Preference for R2 vs. A2 R10 vs. A10 R1000 vs. A1000
Risky Urn 74.14% 73.28% 63.79%
Ambiguous Urn 10.34% 10.34% 12.07%
Higher Prize 15.52% 16.38% 24.14%

In a typical experiment on ambiguity, this table is interpreted as the measure of

ambiguity attitudes. The first row reports the percentage of subjects who preferred the

urn with pure risk in both versions of the corresponding decision problem. Those are

identified as ambiguity averse. The second row reports the percentage of subjects who

preferred the ambiguous urn in both versions of the corresponding decision problem (i.e.,

lack of ambiguity aversion). The subjects in the third row are the ones who chose the urn

with higher prize in both versions of the ambiguity attitude questions. Such a subject

might have been indifferent between the two urns or the $0.25 prize difference was not

high enough to identify her strict preferences between the urns.11

Importantly, existing experiments typically fix the number of beads, and the identi-

fication or the estimation is made without varying the number of beads. If we adopt

the same identification strategy, in line with the existing ambiguity experiments, in our

experiment a majority of the subjects are identified as ambiguity averse.12 Although the

percentages of the ambiguity averse subjects are not different in 2-bead and 10-bead urns,

11Nevertheless, we can say that even if she strictly prefers one to another, the intensity of her preference
is minor and such a preference is economically irrelevant. For example, say a subject strictly prefers the
risky urn in R2 vs. A2 but the higher prize in R1000 vs. A1000. This means that in 2-bead urns, this
subject prefers the risky urn more than an addition of $0.25, but in 1000-bead urn, even if she prefers
one over the other, $0.25 is valued more than expressing her size preferences. Therefore, the subjects
who prefer the higher prize can be defined as “almost ambiguity neutral.” Note also that an ambiguity
averse subject with asymmetric beliefs on colors might be indifferent between ambiguous and risky urns.
While this is theoretically possible, we believe that subjects viewed the two colors symmetrically in our
experiment. Whether subjects have asymmetric beliefs on colors is beyond the scope of this paper.
12Most of our subjects either had a consistent measure of ambiguity attitude or switched attitude
monotonically with the urn size. We had only 3 subjects whose ambiguity attitude was recorded as
non-monotonic (e.g., averse on the smallest urn, seeking on the medium size urn, and averse again on the
larger urn).
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the percentage decreases in a 1000-bead urn.13 However, such a conclusion on changing

ambiguity attitude based on urn size may be problematic. In order to reach a conclusion on

ambiguity attitudes, the perceived ambiguity of an individual should stay the same across

different sized urns (see e.g., Klibanoff et al., 2014 on ambiguity attitude and perceived

ambiguity distinction). The results about ambiguity attitude measured by different sized

Ellsberg urns should be viewed in light of our result of a preference for a larger urn. We

have already shown in our main result that there is a “preference for a larger urn under

ambiguity,” implying that the amount of ambiguity decreases in a larger urn. We cannot

rule out that the ambiguity attitudes of the subjects stay the same across different urns,

and the larger urns are perceived to be less ambiguous.

3.3. Understanding the size effect at the individual level. In order to see the

correlations between ratio bias, ambiguity aversion, and the size preferences of subjects

under ambiguity, we summarize the raw data based on the behavior in the three types of

decision problems that the subjects answered. In this subsection, we do this exercise for

decisions made on urns with 2 and 10 beads and repeat the similar analysis for urns with

1000 beads for robustness of the results in Appendix A. Note that in our three types of

decision problems (size preferences under ambiguity –A2 vs A10–, size preferences under

risk –R2 vs R10–, and ambiguity attitude –R2 vs A2–), 27 possible choices can be observed

in the data. We report the frequencies of each type of behavior in Table A7 in Appendix

A. Within this rich set of potential behaviors that can be observed, only five types of

behavior are most frequent in our data, and the highest percentage among these was

behaving ambiguity averse and preferring the larger urn under ambiguity while choosing

the higher prize in the comparison of the risky urns.14

Table 3 presents the raw data to understand the correlation between the subjects’ size

preferences under ambiguity and their ambiguity attitudes. Note that among the 73

subjects, who preferred the larger urn under ambiguity (the third row of the table), 61

13In line with our result in 2- and 10-bead urns, Pulford and Colman (2008) find that the percentages of
subjects choosing the risky urn are not different. However, they do not study when the size of the urn is
1000.
14Additionally, we see that only one subject violates transitivity on the overall choice problems, by
choosing A10�A2�R2�R10�A10.
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of them were ambiguity averse as well. This is the largest group of subjects in this table.

This is the first evidence we have on the relationship between ambiguity aversion and

preferences for larger ambiguous urn. We will quantify the effect of ambiguity attitude

on subjects’ size preferences further on Table 5.

Table 3. Size Preferences under Ambiguity and Ambiguity Attitudes

R2 vs. A2 (R10 vs. A10)
Higher Prize Risky Urn Ambiguous Urn Total

A2 vs. A10
Higher Prize 13 (12) 18 (17) 2 (4) 33
Smaller Urn 0 (0) 7 (9) 3 (1) 10
Larger Urn 5 (7) 61 (59) 7 (7) 73

Total 18 (19) 86 (85) 12 (12) 116

Table 4 classifies the subjects based on their behavior when they compare two am-

biguous urns and when they compare two risky urns. This is to understand the relation

between size preferences under risk and ambiguity. Note that among those 73 subjects

who preferred A10 over A2, most of them (39 subjects) did not exhibit ratio bias while

21 subjects also preferred larger urn under risk. Hence, the relationship between the

preferences for betting on a larger urn under ambiguity and risk is weak. As we will see

in the regressions of Table 5, the ratio bias is not a robustly significant determinant of

preferences for larger ambiguous urns. Hence, we argue that size effect under ambiguity

is not necessarily an amplification of size effect under risk.15

Tables 3 and 4 identify subjects based on their decisions on urns of sizes 2 and 10. The

results are qualitatively the same when we repeat the analysis for the comparisons of urns

of sizes 10 and 1000 (see Tables A4 and A5 in Appendix A.)

