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Abstract
This paper studies how students’ K-12 academic performance relates to their long-term
educational attainment and earnings. Using linked administrative data from Mary-
land, we estimate both descriptive correlations and causal effects via a teacher value-
added framework. Both approaches show that math and English state standardized
test scores are similarly predictive of broad educational attainment, but math scores
are substantially more predictive of STEM degrees and earnings. Mediation analy-
sis reveals that most of the English-earnings relationship is explained by educational
attainment, while nearly half of the math-earnings relationship remains unexplained.
Heterogeneity analysis confirms that math scores are more predictive of earnings across
all student subgroups. However, the strength of this relationship is weaker for histori-
cally disadvantaged and lower-achieving students, while English scores show a stronger
association with earnings for these same groups. These findings suggest that poli-
cies aimed at fostering economic mobility should consider differences in the strength
of relationships between subject-specific skills and long-term outcomes across student

groups.
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1 Introduction

Students develop a wide range of skills in school, but not all of them carry equal weight
in shaping economic outcomes. There is ongoing debate about which specific skills matter
most, for whom they matter, and whether schools emphasize the competencies most relevant
to labor market success. Standardized test scores are generally treated as proxies for student
skill or ability and play a prominent role in high-stakes decisions, from teacher evaluation
to school accountability, particularly since the passage of the landmark No Child Left Be-
hind Act in 2001 (U.S. Congress, 2001). College admissions decisions also rely heavily on
standardized test scores and students’ grade point averages (GPAs). Given the central role
of these proxies in educational and institutional decision-making, understanding how they
relate to long-term outcomes is critically important.

Most prior research examining the relationship between cognitive skills and labor market
outcomes relies on longitudinal survey data. Several studies find that general cognitive
ability, as measured by the Armed Forces Qualifying Test (AFQT), is strongly associated

1 Other research distinguishes between math and verbal skills, finding that

with earnings.
math skills are more strongly linked to earnings, and that the math-earnings relationship has
become stronger over time.? However, these studies typically rely on small survey samples,
self-reported outcomes, and lack quasi-random variation to support causal inference.

A notable exception is Chetty et al. (2014b), which uses administrative data and quasi-
experimental variation in teacher value-added for test scores to estimate causal effects on
college attainment and earnings. Yet even this work pools skills across subjects for most

outcomes.® There remains limited research that uses administrative data to examine long-

term outcomes, applies quasi-experimental designs to identify causal effects, and directly

INeal and Johnson (1996); Heckman et al. (2006); Lin et al. (2018) use the AFQT from the National
Longitudinal Survey of Youth (NLSY), which combines components focused on both math and verbal skills.

2Murnane et al. (1995, 2000) use U.S. Department of Education longitudinal surveys. Grogger and Eide
(1995); Dougherty (2003); Deming (2017) use the NLSY. Hanushek et al. (2015) use international survey
data from the Programme for the International Assessment of Adult Competencies (PIAAC).

3Their primary estimates pool math and English teacher value-added. They separately estimate subject-
specific value-added effects only for college “quality”, finding somewhat larger effects for English.



compares which academic skills are most predictive of labor market success.

The purpose of this paper is to use linked administrative data to examine how proxies for
skill, such as test scores and GPAs, predict and influence long-term outcomes. This study
contributes to the literature and policy debate in three key ways. First, by leveraging linked
administrative data for the full population of students in Maryland, we overcome several
limitations of survey-based studies. The use of population-level data and objectively mea-
sured outcomes allows for greater external validity and more granular analysis of subgroup
differences. Second, we provide new evidence on which proxies for academic skill are most
predictive of educational attainment, degree field, and earnings by subject area. Our find-
ings reveal differences in how subject-specific skills are associated with long-term outcomes
and highlight implications for policies aimed at promoting economic mobility. Third, we
go beyond descriptive correlations by employing a teacher value-added approach that uses
quasi-random variation in teacher assignment to estimate the causal effects of skill acqui-
sition on long-run outcomes. By combining comprehensive administrative data with both
descriptive and quasi-experimental methods, this study offers some of the most fine-grained
evidence to date on how school-acquired skills shape students’ economic trajectories.

We use data from the Maryland Longitudinal Data System (MLDS) Center, which links
students’ test scores and GPAs from K-12 education to postsecondary and earnings records.
Our empirical strategy combines two complementary approaches. First, we estimate descrip-
tive regressions to examine how test scores and GPAs predict long-term outcomes, including
educational attainment, degree field, and earnings. Second, we exploit quasi-random vari-
ation in teacher assignment to implement a value-added approach, estimating the causal
effect of being assigned to a higher or lower value-added teacher.* We also conduct media-
tion analysis to assess the extent to which educational attainment and degree field explain
the relationship between test scores and earnings, and we estimate heterogeneous effects

across demographic and achievement subgroups.

4Prior research has shown teacher value-added estimates represent unbiased estimates of teachers’ causal
effects on student outcomes (Chetty et al., 2014a; Jackson, 2018; Petek and Pope, 2023).



The results of this analysis show that both math and English Language Arts (ELA) test
scores are predictive of broad educational attainment outcomes, including college enrollment
and bachelor of arts (BA) degree receipt. However, math scores are substantially more
predictive of earning a BA in a STEM field and of higher earnings in adulthood. A one
standard deviation (SD) increase in test scores is associated with a 7.7 percentage point
(p.p.) (74 percent) increase in STEM BA attainment for math and a 2.5 p.p. (24 percent)
increase for ELA. The same increase in scores is associated with an increase in average
annual earnings at ages 29-32 of approximately $8,100 (17 percent) for math and $2,200 (4.5
percent) for ELA.

The estimated relationship between test scores and earnings attenuates moderately when
GPAs are included in the regression model. Notably, GPAs in ELA and social studies (SS)
show stronger associations with earnings than those in math and science. These findings
suggest that GPA, particularly in verbal subjects, captures skill dimensions relevant to later
labor market performance that are not fully reflected in test scores. This may be because
grades partly reflect non-cognitive skills such as effort, motivation, and organization, which
are less directly measured by standardized tests.®

We also examine the relationship between test scores and a broader set of BA degree
fields. Estimates reveal that associations are strongest when the subject of the test score
closely aligns with the degree field. When test scores for all four core subjects are included in
the model,® math scores most strongly predict attainment in math, engineering, and business
fields; ELA scores are most predictive of humanities degrees; science scores of science degrees;
and SS scores of social science degrees. These patterns are consistent with students selecting
into fields in which they hold a comparative academic advantage.

Mediation analysis indicates that most of the relationship between ELA test scores and

earnings is explained by educational attainment and degree field. In contrast, a much larger

5The larger coefficients for ELA and SS GPAs relative to math and science GPAs may also reflect
differences in course difficulty or grading standards across subjects.
SWe define the four core subjects as math, ELA, science, and SS.



share of the math-earnings relationship remains unexplained by these mediators. Even after
controlling for these educational factors, a one SD increase in math scores is associated
with an earnings increase of $3,700 (7.7 percent), compared to just $700 (1.5 percent) for
ELA. This persistent gap underscores the particularly strong link between math scores and
earnings.

Heterogeneity analysis confirms that the math-earnings relationship is stronger than the
ELA-earnings relationship across all demographic subgroups. However, the analysis also
reveals meaningful variation in the strength of these associations. The relationship between
math scores and earnings is substantially weaker for students from disadvantaged groups,
including those eligible for Free and Reduced-price Meals (FARMS), Black students, or
students with lower achievement, while the ELA-earnings relationship is relatively stronger
for these groups relative to their peers. We also find that test scores measured at higher
grade levels are more predictive of later outcomes, and that test score-earnings relationships
are stronger for earnings measured at older ages.

Finally, results from our teacher test score value-added analysis align with patterns ob-
served in the descriptive estimates. Increases in teacher value-added for math and ELA
both have similarly sized impacts on broad educational attainment. However, math teacher
value-added has substantially larger effects on STEM degree attainment and earnings than
ELA value-added. A one SD increase in teacher value-added raises on-time BA attainment
by approximately 0.5 p.p. for both subjects. However, the same increase in math teacher
value-added increases STEM degree receipt by 1.3 p.p. and earnings by roughly $184 (0.8
percent), with the latter effect marginally significant.

This paper proceeds as follows. We discuss policy background in Section 2. Section 3
describes the data while Section 4 details the methodology for our descriptive correlational
analysis (4.1) and teacher value-added analysis (4.2). Section 5 presents main results (5.1),
heterogeneity results (5.2), teacher value-added results (5.3), and robustness results (5.4).

We conclude the paper in Section 6.



