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� In this paper, we consider a spatial-autoregressive model with autoregressive disturbances,
where we allow for endogenous regressors in addition to a spatial lag of the dependent variable.
We suggest a two-step generalized method of moments (GMM) and instrumental variable
(IV) estimation approach extending earlier work by, e.g., Kelejian and Prucha (1998, 1999).
In contrast to those papers, we not only prove consistency for our GMM estimator for the
spatial-autoregressive parameter in the disturbance process, but we also derive the joint limiting
distribution for our GMM estimator and the IV estimator for the regression parameters. Thus the
theory allows for a joint test of zero spatial interactions in the dependent variable, the exogenous
variables and the disturbances. The paper also provides a Monte Carlo study to illustrate the
performance of the estimator in small samples.
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1. INTRODUCTION

Recent years have seen a rapidly growing number of theoretical1

and applied econometric studies2 which consider spatial interdependence

1Recent theoretical contributions include Baltagi and Li (2001a, 2001b, 2004) Baltagi et al.
(2003); Blonigen et al. (2007), Bao and Ullah (2007), Conley (1999), Das et al. (2003), Kelejian
and Prucha (1998, 1999, 2001, 2004, 2007, 2010), Kelejian et al. (2004), Kapoor et al. (2007), Lee
(2002, 2003, 2004), LeSage (1997, 2000), Lin and Lee (2010), Lin and Lee (2010), Lin and Lee
(2011), Pace and Barry (1997), Pinkse and Slade (1998), Pinkse et al. (2002), Rey and Boarnet
(2004), and Yang (2010). Classic references concerning spatial models are Anselin (1988), Cliff
and Ord (1973, 1981), Cressie (1993).

2Recent applied studies include Audretsch and Feldmann (1996), Baltagi et al. (2008), Bell
and Bockstael (2000), Besley and Case (1995), Blonigen et al. (2007), Bollinger and Ihlanfeldt
(1997), Case (1991), Coughlin and Segev (2000), Case et al. (1993), Dowd and LeSage (1997),
Holtz-Eakin (1994), LeSage (1999), Kelejian and Robinson (1997, 2000), Pinkse and Slade (1998),
Pinkse et al. (2002), and Shroder (1995).
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Abstract

In this paper, we consider a spatial-autoregressive model with autoregressive disturbances,

where we allow for endogenous regressors in addition to a spatial lag of the dependent vari-

able. We suggest a two-step generalized method of moments (GMM) and instrumental variable

(IV) estimation approach extending earlier work by, e.g., Kelejian and Prucha (1998, 1999).

In contrast to those papers, we not only prove consistency for our GMM estimator for the

spatial-autoregressive parameter in the disturbance process, but we also derive the joint lim-

iting distribution for our GMM estimator and the IV estimator for the regression parameters.

Thus the theory allows for a joint test of zero spatial interactions in the dependent variable,

the exogenous variables and the disturbances. The paper also provides a Monte Carlo study

to illustrate the performance of the estimator in small samples.1
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1 Introduction

Recent years have seen a rapidly growing number of theoretical2 and applied econometric

studies3 which consider spatial interdependence among the cross-sectional units of observation.

The original form of the spatial model only considers spatial spillovers in the dependent variable,

and employs an endogenous weighted average of dependent variables corresponding to other

cross-sectional units on the right-hand side (RHS). This model is commonly referred to as

a spatial-autoregressive model or SAR (see Cliff and Ord, 1973, 1981, for early examples),

the weighted average is dubbed the spatial lag, the corresponding parameter is known as the

autoregressive parameter, and the matrix containing the weights as the spatial-weights matrix.

Generalized versions of this model also allow for the dependent variable to depend on a set of

exogenous variables and spatial lags thereof and, in particular, allow for the disturbances to be

generated by a spatial-autoregressive process. The combined spatial-autoregressive model with

(spatial) autoregressive residuals is often referred to as SARAR (see Anselin and Florax, 1995).

Estimation theory developed for the SARAR model typically assumed that — except for the

spatial lag — the regressors are strictly exogenous; see, e.g., Kelejian and Prucha (1998, 1999,

2010) and Lee (2003, 2004, 2007). This may be problematic in the context of many empirical

applications. One objective of our study is to relax the assumption of exogenous regressors

in a single-equation SARAR framework with homoskedastic innovations. Our work builds on

Kelejian and Prucha (2004), who developed a GMM/IV estimation framework for systems of

linear equations. However, that paper only derives the limiting distribution of the IV estimators

of the regression parameters, but not that of the GMM estimators of the spatial-autoregressive

parameters of the disturbance process, although the paper shows that the latter estimators

are consistent. Consequently the results in that paper do not allow for the testing of the

joint hypothesis of the absence of spatial spillovers in the dependent variables, the exogenous

variables and the disturbance process, which may be of interest in empirical work.