We also run OLS regressions to understand the differentiated effects of ratio bias and

ambiguity aversion on size preferences under ambiguity. Table 5 reports these regression

results where the choice of larger urn under ambiguity is regressed on a dummy for

15According to such amplification hypothesis, the biases should be amplified as the environment becomes
more uncertain. For example, Maafi (2011) shows experimentally that the preference reversals under
ambiguity are stronger than those under risk. In our data, unlike the prediction of the amplification
hypothesis, independent of the preference for size under risk, there is a preference for a larger urn under
ambiguity. For example, between the urn sizes of 2 and 10 beads, among the 19 subjects who chose the
smaller urn under risk, only 4 of them preferred the smaller urn under ambiguity.
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Table 4. Size Preferences under Ambiguity and under Risk

R2 vs. R10
Higher Prize Smaller Urn Larger Urn Total

A2 vs. A10
Higher Prize 26 2 5 33
Smaller Urn 4 4 2 10
Larger Urn 39 13 21 73

Total 69 19 28 116

ambiguity aversion, a dummy for ratio bias, and an interaction variable of these two

dummies. The baseline is the behavior that is neither ambiguity averse nor exhibits

preferences for larger urn under risk. For 2 vs. 10, the coefficient of ambiguity aversion

dummy is significant at 1% level, while the ratio bias dummy is not significant. The ratio

bias dummy becomes significant for the preferences between sizes 10 and 1000. This is

expected, as subjects had stronger ratio bias on urn with 1000 beads and less ambiguity

aversion when it is measured on larger urns. The interaction variable, corresponding to

diff-in-diff, is not significant. The corresponding marginal effects of ambiguity aversion and

ratio bias are different: fixing the distribution of ratio biased behavior, an ambiguity averse

subject is about 71% likely to choose the larger ambiguous urn, while a non-ambiguity

averse subject is only about 39% likely to choose it; fixing the distribution of ambiguity

attitudes, having ratio bias increases the chance of choosing the larger ambiguous urn

from 58% to 77%. Hence, the marginal effect of ambiguity aversion on size preferences is

higher than the marginal effect of ratio bias.

Based on the results of Tables 4 and 5, we conclude that the subjects are heterogeneous

in their aversion to ambiguity and ratio bias. While preferences for size under ambiguity

is more pronounced for the subjects with ratio bias compared to subjects without ratio

bias, the ratio bias cannot solely explain the size preferences under ambiguity. The ambi-

guity aversion of subjects plays a significant role in generating tendency to choose larger

ambiguous urns. Moreover, as Table 5 indicates, ambiguity aversion always contributes

to size effect under ambiguity but ratio bias does not. Hence, our subsequent theoretical

discussion will focus on explaining the size effect within the ambiguity models.
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Table 5. OLS Regressions of Preferences for Larger Ambiguous Urn

Dependent variable: Choosing the larger urn
2 vs. 10 10 vs. 1000

(1) (2) (1) (2)
Ambiguity Aversion (AA) 0.338** 0.331** 0.518*** 0.506***

(0.116) (0.121) (0.104) (0.105)

Ratio Bias (RB) 0.222 0.193 0.589** 0.607**
(0.185) (0.194) (0.183) (0.186)

AA∗RB -0.052 -0.031 -0.370 -0.356
(0.221) (0.230) (0.208) (0.210)

Constant 0.333** 0.329** 0.125 0.117
(0.101) (0.118) (0.087) (0.106)

Order FE No Yes No Yes
N 116 116 116 116
Log-likelihood -73.676 -73.404 -63.673 -62.15

Notes: Standard errors are in parentheses; *p < 0.05, **p < 0.01, ***p < 0.001.

4. Incorporating the Size of the Urn into Ambiguity Models

In this section, we will discuss ambiguity models in conjunction with our empirical

results. First, note that none of these probability based models is compatible with ratio

bias. Hence, we focus on generating the preferences for size under ambiguity only in

conjunction with ambiguity non-neutral behavior, consistent with our earlier results.

4.1. Multi-Prior Models. Multi-prior models describe a decision maker who holds more

than one prior when the bet is ambiguous and evaluates the situation based on some

aggregation of those priors. For example, the worst scenario in the multiple-prior set is

used in the maxmin expected utility model of Gilboa and Schmeidler (1989). The models

do not necessarily suggest any systematic relationship between the corresponding multi-

prior sets of different ambiguous urns and hence can be thought of as consistent with any

type of behavior in our setup.

Our ambiguity averse subjects preferred larger urns over the smaller ones under ambi-

guity. Hence, in order to be in line with the maxmin expected utility model, the subjects’

most pessimistic scenario on a smaller ambiguous urn should be more pessimistic than that

on a larger ambiguous urn. Given the physical description of the urns in the experiment,
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there is no reason for the subjects to believe that the worst case color composition differs

between urns.

Ghirardato et al. (2004) introduced α−maxmin expected utility model as a convex

combination of the most pessimistic and most optimistic evaluations of an alternative

with respect to a multiple prior set. When adopted to our experimental results, we may

restrict this model either (i) by keeping the most optimistic and pessimistic scenarios on

a given ambiguous urn independent of the urn size and requiring α to decrease with the

urn size16 or (ii) by fixing α and evolving the worst and best scenarios of the multiple

prior set so that the average evaluation for a smaller urn becomes worse than the average

evaluation of a larger urn when the urn size changes.

The Choquet expected utility model (see Gilboa, 1987 and Schmeidler, 1989) uses

capacity function v, a non-additive extension of probability measure. In our setup, the

evaluation of an ambiguous urn with n beads will be v(Xn)u(30) where Xn denotes the

event that the color of the drawn bead from urn with n beads is X and the DM bets

on color X on this urn. The general Choquet expected utility model is too flexible to

make a prediction on the preference for the size of the urn, but our findings require that

0.5 > v(XN) > v(Xn) where n < N .

4.2. Source Models. Tversky and Fox (1995) suggested that familiarity with the source

generating uncertainty plays a role in the behavior of the DM.17 In our design, we use

Ellsberg urns with no information on the distribution of colors for any urn size minimizing

any asymmetric familiarity with one size urn. If a source model in the sense of Chew and

Sagi (2008) is adopted, the certainty equivalence calculation of an ambiguous bet on a

given size urn needs to depend on the urn in order to explain our data.

4.3. Two-Stage Models. These models describe decision problems as two-stage lotteries

where the uncertainty in the first stage is vaguely described, and the one in the second

16Note that ambiguity averse behavior of our subjects requires the convex combination coefficient of the
α−maxmin expected utility model to be greater than 0.5 if we also assume symmetric preference for
betting on color Black and White in our experiments.
17Abdellaoui et al., 2011 highlights the fact that probabilistic sophistication is usually violated when
different sources of ambiguity are compared, even though it is satisfied within a single source.
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stage is objectively specified. Motivated by the theories that incorporate the failure of

compound risk reduction idea (see Becker and Brownson, 1964; Segal, 1987), two stage

models (such as Klibanoff et al., 2005 and Ergin and Gul, 2009) developed ambiguity the-

ories where the decision maker has distinct preferences across the two stages of resolution

of uncertainty.