2 Policy Background

Policy Overview. The publication of A Nation at Risk in 1983 ushered in an era
of education reform that emphasized rigorous curricula and increased use of standardized
testing for accountability. This increased focus on conceptual reasoning and application of
knowledge over rote memorization led to three critical waves of policy change affecting state
standardized testing in Maryland. First, Maryland introduced the Maryland School Perfor-
mance Assessment Program (MSPAP) for elementary and middle school students in 1990 and
first administered end-of-course high school assessments (HSA) in 2000. Second, the passage
of the federal No Child Left Behind (NCLB) Act in 2001 required Maryland to develop the
Maryland School Assessments (MSA) so that achievement data could be disaggregated by
student subgroups. Third, the Maryland State Board of Education adopted the Common
Core State Standards (CCSS) in 2010, leading to the implementation of the CCSS-aligned
tests from the Partnership for Assessment of Readiness for College and Careers (PARCC)
(MSDE, 2015). Similarly, the state adopted the Next Generation Science Standards (NGSS)
in 2013, leading to the implementation of the NGSS-aligned Maryland Integrated Science
Assessment (MISA) in 2018 (MSDE, 2025).

MSPAP and HSA. Maryland’s focus on rigorous learning standards and corresponding
assessment dates to at least 1990 with the introduction of the Maryland School Performance
Assessment Program (MSPAP). This test was given to 3rd, 5th, and 8th grade students
to assess competency in reading, language, writing, math, science, and social studies. To
complement the MSPAP, the state also established the high school assessments (HSA) in
the 1990s with the first tests administered in 2000. Students were assessed via high-stakes
exams upon completion of their Algebra I, 10th grade English, Biology, and U.S. Govern-

ment courses.” The HSA tests continued to be administered through the mid- to late-2010s

"Data collection from HSA exams includes the overall composite scores and proficiency levels as well as
subscores focused on particular skill areas. Appendix Table A1 shows subscores for each of these exams. The
Algebra I exam has 4 subscores (e.g. Analyzing Patterns and Functions), the English 10 exam has 4 subscores
(e.g. Reading and Literature: Comprehension and Interpretation), the Biology exam has 6 subscores (e.g.
Skills and Processes of Biology), and the U.S. Government exam has 5 subscores (e.g. U.S. Government



depending on the subject, while the MSPAP was phased out with the introduction of the
MSA to satisfy the requirements of NCLB (MSDE, 2015).

NCLB and MSA. The passage of the landmark federal No Child Left Behind (NCLB)
legislation in 2001 placed greater importance on assessment, data, and accountability in
schools nationwide. This legislation required states to adopt state-level academic standards
and develop aligned tests. Schools had to assess students annually in reading and math in
grades 3-8 and once in high school. The law also required states to disaggregate test data
by student subgroups to provide greater transparency about educational inequities. This
emphasis on assessment and data was paired with accountability mechanisms. Schools were
required to demonstrate Adequate Yearly Progress (AYP) towards all students achieving
proficient levels on their tests, and schools failing to to hit AYP goals faced accountability
measures such as school improvement plans or restructuring (U.S. Congress, 2001).

In response to the requirements of NCLB, Maryland developed the Maryland School
Assessments (MSA) in reading and math. These tests allowed the state to report testing
results by student subgroups. Students in grades 3, 5, and 8 were first assessed in 2003,
while those in grades 4, 6, and 7 were first assessed in 2004. The MSA science tests was first
administered to students in grades 5 and 8 in 2007.% The HSA assessments first administered
in 2000 were also part of the NCLB-era testing regime given the law’s requirement to test
all high school students at least once (MSDE, 2015).

CCSS, PARCC, and NGSS. In 2010, a multi-state effort the Common Core State
Standards (CCSS) Initiative began with the aim of strengthening the rigor and consistency
of state academic standard nationwide. These standards focused on the knowledge and skills
that students should possess in math and ELA by the end of each grade. Maryland’s State

Board of Education adopted CCSS in 2010 and the state joined the Partnership for Assess-

Structure, Functions, and Principles) (MSDE, 2012).

8Data collection from MSA tests includes the overall composite scores and proficiency levels as well as
subscores focused on particular skill areas. Appendix Table A2 shows subscores for each of these tests. The
math test has 5 subscores (e.g. Algebra, Patterns, or Functions), the ELA test has 3 subscores (e.g. General
Reading Processes), and the science test has 6 subscores (e.g. Skills and Processes) (MSDE, 2003, 2016).



ment of Readiness for College and Careers (PARCC) consortium to develop and administer
the standards-aligned tests. PARCC assessments in math and ELA were first given to stu-
dents in grades 3-8 and high school in 2015 and continued through 2019 (MSDE, 2015).°

Continuing the trend of implementing more rigorous standards and tests, the Maryland
State Board of Education also adopted the Next Genereation Science Standards (NGSS)
in 2013. Similar to CCSS, these standard focus more on depth over breadth, conceptual
reasoning, and knowledge application. NGSS focuses on three broad areas that students
are expected to master: i) Science and Engineering Practices, ii) Crosscutting Concepts,
and iii) Disciplinary Core Ideas. Following the adoption of NGSS, Maryland established the
NGSS standards-aligned Maryland Integrated Science Assessments (MISA). MISA was first
administered to 5th and 8th grade students in 2018 and replaced the MSA science test while
the HS MISA test was first administered to HS students in 2019 as an end-of-course Biology
exam that replaced the HSA Biology test MSDE (2025).

Together, these waves of policy reform reshaped Maryland’s K-12 assessment system
over nearly three decades, expanding both the scope and stakes of standardized testing. The
resulting data, spanning multiple subjects, grade levels, and assessment regimes, form the
foundation for our analysis. We discuss Maryland’s assessment data in more detail in the

next Section (3).

3 Data

Data Overview. We use data from the Maryland Longitudinal Data System (MLDS)
Center from 2008 to 2024. The MLDS Center provides a centralized repository of linked stu-
dent and workforce data stemming from a partnership among numerous state and non-profit
entities. There are three key sets of data for our analysis: i) K-12 data from the Mary-
land State Department of Education (MSDE), ii) postsecondary data from the Maryland

Higher Education Commission (MHEC) and the National Student Clearinghouse (NSC),

9The PARCC tests for high school students were for Algebra I and English 10.
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and iii) workforce data from the Maryland Department of Labor Division of Unemployment
Insurance (UI).

The K-12 data from MSDE include information on all students enrolled in Maryland
public schools, including attendance and demographics, assessments, course enrollments,
school information, and high school graduation.!’ For postsecondary data, MHEC provides
information on all students enrolled in Maryland colleges, while NSC captures out-of-state
enrollment for Maryland public high school graduates. The two sources substantially overlap
and we have nearly complete coverage for our postsecondary outcomes for the cohorts we
are able to observe those outcomes for.!! The earnings data from the Maryland Division of
UI cover wages for individuals who work for Maryland employers that report to the state Ul
Consequently, the earnings data exclude wages for the following types of employees: federal,
military, self-employed, private contractor, or out-of-state.!?

Construction of Samples. We use three different samples with varying structures
depending on students’ grade and the analytic task. The three samples include: i) elementary
and middle school (EMS) student sample, ii) high school (HS) student sample, and iii) teacher
value-added (TVA) student sample. All samples include students enrolled in Maryland
regular public schools.!> The EMS and HS samples also exclude outgoing transfer students
who transfer from a Maryland public high school to a private or out-of-state high school.!4

The construction of the three different samples is as follows. First, the EMS sample
is student-academic year level data for all Maryland 3rd through 8th grade students from

2008-2019 with non-missing math and English Language Arts (ELA) test scores. Math and

0Course enrollment data begin in 2013.

11'We are missing information on bachelor’s degree field for less than 0.2 percent of observations, as shown
in Table 1.

12Tn 2023, 5.9 percent of the Maryland workforce was employed in the federal government,(Maryland
State Archives, 2025) compared to 1.8 percent of the U.S. population (BLS, 2025a,b).

BWe include students enrolled in traditional, charter, and career and technical education schools and
exclude students enrolled in special education, alternative, and other special program schools.

14We identify outgoing transfers using exit codes (MSDE, 2020). We include these students in the TVA
sample to construct value-added measures although we are not able to observe long-term outcomes for
outgoing transfer students.



