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Abstract

The paper proposes a refinement of the generalized spatial two-stage
and three-stage least squares estimators for simultaneous systems of equa-
tions with network interdependence, recently introduced in Drukker, Eg-
ger and Prucha (2022). Specifically, we propose a refined weighting of the
moment conditions underlying those estimators. Monte Carlo simulations
document that the refined weighting potentially achieves non-trivial re-
ductions in the root mean-squared errors for the network parameters of
interest.
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1 Introduction

In this paper we explore modifications to the class of GMM estimators for
simultaneous equation systems for cross sectional data with network structures
recently introduced in Drukker, Egger and Prucha (2022), henceforth DEP.
The aim of those modifications is to improve on the small sample properties of
DEP’s one-step GMM estimators, which are based on both linear and quadratic
moment conditions and referred to as one-step LQ-GS2SLS and LQ-GS3SLS
estimators.

The econometric analysis of spatial networks has a long history in geogra-
phy, regional science and urban economics; see, e.g., Anselin (1988) and Cliff
and Ord (1973). Since the mid-1990s the development of econometric methods
of inference for Anselin-Cliff-Ord-type models has also been an active area of re-
search in economics, recognizing that possible applications include both spatial
and social network structures. Originally the focus of this research was on single
equation models. In economics it is common for outcomes to be generated by a
system of equations. Kelejian and Prucha (2004) provide an early development
of generalized method of moments (GMM) estimators for such models. Recent
contributions include Baltagi and Deng (2015), Yang and Lee (2019), and Liu
(2020).1

DEP develop GMM estimation methodologies for simultaneous equation
models that allow for spatial interactions in terms of higher order spatial lags of
the endogenous variables, the exogenous variables as well as the disturbances.
The aim of this paper is to explore a refinement of the one-step LQ-GS2SLS
and LQ-GS3SLS estimators introduced in DEP, with the aim of achieving im-
provements of their small sample performance.

In more detail, the first order condition of the one-step LQ-GS2SLS and
LQ-GS3SLS estimators weighs, in line with optimally weighted GMM estima-
tors, the sample moment vector with the matrix of first-order derivatives of
the moment vector normalized by the inverse variance covariance matrix of the
sample moment vector. The asymptotic properties of the estimator depend on
the probability limit of the matrix of first-order derivatives of the moment vec-
tor. An inspection of the first-order derivatives of the moment vector reveals
that several quantities converge in probability to zero. We modify the first
order conditions by setting those quantities to their probability limit, i.e., to
zero. Intuition suggests that by explicitly incorporating available information
of the probability limit of those quantities, there may be an improvement in the
small sample behavior of the correspondingly defined GMM estimators. The
results of our Monte Carlo (MC) simulations are in support of this conjecture.
Improvements become especially pronounced when identification is weakened.

1See, e.g., DEP for a more extensive review of the literature.

2



2 Model

The model is assumed to be identical to the simultaneous system of G equations
for G endogenous variables observed for n cross sectional units as specified in
Section 2 of DEP. The model allows for higher order network dependence in
the form of spatial lags in the endogenous variables, exogenous variables and
disturbances. To conserve space we only provide here a basic description of the
model, and refer the reader to DEP for details. In that paper we also discuss
the wider applicability of the model to not only spatial networks, but also social
networks, while we continue using the terminology common for spatial models.

The g-th structural equation of the system is given by

yg = Zgδg + ug, (1)

where yg denotes the n× 1 vector of observations on the g-th endogenous vari-
able, Zg = [Yg, Xg, Y g] denotes the matrix of observations on the covariates
appearing in the g-th equation, where Yg is the matrix of r.h.s. endogenous
variables, Xg the matrix of exogenous variables (which may include spatial lags
of exogenous variables), Y g denotes the matrix of observations on spatial lags
of endogenous variables appearing on the r.h.s. of the g-th equation, δg denotes
the vector of structural parameters corresponding to Zg, and ug denotes the
vector of disturbances of the g-th equation. The specification of Y g is general
and may contain higher order as well as cross equation spatial lags.

