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Abstract

This study investigates the transferability of economic models for indi-
vidual decision-making across different risk domains, specifically comparing
performance between two- and three-state budgetary environments. Utilizing
within-subject laboratory data, we evaluate the ability of Expected Utility
Theory (EUT), Disappointment Aversion (DA), and machine learning models
to predict choices when estimated in a simpler two-state environment and ap-
plied to a more complex three-state environment at the individual level. Our
findings reveal two key insights: (i) there is substantial transferability across
domains for the vast majority of subjects; and (2) EUT demonstrates sub-
stantial transferability, maintaining approximately 92.9% of its within-domain
predictive accuracy when generalized across domains, outperforming both DA
and machine learning models in terms of predictive consistency. These results
underscore the robustness of parsimonious economic models, particularly EUT,
in providing reliable extrapolations across experimental contexts, suggesting

their utility in applications where predictions span diverse risk settings.
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1 Introduction

Economic theory seeks to identify the core concepts underlying choice behavior,
which can then be modeled and applied to a multitude of economically-relevant sce-
narios. However, oftentimes the data that is collected to create an economic model
is meaningfully different from the scenarios which an analyst wants to generate pre-
dictions. These scenarios require models to be not just accurate out-of-sample pre-
diction within a domain, but across domains. For example, financial analysts may
provide prospective investors with mock investment scenarios to elicit risk prefer-
ences, which then guide retirement planning scenarios. It is natural to quantify the
extent to which model predictions transfer across relevant, but separate, domains.

More concretely, consider a choice under risk experiment with linear budget sets.
There are a set of states of nature .S, with each state being equally likely. Subjects
select portfolio allocations of Arrow securities corresponding to the states, where an
Arrow security is defined to be a promise to deliver one dollar if state s € S occurs
and nothing otherwise. Let the vector x denote a portfolio of securities, where each
component z, denotes the number of units of security s. A portfolio x must satisfy
the budget constraint p - x = 1, where p > 0.

Furthermore, consider two sizes of S: |S| = 2 and |S| = 3. While these environ-
ments appear similar, there is a large jump in richness between them, importantly
with regards to generalizations of expected utility theory (EUT). Theoretical prop-
erties, such as singleton separability and joint separability, may also be equivalent in
the former case but not in the latter. Thus, the three-state experiment adds much
of the richness and complexity also present for larger values of |S|.

We use these two environments to empirically determine the transfer performance
of economic models from the case of |S| = 2 to |S| = 3. In particular, we evaluate the
out-of-domain performance of expected utility (EUT) against three metrics. First, we
benchmark out-of-domain performance with “within-domain, out-of-sample” perfor-
mance. This exercise identifies the extent to which behavior shifts between domains,
and usefully acts as an upper bound in the prediction quality of out-of-domain perfor-

mance (Andrews et al., 2023). Second, we replicate the same out-of-domain exercise



with disappointment aversion (DA, Gul, 1991). These models extend expected utility
theory by relaxing the independence axiom to allow for behaviors such as nonlinear
interpretation of probabilities and the Allais (1953) paradox, respectively. This ex-
ercise evaluates whether the additional parameter of disappoint aversion stores more
meaningful information about a subject’s choices over the single parameter we as-
sume for expected utility, or whether they store meaningful information at all.

Finally, we conduct an out-of-domain exercise with black box machine learning
models. These large, flexible model classes are designed for function approximation
via large quantities of data. In the

Prior work has benchmarked economic models against machine learning models
in out-of-sample prediction tasks, with mixed results depending on level of analysis
(individual-level vs. pooled) and data environment (choice under risk, initial play
in matrix games, etc.). However, the message is straightforward: if the machine
learning model outperforms the economic model, then there is a regularity in choice
behavior that the machine learning model captures that economic models do not
capture; it is then the analysts’ job to understand that regularity and incorporate it
into the theory (Fudenberg and Liang, 2019).

The out-of-domain, on the other hand, is subtly more difficult. An economic
model of choice is easily portable between these environments and many others be-
cause we define the economic model over a larger space than a single experiment.
However, machine learning models are inherently restricted to a single input space
dependent on training data, which changes when moving from two dimensions to
three. Hence, the machine learning model needs additional information about map-
ping input spaces, which we make in the form of a symmetry assumption. Without
such impositions, there is no reason to expect high quality extrapolation. For exam-
ple, Andrews et al. (2023) find that machine learning models fail to predict certainty
equivalences that are slightly outside the domain of training data.

