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Abstract

We investigate preferences for acting stochastically in the context of social prefer-

ences. We analyze a Probabilistic Dictator Game under a broad class of models that

incorporate ex-ante and ex-post social preferences as well as stochastic choice models

that motivate stochastic giving beyond pro-social reasons and study their implications

with lab experiments. The behavior of a majority of dictators is inconsistent with the

models of ex-ante/ex-post social preferences when the parameters are selected from a

meaningful range. Nevertheless, a majority of dictators are consistent with the axioms

of stochastic transitivity and regularity. Furthermore, their behaviors are in line with

an Additive Perturbed Utility model.
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1 Introduction
Social preferences characterize the behavior of individuals who care about others’ payoffs. A

vast literature explores these preferences and their applications in contexts such as dictator

and ultimatum games, charitable giving, public goods provision, collective action incentives,

and redistribution policies (see Fehr and Charness, 2025 for a survey). While much of this

literature examines deterministic environments, recent research has increasingly focused on

decision-makers who may impact others’ payoffs stochastically by taking risky actions or

deliberately randomizing between possible strategies (see, e.g., Saito, 2013; Trautmann, 2009;

Brock et al., 2013; Miao and Zhong, 2018). One approach suggests that social preferences

lead to risky allocations in order to give others fair opportunities (ex-ante fairness by Saito,

2013). On the other hand, individuals may randomize between allocations because it is too

costly to commit to a specific allocation (Fudenberg et al., 2015).

Motivated by these alternative approaches, in this paper, we derive the predictions of

a general class of ex-ante/ex-post fairness models as well as stochastic choice models that

motivate preferences for randomization beyond pro-social reasons in the context of a novel

Probabilistic Dictator Game. We study these theoretical predictions in a series of laboratory

experiments. While ex-ante fairness models predict either deterministic behavior or a ran-

domization on a limited set of allocations in our setup, the subjects tend to randomize over

a wide range of allocations. Nevertheless, their behaviors are consistent with the axioms of

stochastic transitivity and regularity.

Consider an extension of the standard dictator game where a decision maker (dictator) has

$10 and decides how to allocate it between himself and a recipient, possibly probabilistically.

We call this game the Probabilistic Dictator Game. It is applicable to situations such as a

leader choosing a risky plan that will create probabilistic returns for the involved parties.

In this game, the dictator could still exhibit a deterministic choice by placing 100% weight

on one of the allocations and giving a fixed amount with certainty. Alternatively, he may

choose a risky allocation such as giving $5 and $0 with 40% and 60% chances, respectively.

While a selfish dictator gives $0 and a fair-minded one aiming to equalize payoffs gives $5

with 100% chance, the motivation for giving stochastically may not be as clear. One reason

could be the dictator is concerned about ex-ante fairness (giving the other person a fair
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opportunity) and on average wants to give $2; therefore, the above randomization is a way

to do that. Alternatively, he is split between being fair and selfish and employs a random

utility maximization model or it might be too costly for him to commit to a fixed allocation.

Theoretically, we first characterize the predictions of the models that combine social

preferences for opportunities and outcomes in a Probabilistic Dictator Game. We start with

the seminal paper of Saito (2013) - Expected Inequality Aversion model (ex-ante/ex-post

inequality aversion) - that combines these two motives linearly based on an inequality aversion

model of Fehr and Schmidt (1999). Then we change the underlying social preference to the

distributional preferences model of Charness and Rabin (2002). Next, we consider a wider

class of non-parametric and possibly non-linear models of social preferences under risk and

characterize the behavior of the dictator under these models, including the non-parametric ex-

ante/ex-post preference model and the quadratic welfare model of Epstein and Segal (1992).

These models predict mostly deterministic giving and the type of stochastic giving they can

accommodate is specific: the dictators will randomize between at most two allocations even

in a domain where various ways of giving are possible. A wider range of randomization can

only occur under confined parametric assumptions within these models. Our Experiment

1 investigates this sharp prediction in a simple Probabilistic Dictator Game. We observe

that a majority of the dictators neither give deterministically nor randomize between two

allocations. In other words, a majority of the subjects falsify the predictions of the models

that combine ex-ante and ex-post social preferences.

There is a significant body of stochastic choice models and their axiomatic foundations

(Strzalecki, 2025) arguing that agents may not have stable preferences (due to, for example,

randomness of utility) or they may prefer randomizing between options (see, for example,

Fudenberg et al., 2015). While these models are primarily written for decision problems of a

single (selfish) agent, their axioms are naturally applicable to the domain of social preferences.

Our Experiment 2 is designed to study the main models (or their corresponding axioms) of

this literature in a Probabilistic Dictator Game. In this experiment, we elicit dictators’

randomization behavior in four Probabilistic Dictator Games with nested menus of possible

allocations.

Experiment 2 confirms the main message of the results we find in Experiment 1: There
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is a tendency to give stochastically beyond what can be explained by the social preference

models, as these models can only account for the behavior of 27-41% of subjects. Only about

17% of subjects made a deterministic choice (choosing a sure allocation), and all of them

could be modeled as rational preference maximizers. A majority of subjects satisfied key

rationality properties in the probabilistic choice environments: 58% satisfied Regularity, and

92% satisfied Moderate Stochastic Transitivity. In our setting, the behavior of the former

group admits a Random Utility representation, while the choices of the latter align with the

Moderate Utility Model of He and Natenzon (2024). Finally, we investigate the Additive

Perturbed Utility model of Fudenberg et al. (2015), which combines the expected utility of

consumption with a non-linear cost function. Depending on the specification, between 39%

and 79% of the subjects’ behavior is in line with this model.

Literature Review.

Our study relates to a class of theoretical and experimental papers that investigate social

preferences with risky outcomes, particularly in the context of the dictator game (Andreoni

et al., 2020; Krawczyk and Le Lec, 2010; Brock et al., 2013; Cappelen et al., 2013; Sandroni

et al., 2013; Miao and Zhong, 2018). A key finding in this literature is that individuals value

both ex-ante and ex-post payoffs of others.

Empirically, most experiments on the dictator game with risk components are character-

ized by (i) a binary-state environment where the menu of possible allocations has two elements

(Krawczyk and Le Lec, 2010; Brock et al., 2013), and (ii) predetermined levels of exogenous

risk (Andreoni and Bernheim, 2009; Bolton and Ockenfels, 2010; Chen and Zhong, 2025).

Regarding point (i), when a dictator is making a choice in a binary-state environment and

must choose between, say, keeping his entire endowment or giving the entire amount to the

recipient, he might randomize between the two options because his preferred option—such as

a 50-50 split—is not available. Moreover, as our theoretical analysis shows, a binary setting

may not be suitable to study some predictions of the social preference models, as it does not

allow subjects to exhibit preferences for randomization over a wide range of allocations. We

address this problem in Experiment 1 by eliciting the dictator’s behavior from a menu of

eleven possible allocations. Therefore, our results fill this gap in the literature.

Regarding point (ii), Bolton and Ockenfels (2010) study the choice of a dictator who
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faces a safe allocation and a risky option consisting of two given allocations with equal

probabilities. Andreoni and Bernheim (2009) introduce the possibility that nature determines

the allocation. In their experiments, the probability of nature deciding and the payment if

nature decides are exogenously given. In contrast to these two papers, both the source and

the degree of risk are endogenous and determined by the dictator in our experiments. Chen

and Zhong (2025) is another relevant study with exogenous risk. In one of their experiments,

people choose between keeping a randomly determined endowment, which may be high or

low depending on nature, or splitting it equally with an anonymous partner. They find

that individuals act more morally in uncertain environments, a pattern they attribute to

quasi-magical and magical thinking, in which moral actions are believed to induce favorable

outcomes from nature. Our experiments, by contrast, endogenize risk and thereby shut

down these quasi-magical and magical thinking channels as the dictator can always choose

to guarantee a certain outcome.

There is some recent research connecting social preferences and risk attitudes, including

Zame et al. (2025) and Feldman and López Vargas (2024). Zame et al. (2025) provide

conditions to deduce the dictators’ preferences on lotteries with social impact from their

choices in domains where outcomes are personal or riskless. Feldman and López Vargas

(2024) propose and estimate a parametric model that incorporates both ex-ante and ex-post

fairness motives. In our experiments, regression analyses suggest that risk attitudes have a

negligible and insignificant effect on other-regarding preferences.

The theoretical research on stochastic choice has been mostly within the single-agent

framework (see Strzalecki, 2025). A growing body of empirical findings documents that

individuals tend to act stochastically when choosing between lotteries with private outcomes

(e.g., Agranov and Ortoleva, 2017, Ellis et al., 2024). Ellis et al. (2024) find strong support

for rationality for those who act deterministically, and this is consistent with what we find

in our Probabilistic Dictator Games.

The following sections are organized as follows. Section 2 introduces a Probabilistic

Dictator Game and studies predictions of a general class of social preferences for outcome

and opportunity. Section 3 describes the design of Experiment 1, and Section 4 presents

its results. Section 5 introduces Experiment 2. The results of Experiment 2 are reported in
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Section 6. Additional analyses are presented in Section 7. Section 8 concludes. All the proofs,

additional data analyses, and the instructions of the experiments are in the Appendices.

2 Setup and the Theoretical Predictions of Social Preference
Models

A Probabilistic Dictator Game is a decision problem of an agent (dictator) who decides how

to allocate an endowment, M > 0, between himself and a recipient possibly probabilistically.

Let A = {a1, . . . , an}, with n ≥ 2, denote a finite menu of possible allocations where ai =

(xi, yi) ∈ R2
+ represents the payoffs of the dictator (xi) and the recipient (yi), such that

xi + yi = M for all i. The allocations are ordered so that the dictator’s payoff is increasing,

i.e., xi+1 > xi. For simplicity, we assume that x1 = 0 and xn = M . The dictator chooses

a probability distribution ρ = (ρ1, . . . , ρn) ∈ ∆(A), where ∆(A) is the set of all probability

measures over A.1

2.1 Ex-ante/Ex-post Preferences

We start the analysis by assuming that the dictator has preferences for both opportunity

and outcome. This is one of the leading approaches in investigating other-regarding pref-

erences in risky environments. The dictator’s utility from choosing ρ ∈ ∆(A) is given by

V(Φex-a(ρ),Φex-p(ρ)), where Φex-a and Φex-p capture distributional preferences in the ex-ante

and ex-post senses, respectively. Following Saito (2013), we assume that Φex-a and Φex-p have

expected utility representations:

Φex-a(ρ) = u
( ∑

k

xkρk,
∑

k

ykρk

)
= u

( ∑
k

xkρk,M −
∑

k

xkρk

)
,

Φex-p(ρ) =
∑

k

ρku(xk,M − xk),

where u : A → R is the dictator’s utility function, with u(xi,M − xi) denoting the dictator’s

utility from choosing allocation (xi,M − xi) deterministically. Let ρ∗ represent the optimal

solution for a dictator maximizing V . In the following subsections, we characterize ρ∗ under

various specifications of V and u.
1We use ρi and ρ(xi,yi) interchangeably to denote the weight of allocation (xi, yi) in the dictator’s

decision.
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2.1.1 Linear combination of preferences

In this subsection, the V function is assumed to be linear as in the Expected Inequality-

Aversion model of Saito (2013). In this model, the dictator has distributional preferences

for both opportunity (ex-ante motives) and outcome (ex-post motives). The V function is a

linear combination of the two motives:

V(Φex-a(ρ),Φex-p(ρ)) = δΦex-a(ρ) + (1 − δ)Φex-p(ρ), (1)

where δ ∈ [0, 1] measures the strength of the preference for ex-ante motives. In what follows,

we characterize the dictator’s optimal choice in two different specifications of the utility

function, u, based on Fehr and Schmidt (1999) and Charness and Rabin (2002). Note that

these two utility functions are not differentiable; we address differentiable utility functions in

Subsection 2.1.2.

The distributional preferences model of Fehr and Schmidt (1999). Fehr and Schmidt

(1999) propose a model of distributional preferences based on the idea that individuals are

inequality averse:

uF S(x, y) = x− αmax{y − x, 0} − βmax{x− y, 0}. (2)

In the utility function above, parameter α captures enviousness, the (dis)utility of the dictator

when his payoff is less than the recipient’s payoff, and β captures guilt, the (dis)utility of

the dictator when his payoff exceeds the recipient’s payoff. Besides inequality aversion, the

simple framework proposed by Fehr and Schmidt (1999) in (2) can also capture other types

of other-regarding preferences such as altruistic preferences or spiteful preferences, depending

on the values of α and β.

Empirical studies have documented a significant fraction of individuals exhibiting these

types of preferences; for a detailed review, see Table 1 in Fehr and Charness (2025) and

Figure 4 in Nunnari and Pozzi (2025). We assume that α > −1/2 and α + β ≥ 0. The first

condition is supported by all 144 empirical estimates of (α, β) reviewed by Nunnari and Pozzi

(2025). The second condition excludes individuals with inequality-seeking preferences (α < 0
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and β < 0) and is also strongly in line with empirical findings.2 Additionally, note that

when α = −1/2, this model assigns a constant utility, uF S(x, y) = M/2, to any allocation

that favors the recipient and similarly, when β = 1/2, this model assigns a constant utility,

uF S(x, y) = M/2, to any allocation that favors the dictator in our setup. We rule out these

uninteresting cases (α = −1/2 or β = 1/2) that lack predictive power.

Next, we characterize the optimal choice of the dictator who is maximizing utility func-

tions specified in (1) and (2). We provide two versions of this characterization depending on

whether the equal division is available to the dictator, i.e., whether (M/2,M/2) ∈ A. This

distinction is relevant for our empirical analysis later, as the Probabilistic Dictator Games

that we will use in the experiments cover both cases.

Proposition 1. Assume ae = (M
2 ,

M
2 ) ∈ A. A dictator who is maximizing the utility

functions specified in (1) and (2) will choose optimal ρ∗ as follows:

i. If δ ̸= 1,

(a) If β < 1/2 then ρ∗ = (0, ..., ρ∗
n = 1).

(b) If β > 1/2 then ρ∗ = (0, ..., ρ∗
ae

= 1, ..., 0).

ii. If δ = 1,

(a) If β < 1/2 then ρ∗ = (0, ..., ρ∗
n = 1).

(b) If β > 1/2 then ρ∗ is optimal if and only if
∑

k ρ
∗
kxk = M/2.

Even though the optimal strategy depends on the parameters of the model in Proposition

1, note that in almost all cases the dictator plays deterministically, and the chosen allocation

is either the selfish one or the fair one when it is available. Moreover, when randomizing

(such as in case (ii.b)), the dictator allocates fairly in expectation. These sharp implications

will be the basis for our empirical analysis later.

Case (i) of Proposition 1 states that when the dictator has ex-post concerns, he chooses

deterministically and either keeps all the endowment for himself (if the guilt parameter, β, is
2The condition α+ β ≥ 0 is satisfied in 137 out of 144 empirical estimates of (α, β) from more than 40

studies between 1999 and 2023 reviewed by Nunnari and Pozzi (2025). Individuals with inequality-seeking
preferences (α < 0 and β < 0) are rare: only 3 out of 144 empirical estimates belong to this category.
See Figure 4 in Nunnari and Pozzi (2025) for details. Saito (2013)’s Expected Inequality Aversion model
assumes the Fehr-Schmidt model of distributional preferences with α, β ≥ 0.
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small) or selects the equal division (if the guilt parameter is large). In Case (ii), the dictator

only has a preference for equality of opportunity, as δ = 1. When β is large, any ρ that

promises the dictator an expected return of M/2 is optimal. When β is small, however, the

disutility associated with the guilt of having a higher private payoff is not sufficiently large

to prevent the dictator from keeping all the money for himself, so he acts deterministically

and selfishly.

The next proposition characterizes the strategy of the dictator when the fair allocation

is not feasible.

Proposition 2. Assume ae = (M
2 ,

M
2 ) /∈ A. A dictator who is maximizing the utility

functions specified in (1) and (2) will choose optimal ρ∗ as follows:

i. If δ ̸= 1,

(a) If β < 1/2 then ρ∗ = (0, ..., ρ∗
n = 1).

(b) If β > 1/2 then ρ∗ = (0, ..., ρ∗
[e]− = λ, ρ∗

[e]+ = 1 − λ, ..., 0) for some value λ ∈ [0, 1].

Here, [e]− = (xe− , ye−) and [e]+ = (xe+ , ye+) denote the closest feasible allocations

located to the left and right of ae, respectively.

ii. If δ = 1,

(a) If β < 1/2 then ρ∗ = (0, ..., ρ∗
n = 1).

(b) If β > 1/2 then ρ∗ is optimal if and only if
∑

k ρ
∗
kxk = M/2.