The disturbance process is given by

ug = R∗
g(ρg)ug + εg, with R∗

g,n(ρg) =
∑

r∈Ig,ρ
ρg,rMr, (2)

where M1, . . . ,Mq denotes the set of all spatial weight matrices appearing in
the disturbance processes of all G equations, Ig,ρ ⊂ {1, . . . , q} denotes the set of
indexes of the weight matrices appearing in the disturbance process of the g-th
equation, ρg denotes the vector of corresponding autoregressive parameters, and
εg denotes the vector of basic innovations.

For purposes of estimation it proves helpful to apply a spatial Cochrane-
Orcutt transformation to the model. In particular, premultiplying (1) by In −
R∗

g(ρg) yields
y∗g = Z∗gδg + εg, (3)

with y∗g = y∗g(ρg) =
[
In −R∗

g(ρg)
]
yg, Z∗g = Z∗g(ρg) =

[
In −R∗

g(ρg)
]
Zg.

Stacking the transformed equations yields

y∗ = Z∗δ + ε, (4)

with y∗ = [y′∗1, . . . , y
′
∗G]

′
, Z∗ = diagGg=1 [Z∗g], δ = [δ′1, . . . , δ

′
G]

′
, and ε = [ε′1, . . . , ε

′
G]

′.
We maintain the set of assumptions as given in DEP. Under those assumptions
Eε = 0, Eεε′ = Σ⊗ In with Σ = (σij)i,j=1,...,G non-singular.
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3 GMM Estimators

We next give a brief review of the one-step LQ-GS2SLS and LQ-GS3SLS esti-
mators introduced in DEP. Let θg = [ρ′g, δ

′
g]

′, θ = [θ′1, . . . , θ
′
G]

′ and let θ0,g =
[ρ′0,g, δ

′
0,g]

′, θ0 = [θ′0,1, . . . , θ
′
0,G]

′ denote the true parameters. From (3) we have

εg = εg(θ0,g) =
[
In −R∗

g(ρ0,g)
]
[yg − Zgδ0,g] .

The one-step LQ-GS2SLS and LQ-GS3SLS are then based on the following
vectors of linear and quadratic sample moments (g = 1, . . . , G):

mg(θg) =

[
mL

g (θg)
mQ

g (θg)

]
,

with

mL
g (θg) = n−1H ′εg(θg), mQ

g (θg) = n−1

 εg(θg)
′A1εg(θg)
...

εg(θg)
′ASεg(θg)

 ,

where H is a n × P matrix of instruments and the As, s = 1, . . . , S are n × n
matrices with zero diagonal elements. Specific choices for H and As are moti-
vated and described in DEP. The choices for H involve the exogenous variables
in the system and spatial lags thereof. The choices for the As matrices involve
the spatial weight matrices and products of those matrices (with the diagonal
elements set to zero).

As shown in DEP we have Emg(θ
0
g) = 0 and

Φgg = V C(n1/2mg(θ0,g)) =

[
ΨLL

gg 0
0 ΨQQ

gg

]
with ΨLL

gg = σgg

[
n−1H ′H

]
and ΨQQ

gg = σ2
ggK

QQ, where KQQ = (kQQ
rs ) and

kQQ
rs = (2n)−1tr [(Ar +A′

r)(As +A′
s)] .

Let Φ̃gg, Ψ̃
LL
gg and Ψ̃QQ

gg denote the corresponding estimators, where σgg is re-
placed by some consistent estimator σ̃gg. Then the one-step LQ-GS2SLS esti-
mator is the limited information GMM estimator defined as

θ̂og = argmin
θg

mg(θg)
′Φ̃−1

gg m(θg). (5)

Now consider the stacked sample moment vector

m(θ) =
[
mL

1 (θ1)
′, . . . ,mL

G(θG)
′,mQ

1 (θ1)
′, . . . ,mQ

G(θG)
′
]′
.