To evaluate model performance, we use a measure of transfer completeness adapted
from Fudenberg et al. (2022), which scales the out-of-sample predictive power of a
model to that of a naive benchmark and a model with “irreducible” error. We ana-

lyze transfer performance of models using two estimates of irreducible error: perfect



prediction and within-domain, out-of-sample prediction, as described above.

Our analysis yields two main results:
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Figure 1: The average within completeness and transfer completeness of models

Mild transfer loss: First, data from two-state allocations is an excellent proxy
for choice behavior in three-state allocations, and we observe a tight relationship
between transfer performance and within sample performance. Figure 1 shows a box
plot of within-domain and transfer completeness of EUT, disappointment aversion,
and the subjectwise most complete machine learning model. The line in the box
represents the median, the box represents the middle 50% of the distribution, and
the whiskers represent the ends of the distribution sans outliers, which for each model
are plotted separately below.

As expected, the transfer performance of all models is lower than that of within-
domain estimation. However, the degree to which it lowers is marginal: for EUT,
the average transfer completeness relative to within-domain completeness is 92.9%,

with similar or better transfer results for the other models considered.! Hence, much

IThe same quantities for disappointment aversion and Best ML are 92.5% and 98.5%, respec-



of a model’s predictable variation in a three-good environment is transferable from

models estimated on a two-good environment, despite the added complexity.
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Figure 2: The proportion of subjects for whom transfer-EUT is more complete, by
model and estimation method.

Strong EUT transferability: Second, the single parameter of EUT is sufficient
for transferring demand information from two-state allocations to three-state allo-
cations. Figure 2 shows the proportion of subjects for whom transfer-EUT is more
complete, which we denote the “win rate” of EUT transfer, for each model and for
each estimation method. We see two key results.

Unsurprisingly, for EUT, within-domain estimation is significantly more likely to
be more complete than transfer estimation (binomial test, p = 0.01). The same is
true for within-domain DA. However, the win rate of transfer estimation of EUT is
approximately even with within-domain Best ML (p = 0.396), despite being trained

on the three-good experimental data. When comparing transfer performances, the

tively.



win rate of EUT is approximately that of DA (p = 0.545), but is significantly higher
than 0.5 for Best ML (p < 0.001). Hence, the additional flexibility of these models
does not systematically afford increased transferability across domains relative to
EUT.

We additionally select subjects to highlight the extent to which economic models
can transfer. We find the subjects with the highest deviance comparing within-
domain and between-domain completeness stem from vastly different choice patterns
between two-state allocations and three-state allocations.? Additionally, we find that
economic models can assign an incorrect heuristic to choices in two-states, which may
lead to arbitrarily large errors in three states. Finally, we examine the subjects for
whom EUT performs worst compared to machine learning models. We find that
the increased performance seems coincidental: it stems from subjects exhibiting risk
neutral behavior in two states and smooth downward sloping demand in three states.
These subjects are best predicted by linear regularized regressions, whose imperfect
fit of risk neutral behavior in two states coincidentally aligns with the behavior
in three states. Other machine learning models such as random forests, gradient-
boosted regression trees, exhibit equally poor performance as EUT. Thus, we believe
the results stem less from a regularity in choice data and more from a coincidence in

model behavior.

2 Related Literature

Our paper closely relates to papers that evaluate the transfer performance of eco-
nomic models in various settings. Andrews et al. (2023) conduct an aggregate-level
exercise to predict certainty equivalences of binary lotteries and evaluate how well
the model transfers to different distributions of problems and accompanying data

sets of subject pools that face those distributions. They find that economic mod-

2At least, there are no decision rules we are aware of that simultaneously generate these types
of choice patterns in two-state and three-state experiments, although frequently the choice pattern
in the experiments can be easily explained standalone.



els transfer approximately equally well across subject pools, and do so better than
machine learning models. However, they find that when controlling for the distribu-
tion of problems, the machine learning models generate similar transfer performance
estimates as economic models.

