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Abstract

We study how large language model (LLM) based recommendations affect eval-
uations of uncertainty. We elicit certainty equivalents for (i) lotteries that share
the same reduced-form winning probability but vary in cognitive demands be-
cause they are compound, and (ii) an Ellsberg-style ambiguous lottery. Across
all lottery types, valuations from participants who receive LLM-based recom-
mendations before each valuation exhibit second-order stochastic dominance
relative to valuations from participants who do not. Hence, LLM-based recom-
mendations leave mean valuations unchanged but compress the distribution,
reducing the incidence of extreme valuations. Consistent with this pattern,
LLM-based recommendations reduce the intensity of risk, complexity, and am-
biguity aversion, while leaving the fraction of participants classified as averse
unchanged.
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1 Introduction

Large language models (LLM) are rapidly becoming a default “second opinion” for

everyday economic decisions: from buying insurance to interpreting probabilistic in-

formation in medical settings. Investors are also increasingly relying on robo-advisors

for portfolio decisions, with the market projected to reach $33.38 billion by 2030.1 As

LLM-based recommendations diffuse into daily life, a central question for economics

has been raised: how do LLM-based recommendations reshape decision making un-

der uncertainty, and how do they affect risk and ambiguity attitudes, which are key

measures for economic modeling?

Our experiments introduce standard, incentivized valuation tasks where individu-

als state their certainty equivalents for risky and ambiguous lotteries while receiving

(or not receiving) an LLM-based recommendation. We also manipulate the complex-

ity of the evaluated lotteries using compound lotteries where deriving the objective

reduced-form probabilities might be cognitively costly. Our design links two liter-

atures: attitudes toward risk, ambiguity, and complexity, and how decision makers

incorporate recommendations into their choices. We show that LLM-based recom-

mendations shift value distributions and reduce variations in them. This result is

robust across environments that vary in uncertainty and cognitive complexity, sug-

gesting that LLM-based recommendations may attenuate behaviors driven by extreme

risk and ambiguity attitudes.

Our baseline design follows standard preference-elicitation practice using a stan-

dard multiple price list method, and the tasks are based on de Clippel et al. (2024).

Participants value four prospects that pay $30 if a “purple” card is drawn from a de-

scribed deck and $0 otherwise: (i) a transparent 50/50 lottery; (ii) a compound lottery

with two underlying decks that reduces to 50/50; (iii) a more complex compound lot-

tery with four underlying decks that also reduces to 50/50; and (iv) an ambiguous

lottery in which the deck composition is unknown. This design varies the informa-

tional and computational demands of evaluation while holding fixed the reduced-form

probability of winning. Our main intervention randomizes access to LLM-based rec-

ommendation generated by ChatGPT (GPT-4o), we call this “AI treatment”. To

standardize informational content and rule out a possible impact caused by endoge-

1Source: absrbd.com, accessed in December 2025.
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nous prompting, all participants in the AI treatment view the same pre-generated

screenshots for each lottery. The Baseline treatment asks participants to perform the

same tasks without LLM-based recommendation.

LLM-based recommendations have economically meaningful effects on valuations

in our data, but not through the mean. Across all four lotteries, average certainty

equivalents are identical in the Baseline and AI treatments. Instead, the entire dis-

tribution shifts: certainty equivalents in AI treatment exhibit second-order stochastic

dominance relative to the Baseline treatment. In practical terms, LLM-based recom-

mendations leave mean valuations unchanged while compressing dispersion and hence,

reducing heterogeneity. Additionally, while LLM-based recommendations shift the in-

tensity of risk, complexity, and ambiguity aversion, they do not affect the fractions

of participants classified as averse, neutral, or loving. After each compound lottery,

we also elicit beliefs about the probability of winning the prize and ask participants

how certain they feel about those beliefs. LLM-based recommendations improve over

mistakes in belief formation caused by additional complexity, and they reduce the ad-

ditional self-reported cognitive uncertainty for the more complex compound lottery.

Motivated by the evidence that people seek expert advice more when the situation

is complex, and uncertainty is enhanced, Engelmann et al. (2009) use fMRI scanning

of the participants and show that expert advice corrects understanding of probabilities

through “offloading” the calculation burden. While this particular study did not vary

the level of difficulty or complexity of the uncertainty the decision makers evaluate,

the mechanism identified might be particularly relevant in complex environments

where computation is costly and where recommendations may affect confidence and

perceived understanding rather than correcting probabilistic reasoning. Related to

this intuition, de Clippel et al. (2024) showed that individuals value risk less when

they perceive a lottery as complex and ambiguous. Building on these findings, our

design can address whether the impact of LLM-based recommendations is robust to

variation in the complexity of uncertainty involved.