ELA were assessed annually for these grades and years.'®

Second, the HS sample is student-level data for all Maryland students from 2008-2019
with non-missing Algebra I, English 10, Biology, and U.S. Government end-of-course HS
test scores. These tests are intended to be administered once although some students may
take a test more than once if they did not pass on their first attempt. In cases of multiple
assessment attempts, we retain the score from the first attempt at the assessment. Although
these are HS-level assessments, some students first take them in middle school, particularly
the Algebra I assessment.!6

Third, the TVA sample used to construct TVA measures is student-year-subject level
data for all Maryland 4th through 8th grade students from 2013-2019 with non-missing
math or ELA test scores. The MLDS course data can be used to link students to their math
and ELA classroom teachers each year. We link our student-year EMS data to course data
to construct student-year-subject data for the relevant grades and years.!'” We impose five
sample restrictions that are common practice in the TVA literature (Chetty et al., 2014a;
Jackson, 2018; Petek and Pope, 2023). First, each observation must have non-missing data
for the necessary observable covariates to compute TVA measures, in particular lagged own
subject test score. Second, we omit observations when there is more than one subject area
course observed for a student in an academic year. Third, we drop classrooms with over 40
percent of students identifying as special education (SPED). Fourth, we drop classrooms in
which the assigned teacher is linked to 200 or more students in an academic year. Fifth,
we drop classrooms with fewer than 7 students or 40 or more students. All of these sample
restrictions are essential for the computation of TVA estimates or to reduce measurement

error in the estimates. Once computed, TVA measures are linked to the TVA sample, which

15The math and ELA assessments from 2008-2014 were MSA and the assessments from 2015-2019 were
PARCC. 5th and 8th graders were also assessed in science in 2008-2015 (MSA) and 2018-2019 (MISA).

16The Algebra I and English 10 assessments from 2008-2014 were HSA and the assessments from 2015-
2019 were PARCC. The Biology assessment from 2008-17 was HSA and for 2019 was HS MISA. The U.S.
Government exam from 2008-2019 was HSA.

1"We focus our TVA analysis on students in the EMS sample, where annual assessments in both math
and ELA allow us to control for prior test scores, a key requirement for the TVA model. In contrast, HS
assessments are administered only once, limiting our ability to implement the same approach.



is reshaped to the student-year level with separate TVA variables for math and English,
respectively.

Key Explanatory Variables. The key explanatory variables are standardized test
scores and standardized GPAs. For the EMS sample, the two main explanatory variables are
math and ELA test scores, which are standardized to have a mean of zero and a standard
deviation of one. Other explanatory variables for this sample also include annual GPA
measures in math, ELA, science, and social studies (SS), which are also standardized to
have a mean of zero and a standard deviation of one. For the HS sample, the four main
explanatory variables are standardized test scores for Algebra I, English 10, Biology, and
U.S. Government. This sample also includes standardized GPA measures in the four core
subjects, but these GPA measures are cumulative based on grades earned throughout HS
since this sample contains student-level data.

Student Outcomes. Our main outcome variables include measures of educational at-
tainment, degree field, and earnings. First, we create binary indicators for educational
attainment, including high school graduation within four years, on-time college enrollment,
associate of arts (AA) degree receipt within four years, and bachelor of arts (BA) degree
receipt within 6 years.!’® We classify degree fields using the STEM-designated degree list
maintained by the Department of Homeland Security (DHS, 2023), along with the Clas-
sification of Instructional Programs (CIP) codes from the National Center for Education
Statistics (NCES, 2020). Our degree field outcomes include indicators for BA completion
within six years in the following categories: i) STEM; ii) mathematics, statistics, or com-
puter science; iii) engineering or architecture; iv) life, physical, and environmental science;

v) social science; vi) humanities; vii) health professions; viii) business; and ix) education.'

8The timing of educational attainment outcomes are measured relative to the first year of observed
enrollment in 9th grade in Maryland public schools. Thus high school graduation is within 4 years of 9th
grade enrollment, on-time college enrollment is within 5 years of 9th grade enrollment, etc.

YThere is substantial overlap in i) STEM majors and CIP categories ii)-iv). However, some DHS-
designated STEM fields are outside the field categories determined using CIP codes in ii)-iv). Additionally,
not all fields in ii)-iv) are DHS-designated STEM fields. Field categories defined using CIP codes ii)-ix)
are defined to be mutually exclusive categories, although a small percentage of students may earn multiple
degrees from different fields. The CIP major categories are not collectively exhaustive, but do comprise the

10



For workforce outcomes, our main outcomes are conditional average annual earnings at
ages 22-24, 25-28, and 29-32. We create these measures in four steps: i) sum quarterly
earnings for all employers over the calendar year, ii) convert to 2024 dollars using the CPI-U
(Minneapolis Fed, 2025), iii) winsorize at the 99th percentile, and iv) take the average across
the ages within each respective age range. Other workforce outcomes are employment and
unconditional earnings. Employment is defined using a binary indicator for having positive
earnings observed in Maryland UI data in each respective age range. Unconditional earnings
measures impute zeros for those who are missing earnings.?

Descriptive Statistics. Table 1 provides summary statistics for both the EMS and HS
samples. Overall both samples are relatively similar and there is slight positive selection in
the samples due to the exclusion of specialized schools and restriction to non-missing test
scores. One of the main differences in the samples is that almost 42 percent of observations
in the EMS sample are Free and Reduced-price Meals (FARMS) eligible while only about
36 percent of the HS sample is FARMS eligible. Standardized test score means are all above
zero. This suggests that conditioning the EMS sample on non-missing math and ELA test
scores and the HS sample on non-missing test scores in the four core subjects induces some
small positive selection in the samples. This sample restriction also reduces the variance
of the test score and GPA variables. There is less evidence of positive selection on the
GPA variables, which may be driven by students with non-missing test scores sorting into
classrooms in which they are graded relative to a more positively selected group of peers.
High school graduation rates are higher in the HS sample, which is likely driven by the fact
that there is less high school dropout among students with non-missing high school test
scores relative to the EMS sample which is conditional on non-missing test scores in earlier

grades. However, BA receipt, STEM BA receipt, and earnings from ages 25-28 and 29-32

most common majors.

20The largest sources of missingness in earnings data are non-employment and out-of-state migration.
During the time period when earnings are measured in our study, the national prime-age employment
to population ratio ranged from 75 to 81 percent (BLS, 2025¢). This suggests that up to 25 percent of
observations that are missing earnings are real zeros from non-employment.

11



are higher in the EMS sample.

4 Empirical Strategies

We use two complementary empirical strategies in our analysis. First, we conduct de-
scriptive analysis to estimate which composite test scores and GPAs are most predictive
of educational attainment and earnings. Second, our causal analysis estimates impacts of

teacher value-added (TVA) for students’ test scores on long-term outcomes.

4.1 Relationships Between Student Performance and Outcomes

For our descriptive analysis, we follow the approach in Bettinger et al. (2013) and estimate
the additional predictive power that each composite test score provides conditional on other
composite test scores and demographic covariates. Our main multivariate composite test

score specification is shown in the following equation:

K
Yi=a+ Y B°Sh+7Ci + e, (1)

k=1

where Y; is an outcome (e.g. BA receipt or earnings) for student 7; S is a composite test score
variable for subject k in academic year ¢, standardized in the population to have mean zero
and standard deviation one; C}; are demographic covariates including indicators for gender,
race, gender-race interactions, FARMS, English-language learner (ELL), special education
(SPED), and imputed values for demographic variables; and €;; is an error term clustered at
the student level. 8* estimates the relationship between a one standard deviation increase

in composite test S& conditional on other subject tests Sﬁ’l

and demographic covariates
Cy. Equation (1) can be generalized to include only one composite test score (K = 1) in
univariate models or to include standardized GPA variables in models that also estimate the

conditional relationship between standardized GPA and outcomes.
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This specification is useful for assessing which subject test scores are most strongly as-
sociated with educational attainment and earnings, but threats from omitted variable bias
suggest we are not able to make causal inferences. For example, although we include a crude
proxy for socioeconomic status with our FARMS covariate and may partially account for
non-cognitive skills in our model that also includes GPAs, our ¥ coefficients are still likely
biased upwards due to the omission of more precise measures of family socioeconomic status
and more comprehensive measures of non-cognitive skills. We turn next to our TVA strategy

in an effort to identify causal effects.

4.2 Teacher Value-Added

We build on prior research showing that TVA measures yield unbiased estimates of teach-
ers’ causal effects on student outcomes (Chetty et al., 2014a; Jackson, 2018; Petek and Pope,
2023). The TVA approach involves residualizing current-year student test scores on a rich
set of covariates, including prior test scores and demographics. A teacher’s value-added is
estimated by predicting the average residual score of their students in a given year using
residuals from students taught in other years. These TVA estimates have been widely used
to study the causal impacts of teachers on a range of outcomes. The main identifying as-
sumption is that TVA measures and student unobservables that also affect outcomes are
uncorrelated. Key threats to identification include non-random student sorting and peer
effects. However, the aforementioned prior research using TVA methods demonstrates that
controlling for prior achievement and peer characteristics substantially mitigates these con-
cerns.

There are three main steps necessary to implement our TVA empirical strategy. First,
we construct test score TVA measures following the methodology in Chetty et al. (2014a).
Second, we estimate the effects of test score TVA on on educational attainment and earnings.
Third, we assess the validity of our research design by estimating forecast bias.