Kobayashi and Lucia (2023) compare the relative performance of EUT, CPT, and
machine learning models in binary prediction tasks in two scenarios with prevalent
non-EUT behavior: common ratio tasks 4 la Allais (1953) and preference randomiza-
tion tasks & la Agranov and Ortoleva (2017). They find that machine learning mod-
els have better out-of-sample prediction than three-group economic mixture models
within a task type, but worse cross-task prediction when training on questions of
one type and testing on another. Fehr et al. (2023) uses a Bayesian nonparametric
clustering method to identify clusters of preference types in social preference space.
For estimation, they conduct a similar exercise to Kobayashi and Lucia (2023) by
estimating models on 12 “centered” budget lines that contain an equal allocation
and making predictions on up to 52 “non-center budget lines” which do not contain
an equal allocation (or contains it at an endpoint of a budget line). They show that
the model produces similar estimates to individual-level preference estimation and
outperforms machine learning models, justifying their method over individual-level
estimation due to parsimony. Relative to these two papers, our task focuses instead
of increasing the complexity of the environment subjects face, rather than modify-
ing the payoff values within a given environment. Additionally, we provide machine
learning models with some information on how to transfer, and find smaller gaps in
performance between economic and machine learning models.

We employ similar methods. Our discussion of transfer performance relative to
within performance can be interpreted in the Andrews et al. (2023) framework as
“transfer deterioration”, which is also similar to the completeness of transfer esti-
mation relative to random uniform choice and within-sample estimation (Fudenberg
et al., 2022). However, our environment differs in two important ways. First, our
transfer question of interest focuses not on a change in distributions of choices con-
ditional on problems, but instead on a change in the covariates between domains.

In this sense, we are interested in how the same decision maker makes decisions in



new scenarios, as opposed to how different decision makers approach the same envi-
ronment. Prior papers sidestep the issue of various inputs by evaluating differences
in distribution (holding covariates fixed) or explicitly use this limitation to showcase
changes in distribution of choices. Second, our rich data sets allow us to perfor-
mance within-subject analysis at the individual level, as opposed to aggregate-level
between-sample. By doing so, we produce a strong evaluation of transfer performance
of economic models.

We also relate to papers that compare the out-of-sample prediction performance
of economic models against machine learning models, but do not vary the choice
environment. These papers span much of economic theory, including choice under
risk and ambiguity (Peysakhovich and Naecker, 2017, Plonsky et al., 2019, Peterson
et al., 2021, Fudenberg and Puri, 2022, Hsieh et al., 2023, Ke and Zhao, 2023, Ellis
et al., 2023), preference elicitation methods (Clithero et al., 2023), and initial play in
matrix games (Fudenberg and Liang, 2019), among the topics discussed above. Also
of note are papers such as Halevy et al. (2018), which employ prediction to evaluate
various structural estimation methods for models of choice under risk.

Our paper also touches upon the consistency of experimental risk elicitation meth-
ods. Friedman et al. (2022) generate risk preference estimates for six elicitation
methods, evaluating the correlation between the estimates based on design features.
They find that designs align stronger when attributes of the design, such as the num-
ber of alternatives or whether the representation of choices is visual, align. Much
of the remaining literature analyzing elicitation methods hold an elicitation method
fixed and analyze changes in behavior and/or incentive compatibility when varying
attributes of the method.> While our analysis is instead focused on prediction and
not on incentive compatibility or recover of preferences, we are similarly interested

in the portability of economic models across different experimental environments.

3For examples, Brown and Healy (2018) evaluates multiple price list behavior when showing
questions on one screen versus each question appearing on a separate screen. Cox et al. (2015)
focus on varying the payment mechanism for a sequence of decision problems.



3 Template for Analysis

3.1 Experimental design

Our dataset is comprised of data from laboratory experiments in which 67 subjects
solve a portfolio choice problem. The data was collected previously; for an extended
description of the experimental design and procedures, as well as full experimental
instructions that include screenshots of the computer program dialog windows, see
Choi et al. (2007) and Dembo et al. (2021).

Subjects participated in two experiments. In the first experiment, denoted the
“2D experiment”, there are two equiprobable states of nature s = 1,2 and an Arrow
security for each state. Let S denote the set of states. An Arrow security for state
s is defined to be a promise to deliver one dollar if state s occurs and nothing
otherwise. Let x = (x1,22) > 0 denote a portfolio of securities, where x, denotes
the number of units of security s. A portfolio x must satisfy the budget constraint
p-x = 1, where p = (p1,p2) > 0 is the vector of security prices and ps denotes
the price of security s. In the second experiment, denoted the “3D experiment”,
there are instead three equiprobable states s = 1,2, 3, portfolios consist of three

accounts x = (z1, rg9,x3) > 0 and must satisfy a budget constraint with three prices

p = (p1,p2,p3) > 0.