We also contribute to the recommendation literature. Previous work shows that

recommendations, in the form of direct human advice and broader social interactions,

systematically shape economic choice. In laboratory settings, consultation with others

compresses dispersion in risk taking (Bougheas et al., 2013), observing a peer take

a risky action increases risk taking (Cooper and Rege, 2011), and group decision
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making can reduce ambiguity sensitivity relative to individual choice (Keck et al.,

2014). In financial contexts, social interactions affect retirement plans (Duflo and

Saez, 2003; Beshears et al., 2015), and field evidence highlights the role of social

learning in portfolio and asset choice (Bursztyn et al., 2014). Related work in strategic

environments also documents sizable effects of advice in settings such as ultimatum

and coordination games (Schotter, 2003; Çelen et al., 2010). Our study of LLM-

based recommendations in decisions under risk and ambiguity builds on these insights:

external guidance can change the distribution of choices.

More recently, attention has shifted from human recommendations to algorith-

mic AI- recommendations, and to natural-language AI recommendations in the early

2020s.2 Evidence from large-scale experiments suggests that robo-advisors can re-

duce investor mistakes (Lambrecht et al., 2024), shift the focus of human investors

to sectors where they have advantages over AI (Raymond, 2024), and reduce child

hospitalization when the child protective services receive risk scores from algorithms

(Grimon and Mills, 2025). However, the results are mixed in different settings, as Kre-

itmeir and Raschky (2024) showed that better programmers achieve worse outputs

when AI assistance is allowed, highlighting an important tension between algorithm

aversion (Dietvorst et al., 2015) and algorithm appreciation (Logg et al., 2019). Com-

plementary work shows that algorithmic advice may mitigate behavioral biases such

as the disposition effect and trend chasing (D’Acunto et al., 2019), or introduce new

biases such as psychological cost of being wrong (Almog et al., 2025). On the theory

side, models have begun to formalize how recommendations can enter preferences

generating over-responsiveness to recommendations (McLaughlin and Spiess, 2022).

We contribute to this recent literature by asking a basic question: how do LLM-

based recommendations affect measured risk, complexity, and ambiguity attitudes in

an environment free from social or strategic interactions, and does it shift valuations in

one direction or reshape the distribution of valuations across individuals? Moreover,

our decision environment should be minimally impacted by some of the behavioral

concerns highlighted by the previous research, such as shame, pride, social image, or

2Another branch of this literature has examined the welfare gains and psychological costs that
arise when AI overrules human judgments, rather than merely offering recommendations, in settings
such as law (Rambachan, 2024), medicine (Raghu et al., 2019), and top-level tennis tournaments
(Almog et al., 2025). Note that unlike those studies, the participants of our experiments make the
final decisions.
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confidence, as there is no right or wrong answer in valuing a lottery. Since LLM-based

recommendations in decision making are here to stay, understanding its impact on

risky choice is central for economic modeling.

2 Experiment Design

In the experiment, we measure the dollar value that participants assign to multiple

lotteries. In each lottery, the computer simulates the draw of a card from a deck

of green and purple cards. The bet pays $30 if the drawn card is purple, and $0
otherwise. This setting is used in de Clippel et al. (2024). We elicit participants’

certainty equivalents for four lotteries using the standard multiple price list (MPL)

procedure with enforced single switching (Holt and Laury, 2002; Andersen et al.,

2006). The MPL varies the sure amounts from $1 to $30 with an increment of $1
at each row. Participants face several scenarios that differ in the complexity of the

lotteries (for a graphical interpretation see of the below lotteries see Figure 1):

• 50/50 Lottery: The deck contains 50 purple and 50 green cards, making it

easy to see that the probability of winning is 50%.

• Compound Lottery, Two Decks (Compound-2): There are two decks of

cards, each of which contains 100 purple or green cards. While 20% of the

cards are Purple in the first deck, the percentage of the Purple cards is 80%

in the second deck. Participants are told that the computer selects one of the

two decks at random with equal chance, shuffles the selected deck, and draws

a card. Hence, this scenario describes a non-degenerate compound lottery that

reduces to a 50/50 probability of drawing a purple card.

