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Abstract

We report on an experiment that shows subjects prefer a gradual resolution of uncer-

tainty when information about winning yields decisive bad news but inconclusive good

news. This behavior is difficult to reconcile with existing theories of choice under uncer-

tainty, including the Kreps-Porteus model. We show how the behavioral patterns uncov-

ered by our experiment can be understood as arising from subjects’ special emphasis on

their best (peak) and worst (trough) experiences along the realized path of uncertainty.
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1 Introduction

Consider the following situation: a decision maker places a bet that pays off if the event W

occurs. At some specified time T , the state of the world is revealed and the decision maker

receives the prize if the state is in W . Prior to time T , the decision maker may learn about the

likelihood of W . For example, she may learn whether or not W has occurred in some period

prior to T ; alternatively, she may receive partial information or no information at all.

Important determinants of a person’s utility, such as the person’s health, wealth or educa-

tional attainment, take the form of a lottery that will resolve at some future date. Information

about these outcomes, even if decision irrelevant, will affect the person’s utility and it seems

plausible that utility would also depend on how such information is disclosed. However, the

manner in which decision-irrelevant information is disclosed has no effect on the utility of a stan-

dard expected utility maximizer; this agent would be indifferent between learning the outcome

immediately, not learning anything prior to period T or any other form of disclosure.

Contrary to the predictions of the standard model, experimental evidence suggests that

many decision makers value non-instrumental information; they often prefer early over late

disclosure (e.g. Ahlbrecht and Weber, 1997; Eliaz and Schotter, 2010; Falk and Zimmermann,

2016); though in some situations they have a clear preference for late resolution (e.g. Oster,

Shoulson and Dorsey, 2013; Ganguly and Tasoff, 2017). Golman, Hagmann and Loewenstein

(2017) provide an extensive survey of the experimental literature on preferences for timing of

resolution of uncertainty.

This paper adds to this evidence and uncovers new patterns of demand for non-instrumental

information. In our experiment, subjects exhibit strict preferences with respect to gradual

information disclosure. Specifically, subjects prefer a process in which the chance of winning

a monetary prize goes up gradually or drops to zero all at once, to a process that resolves all

uncertainty in a single moment. Thus, subjects opt for gradual over immediate information

disclosure if the gradual option reveals partial good news or decisive bad news. By contrast, we

find that subjects are more inclined to choose immediate disclosure when the gradual option is

of the decisive good news or inconclusive bad news variety.

Our findings are likely to be relevant for welfare analysis in information design problems
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outside the lab. For example, “up or out” HR policies determine that, at specific time intervals,

employees that are on track for a large future promotion (such as making partner in a firm)

must either get a smaller promotion or be fired. Such policies resemble the partial good news

and decisive bad news disclosure policy favored by the majority of our subjects. In healthcare,

patients may opt for a more invasive procedure that provides immediate disclosure and forgo

safer or less invasive diagnostic procedures when they provide information of the gradual bad

news or decisive good news variety. Oster (2014) provides a pre-natal testing example: “If I

was probably going to do that [the more invasive procedure] anyway, why should I go through

the anxiety of being told I had a bad screening result, then worry for weeks before getting a

final answer? (p. 108)”

Models that extend standard expected utility framework to account for the value of non-

instrumental information can be useful for guiding the design of information disclosure policies

in the examples above. They are also important for understanding the link between information

feedback and the behavior of agents in financial markets. Our experimental design, described

in detail below, is extremely simple and offers an ideal setting for calibrating and testing such

models.

The behavior observed in our experiment, however, is difficult to reconcile with standard the-

ories of choice and even with many of the alternatives that have been developed more recently.

For example, preferences over temporal lotteries in Kreps and Porteus (1978), preferences for

one-shot resolution of uncertainty in Dillenberger (2010), and surprise and suspense utility in

Ely et al. (2015) require the direction of preference to be the same across our decision problems

—either always preferring gradual or always preferring immediate disclosure— and therefore

cannot account for our main findings.

To interpret the observed behavior, we adopt the framework developed in Gul et al. (2021)

which departs from expected utility in two ways: first, as in Kreps and Porteus (1978), subjects

may have a categorical preference for early or late resolution of uncertainty. Second, subjects

may place special emphasis on their best and worst experiences. The resulting utility, peak-

trough utility, allows us to rationalize and interpret the observed patterns of behavior.

Kreps and Porteus (1978) develop the first theory of preference for timing of resolution

of uncertainty. Their model is well-suited for addressing a categorical preference for early or
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late resolution of uncertainty; it is less well-suited for dealing with more nuanced attitudes to

information. As noted by Nielsen (2020) and confirmed in our experiment, many subjects have

a preference for gradual resolution of uncertainty, a behavior that is difficult to reconcile with

the Kreps-Porteus model. Ely, Frankel and Kamenica (2015) offer an alternative to the Kreps-

Porteus model with different choice objects. They provide formal definitions of suspense and

surprise and show how the two determine the decision maker’s attitude toward non-instrumental

information. While the Ely et al. model is consistent with a preference for gradual resolution

of uncertainty, it cannot accommodate the strict preference for gradual good news over gradual

bad news that plays an important role in our experiment. We discuss the predictions of these

models in detail below.