3.2 Evaluating model performance

We conduct two exercises. First, we evaluate models using a within-domain, out-of-
sample prediction task for the 3D environment. We use the completeness measure
from Fudenberg et al. (2022), which reports the fraction of predictable variation
a model captures. Second, we evaluate models with a between-domain prediction
task, where we estimate a model on data from the 2D environment and then predict
choices in the 3D environment. We again use completeness to report the fraction of
predictable variation a model captures between domains. To distinguish, we refer
to the former as “Within completeness” and the latter as “Transfer completeness”.

Our main analysis compare within vs. transfer completeness for a given model and



compare transfer completeness across models.

We evaluate model performance at the individual-level, and thus suppress subject
indicators in the definitions below. Otherwise, we introduce notation relevant for
the analysis. Given a chosen (i.e. “demanded”) portfolio x, let dy be the (relative)
demand of state s, defined as d, = Zm/—xs/ Note that since budget sets are required to
satisfy p-x = 1 with equality, knowing the relative demand for one state is sufficient
to know demand in the 2D environment, and knowing the relative demand for two
states is sufficient to know demand in the 3D environment. We use d = d; and
d = (di,ds) for the 2D and 3D environments, respectively. Thus, in all analysis
below, the error is evaluated over d-space instead of x-space.

Let B denote the set of budget lines, and let {(B%,d")}?; denote the data ob-
served for an individual. Following the terminology and notation of Fudenberg et al.
(2023), a predictive mapping f : B — d is a map from budget sets into relative de-
mand. Mappings are evaluated using the squared error loss function ¢ :d xd — R
where ((f(B%),d") = || f(B?) — d?||? is the error assigned to a predicted relative de-
mand f(B%) when the actual relative demand is d’.* The expected prediction error

for a mapping f is the expected loss

Ep(f) = Ep[((f(B'),d")]

where P denotes the joint distribution of (B,d).” We are interested in comparing
set of mappings parametrized by some O, Fo = { fy}gco, which we call “models” or
“parametric models”. The prediction error of a parametric model Fg is denoted by

the lowest expected prediction error of mappings contained in that model:

Ep(Fo) = Ep[l(f5(B"),d")]

“Recall that the p-norm is |[x||, = (3, |2 |p)1/p. When a norm is written without a p subscript,
we mean the 2-norm.

5Note that P for a model of deterministic demand would have a degenerate conditional distri-
bution for d when B is known. Additionally, because we conduct analysis at the individual level,
P may be different for each subject.
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where f&§ = argminser, Ep(f).

Completeness Completeness is the amount that a model improves predictions
over a naive baseline relative to the amount that an ideal mapping with irreducible
error improves predictions over a naive baseline. That is, the completeness of a
model Fg, denoted by kg, is defined by

- _ Enlfa) — Ep(f3)
© " &p(fa) — Er(f)

where f, is a naive benchmark mapping and the ideal mapping with irreducible error
is defined by
f*(B") = arg Iréi*n Eplt(d*,d")|B).

Since in either experiment subjects see budget sets at most once, it is possible to
construct a function, from budget sets to demand, that will achieve zero error, and
thus we assume that f*(B?) = d’, which in turn implies that Ep(f*) = 0. The naive
baseline mapping f,, is assumed to be i.i.d uniform choice over d. Given demand d,
the expected error is £ (1—3d+3d?) in the 2D environment and 1 — 2d; — 2dy+d3 +d3

in the 3D environment.%

In the 2D environment, this is analogous to a uniform choice over the interval [0,1]. Given a
subject’s actual choice d, the error of a naive model is ¢(d,,,d) = (d,, — d)?. If d,, ~ U[0, 1], then
the expected MSE conditional on the actual choice d is:

1
/ (d — n)2dy = %(1 ~3d 4 3d%)
0

In the 3D environment, when given a subject’s actual choice d, the (squared) error of a naive
mapping is:
U d) = [|d, — dI[? = (di — d1,0)* + (ds — da,0)

The uniform random naive mapping assumes that the relative demand is drawn uniformly over the
region Q = {(dy1,ds) | d1,ds > 0 and dy + d2 < 1}. The probability distribution function of this
distribution is