Assume that a subject in our experiments views an ambiguous urn of size n as a

two-stage procedure. In the first stage, the experimenter generates the urn, and in

the second stage a bead is randomly drawn from the urn. The state space of the

first stage has n + 1 events, one for each combination of black and white beads. Let

{0B/nW, 1B/(n−1)W, . . . , nB/0W} be the state space of the first stage of the procedure

that carries ambiguity (see Figure 3.) Note that the lotteries on the second stage have

objective probabilities for the possible outcomes of zero and $30. Let the decision maker

face an urn with n beads and believe that the probability of having i Black beads in the

urn is pni . Being silent on how pni is formed, the predictive power of the existing two-stage

models diminishes. To illustrate this point, we focus on the smooth ambiguity model of

Klibanoff et al. (2005).

Figure 3. A Two-stage Compound Lottery Representation of Urn An

Notes: The 1st-stage represents the resolution of ambiguous states; the 2nd-stage represents the

resolution of risky lottery. For each composition, the corresponding lottery on the 2nd-stage

has objective probabilities for the possible outcomes of zero and $30. The bar in the middle

shows possible compositions of the ambiguous urn where the upper line represents the number

of black beads.
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The smooth ambiguity model of Klibanoff et al. (2005) in our setting evaluates the

uncertainty described in Figure 3 as

n∑
i=0

φ[EU(iB/(n− i)W )]pni

where φ determines the ambiguity attitude and EU(iB/(n− i)W ) =
i

n
u(30) +

n− i
n

u(0)

represents the expected utility assigned to each node in the 2nd-stage.

First, note that without any restriction on how pni changes with n, any behavior can

be rationalized by this model.18

Note that ambiguity aversion of a DM using the smooth ambiguity model is charac-

terized by the concavity of φ. Also, recall that we found a strong connection between

ambiguity aversion and size effect under ambiguity. Next we will show that concavity of

φ can indeed explain the size effect.

Take the lottery described in Figure 3. If the induced distributions of expected utilities

created from a larger urn is a mean preserving spread of the induced distribution of

expected utilities created from a smaller urn, then having a concave φ function implies a

preference for a larger ambiguous urn.19 Recall that most of our ambiguity averse subjects,

actually preferred the larger ambiguous urns to the smaller ones (see Tables 3 and A4.)

We next describe some 1st-stage beliefs that make the implicitly defined simple lottery

corresponding to the larger urn, second order stochastically dominates the simple lottery

corresponding to the smaller urn.

Let us consider two distributions which assume symmetry of beliefs between the two

colors. The first is the uniform distribution, i.e. pni = 1/(n + 1). The second has a

single underlying distribution of colors to be used while generating the urns, i.e. pni =

18For example, consider two urns with 2 and 10 beads. Let qn be the uniform distribution (qni =
1

n+ 1
for

all i) and rn be the extreme distribution on two extreme compositions (rn0 = rnn =
1

2
). For any non-linear

φ, the preferences of a decision maker holding q2 and q10 are complete opposite of the preferences of a
decision maker holding q2 and r10.
19Note that the mean of such simple lottery is the mean of the expected utilities which are the outcomes
of this induced lottery.
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n

i

)
λi(1−λ)n−i, where λ is the probability of a Black bead in the underlying distribution

of colors. The first scenario is as if the experimenter picked a number from {0, . . . , n} by

using the uniform distribution while deciding how many Black beads to put in the urn

of size n. The second scenario is as if the experimenter used a binomial distribution with

underlying probability λ and drew n beads using such a binomial distribution to generate

the urn of size n. Under both of these 1st-stage beliefs, the implied simple lottery, in the

sense described above, corresponding to the smaller urn induces a distribution of expected

utilities that is a mean preserving spread of that implied by the larger urn. Similarly, a

linear φ captures having no strict preferences on the size of ambiguous urns.

In another two-stage model, Segal (1987) applies the Rank Dependent Utility (RDU)

model (Yaari, 1987 and Quiggin, 1982) in a recursive sense to explain ambiguity attitudes.

Segal (1987) states sufficient conditions on the probability weighting function for RDU to

capture ambiguity aversion on two color Ellsberg urn. However, those are not sufficient

for increasing size preferences under ambiguity for urns with 2 or more beads and uniform

first stage beliefs.20 In other words, it is possible to create examples of convex probability

weighting function implying ambiguity aversion while predicting decreasing, rather than

increasing, size preferences under ambiguity.

Halevy and Feltkamp (2005) illustrate a case where a Bayesian decision maker would

behave as if she is ambiguity averse in a two-stage process. The key assumption in this

exercise is the fact that there are multiple draws from positively correlated urns. We can

extend their intuition in our setup to make prediction on preferences for urn size. If there

are multiple draws from the same urn, such a DM would exhibit a strict preference for

the larger urn.21 However, as in our experiment, if there is only a single draw from an

ambiguous urn, she would be indifferent to betting on any size.

20For 1 bead case, while the smooth ambiguity model can explain ambiguity aversion, RDU cannot.
Assuming indifference between the two colors to bet on is equivalent to having a symmetric first stage
belief around 50-50 distribution in RDU. Such symmetric beliefs would allow for only uniform distribution
as the first stage belief if the urn has only one bead, but that would imply indifference between 50-50
risky urn and ambiguous urn with 1 bead, i.e. ambiguity neutrality. We thank an anonymous reviewer
for pointing this out.
21This conclusion is based on their assumption that the decision maker has uniform beliefs on each color
combination.
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As noted earlier, there cannot be a probability based theory predicting ratio bias,

because such theories would treat the ratios 1/2 and 5/10 the same. However, models

that can allow for ratio bias might magnify the size effect under ambiguity.