Our framework builds on Caplin and Leahy (2001) who present the first model of anticipa-

tory utility. Palacios-Huerta (1999) shows that a two-stage nonexpected utility model can lead

to a preference for one-shot resolution of uncertainty. Building on this insight, Dillenberger

(2010) develops a general theory of preference for one-shot resolution of uncertainty. Kőszegi

and Rabin (2009) formulate a theory of reference-dependent utility for analyzing attitudes to-

wards non-instrumental information. They identify conditions guaranteeing a preference for

one-shot resolution of uncertainty and conditions that yield a preference for early resolution.

Experimental research that analyzes the type of non-instrumental information favored by

subjects includes Masatlioglu, Orhun and Raymond (2017) who find a preference for positively

skewed information. Nielsen (2020) observes that more subjects chose one-shot late resolution

of uncertainty when the options are presented as two-stage lotteries than when they are pre-

sented as information structures. Conversely, more subjects chose one-shot early resolution of

uncertainty when the options are presented as information structures than when they are pre-

sented as two-stage lotteries. Nevertheless, Nielsen concludes that “gradual resolution generally

is preferred to one-shot resolution in both treatments.”

The rest of the paper proceeds as follows. In Section 2, we describe the experimental design.

In Section 3, we provide a framework for understanding the choice options in our experiments as

risk consumption paths. We obtain the theoretical predictions of existing models in Section 4.

We then present the results of the experiment in Section 5, and make our concluding remarks

in Section 6.
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2 Experimental Design

A total of 125 University of Maryland undergraduate students participated in the experiment

conducted in the Experimental Economics Laboratory at the University of Maryland. We had

8 sessions in total (6 sessions with 16 subjects, 1 session with 15 subjects and 1 session with 14

subjects).

Subjects were recruited through ORSEE (Greiner, 2015). The experiment was programmed

in zTree (Fischbacher, 2007). A typical session lasted around 30 minutes. The instructions were

incorporated into the experiment. (Complete instructions and the screenshots may be found in

the Online Appendix.) On average, a total of 10 minutes of a typical session was instructional.

Subjects earned an average of $12.40, including a $7 show-up fee, paid in cash privately at the

end of the experiment.

Subjects were asked to choose one of three boxes on their screen and then choose the manner

in which the content of the boxes are to be revealed. Every subject confronted four decision

problems:

G1. Gradual resolution, one box contains a prize of $10;

G2. Gradual resolution, two boxes contain a prize of $10 each;

O1. One-shot resolution, one box contains a prize of $10;

O2. One-shot resolution, two boxes contain a prize of $10 each.

One of these decision problems was chosen for implementation at the end of the experiment.

The subjects earned $10 if the box that they selected contained $10, and $0 otherwise. The

decision problems were presented in random order during the sessions.

In decision problems G1 and G2, the contents of the boxes were revealed to the subjects

one after the other, with a 60-second delay between boxes. After choosing their boxes, subjects

decided whether they wanted their box to be opened early or late. For concreteness, we will call

the box that the subject chose box 1 and the others box 2 and box 3. The option early means

that the experiment reveals the content of box 1 first, one minute later reveals the content of

box 2, and one minute after that the content of box 3. Choosing late means that the experiment
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reveals the content of box 2 first. Then, after a 60-second delay, the experiment reveals the

content of box 3 and 60 seconds after that the content of box 1.

Note that subjects learn the outcome once the first two boxes are opened. The experiment

reveals the content of the third box for the sake of transparency. In decision problems O1

and O2, the contents of all boxes are revealed at the same time. After selecting their boxes,

subjects chose whether they wanted all of the boxes to be opened at the start or at the end of a

120-second waiting period. To check the strength of the preference, we employed the standard

choice list procedure (e.g. Epstein and Halevy, 2018). Ten different amounts of compensation

ranging from 1 cent to 50 cents were offered. This procedure is identical to the willingness to

switch elicitation procedure used in Masatlioglu, Orhun and Raymond (2017).

Once the answers were collected, the computer randomly picked one of the four decision

problems and one of the 10 price list questions. If the DM had stated that she is unwilling to

switch her initial choice at the randomly picked level of compensation, the boxes were opened

in the manner that she had chosen initially and the DM received no additional compensation.

Otherwise; that is, if the DM had stated that she would accept the randomly picked level of

compensation, the boxes were opened in the manner that she had not chosen initially and

the DM received the additional compensation. All subjects waited for 120 seconds until the

experiment ended.

3 A Framework for Risk Consumption

In this section, we provide a framework for risk consumption; that is, the idea that agents derive

utility from the evolution of a risky prospect over time. The decision maker (DM) receives, in

period N , a prize from a finite set, A, of prizes. In each period, t = 1, . . . , N , the DM faces a

lottery αt; that is, a probability distribution over prizes. This lottery evolves over time as the

DM receives new information. Hence, we call the resulting path of lotteries, (α1, . . . , αN), an

evolving lottery. Below, we use the terms “evolving lottery” and “path” interchangeably.

Each decision problem in our experiment presents the subject with two options. Both

options yield the same probability of winning $10. However, they lead to different random

evolving lotteries, that is, probability distributions over evolving lotteries. In each decision
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problem, let P denote the random evolving lottery associated with the early option, and let Q

denote the random evolving lottery associated with the late option.