Then, as shown in DEP, we have Em(θ0) = 0 and

Φ = V C(n1/2m(θ0)) =

[
ΨLL 0
0 ΨQQ

]
,
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with
ΨLL = Σ⊗ n−1H ′H and ΨQQ = ΣSQ ⊗KQQ,

where ΣSQ = (σ2
gh). Let Φ̃, Ψ̃

LL and Ψ̃QQ denote the corresponding estimators.
Then the one-step LQ-GS3SLS estimator is the full information GMM estimator
defined as ̂̂

θ
o

= argmin
θ

m(θ)′Φ̃−1m(θ). (6)

4 Refined GMM Estimators

Towards defining our refined GMM estimators let

GLL
g =

∂mL
g (θg)

∂δg
, GLQ

g =
∂mL

g (θg)

∂ρg
, GQL

g =
∂mQ

g (θg)

∂δg
, GQQ

g =
∂mQ

g (θg)

∂ρg
.

Then,

Gg(θg) =
∂mg(θg)

∂θg
=

[
GLL

g (θg) GLQ
g (θg)

GQL
g (θg) GQQ

g (θg)

]
,

G(θ) =
∂m(θ)

∂θ
=

[
diagGg=1[G

LL
g (θg)] diagGg=1[G

LQ
g (θg)]

diagGg=1[G
QL
g (θg)] diagGg=1[G

QQ
g (θg)]

]
,

observing that ∂mg/∂θh = 0 for g ̸= h. The one-step LQ-GS2SLS and LQ-
GS3SLS solve the following first-order conditions, respectively:

Gg(θ̂
o
g)

′Φ̃−1
gg m(θ̂og) = 0 and G(

̂̂
θ
o

)′Φ̃−1m(
̂̂
θ
o

) = 0. (7)

DEP derive the probability limits of the submatrices of Gg(θ
0
g). In particular

they establish that

GLQ
g (θ0,g) = op(1) and GQL

g (θ0,g) = G
QL

g (θ0,g) + op(1)

where

GQL
g (θ0,g) =

 −n−1ε′g[A1 +A′
1]Z∗g(ρg)

...
−n−1ε′g[AS +A′

S ]Z∗g(ρg)

 , G
QL

g (θ0,g) =

 −n−1ε′g[A1 +A′
1]Z

−
∗g(ρg)

...
−n−1ε′g[AS +A′

S ]Z
−
∗g(ρg)


with Z−

∗g(ρg) = [In−R∗
g(ρg)Z

−
g and Z−

g = [Yg, 0, Y g], i.e., where Z
−
g is obtained

from Zg = [Yg, Xg, Y g] by replacing Xg with a matrix of zeros.
Hence, the derivative matrices Gg(θg) and G(θ) contain terms that converge

to zero. One can conjecture that setting them to their probability limit of zero
may be helpful in small samples for estimating θg and θ. We next define a
refined version of the one-step LQ-GS2SLS and LQ-GS3SLS corresponding to
this conjecture. In particular, let

Gg(θg) =

[
GLL

g (θg) 0

G
QL

g (θg) GQQ
g (θg)

]
and G(θ) =

[
diagGg=1[G

LL
g (θg)] diagGg=1[0]

diagGg=1[G
QL

g (θg)] diagGg=1[G
QQ
g (θg)]

]
.
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Then, the refined one-step LQ-GS2SLS and LQ-GS3SLS, say θ̂Rgg and
̂̂
θ
R

, are
defined by

Gg(θ̂
R
gg)

′Φ̃−1
gg m(θ̂Rgg) = 0 and G(

̂̂
θ
R

g )
′Φ̃−1m(

̂̂
θ
R

) = 0. (8)

5 Monte Carlo Design and Main Results

In what follows we present results from an MC study which assesses the small-
sample properties of the LQ-GS2SLS and LQ-GS3SLS of the DEP estimators
in comparison to their refined counterparts introduced above.