2 (dl, dg) 2y

0 otherwise

f(dy,d2) = {

For a given demand d = (d;,ds), the expected prediction error of a random draw is:

11



Within-domain We estimate Ep(f,) and Ep(f§) using data from the 3D envi-
ronment for each subject, and then plug these estimates into the formula for li@
for an estimate for completeness. The estimate of Ep(f,) is &, = % L s~0, 3 -
2di — 2dy + (di)* + (di)®. To estimate the expected prediction error of paramet-
ric models, Ep( f(f)) we use 10-fold cross-validation. In this exercise, the set of
data {(B?,d")}°, is partitioned into 10 equally sized, mutually exclusive subsets
Z1, ..., %10, each with five observations. Each partition Zj is then used for out-of-
sample prediction, where the complement of the partition Z_j is used to estimate f§
as f~% = arg ming,cr, & > igz, U(fo(B), d"). The estimate f‘k is then used to gener-
ate an estimated out-of-sample prediction error over Zy, é = £ >, Z ((fH(B),d?).

The estimate of Ep(f§), denoted (‘:’9, is the average of the partition-level error esti-

1 10
ge_TO;ek

The estimate of completeness is thus

mates:

Fudenberg et al. (2022) show that each individual estimate & is consistent, and
thus Re is also consistent. Fudenberg et al. (2023) further extend this - assuming
that £, > 0 and regularity conditions, the asymptotic difference between fg and kg

is normal.

// [(dy —m)? + (d2 — 12)?] f(n1,m2)dnydns
1-n2
= / / [(dy —m)? + (dz — 12)°] diprdi
1

2 2
3 3d Sdz-‘r—d + d;

12



Between-domain We estimate Ep(f§) for the 3D environment by minimizing loss

on 2D data. Let {(B',d")}}?, denote data in the 3D environment, {(B7,d’)}>2,

denote data in the 2D environment. f§ is estimated using

~

50
1 . )
* mi _ E J J

The estimate of model error Ep(f§), denoted &o, is the loss of fg) in the 3D environ-

ment:
50

fo= >0 (fal). )

i=1

The estimate of Ep(f,) is identical to that of the within-domain estimation.

3.3 Economic models

We consider expected utility theory (EUT) and disappointment aversion (DA) by
Gul (1991). Since EUT is a special case of DA, we describe DA in detail below and
note how it nests EUT.

Disappointment Aversion In the disappointment aversion model, a (simple)
lottery L is evaluated by placing differing weights on “elating” outcomes, which are
preferred to the lottery, and “disappointing” outcomes, which are not preferred to the
lottery. Thus, a lottery is represented as an elation/disappointment decomposition
(EDD), denoted («,q, ), which creates two lotteries ¢ and r containing the more
preferred and less preferred alternatives of a lottery, respectively, such that cg+ (1 —

a)r = L. Given an EDD (a, ¢, r), the utility function of disappointment aversion is

UR) =7(e) Y u@)g(@) +[1 = ()] Y ulx)r(z),

x T

where vy(a) = m, B > —1, is the weight placed on elating outcomes, and X
is a rank-ordered profile. For § > 0, 7(«) < « and thus additional weight is placed

13



on disappointing outcomes. The opposite is true for § < 0. EUT is nested as the
special case of = 0, which shuts down the v(«) distortion channel.

In the 2D environment with two equiprobable states, the model condenses to:

U(x) =7(0.5)u(znm) + [1 = ~(0.5)]u(xr),

where again X = (xp,zy) is a rank-ordered portfolio with x;, < xy. The estimated

. . . 1/2 . .
S value is obtained by solving v(0.5) = m, which results in § = m —2.

In 3D, disappointment aversion predicts two separate utility values depending on
whether the EDD is (3,2, 3y + 32) or (3, 32 4 3¥,2). The utility of a rank-ordered

portfolio (zr,zy, zy) is

Ux) = 1 i 1 1
48 [w(zy) +u(zy) + (1 + Bu(zr)] EDD = (3, 575 + 570, 71)

The first case occurs when U(X) > u(zyy), and the second case occurs when U(X) <
u(zpr). The boundary condition is thus U(X) = u(zys), which occurs when u(zy) +
(14 B)u(zr) = (2+ Bu(zm).