• Compound Lottery, Four Decks (Compound-4): There are four decks

of cards, each of which contains 100 purple or green cards. The respective

percentage of purple cards in each deck is 10%, 30%, 70%, and 90%. Participants

are told that the computer selects one of the four decks at random with equal

chance, shuffles the selected deck, and draws a card. Similar to the previous

lottery, this is also a non-degenerate compound lottery that reduces to a 50/50

probability of drawing a purple card.
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• Ambiguous Lottery: Participants are only told that the deck contains 100

purple or green cards, but not the exact composition, and that “they could be

all Purple, all Green, or any combination.”

50-50 Lottery

$30 $0

50% 50%

(a) 50-50 Lottery

Compound-2 Lottery

Deck 1

$30 $0

Deck 2

$30 $0

50%

20% 80%

50%

80% 20%

(b) Compound-2 Lottery

Compound-4 Lottery

Deck 1

$30 $0

Deck 2

$30 $0

Deck 3

$30 $0

Deck 4

$30 $0

25%

10% 90%

25%

30% 70%

25%

70% 30%

25%

90% 10%

(c) Compound-4 Lottery

Ambiguous Lottery

$30 $0

unknown p unknown (1− p)

(d) Ambiguous Lottery

Figure 1: The Lotteries Asked
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The experiment proceeds as follows. After training about scenarios and MPLs,

and after comprehension quizzes, similar to de Clippel et al. (2024) participants face

a 50/50 lottery, the Compound-2 lottery, the Compound-4 lottery, and, finally, the

ambiguous lottery. The information for these lotteries is explained verbally (see Figure

2 for the screenshots used in the experiment). After each compound lottery question,

the participants’ belief about drawing a Purple card is elicited in an incentivized way,

and they are asked “how certain” they felt about their beliefs.

(a) 50-50 Lottery

(b) Compound-2 Lottery

(c) Compound-4 Lottery

(d) Ambiguous Lottery

Figure 2: The Scenario of the Lotteries
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We randomly assigned participants to either the Baseline or the AI treatment. The

Baseline treatment replicates the procedures typically used in the existing literature

employing the MPL method in eliciting certainty equivalents of lotteries. In the AI

treatment, participants were provided with a lottery-specific recommendation from

ChatGPT (Model GPT-4o) before they report their certainty equivalents for each

lottery. All participants in the AI treatment were given the same screenshots of

recommendations for the corresponding lottery.

Each LLM-based recommendation is generated as follows. Prior to the experiment,

we take a screenshot of each lottery (one lottery at a time), attach the screenshot to

ChatGPT, and ask “What do you recommend for someone making these choices?”.

Finally, we take screenshots of both our prompt and ChatGPT’s response to this

question. We clear ChatGPT’s memory before we inquire about the next lottery.

Figure 3 is the LLM-based recommendation for the Compound-2 lottery. Note

that it first explains the setup and the task. Then, it explicitly calculates the win-

ning probability and the expected value for this compound lottery. It interprets the

expected value as the risk neutral switching point. However, in the practical recom-

mendation it provides a classification of what switching at, before, and after $15 mean

in terms of risk attitudes. In Appendix A.1, we provide the screenshots of LLM-based

recommendations for all questions.

We ran the experiment on the Prolific platform in October and November, 2025.

The experiment was pre-registered on AsPredicted.org.3 Full experimental instruc-

tions and screenshots are provided in Appendix A.1. The mean completion time was

about 11 minutes. Participants received $3 for participation, and 10% of partici-

pants were eligible for a bonus payment based on their answer to one of the main

tasks (drawn at random) following de Clippel et al. (2024). The average bonus was

$1.34. In each of the two treatments, there were 300 participants. None of the 600

participants participated in more than one session.

3The experiment protocol can be found at https://aspredicted.org/zwmg-s8yy.pdf. The experi-
ment was programmed and implemented using oTree (Chen et al., 2016).
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Figure 3: Screenshot of ChatGPT Recommendation for Compound-2
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3 Results

Participants assigned to the Baseline and AI treatments are demographically bal-

anced: gender, race, education distributions and AI use and trust indices are similar

across the two treatments (see Table 1). The main body of the paper reports results

using all the data. Appendix A.2 repeats the analysis for the participants who pass

our comprehension quizzes on the first attempt (82% in the Baseline treatment and

80% in the AI treatment). The results are robust for this filtered subsample.