Consider decision problem G1: the initial probability of winning the $10 prize is 1/3 and,

therefore, in the first period of every path, the probability of winning the prize is α1 = 1/3.

Suppose the subject chooses the early option; that is, the random evolving lottery P . Then, in

period 2, the subject learns whether or not they won the prize and therefore, α2 is either zero

or one. Hence, P has two paths (1/3, 1, 1) and (1/3, 0, 0) and assigns to them the following

probabilities:

P (1/3, 1, 1) = 1/3 and P (1/3, 0, 0) = 2/3.

If the subject chooses late option; that is, chooses Q, information is revealed gradually. The

initial probability of winning is, again, α1 = 1/3. If box 2, the box opened in period 2, contains

the prize, then the subject will learn that she has lost once it is opened and α2 = α3 = 0; if

box 2 does not contain the prize, then the probability of winning rises to α2 = 1/2. Since each

box is equally likely to contain the prize, the probability that α2 = 1/2 is 2/3. If α2 = 1/2, all

uncertainty is resolved when box 3 is opened. Therefore, α2 = 1/2 will be followed either by

α3 = 1 or α3 = 0. Thus, Q, the random evolving lottery associated with the gradual resolution

of uncertainty is as follows:

Q(1/3, 1/2, 1) = Q(1/3, 1/2, 0) = Q(1/3, 0, 0) = 1/3.

Notice that P and Q are the only two random evolving lotteries that can be generated by

varying the order in which the boxes are opened.

Decision problem G2 is identical to G1 except that two of three boxes contain a prize. In

this case, the random evolving lottery, P associated with the early option assigns the following

probabilities:

P (2/3, 1, 1) = 2/3 and P (2/3, 0, 0) = 1/3,

while opening late option results in the random evolving lottery Q such that

Q(2/3, 1/2, 1) = Q(2/3, 1/2, 0) = Q(2/3, 1, 1) = 1/3.
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Decision problem O1 offers a simple timing trade-off. One choice reveals all information

in period 2 while the other reveals all information in period 3. Since only one box contains a

prize, the first choice leads to a random evolving lottery P below:

P (1/3, 1, 1) = 1/3 and P (1/3, 0, 0) = 2/3

while the second choice leads to a random evolving lottery Q:

Q(1/3, 1/3, 1) = 1/3 and Q(1/3, 1/3, 0) = 2/3.

Finally, decision problem O2 offers the same simple timing trade-off as O1 but with two

boxes containing a prize. The early option leads to the random evolving lottery P :

P (2/3, 1, 1) = 2/3 and P (2/3, 0, 0) = 1/3

while “late” leads to the random evolving lottery Q:

Q(2/3, 2/3, 1) = 2/3 and Q(2/3, 2/3, 0) = 1/3.

4 Predictions from theory

A standard expected utility maximizer whose only concern is the ultimate outcome and who

does not care about how uncertainty resolves would identify each path α = (α1, . . . , αN) with

α1 and assign to α the expected utility of α1. Hence, a standard DM with von Neumann-

Morgenstern utility should be exactly indifferent in every choice problem of our experiment.

Kreps-Porteus preferences

Kreps and Porteus (1978) develop the first model that permits a preference for early or late res-

olution of uncertainty. Their choice objects are temporal lotteries rather than random evolving

lotteries. A one-stage temporal lottery is simply a probability distribution over prizes. Then,

we define a t-stage temporal lottery inductively as a lottery over (t−1)-stage temporal lotteries.
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In our experimental setting, each choice can be mapped to a temporal lottery. For example,

gradual resolution in G1 corresponds to the following temporal lottery: in period 2, the agent

can encounter two possible one-stage lotteries; `1 yields the prize with probability 0; while `2

yields the prize with probability 1/2. In period 1, the agent has a 2-stage temporal lottery that

yields one-stage lottery `1 with probability 1/3 and one-stage lottery `2 with probability 2/3.

Let L denote this temporal lottery.

Normalize the utility of $10 to 1 and the utility of $0 to zero so that u2(`1) = 0, u2(`2) = 1/2

are the two possible payoff realizations in period 2. Then, a period-1 aggregator u1 : [0, 1] →

[0, 1] such that u1(1) = 1, u1(0) = 0 determines the utility of a Kreps-Porteus agent as follows:

U(L) =
1

3
u1(u2(`1)) +

2

3
u1 (u2(`2)) =

1

3
u1(0) +

2

3
u1

(
1

2

)
=

2

3
u1

(
1

2

)

Table 1, below, shows the Kreps-Porteus utilities of all choices in our experiment.

Table 1: Kreps-Porteus utilities

G1 G2 O1 O2

P (early) 1
3

2
3

1
3

2
3

Q (late) 2
3
u1
(
1
2

)
2
3
u1
(
1
2

)
+ 1

3
u1
(
1
3

)
u1
(
2
3

)

The curvature of u1 governs the behavior of Kreps-Porteus agents. If u1 is convex, then

the agent always prefers early resolution while if u1 is concave the agent always prefers late

resolution. More nuanced behavior is possible if u1 is neither convex nor concave. For example,

if u
(
1
3

)
> 1

3
and 2

3
> u

(
2
3

)
, then the agent prefers early resolution in O1 but late in O2.