Estimating Test Score TVA. There are two main steps to estimate test score TVA:

13



i) residualize student test scores on our vector of controls and ii) predict residual test score
TVA in the current year with teacher test score residuals in surrounding years. First, we

residualize test score S},

by regressing it on a vector of controls X;j; for student 7 in teacher
7’s class in academic year ¢ for subject k. The vector controls for lagged student achieve-
ment, demographic characteristics, and the classroom environment. Specifically, the controls
include: i) lags of a cubic polynomial in students’ math and ELA test scores; ii) lags of a
cubic polynomial in class- and grade-level means of those test scores; iii) the same current
demographic controls used in our descriptive test score model (Equation 1): indicators for
gender, race, gender-race interactions, FARMS, ELL, SPED, and imputed values for missing
demographics; and iv) class- and grade-level means of those demographic variables. All these
covariates are interacted with grade fixed effects, and we include a control for class size.?!

Residualized test scores 1%, are computed using the following equation:

ijt

Vk = Sk - injt' (2)

it = Pijt

This residualization purges Sfjt of measures of prior achievement and demographics for each
student, each student’s class, and each student’s grade.
Second, we compute the mean of the residuals across students by year for each teacher

7. This is estimated as follows:

LN
—k k
Vi = N Z Vigt- (3)
i=1
We then predict test score TVA in year ¢t with mean teacher test score residuals in surrounding

years:

V=Y bl Is A1), (4)

2l'When lagged scores in the other subject are missing, we set the other subject lagged score to zero and
include an indicator for missing data in the other subject interacted with controls for lagged own-subject
test scores.
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This approach uses data from surrounding years because unobservables in year ¢ that affect
both the mean teacher test score residual th and test scores in year t could bias estimates
of teacher impacts on test scores.?? This yields the test score TVA measure ﬁﬁ for teacher
7 in year t. The weight on the value-added measure 1[18 varies by the number of years before
or after year t. The weights are estimated by minimizing the mean-squared error of the
difference between 7}, and the predictions of 7, made with the teacher test score residual

measure the years before and after . The minimization problem is:

J s=t+a
U = arg min Z(ﬂ;} — Z b7}, s # 1) (5)
{Yt—arPtra} j=1 s=t—a

This yields leave-year-out jackknife test score TVA predictions which allow teacher quality
to drift over time and shrinks TVA predictions to the mean through Bayesian shrinkage
Chetty et al. (2014a).

Estimating Effects of Test Score TVA on Outcomes. Our primary aim in the
TVA analysis is to use the leave-year-out estimates of test score TVA Aj’?t constructed in the
previous step to estimate teachers’ causal effects on educational attainment and earnings.
Our main model to estimate these effects is a multivariate TVA specification including TVA

from multiple subjects as follows:

K
Yi=a+ Z 5"’&;‘; + X5 + nijes (6)
k=1
k

where Y; is an outcome, 0}, are TVA measures for teacher j in academic year ¢ in subject

k, Xi; is our vector of controls from Equation (2),%* and 7,j; is the error term clustered at

22In Equation (4), a equals 6 years.

2The controls include: i) lags of a cubic polynomial in students’ math and ELA test scores; ii) lags of
a cubic polynomial in class- and grade-level means of those test scores; iii) the same current demographic
controls used in our descriptive test score model (Equation 1): indicators for gender, race, gender-race
interactions, FARMS, ELL, SPED, and imputed values for missing demographics; and iv) class- and grade-
level means of those demographic variables. All these covariates are interacted with grade fixed effects, and
we include a control for class size. When lagged scores in the other subject are missing, we set the other
subject lagged score to zero and include an indicator for missing data in the other subject interacted with
controls for lagged own-subject test scores.
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the school level. ¢% is the coefficient of interest and represents the impact of having a one
standard deviation higher test score TVA teacher in subject k on outcomes conditional on
TVA ﬁf{l in other subjects. In practice, our main multivariate specification includes just
two TVA measures: math TVA 777 and ELA TVA 75,. Equation (6) can also be generalized
to include only one test score TVA measure (K=1) in univariate models.

The main identifying assumption is that the residualized leave-year-out predicted TVA
measures in Equation (6) and student unobservables that affect outcomes Y; are uncorrelated.
If we let tildes denote the residualized TVA measures, then we represent vy = 19;7;’ — fXZ-jt —

5%]2. Then the main identifying assumption can be stated as follows:

Cov(vj, nije) = Cov(V5y, mije) = 0 (7)

The key threat to identifying the impact of TVA on long-term outcomes is if students with
relatively higher- or lower-than-average unobserved likelihood of attaining an outcome (e.g.
BA receipt, higher earnings) systematically sort to teachers with relatively higher or lower
test score TVA. Prior research has shown there is little bias in test score TVA estimates
(Chetty et al., 2014a; Petek and Pope, 2023; Jackson, 2018), but we explore this threat
further in our estimation of forecast bias.

Estimating Forecast Bias. To estimate forecast bias, we first estimate the relationship

between residualized test scores ijt and estimated test score TVA ﬁ]’?t:

y;;.t = a+ Aaj’; + &iji- (8)

Under random assignment of teachers, regressing test score residuals l/fjt on ﬁ]’?t yields a A

coefficient of 1 because ﬁ]’?t is the best linear predictor of v/%,. The amount of forecast bias in

ijt*
test score TVA 0% is B(0%) = 1 — X. The main idea is that the degree of forecast bias can
be quantified by the extent to which students are sorted to teachers on unobservables.

Using our TVA sample, we present estimates of the relationship between estimated test
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score TVA and residualized test scores in Appendix Table A3. For math, we find that a
one unit increase in current year test score TVA increases current year test scores by 1.12
standard deviations, with the confidence interval for the coefficient ranging from 1.06 to 1.17.
For ELA, we find that a one unit increase in current year test score TVA increases current
year test scores by 1.1 standard deviations, with the confidence interval for the coefficient
ranging from 1.01 to 1.19. Plugging in our estimates for A into the forecast bias equation, we
find estimates of forecast bias in the range of -17 to -6 percent for math and -19 to -1 percent
for ELA. This implies that our TVA estimates are downward biased and understate the true
variance in teacher quality. The attenuation of our TVA estimates relative to the true values
also implies that using our TVA measures to estimate impacts on long-term outcomes will
lead to bias away from zero in the range of 6 to 17 percent for math and 1 to 19 percent for
ELA. Given this, the magnitudes of the estimates for TVA impacts on long-term outcomes

should be interpreted with caution.

5 Results

Our discussion of results begins by examining the relationship between test scores and
GPAs and long-term outcomes in Section 5.1. Next, we explore heterogeneity by FARMS
status, race, achievement, grade, and age when earnings are measured in Section 5.2. Third,
we discuss TVA effects on long-term outcomes in Section 5.3. Finally, we conduct robustness
checks to assess the relationship between test scores and employment, unconditional earnings,

and conditional earnings in Section 5.4.

5.1 Relationships Between Test Scores and GPAs and Long-Term

Outcomes

Table 2 shows estimates of univariate relationships between test scores and outcomes. For

the EMS sample, we find that for educational attainment outcomes the magnitude of the
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coefficients for math test scores are somewhat larger than estimates for ELA test scores, but
overall the estimates are relatively similar. A one standard deviation (SD) increase in test
scores is associated with increases high school graduation within four years by 6 percentage
points (p.p.) for math and 5.2 p.p. for ELA. The results also show about a 14 p.p. increase
in on-time college enrollment. For AA attainment within four years, the coefficient for math
test scores is twice as large as the coefficient for ELA tests scores: a 0.6 p.p. (8.8 percent)
increase compared to a 0.3 p.p. (4.4 percent) increase. The coefficients for BA receipt within
6 years and STEM BA receipt within 6 years are also somewhat larger for math test scores.
A one SD increase in math test scores is linked to increases in BA receipt by about 17 p.p.
(53 percent) and STEM BA receipt by about 9.3 p.p. (90 percent) while the coefficients for
ELA for these same respective outcomes are 15 p.p. (47 percent) and 7.3 p.p. (70 percent).
However, the earnings estimates show substantially larger coefficients for math scores than
for ELA scores. We find that a one SD increase in math test scores corresponds to increases
in earnings from ages 29-32 by $9,500 (20 percent) while the estimate for ELA test scores is
about $7,000 (14 percent).

For the HS sample, most of the estimates are similar and show similar patterns. We also
estimate univariate relationships for science (Biology) and social studies (U.S. Government)
test scores in addition to math (Algebra I) and ELA (10th grade English) for the HS sample.
One difference between our EMS and HS sample estimates is that our estimates for the
relationship with AA receipt within 4 years are considerably larger in the HS sample. All
test score coefficients show that a one SD increase in scores is related to increases in AA
receipt by about 1.5 p.p. (20 percent). For age 29-32 earnings, the coefficients for ELA,
science, and social studies are relatively similar in magnitude, all showing at least a $6,200
increase in earnings for a one SD increase in test scores. The math coefficient is larger, but
smaller than the math coefficient in the EMS sample: a one SD increase in math test scores
is associated with increases in earnings by about $7,800.