Each sub-function of the piecewise function U(X) is a special case of RDU, but

disappointment aversion is not a special case of RDU. Within the RDU model, setting

wy = % and wy = % results in disappointment aversion utility for EDD =
(%,ZE, %y + %z) Setting w, = % and wy = % results in disappointment aversion

utility for EDD = (3, 32+ 3y, 2).

Implementation For each subject, for within-domain and between-domain esti-
mation, and for disappointment aversion and EUT, estimation is done via nonlinear
least squares. We estimate using two Bernoulli utility functions u(x). First, we use

the constant absolute risk aversion (CARA) utility function u(z) = —e~4%, with

14



A > 0. Second, we use the constant relative risk aversion (CRRA) function
zl-

. p#1

log(x) p=1 7

u(z) =

with no limitation on p. When reporting the performance of a model, we report the
more complete of CARA or CRRA.

3.4 Machine learning models

We utilize a suite of machine learning models to compare against EUT and DA
across three classes regularized regressions, tree-based, and neural networks. We
briefly cover each type of model below, referring readers to Hastie et al. (2009) for
more in-depth discussion.

Regularized regressions select from the class of linear models frqs50(B) = BTB in
the same manner as OLS, but do so with a modified objective function that adds
the norm of the coefficients A || 3], as a “regularization” term, multiplied by a tuning
parameter A controlling the strength of the regularization. We use p = 1 and p = 2,
which correspond to lasso and ridge regression, respectively. We use leave-one-out
cross-validation to determine the parameter A € [0,0.2,0.4,0.6,0.8, 1].

Tree-based models select from the class of piecewise step functions. Starting from
the entire input space, a single decision tree will recursively partition the input space
in a binary, locally optimal fashion to minimize prediction error of separate values
predicted for each subset. Since this partitioning process, if allowed to continue
without restraint, would end with each data point in its own partition with perfect
within-sample prediction, we intentionally limit the depth of trees and set a minimum
number of observations per terminal partition.

Since a single decision tree is typically insufficient to express rich variation, we
utilize two tree aggregation methods as well. Random forests (Breiman, 2001) aver-
age across multiple trees trained on bootstrapped samples with a subset of variables.

Gradient boosted decision trees iteratively train trees on weighted residuals of the

15



previous trees, whose final prediction rule aggregates previous trees. In particular,
this model is commonly seen as best model for tabular data (Schuler et al., 2023).

Finally, we utilize neural networks, which iteratively conduct affine transforma-
tions and nonlinear transformations on the input space, eventually aggregated as
a demand prediction. We implement multilayer perceptron neural networks using
specifications from Hsieh et al. (2023). We set the nonlinear transformation to be
o(x) = max{z,0} and search over all combinations of {1,2,3} hidden layers, as
well as all combinations of {15,20,25} for the size of each layer, for a total of 39
architectures investigated.

Note that, regardless of the model used, there is an inherent nontransferability of
the machine learning models when estimating on the 2D environment and predicting
on the 3D environment because the training data is of a different input size than
the testing data. To match the two, we input the 2D data as coming from a 3D
environment where one price is infinitely large. Hence, a 2D budget set B is input
as the vector [py,ps,0], the chosen portfolio is x = [x7,22,0] and the demand is
d= [m, JTQM] This is known as “zero-padding”, and is a simple and common
method to maintain input size.

Without any further modifications, training a machine learning model on this
input would perform poorly, as there is no variation in the third component. To
ensure that a machine learning model learns relationships between all three states,
we impose a symmetry assumption. We create six copies of the data and label the
copies according to the six possible permutations of accounts z, y, and z. Thus, a

single portfolio choice that a subject made from a budget set B is input six times as:

P X d
[1/p1,1/p2, 0] [z1,22,0]  [5-, x1+x2]
[1/p1,0,1/pa]  [21,0,20]  [5-,0
[1/p2,1/p1,0] |22, 21,0] [x1+x2’ x1+$2]
[1/p2,0,1/p1]  [22,0,21]  [5%,
[0,1/p1,1/po] [0, 21, 22] [0 »x1+x2]
[0,1/p2, 1/p1] (0,22, 21] [0, 5]

16



4 Results

Recall that Section 1 summarizes our main results: (i) there is mild transfer loss
between two states and three states (see Figure 1), and (ii) EUT transfers at least
as well as disappointment aversion and better than machine learning models (see
Figure 2). We further investigate these claims in this section.