Note that Kreps-Porteus subjects prefer the early choice over the late choice in G1 and G2 if

and only if 1
2
≥ u

(
1
2

)
. Thus, the main testable prediction of the Kreps-Porteus model in our

experiment is that the decision maker should behave identically across problems G1 and G2:

either P is strictly preferred in both problems, or Q is strictly preferred in both problems, or

else the decision maker must be indifferent in both problems.

Preference for one-shot resolution

Palacios-Huerta (1999) shows that a two-stage nonexpected utility model can lead to a pref-
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erence for one-shot resolution of uncertainty. Building on this insight, Dillenberger (2010)

develops a general theory of preference for one-shot resolution of uncertainty, which provides

two testable implications in our experiment. The first one is time neutrality, which says that,

as long as all uncertainty resolves in a single moment, the decision maker does not care when

it resolves. Therefore, the decision maker must be indifferent in problems O1 and O2. The

second is preference for one-shot resolution, which requires that the decision maker find the

early option at least as good as the late option in both G1 and G2.

Surprise and Suspense

Ely, Frankel and Kamenica (2015) propose two measures of the entertainment value of gradual

information revelation: suspense and surprise. Suspense is the expected belief variation next

period while surprise is the realized belief variation from period to period. Specifically, the

surprise utility of a belief path α = (α1, α2, α3) in our experiment is given by

wsurprise(α) =
3∑
t=2

u
(
‖(αt, 1− αt)− (αt−1, 1− αt−1)‖2

)
where u is increasing and strictly concave with u(0) = 0. The suspense utility of a belief path

α depends on the random evolving lottery P that assigns probabilities to each path in the

decision problem faced by the agent,

wsuspense(α, P ) =
2∑
t=1

u
(
EP ‖(αt+1, 1− αt+1)− (αt, 1− αt)‖2

)
where again u is increasing and strictly concave with u(0) = 0. The surprise/suspense utility

of a random evolving lottery P is the expected value of the surprise/suspense utility of a path,

with probabilities given by P .

In Tables 2 and 3 we calculate the suspense utility and the surprise utility of the options

in each of our decision problems. The decision problems G1 and G2 are mirror images of one

another: we can derive the random evolving lottery associated with each option in G2 from

the corresponding choice in G1 by replacing every probability αt in the former with 1−αt. An

immediate implication of this symmetry is that suspense and surprise utility cannot distinguish
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between decision problems G1 and G2 and between decision problems O1 and O2.

Proposition 1. Surprise and suspense utility agents prefer the early option P to the late option

Q in problem G1 if and only if they prefer P to Q in problem G2.

Proposition 2. Surprise and suspense utility agents are indifferent in problems O1 and O2.

The proof of Propositions 1 and 2 is immediate from the comparison of utilities calculated

in Tables 2 and 3. For surprise utility, we obtain a sharper prediction for G1 and G2:

Proposition 3. Surprise utility agents strictly prefer the late option Q in both G1 and G2.

Proof. The index u in surprise utility is increasing and strictly concave, with u(0) = 0. Hence,

u(1/18) + u(1/2) = [u(1/18)− u(0)] + [u(1/2)− u(1/9)] + u(1/9)

> [u(1/9)− u(1/18)] + [u(8/9)− u(1/2)] + u(1/9)

> u(2/9)− u(1/18) + u(8/9)− u(1/2)

which yields 2
3
u
(

1
18

)
+ 2

3
u
(
1
2

)
+ 1

3
u
(
2
9

)
> 2

3
u
(
2
9

)
+ 1

3
u
(
8
9

)
as desired.

Table 2: Suspense utilities

G1 and G2 O1 and O2

P (early) u
(
4
9

)
u
(
4
9

)
Q (late) u

(
1
9

)
+ 2

3
u
(
1
2

)
u
(
4
9

)

Table 3: Surprise utilities

G1 and G2 O1 and O2

P (early) 2
3
u
(
2
9

)
+ 1

3
u
(
8
9

)
2
3
u
(
2
9

)
+ 1

3
u
(
8
9

)
Q (late) 2

3
u
(

1
18

)
+ 2

3
u
(
1
2

)
+ 1

3
u
(
2
9

)
2
3
u
(
2
9

)
+ 1

3
u
(
8
9

)

In an extension, Ely, Frankel and Kamenica (2015) allow the agent to care more about the

suspense and surprise associated with one outcome than the suspense and surprise associated
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with another. This modification generalizes the model when there are more than two outcomes

but has no effect in our setting with only two outcomes. In the binary setting, changes in

the probability of winning must coincide with changes in the probability of losing and, thus, as

long as utility depends only on belief-variation the model cannot capture differences in subjects’

behavior between decision problems G1 and G2 and between decision problems O1 and O2.

In another extension of their model, Ely, Frankel and Kamenica (2015) introduce discounting

and allow the agent to give different weights to surprise and suspense delivered in different

periods. This extension breaks the prediction of indifference between early and late resolution,

and can accommodate a strict preference in problems O1 and O2, as long as that preference is

the same across both problems.