Calibrations of size premium for the Smooth Ambiguity Model

In order to quantify preferences for the urn size under ambiguity, next we calibrate the

smooth ambiguity model assuming uniform distribution for the 1st-stage beliefs.22,23 We

assume a constant absolute ambiguity aversion model and a constant relative risk aversion

model.24

In order to quantify the diminishing marginal effect of urn size, we define a size premium

measure following the idea of ambiguity premium by Cubitt et al. (2018). Let u(.) be the

von Neumann utility of money, and V (.) denote the utility of betting on an urn under the

smooth ambiguity model. The size premium of moving from an ambiguous urn with n

beads to an ambiguous urn with m beads is defined as the difference between the certainty

equivalents of the two based on the assumed parameterization: Size Premium(n−m) =

u−1(V (Am))− u−1(V (An)).

Table 6 reports the size premium for the ambiguous urns used in the experiments

based on the smooth ambiguity model assuming uniform 1st-stage beliefs, φ = 0.079 and

ρ = 0.066. The size premium for switching from A2 to A10 is calibrated as almost four

times higher than the size premium for switching from A10 to A1000. For the same

parameters, we calculate the ambiguity premium of urn size 2, 10, and 1000 as about 4.7,

3.0, and 2.5, respectively, where ambiguity premium is defined as the difference between

the certainty equivalents of risky and ambiguous urns of size n.25

22We chose this model for calibration purposes due to its precise parameterization that has been
extensively studied by the literature.
23Uniform beliefs is reasonable with the physical environment of the experiments.

24Cubitt et al., 2018 also use these functional forms, φ(x) = −e
−φx

φ
and u(x) =

x1−ρ

1− ρ
in the estimations

of the parameters. Note that φ > 0 and φ < 0 correspond to ambiguity-averse and ambiguity-seeking
behaviors, respectively; ρ = 0, ρ > 0, and ρ < 0 correspond to risk-neutral, -averse, and -seeking
behaviors, respectively.
25See Figure C1 in Appendix C for an illustration of certainty equivalents of ambiguous urns with different
sizes.
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Table 6. Size Premium under Smooth Ambiguity Model

Ambiguity Premium Size Premium

A2 A10 A1000 (10− 2) (1000− 10)

4.721 2.958 2.489 1.763 0.468

Notes: The calculations of the table use the smooth ambiguity model with constant absolute

ambiguity aversion with parameter φ = 0.079 and constant relative risk aversion with parameter

ρ = 0.066 for the 1st-stage and 2nd-stage functions and uniform 1st-stage beliefs.

In our design, a subject is classified as someone who strictly prefers the larger urn under

ambiguity if she prefers the larger urn both when its prize is $30 and when it is $30.25.

In other words, the choice of A10(prize=30)% A2(prize=30.25) and A10(prize=30.25)%

A2(prize=30) is identified as strict preference for the 10-bead urn over the 2-bead one.

Similarly, a strict preference for the 1000-bead urn over the 10-bead one is identified

if A1000(prize=30)% A10(prize=30.25) and A1000(prize=30.25)�A10(prize=30). One

can calculate the minimum ambiguity attitude parameter φ that is needed to satisfy the

inequalities above for each comparison. When we do that calculation assuming uniform

1st-stage beliefs and CRRA parameter of ρ = 0.066, we find the cutoff of φ = 0.004 for

A10 � A2 and the cutoff of φ = 0.017 for A1000 � A10. This means that, according to

this calibration, anyone who has an ambiguity aversion parameter larger than 0.017 will

always prefer the larger urn (both in 2 vs 10 comparison and 10 vs. 1000 comparison).

However, the ones whose φ ∈ (0.004, 0.017) will choose A10 over A2 but choose the higher

prize when they compare A1000 and A10. Hence, more subjects are expected to strictly

prefer A10 � A2 than A1000 � A10 as long as there are some subjects whose parameter

φ ∈ (0.004, 0.017). This implication of the smooth ambiguity is consistent with our data.

Recall that we have higher percentage of subjects who preferred the larger urn in the

comparison of A2 vs. A10 than those who preferred the larger urn in the comparison of

A10 vs. A1000 (62.93% vs. 59.48% in Table 1.) Since the drop in the percentages are

relatively small in the data, this means that there were very few subjects whose ambiguity
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attitude parameter was in the interval of (0.004, 0.017) if one takes the calibration exercise

under the smooth ambiguity model as the basis.26

5. Related Experimental Literature

Chew et al. (2017) is the most closely related paper to ours where the authors extend

the full ambiguity in two-color Ellsberg experiment to investigate the attitudes toward

three distinct kinds of symmetric partial ambiguity. They create ambiguous bets in a deck

of 100 cards with two different colors (red or black). In the interval ambiguity, denoted

by IAn , a deck contains at least 50− n and at most 50 + n of the same color cards. When

the number of red or black cards is either not more than n or not less than 100− n, it is

called disjoint ambiguity, denoted by DA
n . Finally, when the number of red cards is either

50− n or 50 + n with the rest of the cards are being black is called two-point ambiguity,

denoted by TA
n . They consider the cases of n = 0, 25, and 50. Figure 4 illustrates

the possible chances of winning when betting on a certain color for the options used by

Chew et al. (2017) and by our experiments. The bars on the first six rows correspond

to the ambiguous bets used in Chew et al. (2017) and the last three correspond to our

ambiguous urns of A2, A10 and A1000.27 This joint illustration of two designs should

clarify the comparison between the two experiments. Again, each vertical line in a row

of Figure 4 indicates a possible color composition (i.e., possible chance of winning) for

the corresponding bet. For example, since there are three possible color compositions for

A2, possible chances of winning are 0%, 50%, and 100%. In the seventh row of Figure 4,

these chances are denoted by the vertical line at the very left for 0% chance of winning,

the vertical line in the center for the 50% chance of winning, and the vertical line at the

very right for 100% chance of winning for someone who bet on color black.

26Since the parameter interval of (0.004, 0.017) is on the lower tail of ambiguity aversion parameter
distribution and much lower than the estimated average of 0.079 in Cubitt et al. (2018), one should not
expect a large subject population with parameters in that interval.
27The first row corresponds to the known deck of 100 cards with 50 red cards and 50 black cards and
denoted by T0 or I0 by Chew et al., 2017. The probability of winning for this bet is 50%.
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Figure 4. Illustration of Bets Used in Chew et al. (2017) and in This Paper

Notes: The different forms of partial ambiguity used in Chew et al. (2017) are illustrated on the

first six rows and ambiguous urns used in our experiments are illustrated on the last three rows.

Each vertical line in a row indicates a specific chance of winning (i.e., possible urn composition)

in the corresponding urn.