Overall, when the equal division is not feasible, the optimal strategy of the dictator

remains largely unchanged. Specifically, Proposition 2 coincides with Proposition 1 in all

cases except for case i(b). In case i(b), when the dictator has ex-post concerns and large β,

Proposition 1 states that the dictator chooses the fair allocation ae with certainty. When ae

is not feasible, Proposition 2 says that the dictator seeks to approximate the fair outcome

as closely as possible, either by deterministically selecting the allocation closest to ae or by

randomizing between the two allocations nearest to ae.3

Note that the optimal strategy of the dictator in Propositions 1-2 excludes several reason-

able ways of giving, some of which will be observed in our experiments. For example, in the
3The proof of Proposition 2 provides a complete characterization of λ in case i(b) based on the values

of M,α, β, δ, xe− , and xe+ .
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case of M = 10 with menu A = {(0, 10), (1, 9), . . . , (9, 1), (10, 0)}, according to the current

model, there should never be a giving strategy of (0,10) with 1% chance and (10,0) with 99%

chance where the dictator almost always keeps the whole endowment and only in an unlikely

event passes more money to the recipient.4 Our Experiment 1 will investigate if the dictators

follow the optimal strategies characterized by these propositions or make deviations such as

the aforementioned example.

Although the original version of Fehr-Schmidt preferences in (2) is based on the differ-

ence between the payoffs of dictator and recipient, it is possible for a dictator to experience

(dis)utility only when he gets more (or less) than a percentage of the recipient’s payoff. For

example, the dictator may feel entitled to receive at least twice as much as the recipient

and thus experience a (dis)utility even under an equal split. In Appendix B, we offer a gen-

eral version of (2) to capture this idea by assuming that the dictator’s utility from choosing

allocation (x, y) is given by

uF S−general(x, y) = x− αmax{y − γx, 0} − βmax{γx− y, 0},

where γ > 0 represents the relative fairness from the dictator’s perspective, with γ = 1

corresponding to the original model in (2). The optimal behavior of the dictator for this

general version is similar to the one characterized in Propositions 1 and 2 (see Proposition

B.1), and such dictators are also expected to behave mostly deterministically rather than

giving the recipients a wide range of opportunities; when they do randomize, they do so in a

specific way.

The distributional preferences model of Charness and Rabin (2002). Charness and

Rabin (2002) propose another non-differentiable model of distributional preferences where

the dictator’s utility from choosing allocation (x, y) is given by

uCR(x, y) = (1 − η)x+ η(θmin{x, y} + (1 − θ)(x+ y)), with η, θ ∈ [0, 1].

This model is a convex combination of the dictator’s consumption utility and other-regarding

utility, weighted by η. The other-regarding part is another convex combination of the payoff
4This behavior is actually observed in Experiment 1.
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of the least-earning person and the total payoff of the group. Different from the Fehr-Schmidt

model, as long as the dictator has social concerns (η > 0) and cares about the total payoff

(θ < 1), the dictator positively values the recipient’s payoff regardless of whether his payoff

is higher or lower. Consequently, the Charness-Rabin model predicts altruistic behaviors in

such situations.

In general, the Charness-Rabin and Fehr-Schmidt models of distributional preferences are

distinct, as they capture different psychological aspects of caring about others. In our two-

player framework with efficient allocations, however, the two models are closely connected.

Specifically, Proposition 3 below shows that the two models generate the same set of optimal

behaviors under appropriate parameter transformation.

Proposition 3. Consider two dictators A and B such that dictator A is modeled by Charness-

Rabin utility function with (η, θ) ̸= (1, 0) and dictator B is modeled by Fehr-Schmidt utility

function with (α, β) such that

α = η(θ − 1)
2 and β = η(θ + 1)

2 .

Then the optimal strategies of the two dictators are identical.

Proposition 3 holds because when α = η(θ−1)
2 and β = η(θ+1)

2 , the utilities under Charness-

Rabin and Fehr-Schmidt specifications are positive affine transformations of each other:

uCR(x, y) = uF S(x, y)−αM for all allocations (x, y) in our setup (see the proof of Proposition

3 for details). Note that in Proposition 3 we assume that (η, θ) ̸= (1, 0). When (η, θ) = (1, 0),

the Charness-Rabin model assigns a constant utility, uCR(x, y) = M , to any allocation in our

setting. Hence, we rule out this uninteresting case that lacks predictive power.

Proposition 3, together with Propositions 1-2, implies that under the Charness-Rabin

model of distributional preferences, the dictator either plays deterministically or randomizes

in a specific way excluding a wide range of probabilistic behaviors.

2.1.2 Non-linear combination of preferences

In this subsection, we investigate a class of V(Φex-a,Φex-p) and u(x, y) without committing

to a specific functional form. We begin by introducing some assumptions on V(Φex-a,Φex-p)

and u(x, y).
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Assumption 1. V is differentiable and strictly increasing in the second argument.

Assumption 2. u is twice differentiable.

Assumption 3. u(x,M − x) is strictly concave in x ∈ (0,M).

The differentiability of V in Assumption 1 is for mathematical convenience. This assump-

tion, together with Assumption 2 and the compactness of the domain, ∆(A), guarantees the

existence of the dictator’s optimal choice. Note that Assumption 1 also assumes the dictator

enjoys a higher utility under an ex-post better outcome. Some previous studies, including

Saito (2013) and Miao and Zhong (2018), impose a stronger assumption that V is monotonic

in both arguments. Assumption 1 is less restrictive and allows for non-monotonic prefer-

ences for opportunity. Assumptions 2-3 on the utility function are standard and satisfied in

many well-known models of distributional preferences. For instance, the four leading models

discussed below satisfy Assumptions 2-3.

1. Equality–efficiency trade-off preferences (Bolton and Ockenfels, 2000): The dic-

tator cares about both his absolute payoff and his relative payoff compared to the

recipient’s. The dictator’s utility from choosing allocation (x, y) is given by

u

(
x,

x

x+ y

)
, with 0 ≥ u11, u22, u12 and at least one strict inequality,

where uij is the second-order partial derivative of u with respect to the i-th and the

j-th arguments.

2. Altruistic preference (Andreoni and Miller, 2002; Fisman et al., 2007): The dictator

has altruistic preferences with Constant Elasticity of Substitution (CES):

u(x, y) = (µxσ + (1 − µ)yσ)1/σ, where µ ∈ (0, 1) and −∞ < σ < 1, σ ̸= 0.

3. Emotional state model (Cox et al., 2007): The dictator’s utility from selecting

allocation (x, y) is given by

u(x, y) =


(xκ + τyκ)/κ if κ < 1, κ ̸= 0,

xyτ otherwise,
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where parameter τ ∈ (0, 1] measures the dictator’s emotional state.

4. Strict egalitarian model (Cappelen et al., 2007): The dictator has an egalitarian

view about fairness: He values his private payoff and experiences a cost when acting

unfairly. The cost function is assumed to be quadratic, and the dictator’s utility from

selecting allocation (x, y) is given by

u(x, y) = λx− ζ
(x− F )2

2(x+ y) , where λ, ζ > 0,

with F = (x+ y)/2 being the fair amount.

Provided that Assumptions 1-3 hold, Proposition 4 below establishes that the dictator’s

optimal behavior is either deterministic or, if stochastic, it involves randomization between

at most two allocations. Moreover, if the optimal choice is stochastic, then the dictator must

randomize between two consecutive allocations.

Proposition 4. For V and u satisfying Assumptions 1-3, if ρ∗ is the optimal strategy of the

dictator then either ρ∗ is deterministic or there exist two distinct and consecutive allocations

(xi, yi) and (xi+1, yi+1) such that ρ∗
i + ρ∗

i+1 = 1.

Proposition 4 provides a testable prediction on the dictator’s optimal behavior without

committing to a particular utility function. We will study its predictions in our Experiment 1.

Note that the result predicts very little randomization, if any. Furthermore, it excludes certain

behaviors; for example, in the case ofM = 10 with menu A = {(0, 10), (1, 9), . . . , (9, 1), (10, 0)},

it excludes randomizing between (8,2) and (10,0) as they are not consecutive ways of giving

in the presence of allocation (9,1). The proof of Proposition 4 uses a standard result in

constrained optimization that the gradient of the Lagrangian is zero at any interior solution.

The concavity of the utility function (Assumption 3) effectively prevents the dictator from

randomizing between two non-consecutive allocations.

We conclude this section by discussing the assumption of the concave utility function

(Assumption 3). If u(x,M − x) is strictly convex rather than concave, Proposition 4 is

inapplicable. The convexity of u(x,M − x) can arise when the dictator exhibits altruistic

or spiteful social preferences.5 For example, under altruism, the dictator may adopt an
5Many studies have documented a nontrivial fraction of individuals with altruistic or spite-
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exponential utility function, such as u(x, y) = eax + eby, where a, b ∈ R. Under spitefulness,

the dictator negatively values the recipient’s payoff and may have a utility function like

u(x, y) = x2 − y. In these cases, the first result of Proposition 4 remains unchanged: the

dictator either plays deterministically or randomizes between at most two allocations. The

two allocations in the latter case, however, are not necessarily consecutive. This result is

stated in Remark 1 below.

Remark 1. Suppose V and u satisfy Assumptions 1-2. Suppose u(x,M−x) is strictly convex

in x ∈ (0,M). For any optimal ρ∗, either ρ∗ is deterministic or there exist distinct i and j

(not necessarily consecutive) such that ρ∗
i + ρ∗

j = 1.

2.2 Quadratic Social Welfare

In this subsection, we draw on an alternative approach which deviates from the ex-ante/ex-

post preferences framework of Subsection 2.1. Assume that a dictator wants to maximize

a combination of his own utility and the receiver’s utility. Following the model of Epstein

and Segal (1992), the dictator chooses ρ ∈ ∆(A) to maximize a quadratic objective function

V : R × R → R given by

V(UD(ρ), UR(ρ)) = c1U
2
D(ρ) + c2U

2
R(ρ) + c3UD(ρ)UR(ρ) + c4UD(ρ) + c5UR(ρ). (3)

In equation (3), UD(ρ) and UR(ρ) are the private utilities of the dictator and the recipient,

respectively. The coefficients ci (for i = 1, . . . , 5) are constants that measure the degree to

which the dictator cares about his own utility and the recipient’s utility. Following Epstein

and Segal (1992), we assume that at least one of c1, c2, c3 is nonzero, so that V is a second-

degree polynomial over its domain. This quadratic functional form allows the dictator to

exhibit concerns for ex-ante fairness. Moreover, V is assumed to be strictly increasing in

both arguments (Epstein and Segal, 1992).6

In Epstein and Segal (1992), the private utilities of the dictator and receiver admit ex-

ful/competitive social preferences. See Table 1 in Fehr and Charness (2025) for details.
6Epstein and Segal (1992) also assume that V is strictly quasi-concave, but this additional assumption

is not needed for our analysis.
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pected utility representations and are given by:

UD(ρ) =
∑

i

ρiuD(xi) and UR(ρ) =
∑

i

ρiuR(yi), (4)

where uD : R+ → R and uR : R+ → R are Neumann-Morgenstern utility functions of the

dictator and the receiver, respectively. We impose the following assumptions on uD and uR.

Assumption 4. uD(x) and uR(x) are strictly increasing and strictly concave in x ∈ [0,M ],

and twice differentiable on [0,M ].

Assumption 4 states that both the dictator and receiver prefer higher payoffs and exhibit

diminishing marginal utility. Under these standard assumptions, Proposition 5 predicts that

the dictator either plays deterministically or randomizes between two consecutive allocations

at the optimum.7

Proposition 5. Suppose the dictator maximizes V in (3), where the dictator’s and receiver’s

private utilities are given in (4). Suppose Assumption 4 is satisfied. If ρ∗ is an optimal strategy

then either ρ∗ is deterministic or there exist two distinct and consecutive allocations (xi, yi)

and (xi+1, yi+1) such that ρ∗
i + ρ∗

i+1 = 1.

Note that the predictions on the dictator’s optimal behavior in Proposition 5 are in line

with those in Proposition 4. Consequently, the non-parametric ex-ante/ex-post preference

and quadratic preference approaches yield the same class of optimal strategies despite being

grounded in distinct conceptual foundations and motivations. This observation highlights

the robustness of the limited-randomization prediction for the dictator’s optimal behavior,

which we will study in Experiments 1 and 2.

To conclude this section, Figure 1 summarizes the theoretical predictions when the fair

allocation is available. Note that the deterministic behavior of selecting either selfish or fair

allocations is a common prediction of all the models discussed.
7Proposition 5 continues to hold when the dictator’s and receiver’s utility functions exhibit other-

regarding preferences; in this case, some mild conditions on uD and uR analogous to Assumption 4 are
required.
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Figure 1: Theoretical Predictions in a Probabilistic Dictator Game

3 Experiment 1
We conducted an in-person laboratory experiment to empirically investigate the predictions

of leading theories in social preferences for the Probabilistic Dictator Game, as stated in

Propositions 1-5 and Remark 1. The design closely follows the theoretical setup. In Exper-

iment 1, the dictator receives an endowment of M = $10 and decides how to allocate this

amount between himself and an anonymous receiver. Unlike the standard dictator game,

where the dictator chooses an allocation of (X, 10−X) with X ∈ [0, 10] denoting the amount

he keeps for himself, our probabilistic dictator game presents the dictator with eleven feasible

allocations:

A = {(0, 10), (1, 9), (2, 8), . . . , (8, 2), (9, 1), (10, 0)}.

The dictator selects a distribution (a lottery) over these allocations. For each allocation, the

dictator chooses an associated weight, which must be an integer from the set {0, 1, . . . , 99, 100}

(see Figure 2 for a screenshot). The weight indicates the chance that the corresponding

allocation will be chosen for payment and the weights over all allocations must sum to 100.

Experiment 1 allows us to study the extent to which individuals exhibit a preference for

giving an opportunity to others and whether their behaviors align with the predictions from

leading theories of social preferences under risk studied in Section 2.
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Figure 2: Experimental Interface in Experiment 1

We used z-Tree to program the experiment (Fischbacher, 2007). Participants were re-

cruited through ORSEE (Greiner, 2015) and randomly matched into pairs. In each pair,

one participant assumed the role of dictator while the other acted as the receiver. Dictators

and receivers were simultaneously placed in two separate rooms, with no interaction between

them before or during the session. Neither dictators nor receivers knew the identity of their

matched counterparts, but participants were assured that their counterparts were real people.

An experimenter remained in each of the two rooms throughout the experiment. Dictators

were first provided with instructions, which were integrated into the experimental interface

(see the Appendix for screenshots and complete instructions). After reading the instructions,

dictators completed a two-question quiz designed to check their understanding of the in-

structions. The dictators had to answer both questions correctly before proceeding with the

experiment. Before deciding how to split the $10 endowment, dictators were instructed to

copy their choices onto a piece of paper once they made a decision. They were informed that

this paper would later be shown to the receiver matched with them. Finally, the dictators

completed an incentivized multiple-price-list question to measure their risk attitudes and an
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unincentivized questionnaire about demographic information and charity-related activities.8

160 undergraduate students at the University of Maryland, College Park, participated

in six experimental sessions in October and November 2024. A typical experimental session

lasted approximately 40 minutes. Each subject received a $10 show-up fee. On average, a

dictator earned $17.84, and a receiver earned $13.78 (see Appendix A.2 for the distribution

of expected payoffs). Payments were made privately in cash at the end of the experiment.

Demographics of 80 participants playing the dictator role are presented in Appendix A.1.

4 Results of Experiment 1
Recall that the main prediction of the theoretical analysis was about the support of dictators’

choices: They were expected to act either deterministically or randomize on a limited set of

allocations (mostly between two allocations) for all of the utility functions we studied earlier.

To address these predictions, we first investigate the cardinality of the support of choices,

defined as the number of allocations to which the dictators assigned positive weights. We

will take a closer look at the nature of randomization that the dictators picked and classify

them based on the trends in their preferences for randomization in Section 7.

Support of Choice. Figure 3 shows that the majority of dictators randomized among

multiple allocations; only 15% of the participants had deterministic behaviors. Among those

randomizing dictators, most assigned positive probabilities to three or more allocations (80%

of the participants). Particularly, 17.5% of subjects selected positive weights in all eleven

allocations.

Table 1 presents the five most common sets of allocations chosen with positive probabil-

ities. These five sets of allocations cover exactly half of the participants. Overall, Table 1 is

in line with Figure 3 and it shows that subjects tend to randomize among several allocations.

Specifically, out of the five most common sets of allocations, only one is a singleton containing

the equal division of (5, 5). For the remaining four collections, the dictators tend to assign

positive weights to allocations that ensure at least $5 to themselves or to the allocations that

are not fully selfish or altruistic.