Peaks and Troughs

Fredrickson and Kahneman (1993) argue that, in retrospective evaluations, subjects neglect the

duration of experiences and emphasize extremes. Peak-trough utility theory (Gul et al., 2021)

offers a simple theoretical framework in which agents place special emphasis on their best and

worst experiences. A path utility, w, assigns a value to each path and the utility of a random

evolving lottery, P , is the expected utility of these paths:

W (P ) =
∑
α

w(α)P (α). (1)

To define the path utility function of peak-trough utility, let u be the DM’s expected utility

function over lotteries. Then, define the peak, u, and trough, u, utilities of any path α =

(α1, . . . , αN) as follows:

u(α1, . . . , αN) = max
t
u(αt)

u(α1, . . . , αN) = min
t
u(αt)

Let v : [0, 1] → [0, 1] be a strictly increasing, continuous and onto function and let θh, θ` be
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weights such that

1− θh − θ` > 0

(1− θh − θ`)/N + θh > 0

(1− θh − θ`)/N + θ` > 0

Then, the utility of any path α = (α1, . . . , αn) is

w(α) =
1− θh − θ`

N

N∑
t=1

v(u(αt)) + θhv(u(α1, . . . , αN)) + θ`v(u(α1, . . . , αN)) (2)

The function W defined in (1) is a peak-trough utility whenever w is as described in (2).

Compared to the standard expected utility model, a peak-trough utility has three new pa-

rameters; the index v which determines the agent’s preference for early or late resolution of

uncertainty and the weights θh, θ` which determine the agent’s sensitivity to the best and worst

experiences. If we assume v is linear and set the weights θh = θ` = 0, then we are back to the

standard model.1

It is easy to relate the parameters of peak-trough utility to the decision problems in our

experiment. Consider, for example, the decision problem G1. Table 4 shows the distribution

of peaks and troughs for the early resolution option P and the late resolution option Q. Note

that the distribution of path troughs is identical for P and Q: both offer a trough of zero with

probability 2/3 and a trough of 1/3 with probability 1/3. Therefore, the value of θ` plays no

role in their comparison.

Table 4: Distribution of path peaks and path troughs in decision problem G1

Path Peak Trough P Q

(1/3, 0, 0) 1/3 0 2/3 1/3
(1/3, 1, 1) 1 1/3 1/3 –

(1/3, 1/2, 1) 1 1/3 – 1/3
(1/3, 1/2, 0) 1/2 0 – 1/3

1For simplicity, we assumed that each period has the weight 1/N . A more general model would permit
discounting. Gul et al. (2021) provide an axiomatic foundation for this, more general, model.
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The following proposition relates the optimal choice in decision problem G1 to the param-

eters v and θh of peak-trough utility.

Proposition 4. Let W be a peak-trough utility with parameters (v, θh, θ`), and let P and Q be

the early and late options, respectively, in decision problem G1.

(i) If v is linear, then W (Q) > W (P ) if and only if θh > 0.

(ii) If v is convex, then W (Q) > W (P ) implies θh > 0

(iii) If v is concave, then W (P ) > W (Q) implies θh < 0.

Proof. The early option P assigns probability 1/3 to the path (1/3, 1, 1) and probability 2/3

to the path (1/3, 0, 0). On the other hand, the late option Q gives probability 1/3 to each of

the three paths (1/3, 1/2, 1), (1/3, 1/2, 0) and (1/3, 0, 0). Applying the path utility formula (2)

and using the fact that v(0) = 0 and v(1) = 1 we obtain

W (Q)−W (P ) =
1

3

[
w

(
1

3
,
1

2
, 1

)
+ w

(
1

3
,
1

2
, 0

)
+ w

(
1

3
, 0, 0

)
− w

(
1

3
, 1, 1

)
− 2w

(
1

3
, 0, 0

)]
=

1− θh − θ`
9

[
2v

(
1

2

)
− 1

]
+
θh
3

[
v

(
1

2

)
− v

(
1

3

)]

If v is linear then W (Q)−W (P ) above simplifies to θh
18

and, therefore, part (i) follows. If v is

convex, then 2v(1/2) ≤ 1 and, therefore, W (Q)−W (P ) > 0 implies θh > 0 which proves part

(ii). If v is concave, then 2v(1/2) ≥ 1 and, therefore, W (P )−W (Q) > 0 implies θh < 0 which

proves part (iii).

Subjects with θh < 0 dislike getting their hopes up. Therefore, they tend to prefer the early

option in G1. Subjects with θh > 0 enjoy paths that look promising even if things don’t pan

out in the end. These subjects tend to prefer the late option in G1. As Table 4 shows, the

late option Q is equally likely to yield the path peaks 1, 1/2 and 1/3. The early option P has

the path peaks 1/3 and 1 with the former being twice as likely as the latter. Thus, Q offers a

better distribution of path peaks (in the sense of first order stochastic dominance) than P .

Next, consider decision problem G2, which is similar to G1 but now two of the three boxes

contain the prize. Table 5 shows the early option P and the late option Q generate the same
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distribution of path peaks: the peak is 2/3 with probability 1/3 and it is 1 the remaining 2/3

of the time. Therefore, θh plays no role in the comparison P versus Q.