In light of the above, the other objective of our study is thus to derive the joint limiting

distribution of the IV estimators of the regression parameters and of the GMM estimators

of the spatial-autoregressive parameters of the disturbance process, and to provide consistent

estimators for the joint asymptotic variance-covariance matrix. Our analysis focuses on two

step estimators, because it is computationally convenient. As a by-product, the paper also

develops the joint asymptotic distribution of the GMM/IV estimators considered in Kelejian

and Prucha (1998, 1999), thus closing an existing lacuna in the estimation theory for those

estimators. One reason for this lacuna was that originally the authors lacked a useful central

2Recent theoretical contributions include Baltagi and Li (2001a, b, 2004), Baltagi et al. (2003, 2007), Bao

and Ullah (2007), Conley (1999), Das et al. (2003), Kelejian and Prucha (1998, 1999, 2001, 2004, 2007, 2010),

Kapoor et al. (2007), Lee (2002, 2003, 2004), LeSage (1997, 2000), Lee and Liu (2010), Lin and Lee (2010), Liu

and Lee (2011), Pace and Barry (1997), Pinkse and Slade (1998), Pinkse et al. (2002), and Rey and Boarnet

(2004). Classic references concerning spatial models are Anselin (1988), Cliff and Ord (1973, 1981), and Cressie

(1993).
3Recent applied studies include Audretsch and Feldmann (1996), Bell and Bockstael (2000), Besley and Case

(1995), Blonigen et al. (2007), Bollinger and Ihlanfeldt (1997), Case (1991), Coughlin and Segev (2000), Case et

al. (1993), Dowd and LeSage (1997), Holtz-Eakin (1994), LeSage (1999), Kelejian and Robinson (1997, 2000),

Pinkse and Slade (1998), Pinkse et al. (2002), and Shroder (1995).
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limit theorem (CLT) for quadratic forms. Such a CLT was only developed in Kelejian and

Prucha (2001). Also, in contrast to Kelejian and Prucha (2004), the endogenous regressor

variables are not assumed to be generated by a linear system.4

The remainder of the paper is organized as follows. Section 2 specifies the SARAR model

with “outside” endogenous variables. In Section 3 we define and establish the large sample

properties of suggested GMM estimators for the spatial-autoregressive parameter of the dis-

turbance process and IV estimator for the regression parameters. Moreover, in this section we

derive the joint large sample distribution of the GMM and IV estimators. In Section 4 we ana-

lyze the small sample behavior of our suggested estimator and test statistics via a small Monte

Carlo study. Concluding remarks are given in Section 5. All technical details are relegated to

the appendices.

2 Model Specification

In this section, we specify a generalized spatial-autoregressive model with autoregressive dis-

turbances, and discuss the underlying assumptions. The specification is fairly general in that

it allows for some of the RHS variables to be endogenous in a general, unspecified form. More

specifically, we consider the following Cliff-Ord type spatial model relating a cross section of 

spatial units:

y = X0 +Y0 + 0Wy + u (1)

= Z0 + u

and

u = 0Mu + ε (2)

where Z = [XYWy], and 0 = [00 
0
0 0]

0
. Here y is the  × 1 vector of the

dependent variable, X is the  ×  matrix of the non-stochastic exogenous regressors, Y

is an  ×  matrix of endogenous regressors, W and M are  ×  observed non-stochastic

weights matrices, u is the × 1 vector of regression disturbances, and ε is an × 1 vector of
innovations. The vectorsWy andMu represent spatial lags, the scalars 0 and 0 denote

the corresponding true parameters, typically referred to as spatial-autoregressive parameters,

and 0 and 0 are  × 1 and  × 1 true parameter vectors. As indicated by the indexation,
our specification allows for the elements of all data vectors and matrices, as well as for all

parameters to depend on the sample size, i.e., to form triangular arrays. Among other things,

the specification thus accommodates formulations, as is frequently the case in applications,

where the spatial-weights matrices are normalized. In allowing also for the parameters to

4Kelejian and Prucha (2010) derive the joint asymptotic distribution for certain GMM/IV estimators for

a model with only exogenous regressors (except for a spatial lag) under the assumption of heteroskedastic

innovations. However, even in case all regressors are exogenous the results of that paper do not cover the class

of estimators considered in this paper in that we allow for a more general set of moment conditions. In a recent

paper Liu and Lee (2011) also allow for endogenous regressors. In contrast to that paper we also allow for

spatially correlated disturbances and focus on two-step estimation.
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depend on  we can then assume a common parameter space for all sample sizes; see Kelejian

and Prucha (2010) for a more detailed discussion.