What is common in both designs is the fact that the possible chances of winning for

each ambiguous bet of interest differ and both designs aim to understand how decision

makers react to that. Chew et al. (2017) gradually add new possibilities which are either

worse or better than the existing ones when they move from IA25 to IA50 (lines 4 and 6 in

the figure).28 In our design, the possible chances of winning of a smaller urn is always

a subset of a larger urn, and 0%, 50%, and 100% chances of winning are always in the

support.29 While keeping this structure, we gradually add more possibilities in a uniform

way when we move from a smaller urn to a larger one (see the last three lines of Figure 4.)

We have the same worst (0%) and best (100%) possible chance of winning for our possible

28In the disjoint case, they gradually take away possible compositions from the middle range when the
ambiguity moves from DA

50 to DA
25 and from DA

25 to DA
0 while keeping the worst and best possible

compositions untouched.
29This is crucial for our design for different reasons: (i) 0% and 100% keep the extreme best and worst
case scenarios constant across bets, (ii) 50% makes it possible to compare the ambiguous urns with the
risky counterparts, (iii) 50% also eliminates any behavioral effects caused by having only extreme beliefs
such as 0% and 100%. This design features are satisfied by only one of the bets in Chew et al. (2017)
(the sixth row).
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compositions, and add some new possibilities between the existing ones in a uniform sense

when we move from a smaller ambiguous urn to a larger one. So, in terms of the types of

new possible chances of winning added, while they eliminate chunks of possible chances

of winning, we eliminate some possible compositions in a uniform sense. Hence, the two

design complement each other.

The number of possible color compositions in the Ellsberg’s urn might be a measure of

degree of ambiguity (Becker and Brownson, 1964). Note that this absolute measure varies

in both our and Chew et al. (2017) designs. One may also think a relative measure based

on the number of possible compositions described to the subjects with respect to all the

possibilities. In their design the absolute and relative measures move together. However,

the relative measure is constant in our design while the absolute measure increases with

the urn size. They find in a reduced form analysis that the subjects are averse to increasing

degree of ambiguity which might be attributed to an increase in either absolute or relative

measures in their design. Since our subjects preferred the larger ambiguous urns (i.e.

higher absolute measure), together with Chew et al. (2017) finding, one may argue that

the subjects are sensitive to the relative changes in the degree of ambiguity rather than

the absolute one. Having said that, the two studies are consistent in their finding of

aversion to spread (under the uniform distribution assumption for the belief on possible

color compositions).

There are other ambiguity experiments that require subjects to compare different

ambiguous processes. Halevy and Feltkamp (2005) and Epstein and Halevy (2018) detect

a lack of confidence in (or uncertainty about) the joint distribution of two ambiguous

Ellsberg urns. Abdellaoui et al. (2011) highlight the fact that probabilistic sophistication

is usually violated when different sources of ambiguity are compared, even though it is

satisfied within a single source. Our experiment complements this literature since in the

comparison of two ambiguous urns with different sizes, there is no ambiguous correlation

between the urns or asymmetric familiarity towards one urn.

In a typical ambiguity experiment, the urn size is fixed and subjects are asked to

compare risky and ambiguous urns. Pulford and Colman (2008) repeat the standard

Ellsberg experiment varying the urn sizes. They find that the percentages of subjects
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choosing the risky urn are not significantly different for the urns containing 2, 10, or 100

beads and conclude that the ambiguity attitude is not affected by the urn size.30 Although

our focus is to understand the preference between two ambiguous urns with different sizes,

we also ask the standard Ellsberg questions by varying the size of the pair of risky and

ambiguous urns. We confirm their findings for 2- and 10-bead urns. However, when the

size of the urn is very large, particularly 1000 - a size they do not investigate-, we find that

the percentage of subjects choosing the risky urn is significantly smaller. Aside from that,

we argue that due to our main findings of “preferences for larger urn under ambiguity,” it

may be misleading to make inferences about the robustness of ambiguity attitudes by only

looking at the robustness of preferences between risky and ambiguous urns with varying

sizes. Particularly, the larger urns may be perceived to be less ambiguous.

6. Ambiguity in a Non-Experimental Setting: Investment Decisions

When testing the predictions of ambiguity aversion in a non-experimental setting,

mutual funds have been a preferred choice of researchers.31 The lack of evidence on the

persistence of performance in mutual fund returns suggests that investors face ambiguity

regarding the future performance of the funds. In this section, we provide a suggestive

evidence from a non-experimental analysis of mutual funds and test whether investors

prefer mutual funds with larger fund size, as proxied by the number of assets in a fund’s

portfolio.

The resolution of uncertainty regarding a fund’s performance is admittedly not identical

to the abstract two-color Ellsberg urn in our experiment. However, one may argue that

the number of assets held by a mutual fund may be considered as a measure for the size

30One should be careful interpreting the evidence in Pulford and Colman (2008) due to the way they
generate ambiguous bets and elicit preferences. First, they interpret the choice of one alternative over
another as a strict preference although indifference would imply the same behavior in that design. Second,
they elicit the preferences between a compound lottery with known probabilities (which they interpret
as an ambiguous urn) and its reduced form version (which they interpret as a risky urn). While the
literature find high correlation between ambiguity neutrality and reduction of compound lotteries (see
e.g. Chew et al., 2017; Dean and Ortoleva, 2019; Gillen et al., 2019; Halevy, 2007 with an exception of
Abdellaoui et al., 2015), telling the subjects the probabilities is not the well-accepted methodology for
generating ambiguity.
31See, for example, Antoniou et al. (2015); Li et al. (2016).
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of the ambiguous state space in this environment, because it might be a proxy for the set

of possible resolutions of ambiguous stage. Since we find the set of possible compositions

of an ambiguous urn being a relevant component of decision in the experiments, we

investigate whether such effect exists in the evaluation of mutual funds. Controlling for

commonly used determinants of fund flows (which include lagged raw and benchmark-

adjusted returns, lagged fund flows, and total net assets as well as controls such as fund

return volatility, fund fees, and fund age), we find that fund flows are positively and

significantly related to the number of assets held by a fund. Appendix B describes the

empirical methodology and presents the regression results in Table B1. To summarize,

consistent with our conjecture, our empirical tests provide evidence that investors prefer

mutual funds with a greater number of assets. Interestingly, these investors do not seem

to be rewarded for their preference, as these funds yield lower returns in the future.32

Having said that, as opposed to our experiment, data from real-world could be con-

founding. The analogy between mutual fund size effect and size preferences identified in

our experiment is subject to several underlying assumptions (i.e., homogeneous assets,

correlation structure). Naturally, since a mutual fund holds multiple assets, a parallel

experimental setting would involve bets on multiple Ellsberg urns (similar to Epstein and

Halevy, 2018), which is beyond the scope of our paper. Therefore, the evidence we offer in

this section should be taken with a grain of salt. Nevertheless, we hope that this empirical

exercise helps encourage more empirical research in the area.