For the MC study we consider the specialized two-equation system based on
(1) and (2) where for g ∈ {1, 2},

Z1 = [y2,M1y1,M2y1, x1, x2, x3], δ1 = [b12, λ11, λ12, c11, c12, c13]
′,

Z2 = [y1,M1y2,M2y2, x4, x5, x6], δ2 = [b21, λ21, λ22, c24, c25, c26]
′,

ug = [ρg1M1 + ρM2]ug + εg.

Our specification adopts the stylized social-network design of DEP. This design
emulates groups of friends in a classroom setting. We refer the reader to DEP
for details. Each school has 50 students distributed over three classroom of
size 10, 15, and 25, respectively. We generate M1 and M2 as social-interactions
matrices involving, respectively, closer and less-close friends among class fellows.
We conducted MC simulations for different sample sizes and parameter sets. The
full set of results for those simulations is made available online. For the results
reported below the number of schools is taken to be 2, implying a sample size n
of 100. The social interactions matrices M1 and M2 are generated outside the
MC loop, and are row-normalized. On average, there are 23% closer and 39%
less-close friends with n = 100. For the results reported below we consider two
sets of network parameters as given in Table 1.

Table 1: Configuration of Autoregressive Parameters in Set I-II

Auroregressive Parameters
Equation 1 Equation 2

λ11 λ12 ρ11 ρ12 λ21 λ22 ρ21 ρ22
Set I 0.30 0.20 0.20 0.10 0.30 0.15 0.10 0
Set II -0.30 -0.20 -0.20 -0.10 -0.30 -0.15 -0.10 0

The remaining parameters are selected as b12 = 0.3, b21 = 0.15 , c11 =
. . . = c26 = 0.5. The observations on the exogenous regressors are kept fixed
for all MC iterations, and are generated as independent of each other and as
cross sectionally i.i.d. N(1,3). The disturbances ε1, ε2 are generated as cross
sectionally i.i.d. normal with mean 0, variance 1 and covariance .5.

6



In Table 2 we report the bias and root mean squared error (RMSE) of the
LQ-GS2SLS and LQ-GS3SLS estimators and their refined counterparts, labled
as Ref. LQ-GS2SLS and Ref. LQ-GS3SLS, for the two sets of parameters and
n = 100. The results are based on 1, 000 MC runs each. To simplify the
presentation we only report on the autoregressive network parameters of the
two equations.

Table 2: Monte Carlo Simulation Results for Parameter Sets I and II and n=100

LQ-GS2SLS Ref. LQ-GS2SLS LQ-GS3SLS Ref. LQ-GS3SLS
Bias RMSE Bias RMSE Bias RMSE Bias RMSE

Parameter Set I
Eq. 1:
λ11 -0.0100 0.1437 0.0439 0.1019 0.0016 0.1431 0.0566 0.1072
λ12 -0.0881 0.1513 -0.1021 0.1386 -0.0756 0.1450 -0.0890 0.1286
ρ11 -0.0295 0.2835 -0.1039 0.2284 -0.0257 0.2781 -0.1038 0.2285
ρ12 0.0569 0.2633 0.0832 0.2382 0.0534 0.2652 0.0636 0.2275
Eq. 2:
λ21 0.0065 0.1012 0.0349 0.0964 0.0151 0.0973 0.0465 0.0936
λ22 -0.0491 0.1070 -0.0731 0.1133 -0.0405 0.1065 -0.0612 0.1033
ρ21 -0.0365 0.2355 -0.0838 0.2238 -0.0344 0.2274 -0.0865 0.2167
ρ22 0.0178 0.2460 0.0553 0.2380 0.0169 0.2429 0.0371 0.2314