8See Appendices A.1 and A.3 for results related to demographics.
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Figure 3: Support of choice in Experiment 1

Support of Choice %

All allocations (xi, yi) 17.50%

Fair allocation only 10.00%

All (xi, yi) such that xi ≥ 5 10.00%

All (xi, yi) except (0,10) 6.25%

All (xi, yi) except (0,10) and (10,0) 6.25%

Table 1: Most common sets of allocations

Consistency with Ex-Ante/Ex-Post Preferences and Quadratic Social Prefer-

ences. Figure 4 presents the percentages of dictators whose behavior can be explained by a

utility maximization studied in Section 2. Overall, this figure provides only limited support

for these models. First, 13.75% (11 dictators) made deterministic choices by being either

fully selfish or fully fair.9 These dictators are consistent with all the models (Propositions

1, 4, 5 and Remark 1). Those who randomized between exactly two allocations were rare.

No dictator randomized between two consecutive allocations. Only 1.25% (1 dictator) ran-

domized between two non-consecutive allocations to achieve a fair outcome in expectation,

i.e. an expected payoff of $5 for both the dictator and the receiver, a behavior predicted by

Proposition 1 and Remark 1. 3.75% (3 dictators) randomized between two non-consecutive

allocations yielding an unfair expected payoff, also consistent with Remark 1. Finally, 15%

(12 dictators) are consistent only with Proposition 1, as they randomized among three or

more allocations to obtain an expected payoff of $5. These 12 dictators’ behavior can be

rationalized with δ = 1 according to Proposition 1; hence, they must have a preference for

equality of opportunity only.

To sum up, 30% of dictators are consistent with Saito (2013) and an additional 3.75%

can be explained by the other models discussed in Section 2. Consequently, 66.25% of the

dictators in Experiment 1 remain unexplained by these models.

9One additional dictator chose (0, 10) deterministically, which is not predicted by any of the previous
utility specifications.
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Figure 4: Percentages of participants in Experiment 1 consistent with ex-ante/ex-post
preferences and quadratic preferences

The degree of randomization. The previous analysis indicates that the dictators ran-

domized more than predicted by the social preference models of Section 2. To measure the

randomness of dictators’ choices in Experiment 1, we analyze the Shannon entropy associated

with each choice distribution.10 Shannon entropy of a distribution ρ is given by

EShannon(ρ) = −
11∑

i=1
ρ(xi,yi) log(ρ(xi,yi)).

Shannon entropy is nonnegative and equal to zero only if ρ is deterministic. A higher entropy

value represents a greater randomness in the choice distribution, indicating that the choice

probabilities are more dispersed or more evenly distributed among allocations. Conversely, a

lower entropy value indicates a greater similarity to deterministic choices. Figure 5 presents

the histogram and density of EShannon(ρ).11 Overall, Figure 5 indicates that dictators tend

to act stochastically and heterogeneously enjoy giving a wide range of opportunities to the

recipients, as evidenced by the dispersed distributions of entropy values.
10In Appendix A.5, we repeat the analysis using Rényi entropy and the results are robust to this

alternative measure of randomness.
11We follow conventional practice when computing Shannon entropy by assuming that

ρ(xi,yi) log(ρ(xi,yi)) = 0 when ρ(xi,yi) = 0.
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Figure 5: Shannon entropy of behavior in Experiment 1
Notes: The width of the bins for the histogram is 0.1. The line indicates the estimated Gaussian kernel,
which uses Scott’s rule for bandwidth selection. Given our design in Experiment 1, the maximum Shannon
entropy is approximately equal to 2.4 (using natural logarithm).

5 Experiment 2
Motivated by the tendency to choose stochastically that we observed in Experiment 1, we

next examine the behavior in Probabilistic Dictator Game from the perspective of stochastic

choice models and their axiomatic foundations (Strzalecki, 2025). Although this literature is

primarily developed for decision-making by a single, self-interested agent, the stochastic choice

models are applicable to other-regarding preferences. We conduct Experiment 2 to investigate

key models from this literature and offer new insights into the properties of randomization

behaviors in the social preference domain.

Experiment 2 follows a design similar to that of Experiment 1. Each dictator is given $10

and a list of feasible ways to split the money between himself and an anonymous receiver.

The dictator’s task involves assigning a weight to each feasible allocation, using the same

procedure described in Experiment 1. Compared to Experiment 1, we reduce the number of

feasible allocations in a game but increase the number of games to be able to study the axioms

involving behaviors on different menus of allocations. As Experiment 1 demonstrates that

the equal division of (5, 5), selfish allocation of (10, 0), and fully altruistic giving of (0, 10)

play significant roles in subjects’ behavior, we restrict the set of allocations in Experiment

2 to these three. Each dictator in Experiment 2 completed four decision problems: three

21



involving binary menus and one involving a tripleton menu. We use Ai to indicate the menu

in the decision problem i ∈ {1, 2, 3, 4}:

A1 = {(0, 10), (5, 5), (10, 0)}; A2 = {(5, 5), (10, 0)}; A3 = {(0, 10), (10, 0)}; A4 = {(0, 10), (5, 5)}.

To minimize strategic behavior across questions, the dictators are not informed in advance

about the set and order of questions they might encounter during the experiment. We use

eight orders of questions, with an equal number of dictators assigned to each order within

an experimental session.12 The dictators make their allocations for a menu of options on

the computer screen and copy them on paper as well. After each decision problem, an

experimenter collects the paper copy before allowing the experiment to proceed to the next

decision problem so that the dictators cannot possibly alter the distributions they pick. Only

the dictator’s choice in the decision problem selected for payment is later shown to the

receiver. The decision selected for payment is chosen randomly by the computer from the

four decision problems with equal probability.

As in Experiment 1, we programmed Experiment 2 in z-Tree (Fischbacher, 2007) and

recruited participants using ORSEE (Greiner, 2015). Subjects of the two experiments were

distinct. 208 undergraduate students at the University of Maryland, College Park, partici-

pated in seven experimental sessions in October and November 2024. In each session, half of

the participants were the dictators and the other half were the receivers. A typical session

lasted approximately 45 minutes. On average, a dictator earned $18.27, while a receiver

earned $13.51 (see Appendix A.2 for the dictators’ payoff distributions for each menu). De-

mographics of 104 participants playing the dictator role are presented in Appendix A.1.

6 Results of Experiment 2

6.1 Behavior in Experiment 2

Similar to our analysis for Experiment 1, below we first report the trends in dictators’ behav-

iors and then investigate the predictions of social preference and stochastic choice models.

Support of choice. Figure 6 presents the support of choices in Experiment 2. In the

tripleton menu, A1 (first panel in Figure 6), about 25% of participants exhibited deterministic
12The sequence of decision problems is randomized at the individual level; see Appendix D for details.
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behaviors, mainly selecting allocation (10, 0), followed by (5, 5). 44.2% of participants chose

all three allocations with positive weights. 30.8% (32 subjects) randomized on two allocations

and 31 of them mixed between (5, 5) and (10, 0), while only one person mixed between (0, 10)

and (10, 0). No participant assigned positive weights exclusively to (5, 5) and (0, 10) on A1.

On binary menus, the fraction of randomizing dictators is the highest in the menu A2 =

{(5, 5), (10, 0)}, followed by A3 = {(0, 10), (10, 0)}, and the lowest in A4 = {(0, 10), (5, 5)},

as the tallest gray bar is observed in panel 2, followed by panel 3, and then panel 4 of

Figure 6. This is intuitive as A2 guarantees a positive payoff to the dictator independent of

the realization of the randomization, but the other two menus expose the dictators to the

possibility of keeping $0 if they randomize and the dictators may not like that possibility.

Figure 6 also shows the choices of deterministic dictators in the first bar of each panel.

On A3 = {(0, 10), (10, 0)} and A4 = {(0, 10), (5, 5)}, participants overwhelmingly selected

the allocation yielding a higher private payoff. For menu A2 = {(5, 5), (10, 0)}, the fractions

of subjects selecting (5, 5) and (10, 0) deterministically only differ slightly (18.3% and 13.5%,

respectively).

Figure 6: Support of choice in Experiment 2

While Figure 6 illustrates variation in randomization across menus, the shift in the type

of randomization used by dictators as the menu changes suggests deliberate decision-making

rather than automatic use of the experimental tool. As discussed above, dictators randomize

more frequently in A2, where both available allocations guarantee them a positive payoff,

than in A4, where randomization may result in a zero payoff. Moreover, in a post-experiment
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survey, many participants explained that they chose to spread out the chances in order to

reduce control over the outcome, either to give the receiver some “chance” or some “money”

or both. Specifically, Figure 7 presents an analysis of the relative frequency of each word in

the participants’ open-ended responses regarding their reasoning for randomization. The high

frequency of the words “chance” and “money” in this figure indicates subjects’ intentional

delegation of the giving decision to nature.

Figure 7: Word frequencies describing views on randomization in Experiments 1 and 2
Notes: The relative size of each word reflects its frequency in the participants’ responses to two post-
experiment surveys in which they were asked about their underlying reasons for randomization in Exper-
iments 1 and 2. See Appendix A.4 for details of the analysis.

Distribution of Choice. Figure 8 presents choice probabilities in Experiment 2. The

triangular simplex represents choice probabilities in the tripleton menu. The three vertices of

the simplex are labeled $0, $5, and $10, denoting the amounts dictators kept for themselves.

Each vertex of the simplex corresponds to a deterministic behavior, assigning a probability of

1 to the allocation associated with that vertex. A point on the edge of the simplex indicates

a choice mixture between two allocations associated with the vertices of that edge, while an

interior point represents a probabilistic choice involving all three allocations. The size of each

circle reflects the frequency of the corresponding choice in the data.

Three outer lines parallel to the edges of the triangle simplex represent choice probabilities

in binary menus, A2, A3, and A4. For instance, the line parallel to the edge connecting the

vertices $0 and $5 represents the menu A4 = {(0, 10), (5, 5)}. The two endpoints of each

parallel line correspond to deterministic behaviors.

Overall, in tripleton menu A1, Figure 8 shows that almost all observations (96.2%) lie

within the sub-triangle formed by two blue dashed lines and the edge connecting $5 and $10
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Figure 8: Choice probabilities in Experiment 2

vertices. The two blue dashed lines link vertices $5 and $10 with the simplex’s centroid, i.e.,

the point at which the choice attaches equal probability to three allocations. This indicates

that the dictators’ randomization is skewed towards keeping positive amounts.

In all binary menus except A2 = {(5, 5), (10, 0)}, the choices are also skewed toward

the allocation giving dictators a higher private payoff. This trend is visible on the left and

bottom outer lines (representing menus A4 and A3, respectively), where the gray data points

concentrate toward the vertex offering the dictator a higher payoff. On A2, the distribution

of choice tends to be more dispersed. Notably, among 56 subjects whose behaviors lie on the

right edge of the triangle, 42 exhibited identical choice in menus A1 and A2.

6.2 Consistency with Models

In this section, we evaluate the extent to which the dictators’ behaviors are rational and

examine whether their choices are consistent with various models. We start with the social-

preference models of ex-ante and ex-post preferences and the quadratic social welfare model

that we discussed for Experiment 1. Then we continue with some relevant stochastic choice

models.
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As there are four decision problems with different menus in Experiment 2, throughout

this section, we extend the notation for the dictator’s choice to indicate the menu on which

the choice is made. Let A be a menu of allocations. Let ρ ∈ ∆(A) denote the choice of a

dictator where ρa(A) is the weight assigned to allocation a on menu A.

6.2.1 Social Preferences

We analyze the choice of a dictator on the menus used in Experiment 2 under the parametric

model of Saito (2013) incorporating ex-ante and ex-post preferences based on the Fehr-

Schmidt fairness model in Section 2. Proposition 6 below characterizes the dictator’s optimal

behaviors in two questions with menus A2 = {(5, 5), (10, 0)} and A4 = {(0, 10), (5, 5)}. Note

that optimal behaviors in questions with menus A1 and A3 can be obtained directly from

Propositions 1 and 2, respectively.

Proposition 6. Suppose a dictator in Experiment 2 maximizes the utility function described

by (1) and (2). Then

(i) ρ∗
(5,5)(A4) = 1;

(ii) ρ∗
(5,5)(A2) = 1 if β > 1/2 and ρ∗

(10,0)(A2) = 1 if β < 1/2.

Part (i) of Proposition 6 characterizes the optimal decision in menu A4. It states that

the dictator’s choice is deterministic, and the dictator must select allocation (5, 5) with

certainty, regardless of the values of (δ, α, β). To elucidate this result, note that in menu

A4 = {(0, 10), (5, 5)}, any mixture of the two feasible allocations yields an expected alloca-

tion in which the dictator’s share is (weakly) smaller than that of the recipient. Consequently,

the dictator’s utility does not depend on parameters δ and β. Furthermore, the condition

α > −1/2 implies that the marginal (dis)utility of envy when having a smaller private payoff

is relatively small, making choosing (5, 5) with certainty the optimal strategy.

Part (ii) of Proposition 6 states the optimal choice in menu A2. In this menu, the

optimal behavior is also deterministic, but the chosen allocation can be either fair or selfish.

The former happens when the marginal disutility from the guilt of having a higher private

payoff is sufficiently large (β > 1/2), which effectively prevents the dictator from keeping all

the money for himself.
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Based on the testable predictions in Propositions 1, 2, and 6, 73.07% (76 dictators)

exhibited behaviors inconsistent with the ex-ante and ex-post preferences framework. The

remaining 26.93% (28 dictators) have behavior that can be explained by this model for some

parameters. Hence, the results of Experiment 2 align with those of Experiment 1 (see Figure

4) and further reinforce the limited support for the ex-ante and ex-post preferences framework

in our experiments.

Recall that a dictator who maximizes a quadratic social welfare function should either

choose deterministically or randomize between at most two consecutive alternatives according

to Proposition 5. Therefore, it is mechanically easier to be consistent with this model in

Experiment 2 than it was in Experiment 1, since the former has at most three alternatives

in a menu and the latter has eleven. Nevertheless, a majority acted inconsistently with the

quadratic social welfare model in Experiment 2 by randomizing between all three alternatives

on A1. Only 41.35% (43 dictators) behaved consistently by mixing between two alternatives

on A1 and using the same weights on those two alternatives in the corresponding binary

menu. For example, one such dictator chose (10,0) and (5,5) each with a 50% chance on A1,

and employed the identical 50/50 randomization on A2 = {(5, 5), (10, 0)}.

6.2.2 Rationalizability

The limited support for the implications of social preference models documented in the pre-

vious subsection does not necessarily mean that the participants acted irrationally. In this

subsection, we show instead that the majority of participants behaved rationally, with their

choices satisfying several well-known axioms of rationality.

We start our analysis with deterministic subjects for whom rationality corresponds to

preference maximization. In Experiment 2, 18 out of 104 subjects exhibited deterministic be-

haviors in all four decision problems. 17 of them behaved in a way consistent with maximizing

a linear order of (10, 0) being the best allocation followed by (5, 5) and then by (0, 10). The

remaining one was extremely altruistic (choosing (0, 10) with certainty when it is available).

Hence, all the deterministic dictators’ choices were in line with a maximization of a complete

and transitive preference relation.

For the dictators who chose stochastically, the Regularity axiom can be seen as a measure

of stochastic rationality. Regularity states that the probability of selecting an allocation
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cannot increase when a new allocation is added to the menu. The underlying intuition is

that in a menu with more allocations, an allocation must compete with more alternatives to

be chosen by the decision maker. Regularity imposes a consistency constraint on decision-

making, ensuring that choices follow a predictable pattern in response to changes in the

decision problems.

Regularity. For any a, b ∈ A and a ̸= b, ρa(A) ≤ ρa(A \ {b}).

In Experiment 2’s design, since the cardinality of a menu is at most three, the Regu-

larity axiom fully characterizes the Random Utility Model (Strzalecki, 2025), which is the

leading rational framework for analyzing stochastic behavior. 57.69% (60 dictators) satisfied

Regularity in Experiment 2.

Moderate Stochastic Transitivity is one of the natural probabilistic generalizations of the

standard transitivity property. In deterministic choice theory, transitivity requires that if the

individual prefers allocations a over b and b over c, they should prefer a over c. The stochastic

version adapts this logic to a probabilistic environment. It ensures that the choices reflect

a coherent preference ordering and follow a predictable pattern in response to changes in

decision problems.

Moderate Stochastic Transitivity. For any allocations a, b, c and binary menus created

by them

min{ρa({a, b}), ρb({b, c})} ≥ 1/2 implies


ρa({a, c}) > min{ρa({a, b}), ρb({b, c})} or

ρa({a, c}) = ρa({a, b}) = ρb({b, c}).

Moderate Stochastic Transitivity is both necessary and sufficient for the moderate utility

model studied in He and Natenzon (2024). In Experiment 2, 92.31% (96 participants) ex-

hibited choices consistent with Moderate Stochastic Transitivity. Furthermore, 55.77% (58

dictators) satisfied both Regularity and Moderate Stochastic Transitivity. Appendix A.6

and Table 6 provide additional results for weaker and stronger versions of Regularity and

stochastic transitivity.
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6.2.3 Additive Perturbed Utility Model

In this subsection, we investigate whether the dictator’s behavior aligns with the Additive

Perturbed Utility (APU) model studied in Fudenberg et al. (2015). This model provides

a simple framework for explaining stochasticity in individual choices and is relevant to our

experiments, as the dictator’s behavior is largely stochastic. The model also satisfies both

the Regularity and Moderate Stochastic Transitivity axioms.