7. Conclusion

In this paper, we experimentally show that individuals have a preference for larger

ambiguous urns over smaller ones. In light of our experimental findings, we revisited the

ambiguity models in terms of the restrictions our findings impose on them.

Ellsberg urn experiments have been the standard tool for demonstrating and estimating

the ambiguity attitudes. However, no attention has been given to the size of the urn when

32These results are also consistent with the preference for “over-diversification” explanation. However,
since this section is intended to provide suggestive evidence for the empirical relevance of our results, we
leave the more detailed analysis in this empirical setting to future work.
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comparing ambiguous urns. Our results highlight the importance of considering different

urn sizes while estimating ambiguity attitudes. It is possible that the individuals may

perceive larger urns as less ambiguous and behave as if they were less ambiguity averse;

hence, those estimations will be biased.

Our experiments also contribute to the psychology literature on ratio bias. While we

do find evidence of ratio bias in our data, subjects are heterogeneous, and the majority

of subjects do not exhibit such bias with even ratios. To the best of our knowledge, ours

is the first experiment to test ratio bias by eliciting strict preferences on 50-50 chances

by using incentivized methods.
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Appendix A. Additional Analysis

Table A1. Size Preferences under Ambiguity by Urn Size

A10 vs. A1000
Higher Prize Smaller Urn Larger Urn Total

A2 vs. A10
Higher Prize 23 1 9 33
Smaller Urn 2 2 6 10
Larger Urn 10 9 54 73

Total 35 12 69 116

Table A2. Size Preferences under Risk by Urn Size

R10 vs. R1000
Higher Prize Smaller Urn Larger Urn Total

R2 vs. R10
Higher Prize 56 1 12 69
Smaller Urn 3 10 6 19
Larger Urn 6 4 18 28

Total 65 15 36 116

Table A3. Ambiguity Aversion and Ratio Bias for Subjects who Prefer Larger Ambigu-
ous Urn

Ratio Bias

No Yes Total

Ambiguity No 9 5 14

Averse Yes 43 16 59

Total 52 21 73

Notes: Table restricts sample to those who exhibit preferences for larger urn under ambiguity,

i.e., A10 � A2. Ratio Bias is defined by R10 � R2; Ambiguity Aversion is defined by R10 �
A10.
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Table A4. Size Preferences under Ambiguity and Ambiguity Attitudes

R10 vs. A10
Higher Prize Risky Urn Ambiguous Urn Total

A10 vs. A1000
Higher Prize 13 17 5 35
Smaller Urn 2 7 3 12
Larger Urn 4 61 4 69

Total 19 85 12 116

Table A5. Size Preferences under Ambiguity and under Risk

R10 vs. R1000
Higher Prize Smaller Urn Larger Urn Total

A10 vs. A1000
Higher Prize 32 1 2 35
Smaller Urn 3 5 4 12
Larger Urn 30 9 30 69

Total 65 15 36 116

Table A6. Ambiguity Aversion and Ratio Bias for Subjects who Prefer Larger Ambigu-
ous Urn

Ratio Bias

No Yes Total

Ambiguity No 3 5 8

Averse Yes 36 25 61

Total 39 30 69

Notes: Table restricts sample to those who exhibit preferences for larger urn under ambiguity,

i.e., A1000 � A10. Ratio Bias is defined by R1000 � R10; Ambiguity Aversion is defined by

R10 � A10.
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Table A7. Individual Types: Raw Data

Types under n < m 2− 10 10− 1000
An vs Am Rn vs An Rn vs Rm Frequency % Frequency %

0 0 0 11 9 12 10
0 0 1 0 0 0 0
0 0 2 2 2 1 1
0 1 0 14 12 16 14
0 1 1 2 2 1 1
0 1 2 2 2 0 0
0 2 0 1 1 4 3
0 2 1 0 0 0 0
0 2 2 1 1 1 1
1 0 0 0 0 1 1
1 0 1 0 0 1 1
1 0 2 0 0 0 0
1 1 0 3 3 1 1
1 1 1 3 3 2 2
1 1 2 1 1 4 3
1 2 0 1 1 1 1
1 2 1 1 1 2 2
1 2 2 1 1 0 0
2 0 0 0 0 2 2
2 0 1 2 2 0 0
2 0 2 3 3 2 2
2 1 0 35 30 27 23
2 1 1 10 9 9 8
2 1 2 16 14 25 22
2 2 0 4 3 1 1
2 2 1 1 1 0 0
2 2 2 2 2 3 3

Total 116 100 116 100

Notes: Table codes each subject’s choices between urn sizes 2 and 10 and urn sizes 10 and
1000 according to the subject’s preferences for size under ambiguity (first column), ambiguity
attitudes (second column), and preferences for size under risk (third column). In first three
columns, “0” represents the behavior of choosing the urn with a higher prize in both versions. “1”
represents the behavior of choosing the former option in the column header in both versions, and
“2” represents the behavior of choosing the latter option in the column header in both versions.
The fourth and sixth columns show the number of subjects behaving in the way corresponding
row specifies in comparisons of sizes 2 versus 10, and 10 versus 1000, respectively. Columns five
and seven report the same information in terms of percentage of subjects behaving in that way.
The highlighted rows are the top five most frequent behavior in the data.
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Appendix B. Mutual fund flows and the number of assets in fund’s

portfolio

Our empirical specification mainly follows Sirri and Tufano (1998). To estimate the

impact of the number of assets in a fund’s portfolio on investment decisions, we regress

quarterly mutual fund flows on lagged values of various fund characteristics. We assume

flowi,t is a linear function of the following variables and estimate a regression over 1981-

2016:

(fundsizei,t−1, f lowi,t−1, rawreti,t−1, logTNAi,t−1, exprati,t−1, volatilityi,t−1)

in which the dependent variable is the percentage flow to a fund in the current quarter,

t.33 The independent variables, measured at the end of previous quarter t-1, include: (i)

the number of holdings in a fund’s portfolio (fundsize), (iii) lag fund flows (flow), (iii)

average raw return over the previous year (rawret), (iv) log total net assets (TNA) of

the fund, (v) fund return volatility in the previous year (volatility), and (vi) the expense

ratio of the fund (exprat). Raw return is included to account for the flow-performance

relation documented in the literature, while fund return volatility is included to account

for a preference for large size due to a diversification benefit, and the expense ratio is

included to account for the documented negative association between fund fees and flows.