Parameter Set II
Eq. 1:
λ11 -0.0082 0.1247 0.0144 0.1096 -0.0145 0.1327 0.0104 0.1125
λ12 -0.0105 0.0816 -0.0142 0.0738 -0.0130 0.0871 -0.0220 0.0774
ρ11 -0.0021 0.2555 -0.0260 0.2238 0.0037 0.2521 -0.0224 0.2353
ρ12 -0.0242 0.2710 -0.0028 0.2416 -0.0232 0.2708 -0.0033 0.2431
Eq. 2:
λ21 -0.0433 0.1260 -0.0061 0.1027 -0.0408 0.1292 -0.0026 0.0980
λ22 -0.0273 0.0953 -0.0323 0.0764 -0.0235 0.1004 -0.0290 0.0809
ρ21 0.0321 0.2615 -0.0197 0.2090 0.0281 0.2665 -0.0201 0.2188
ρ22 -0.0111 0.2762 -0.0088 0.2384 -0.0132 0.2907 -0.0081 0.2525

As expected, in general, in terms of RMSE the full-information estimators
dominate the respective limited-information estimators. What is of key interest
here are the performances of LQ-GS2SLS and LQ-GS3SLS relative to their
refined counterparts. The gains of the refined approach in terms of RMSE are
quite substantial, particularly for Parameter Set II. Although for all estimators
the biases are fairly small, we note that on average, relative to their refined
counterparts, the biases of LQ-GS2SLS and LQ-GS3SLS are smaller. In an
Online Appendix we report on additional results. One would expect that the
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bias and efficiency gains are smaller with stronger identification and smaller
with larger sample sizes. We document this in Table A1 and A2 in the Online
Appendix. Table A1 reports on n = 100, but in addition to the weaker identified
case with cgk = 0.5 the table also presents results for the stronger identified
case with cgk = 1. Table A2 reports results for both the weaker and stronger
identified case, but for the larger sample size n = 250. The results support
the conjecture that the use of the refined LQ-GS2SLS and LQ-GS3SLS can be
especially beneficial for reducing the RMSE when identification is weak, but the
benefits will mostly show up for relatively small sample sizes.

We think that the insights of this paper can also be relevant for other estima-
tion procedures and classes of Anselin-Cliff-Ord-type models, where the explicit
suppression of terms that converge to zero may help with improving the small
sample performance of an estimation procedure.
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In this Online Appendix we report in Tables A1 and A2 on an extended set

of Monte Carlo simulations. The simulations are intended to support some of

the claims made in the main paper. In particular, we extend our study in the

following ways:

• The results in Table 2 of the main paper are generated for  = 05,

where the  denote the parameters on the exogenous variables. In this

Online Appendix we also report results for  = 1, noting that the latter

parameter values imply stronger identification.

• The results in Table 2 of the main paper are generated for a sample size
of  = 100. In this Online Appendix we also report results for  = 250.

The results in Tables A1 and A2 indicate that, indeed, the benefit of the

proposed refinement of the LQ-GS2SLS and LQ-GS3SLS estimators tends to

become more significant as identification becomes less strong. Moreover, a com-

parison of Table A2 for  = 250 with Table A1 for  = 100 demonstrates that

the benefit of the proposed refinement is larger in smaller samples.
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Table A1 - Monte Carlo Simulation Results for Parameter Sets I and II and n=100