As discussed in the introduction, much of the existing literature on spatial Cliff-Ord models

assumes that, except for spatial lags, all of the RHS variables are exogenous. This is a strong

assumption that may not hold in many applications. The above specification explicitly accom-

modates endogenous regressors in addition to the spatial lag Wy. Given the inclusion of

Y on the RHS of (1), the above model may be viewed as representing a single equation of a

system of equations. Our assumptions will be such that (1) could be a single equation of the

linear simultaneous equation system considered in Kelejian and Prucha (2004).5 However for

generality we will maintain a high-level assumption regarding Y that allows for (1) to be part

of a more general system, e.g., a nonlinear system of equations.

In the above specification, spatial spillovers in the dependent variable and the disturbances

are modeled explicitly through the spatial lagsWy andMu, respectively. However, given

that our specification allows for the elements of all data vectors and matrices to depend on the

sample size, some or all of the column vectors of X and Y may also represent spatial lags of

some underlying exogenous and endogenous variables. Consequently the specification is fairly

general.6

We next give a detailed list and discussion of the maintained assumptions. In particular, the

spatial-weights matrices and the autoregressive parameters are assumed to satisfy the following

assumption.

Assumption 1 (a) All diagonal elements of W and M are zero. (b) sup |0|  1,

sup |0|  1. (c) The matrices I − 0W and I − 0M are nonsingular for all

0 ∈ (−1 1) and 0 ∈ (−1 1).

Assumption 1(a) is a normalization rule. Assumption 1(b) determines the parameter space

of 0 and 0. This assumption is not restrictive in that we can always re-normalize the weights

matrices such that the parameter space for the autoregressive parameters is the interval (−1 1);
see Kelejian and Prucha (2009) for a more detailed discussion. Assumption 1(c) ensures that

y and u are uniquely defined by (1) and (2) as

y = (I − 0W)
−1Z0 + (I − 0W)

−1u (3)

u = (I − 0M)
−1ε

5As noted above, Kelejian and Prucha (2004) do not derive the limiting distribution of their estimator for

0, which is one of the objectives of this paper.
6Badinger and Egger (2011) and Lee and Liu (2010) consider models with higher order spatial lags in the

dependent variable and disturbances, without allowing for general endogenous RHS regressors. We note that in

contrast to Lee and Liu (2010) the focus of this paper is on two-step estimation. While computationally simple,

it turns out that the technical derivation of the limiting distribution of those estimators is more involved. Liu

and Lee (2011) consider a spatial-autoregressive model with endogenous regressors. However this paper does

not allow for spatial correlation in the disturbances and focuses on an analysis with many instruments.
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We maintain the following set of assumptions with respect to the innovations ε.

Assumption 2 The innovations { : 1 ≤  ≤ ,  ≥ 1} are i.i.d. for each  with  = 0,
(2) = 2  0 and  ||4+ ∞ for some   0.

The above assumption imposes homoskedastic innovations. For simplicity of presentation

we assume that the moments do not depend on , but note that this assumption could be readily

relaxed. We maintain the following assumption concerning the spatial-weights matrices.

Assumption 3 The row and column sums of the matricesW andM are bounded uniformly

in absolute value by, respectively, one and some finite constant, and the row and column sums

of the matrices (I − 0W)
−1 and (I − 0M)

−1 are bounded uniformly in absolute value
by some finite constant, and the smallest eigenvalues of (I − 0M)

−1(I − 0M
0
)
−1 are

bounded away from zero.

Given (3), Assumption 2 implies that u = 0, and that the variance-covariance (VC)

matrix of u is determined as

uu
0
 = 20(I − 0M)

−1(I − 0M
0
)
−1

Assumptions 2 and 3 imply that the row and column sums of the VC matrix of u (and similarly

those of y) are uniformly bounded in absolute value, thus limiting the degree of correlation

between, respectively, the elements of u (and of y).
7

All estimators considered in the paper will correspond to a set of linear quadratic moment

conditions of the form:

ε0Aε = 0,  = 1   (4)

H0
ε = 0

where the  ×  weighting matrices A in the quadratic forms, and the  ×  instrument

matrices H in the linear forms are non-stochastic, with  ≥  +  + 1. Specifications for A

and recommendations for H will be given below. For initial estimators we will also consider

moment conditions of the form H0
u = 0.