Given menu A, Fudenberg et al. (2015) model an individual whose utility from choosing

ρ ∈ ∆(A) is the expected consumption utility minus a cost associated with randomization.

The individual solves the following maximization problem:

max
ρ∈∆(A)

[ ∑
a∈A

u(a)ρa(A) −
∑
a∈A

c(ρa(A))
]
. (APU)

In the objective function above, u(a) is the individual’s utility from choosing allocation a.

The cost function c : [0, 1] → R ∪ {∞} is assumed to be strictly convex and continuously

differentiable in (0, 1). As the cost function is strictly convex, stochastic behaviors benefit

the dictator not due to preference for opportunity, as that was the case for ex-ante/ex-

post preference models studied in Section 2. Instead, APU can be interpreted as a linear

framework combining the dictator’s ex-post motive,
∑

a∈A u(a)ρa(A), and the cost of opting

for randomization,
∑

a∈A c(ρa(A)).

Since Regularity is a necessary condition for APU (Fudenberg et al., 2015), the 44 dic-

tators who violated Regularity also violated the APU model. Among the 60 dictators who

satisfied Regularity, 41 of them behaved in line with APU.

APU with allocation- or menu-dependent costs. The baseline APU model assumes

that the cost term depends solely on choice probabilities and remains invariant to changes

in menus or allocations. Fudenberg et al. (2015) offer two other versions of APU where

one has the cost of randomization depending on the chosen allocation (a-APU) and another

has the cost depending on the menu (m-APU). In our context, one might expect the act of

randomization to be less costly in menu A2 than in menus A3 or A4, as any randomization

in A2 still guarantees a payoff of at least 5, whereas randomization in either A3 or A4 carries

the risk of receiving a zero payoff. By allowing for such generalizations of the cost function,
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APU may offer greater explanatory power in Experiment 2.

To investigate m-APU and a-APU, we check two properties called Item Acyclicity and

Menu Acyclicity, which respectively characterize these two models (see Fudenberg et al.

(2015) for details). a-APU can rationalize the choices of 43.27% (45 dictators), including

41 dictators whose behavior is also consistent with APU. This indicates that introducing

allocation-dependent costs yields only modest improvements in the model’s fit to the data.13

In contrast, incorporating menu-dependent costs significantly enhances explanatory power, as

the m-APU model can explain the behavior of 78.85% (82 dictators). The high explanatory

power of m-APU results from its ability to accommodate violations of Regularity, whereas

a-APU cannot do so, as it necessarily satisfies Regularity (Fudenberg et al., 2015).

To conclude this section, Table 2 summarizes the percentage (number) of participants

consistent with various models and measures of rationality discussed above. Appendix A.6

presents additional results on other rationality measures, including different versions of Reg-

ularity and other forms of stochastic transitivity.

Models and/or Measures of Rationality % (#) satisfying

Expected Inequality Aversion 26.92% (28)

Quadratic Preference 41.35% (43)

Preference maximization 17.31% (18)

Regularity 57.69% (60)

Moderate Stochastic Transitivity 92.31% (96)

Additive Perturbed Utility 39.42% (41)

Additive Perturbed Utility with allocation-dependent cost 43.27% (45)

Additive Perturbed Utility with menu-dependent cost 78.85% (82)

Table 2: The percentage (number) of participants consistent with various models and
measures of rationality in Experiment 2

13Chambers et al. (2025) offers a particular case of a-APU with a quadratic cost function, but only 2.8%
(3 dictators) satisfy the main axiom of that model (Strict Regularity).
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7 Further Analyses

7.1 Classification of Behaviors in Experiment 1
There are some trends in the way the dictators randomized among available allocations in

Experiment 1. Based on the allocation that received the highest weight, we classify dictators

into three groups: (im)pure selfish behavior, (im)pure fair behavior, and other behavior.

(Im)pure selfish behavior. This group includes 33.75% (27 dictators) who assigned the

highest weight to the selfish allocation (10,0), thereby reflecting their tendency to behave

selfishly. Among the participants within this group, approximately half (12 subjects) assigned

a weight of 50% or more to allocation (10,0), including three subjects choosing (10,0) with

certainty. The behavior of a typical participant in this group is illustrated in the first graph

of Figure 9.

(Im)pure fair behavior. This group contains 48.75% (39 dictators) who assigned the

highest weight to the equal division allocation (5, 5), indicating a tendency to behave altruis-

tically and fairly.14 Within this group, 8 dictators implemented the fair outcome (5, 5) with

certainty. Another 10 dictators, while assigning positive weights to allocations other than

(5, 5), adhered to the equality-of-opportunity principle by choosing weights symmetrically

around (5, 5), i.e., they assigned identical weights to allocations (x, y) and (y, x). Typical

behavior of these dictators is illustrated in the second graph of Figure 9. In contrast, 15 dic-

tators within this group tended to favor allocations that provide them with a higher payoff.

For these dictators, the distribution of weights is asymmetric around (5,5), positively skewed,

and the weight assigned to allocation (x, y) is generally higher than that of allocation (y, x)

when x > y. Hence, even intending to be fair and altruistic, these subjects might be tempted

to act selfishly, leading them to assign higher probabilities to allocations giving themselves a

higher payoff. Typical behavior of these dictators is illustrated in the third graph of Figure 9.

The remaining 6 dictators in this group tended to favor allocations that provide the receiver

with a (weakly) higher payoff.

Other behavior. This group includes the remaining 17.50% (14 dictators) who assigned

the highest weight to neither the selfish allocation nor the fair allocation. The majority (12
14Two subjects assigned the highest weight to both allocations (10, 0) and (5, 5). Since they are already

included in the (im)pure selfish behavior group, they are excluded from the (im)pure fair behavior group
to avoid double counting.
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dictators) selected the highest weight for an allocation that provides them with a higher

payoff, i.e., allocations (9,1), (8,2), (7,3), or (6,4). The behavior of a typical participant in

this group is illustrated in the last graph of Figure 9.

(Im)pure selfish (33.75%) (Im)pure fair (48.75%) Other behavior (17.50%)

Figure 9: Classification of the behavior in Experiment 1

In Appendix A.3 we analyze the impact of demographic variables including gender, race,

and age, involvement in prosocial activities, and risk attitude on the subjects’ behavior in this

probabilistic dictator game. We find that male subjects are more likely to assign the highest

weight to the selfish allocation and female subjects are more likely to assign the highest weight

to the fair allocation (see Table 4). This result is consistent with a common finding in the

standard dictator game literature where women are often found to be more generous than

men (Engel, 2011). The female subjects also randomize on a larger set of allocations than

the males (see Table 5). Notably, risk attitude of the subjects does not play a significant role

in determining their behavior.

7.2 Comparison to the deterministic dictator game

We compare the behaviors of dictators in our Probabilistic Dictator Game in Experiment 1

with the previous findings of the standard (deterministic) dictator games in the literature.

Specifically, we measure how far the behaviors in our probabilistic design deviate from the ag-

gregate behaviors reported in Engel (2011) (Figure 2 of this meta-study).15 For each subject,

we calculate the distance between their choice and the aggregate distribution using Kullback-
15This aggregate distribution includes data from 20,813 individuals. Of these observations, 99.1% exhibit

no uncertainty regarding the dictator’s behavior; hence, the aggregate distribution can be interpreted as
representing behaviors under deterministic dictator games.
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Leibler divergence, which is based on Shannon entropy.16 Let ρ be a choice distribution of a

dictator in our experiment and ρ̃ be the aggregate distribution of the dictators’ behavior in

Engel (2011). The Kullback-Leibler divergence between ρ and ρ̃ is given by:

dKL(ρ, ρ̃) =
11∑

i=1
ρ(xi,yi) log

(
ρ(xi,yi)

ρ̃(xi,yi)

)
.

Note that dKL(ρ, ρ̃) is nonnegative and equal to zero only if ρ and ρ̃ are identical. Higher

values of dKL(ρ, ρ̃) indicate greater differences between the two distributions. Figure 10

reports the histogram and density of dKL(ρ, ρ̃).17 Overall, the individuals’ behaviors in the

Probabilistic Dictator Game deviate from those in the deterministic version, as there is no

mass concentration of dKL(ρ, ρ̃) around zero.

Figure 10: Behaviors in Experiment 1 compared to the deterministic dictator game
Notes: The width of the bins for the histogram is 0.1. The line indicates the estimated Gaussian kernel,

which uses Scott’s rule for bandwidth selection.

Simulation Evidence. The previous analysis suggests that individual-level behavior in our

Probabilistic Dictator Game departs from aggregate-level behavior observed in the standard

dictator game. To study whether the aggregate realized outcomes from our game align with

those of the deterministic dictator game, we conduct a Monte Carlo simulation. For each

of the 80 dictators in Experiment 1, we first draw one realized outcome from their observed

choice distribution and treat the draw as a dictator’s decision in the standard dictator game.
16In Appendix A.5 we repeat the analysis using Rényi divergence and the results are robust to this

alternative measure.
17Following standard convention, we assume that if ρ(xi,yi) = 0, then ρ(xi,yi) log(ρ(xi,yi)/ρ̃(xi,yi)) = 0

when computing the Kullback-Leibler divergence.
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Aggregating these draws across all 80 dictators yields one simulated aggregate behavior in

our game. We then compare this distribution to the aggregate behavior reported in the

meta-analysis by Engel (2011) (Figure 2 in this paper) using a one-sample, non-parametric

Kolmogorov-Smirnov test. Adopting a conservative approach, we set the significance level

for the Kolmogorov-Smirnov test at 0.005. This means we reject the null hypothesis that the

simulated aggregate distribution of realized outcomes from our game is drawn from the aggre-

gate behavior in the deterministic dictator game if the p-value from the Kolmogorov-Smirnov

test is less than 0.005. We repeat the simulation and comparison procedure 10,000,000 times.

Across these simulations, the Kolmogorov-Smirnov test rejected the null hypothesis in 97.9%

of the cases. Using alternative tests produces a similar finding. For example, the Chi-squared

goodness-of-fit test rejected the null hypothesis in 91% of the simulations. This finding is in

line with the preceding analysis using Kullback-Leibler divergence and provides additional

strong evidence that behavior in our Probabilistic Dictator Game differs from its deterministic

counterpart.

8 Conclusion
Combining ex-ante and ex-post motives has been the primary approach in investigating other-

regarding preferences under risk. Using a novel design called the Probabilistic Dictator Game,

we present experimental evidence indicating that none of the leading models incorporating

the ex-ante and ex-post motives can fully explain dictators’ decisions. By designing an

experiment with a set of nested decision problems, we also identify trends in other-regarding

behaviors. A majority of the observed randomization in social preferences is aligned with

models from the stochastic choice literature, suggesting a promising path for future research:

extending models of stochastic choice to investigate other-regarding preferences.
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APPENDIX
Appendix A Additional Results
A.1 Demographics of Participants

Experiment 1 (N=80) Experiment 2 (N=104)
#Subjects Percentages #Subjects Percentages

Gender
Female 43 53.75% 50 48.08%
Male 36 45.00% 50 48.08%
Non binary 0 0.00% 3 2.88%
Preferred not to say 1 1.25% 1 0.96%

Major
Arts and communication 4 5.00% 1 0.96%
Business and economics 14 17.50% 23 22.12%
Health and medical 3 3.75% 6 5.77%
Science, technology, engineering, and math 39 48.75% 47 45.19%
Social sciences and humanities 11 13.75% 21 20.19%
Undeclared 2 2.50% 2 1.92%
Other majors 7 8.75% 4 3.85%

Year in college
Freshman 24 30.00% 27 25.96%
Sophomore/Junior 42 52.50% 55 52.88%
Senior 14 17.50% 22 21.15%

Race
White 38 47.50% 36 34.62%
Asian 17 21.25% 25 24.04%
White and Asian 4 5.00% 3 2.88%
Preferred not to say 6 7.50% 6 5.77%
Other races 15 18.75% 34 32.69%

Table 3: Demographics of dictators

Notes: This table presents the demographics of dictators in Experiments 1 and 2. The mean ages of
participants playing a dictator role in Experiments 1 and 2 are 19.5 and 19.9, respectively. The race
question is open-ended; the options listed in the table reflect the actual responses of participants.
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A.2 Expected Payoff of the Dictator

Figure 11: Expected Payoff of Dictators in Experiments 1 and 2

Notes: This figure presents the histograms and densities of the expected payoff of the dictators in Experi-
ments 1 and 2. The five lines are estimated Gaussian kernels, which use Scott’s rule for bandwidth selection.
For each dictator, we compute the expected payoff as follows. Let the menu be A = {(x1, y1), . . . , (xn, yn)}
and let the dictator’s choice be ρ = (ρ1, . . . , ρn). Then the expected payoff of the dictator is

∑n
i=1 ρixi.

In Experiment 2, the menus are A1 = {(0, 10), (5, 5), (10, 0)}, A2 = {(5, 5), (10, 0)},A3 = {(0, 10), (10, 0)},
and A4 = {(0, 10), (5, 5)}, respectively.
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A.3 Demographics and Dictator’s Behavior in Experiment 1
In this section, we present the regression results relating demographics to the dictator’s
behavior in Experiment 1, focusing on the degrees of selfishness, fairness, and randomization.
Demographics and Selfishness/Fairness. We employ two metrics to measure selfishness
and fairness in the dictator’s behavior. Selfishness is indicated when the selfish allocation
of (10,0) is assigned the highest weight, and fairness is indicated when the fair allocation of
(5,5) is assigned the highest weight. Table 4 reports the regression results. Overall, Table 4
shows that men are more selfish than women (Panel A). Correspondingly, women are fairer
than men (Panel B). There is no statistically significant relationship between risk attitudes
and either selfish or fair behaviors. Note that these results remain largely robust when the
weights assigned to the (10,0) or (5,5) allocations are used as dependent variables.
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A. Is weight of (10,0) the highest? B. Is weight of (5,5) the highest?
(1) (2) (3) (4)

Age -0.198 -0.279 0.445** 0.571**
(0.20) (0.23) (0.22) (0.24)

Gender 1.299** 1.165* -1.364*** -0.972*
(0.54) (0.61) (0.52) (0.57)

Race 0.561 0.925 -1.301** -1.460**
(0.55) (0.61) (0.54) (0.58)

Major 0.029 -0.079 -0.522 -0.266
(0.60) (0.65) (0.59) (0.59)

Social Activity 0.283 -0.127 -0.133 0.064
(0.31) (0.33) (0.28) (0.33)

Risk Attitude 0.340 -0.216
(0.22) (0.18)

Constant 1.795 1.717 -6.816 -8.650*
(4.05) (4.53) (4.30) (4.71)

# observations 79 68 79 68
log-likelihood -46.798 -38.854 -47.084 -39.580

Table 4: Relationship between demographic factors and selfishness/fairness in Experiment 1.

Notes: ∗p < 0.1,∗∗ p < 0.05,∗∗∗ p < 0.01. Standard errors are in parentheses. Regressions are estimated
using robust standard errors. The dependent variables in Panels A and B are binary, reflecting whether the
weight the dictator assigned to the selfish allocation and fair allocation is the highest, respectively. These
binary dependent variables equal 1 if the associated weights are the highest and 0 otherwise. Independent
variables include:

- Age: Age of the participant.
- Gender: Gender of the participant (1 = male; 0 = female). One subject did not reveal her gender,

so we excluded her from the analysis.
- Race: Race as self-reported by the participant (1 = white; 0 = others).
- Major: Major of the participant’s study (1 = STEM or business/economics major, including mar-

keting, finance, accounting, etc.; 0 = others).
- Social Activity: The degree to which subjects are involved in social and other-regarding activities.

This variable is the sum of three dummy variables: Community Involvement - Whether the subject
is involved in a student or social organization (1 = yes, 0 = no); Charitable Donation - When the
subject last donated to or volunteered for a nonprofit or charity organization, i.e., 501(c) organiza-
tions (1 = less than 6 months ago; 0 = more than 6 months ago or never); Street Giving - When
the subject last gave something to someone on the street (1 = less than 6 months ago; 0 = more
than 6 months ago or never).