We control for lag fund flows to account for persistence in quarterly fund flows. Finally,

we control for TNA of the fund since previous literature documents a significant negative

relation between the market value of a fund’s assets and future fund performance (Ippolito,

1992; Chevalier and Ellison, 1997; Sirri and Tufano, 1998; Berk and Green, 2004).

33Following prior literature (Sirri and Tufano, 1998), we compute quarterly fund flows as:

flowi,t =
TNAi,t − (1 + rt)TNAi,t−1

TNAi,t−1

in which TNAt is a fund’s total net assets at time t, and rt is the fund’s return over the prior quarter.
Thus, the percentage fund flow is measured as the percent increase in the market value of the funds’
assets in excess of the increase in market value due to performance of existing assets. Positive (negative)
flow measure means that the fund experiences an inflow (outflow) of new investment.
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Table B1 reports the main findings.34 The dependent variable in regressions (1) and

(2) is quarterly fund flows. Specification 1 is our baseline flow regression, and it is

consistent with the evidence documented in prior literature (e.g., Sirri and Tufano, 1998

and Lou, 2012).35 In specification 2, we include our variable of interest as an independent

variable: number of holdings in a fund’s portfolio. We find that fund flows are positively

related to the number of holdings in which a fund is invested. The coefficient of the

number of holdings variable is both statistically significant (t-stat: 5.02) and economically

meaningful. The magnitude of the coefficient implies that a one standard deviation

increase in the number of holdings increases the subsequent quarter’s fund flows by 0.25

percentage points. Given the average total assets under management of $210.4 million in

our sample, this amounts to an increase in the fund’s assets by $526,000 per quarter.

To test if mutual fund investors are ex-post rewarded by choosing a fund with a greater

number of holdings, we re-estimate the regressions in (1) and (2) by using future quarterly

returns as the dependent variable. Regressions (3) and (4) document the results.36 More

importantly, after controlling for common determinants of future fund performance, we

do not find a significant association between the number of holdings in a fund and future

fund performance.

34The sample in Table B1 is confined to domestic equity growth funds, as defined by either the fund’s
Lipper Objective Code, the fund’s Strategic Insight Objective Code, or the fund’s Wiesenberger Fund
Type Code. All passive funds (i.e., fund names that contain any of the following words: index, idx, etf,
russell, direxion, rydex, profund, wisdomtree s&p) and retirement funds (i.e., fund name contains any
of the following years or words: 2005, 2010, 2015, 2020, 2025, 2030, 2035, 2040, 2050, 2055, 2060, or
retirement) are removed. Funds that have a non-missing value for the ETF/ETN flag (et flag) or the
index flag (index fund flag) are removed. Funds that have “Y” for the variable annuity flag (vau fund)
are also removed. Funds that could not be identified either by name or by fund strategy are removed.
Funds that have fewer than ten holdings at any given time are also removed. Missing expense ratios are
backfilled up to eleven months, so that the expense ratio during that fiscal year is considered.
35Specifically, we find a significantly positive relationship between future fund flows and both lagged
fund performance (raw return) and lagged fund flows. We also find a significantly negative relationship
between fund flows and lagged fund volatility. The association between future fund flows and fund fees
(expense ratios) is negative but insignificant.
36For robustness, we re-estimate all the regression specifications by (i) using risk-adjusted returns instead
of raw returns, (ii) controlling for fund flows up to the previous four quarters, and (iii) controlling for
fund age. In all specifications, we obtain similar results. There is a significantly positive association
between the number of assets in a fund and future fund flows and no relationship between the number
of assets and future fund performance.
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Table B1. Attitudes for the Fund Size (Number of Assets): Fund Flows
and Performance

Predicting future flows Predicting future returns
(1) (2) (3) (4)

Number of Holdings 0.00135*** 0.00001
(5.02) (0.11)

Fund Flows (lagged) 0.314*** 0.314*** 0.00450** 0.00449**
(18.08) (18.05) (2.38) (2.38)

Average Raw Return 3.154*** 3.153*** -0.0216 -0.0216
(20.01) (20.02) (-0.33) (-0.33)

Log TNA -0.00650*** -0.00668*** -0.000166 -0.000168
(-11.75) (-12.03) (-1.00) (-1.01)

Expense Ratio -0.942 -0.809 -3.596*** -3.595***
(-0.71) (-0.63) (-6.58) (-6.57)

Volatility -0.304*** -0.304*** 0.316*** 0.316***
(-3.80) (-3.78) (7.50) (7.50)

Intercept -0.0171 -0.0169 0.0111** 0.0111**
(-1.17) (-1.16) (-2.13) (-2.13)

Observations 36,261 36,261 36,261 36,261
Adjusted R-Squared 0.1869 0.1871 0.7594 0.7594

Notes: The dependent variable in regressions (1)-(2) is Quarterly Fund Flows, and the
dependent variable in regressions (3)-(4) is Quarterly Returns. Fund Flows is quarterly
fund flows and is winsorized by 1% at both the low and high end each month. Quarterly
Returns is the quarterly raw return of the fund. Average Raw Return is the average
monthly raw return of the fund over the previous twelve months. Log TNA is the natural
logarithm of the total net assets at the end of the previous quarter. Expense Ratio is
the monthly expense ratio of the fund during that fiscal year. Volatility is defined as
the standard deviation of monthly returns over the previous twelve months. Number of
Holdings is the total number of holdings in the fund at the end of the previous quarter
(in hundreds). Quarter fixed effects are included in all regression specifications, and
standard errors are clustered at the fund level. t-statistics are shown in parentheses,
and statistical significance at the 1%, 5%, and 10% levels is denoted by ***, **, and *.

Appendix C. Calibrations of size premium for the Smooth Ambiguity

Model

Figure C1 draws the certainty equivalent of betting on an ambiguous urn under smooth

ambiguity as a function of the number of beads in the urn for ambiguity aversion param-

eters of φ = 0.059, 0.079, and 0.099. The figure is drawn for ρ = 0.066 which is the

estimation of risk aversion parameter by Cubitt et al., 2018. They estimated φ = 0.079.
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We also draw the certainty equivalent functions for a little more and a little less ambiguity

averse DM to illustrate the robustness of the size preferences under this model.