Table 1 provides a population-level summary of our results, elaborating on the
information provided in Figures 1 and 2 above. The left column reports the av-
erage completeness of each model for each estimation method. The next block of
five columns provides a five-number summary of average completeness, which are
reported in Figure 1. The seventh column shows the win rate of EUT transfer
against models, which are reported exactly in Figure 2. The final two columns show
the average and median ratio of transfer completeness to within-sample complete-
ness. The table elaborates on the first claim regarding distribution tightness. While
the distributions of EUT within and EUT transfer are mildly significantly different
(Kolmogorov-Smirnov test, p = 0.043), they are not for disappointment aversion
(KS-test, p = 0.329) or machine learning (KS-test, p = 0.447). For EUT, the sig-
nificance appears to stem from a stronger left skew in transfer completeness than
within, since the majority of subjects possess a transfer completeness of at least
98.5% relative to within.

Next, Figure 4 shows scatter plots transfer completeness and within-domain com-
pleteness for EUT. The transfer completeness is plotted on the x-axis, and the within-
domain completeness is plotted on the y-axis. The proportion of subjects with higher
transfer completeness is shown below the diagonal, and the proportion of subjects
with higher within-domain completeness is shown above the diagonal. Finally, we
provide a kernel density estimate showing the marginal distribution of completeness
scores for each estimation. The results, perhaps unsurprisingly, exhibit asymmetry in
favor of within-domain. While 34.3% of subjects have higher transfer completeness
than within-domain completeness, these subjects lie within a tight bound around
the 45-degree line. On the contrary, the difference in completeness for the remaining

65.7% of subjects with a higher within-domain completeness than transfer complete-
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Table 1: The transfer and within completeness of models

R '%transfer//%withm
Model Mean Min 25% Median 75% Max Win%gyr Mean Median

EUT  Within 88.3% 52.9% 84.7% 89.9% 93.8% 100.0% 34.3%
Transfer 82.1% -27.3% 79.6% 85.5%  92.7% 100.0% -

DA Within  88.5% 53.9% 84.3% 90.5%  93.4% 100.0% 22.4%
Transfer 80.6% -282% 79.0% 86.1%  92.0% 100.0% 53.7%

ML Within 85.1% 45.4% 81.6% 86.3% 91.3%  99.9%  55.2%
Transfer 83.4% 51.7% 79.1% 84.5%  89.2%  98.0% 71.6%
The left column reports the average completeness of each model for each estimation
method. The next block of five columns provides a five-number summary of average
completeness, which are reported in Figure 1. The seventh column shows the win
rate of EUT transfer against models, which are reported exactly in Figure 2. The
final two columns show the average and median ratio of transfer completeness to
within-sample completeness.

92.9%  98.5%

90.9%  98.0%

98.5%  99.6%

ness is significantly more heterogeneous. These results are also robust to analyzing
non-EUT models of choice under risk. Appendix Figure A.1 plots transfer complete-
ness against within-domain completeness for disappointment aversion and machine
learning. Both panels are similar to Figure 4, but exhibit higher levels of dispersion.

Next, we examine the transfer completeness between models. Figure 5 plots the
transfer completeness of EUT against disappointment aversion and machine learning
in the same manner as in Figure 4. Panel 5a plots EUT and disappointment aversion,
and Panel 5b plots EUT and machine learning.

First, disappointment aversion and EUT exhibit approximately equal complete-
ness. EUT is more complete than disappointment aversion for only 53.7% of subjects,
which is not significantly different than 50% (binomial test, p = 0.313). Addition-
ally, there are very few subjects with completeness scores away from the 45-degree
line, indicating a consistency between model predictions. Second, EUT on average
outperforms machine learning models, and is more complete for 71.6% of subjects
(binomial test, p < 0.01). Compared to the relationship between EUT and disap-

pointment aversion, there is more dispersion primarily in favor of EUT, but also
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Figure 5: Relative transfer completeness of EUT

some in favor of machine learning models. Not displayed are subjects exhibiting
extreme low levels of EUT transfer completeness, but reasonable machine learning

completeness. We examine such a subject in the next section.

4.1 Individual subject analysis

Finally, we examine the choices of select subjects that demonstrate the extent to
which economic models can transfer. Here, we highlight two general classes - (i)
strong transferability within the scope of utility maximization and (ii) strong trans-

ferability outside the scope of utility maximization.