Next, we investigate the multivariate relationship between test scores and long-term
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outcomes in Table 3. For EMS students, we find that the inclusion of both test scores in the
same model attenuates coefficients substantially, although we still find strong relationships
between test scores and outcomes. We find somewhat larger coefficients for math relative
to ELA for most educational attainment outcomes, although the coefficient for math for
STEM BA receipt is about three times larger than the coefficient for ELA for this outcome,
consistent with math skills being particularly predictive of STEM persistence. We find that
a one SD increase in test scores corresponds to increases in on-time college enrollment by 9.2
(14 percent) p.p. for math and 7.9 p.p. (12 percent) for ELA. The coefficients for BA receipt
are 12 p.p. (37 percent) for math and 7.7 p.p. (24 percent) for ELA while the estimates for
STEM BA receipt are 7.7 p.p. (74 percent) for math and 2.5 p.p. (24 percent) for ELA.
For ages 29-32 earnings, relative to the univariate estimates, the multivariate estimate for
math declines only modestly while the multivariate estimate for ELA drops substantially.
Consequently, the coefficient for math is nearly four times as large as the coefficient for ELA:
a one SD increase in test scores is linked to increases in earnings from ages 29-32 by about
$8,100 for math (17 percent) and $2,200 for ELA (4.5 percent).

For the HS sample, we find somewhat larger coefficients for general educational attain-
ment for ELA and social studies (SS) test scores, while the coefficients for science test scores
are the smallest. We find that BA receipt increases by 5.9 p.p. for math, 6.4 p.p. for ELA,
3.6 p.p. for science, and 6.9 p.p. for social studies. However, this pattern reverses for STEM
BA receipt: a one SD increase in test scores increases STEM BA receipt by 3 p.p. for math,
2 p.p. for ELA, 3.7 p.p. for science, and 2 p.p. for SS. The pattern for earnings estimates
in the HS sample is similar to the pattern in the EMS sample. Relative to the univariate
relationships, the coefficients for math attenuate the least while the coefficients for ELA de-
cline the most. For earnings from ages 29-32, we find that a one SD increase in test scores is
related to increases in earnings by about $4,700 for math, $800 for ELA, $1,500 for science,
and $2,800 for SS.

Now we examine the degree to which adding GPAs to the econometric model attenuates
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the estimates for test scores in Table 4. For the EMS sample, we find that the inclusion of
GPAs in the model attenuates estimates considerably, although most coefficients still show
a strong relationship between test scores and outcomes. The test score coefficients for high
school graduation shrink by nearly an order of magnitude, which may be driven by the fact
that GPAs may be particularly important determinants of high school graduation. We also
find that for most educational attainment outcomes, the coefficients are often larger for ELA
and SS GPAs relative to math and science GPAs.?*

For BA receipt, the test score estimates diminish moderately: we find that conditional
on GPAs, a one SD increase in test scores corresponds to increases in BA attainment by 7.7
p-p- for math and 3.9 p.p. for ELA. We also find that conditional on test scores, a one SD
in GPAs is associated with increases in BA attainment by 2.3 p.p. for math, 6 p.p. for ELA,
4.1 p.p. for science, and 5.8 p.p. for SS. However, the estimated relationship between math
test scores and STEM BA receipt is nearly identical to the estimate in the model excluding
GPAs. We find a one SD increase in math scores is associated with an increase in STEM
BA attainment by about 7.7 p.p. while the coefficient for ELA drops to 1.4 p.p. For STEM
degree receipt, the coefficient for math GPAs is the largest while the coefficient for SS GPAs
is the smallest.

Finally, for earnings from ages 25-28, we find moderate attenuation of test score estimates
with the inclusion of GPAs in the model.?® The math coefficient attenuates from $4,900 to
$3,500, while the ELA coefficient declines from $800 to —$900 after controlling for GPAs.
Similar to the educational attainment outcomes, we also find stronger relationships between
ELA and SS GPAs and earnings than for math and science GPAs. A one SD increase in
GPAs is linked to increases in earnings by about $800 for math, $1,800 for ELA, $1,100 for
science, and $1,400 for SS.

The results for the HS sample show similar patterns. For BA attainment, the coefficients

24The larger coefficients for ELA and SS GPAs relative to math and science GPAs may partially be driven
by differences in course difficulty and grading standards between ELA and SS compared to math and science.

25We are unable to observe earnings from ages 29-32 in our EMS sample with the inclusion of GPAs in
the model because the course data to compute GPAs first begin in 2013.
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for math, ELA, and SS test scores all suggest at least a 2.7 p.p. increase in BA receipt, while
the coefficient for science is slightly negative. The coefficients for ELA and SS GPAs are
substantially larger than the coefficients for math and science GPAs. A one SD increase in
GPA is related to increases in BA attainment by 11 p.p. for ELA, 7.1 p.p. for SS, 4.1 p.p. for
science, and 3.6 p.p. for math. For STEM BA receipt, the coefficients are larger for math and
science than for ELA and SS, both for test scores and GPAs. For earnings from ages 29-32,
we again find moderate attenuation of test score estimates. The coefficient attenuates from
$4,700 to $2,900 for math, from $800 to $90 for ELA, from $1,500 to $1,100 for science, and
from $2,800 to $2,400 for SS. The coefficients for GPAs are relatively similar in magnitude,
with all GPA coefficients showing at least a $1,500 increase in earnings.

Table 5 shows estimates of the multivariate relationship between test scores and BA
degree field within 6 years. Overall, we find that that there are stronger positive associations
between test scores and degree field when the test score subject area and degree field are
closely related. For the EMS sample, the difference between math and ELA coefficients is
largest for math/statistics/computer science and engineering/architecture fields while the
difference between ELA and math coefficients is largest for social sciences and humanities
fields. We also find that the math coefficient is considerably larger than the ELA coefficient
for science and business fields. Specifically, all the estimates for the aforementioned math,
engineering, science, and business fields show that a one SD increase in math test scores
is associated with increases in degree attainment in the respective field by at least 1.7 p.p.
(business) and as much as 2.7 p.p. (engineering/architecture). Among these fields, the ELA
coefficient of 1.4 p.p. is largest for science fields, a category that includes life, physical, and
environmental sciences, which may reflect greater complementarity between these fields and
ELA skills compared to more strictly quantitative fields. A one SD increase in ELA scores
is associated with a 2.8 percentage point increase in social science BA attainment and a 1.9
percentage point increase in humanities BA attainment. In contrast, the same increase in

math scores corresponds to smaller gains of 1.1 and 0.5 percentage points, respectively.
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Our results for the HS sample are similar, but provide even more convincing evidence
about the link between test scores and degree fields because we estimate coefficients for all
four core subjects. We find that among the four test scores, the coefficient for math is largest
for math, engineering, and business fields; the coefficient for ELA is largest for humanities
fields; the coefficient for science is largest for science fields; and the coefficient for SS is largest
for social science fields. Further, the results show that conditional on other test scores, there
is a negative relationship between science scores and social science, business, and education
fields. Overall, these findings provide strong evidence of students earning degrees in fields in
which they have a comparative advantage in skills.

Next, we examine the extent to which educational attainment and degree field mediate
the relationship between test scores and earnings from ages 29-32 (Table 6). Column (1)
replicates our main specification,?® while columns (2) through (4) sequentially add controls
for on-time college enrollment, BA attainment within six years, and major field of study
(from Table 5).

Adding these controls substantially attenuates the test score coefficients, especially for
ELA. In the EMS sample, relative to the main estimates, controlling for college enrollment
reduces the math and ELA coefficients by 16 percent and 33 percent, respectively; adding
BA attainment reduces them by 41 percent (math) and 84 percent (ELA); and including
degree field controls leads to total attenuation of 54 percent for math and 67 percent for
ELA. Even with all controls included, a one SD increase in math test scores is associated
with an earnings increase of approximately $3,700, compared to $700 for ELA.

These patterns suggest that much of the ELA-earnings relationship is mediated by edu-
cational pathways, while nearly half of the math-earnings relationship remains unexplained
by college enrollment, degree attainment, or field of study. The results for the HS sample
show similar patterns. With all the controls included, the coefficients attenuate from $4,700

to $3,000 for math (36 percent), $830 to -$60 for ELA (107 percent), $1,500 to $550 for sci-

26The estimates in Table 6, column (1) are nearly identical to those in Table 3, column (8). Minor
differences reflect sample restrictions due to missing degree field data in Table 6.
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ence (64 percent), and $2,800 to $1,200 for SS (56 percent). The estimates in the HS sample
suggest that the ELA-earnings relationship is completely explained by educational pathways,

while most of the math-earnings relationship is not explained by these mechanisms.