Examples of sets of weighting matrices for quadratic moment conditions are

A1 = 
£
M0

M − −1(M0
M)I

¤


 = 1
h
1 +

£
−1(M0

M)
¤2i



A2 =M

7Towards providing more insight as to how, say, the assumption that the row sums of the absolute elements

of (I − 0M)
−1 are bounded can be implied, let kk denote the maximum row sum norm. Suppose the

row sums are uniformly bounded by one in absolute value, i.e., kMk ≤ 1, then given Assumption 1 we have(I − 0M)
−1 ≤∞

=1 |0| kMk ≤ 1 [1− sup |0|] ∞.
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and

A1 =M
0
M − (M0

M)

A2 =M

The former are, e.g., used in Kelejian and Prucha (1998, 1999, 2004) and Lee (2003), the latter,

e.g., in Kelejian and Prucha (2010).

We maintain the following assumptions concerning the matrices A, X and H:

Assumption 4 : The row and column sums of the matrices A,  = 1  , are bounded

uniformly in absolute value by some finite constant. Furthermore (A) = 0 for all  =

1  . For  = 1   with 0 ≤ ∗ ≤  the diagonal elements of the matrices A are

assumed to be zero.

Notice that — unlike Kelejian and Prucha (2010) and Arraiz et al. (2010) — we do not

require the diagonal elements of A to be zero. However, our approach allows a subset of

A to exhibit zero diagonal elements. The adopted ordering of the matrices A in the above

assumption is w.l.o.g.

Additionally we maintain the following assumptions regarding the exogenous and endoge-

nous regressors and the instruments.

Assumption 5 : The exogenous regressors X are non-stochastic, and the elements of the

matrices X are uniformly bounded in absolute value (by some finite constant). The endogenous

regressors Y have finite 2 +  absolute moments for some   0, that are uniformly bounded

in absolute value (by some finite constant). Furthermore, Y is such that for any  ×  real

matrix A whose row and column sums are bounded uniformly in absolute value

−1Z0Au − −1Z0Au = (1)

where the variables Z are defined above after equation (2).

In appendix D we show that this assumption is satisfied if Y is generated from a system

as considered in Kelejian and Prucha (2004).

Assumption 6 : The instrument matrices H are nonstochastic and have full column rank

 ≥  +  + 1 (for all  large enough). Furthermore, the elements of the matrices H are

uniformly bounded in absolute value. Additionally H is assumed to contain, at least, the

linearly independent columns of (XMX).

5



In treatingX andH as non-stochastic our analysis should be viewed as conditional onX

andH. Also note that moment conditions (4) clearly hold under the above set of assumptions.

In the following min() denotes the smallest eigenvalue of a matrix.

Assumption 7 : The instruments H satisfy furthermore:

(a) Q = lim→∞ −1H0
H is finite, and nonsingular.

(b) Q = plim→∞−1H0
Z and Q = plim→∞−1H0

MZ are finite and have full

column rank.

(c) Let Q∗(0) = Q − 0Q, then min

n£
Q∗(0)0Q−1Q∗(0)

¤−1o ≥  for

some   0.

The above assumptions are similar to those maintained in Kelejian and Prucha (1998, 2004,

2010), and Lee (2003), and so a discussion which is quite similar to the one given in those papers

also applies here.

As to the selection of instruments, for the case where there are no “outside” RHS endogenous

variables present, Kelejian and Prucha (1999) suggested for H to be a subset of the linearly

independent columns of

(XWXW
2
X    W


XMXMWX     MW


X)

where  is a pre-selected finite constant. The motivation for this recommendation was to achieve

a computationally simple approximation of the ideal instruments, which are given in terms of

the conditional means of the RHS variables.8 Within our setting, since the system determining

y and Y is not completely specified, the ideal instruments are not known. A reasonable

suggestion may be to use a set of instruments as above with X augmented by other exogenous

variables expected to be part of the reduced form of the system.

Our discussions will also utilize the following spatial Cochrane-Orcutt transformation of (1)

and (2):

y∗(0) = Z∗(0)0 + ε (5)

where y∗(0) = y − 0My and Z∗(0) = Z − 0MZ. The transformed model is

readily obtained by pre-multiplying (1) by I − 0M

8We note that the inclusion of instruments involvingM in the instrument matrix H is only need needed for

the formulation of IV estimators applied to the spatially Cochrane-Orcutt transformed model (5) given below.