- Risk Attitude: In the multiple-price list (MPL) question used to elicit risk attitudes (see Figure 18
for details), a subject is presented with a binary choice between Option A, which is a fixed lottery
paying $3 or $0 with equal probability, and Option B, which is a sure amount ranging from $0.25
to $2.75. We restrict our analysis to participants who exhibited normal and standard behavior: the
participants chose Option A when the fixed dollar amount in Option B does not exceed a threshold
and chose B afterward. The Risk Attitude variable is the point at which participants switched from
choosing A to choosing B in the MPL question. It takes values in {2, . . . , 11}, with higher values
indicating lower risk aversion.
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Demographics and Randomization. We measure the degree of randomization in the
dictator’s behavior by quantifying the size of the support of the dictator’s weight distribution.
This metric, defined as the number of allocations assigned a strictly positive weight, served
as the dependent variable in our regression analysis. Table 5 reports the regression results.
Overall, Table 5 indicates that randomization is more prevalent among women. Risk attitude
is not a statistically significant predictor of randomization behaviors.

# of allocations with positive weights
(1) (2)

Age -0.203 0.096
(0.30) (0.32)

Gender -2.528*** -2.128**
(0.81) (0.89)

Race -0.649 -0.285
(0.78) (0.87)

Major 0.375 0.025
(0.88) (0.93)

Social Activity 0.431 0.229
(0.39) (0.44)

Risk Attitude -0.099
(0.30)

Constant 10.661* 5.290
(5.94) (6.45)

# observations 79 68
log-likelihood -203.301 -172.489

Table 5: Relationship between demographic factors and the degree of randomization in the
dictator’s choice in Experiment 1.

Notes: ∗p < 0.1,∗∗ p < 0.05,∗∗∗ p < 0.01. Standard errors are in parentheses. Regressions are estimated
using robust standard errors. See Table 4 for definitions of independent variables.

Overall, Tables 4-5 indicate that among demographic factors, gender plays a significant
role in the dictator’s behavior, whereas risk attitude plays a minimal or insignificant role.
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A.4 Views on Randomization
In the questionnaire at the end of both Experiments 1 and 2, we asked participants to explain
why they chose to randomize if they did so. To understand their underlying reasons, we
conduct a simple analysis of the frequency of words in the participants’ open-ended responses.
This analysis helps identify patterns in the participants’ reasoning. Figure 7 in the main body
of the paper presents the results.

We exclude a set of specific words when analyzing word frequency: {allocation, alloca-
tions, feel, positive, positive weight, positive weights, one, question, receiver, rather, selected,
think, thought, two, yes, want, wanted, weight, and weights}. These words are not generally
related to the reasons for choosing a weight distribution; rather, they are either linked to the
phrasing of the questions (allocation, positive weight, one, two, yes, weight, receiver, etc.) or
function as linking terms (chose, feel, rather, selected, think, thought, want, wanted). We also
group together some words that share the same meaning or inflected form (give/gave/giving;
keep/kept; recipient/receiver; equally/equal; etc.) and correct obvious misspellings in the
participants’ responses before conducting the analysis.

Below we also report four responses that are quite typical in Experiment 1. These re-
sponses are generally in line with findings reported in Figure 7.

• Subject ID #17: “I chose many allocations with positive weights. I chose 8 with postive
weights. I wanted to spread out the chances of what would happen because I didn’t
want myself to have all the power in deciding who got how much money - I didn’t think
that would be fair.”

• Subject ID #20: “I chose 6 allocations. I chose this many to spread out the chances,
and make it more luck-based, but so that either way both people would get something.”

• Subject ID #27: “I gave them a chance to possibly get some of the money but the
biggest allocation was to me.”

• Subject ID #43: “I chose 5 allocations rather than just 1 because I didn’t want to make
the full decision myself of which one to choose. I let chance play some role in how much
money each participant got because that felt more fair, while also letting me bias the
weights in my favor because I did want the money.”
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A.5 Rényi entropy and Rényi divergence
We repeat the analyses of Experiment 1 in Section 7 using Rényi entropy and Rényi di-
vergence. Given menu A = {(x1, y1), . . . , (xn, yn)}, Rényi entropy of a choice distribution
ρ = (ρ1, . . . , ρn) ∈ ∆(A) is given by:

Eτ,Rényi(ρ) = 1
1 − τ

log
( n∑

i=1
ρτ

(xi,yi)

)
for some τ > 0, τ ̸= 1.

In Eτ,Rényi(ρ), τ > 0 is the order of the entropy and measures how much weight is given
to different probabilities in the distribution. Specifically, τ determines the emphasis on rare
and frequent events in the entropy calculation. In general, the Rényi entropy with τ > 1 is
more robust and less sensitive to outliers in ρ. The Shannon entropy analyzed in Section 7
is the limiting case of Rényi entropy when τ → 1. Figure 12a presents the histogram and
density of E2,Rényi(ρ) for observed dictator’s choice, ρ, in our Experiment 1. We set τ = 2 in
Rényi entropy to enhance robustness to outliers. Overall, Figure 12a is similar to Figure 5
when using Shannon entropy, suggesting that the result in Figure 5 is robust to alternative
measures of randomness.

(a) Rényi Entropy (b) Rényi divergence

Figure 12: Rényi Entropy and Rényi Divergence in Experiment 1
Notes: The width of the bins for the histogram is 0.1. The lines indicate the estimated Gaussian kernels,
which use Scott’s rule for bandwidth selection. Given our design in Experiment 1, the maximum Rényi

entropy (τ = 2) is approximately equal to 2.4 (using natural logarithm).

In Figure 12b, we measure how far the behaviors in our Experiment 1 deviate from the
aggregate behaviors reported in Engel (2011) using Rényi divergence, which is based on Rényi
entropy. For each subject, we calculate the Rényi divergence between their choice and the
aggregate distribution. Let ρ be a choice distribution of a dictator in our experiment and ρ̃
the aggregate distribution of the dictator’s behavior in Engel (2011) (Figure 2 in the paper).
The Rényi divergence between ρ and ρ̃ is given by:

dτ,Rényi(ρ, ρ̃) = 1
τ − 1 log

( n∑
i=1

ρτ
(xi,yi)ρ̃

1−τ
(xi,yi)

)
.

Note that dτ,Rényi(ρ, ρ̃) is nonnegative and equals zero only if ρ and ρ̃ are identical. Figure
12b reports the histogram and density of d2,Rényi(ρ, ρ̃). We again set τ = 2 to enhance
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robustness to outliers. Overall, Figure 12b is similar to Figure 10 when using Kullback-
Leibler divergence, suggesting that the result in Figure 10 is robust to alternative measures
of divergence.
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A.6 Additional Rationality Properties in Experiment 2
Other versions of Regularity. Given that only 57.69% of subjects in Experiment 2 sat-
isfy the Regularity condition (see Section 6.2.2 in the main body of the paper), we provide
additional results on whether the dictator’s behavior in Experiment 2 satisfies two weaker
versions of Regularity in the literature.

Filiz-Ozbay and Masatlioglu (2023) proposes a weak regularity condition that allows for
regularity violations. In their property, the probability of choosing an alternative in a bigger
menu cannot exceed the maximum probability of choosing it from any relevant binary menus;
hence, the violations of regularity cannot happen with respect to every binary comparison.
This property is relevant to our study as subjects faced three binary menus in Experiment 2.

Weak Regularity-1. For any a, b ∈ A and a ̸= b, ρa(A) ≤ maxb∈A\{a} ρa({a, b}).

Echenique and Saito (2019) develop the following weak regularity condition, which applies
to the alternatives with zero choice probabilities. Suppose an option is not chosen in a binary
choice set. The property then requires that the option be selected with zero probability in
all bigger menus containing the binary menu. This property is also relevant to our study as
several participants never chose some allocations.

Weak Regularity-2. For any a, b ∈ A and a ̸= b, ρa({a, b}) = 0 implies ρa(A) = 0.

In Experiment 2, the two weaker versions of Regularity are overwhelmingly supported.
Specifically, Weak Regularity-1 and Weak Regularity-2 are supported by 96.15% (100 dicta-
tors) and 87.50% (91 dictators), respectively.

Stochastic Transitivity Axioms. We investigate whether the dictator’s behavior in Exper-
iment 2 satisfies other versions of stochastic transitivity in the literature. Besides Moderate
Stochastic Transitivity, Weak Stochastic Transitivity and Strong Stochastic Transitivity are
also natural probabilistic generalizations of the standard transitivity axiom. Weak Stochastic
Transitivity is the weaker version of the other two. In single-individual domains, empirical
studies documented robust violations of the strong version but few violations of the weak one
(Rieskamp et al., 2006; Mellers and Biagini, 1994).
Weak Stochastic Transitivity. For any allocations a, b, c and binary menus created by
them

min{ρa({a, b}), ρb({b, c})} ≥ 1/2 ⇒ ρa({a, c}) ≥ 1/2.

Strong Stochastic Transitivity. For any allocations a, b, c and binary menus created by
them

min{ρa({a, b}), ρb({b, c})} ≥ 1/2 ⇒ ρa({a, c}) ≥ max{ρa({a, b}), ρb({b, c})}.

In Experiment 2, 97.12% (101 dictators) satisfied Weak Stochastic Transitivity, and
74.04% (77 dictators) satisfied Strong Stochastic Transitivity. Table 6 summarizes the num-
ber of subjects satisfying different rationality properties.
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Stochastic Transitivity
Overall

Weak Moderate Strong

R
eg

ul
ar

ity Weak Regularity-1 98 93 74 100
Weak Regularity-2 89 84 66 91
Regularity 59 58 51 60

Overall 101 96 77

Table 6: The number of participants consistent with various properties of rationality in
Experiment 2

Notes: There are 104 subjects in Experiment 2.
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Appendix B Proofs
Proof of Propositions 1-2: Suppose the dictator’s utility from choosing allocation (x, y)
is given by

uF S−general(x, y) = x− αmax{y − γx, 0} − βmax{γx− y, 0}, (5)

where γ > 0. Fehr-Schmidt utility function corresponds to the case when γ = 1. Proposi-
tion B.1 below provides a complete characterization of the dictator’s optimal choice under
this more general utility function. Propositions 1-2 in the main body are a special case of
Proposition B.1 below with γ = 1. In Proposition B.1, we assume that α + β ≥ 0 and
1 + α(γ + 1) > 0 and β ̸= 1/(γ + 1). This generalizes the assumptions that α + β ≥ 0 and
1 + 2α > 0 and β ̸= 1/2 in the main body. Note that under the utility function specified in
(5), the “fair allocation,” i.e., the allocation that results in no guilt or envy, is ( M

γ+1 ,
Mγ
γ+1).

Proposition B.1. A dictator who is maximizing the utility functions specified in (1) and
(5) will choose ρ∗ as follows:

i. If δ ̸= 1,

(a) If allocation ae = ( M
γ+1 ,

Mγ
γ+1) ∈ A then ρ∗ =

{
(0, 0, ..., ρ∗

n = 1) if β < 1/(γ + 1),
(0, ..., ρ∗

ae
= 1, ..., 0) if β > 1/(γ + 1).

(b) If allocation ae = ( M
γ+1 ,

Mγ
γ+1) /∈ A, then ρ∗ takes one of the following forms:

ρ∗ =
{

(0, ..., ρ∗
n = 1) if β < 1/(γ + 1),

(0, ..., ρ∗
[e]− = λ, ρ∗

[e]+ = 1 − λ, ..., 0), with some λ ∈ [0, 1] if β > 1/(γ + 1),

where [e]− = (xe− , ye−) and [e]+ = (xe+ , ye+) denote the closest feasible allocations
located to the left and right of ae, respectively.

ii. If δ = 1,

(a) If β < 1/(γ + 1) then ρ∗ = (0, ..., ρ∗
n = 1)

(b) If β > 1/(γ + 1) then ρ∗ is optimal if and only if
∑n

k=1 ρ
∗
kxk = M/(γ + 1).

Proof. Let ∆l(A) = {ρ : ρ ∈ ∆(A) and
∑n

k=1 ρkxk ≤ M/(γ + 1)} and ∆h(A) = {ρ : ρ ∈
∆(A) and

∑n
k=1 ρkxk ≥ M/(γ + 1)}. Note that ∆l(A) and ∆h(A) are compact sets because

they are subsets of Rn and they are both closed and bounded (Heine-Borel theorem). We
show below that we can express

V (ρ) =
{
V l(ρ) if ρ ∈ ∆l(A)
V h(ρ) if ρ ∈ ∆h(A),

where V l(ρ) and V h(ρ) are continuous and linear functions of ρ. This is useful because since
∆l(A) and ∆h(A) are compact sets and V l(ρ) and V h(ρ) are continuous and linear functions
of ρ, the maximizers of V l(ρ) and V h(ρ) exist.
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Let ρ ∈ ∆l(A). Using xk + yk = M for all k, some algebra and the fact that

∑
k:xk<M/(γ+1)

ρk(M − (γ + 1)xk) −
∑

k:xk≥M/(γ+1)
ρk((γ + 1)xk −M) = M − (γ + 1)

n∑
k=1

ρkxk,

we can write:

V (ρ) = δu(Eρ) + (1 − δ)Eρ(u)

= δ

[
n∑

k=1

ρkxk − α

(
M − (γ + 1)

n∑
k=1

ρkxk

)]
+

+(1 − δ)

[
n∑

k=1

ρkxk − α
∑

k:xk<M/(γ+1)

ρk(M − (γ + 1)xk) − β
∑

k:xk≥M/(γ+1)

ρk((γ + 1)xk −M)

]

= (1 + δα(γ + 1))
n∑

k=1

ρkxk − δαM

−(1 − δ)

[
α

∑
k:xk<M/(γ+1)

ρk(M − (γ + 1)xk) + β
∑

k:xk≥M/(γ+1)

ρk((γ + 1)xk −M)

]

= (1 + δα(γ + 1) − (1 − δ)β(γ + 1))
n∑

k=1

ρkxk − δαM + (1 − δ)βM

−(1 − δ)(α+ β)
∑

k:xk<M/(γ+1)

ρk(M − (γ + 1)xk),

We call the right-hand side of the last equation V l(ρ).
Next, let ρ ∈ ∆h(A). Similarly, we can write

V (ρ) = δu(Eρ) + (1 − δ)Eρ(u)

= δ

[
n∑

k=1

ρkxk − β

(
(γ + 1)

n∑
k=1

ρkxk −M

)]
+

+(1 − δ)

[
n∑

k=1

ρkxk − α
∑

k:xk<M/(γ+1)

ρk(M − (γ + 1)xk) − β
∑

k:xk≥M/(γ+1)

ρk((γ + 1)xk −M)

]

= (1 − δβ(γ + 1))
n∑

k=1

ρkxk + δβM

−(1 − δ)

[
α

∑
k:xk<M/(γ+1)

ρk(M − (γ + 1)xk) + β
∑

k:xk≥M/(γ+1)

ρk((γ + 1)xk −M)

]

= (1 − β(γ + 1))
n∑

k=1

ρkxk + βM − (1 − δ)(α+ β)
∑

k:xk<M/(γ+1)

ρk(M − (γ + 1)xk).

We call the right-hand side of the last equation V h(ρ). The dictator’s optimal choice, ρ∗,
satisfies

ρ∗ ∈ argmax
ρ∈∆l(A)

V l(ρ) ∪ argmax
ρ∈∆h(A)

V h(ρ).

Next, we characterize the optimal strategy for δ = 1 (i.e., part (ii) of Proposition B.1.)

49



Part (ii) of Proposition B.1: When δ = 1, the dictator’s utility from choosing ρ can be
simplified to

V (ρ) =
{
V l(ρ) = (1 + α(γ + 1))

∑n
k=1 ρkxk − αM if ρ ∈ ∆l(A),

V h(ρ) = (1 − β(γ + 1))
∑n

k=1 ρkxk + βM if ρ ∈ ∆h(A).
(6)

Note that V l(ρ) is an increasing function of
∑n

k=1 ρkxk as 1 + α(γ + 1) > 0 by assumption.
Also, by definition, ρ ∈ ∆l(A) implies

∑n
k=1 ρkxk ≤ M/(γ + 1). Hence, V l(ρ) ≤ (1 + α(γ +

1))M/(γ + 1) − αM = M/(γ + 1), with equality when
∑n

k=1 ρkxk = M/(γ + 1).
For V h(ρ), first, suppose β < 1/(γ + 1). Then V h(ρ) is an increasing function of∑n

k=1 ρkxk. Using
∑n

k=1 ρkxk ≤ M , we have V h(ρ) ≤ (1 − β(γ + 1))M + βM = M(1 − βγ),
with equality when ρn = 1. Note that M(1 − βγ) > M/(γ + 1) as β < 1/(γ + 1). It follows
that maxρ∈∆l(A) V

l(ρ) < maxρ∈∆h(A) V
h(ρ) and V (ρ) achieves its maximum when ρn = 1.