5.2 Heterogeneity Analysis

Heterogeneity by Socioeconomic Status, Race, and Achievement. We begin our
heterogeneity discussion by exploring how estimates of the relationship between test scores
and outcomes vary by FARMS status, race subgroups, and student achievement terciles.
The outcomes of interest are on-time college enrollment, BA attainment within six years,
and earnings from ages 29-32. Table 7 presents these estimates for the EMS sample.

The results show that for college enrollment, the test score coefficients are larger for
historically disadvantaged subgroups including students who are FARMS, Black, Hispanic,
or in the bottom two terciles of achievement. The achievement results are most striking:
a one SD increase in math test scores corresponds to at least a 10 p.p. increase in college
enrollment in the bottom two achievement terciles while this same increase in math scores
only relates to a 3.5 p.p. increase in enrollment in the top achievement tercile. The coefficients
for ELA are at least 9.4 p.p. for bottom and middle achievement tercile students, but only
2.5 p.p. for top tercile students.

However, this pattern reverses for BA attainment: the coefficients are typically smaller
for FARMS, Black, Hispanic, and bottom achievement tercile students relative to their peers.
The coefficients are 4.9 p.p. for math and 2.7 p.p. for ELA for bottom achievement tercile
students, 14.9 p.p. and 10 p.p. for middle achievement tercile students, and 10.2 p.p. and 6
p.p. for top achievement tercile students.

For earnings from ages 29-32, the coefficients for math test scores follow the same pattern
as the BA attainment coefficients with smaller coefficients for disadvantaged groups, while
the coefficients for ELA test scores follow the same pattern as the college enrollment coef-

ficients, with larger coefficients for disadvantaged groups. For math, the coefficients for the
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achievement terciles from lowest to highest are are $6,000, $9,200, and $8,500, respectively.
For ELA, the coefficients for the achievement terciles from lowest to highest are are $2,400,
$2,700, and $1,000, respectively.

For all subgroups, the heterogeneity results for earnings have the same pattern as our
main results of substantially larger coefficients for math relative to ELA. However, the het-
erogeneity results provide additional nuance: math test scores are more strongly associated
with earnings for higher-achieving students, while ELA test scores show stronger associations
for lower-achieving students. The heterogeneity estimates for the HS sample, presented in
Table 8, follow a similar pattern of results. Notably, the coefficients are relatively larger for
the top two achievement terciles for math, science, and SS test scores, while the coefficients
are larger for the bottom two achievement terciles for ELA test scores.

Heterogeneity by Grade and Age of Earnings. Figure 1 shows estimates of the
relationship between test scores and outcomes by grade level. There are two broad takeaways
from these figures. First, the test score coefficients are typically larger at higher grade lev-
els, suggesting that test scores in later grades are more predictive of long-term outcomes.?”
Second, while the math coefficients are typically only modestly larger than the ELA coef-
ficients for high school graduation, college enrollment, and AA receipt, the math estimates
are considerably larger than the ELA coefficients for BA receipt, STEM BA attainment,
and earnings from ages 25-28. This discrepancy in coefficients for attainment and earnings
outcomes is especially pronounced for 8th graders. A one SD increase in 8th grade math test
scores is associated with a 14 p.p. increase in BA attainment, a 10 p.p. increase in STEM
BA receipt, and an earnings increase of over $5,000. In contrast, a one SD increase in 8th
grade ELA scores is associated with a 7.5 p.p. increase in BA attainment, a 1.5 p.p. increase

in STEM BA receipt, and an earnings increase of about $1,000.

2"One exception to the finding that coefficients are larger for higher grade levels is that the coefficient
for math in HS (Algebra I) is often smaller than the coefficient for math in 8th grade and typically more
comparable to the coefficients for elementary grades. This discrepancy may be driven by the fact that the
Algebra I test covers different content and has a different structure than the math assessments in previous
grades or that variance in the grade level when the Algebra I test is first taken contributes to a weaker
correlation with long-term outcomes.
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Next, we examine the relationship between GPAs and outcomes by grade level in Figure
2. Although there is some evidence that the GPA coefficients are larger at higher grade
levels, this pattern is less clear relative to the test score coefficients. However, there are few
other interesting patterns. First, for general educational attainment outcomes, the math
coefficient is the smallest at all grade levels. For 6th-8th grades, ELA, science, and SS GPAs
are similarly predictive, while ELA and SS coefficients are much larger than the science
coefficient in HS. For example, for the BA receipt outcome, a one SD increase in cumulative
high school GPA is associated with a 4.5 p.p. increase for math, 12 p.p. for ELA, 5 p.p.
for science, and 9 p.p. for SS. The smaller coefficients for math and science likely reflect
differences in course difficulty and grading standards. Students tracked into more rigorous
math and science courses are often graded relative to higher-achieving peers, which may
weaken the correlation between GPAs in these subjects and general educational attainment
outcomes. However, there is a different pattern for the STEM BA and earnings at age 24
outcomes. For STEM BA attainment, the coefficients are larger for math and science GPAs
relative to ELA and SS GPAs. For cumulative HS GPA, a one SD increase corresponds to
almost a 6 p.p. increase in STEM BA receipt, while the coefficients for the other subjects
are about half as large. For earnings at age 24, the GPA coefficients across all subjects are
relatively similar in grades 7-8. However, in HS, a one SD increase in cumulative GPA is
associated with an earnings increase of nearly $2,000 for math and ELA, compared to only
about $1,000 for science and SS.

Figure 3 presents estimates of the relationship between test scores and earnings by age
at which earnings are measured. Two clear patterns are apparent in these results. First, the
test score coefficients are larger for earnings measured at older ages. This pattern is most
pronounced for untransformed earnings but is also evident for log earnings. Second, there
is a large gap between math coefficients and the coefficients for other subjects at almost all
ages when earnings are measured.

For our EMS sample, we find that a one SD increase in math test scores corresponds to
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over a $2,000 (approximately 10 percent) increase in earnings at age 23 and about a $9,000
(approximately 20 percent) increase in earnings at age 30. In contrast, a one SD increase in
ELA scores is associated with about a $500 (approximately 3 percent) decrease in earnings
at age 23 and almost a $2,500 (approximately 6 percent) increase in earnings at age 30.
For our HS sample, we observe similar patterns, although the coefficients are somewhat
smaller, likely in part because the multivariate model includes test scores for science and SS
in addition to math and ELA. Notably, the coefficients for science and SS are larger than
those for ELA, suggesting that these variables may absorb variation that would otherwise
be attributed to ELA in a more limited model.

Finally, our estimates of the relationship between GPAs and earnings by age are shown
in Figure 4. We focus on the results for our HS sample since we are able to observe earnings
measured at older ages for these students. The results for the EMS sample are similar, but
the patterns are somewhat less clear due to the lack of availability of earnings outcomes at
older ages. Similar to the test score results, we find that the GPA coefficients are larger for
earnings measured at older ages, although the increase in magnitude is less pronounced than
in the test score estimates. We also find that the math and ELA coefficients are modestly
larger than the science and SS coefficients at almost all ages. The results show that a one SD
increase in math and ELA GPAs corresponds to about a $1,000 (approximately 4 percent)
increase in earnings at age 23 and about a $3,000 (approximately 7 percent) increase in
earnings at age 28. In contrast, a one SD increase in science and SS GPAs is associated with
about a $500 (approximately 2 percent) increase in earnings at age 23 and about a $2,000

(approximately 5 percent) increase in earnings at age 28.

5.3 Teacher Value-Added Effects on Long-Term Outcomes

We complement our descriptive analyses by using test score TVA measures to estimate
causal effects on outcomes. Table 9 presents these estimates for our TVA sample: Panel A

reports results from univariate models that include only one TVA measure (math or ELA),
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while Panel B shows results from multivariate models that include both math and ELA TVA
simultaneously. For the univariate results, we find limited evidence that test score TVA has
significant or substantive effects on HS graduation, college enrollment, or AA degree receipt.?®
However, we find that a one SD increase in test score TVA increases BA receipt within four
years by about 0.6 p.p. for both math and ELA. These estimates are no longer significant
for BA receipt within 6 years; the math TVA coefficient attenuates substantially while the
ELA TVA estimate is nearly identical but less precisely estimated. The results also show
that a one SD increase in math TVA boosts STEM BA receipt within six years by 1.3 p.p.
and leads to a marginally significant increase in earnings from ages 22-24 of about $160 (0.7
percent). In contrast, the estimated impact of ELA TVA on STEM BA attainment is nearly
zero while the earnings effect is insignificantly negative.

The estimates for the multivariate model show the same pattern, likely due in part to
the fact that math and ELA TVA are weakly correlated. The estimates for on-time BA
receipt attenuate slightly: a one SD increase in TVA increases BA receipt within four years
by about 0.56 p.p. for math and 0.4 p.p. for ELA. The estimates for BA attainment within
six years are similar to the estimates from the univariate model. For STEM BA receipt,
the math TVA estimate is nearly identical to the univariate estimate while the ELA TVA
estimate becomes insignificantly negative. Finally, the earnings estimates are also similar
although the math TVA estimate increases to $184 while the ELA TVA coefficient becomes
slightly more negative.