Table 1: Demographics

Baseline AI t-test (p-value)

Age 43.47 43.15 0.76
Female 0.49 0.48 0.81
White 0.80 0.77 0.32
Black 0.08 0.10 0.38
Asian 0.09 0.08 0.66
Others 0.00 0.00 1.00
Education: Less than High School 0.00 0.01 0.56
Education: High School 0.13 0.13 0.90
Education: Some College 0.24 0.27 0.46
Education: College or Higher 0.62 0.60 0.50
AI Use Index 4.74 5.02 0.25
AI Trust Index 5.16 5.52 0.10

Observations 300 300

3.1 Treatment Effects

Our main objective is to understand how valuations of risky and ambiguous prospects

change when decision makers are assisted by AI. To this end, we compare valuations

elicited for each lottery across the two treatments. To convert MPL switching points

into point valuations on a discrete grid, we define each participant’s valuation as the

sure amount at which they switch to the sure option minus one-half of the grid step

size as in de Clippel et al. (2024).

Table 2 summarizes the distribution of valuations by treatment. A clear pattern

emerges: mean valuations are unchanged by LLM-based recommendation, while dis-
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Table 2: Treatment Effect

Baseline AI p-value p-value
comparing means comparing variances

Value (50-50) 13.617 13.590 0.954
(6.340) (4.896) 0.000

Value (Compound-2) 12.310 12.743 0.343
(6.209) (4.894) 0.000

Value (Compound-4) 12.357 12.813 0.312
(6.085) (4.910) 0.000

Value (Ambiguous) 11.290 11.937 0.178
(6.454) (5.243) 0.000

Observations 300 300

Notes: In columns 1-2, we report the mean and standard deviation of values participants assign to
each lottery in the Baseline and AI treatment, respectively. In columns 3-4, we report the p-values
from the t-test for the mean comparisons, and the Levene’s robust test for the equality of variances,
respectively.

persion falls significantly. Mean differences between the Baseline and AI treatments

are small and statistically insignificant for every lottery type (t-tests: all p ≥ 0.178).

In contrast, the equality-of-variance tests reject strongly for every lottery type (Lev-

ene’s tests: all p < 0.001). Quantitatively, the standard deviation of valuations

is about 19–23% lower in the AI-treatment across lotteries (50–50: 6.34 vs. 4.90;

Compound-2: 6.21 vs. 4.89; Compound-4: 6.09 vs. 4.91; Ambiguous: 6.45 vs. 5.24),

corresponding to a roughly 34–40% reduction in variance with LLM-based recommen-

dation. Thus, LLM-based recommendations primarily compress the cross-participant

distribution of valuations rather than shifting average certainty equivalents.

Figure 4 visualizes this compression by plotting the cumulative distribution func-

tions (CDF) of elicited values in the two treatments for each lottery type. Across all

lotteries, the CDFs in the AI treatment are steeper in the center and has thinner tails,

consistent with fewer extreme valuations and a tighter distribution of risk, complexity,

and ambiguity attitudes. In other words, all of the Baseline treatment distributions

behave like a mean-preserving spread of the corresponding AI treatment distribution.
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Applying the Barrett and Donald (2003) second-order stochastic dominance test to

all CDF comparisons further validates second-order stochastic dominance between

the AI and Baseline treatments distributions (using the code from Lee and Whang,

2023).

(a) 50-50 CDF (b) Compound-2 CDF

(c) Compound-4 CDF (d) Ambiguous CDF

Figure 4: Baseline vs. AI Treatments, CDFs of Values

Figure 5 plots corresponding probability distribution functions (PDFs) of the val-

ues of each lottery type. Across all lotteries, the PDFs are narrower in the AI treat-

ment complementing the results based on the CDFs.
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(a) 50-50 PDF (b) Compound-2 PDF

(c) Compound-4 PDF (d) Ambiguous PDF

Figure 5: Baseline vs. AI Treatments, PDFs of Values

To quantify the reduction in extreme valuations controlling for the participants’

observable heterogeneity, Table 3 reports regressions to measure the treatment effect

on the absolute deviation of each valuation from the midpoint (15.5) of the elicita-

tion grid for each lottery type. Consistent with the distributional evidence above,