Table 5: Distribution of path peaks and path troughs in decision problem G2

Path Peak Trough P Q

(2/3, 0, 0) 2/3 0 1/3 –
(2/3, 1, 1) 1 2/3 2/3 1/3

(2/3, 1/2, 1) 1 1/2 – 1/3
(2/3, 1/2, 0) 2/3 0 – 1/3

The next proposition relates the remaining parameters v and θ` of peak-trough utility to

the choice in decision problem G2.

Proposition 5. Let W be a peak-trough utility with parameters (v, θh, θ`), and let P and Q be

the early and late options, respectively, in decision problem G2.

(i) If v is linear, then W (Q) > W (P ) if and only if θ` < 0.

(ii) If v is convex, then W (Q) > W (P ) implies θ` < 0

(iii) If v is concave, then W (P ) > W (Q) implies θ` > 0.

Proof. The peak-trough utility agent prefers the late option Q whenever the difference

W (Q)−W (P ) =
1− θh − θ`

9
[2v(1/2)− 1] +

θ`
3

[v(1/2)− v(2/3)] (3)

is positive. If v is linear, then (3) simplifies to − θ`
18

and, therefore, part (i) follows. If v is

convex, then 2v(1/2) ≤ 1 and, therefore, W (Q)−W (P ) > 0 implies θ` < 0 which proves part

(ii). If v is concave, then 2v(1/2) ≥ 1 and, therefore, W (P )−W (Q) > 0 implies θ` > 0 which

proves part (iii).

Subjects with θ` > 0 enjoy paths with comebacks; that is, they like paths that end well

despite the good outcome seeming unlikely at an earlier stage. Those with θ` < 0 dread such

paths. The random evolving lottery Q differs from P in the distribution of troughs. As Table 5

shows, Q is equally likely to yield the troughs 2/3, 1/2, and 0, while P yields the trough 2/3
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with probability 2/3 and 0 with probability 1/3. As we noted above, the two random evolving

lotteries offer the same distribution of peaks and therefore, θh plays no role in their comparison.

In decision problem O1 (and O2), the agent considers a simple timing trade-off. One choice

reveals all information in period 1 while the other reveals all information in period 3. Table 6

shows the distribution of peaks and troughs is not affected by the decision. Therefore the

weights θ` and θh play no role in the comparison. And, as the following proposition shows, only

the curvature of v matters.

Table 6: Distribution of path peaks and path troughs in decision problem O1

Path Peak Trough P Q

(1/3, 0, 0) 1/3 0 2/3 –
(1/3, 1, 1) 1 1/3 1/3 –
(1/3,1/3,1) 1 1/3 – 1/3
(1/3,1/3,0) 1/3 0 – 2/3

Proposition 6. Let W be a peak-trough utility with parameters (v, θh, θ`) and let P and Q be

the early and late options, respectively, in decision problem O1. If v is convex (concave) then

W (P ) > W (Q) (W (P ) < W (Q)).

Proof. The difference in utility between the early option P and the late option Q in problem

O1 is given by,

W (P )−W (Q) =
1− θh − θ`

3
[c− v(c)] (4)

Since v(c) ≥ c if v is concave and v(c) ≤ c if v is convex, the result follows from (4).

5 Experimental Results

We first analyze the subjects’ strength of preferences. Figure 1 shows the distribution of the

required compensation for switching away from the preferred mode of information disclosure.

We exclude 3 of the 125 subjects because their responses to the strength of preference question

were not monotone. As Figure 1 shows, depending on the decision problem, 16–25% of subjects

are indifferent; that is, are willing to switch their choice if they are offered just one cent.

Furthermore, only 16% of subjects are indifferent in all of the decision problems.
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Figure 1: Distribution of the minimum required compensation for switching their choices for
each decision problem

As can be seen from Figure 1, approximately 1/3 of the subjects are unwilling to switch

away from their preferred mode of information disclosure even if they are offered $0.50. In

other words, these subjects are willing to give up more than 5% of the surplus to obtain their

preferred mode of information disclosure.

Result 1: The majority of the subjects have a strict preferred mode of information disclosure

regarding the resolution of uncertainty.

Since the standard model predicts indifference between P andQ in all four decision problems,

Result 1 reveals that the predictions of the standard model fail for the vast majority of our

experimental subjects.

Next, we investigate the strict preference of the subjects. Table 7 shows the aggregate

choice percentages in the four decision problems for subjects who exhibit strict preference for

resolution of uncertainty.

As it can be seen in Table 7, subjects’ strict preference is toward early resolution of uncer-

tainty when all boxes are opened simultaneously. In the decision problems O1 and O2, 65.59%

and 65.22% of the subjects prefer early resolution of uncertainty, respectively. When the boxes

17



Table 7: Aggregate choice percentages for early resolution of uncertainty for subjects who
exhibit strict preference

Problem % Early p-value Conclusion

G1 39.22 0.015 Q � P
G2 58.95 0.041 P � Q
O1 65.59 0.001 P � Q
O2 65.22 0.004 P � Q

The numbers of subjects who exhibit strict preference in G1, G2, O1, and O2 are 102, 95, 93, and 92, respectively. p-values
are from one-sample test of proportions.

are opened sequentially, for decision problem G2; that is when two boxes contain a prize, still

58.95% of the subjects prefer early resolution of uncertainty. However, for decision problem G1;

that is, when there is only one prize, the preference is reversed: 60.78% of the subjects prefer

the late resolution of uncertainty. As an additional test to compare the distribution of choices

in each decision problem, we look at the choices of 88 subjects who exhibit strict preference

in all of the decision problems. Based on sign tests, there is no significant difference when the

boxes are opened simultaneously (O1 vs O2, p=1.000) but there is a significant difference when

the boxes are opened sequentially (G1 vs G2, p=0.005). Furthermore, whether opening boxes

simultaneous or sequentially matters only when there is a single prize (O1 vs G1, p=0.001; O2

vs G2, p=0.286).