Overall, we find some alignment between our descriptive and TVA-based analyses. The
estimated effects on educational attainment, such as BA receipt within four years, are similar
for math and ELA, while the effects on STEM BA attainment and earnings are larger for
math. This consistency lends credibility to the descriptive patterns when examined through
a causal lens. However, two caveats remain. First, the TVA estimates should be interpreted

with caution due to modest forecast bias, as shown in Appendix Table A3. Second, with the

28There is a small, negative, marginally significant coefficient for math TVA on HS graduation, but this
result may be due to chance and is suggestive of only a 0.1 p.p. decrease.
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exception of the estimate for STEM BA attainment associated with math TVA the relatively
small magnitudes of the TVA estimates suggest that improving students’ test scores may

have more limited causal impacts than descriptive estimates imply.

5.4 Robustness: Employment and Earnings Outcomes

Thus far, our analyses have focused on conditional earnings as the primary labor market
outcome. To assess robustness, we examine the relationship between test scores and three
labor market measures: (i) employment, (ii) unconditional earnings, and (iii) conditional
earnings. We define employment as having positive earnings reported in the Maryland Ul
data. Unconditional earnings are calculated by imputing zero earnings for individuals who
are missing Ul earnings data, while conditional earnings include only those with observed
positive earnings.

Table A4 presents estimates for each outcome. Since the patterns are similar across
outcomes measured at ages 22-24, 25-28, and 29-32, we focus on the results for ages 29-
32. In the EMS sample, a one standard deviation increase in either math or ELA test
scores is associated with a roughly 3 p.p. decrease in employment. This negative association
likely reflects the fact that higher-achieving students are more likely to migrate out-of-state.
These higher-achieving students would likely have higher earnings on average if we could
observe their earnings, so imputing zeros for missing earnings in the unconditional earnings
measure introduces negative bias relative to conditional earnings. For example, a one SD
increase in math scores corresponds to a $2,800 increase in unconditional earnings but an
$8,100 increase in conditional earnings. For ELA, there is also a gap in the estimates: a
one SD increase predicts a $700 decrease in unconditional earnings but a $2,200 increase in
conditional earnings. Estimates from the HS sample, including coefficients for science and
social studies scores, show similar patterns, with negative associations between test scores
and employment and downward bias in unconditional earnings estimates.

Overall, these findings highlight the importance of conditioning on observed earnings
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when analyzing labor market outcomes. Unconditional measures tend to substantially un-
derstate the strength of the relationship between test scores and earnings, while conditional
earnings provide a more accurate picture of this correlation. Recent research suggests that
even our conditional earnings estimates are likely biased toward zero, as individuals with
higher test scores are less likely to be observed in Maryland Ul data, and, if observed, would

likely have higher earnings on average (Foote and Stange, 2022).

6 Conclusion

A growing body of research has examined how cognitive skills developed in school shape

29 Much of this literature relies on longitudinal

students’ long-term economic outcomes.
survey data and finds that both general and subject-specific skills, particularly math, are
predictive of earnings. However, prior research often uses small samples from survey data,
self-reported outcomes, and limited causal identification strategies. This paper builds on and
extends this literature by using population-level administrative data and quasi-experimental
methods to provide new evidence on the link between specific academic skills and long-term
economic outcomes.

Our findings show that both math and ELA test scores predict college attainment, but
math scores are substantially more predictive of STEM degree completion and post-college
earnings. We find that a one SD increase in test scores is associated with an increase
in average annual earnings at ages 29-32 of approximately 17 percent for math and 4.5
percent for ELA. GPA also predicts earnings, potentially reflecting non-cognitive skills like
effort and motivation that are not fully captured by test scores. Patterns across degree

fields suggest that students tend to pursue majors aligned with their strongest academic

subjects, consistent with comparative advantage. Mediation analysis reveals that most of

2Neal and Johnson (1996); Heckman et al. (2006); Lin et al. (2018); Murnane et al. (1995, 2000); Grogger
and Eide (1995); Dougherty (2003); Deming (2017); Hanushek et al. (2015) use longitudinal surveys to
study the relationship between cognitive skills and earnings. Chetty et al. (2014b) uses administrative data
and quasi-experimental teacher value-added methods to estimate impacts on postsecondary and earnings
outcomes.
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the ELA test-earnings relationship operates through educational attainment and degree field,
while a substantial portion of the math test-earnings link remains unexplained. Importantly,
heterogeneity analyses show that math scores are more predictive of earnings than ELA
scores across all student subgroups. However, compared to their more advantaged peers,
historically disadvantaged students exhibit a weaker association between math scores and
earnings and a somewhat stronger association between ELA scores and earnings. Finally,
teacher value-added results corroborate the descriptive findings: math teacher value-added
has larger impacts on both STEM attainment and earnings than ELA value-added.

Taken together, these findings offer novel insights into how different types of academic
skills relate to long-run economic success. They suggest that policies aiming to promote
economic mobility may have differential effects depending on which skills are targeted and
which student subgroups are served. This underscores the need for a multi-faceted approach
to improving outcomes and reducing inequality. Investing in more rigorous math require-
ments and instruction may be one important policy lever (Goodman, 2019). Complementing
this with supports such as tutoring and mentoring for disadvantaged students can further
enhance long-term outcomes (Cortes et al., 2015). Leveraging multiple policy tools will be
critical to helping disadvantaged students translate skill gains into postsecondary and labor

market success, thereby reducing inequality and promoting upward mobility.
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Figure 1: Relationship Between Test Scores and Outcomes by Grade
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Mote: HS tests for the relevant subjects include Algebra | and 10th grade English.

Notes: This figure shows estimates for the multivariate relationship between test scores and long-term
outcomes by grade level. We use the EMS sample to construct estimates for grades 3-8 and the HS sample
to construct estimates for HS. The samples are described in Section 3. Outcomes include educational
attainment measures and earnings from ages 25-28. The specification is our main multivariate test score
model with demographic controls in Section 4.1, Equation 1, with only standardized math and ELA test
scores as the main explanatory variables. The demographic controls include indicators for gender, race,
gender-race interactions, FARMS, ELL, SPED, and imputed values for demographic variables. High school
graduation is within four years and college enrollment is on-time relative to 9th grade enrollment. Average
annual earnings from ages 25-28 are conditional on having positive observed earnings and measured in 2024
dollars. Robust 95 percent confidence intervals clustered at the student level are reported.
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Figure 2: Relationship Between GPAs and Outcomes by Grade
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Mote: 6-8 GPAs are annual measures. HS GPAs are cumulative measures.

Notes: This figure shows estimates for the multivariate relationship between GPAs and long-term outcomes
by grade level. We use the EMS sample to construct estimates for grades 6-8 and the HS sample to construct
estimates for HS. The samples are described in Section 3. Outcomes include educational attainment measures
and earnings at age 24. The specification is a multivariate GPA model with demographic controls and
standardized GPAs in the four core subjects as the main explanatory variables. GPAs for grades 6-8 are
annual measures and GPAs for HS are cumulative measures. High school graduation is within four years
and college enrollment is on-time relative to 9th grade enrollment. Annual earnings at age 24 are conditional
on having positive observed earnings and measured in 2024 dollars. Robust 95 percent confidence intervals
clustered at the student level are reported.
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Figure 3: Relationship Between Test Scores and Earnings by Age
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Mote: HS tests include Algebra |, 10th grade English, Biology, and U.S. Government.

Notes: This figure shows estimates for the multivariate relationship between test scores and earnings by
the age when earnings are measured. Estimates for the EMS sample are shown in the top two sub-figures
and estimates for the HS sample are shown in the bottom two sub-figures. The samples are described in
Section 3. Outcomes are annual earnings at ages 22-30, respectively, conditional on having positive observed
earnings. Earnings are measured in 2024 dollars, with the two left sub-figures showing estimates in thousands
of 2024 dollars and the two right sub-figures showing estimates for log earnings. The specification is our
main multivariate test score model with demographic controls in Section 4.1, Equation 1. Robust 95 percent
confidence intervals clustered at the student level are reported.
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Figure 4. Relationship Between GPAs and Earnings by Age
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Mote: 6-8 GPAs are annual measures. HS GPAs are cumulative measures.