Bias RMSE Bias RMSE Bias RMSE Bias RMSE

Eq. 1:
11 0.0014 0.0528 0.0131 0.0493 0.0047 0.0502 0.0156 0.0462

12 -0.0285 0.0639 -0.0308 0.0617 -0.0192 0.0580 -0.0226 0.0557

11 -0.0116 0.1820 -0.0423 0.1783 -0.0140 0.1814 -0.0387 0.1733

12 -0.0140 0.2280 0.0000 0.2068 -0.0163 0.2207 -0.0117 0.2030

Eq. 2:
21 0.0060 0.0398 0.0109 0.0397 0.0087 0.0376 0.0123 0.0380

22 -0.0165 0.0461 -0.0206 0.0465 -0.0105 0.0411 -0.0133 0.0407

21 -0.0274 0.1678 -0.0406 0.1638 -0.0243 0.1664 -0.0379 0.1603

22 -0.0199 0.2112 -0.0126 0.2019 -0.0263 0.2089 -0.0160 0.1974

Eq. 1:
11 -0.0100 0.1437 0.0439 0.1019 0.0016 0.1431 0.0566 0.1072

12 -0.0881 0.1513 -0.1021 0.1386 -0.0756 0.1450 -0.0890 0.1286

11 -0.0295 0.2835 -0.1039 0.2284 -0.0257 0.2781 -0.1038 0.2285

12 0.0569 0.2633 0.0832 0.2382 0.0534 0.2652 0.0636 0.2275

Eq. 2:
21 0.0065 0.1012 0.0349 0.0964 0.0151 0.0973 0.0465 0.0936

22 -0.0491 0.1070 -0.0731 0.1133 -0.0405 0.1065 -0.0612 0.1033

21 -0.0365 0.2355 -0.0838 0.2238 -0.0344 0.2274 -0.0865 0.2167

22 0.0178 0.2460 0.0553 0.2380 0.0169 0.2429 0.0371 0.2314

Eq. 1:
11 0.0018 0.0696 0.0099 0.0649 0.0003 0.0616 0.0078 0.0555

12 -0.0153 0.0596 -0.0172 0.0558 -0.0136 0.0558 -0.0145 0.0524

11 -0.0306 0.2331 -0.0493 0.2207 -0.0219 0.2277 -0.0404 0.2153

12 -0.0138 0.2629 -0.0129 0.2554 -0.0169 0.2598 -0.0112 0.2512

Eq. 2:
21 -0.0082 0.0711 0.0046 0.0594 -0.0082 0.0633 0.0036 0.0558

22 -0.0097 0.0709 -0.0114 0.0605 -0.0080 0.0626 -0.0097 0.0541

21 -0.0030 0.2269 -0.0350 0.1992 -0.0040 0.2204 -0.0285 0.1881

22 -0.0181 0.2571 -0.0105 0.2271 -0.0214 0.2513 -0.0168 0.2277

Eq. 1:
11 -0.0082 0.1247 0.0144 0.1096 -0.0145 0.1327 0.0104 0.1125

12 -0.0105 0.0816 -0.0142 0.0738 -0.0130 0.0871 -0.0220 0.0774

11 -0.0021 0.2555 -0.0260 0.2238 0.0037 0.2521 -0.0224 0.2353

12 -0.0242 0.2710 -0.0028 0.2416 -0.0232 0.2708 -0.0033 0.2431

Eq. 2:
21 -0.0433 0.1260 -0.0061 0.1027 -0.0408 0.1292 -0.0026 0.0980

22 -0.0273 0.0953 -0.0323 0.0764 -0.0235 0.1004 -0.0290 0.0809

21 0.0321 0.2615 -0.0197 0.2090 0.0281 0.2665 -0.0201 0.2188
22 -0.0111 0.2762 -0.0088 0.2384 -0.0132 0.2907 -0.0081 0.2525