Therefore, for the case described in part (ii)(a) of Proposition B.1, the optimal strategy is to
act selfishly with ρ∗ = (0, . . . , ρ∗

n = 1).
Now, suppose β > 1/(γ + 1). Then V h(ρ) is a decreasing function of

∑n
k=1 ρkxk. By

definition, ρ ∈ ∆h(A) implies
∑n

k=1 ρkxk ≥ M/(γ + 1). Using this, we have V h(ρ) ≤
(1−β(γ+1))M/(γ+1)+βM = M/(γ+1), with equality when

∑n
k=1 ρkxk = M/(γ+1). Hence,

maxρ∈∆l(A) V
l(ρ) = maxρ∈∆h(A) V

h(ρ) and V (ρ) achieves its maximum value of M/(γ + 1)
when

∑n
k=1 ρkxk = M/(γ + 1). Consequently, the optimal strategy is any lottery that gives

the dictator M/(γ + 1) in expectation. This completes our proof of part (ii) of Proposition
B.1.

Part (i) of Proposition B.1: For any choice ρ of the dictator, let S(ρ) = {k ∈ N : ρk >
0} = {n1, n2, . . . , n|S(ρ)|} be the support of ρ, where |S(ρ)| is the cardinality of S(ρ) and
n1 < n2 < · · · < n|S(ρ)|. We suppose that |S(ρ)| ≥ 2 (i.e., the strategy is stochastic) and will
deal with the deterministic case of |S(ρ)| = 1 later. We begin with the following Lemma,
which argues that any optimal strategy that is stochastic must have elements smaller and
larger than the fair amount and its support has to contain only two allocations that are
consecutive.

Lemma B.1. Suppose ρ is optimal and |S(ρ)| ≥ 2. Then

(i) xn1 < M/(γ + 1) < xn|S(ρ)| ;

(ii) n|S(ρ)| − n1 = 1.

Proof. For part (i), the proof is by contradiction. Suppose ρ∗ is optimal but xn|S(ρ∗)| ≤
M/(γ + 1). Then xnj < M/(γ + 1) for all j < |S(ρ∗)| and

∑
k ρ

∗
kxk < M/(γ + 1). Hence, the

optimal choice ρ∗ must be a maximizer of V l(ρ). Next, we write the corresponding Lagrangian
of this maximization

L(ρ) = (1 + δα(γ + 1))
n∑

k=1

ρkxk − δαM +

−(1 − δ)

[
α

∑
k:xk≤M/(γ+1)

ρk(M − (γ + 1)xk) + β
∑

k:xk>M/(γ+1)

ρk((γ + 1)xk −M)

]
+
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+
n∑

k=1

ωkρk +
n∑

k=1

ψk(1 − ρk) + λ1

(
1 −

n∑
k=1

ρk

)
+ λ2

(
M/(γ + 1) −

n∑
k=1

ρkxk

)
,

where ωk ≥ 0, ψk ≥ 0, λ1, and λ2 ≥ 0 are the Lagrange multipliers associated to conditions
ρk ≥ 0, 1 − ρk ≥ 0, 1 −

∑n
k=1 ρk = 0, and M/(γ + 1) −

∑n
k=1 ρkxk ≥ 0, respectively. As ρ∗ is

a maximizer of V l(ρ), for all k ∈ S(ρ∗) we must have

0 = ∂L(ρ)
∂ρk

|ρ=ρ∗ = (1 + δα(γ + 1))xk − (1 − δ)Zk + ωk − ψk − λ1 − λ2xk,

where Zk = α(M − (γ + 1)xk) for all k ∈ S(ρ∗) because of our assumption that xn|S(ρ∗)| ≤
M/(γ + 1). The complementary slackness requires ωkρ

∗
k = 0 and ψk(ρ∗

k − 1) = 0 for all
k ∈ S(ρ∗) and λ1(1 −

∑n
k=1 ρ

∗
k) = λ2(

∑n
k=1 ρ

∗
kxk −M/(γ+ 1)) = 0. As we show

∑n
k=1 ρ

∗
kxk <

M/(γ+1) earlier, λ2 must be equal to 0. Also, ρ∗
k ∈ (0, 1) for all k ∈ S(ρ∗) implies ωk = ψk = 0

for all k ∈ S(ρ∗). Then the first-order condition simplifies to

(1 + δα(γ + 1))xk − (1 − δ)Zk − λ1 = 0 for all k ∈ S(ρ∗).

Consequently, for any pair (k, k′) ∈ S(ρ∗) × S(ρ∗) we have:

(1 + δα(γ + 1))xk − (1 − δ)Zk = (1 + δα(γ + 1))xk′ − (1 − δ)Zk′ .

Particularly, the above equation holds when k = n1 and k′ = n|S(ρ∗)|. Hence,

(1 + δα(γ + 1))xn1 − (1 − δ)Zn1 = (1 + δα(γ + 1))xn|S(ρ∗)| − (1 − δ)Zn|S(ρ∗)|

(1 + δα(γ + 1))xn1 − (1 − δ)α(M − (γ + 1)xn1 ) = (1 + δα(γ + 1))xn|S(ρ∗)| − (1 − δ)α(M − (γ + 1)xn|S(ρ∗)| )
(1 + α(γ + 1))xn1 − (1 − δ)αM = (1 + α(γ + 1))xn|S(ρ∗)| − (1 − δ)αM

xn1 = xn|S(ρ∗)| (because 1 + α(γ + 1) > 0 by assumption),

which contradicts with xn1 < xn|S(ρ∗)| . Hence, the initial assumption is wrong and we have
xn|S(ρ∗)| > M/(γ + 1).

Now, suppose ρ∗ is optimal but xn1 ≥ M/(γ + 1). It follows that xnj > M/(γ + 1) for
all j > 1 and

∑
k ρ

∗
kxk > M/(γ + 1). Hence, ρ∗ must be a maximizer of V h(ρ). Following a

similar idea as above by writing down the Lagrangian function and then taking the first-order
conditions, we get

(1 − δβ(γ + 1))xk − (1 − δ)Tk = (1 − δβ(γ + 1))xk′ − (1 − δ)Tk′ for all k, k′ ∈ S(ρ∗),

where Tk = β((γ + 1)xk −M) for all k ∈ S(ρ∗). This means

(1 − β(γ + 1))xk + (1 − δ)βM = (1 − β(γ + 1))xk′ + (1 − δ)βM for all k, k′ ∈ S(ρ∗), (7)

As β ̸= 1/(γ + 1), the equation above implies that xk = xk′ for all k, k′ ∈ S(ρ∗). This
contradicts with the assumption that the optimal choice is stochastic. This completes our
proof of part (i) of Lemma B.1.

For part (ii), proof is again by contradiction. Suppose ρ is optimal and n|S(ρ)| − n1 ≥ 2
(i.e., the highest and lowest amounts kept by the dictator are not consecutive). We will show
that such ρ cannot be optimal. The idea is constructing another strategy ρ′ from ρ by moving
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weights from allocations (xn1 , yn1) and (xn|S(ρ)| , yn|S(ρ)|) to allocation (xi, yi), for some i such
that xn1 < xi < xn|S(ρ)| , to increase V (ρ). The goal is to reduce the guilt of the dictator
(i.e.,

∑
k:xk<M/(γ+1) ρk(M − (γ + 1)xk)) while keeping the dictator’s expected earnings (i.e.,∑n

k=1 ρkxk) unchanged.
First, as ρ is optimal, it follows from part (i) of the Lemma that xn1 < M/(γ + 1) <

xn|S(ρ)| . As n|S(ρ)| − n1 ≥ 2, there must exist i such that n|S(ρ)| > i > n1. Equivalently,
xn|S(ρ)| > xi > xn1 . Define ρ′ as follows

ρ′
k =



ρk if k ̸= n1, i, n|S(ρ)|

ρk − ε
xn|S(ρ)| −xi

xn|S(ρ)| −xn1
if k = n1

ρk + ε if k = i

ρk − ε
xi−xn1

xn|S(ρ)| −xn1
if k = n|S(ρ)|

where ε > 0 is sufficiently small. It is routine to verify that ρ′
n1 +ρ′

i+ρ′
n|S(ρ)|

= ρn1 +ρi+ρn|S(ρ)|

and xn1ρ
′
n1 + xiρ

′
i + xn|S(ρ)|ρ

′
n|S(ρ)|

= xn1ρn1 + xiρi + xn|S(ρ)|ρn|S(ρ)| . This implies
∑n

k=1 ρ
′
k = 1

and
∑n

k=1 ρ
′
kxk =

∑n
k=1 ρkxk. Hence, when ε is small enough, ρ′ ∈ ∆(A) and is thus a feasible

choice. We will show that ρ′ dominates ρ for the dictator (i.e., V (ρ′) > V (ρ)). Note that
both ρ′ and ρ are either from ∆l(A) or ∆h(A). Also note that the first two terms of V l(ρ)
and V h(ρ) functions are identical for ρ and ρ′ given that the dictator’s expected payoffs under
ρ and ρ′ are the same; hence, these terms will be canceled out in V (ρ) −V (ρ′). Furthermore,
our assumption of |S(ρ)| ≥ 2 implies that (1 − δ)(α + β) > 0; we will prove this at the end
of the proof.

Suppose xi ≥ M/(γ + 1). Using the properties of ρ and definition of ρ′, we have

V (ρ) − V (ρ′)
(1 − δ)(α+ β) =

∑
k:xk<M/(γ+1)

ρ′
k(M − (γ + 1)xk) −

∑
k:xk<M/(γ+1)

ρk(M − (γ + 1)xk) =

= ρ′
n1 (M − (γ + 1)xn1 ) − ρn1 (M − (γ + 1)xn1 ) (using xi ≥ M/(γ + 1))

= (ρ′
n1 − ρn1 )(M − (γ + 1)xn1 ) < 0 (because ρ′

n1 < ρn1 and xn1 < M/(γ + 1)),

which contradicts with the optimality of ρ.
Now, suppose xi < M/(γ + 1). Then

V (ρ) − V (ρ′)
(1 − δ)(α+ β) =

∑
k:xk<M/(γ+1)

ρ′
k(M − (γ + 1)xk) −

∑
k:xk<M/(γ+1)

ρk(M − (γ + 1)xk) =

=
∑

k:k∈{n1,i}

ρ′
k(M − (γ + 1)xk) −

∑
k:k∈{n1,i}

ρk(M − (γ + 1)xk) (using xi < M/(γ + 1))

= M
∑

k:k∈{n1,i}

(ρ′
k − ρk) − (γ + 1)

∑
k:k∈{n1,i}

(ρ′
kxk − ρkxk) (rearranging terms)

= M(ρn|S(ρ)| − ρ′
n|S(ρ)| ) − (γ + 1)(ρn|S(ρ)|xn|S(ρ)| − ρ′

n|S(ρ)|xn|S(ρ)| )

= (ρn|S(ρ)| − ρ′
n|S(ρ)| )(M − (γ + 1)xn|S(ρ)| ) < 0 (because ρ′

n|S(ρ)| < ρn|S(ρ)| and M < (γ + 1)xn|S(ρ)| )

where the equation on the fourth line uses the facts that ρ′
n1 + ρ′

i + ρ′
n|S(ρ)|

= ρn1 + ρi + ρn|S(ρ)|

and xn1ρ
′
n1 +xiρ

′
i+xn|S(ρ)|ρ

′
n|S(ρ)|

= xn1ρn1 +xiρi+xn|S(ρ)|ρn|S(ρ)| . As V (ρ) < V (ρ′), ρ′ dominates
ρ for the dictator and that contradicts with the optimality of ρ.
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Above we claimed that (1 − δ)(α + β) > 0. Next, we will prove it by contradiction.
Suppose (1 − δ)(α+ β) = 0. As δ < 1 in part (i) of Proposition B.1, this implies β = −α. In
this case, V (ρ) simplifies to V (ρ) = (1 + α(γ + 1))

∑n
k=1 ρkxk − αM . Since 1 + α(γ + 1) > 0

by assumption, such a dictator will choose ρ = (0, . . . , ρn = 1). Hence, |S(ρ)| = 1 at the
optimum, contradicting the assumption that |S(ρ)| ≥ 2. This completes our proof of Lemma
B.1.

Back to the main proof. We prove cases (i)a and (i)b of Proposition B.1 separately.
Case (i)a of Proposition B.1: Suppose ae = (M/(γ+1),Mγ/(γ+1)) ∈ A. We show that the
dictator’s optimal behavior must be deterministic by a contradiction. Suppose the optimal
ρ∗ is stochastic (i.e., |S(ρ∗)| ≥ 2). Lemma B.1 then implies that S(ρ∗) = {n1, n2} and
xn1 < M/(γ + 1) < xn2 , which implies n2 − n1 > 1 as ae ∈ A. This contradicts with Lemma
B.1. Hence, the dictator’s optimal behavior must be deterministic. In such a case, there
exists i ∈ N such that ρ∗

i = 1. Plug this strategy into (6) and get

V (ρ∗) =
{
V l(ρ∗) if ρ∗ ∈ ∆l(A)
V h(ρ∗) if ρ∗ ∈ ∆h(A)

=
{
xi − α(M − (γ + 1)xi) if xi ≤ M/(γ + 1)
xi − β((γ + 1)xi −M) if xi ≥ M/(γ + 1)

Note that this piecewise linear function of xi will achieve its maximum at the boundaries.
Hence, there are three possible candidates for ρ∗: ρ∗ = (ρ∗

1 = 0, . . . , 0), ρ∗ = (0, . . . , ρ∗
ae

=
1, . . . , 0), or ρ∗ = (0, . . . , ρ∗

n = 1). In the first case, the dictator’s utility is −αM . In the second
case, the dictator’s utility is M/(γ + 1). In the last case, the dictator’s utility is M(1 − βγ).
As 1 + α(γ + 1) > 0 and β ̸= 1/(γ + 1) by assumptions, the dictator’s optimal choice is
unique and given by ρ∗ = (0, . . . , ρ∗

ae
= 1, . . . , 0) if β > 1/(γ + 1) and ρ∗ = (0, . . . , ρ∗

n = 1) if
β < 1/(γ + 1). This completes our proof of part (i)a of Proposition B.1.
Case (i)b of Proposition B.1: Suppose ae ̸∈ A. Let [e]− = (xe− , ye−) and [e]+ = (xe+ , ye+) be
two feasible allocations that are left-closest and right-closest to ae, respectively. Following
the same logic as in the proof of Case (i)a and the results in Lemma B.1, there are four
candidates for the optimal strategy. Among them, three are deterministic and given by

• ρ = (0, ..., ρ[e]− = 1, ..., 0), which corresponds to an utility of xe− − α(M − (γ + 1)xe−);

• ρ = (0, ..., ρ[e]+ = 1, ..., 0), which corresponds to an utility of xe+ − β((γ + 1)xe+ −M);

• ρ = (0, ..., ρn = 1), which corresponds to an utility of M(1 − βγ).

The last one is stochastic and given by ρ = (0, ..., ρ[e]− = λ, ρ[e]+ = 1 − λ, ..., 0) for some
λ ∈ (0, 1). Note that the stochastic candidate takes this form because Lemma B.1 implies that
any probabilistic play involving randomization between allocations different from [e]− and [e]+
is not optimal. Notice that the first two deterministic candidates, ρ = (0, ..., ρ[e]− = 1, ..., 0)
and ρ = (0, ..., ρ[e]+ = 1, ..., 0), also share the form ρ = (0, ..., ρ[e]− = λ, ρ[e]+ = λ, ..., 0)
for some λ ∈ [0, 1]. Hence, the possible candidates for the optimal strategies are either
ρ = (0, ..., ρn = 1) or ρ = (0, ..., ρ[e]− = λ, ρ[e]+ = λ, ..., 0) for some λ ∈ [0, 1].

We first characterize the optimal λ when ρ = (0, ..., ρ[e]− = λ, ρ[e]+ = λ, ..., 0). In this
case,

∑n
k=1 ρkxk = λxe− +(1−λ)xe+ . Let λ̄ be the solution of λxe− +(1−λ)xe+ = M/(γ+1),

i.e., λ̄ = (xe+ − M/(γ + 1))/(xe+ − xe−). The dictator’s optimization problem of choosing
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ρ = (0, ..., ρ[e]− = λ, ρ[e]+ = λ, ..., 0) can be rewritten as an optimization problem of choosing
λ. Specifically, the dictator solves

max
ρ

V (ρ) =
{
V l(ρ) if ρ ∈ ∆l(A)
V h(ρ) if ρ ∈ ∆h(A)

= max
λ∈[0,1]

{
Γ1(λ) if λ ∈ [λ̄, 1]
Γ2(λ) if λ ∈ [0, λ̄],

where Γ1(λ) and Γ2(λ) are linear and continuous functions of λ. Note that the optimal λ
depends on the exact values of xe− , xe+ , α, β,γ, δ, and M . Lemma B.2 below provides a
complete characterization of the optimal strategy of the dictator when δ ̸= 1 and ae ̸∈ A.
Lemma B.2. Suppose δ ̸= 1.

(i) If β < 1/(γ + 1) then ρ∗ = (0, ..., ρ∗
n = 1).