LLM-based recommendation significantly reduces absolute deviations from the neu-

tral benchmark, indicating that the tightening of valuations reflects a reduction in

extremes rather than a uniform shift.
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Table 3: Regression: Distance to Risk-Neutrality Value

Dep. Variable: |Value− 15.5| 50-50 Compound-2 Compound-4 Ambiguous

AI -1.39∗∗∗ -1.36∗∗∗ -1.23∗∗∗ -1.30∗∗∗

(0.33) (0.34) (0.33) (0.36)

Demographics Yes Yes Yes Yes
Observations 599 599 599 599

Notes: One participant with missing demographic information is excluded from the regressions.
Robust standard errors are in parentheses. ∗ p < 0.1, ∗∗ p < 0.05, ∗∗∗ p < 0.01.

Table 4: Extreme Percentiles and IQR

Baseline AI

50-50 Lottery
10th percentile 5.00 8.50
90th percentile 20.50 19.00
IQR 6.00 4.50

Compound-2 Lottery
10th percentile 4.50 6.50
90th percentile 19.50 17.50
IQR 7.00 6.00

Compound-4 Lottery
10th percentile 4.50 7.50
90th percentile 19.50 17.50
IQR 6.00 5.00

Ambiguous Lottery
10th percentile 3.50 4.50
90th percentile 19.50 16.50
IQR 8.00 5.00

Observations 300 300

Furthermore, Table 4 demonstrates 10th and 90th percentile values as well as

Interquartile Range (IQR), that is the difference of the values of 75th and 25th per-

centiles. As can be seen, in all questions, 10th percentile values are higher in AI

treatment and 90th percentile values are lower in AI treatment; additionally IQR
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statistics are lower in AI treatment, providing additional support to the decrease in

the variances of the distributions. Hence, the following result is robustly observed in

our data:

Result 1: The LLM-based recommendations reduce the heterogeneity in participants’

lottery valuations toward the Baseline mean without shifting the mean.

3.2 Attitudes Toward Risk, Complexity, and Ambiguity

Section 3.1 showed that LLM-based recommendations leave average valuations un-

changed while compressing the distribution of valuations across participants. A nat-

ural next question is whether LLM-based recommendations mitigate risk aversion,

complexity aversion, or ambiguity aversion.

In the Baseline treatment, the mean valuations for the 50–50, Compound-2, and

Compound-4 lotteries reported in Table 2 are all below 15.5, the risk-neutral bench-

mark (Wilcoxon sign-rank test: all p < 0.001). The participants are ambiguity averse

on average in the Baseline, too: the ambiguous lottery is valued less than the 50–50

lottery (Wilcoxon sign-rank test p < 0.001). Consistent with the evidence in de Clip-

pel et al. (2024), we also observe aversion to complexity in the Baseline: The average

valuations for both Compound-2 and Compound-4 are significantly lower than the av-

erage valuation of the 50–50 lottery (Wilcoxon sign-rank tests p < 0.001). We observe

the same qualitative pattern in the AI treatment: average valuations remain below

$15.5 for the 50–50 lottery and are further discounted for compound risk and ambi-

guity relative to the 50–50 benchmark, indicating risk aversion, complexity aversion,

and ambiguity aversion (Wilcoxon sign-rank tests all p < 0.001).

Complexity and ambiguity aversion is robust to controlling the demographics.

Table 5 estimates regressions where the 50–50 lottery is the control category. In the

Baseline treatment, valuations for Compound-2 and Compound-4 are significantly

lower than for the 50–50 lottery, consistent with complexity aversion: holding ex-

pected value fixed, participants value compound risk less than simple risk. Valua-

tions for the Ambiguous lottery are also lower than for the 50–50 lottery, consistent

with ambiguity aversion on average. The treatment variable (AI treatment dummy
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Table 5: Regression: Lottery Value

(1) (2)

Compound-2 -1.08∗∗∗ -1.08∗∗∗

(0.19) (0.19)
Compound-4 -1.02∗∗∗ -1.02∗∗∗

(0.19) (0.20)
Ambiguous -1.99∗∗∗ -1.99∗∗∗

(0.22) (0.22)
AI 0.38 0.32

(0.39) (0.39)
Constant 13.41∗∗∗ 13.80∗∗∗

(0.33) (2.41)

Demographics Yes
Observations 2,400 2,396

Notes: The 50-50 lottery value is the comparison group. One participant with missing demographic
information is excluded from the regression. Standard errors are clustered at the subject level. ∗

p < 0.1, ∗∗ p < 0.05, ∗∗∗ p < 0.01.

variable) is statistically insignificant, consistent with the results of Section 3.1.