Note that for all three selections of the ambiguity parameter, φ, in Figure C1, the

certainty equivalents are increasing with the urn size, which is expected as smooth am-

biguity model predicts increasing size preferences under ambiguity aversion. The figure

also shows that the certainty equivalent functions are concave in size. This means that

the same increase in size will have a diminishing marginal effect on the preferences for

size.

Figure C1. Certainty Equivalent of Betting on Ambiguous Urn of Size n

Notes: The figure illustrates the certainty equivalent of urn An with prize of $30 under smooth

ambiguity model with uniform 1st-stage beliefs, a 1st-stage function with constant absolute

ambiguity aversion with parameter φ ∈ {0.059, 0.079, 0.099}, and a 2nd-stage function with

constant relative risk aversion with parameter ρ = 0.066.

Appendix D. Instructions

Introduction: Welcome to the experiment. In this experiment, you will make

decisions on uncertain scenarios. The precise rules and procedures that govern the

operation of these decisions will be explained to you below.

Various research foundations have provided funds for this research. The instructions are

simple, and if you follow them carefully and pay attention to your decisions you can finish
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the experiment with a considerable amount of money, which will be paid to you in cash

at the end. You will receive $7 participation fee for completing the experiment and some

additional amount that will depend on the decisions you make during the experiment. The

experiment will last about 1 hour. Please do not talk to each other during the session. If

you have any question, please raise your hand and the experimenter will come and answer

you.

Your task: In this experiment, there are 7 choice problems with two versions of each:

Version A and Version B. Hence you will make 14 choices in total. For each problem you

are asked to make a choice between two options. Each option is a bet on the color of a

bead that will be drawn randomly from an urn at the end of the experiment. The two

options you compare in each problem will be about two urns that may have different size

or composition of black and white beads. First you will choose a color (Black or White)

that you want to bet on. Then in each problem, you will be asked to choose between the

two urns specified in that problem.

Selecting the relevant decision problem for payment: Before you make any

choices, one of the choice problems will be selected at random according to the protocol

specified in the following paragraph, and your chosen bet in that choice problem will

determine your payment.

To select the choice problem that will determine your payment, the experiment coor-

dinators will roll one 7-sided die that produces a number from 1 to 7 and one 6-sided die

that produces a number from 1 to 6 for each participant. They will write the numbers on

notes and put them into sealed envelopes that will be distributed to you. The numbers

in your envelope will correspond to the choice problem that will determine your payment.

The outcome of the 7-sided die determines the choice problem, and the outcome of the

6-sided die determines the version of the corresponding choice problem. If the 6-sided

die’s outcome is an odd number then version A of the corresponding choice problem will

be used for your payment and if it is even then version B will be used for payment.

Please write your name on the envelope and do not open the envelope. This protocol of

determining payments is to make sure that you choose in each choice problem as if it is

the question determining your payment.
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[Determine the numbers, prepare the envelopes, and give them to the subjects]

Choosing Colors: In the first part of the experiment, we will present you with six

urns that are on the experimenter’s desk. Each urn is filled with black and white beads.

There is no other color besides black and white. We will tell you the number of beads in

each urn but the composition of the two colors may or may not be told to you depending

on the choice problem. [Experimenter presents each Urn]

Next you will specify a color to bet on for each urn. At the end of the experiment, one

bead will be drawn from each urn. If the color of the drawn bead matches with the color

you specified for the urn you choose in your paying choice problem then you will receive

a prize.

For example, let’s say you specify Black for the Urn with two beads-unknown colors

and this is the urn you choose in the choice problem selected for payment. If the bead

drawn from this urn at the end of the experiment is also Black, then you will receive the

specified prize for that choice problem. If the drawn bead is White, you will receive $0

for this choice problem.

Now, please put a check mark ( X ) under the color that you want to bet on for each

Urn in the table below:
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URN	 Black	 White	

	

	 	

	

	 	

	

	 	

	

	 	

	

	 	

	

	 	

	

Example of Binary Choice Problems: Next you will be asked to choose between

two urns in 7 choice problems where each problem will have version A and version B. An

example of a choice problem is below:



44

Version	A:	Please	put	a	check	mark	(	√		)		for	the	urn	that	you	want	to	bet	

	 	

	 	

If	the	color	of	the	bead	drawn	from	
this	urn	matches	with	the	color	you	
specified	for	this	urn	initially	then	you	
will	be	paid		

$30.25	

If	the	color	of	the	bead	drawn	from	
this	urn	matches	with	the	color	you	
specified	for	this	urn	initially	then	you	
will	be	paid		

$30	

	
	
	

Version	B:	Please	put	a	check	mark	(	√		)		for	the	urn	that	you	want	to	
bet	

	 	

	 	

If	the	color	of	the	bead	drawn	
from	this	urn	matches	with	the	
color	you	specified	for	this	urn	
initially	then	you	will	be	paid		

$30	

If	the	color	of	the	bead	drawn	from	
this	urn	matches	with	the	color	you	
specified	for	this	urn	initially	then	
you	will	be	paid		

$30.25	

	

	 	

		 	

At the end of the experiment, one bead will be drawn from each urn.

Let’s say that you choose Urn Y in version A, your fixed color for this urn is White, and

this is the problem that is written in your envelope. Then, at the end of the experiment

if the drawn bead from Urn Y is indeed White, you will receive $30. If it is Black, you

will receive zero (both are in addition to the payment of $7 you received for arriving to

the experiment on time).
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All the choice problems will be similar to the one in the Example. Note that version A

and version B in this example are quite similar. Both A and B ask you to choose between

Urn X and Urn Y. The prizes are $30 or $30.25. The difference is that Urn Y’s prize is

$30 in version A and it is $30.25 in version B (vice versa for Urn X). In all the problems

you will answer in this experiment, you will choose between two urns with the prizes $30

or $30.25 and we will give you A and B versions of that choice problem.

You may choose any bet in any problem. There is no best decision that works for

everyone. If you choose Urn Y that pays $30 in version A above, it means that you think

your chance of winning in Urn Y is higher than your chance of winning in Urn X. Since,

Urn Y pays 25 cents more prize in version B, you should also choose Urn Y in this version.

You may choose $30 prize urn in one version of the problem and $30.25 prize urn in

the other version. Similarly, you may choose $30.25 prize urn in both versions. However,

choosing the urn that pays $30 in each version is not a good strategy as explained above.