Result 2: While the majority of the subjects strictly prefer early resolution of uncertainty in

O1, O2, and G2, the late resolution of uncertainty is strictly preferred in G1.

A categorical preference for early resolution in O1 and O2, where uncertainty always re-

solves in a single moment, is consistent with the results in the previous literature. Result 2,

however, identifies a novel pattern of information demand when gradual information disclosure

is involved. Subjects still opt for early resolution in problem G2, where the late option provides

gradual information with conclusive good news and partial bad news. However, subjects opt

for late over immediate disclosure in problem G1, where the late option provides gradual good

news coupled with conclusive bad news.
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Heterogeneous types and its implications to theory

The observed difference in behavior between problems G1 and G2 is incompatible with standard

theory and with several alternative models of demand for non-instrumental information that

have been developed more recently. Section 4 showed that preferences over temporal lotteries

in Kreps and Porteus (1978), preferences for one-shot resolution of uncertainty in Dillenberger

(2010), and surprise and suspense utility in Ely et al. (2015) all predict identical behavior across

G1 and G2, and are incompatible with Result 2.

Section 4 shows that a difference in behavior between G1 and G2 can be understood as

arising from subjects’ special emphasis on their best (peak) and worst (trough) experiences

along their realized path of uncertainty. In particular, the late option Q in G1 offers a better

distribution of path peaks than the early option P , while offering the same distribution of path

troughs (Table 4). Conversely, in problem G2 the early option P offers a better distribution

of path troughs than the late option Q, while offering the same distribution of path peaks

(Table 5). Result 2 provides evidence that the emphasis on peaks and troughs captured by

the peak-trough utility model (Gul et al., 2021) may be a quantitatively important aspect of

decision making behavior.

The averages reported in Table 7 conceal substantial heterogeneity among subjects. The

most prevalent types of demand for non-instrumental information fall into four categories2:

Thrill seeker: 29% of non-indifferent subjects would never pay for late resolution of uncer-

tainty in O1 and O2, where all uncertainty is resolved at once, but switch to a strict preference

for late resolution in problem G1 (and, in some cases, in both G1 and G2) when the late option

provides gradual information. This behavior is consistent with peak-trough utility agents with

a convex v and sufficiently high weight θh given to path peaks. Among them, those with a

sufficiently low θ` will switch to strict preference for late resolution in both G1 and G2. For

example, let v(α) = αγ for γ > 1. Then, the agent is a thrill seeker with strict preference for

2The distribution of all decisions is in Appendix B.
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late resolution in G1 and G2 if and only if

θh > 3γ−1 2γ − 2

3γ − 2γ

θ` < 3γ−1 2− 2γ

4γ − 3γ

The parameters γ = 1.1, θh = .2, θ` = −.2, for instance, satisfy these conditions.

Information seeker: 22% of non-indifferent subjects prefer early resolution of uncertainty in

each of the four decision problems. Peak-trough agents are information seeking types if their v

is convex, θh is not too large (or negative) and θ` is not too negative (or positive).

Information avoider: 13% of non-indifferent subjects prefer late resolution of uncertainty in

each of the four decision problems. Peak-trough agents are information avoiding types if their

v is strictly concave, θh ≥ 0 and θ` ≤ 0.

Thrill avoider: 8% of non-indifferent subjects prefer early resolution of uncertainty when

uncertainty is resolved gradually, i.e. in problems G1 and G2, but they strictly prefer late

resolution in at least one of the decision problems where all uncertainty is resolved at once, i.e.

in problem O1, problem O2, or both. For example, an individual who prefers early resolution

in G1 and G2 but prefers late resolution in O1 and O2 is compatible with peak-trough utility

when v is concave, θ` is sufficiently high and θh is sufficiently negative.

6 Conclusion

Our simple experimental design offers an ideal setting for calibrating and testing models of

demand for information. Our experiment offers strong evidence that subjects prefer gradual

resolution of uncertainty over early or late resolution, when information about winning yields

decisive bad news but inconclusive good news. Our main findings are difficult to reconcile with

standard theory and with many of the existing models of demand for non-instrumental informa-

tion, including the Kreps-Porteus model. We showed that these findings can be understood as

arising from the decision maker’s emphasis on their best (peak) and worst (trough) experiences

along the realized path of uncertainty.
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A Instructions

Welcome and thank you for coming today to participate in this experiment. This is an ex-

periment in decision making. Your earnings will depend on your own decisions and chance.

It will not depend on the decisions of the other participants in the experiment. Please pay

careful attention to the instructions as a considerable amount of money is at stake. The entire

experiment is expected to finish within 30 minutes. At the end of the experiment you will be

paid privately. At this time, you will receive $7 as a participation fee (simply for showing up

on time).