Table 6 classifies participants by their risk, complexity, and ambiguity attitudes

in both the Baseline and AI treatments, and the shares in each category are very

similar across treatments. For example, 68.3% of participants are classified as risk

averse in the Baseline, compared with 69.0% in the AI treatment. These results

indicate that AI assistance does not significantly change attitude classifications toward

risk, complexity, or ambiguity (Fisher’s exact tests p = 0.485 in Risk, p = 0.589 in

Compound-2, p = 0.813 in Compound-4, p = 0.286 in Ambiguity).

Table 6: Preference Classification, Baseline vs. AI

Baseline AI

Averse Neutral Loving Averse Neutral Loving

Risk 68.3% 7.7% 24.0% 69.0% 10.0% 21.0%
Compound-2 40.0% 37.0% 23.0% 36.0% 38.7% 25.3%
Compound-4 39.7% 37.3% 23.0% 38.0% 40.0% 22.0%
Ambiguity 50.7% 30.7% 18.7% 51.7% 25.7% 22.7%
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While classifications are stable, the magnitudes of these attitudes shift under LLM-

based recommendations. Figures 6a–d plot CDFs of risk, complexity, and ambiguity

aversion measures of the participants who are classified as averse, separately. For

instance, Figure 6a shows that, among participants classified as risk averse, the distri-

bution of deviations below the risk neutral benchmark in the AI treatment first-order

stochastically dominates the corresponding distribution in the Baseline treatment. In

other words, risk averse participants submit systematically higher valuations under

LLM-based recommendations (Mann-Whitney test p = 0.026). The same qualitative

pattern appears for complexity averse participants (Figures 6b and 6c; Mann-Whitney

tests p = 0.029 and p = 0.001, respectively), ambiguity averse participants (Figure

6d; Mann-Whitney test p = 0.008). Overall, LLM-based recommendations compress

the distribution of attitude magnitudes: it makes risk-, complexity-, and ambiguity-

averse participants less extreme, without changing their classification.

(a) Value(50-50) − 15.5 (b) Value(50-50) − Value(Compound-2)

(c) Value(50-50) − Value(Compound-4) (d) Value(50-50) − Value(Ambiguous)

Figure 6: CDFs of the Magnitudes of Risk, Complexity, and Ambiguity Aversion
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Result 2: The LLM-based recommendations reduce the intensity of risk, complexity,

and ambiguity aversion while leaving the distributions of classification as averse/neutral/loving

unchanged.

Recall that participants also reported how certain they were about their stated

beliefs on a 0–100% scale. Following de Clippel et al. (2024), we define cognitive

uncertainty as 100 minus the participant’s certainty score. Table 7 shows that, in the

Baseline treatment, the percentage of correct beliefs are lower for the more complex

Compound-4 lottery than for the Compound-2 lottery (0.70 vs 0.77, Wilcoxon signed-

rank test p < 0.001). On the other hand, the cognitive uncertainty is significantly

higher for the more complex Compound-4 lottery than for the Compound-2 lottery

(42.10 vs. 37.13, Wilcoxon signed-rank test p < 0.001). This indicates that, without

LLM-based recommendations, participants found it harder to assign beliefs to a more

complex lottery and were less confident in their answers. In contrast, LLM-based

recommendation eliminates this gap: in the AI treatment, uncertainty scores are

similar for Compound-2 and Compound-4 (36.43 vs 35.80, Wilcoxon signed-rank test

p = 0.583). This is consistent with accuracy patterns in the AI treatment, where

the rates of correct beliefs are also similar across the two lotteries (0.73 vs. 0.75,

Wilcoxon signed-rank test p = 0.556).

Table 7: Belief and Cognitive Uncertainty

Correct Belief Cognitive Uncertainty

Compound-2 Compound-4 Compound-2 Compound-4

Baseline 0.77 0.70 37.13 42.10
AI 0.73 0.75 36.43 35.80

Notes: N = 300 in each treatment.

For robustness, for each participant we calculate the difference in cognitive un-

certainty between Compound-2 and Compound-4 and regress this difference on AI

treatment dummy variable. As can be seen in Table 8, AI dummy variable is signifi-

cant even when the demographics are controlled, indicating that LLM-based recom-
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mendations reduce the perceived complexity.