(ii) If β > 1/(γ + 1) then the dictator randomizes between [e]− and [e]+, with the optimal
weight on [e]−, λ∗, given by the following table

Γ′
2(λ) < 0 Γ′

2(λ) = 0 Γ′
2(λ) > 0

Γ′
1(λ) < 0 λ∗ = 0 λ∗ ∈ [0, λ̄] λ∗ = λ̄

Γ′
1(λ) = 0 − λ∗ ∈ [0, 1] λ∗ ∈ [λ̄, 1]

Γ′
1(λ) > 0 − − λ∗ = 1

Notes: The symbol “ − ” in the table above implies that the corresponding case cannot happen since
Γ′

1(λ) < Γ′
2(λ). Here,

Γ′
1(λ) = δ(xe− − xe+ )(1 + α(γ + 1)) + (1 − δ)[xe− − α(M − (γ + 1)xe− ) − xe+ + β((γ + 1)xe+ −M)]

Γ′
2(λ) = δ(xe− − xe+ )(1 − β(γ + 1)) + (1 − δ)[xe− − α(M − (γ + 1)xe− ) − xe+ + β((γ + 1)xe+ −M)]

Proof. We begin with some calculations. When ρ = (0, ..., ρ[e]− = λ, ρ[e]+ = 1 − λ, ..., 0),
the dictator’s utility is given by Γ1(λ) if λ ∈ [λ̄, 1] and Γ2(λ) if λ ∈ [0, λ̄]. Note that both
Γ1(λ) and Γ2(λ) are linear functions of λ. Therefore, they achieve their maximum values at
boundary values of λ. This means

max
{

max
λ∈[λ̄,1]

Γ1(λ), max
λ∈[0,λ̄]

Γ2(λ)
}

= max{Γ1(1),Γ1(λ̄),Γ2(λ̄),Γ2(0)}.

It is straightforward that Γ1(λ̄) = Γ2(λ̄) and

Γ1(1) = u(xe− , ye− ) = xe− − α(ye− − γxe− ) = xe− − α(M − (γ + 1)xe− ) = (1 + α(γ + 1))xe− − αM

Γ2(0) = u(xe+ , ye+ ) = xe+ − β(γxe+ − ye+ ) = xe+ − β(γM − (γ + 1)ye+ ) = xe+ + β(γ + 1)ye+ − βγM

Γ1(λ̄) = δu(λ̄xe− + (1 − λ̄)xe+ , λ̄ye− + (1 − λ̄)ye+ ) + (1 − δ)[λ̄u(xe− , ye− ) + (1 − λ̄)u(xe+ , ye+ )]
= δu(M/(γ + 1),Mγ/(γ + 1)) + (1 − δ)[λ̄((1 + α(γ + 1))xe− − αM) + (1 − λ̄)(xe+ − β((γ + 1)xe+ −M))]
= δM/(γ + 1) + (1 − δ)[λ̄xe− + (1 − λ̄)xe+ + αλ̄((γ + 1)xe− −M) − β(1 − λ̄)((γ + 1)xe+ −M)]
= δM/(γ + 1) + (1 − δ)[M/(γ + 1) + αλ̄((γ + 1)xe− −M) − β(1 − λ̄)((γ + 1)xe+ −M)]
= M/(γ + 1) − (1 − δ)(γ + 1)[αλ̄(M/(γ + 1) − xe− ) + β(1 − λ̄)(xe+ −M/(γ + 1))].

Proof of Part (i) of Lemma B.2: Suppose β < 1/(γ+1). The dictator’s utility when choosing
ρ = (0, ..., ρn = 1) is given by M − βγM . To show that ρ = (0, ..., ρn = 1) is optimal, it is
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sufficient to prove M − βγM ≥ max{Γ1(1),Γ1(λ̄),Γ2(λ̄),Γ2(0)}. We show that M − βγM is
greater than or equal to each term separately.

• M − βγM > Γ1(1) is equivalent to

M − βγM > (1 + α(γ + 1))xe− − αM ⇔ M(1 + α− βγ) ≥ (1 + α(γ + 1))xe− .

The inequality above holds because M(1 + α − βγ) > M(1 + α − γ/(γ + 1)) > (1 +
α(γ + 1))xe− . The first inequality uses the assumption that β < 1/(γ + 1). The second
inequality comes from the fact that xe− < M/(γ+1) (because (xe− , ye−) is the allocation
closest to the left of allocation ae = (M/(γ + 1),Mγ/(γ + 1))) and 1 + α(γ + 1) > 0.

• M − βγM > Γ1(λ̄) holds because Γ1(λ̄) ≤ M/(γ + 1) (see calculation above) and
M − βγM > M/(γ + 1) as β < 1/(γ + 1).

• M − βγM ≥ Γ2(0) is equivalent to

M −βγM ≥ xe+ +β(γ+1)ye+ −βγM ⇔ M −xe+ ≥ β(γ+1)ye+ ⇔ ye+ ≥ β(γ+1)ye+ .

The last inequality holds as β < 1/(γ + 1) and ye+ ≥ 0. Note that the inequality
M − βγM ≥ Γ2(0) is strict when ye+ > 0. When ye+ = 0, ρ∗ = (0, ..., ρ∗

n = 1) and
ρ∗ = (0, ..., ρ∗

[e]+ = 1, ..., 0) coincide.

This completes our proof of part (i) of Lemma B.2.
Proof of Part (ii) of Lemma B.2: Suppose β > 1/(γ + 1). Using the proof of Part (i) of
Lemma B.2, we know that M − βγM ≤ Γ2(0) when β > 1/(γ + 1). Additionally, the
inequality M − βγM ≤ Γ2(0) is strict when ye+ > 0. Hence, it is not optimal to choose
ρ = (0, ..., ρn = 1) when ye+ > 0. When ye+ = 0, as argued above, ρ = (0, ..., ρn = 1) and
ρ = (0, ..., ρ[e]+ = 1, ..., 0) are identical. Therefore, we can safely ignore ρ = (0, ..., ρn = 1) in
characterizing the dictator’s optimal choice. First, we show Γ′

1(λ) < Γ′
2(λ). This inequality

is equivalent to

δ(xe− − xe+)(1 + α(γ + 1)) ≤ δ(xe− − xe+)(1 − β(γ + 1)),

which holds because xe− − xe+ < 0 and 1 + α(γ + 1) > 0 > 1 − β(γ + 1). As both Γ1(λ) and
Γ2(λ) are linear functions of λ, the maximizers of Γ1(λ) and Γ2(λ) are determined based on
the signs of Γ′

1(λ) and Γ′
2(λ). Additionally, note that Γ1(λ̄) = Γ2(λ̄). The optimal λ is then

given in the table in part (ii) of Lemma B.2. This completes our proof of Lemma B.2.

Back to the main proof. Note that part (i) of Lemma B.2 proves Proposition B.1 part
(i)b for the case of β < 1/(γ + 1). Similarly, part (ii) of Lemma B.2 proves Proposition B.1
part (i)b for the case of β > 1/(γ + 1). This completes our proof of Proposition B.1.

Proof of Proposition 3: Let α = η(θ−1)
2 and β = η(θ+1)

2 . Note that when η, θ ∈ [0, 1] and
(η, θ) ̸= (1, 0), we have α > −1/2 and α + β ≥ 0. Hence, the assumptions in Propositions 1
and 2 are satisfied. We show uCR(x, y) = uF S(x, y) − αM for all allocations (x, y) such that
x+y = M . As V(Φex-a,Φex-p) is assumed to be linear following (1), the constant term (−αM)

55



does not impact the dictator’s optimal behavior. Consequently, the two models generate the
same set of optimal strategies.

First, suppose x ≥ y. Then

uF S(x, y) − αM = x− β(x− y) − αM (using definition of uF S(x, y))
= x− β(x− y) − α(x+ y) (using x+ y = M)

= x− η(θ + 1)
2 (x− y) − η(θ − 1)

2 (x+ y) (using definition of α, β)

= (1 − ηθ)x+ ηy

= (1 − η)x+ ηθy + η(1 − θ)(x+ y)
= (1 − η)x+ η[θmin{x, y} + (1 − θ)(x+ y)] = uCR(x, y)

Now, suppose y ≥ x. Then

uF S(x, y) − αM = x− α(y − x) − αM (using definition of uF S(x, y))
= x− 2αy (using x+ y = M)

= x− 2η(θ − 1)
2 y (using definition of α)

= x− η(θ − 1)y
= (1 − η)x+ ηθx+ η(1 − θ)(x+ y)
= (1 − η)x+ η[θmin{x, y} + (1 − θ)(x+ y)] = uCR(x, y).

This completes our proof of Proposition 3. □

Proof of Proposition 4 and Remark 1: We first show that there are at most two alloca-
tions in the support of the dictator’s optimal choice when u(x,M − x) is a strictly convex or
concave function of x ∈ (0,M). This result is a corollary of the following Lemma:
Lemma B.3. Let u′′(x,M−x) be the second-order derivative of u(x,M−x) with respect to
x. Suppose there are q ≥ 3 allocations in the support of ρ∗. Then equation u′′(x,M −x) = 0
must have at least one real root in (0,M).

Proof. Suppose ρ∗ is optimal and there exist i1, i2, . . . , iq ∈ N with i1 < i2 < · · · < iq such
that ρ∗

ik
∈ (0, 1) for all k = 1, 2, . . . , q, where q ≥ 3. The dictator chooses ρ∗ by maximizing

the following Lagrangian:

L(ρ) = V(Φex-a(ρ),Φex-p(ρ)) +
n∑

k=1
ωkρk +

n∑
k=1

ψk(1 − ρk) + ν

(
1 −

n∑
k=1

ρk

)
,

where ωk ≥ 0, ψk ≥ 0, and ν are the Lagrange multipliers associated with the conditions
ρk ≥ 0, 1 − ρk ≥ 0, and 1 −

∑n
k=1 ρk = 0, respectively. The FOCs are

∂L(ρ)
∂ρk

= V1(Φex-a(ρ),Φex-p(ρ)) · ∂Φex-a(ρ)
∂ρk

+ V2(Φex-a(ρ),Φex-p(ρ)) · ∂Φex-p(ρ)
∂ρk

+ ωk − ψk − ν

We have ∂L(ρ)
∂ρk

|ρ=ρ∗ = 0 for k = i1, i2, . . . , iq as ρ∗ is optimal and ρ∗
ik

∈ (0, 1). Note that the
complementary slackness requires ωkρ

∗
k = 0 and ψk(1−ρ∗

k) = 0 for all k and ν(1−
∑n

k=1 ρ
∗
k) =
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0. As ρ∗
k ∈ (0, 1) for all k = i1, i2, . . . , iq, this implies that ωk = ψk = 0 for all k = i1, i2, . . . , iq.

Additionally, we have

∂Φex-a(ρ)
∂ρk

= xku1(
∑

k

ρkxk,M −
∑

k

ρkxk) − xku2(
∑

k

ρkxk,M −
∑

k

ρkxk)

∂Φex-p(ρ)
∂ρk

= u(xk,M − xk),

where u1(a, b) = ∂u(a,b)
∂a and u2(a, b) = ∂u(a,b)

∂b . Then ∂L(ρ)
∂ρk

|ρ=ρ∗ = 0 is equivalent to

V1 (Φex-a(ρ∗),Φex-p(ρ∗)) ·
[
xku1(

∑
k

ρ∗
kxk,M −

∑
k

ρ∗
kxk) − xku2(

∑
k

ρ∗
kxk,M −

∑
k

ρ∗
kxk)

]
+

+ V2(Φex-a(ρ∗),Φex-p(ρ∗)) · u(xk,M − xk) + ωk − ψk − ν = 0.

Define a function H : R+ → R as follows:

H(x) = V1(Φex-a(ρ∗),Φex-p(ρ∗)) · x
[
u1

( ∑
k

ρ∗
kxk,M −

∑
k

ρ∗
kxk

)
− u2

( ∑
k

ρ∗
kxk,M −

∑
k

ρ∗
kxk

)]
+

+ V2(Φex-a(ρ∗),Φex-p(ρ∗)) · u(x,M − x) − ν

The analysis above suggests that H(xk) = 0 for all k = i1, i2, . . . , iq; this is because ωk =
ψk = 0 for all k = i1, i2, . . . , iq. As q ≥ 3, H(xi1) = H(xi2) = H(xi3) = 0. The Rolle’s
theorem then implies that H ′′(x) = 0 must have at least one real root in (x1, x3) ⊆ (0,M).
As H′′(x) = V2(Φex-a(ρ∗),Φex-p(ρ∗))u′′(x,M − x) and V is strictly increasing in the second
argument (Assumption 1 in Section 2.1.2), we have H′′(x) = 0 if and only if u′′(x,M−x) = 0.
Hence, equation u′′(x,M − x) = 0 must have at least one real root in (0,M).

Back to the main proof of Proposition 4 and Remark 1. Note that when u(x,M − x) is
strictly convex or concave in (0,M), equation u′′(x,M − x) = 0 has no real root x ∈ (0,M).
Hence, it follows from Lemma B.3 that there are at most two allocations in the support of
ρ∗, which is the result stated in Remark 1 and in the first part of Proposition 4.

The second part of Proposition 4 is proved by a contradiction. Suppose the dictator
randomizes between allocations (xi, yi) and (xj , yj), with i < j, and there is another feasible
allocation (xk, yk) located between them. In other words, ρ∗

i > 0 and ρ∗
j = 1 − ρ∗

i > 0 and
i < k < j for some k. Note that by assumption xi < xk < xj . Hence, ρ∗

ixi + ρ∗
jxj ∈ [xi, xj ] =

[xi, xk] ∪ [xk, xj ]. Consider two following cases:
Case 1: ρ∗

ixi +ρ∗
jxj ∈ [xi, xk]. In this case, there exists λ ∈ [0, 1] such that ρ∗

ixi +ρ∗
jxj =

λxi + (1 − λ)xk. Construct another choice ρ′ ∈ ∆(A) as follows:

ρ′
t =


0 if t ̸= i, k

λ if t = i

1 − λ if t = k

As ρ∗
i ∈ (0, 1), it is the case that λ ∈ (0, 1) and hence ρ′

k > 0. Additionally, by definition of
ρ′

ρ∗
ixi + ρ∗

jxj = ρ′
ixi + ρ′

kxk. (8)
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Note that (8) implies ρ′
i < ρ∗

i because xi < xk < xj and ρ∗
j = 1 − ρ∗

i and ρ′
k = 1 − ρ′

i.
We prove Φex-a(ρ∗) = Φex-a(ρ′) and Φex-p(ρ∗) < Φex-p(ρ′) so it follows that V(Φex-a(ρ∗),Φex-p(ρ∗)) <

V(Φex-a(ρ′),Φex-p(ρ′)) because V is strictly increasing in the second argument (Assumption 1
in Section 2.1.2). This will lead to a contradiction to the optimality of ρ∗.

• First, we show Φex-a(ρ∗) = Φex-a(ρ′). Note that∑
t

ρ∗
txt = ρ∗

ixi + ρ∗
jxj = ρ′

ixi + ρ′
kxk =

∑
t

ρ′
txt.

The first equation comes from the properties of ρ∗. The second equation is (8). The last
equation results from the definition of ρ′. Hence, Φex-a(ρ∗) = u(

∑
t ρ

∗
txt,M−

∑
t ρ

∗
txt) =

u(
∑

t ρ
′
txt,M −

∑
t ρ

′
txt) = Φex-a(ρ′).

• Second, we show Φex-p(ρ∗) < Φex-p(ρ′). By properties of ρ∗ and definition of ρ′

Φex-p(ρ∗) =
∑

t

ρ∗
tu(xt,M − xt) = ρ∗

iu(xi,M − xi) + ρ∗
ju(xj ,M − xj)

Φex-p(ρ′) =
∑

t

ρ′
tu(xt,M − xt) = ρ′

iu(xi,M − xi) + ρ′
ku(xk,M − xk)

Hence, Φex-p(ρ∗) < Φex-p(ρ′) is equivalent to

ρ∗
iu(xi,M − xi) + ρ∗

ju(xj ,M − xj) < ρ′
iu(xi,M − xi) + ρ′

ku(xk,M − xk)
(ρ∗

i − ρ′
i)u(xi,M − xi) + ρ∗

ju(xj ,M − xj) < ρ′
ku(xk,M − xk)

ρ∗
i − ρ′

i

ρ′
k

u(xi,M − xi) +
ρ∗

j

ρ′
k

u(xj ,M − xj) < u

(
ρ∗

i − ρ′
i

ρ′
k

xi +
ρ∗

j

ρ′
k

xj ,M − ρ∗
i − ρ′

i

ρ′
k

xi −
ρ∗

j

ρ′
k

xj

)
,

where the last inequality uses xk = ρ∗
i −ρ′

i

ρ′
k
xi + ρ∗

j

ρ′
k
xj , which follows from (8). Note that

the last inequality follows from the strict concavity of u(x,M − x) if ρ∗
i −ρ′

i

ρ′
k

+ ρ∗
j

ρ′
k

= 1
and ρ∗

i −ρ′
i

ρ′
k

> 0. We already showed that ρ∗
i > ρ′

i, so the latter is satisfied. The former
is also satisfied as

ρ∗
i − ρ′

i

ρ′
k

+
ρ∗

j

ρ′
k

=
ρ∗

i + ρ∗
j − ρ′

i

ρ′
k

= 1 − ρ′
i

ρ′
k

= ρ′
k

ρ′
k

= 1.