In this experiment, you will participate in four independent decision questions that share

a common form. At the end of the the experiment, the computer will randomly select one

decision question. The question selected depends solely upon chance, and each one is equally

likely. The question selected, your choice and your payment in that question will be shown.

Your final earnings in the experiment will be your earnings in the selected question plus $7

show-up fee.

During the experiment it is important that you do not talk to any other subjects. Please

turn off your cell phones. If you have a question, please raise your hand, and the experimenter

will come by to answer your question. Failure to comply with these instructions means that

you will be asked to leave the experiment and all your earnings will be forfeited.

A.1 Decision Questions

A.1.1 G1

In the next screen, you will be shown three identical looking boxes. One of the boxes contain

a prize of $10, the other two boxes do not contain any prize. Your task is to select one of the

boxes by clicking on the box of your choice. If the box you selected contains a prize, you will

earn $10 in this decision question. If the box you selected does not contain a prize, you will

not earn or lose any amount in this decision question.

In the screen after, you will make a selection to learn the content of the boxes. The boxes

will be opened sequentially. First, one of the boxes will be opened. 60 seconds later, another

box will be opened. The last box will be opened 60 seconds after the second box is opened.

You will see the time counter in the upper-right corner of your screen.

A.1.2 G2

In the next screen, you will be shown three identical looking boxes. Two of the boxes contain

a prize of $10, the other box does not contain any prize. Your task is to select one of the boxes
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by clicking on the box of your choice. If the box you selected contains a prize, you will earn $10

in this decision question. If the box you selected does not contain a prize, you will not earn or

lose any amount in this decision question.

In the screen after, you will make a selection to learn the content of the boxes. The boxes

will be opened sequentially. First, one of the boxes will be opened. 60 seconds later, another

box will be opened. The last box will be opened 60 seconds after the second box is opened.

You will see the time counter in the upper-right corner of your screen.

A.1.3 O1

In the next screen, you will be shown three identical looking boxes. One of the boxes contain

a prize of $10, the other two boxes do not contain any prize. Your task is to select one of the

boxes by clicking on the box of your choice. If the box you selected contains a prize, you will

earn $10 in this decision question. If the box you selected does not contain a prize, you will

not earn or lose any amount in this decision question.

In the screen after, you will make a selection to learn the content of the boxes. The boxes

will be opened simultaneously. All three boxes can be opened immediately, or all three boxes

can be opened after 120 seconds. You will see the time counter in the upper-right corner of

your screen.

A.1.4 O2

In the next screen, you will be shown three identical looking boxes. Two of the boxes contain

a prize of $10, the other box does not contain any prize. Your task is to select one of the boxes

by clicking on the box of your choice. If the box you selected contains a prize, you will earn $10

in this decision question. If the box you selected does not contain a prize, you will not earn or

lose any amount in this decision question.

In the screen after, you will make a selection to learn the content of the boxes. The boxes

will be opened simultaneously. All three boxes can be opened immediately, or all three boxes

can be opened after 120 seconds. You will see the time counter in the upper-right corner of

your screen.
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Sample screenshots
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A.2 Willingness to Switch Elicitation

For the decision question where there {is one prize/ are two prizes} and the boxes will be opened

{sequentially / simultaneously}, you choose your box to be opened {subject’s response}. Now,

you will see 10 questions, each of which will ask you whether you would change your choice

from opening your box {subject’s response} to opening your box {unchosen response} if we

compensated you for the amount specified in that question. You will answer by selecting Yes

or No.

If this decision question is randomly selected to be played, then one of the 10 questions

for this decision question will be randomly selected by the computer. Each question is equally

likely, and your choice in the selected question will determine whether your box will be opened

first or last. If you select Yes, you will receive the monetary compensation specified in that

question but you will change your choice, so your box will be opened {unchosen response}. If

you select No, you will keep your choice, so your box will be opened {subject’s response}.
The more you want the option you chose (opening your box {subject’s response}) over the

option you rejected (opening your box {unchosen response}), the higher compensation you

should require to give up your choice and switch to the option you did not want. Think about

what compensation is too little for you to switch your choice, and what compensation would

be enough. Accordingly, click Yes or No for each question.
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B Distribution of decisions in each question

G1 G2 O1 O2 Percentage

Early Early Early Early 19%
Indiff Indiff Indiff Indiff 16%
Late Early Early Early 12%
Late Late Late Late 11%
Late Late Early Early 7%
Early Late Early Late 4%
Early Early Late Late 3%
Late Early Late Early 3%
Early Early Late Early 2%
Late Indif. Indif. Indif. 2%
Late Late Indif. Indif. 2%
Late Late Early Late 2%
Late Late Late Early 2%
Late Early Early Late 2%
Late Early Late Late 2%
Early Indif. Early Indif. 1%
Early Indif. Early Late 1%
Early Early Late Indif. 1%
Early Late Early Early 1%
Early Late Late Early 1%
Late Indif. Indif. Early 1%
Late Indif. Late Indif. 1%
Late Early Indif. Late 1%
Late Early Early Indif. 1%
Late Late Indif. Late 1%
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