Table 8: Regression: Change in Cognitive Uncertainty (Compound-4 Minus
Compound-2)

(1) (2)

AI -5.60∗∗∗ -5.68∗∗∗

(1.51) (1.52)

Demographics Yes
Observations 600 599

Notes: One participant with missing demographic information is excluded from the regression.
Robust standard errors are in parentheses. ∗ p < 0.1, ∗∗ p < 0.05, ∗∗∗ p < 0.01.

4 Conclusion

This paper experimentally studies how LLM-based recommendations affect evalua-

tions of uncertainty. Our main result is that providing participants with lottery-

specific recommendations from a large language model changes valuations in a second-

order stochastic dominance sense: across lotteries, LLM-based recommendation leaves

average certainty equivalents unchanged, but it systematically reduces dispersion.

Our findings have two direct implications for economic research and practice.

First, they speak directly to the measurement of preferences. Risk and ambiguity

preferences are routinely elicited to discipline models, calibrate welfare, and pre-

dict behavior in markets and policy settings. Our evidence indicates that when an

economically relevant choice environment includes readily available LLM-based rec-

ommendations, as it increasingly does, standard elicitation procedures may recover

preferences as expressed with AI mediation. This may directly impact risk profiling

procedures, which are frequently used by investment platforms.

Second, these results contribute to the economics of complexity in decision making

under uncertainty. We compare lotteries that imply the same objective risk but differ

in computational burden, and we also consider lotteries that introduce ambiguity.

Across these settings, we find that the first result above continues to hold robustly.

Since real-world decision environments are often more complex and complexity itself is
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one of the key drivers of AI adoption, our finding that LLM-based recommendations

reduce heterogeneity in the magnitude of risk and ambiguity attitudes has direct

implications for applied contexts, including insurance choice and retirement planning.

Finally, as we implement a tightly controlled LLM-based recommendation treat-

ment in which all participants view the same pre-generated GPT screenshots, pro-

duced from a single prompt (“What do you recommend for someone making these

choices?”), it strengthens internal validity by eliminating endogenous prompting and

heterogeneity in prompt quality. It also enhances replicability by fixing the advice

content. Importantly, exposure to identical recommendations does not mechanically

anchor participants to the same response. Instead, LLM-based recommendation pre-

serves the qualitative structure of heterogeneity in risk, complexity, and ambiguity

attitudes, as participants remain meaningfully dispersed and ordered in their prefer-

ences while attenuating the magnitudes of these attitudes by compressing the tails of

the valuation distribution.

A natural next step is to endogenize AI use by allowing participants to decide

whether to consult the AI and to enter their own prompts. Since take-up and prompt

content will vary across individuals, and some may opt out entirely, our current design

provides a benchmark. Future work could vary the calibration of advice and allow

interactive queries to assess how much of the observed behavioral change reflects the

availability of AI per se versus differences in prompting and selection into use. More

broadly, as AI systems become embedded in consumer finance, insurance markets,

and medical decision support, understanding how recommendations reshape decisions

under uncertainty and what aspects of preferences they change will be essential for

both modeling and policy design.
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A Supplemental Appendix

A.1 Screenshots

Figure A.1: Instructions: Part 1

Figure A.2: Instructions: Part 2
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Figure A.3: Instructions: Part 3

Figure A.4: Quiz 1
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Figure A.5: Quiz 2
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Figure A.6: Choice for Each Question (Omitted in Screenshots Below)

Figure A.7: 50-50 (Baseline)

Figure A.8: Compound-2 (Baseline)
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Figure A.9: Compound-2 Belief Elicitation

Figure A.10: Compound-4 (Baseline)
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Figure A.11: Compound-4 Belief Elicitation

Figure A.12: Ambiguous (Baseline)
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Figure A.13: 50-50 (AI treatment)
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Figure A.14: Compound-2 (AI treatment)
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Figure A.15: Compound-4 (AI treatment)
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Figure A.16: Ambiguous (AI treatment)
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A.2 Additional Results

Filtered Sample. In this section, we repeat all the tables and figures in the main
text for the participants who pass the comprehension quizzes on the first attempt.