Case 2: ρ∗
ixi + ρ∗

jxj ∈ [xk, xj ]. This case is similar to Case 1 so we omit a formal proof.
This completes our proof of the consecutiveness of the two allocations in the support of the
optimal strategy (the moreover part in Proposition 4). □

Proof of Proposition 5: We first show that an optimal strategy assigns positive weights
to at most two allocations. The proof is by contradiction. Suppose ρ∗ is optimal but there
are at least three non-zero components in ρ∗. Let S(ρ∗) = {i : ρ∗

i > 0} be the support of ρ∗.
By assumption, |S(ρ∗)| ≥ 3. The dictator chooses ρ ∈ ∆(A) to maximize

c1U
2
D(ρ) + c2U

2
R(ρ) + c3UD(ρ)UR(ρ) + c4UD(ρ) + c5UR(ρ).
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The Lagrangian function of the optimization problem is

L = c1U
2
D(ρ)+c2U

2
R(ρ)+c3UD(ρ)UR(ρ)+c4UD(ρ)+c5UR(ρ)+

n∑
j=1

ηjρj+
n∑

j=1
γj(1−ρj)+ν

(
1−

n∑
j=1

ρj

)
,

where ηj ≥ 0, γj ≥ 0, and ν are Lagrangian multipliers associated with inequalities ρj ≥ 0,
1 − ρj ≥ 0, and equation 1 −

∑n
j=1 ρj = 0, respectively. As both UD(ρ) and UR(ρ) admit

expected utility representations, we have

∂UD(ρ)
∂ρj

= uD(xj) and ∂UR(ρ)
∂ρj

= uR(M − xj).

Therefore, for all j

∂L
∂ρj

= 2c1UD(ρ)uD(xj) + 2c2UR(ρ)uR(M − xj) + c3[UR(ρ)uD(xj) + UD(ρ)uR(M − xj)] +

c4uD(xj) + c5uR(M − xj) + ηj − γj − ν.

As ρ∗ is optimal, complementary slackness implies ηjρ
∗
j = 0 and γj(1 − ρ∗

j ) = 0 for all j.
By definition of S(ρ∗), ρ∗

j ∈ (0, 1) for all j ∈ S(ρ∗). Complementary slackness then implies
ηj = γj = 0 for all j ∈ S(ρ∗). Hence, for all j ∈ S(ρ∗)

∂L
∂ρj

∣∣∣∣∣
ρ=ρ∗

= 2c1UD(ρ∗)uD(xj) + 2c2UR(ρ∗)uR(M − xj) + c3[UR(ρ∗)uD(xj) +

+UD(ρ∗)uR(M − xj)] + c4uD(xj) + c5uR(M − xj) − ν

= 0.

Group all terms with uD(xj) and uR(M − xj) together, for all j ∈ S(ρ∗), we have

uD(xj)[2c1UD(ρ∗) + c3UR(ρ∗) + c4] + uR(M − xj)[2c2UR(ρ∗) + c3UD(ρ∗) + c5] = ν. (9)

Let i1, i2, i3 be pairwise distinct elements in S(ρ∗) such that i1 < i2 < i3. Then equation (9)
holds for j = i1, i2, i3. Subtract equation (9) for j = i1, i2, and i3 side by side, we have

[uD(xi1) − uD(xi2)][2c1UD(ρ∗) + c3UR(ρ∗) + c4]+
+[uR(M − xi1) − uR(M − xi2)][2c2UR(ρ∗) + c3UD(ρ∗) + c5] = 0 (10)

[uD(xi2) − uD(xi3)][2c1UD(ρ∗) + c3UR(ρ∗) + c4]+
+[uR(M − xi2) − uR(M − xi3)][2c2UR(ρ∗) + c3UD(ρ∗) + c5] = 0 (11)

Note that i1 < i2 < i3 implies xi1 < xi2 < xi3 because we order A in increasing magnitude of
the dictator’s payoff. By the monotonicity of uD(x) and uR(x) (Assumption 4), we have

uD(xi1) < uD(xi2) < uD(xi3) and uR(M − xi1) > uR(M − xi2) > uR(M − xi3).

Note that 2c1UD(ρ∗) + c3UR(ρ∗) + c4 = V1(UD(ρ∗), UR(ρ∗)) > 0 and 2c2UR(ρ∗) + c3UD(ρ∗) +
c5 = V2(UD(ρ∗), UR(ρ∗)) > 0 by the assumption that V is strictly increasing in both argu-
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ments. Therefore, equations (10) and (11) imply

uD(xi1) − uD(xi2)
uR(M − xi1) − uR(M − xi2) = uD(xi2) − uD(xi3)

uR(M − xi2) − uR(M − xi3) . (12)

By Assumption 4, uD(x) and uR(x) are twice differentiable on [0,M ], and u′
R(x) > 0 for all

x ∈ (0,M). By Cauchy mean value theorem (also known as extended mean value theorem),
there exist c∗ ∈ (xi1 , xi2) and c∗∗ ∈ (xi2 , xi3) such that

− u′
D(c∗)

u′
R(M − c∗) = uD(xi1) − uD(xi2)

uR(M − xi1) − uR(M − xi2) and − u′
D(c∗∗)

u′
R(M − c∗∗) = uD(xi2) − uD(xi3)

uR(M − xi2) − uR(M − xi3) .

Hence, equation (12) implies that

u′
D(c∗)

u′
R(M − c∗) = u′

D(c∗∗)
u′

R(M − c∗∗) . (13)

Note that c∗ < c∗∗ because xi1 < xi2 < xi3 . We have

∂

∂x

u′
D(x)

u′
R(M − x) = u′′

D(x)u′
R(M − x) + u′′

R(M − x)u′
D(x)

[u′
R(M − x)]2 .

By Assumption 4, we have u′
D(x) > 0 > u′′

D(x) and u′
R(M − x) > 0 > u′′

R(M − x) for all
x ∈ (0,M). Hence, u′′

D(x)u′
R(M − x) + u′′

R(M − x)u′
D(x) < 0 for all x ∈ (0,M). This implies

that u′
D(x)

u′
R(M−x) is a decreasing function of x in (0,M). Therefore, (13) cannot happen with

c∗ < c∗∗ (contradiction). Hence, the initial assumption is wrong and there are at most two
distinct elements in the support of ρ∗.

To show that the two allocations in the support of ρ∗ are consecutive, proof is by con-
tradiction. Suppose the dictator randomizes between allocations (xi, yi) and (xj , yj), with
i < j, but there is another feasible allocation (xk, yk) located between them. In other words,
ρ∗

i > 0 and ρ∗
j = 1−ρ∗

i > 0 and i < k < j for some k. Note that by assumption xi < xk < xj .
Hence, ρ∗

ixi + ρ∗
jxj ∈ [xi, xj ] = [xi, xk] ∪ [xk, xj ]. Consider two following cases:

Case 1: ρ∗
ixi +ρ∗

jxj ∈ [xi, xk]. In this case, there exists λ ∈ [0, 1] such that ρ∗
ixi +ρ∗

jxj =
λxi + (1 − λ)xk. Construct another choice ρ′ ∈ ∆(A) as follows:

ρ′
t =


0 if t ̸= i, k

λ if t = i

1 − λ if t = k

As ρ∗
i ∈ (0, 1), it is the case that ρ′

k > 0. Additionally, by definition of ρ′

ρ∗
ixi + ρ∗

jxj = ρ′
ixi + ρ′

kxk. (14)

Note that (14) implies ρ′
i < ρ∗

i because xi < xk < xj and ρ∗
j = 1 − ρ∗

i and ρ′
k = 1 − ρ′

i.
We prove UD(ρ′) > UD(ρ∗) and UR(ρ′) > UR(ρ∗) so it follows that V(UD(ρ′), UR(ρ′)) >

V(UD(ρ∗), UR(ρ∗)) because V is assumed to be strictly increasing in the both arguments.
This will lead to a contradiction to the optimality of ρ∗. We show UD(ρ′) > UD(ρ∗); showing
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UR(ρ′) > UR(ρ∗) is similar. By properties of ρ∗ and definition of ρ′

UD(ρ∗) =
n∑

t=1
ρ∗

tuD(xt,M − xt) = ρ∗
iuD(xi,M − xi) + ρ∗

juD(xj ,M − xj)

UD(ρ′) =
n∑

t=1
ρ′

tuD(xt,M − xt) = ρ′
iuD(xi,M − xi) + ρ′

kuD(xk,M − xk)

Hence, UD(ρ∗) < UD(ρ′) is equivalent to

ρ∗
iuD(xi,M − xi) + ρ∗

juD(xj ,M − xj) < ρ′
iuD(xi,M − xi) + ρ′

kuD(xk,M − xk)
(ρ∗

i − ρ′
i)uD(xi,M − xi) + ρ∗

juD(xj ,M − xj) < ρ′
kuD(xk,M − xk)

ρ∗
i − ρ′

i

ρ′
k

uD(xi,M − xi) +
ρ∗

j

ρ′
k

uD(xj ,M − xj) < uD

(
ρ∗

i − ρ′
i

ρ′
k

xi +
ρ∗

j

ρ′
k

xj ,M − ρ∗
i − ρ′

i

ρ′
k

xi −
ρ∗

j

ρ′
k

xj

)
,

where the last inequality uses xk = ρ∗
i −ρ′

i

ρ′
k
xi +

ρ∗
j

ρ′
k
xj , which follows from (14). Note that the last

inequality follows from the strict concavity of uD(x,M − x) if ρ∗
i −ρ′

i

ρ′
k

+ ρ∗
j

ρ′
k

= 1 and ρ∗
i −ρ′

i

ρ′
k

> 0.
We already showed that ρ∗

i > ρ′
i, so the latter is satisfied. The former is also satisfied as

ρ∗
i − ρ′

i

ρ′
k

+
ρ∗

j

ρ′
k

=
ρ∗

i + ρ∗
j − ρ′

i

ρ′
k

= 1 − ρ′
i

ρ′
k

= ρ′
k

ρ′
k

= 1.

Case 2: ρ∗
ixi + ρ∗

jxj ∈ [xk, xj ]. This case is similar to Case 1 so we omit a formal proof.
This completes our proof of the consecutiveness of the two allocations in the support of the
optimal strategy. This completes our proof of the Proposition. □

Proof of Proposition 6: For part (i), suppose ρ(5,5)(A4) = a ∈ [0, 1] and ρ(0,10)(A4) = 1−a.
We want to show that a = 1 is optimal for the dictator. Note that ρ yields an expected
allocation of (5a, 10−5a). In this expected allocation, the dictator’s share is (weakly) smaller
than that of the recipient: 5a ≤ 10 − 5a. Hence, the dictator’s utility is given by

δu(5a, 10 − 5a) + (1 − δ)[au(5, 5) + (1 − a)u(0, 10)]
= δ[5a− α(10 − 5a− 5a)] + (1 − δ)[a(5 − α · 0) + (1 − a)(0 − α · 10)]
= δ[5a− 10α(1 − a)] + (1 − δ)[5a− 10α(1 − a)]
= 5a(1 + 2α) − 10α.

By assumption 1 + 2α > 0. Hence, the dictator’s utility function is strictly increasing in a.
Therefore, a = 1 is optimal for the dictator.

For part (ii), suppose ρ(5,5)(A2) = b ∈ [0, 1] and ρ(10,0)(A2) = 1 − b. We want to show
that b = 1 is optimal for the dictator when β > 1/2 and b = 0 is optimal for the dictator
when β < 1/2. Note that ρ yields an expected allocation of (10 − 5b, 5b). In this expected
allocation, the dictator’s share is (weakly) greater than that of the recipient: 10 − 5b ≥ 5b.
Hence, the dictator’s utility is given by

δu(10 − 5b, 5b) + (1 − δ)[bu(5, 5) + (1 − b)u(10, 0)]
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= δ[10 − 5b− β(10 − 5b− 5b)] + (1 − δ)[b(5 − β · 0) + (1 − b)(10 − β · 10)]
= δ[10 − 5b− 10β(1 − b)] + (1 − δ)[5b+ 10(1 − β)(1 − b)]
= δ[10 − 5b− 10β(1 − b)] + (1 − δ)[10 − 5b− 10β(1 − b)]
= 10 − 10β + 5b(2β − 1).

When β > 1/2, the dictator’s utility is strictly increasing in b. Hence, the optimal choice is
b = 1. Conversely, when β < 1/2, the dictator’s utility is strictly decreasing in b. Hence, the
optimal choice is b = 0. This completes our proof of the Proposition. □
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Appendix C Screenshots of Experimental Interface
C.1 Experiment 1

Figure 13: Instruction - Experiment 1

Figure 14: Instruction - Experiment 1 (Cont.)
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Figure 15: Instruction - Experiment 1 (Cont.)

Figure 16: Quiz - Experiment 1
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Figure 17: Main Question - Experiment 1

Figure 18: Risk Elicitation Question - Experiment 1
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C.2 Experiment 2

Figure 19: Introduction - Experiment 2

Figure 20: Introduction - Experiment 2 (Cont.)
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Figure 21: Introduction - Experiment 2 (Cont.)

Figure 22: Quiz - Experiment 2
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Figure 23: Main question 1 - Experiment 2 (using one specific order)

Figure 24: Main question 2 - Experiment 2 (using one specific order)
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Figure 25: Main question 3 - Experiment 2 (using one specific order)

Figure 26: Main question 4 - Experiment 2 (using one specific order)
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Figure 27: Result screen - Experiment 2
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Appendix D Additional Details on Experimental Design
Order of questions in Experiment 2. In each experimental session in Experiment 2, the
number of dictators was either 8 (one session) or 16 (six sessions). Each dictator answered four
decision problems: A1 = {(0, 10), (5, 5), (10, 0)}, A2 = {(5, 5), (10, 0)},A3 = {(0, 10), (10, 0)},
and A4 = {(0, 10), (5, 5)}. The order of questions was randomized at the individual level.
We used eight orders of questions as follows:

(1) A1 − A2 − A3 − A4;

(2) A1 − A3 − A4 − A2;

(3) A2 − A4 − A1 − A3;

(4) A2 − A4 − A3 − A1;

(5) A3 − A2 − A1 − A4;

(6) A3 − A1 − A4 − A2;

(7) A4 − A1 − A2 − A3;

(8) A4 − A3 − A2 − A1.

In these eight orders, for all i = 1, 2, 3, 4, decision problem Ai appears as the first, second,
third, and fourth questions exactly twice. Additionally, for any i, j with i ̸= j, decision
problem Ai appears immediately before decision problem Aj exactly twice.

Questionnaires. We use the following set of questionnaires for both Experiments 1 and 2.
Note that questions 9 and 10 are specific to Experiment 1.

1. How old are you?

2. What is your gender? Male/Female/Non-binary/Preferred not to say.

3. What is your race/ethnicity (Please enter 0 if you prefer not to disclose your race/ethnicity)?

4. What year are you in college? Freshman/Sophomore/Junior/Senior.

5. What is your current college major? Arts and communication (journalism, fine arts, film
and media studies, etc.)/Business and economics (economics, marketing, finance, ac-
counting, etc.)/Health and medical (nursing, pharmacy, public health, physical therapy,
etc.)/Science, technology, engineering, and math (biology, computer science, physics,
etc.)/Social sciences and humanities (psychology, sociology, political science, english
literature, history, etc.)/Undeclared/Others.

6. Are you involved in a student or social organization? Please enter 0 if the answer is no.
If the answer is yes, please specify what kind of organization.

7. When was the last time you donated to or volunteered for a nonprofit or charity orga-
nization (501(c) organizations)? Less than 1 week ago/Less than 1 month ago/Between
1 and 3 months ago/Between 3 and 6 months ago/Between 6 and 12 months ago/More
than 12 months ago/Never.
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8. When was the last time that you gave something to someone on the street? Less than
1 week ago/Less than 1 month ago/Between 1 and 3 months ago/Between 3 and 6
months ago/Between 6 and 12 months ago/More than 12 months ago/Never.

9. Did you choose more than one allocation with positive weights when you are the decider?
If so, how many allocations did you select, and why did you choose many allocations
instead of a single allocation? Please enter 0 if you chose one allocation.

10. Did you choose more than two allocations with positive weights when you are the de-
cider? If so, why did you choose more than two allocations instead of a single allocation
or just two allocations? Please enter 0 if this question does not apply to you.
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