Ref. LQ-GS2SLS

Parameter Set II with cgk=0.5

Parameter Set II with cgk=1

LQ-GS2SLS LQ-GS3SLS Ref. LQ-GS3SLS

Parameter Set I with cgk=1

Parameter Set I with cgk=0.5



Table A2 - Monte Carlo Simulation Results for Parameter Sets I and II and n=250

Bias RMSE Bias RMSE Bias RMSE Bias RMSE

Eq. 1:
11 0.0002 0.0228 0.0008 0.0232 0.0030 0.0232 0.0032 0.0233

12 -0.0053 0.0240 -0.0056 0.0240 -0.0034 0.0212 -0.0036 0.0210

11 -0.0071 0.0892 -0.0078 0.0890 -0.0065 0.0862 -0.0094 0.0873

12 0.0051 0.0973 0.0039 0.0974 0.0031 0.0985 0.0004 0.0983

Eq. 2:
21 0.0019 0.0220 0.0028 0.0220 0.0037 0.0203 0.0044 0.0207

22 -0.0071 0.0229 -0.0073 0.0226 -0.0045 0.0214 -0.0048 0.0209

21 -0.0052 0.0988 -0.0080 0.0990 -0.0050 0.0999 -0.0084 0.0991

22 0.0043 0.1127 0.0028 0.1135 0.0015 0.1108 0.0009 0.1108

Eq. 1:
11 -0.0018 0.0461 0.0023 0.0471 0.0084 0.0480 0.0142 0.0485

12 -0.0197 0.0511 -0.0229 0.0524 -0.0151 0.0468 -0.0167 0.0468

11 -0.0107 0.1040 -0.0151 0.1086 -0.0158 0.1058 -0.0230 0.1077

12 0.0193 0.1076 0.0204 0.1085 0.0138 0.1077 0.0152 0.1089

Eq. 2:
21 0.0081 0.0458 0.0115 0.0454 0.0125 0.0433 0.0181 0.0459

22 -0.0229 0.0498 -0.0254 0.0497 -0.0156 0.0456 -0.0179 0.0441

21 -0.0205 0.1187 -0.0277 0.1194 -0.0221 0.1161 -0.0292 0.1176

22 0.0172 0.1324 0.0184 0.1315 0.0106 0.1271 0.0109 0.1261

Eq. 1:
11 0.0006 0.0294 0.0010 0.0297 0.0015 0.0287 0.0015 0.0279

12 -0.0030 0.0319 -0.0031 0.0323 -0.0029 0.0300 -0.0028 0.0301

11 -0.0075 0.1107 -0.0094 0.1098 -0.0055 0.1037 -0.0074 0.1017

12 0.0063 0.1250 0.0060 0.1231 0.0023 0.1271 0.0013 0.1244

Eq. 2:
21 0.0008 0.0289 0.0018 0.0290 0.0011 0.0267 0.0017 0.0268

22 -0.0044 0.0356 -0.0050 0.0353 -0.0036 0.0323 -0.0036 0.0323

21 -0.0048 0.1072 -0.0056 0.1077 -0.0017 0.1045 -0.0026 0.1054

22 0.0079 0.1349 0.0070 0.1342 0.0042 0.1293 0.0041 0.1286

Eq. 1:
11 0.0022 0.0630 0.0029 0.0644 0.0007 0.0610 0.0029 0.0606

12 -0.0126 0.0667 -0.0125 0.0663 -0.0101 0.0638 -0.0092 0.0624

11 0.0003 0.1292 -0.0031 0.1282 0.0002 0.1254 -0.0045 0.1226

12 0.0159 0.1453 0.0158 0.1409 0.0151 0.1435 0.0147 0.1388

Eq. 2:
21 0.0034 0.0619 0.0076 0.0627 0.0007 0.0580 0.0038 0.0573

22 -0.0147 0.0735 -0.0176 0.0740 -0.0111 0.0704 -0.0139 0.0692

21 -0.0039 0.1261 -0.0093 0.1251 -0.0049 0.1241 -0.0112 0.1217
22 0.0143 0.1610 0.0157 0.1580 0.0052 0.1604 0.0054 0.1542

LQ-GS2SLS Ref. LQ-GS2SLS LQ-GS3SLS Ref. LQ-GS3SLS

Parameter Set I with cgk=1

Parameter Set II with cgk=0.5

Parameter Set II with cgk=1

Parameter Set I with cgk=0.5
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