Table A1: Demographics (Filtered Sample)

Baseline AI t-test (p-value)

Age 43.39 42.68 0.52
Female 0.47 0.48 0.87
White 0.84 0.77 0.05
Black 0.05 0.10 0.07
Asian 0.08 0.07 0.93
Others 0.00 0.00 0.99
Education: Less than High School 0.00 0.01 0.55
Education: High School 0.13 0.11 0.47
Education: Some College 0.24 0.27 0.50
Education: College or Higher 0.62 0.61 0.83
AI Use Index 4.74 5.01 0.32
AI Trust Index 5.07 5.45 0.12

Observations 246 240
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Table A2: Treatment Effect (Filtered Sample)

Baseline AI p-value p-value
comparing means comparing variances

Value (50-50) 13.159 13.329 0.715 .
(5.487) (4.763) . 0.003

Value (Compound-2) 12.354 12.583 0.641 .
(5.955) (4.836) . 0.000

Value (Compound-4) 12.321 12.725 0.417 .
(5.864) (5.045) . 0.001

Value (Ambiguous) 11.280 11.542 0.617 .
(6.395) (5.019) . 0.000

Observations 246 240

Table A3: Regression: Distance to Risk-Neutrality Value (Filtered Sample)

Dep. Variable: |Value− 15.5| 50-50 Compound-2 Compound-4 Ambiguous

AI -0.92∗∗∗ -1.17∗∗∗ -0.96∗∗∗ -1.07∗∗∗

(0.34) (0.37) (0.36) (0.40)

Demographics Yes Yes Yes Yes
Observations 485 485 485 485
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Table A4: Extreme Percentiles and IQR (Filtered Sample)

Baseline AI

50-50 Lottery
10th percentile 5.50 8.50
90th percentile 19.50 17.50
IQR 6.00 5.00

Compound-2 Lottery
10th percentile 4.50 6.00
90th percentile 19.50 16.50
IQR 6.00 5.00

Compound-4 Lottery
10th percentile 4.50 6.50
90th percentile 19.50 17.50
IQR 6.00 5.00

Ambiguous Lottery
10th percentile 4.50 4.50
90th percentile 19.50 15.50
IQR 9.00 5.00

Observations 246 240

Table A5: Regression: Lottery Value (Filtered Sample)

(1) (2)

Compound-2 -0.78∗∗∗ -0.78∗∗∗

(0.18) (0.18)
Compound-4 -0.72∗∗∗ -0.72∗∗∗

(0.19) (0.19)
Ambiguous -1.83∗∗∗ -1.84∗∗∗

(0.22) (0.22)
AI 0.27 0.18

(0.43) (0.42)
Constant 13.11∗∗∗ 11.91∗∗∗

(0.34) (1.39)

Demographics Yes
Observations 1,944 1,940
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Table A6: Preference Classification, Baseline vs. AI (Filtered Sample)

Baseline AI

Averse Neutral Loving Averse Neutral Loving

Risk 69.5% 8.9% 21.5% 72.1% 9.6% 18.3%
Complexity-2 38.6% 37.4% 24.0% 35.4% 42.9% 21.7%
Complexity-4 37.4% 39.4% 23.2% 36.2% 42.1% 21.7%
Ambiguity 48.8% 32.9% 18.3% 54.2% 25.8% 20.0%

Table A7: Belief and Cognitive Uncertainty (Filtered Sample)

Correct Belief Cognitive Uncertainty

Compound-2 Compound-4 Compound-2 Compound-4

Baseline 0.79 0.72 37.32 42.80
AI 0.75 0.76 35.54 35.58

Table A8: Regression: Change in Cognitive Uncertainty (Compound-4 Minus
Compound-4) (Filtered Sample)

(1) (2)

AI -5.45∗∗∗ -5.54∗∗∗

(1.67) (1.67)

Demographics Yes
Observations 486 485
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(a) 50-50 CDF (b) Compound-2 CDF

(c) Compound-4 CDF (d) Ambiguous CDF

Figure A.17: Baseline vs. AI Treatments, CDFs of Values (Filtered Sample)
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(a) 50-50 PDF (b) Compound-2 PDF

(c) Compound-4 PDF (d) Ambiguous PDF

Figure A.18: Baseline vs. AI Treatments, PDFs of Values (Filtered Sample)
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(a) Value(50-50) − 15.5 (b) Value(50-50) − Value(Compound-2)

(c) Value(50-50) − Value(Compound-4) (d) Value(50-50) − Value(Ambiguous)

Figure A.19: CDF of the Magnitudes of Risk, Complexity, and Ambiguity Aversion
(Filtered Sample)
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