Notes: This figure shows estimates for the multivariate relationship between GPAs and earnings by the
age when earnings are measured. Estimates for the EMS sample are shown in the top two sub-figures and
estimates for the HS sample are shown in the bottom two sub-figures. The samples are described in Section 3.
Outcomes are annual earnings at ages 22-28, respectively, conditional on having positive observed earnings.
Earnings are measured in 2024 dollars, with the two left sub-figures showing estimates for thousands of dollars
and the two right sub-figures showing estimates for log earnings. The specification is a multivariate GPA
model with demographic controls and standardized GPAs in the four core subjects as the main explanatory
variables. GPAs for grades 6-8 are annual measures and GPAs for HS are cumulative measures. Robust 95
percent confidence intervals clustered at the student level are reported.
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Table 1: Summary Statistics for EMS and HS Samples

EMS Sample HS Sample
(1) (2) (3) (4) (5) (6)
Mean SD N Mean SD N
Panel A: Demographics
Female 0.497 0.500 3,281,607  0.503 0.500 457,157
FARMS 0.419 0.493 3,281,607  0.364 0.481 457,157
Black 0.342 0.474 3,281,607  0.352 0.477 457,157
Hispanic 0.131 0.337 3,281,607  0.118 0.322 457,157
White 0.416 0.493 3,281,607  0.428 0.495 457,157
Asian 0.062 0.241 3,281,607  0.056 0.230 457,157
Other Race 0.049 0.217 3,281,607  0.047 0.211 457,157
ELL 0.043 0.202 3,281,607  0.036 0.186 457,157
SPED 0.133 0.340 3,281,607  0.127 0.333 457,157
Panel B: Explanatory Variables
Comp Score Math 0.045 0.987 3,281,607  0.076 0.921 457,157
Comp Score ELA 0.009 0.996 3,281,607  0.024 0.955 457,157
Comp Score Sci 0.038 0.972 966,205 0.009 0.953 457,157
Comp Score SS 0.012 0.944 457,157
GPA Math -0.013  0.969 1,025,365 -0.042  0.929 344,181
GPA ELA -0.001  0.964 1,035,480 -0.003  0.916 355,160
GPA Sci 0.001 0.968 1,027,231 -0.026  0.919 333,653
GPA SS 0.005 0.965 1,020,668  0.001 0.910 339,639
Panel C: Outcomes
HS Grad in 4 Yrs 0.874 0.332 3,281,607  0.917 0.275 457,157
Enroll in College 0.642 0.480 2,999,633  0.658 0.474 457,157
Persist in College 0.558 0.497 2,674,895  0.565 0.496 457,157
AA in 2 Yrs 0.025 0.157 2,674,895  0.023 0.151 457,157
AA in 4 Yrs 0.073 0.260 2,025,934  0.076 0.264 427,798
BA in 4 Yrs 0.208 0.406 2,025,934  0.188 0.390 427,798
BA in 6 Yrs 0.318 0.466 1,414,238  0.290 0.454 339,663

STEM BA in 4 Yrs 0.063 0.244 2,025,533  0.055 0.228 427,314
STEM BA in 6 Yrs 0.104 0.305 1,413,813  0.087 0.282 339,101
Employed Ages 22-24  0.829 0.377 1,800,494  0.840 0.367 382,751
Employed Ages 25-28  0.723 0.447 995,098 0.757 0.429 260,277
Employed Ages 29-32  0.602 0.489 152,752 0.646 0.478 124,378
Earnings Ages 22-24 23,138 17,831 1,492,104 23,263 17,617 321,399
Earnings Ages 25-28 36,697 26,399 719,675 35,628 25,478 197,068
Earnings Ages 29-32 48,249 34,439 91,999 45,442 32,611 80,362
Notes: Summary statistics are shown for the elementary and middle school (EMS) sample in columns
(1)-(3) and the high school (HS) sample in columns (4)-(6). The samples are described in Section 3.
Composite test score and GPA variables are standardized in the population to have mean zero and
standard deviation one. College enrollment and persistence are “on-time” outcomes relative to the
first observed year of enrollment in 9th grade in Maryland public schools. Employed is an indicator
for having positive observed earnings. Average annual earnings are conditional on having positive
observed earnings and measured in 2024 dollars.
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Table 6: Test Scores and Earnings: Mediation Analysis Across
Specifications

(1) (2) (3) (4)
Ctrl Enroll ~ Ctrl Enroll,
Main Ctrl Enroll & BA BA, & Field

Panel A: EMS Sample

Comp Score Math — 8,114%** 6, 812%** 4,763%** 3, 732K
(208) (210) (206) (202)

Comp Score ELA 2,152%F%* ] 433%** 339% T00***
(183) (183) (180) (177)

Adj R-squared 0.1531 0.1656 0.2060 0.2362

Outcome Mean [48238] [48238| [48238] [48238]

N 91,881 91,881 91,881 91,881

Panel B: HS Sample
Comp Score Math — 4,685%** 4 129%** 3,34 17K 2,988*#*

(174) (173) (168) (165)
Comp Score ELA 833HH* 371** -159 -58

(181) (180) (175) (173)
Comp Score Sci 1,524%H% ] 143%%* G78*** 5H3*H*

(164) (164) (160) (159)
Comp Score SS 2,778¥FK 9 21RH*H 1,246%** 1,228%**

(188) (187) (182) (180)
Adj R-squared 0.1321 0.1434 0.1851 0.2089
Outcome Mean — [45425]  [45425] [45425] [45425]
N 80,119 80,119 80,119 80,119

Notes: This table shows estimates for the multivariate relationship between test scores
and earnings using different specifications. The earnings outcome is average annual earn-
ings from ages 29-32 conditional on having positive observed earnings and measured in
2024 dollars. Column (1) shows our main multivariate test score model specification
from Section 4.1, Equation 1. Column (2) adds a control for on-time college enrollment,
column (3) adds a control for BA receipt within six years, and column (4) adds controls
for the major fields in Table 5. Panel A shows results for the EMS sample and Panel
B shows results for the HS sample. The samples are described in Section 3. Robust
standard errors are clustered at the student level.

¥ p<0.01, ** p<0.05, * p<0.10
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A Appendix

Table A1l: HSA Subscore Descriptions

HSA Test HSA Subscore
Algebra I Analyzing Patterns and Functions
Algebra I Modeling Real World Situations
Algebra 1 Collecting, Organizing, and Analyzing Data
Algebra | Using Data to Make Predictions
English 10 Reading/Literature: Comprehension and Interpretation
English 10 Reading/Literature: Making Connections and Evaluation
English 10 Writing: Composing
English 10 Writing: Language Usage and Conventions
Biology Skills and Processes of Biology
Biology Structure and Function of Biological Molecules
Biology Structure and Function of Cells and Organisms
Biology Inheritance of Traits
Biology Mechanism of Evolutionary Change
Biology Interdependence of Organisms in the Biosphere

U.S. Government U.S. Government Structure, Functions, and Principles
U.S. Government Protecting Rights and Maintaining Order

U.S. Government Systems of Government and U.S. Foreign Policy

U.S. Government Impact of Geography on Governmental Policy

U.S. Government Economic Principles, Institutions, and Processes

Notes: This table shows the subscores for the Maryland High School Assessments (HSA)
(MSDE, 2012).
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Table A2: MSA Subscore Descriptions

MSA Test MSA Subscore
Math Algebra, Patterns, or Functions
Math Geometry and Measurement
Math Statistics and Probability

Math Number and Relationships Computation
Math Processes of Mathematics

ELA General Reading Processes

ELA Informational Reading Processes
ELA Literary Reading Processes
Science Skills and Processes

Science Earth/Space Science

Science Life Science

Science Chemistry

Science Physics

Science Environmental Science

Notes: This table shows the subscores for the Maryland School
Assessments (MSA) (MSDE, 2003, 2016).
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Table A3: Teacher Value-Added Es-
timates of Forecast Bias

(1) (2)
Math ELA

TVA 1.1153%**%  1.0992%**
(0.0281) (0.0448)

Adj R-squared 0.7517 0.7204

N 1,712,724 1,671,687

Notes: This table reports the effect of teacher
value-added (TVA) on current-year student test
scores, serving as a validity check of the TVA iden-
tification strategy. The sample includes student-
year observations from the TVA sample (Section 3)
with non-missing leave-out TVA measures, where
TVA is scaled in student-level test score standard
deviations and estimated using data from other
years taught by the same teacher (Section 4.2).
Each column shows the effect of subject-specific
TVA on the corresponding standardized test score.
The specification follows our main TVA model
(Equation 6), including: i) lags of a cubic polyno-
mial in students’ math and ELA scores; ii) lags of a
cubic polynomial in class- and grade-level means of
those scores; iii) demographic controls (indicators
for gender, race, gender-race interactions, FARMS,
ELL, SPED, and missing demographics); and iv)
class- and grade-level means of these demographic
variables. All controls are interacted with grade
fixed effects, and class size is included. For miss-
ing lagged scores in the non-matching subject, we
set the value to zero and include a missing indi-
cator interacted with the own-subject lag. Robust
standard errors are clustered at the school level.
¥k p<0.01, ** p<0.05, * p<0.10
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