Utility-maximizers Figure 6 shows the 2D and 3D data for subjects 101, 221,
and 222. The left-hand column shows the relative demand in 2D for the three
subjects. The x-axis corresponds to the log price ratio and the y-axis corresponds to
the relative demand d for account z. The right-hand column shows choices plotted
in a rank-ordered budget set, with the most expensive account in the bottom right,

the least expensive account in the top, and the final account in the bottom left.

20



Figure 6: Demand of subjects 101, 221, and 222 for 2D and 3D.
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The left-hand column shows the relative demand in 2D for the three subjects. The x-axis
corresponds to the log price ratio and the y-axis corresponds to the relative demand d for
account z. The right-hand column shows choices plotted in a rank-ordered budget set,
with the most expensive account in the bottom right, the least expensive account in the
top, and the final account in the bottom left.



Subject ID 222 consistently chooses the middle of the 45 degree line in 2D, which
is consistent with log utility preferences. Their results in the 3D environment exhibit
a similar smoothness, albeit at a slightly less risk averse rate - for comparison, the
estimate of p for CRRA is 1.001 in the 2D environment and 0.645 in the 3D environ-
ment. Subject ID’s 101 and 221, who exhibit heuristics of choosing the intersection
with the 45-degree line and the highest intercept, respectively. These choice rules
are consistent with (infinitely) risk averse and risk neutral preferences, respectively.
Both subjects exhibit a high completeness in all settings; for subject ID 221, transfer
and within-domain EUT completeness are 96.3% and 96.2%, respectively. For sub-
ject ID 101, EUT transfer and within-domain completeness are 99.96% and 99.9999%

respectively.

Consistent, but not utility maximizing Figure 7 plots plots the data for sub-
jects 108 and 207. Subject 207 exclusively invests in the asset with higher intercept,
which is consistent with risk neutral preferences. Subject 108 exhibits the same be-
havior for extreme price ratios, but instead invests equally in the two assets when
prices are relatively close. This is consistent with disappointment averse, risk neutral
preferences. Despite this good fit in two states, the disappointment aversion transfer
completeness is 47.1% for subject 108 and -25.5% for subject 207.

The behavior, however, is quite regular and nearly deterministic; hence, machine
learning models exhibit 81.2% and 83.9% completeness. Subjects 108 and 207 ex-
hibits a simple two-part procedural rule. First, if the most expensive account is suffi-
ciently expensive, it is not considered, and as such no Arrow securities are purchased
for the corresponding state of the world. Second, the amount of Arrow securities pur-
chased in the remaining states are equalized to remove uncertainty conditional the
state(s) being considered. This type of behavior is consistent with rule-based ratio-
nality discussed in Choi et al. (2006) and Halevy and Mayraz (2024). In particular,
it is consistent with the A-ratio similarity of Rubinstein (1988). In two dimensions,
this is equivalent to disappointment aversion with risk neutrality. However, in three
dimensions, the behavior generates a choice rule that is inconsistent with both DA
and EUT.

The discrepancy is particularly stark for subject 207. Assuming p, < p, < p., the
prediction from risk neutrality always estimates d = (1,0), whereas the procedural
rule of subject ID 207 will choose d = (0.5, 0.5), which generates an error of 0.5. Since

the uniform random naive mapping expected error is 1/6, completeness is negative.



Figure 7: Demand of subjects 108 and 207 for 2D and 3D.
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The left-hand column shows the relative demand in 2D for the two subjects. The x-axis
corresponds to the log price ratio and the y-axis corresponds to the relative demand d for
account z. The right-hand column shows choices plotted in a rank-ordered budget set,
with the most expensive account in the bottom right, the least expensive account in the
top, and the final account in the bottom left.
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5 Conclusion

Overall, we find strong transferability of economic attitudes across budgetary choice
environments. EUT, despite its single-parameter structure, demonstrates strong
predictive consistency when transferring demand information between the two-state
and three-state environments, with minimal loss in performance relative to within-
domain predictions. This consistency underscores EUT’s robustness in extrapolat-
ing across risk domains, contrasting with DA and machine learning models, which
do not achieve substantial improvements or may even underperform when applied
out-of-domain. Overall, these findings highlight the utility of economic models in
extrapolating behavior across domains and suggest that their theoretical simplicity

can be advantageous in contexts where domain shifts occur.
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