However, for simplicity of exposition we work with only one instrument matrix.
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3 Two-Step IV/GMM Estimators

In this section, we specify IV/GMM estimators for the model parameters 0 and 0. Our

GMM estimators of 0 are based on 12-consistent residuals obtained in a prior step. As

it turns out, the asymptotic distribution of the estimator for 0 will generally depend on

the estimator for 0 employed in computing estimates of the disturbances. In the following

we will give results on the joint limiting distribution of second-step GMM estimators for 0
and 0, say b0 and b0, where b0 is based on estimated disturbances which depend on b0.
We note that in the appendix we give generic results concerning the consistency and joint

asymptotic normality of two-step IV/GMM estimators that are sufficiently general so that

they can be used readily to obtain the joint limiting distribution for alternative combinations

of IV/GMM estimators for 0 and 0. To conserve space, we only provide results for the

final-step estimators.

Each step of the specific two-step IV/GMM estimators defined below consists of sub-steps

involving the estimation of 0 and 0. In step 1, estimates are computed from the original

model (1). Those estimates are used in step 2 to compute estimates from the transformed

model (3), with 0 replaced by an estimator.

3.1 Quadratic Moment Conditions

Define the vector of identically and independently distributed disturbances

ε() = (I − M) [y − Z] (6)

with  = (0 )0 and  = (0 0 )0. For further interpretation let u() = y − Z, and
u() =Mu(), and observe that ε() can also be expressed as

ε() = u()− u() = y∗()− Z∗() (7)

In the following we assume that our estimators utilize the following set of quadratic moment

functions:

m() = −1

⎡⎢⎣ ε()
0A1ε()
...

ε()
0Aε()

⎤⎥⎦ = −1

⎡⎢⎣ (u()− u())
0A1 (u()− u())
...

(u()− u())
0
A (u()− u())

⎤⎥⎦  (8)

Clearly, m(0) = 0 under the maintained assumptions because ε = ε(0) with 0 =

(00 0)
0. It proves convenient and it is instructive to re-write the moment conditions as

 − Γ
∙
0
20

¸
= 0 (9)

where

 = −1

⎡⎢⎣ u0A1u
...

u0Au

⎤⎥⎦  Γ = −1

⎡⎢⎣ 2u0M0
A1u −u0M0

A1Mu
...

...

2u0M0
Au −u0M0

AMu

⎤⎥⎦ 
7



We maintain the following assumption, which is in essence an identification condition for

0.

Assumption 8 The smallest eigenvalue of Γ
0
Γ is uniformly bounded away from zero.

3.2 Definition of Two-step IV/GMM Estimators

In the following we describe the steps to compute our suggested IV/GMM estimators.

Step 1a: 2SLS Estimator

In the first step, we apply 2SLS to model (1) using the instrument matrix H in Assumption

5 to estimate . The 2SLS estimator, say e, is then defined ase = (eZ0Z)−1eZ0y (10)

where eZ = PHZ = (X eYŴy), eY = PHY, Ŵy = PHWy, and where

PH =H(H
0
H)

−1H0
.

Step 1b: Initial GMM Estimator of  Based on 2SLS Residuals

Let eu = u(e) = y − Ze denote the 2SLS residuals, and define eu = Meu and eu
= M2

eu. Consider the following sample moments corresponding to (8) based on estimated
2SLS residuals:

m(e ) = −1

⎡⎢⎣ (eu − eu)0A1(eu − eu)
...

(eu − eu)0A(eu − eu)
⎤⎥⎦  (11)

Our initial GMM estimator for  is now defined as

e = 
∈[−]

h
m(e )0m(e )i  (12)

where  ≥ 1.

We note that moment conditions used in step 1b could differ from those in step 2b below,

as long as the estimator e is consistent. For example, users may simply employ the matrices
A1 and A2 which leads to the moment conditions used in Kelejian and Prucha (1999), and

which have been seen to obtain reasonably good estimates, even in small samples.

Step 2a: GS2SLS Estimator

Analogous to Kelejian and Prucha (1998), we next compute a generalized spatial two-stage

least-squares (GS2SLS) estimator of . This estimator is defined as the 2SLS estimator of the

8



Cochrane-Orcutt transformed model (3) with the parameter  replaced by e computed in step
1b: b(e) = [bZ∗(e)0Z∗(e)]−1bZ∗(e)0y∗(e) (13)

where y∗(e) = (I − eM)y, Z∗(e) = (I − eM)Z, bZ∗(e) = PHZ∗(e), and
PH

=H(H
0
H)

−1H0


Step 2b: Efficient GMM Estimator of  Based on GS2SLS Residuals

Let bu = y−Zb(e) denote the GS2SLS residuals, and define bu =Mbu and bu =M2
bu.

Letm(b ) denote the sample moment vector obtained by replacing in (11) the 2SLS residuals
by the GS2SLS residuals bu, bu and bu. The corresponding efficient GMM estimator for 

based on GS2SLS residuals is then given by

b = 
∈[−]

∙
m(b )0 ³bΨ

 (
b e)´−1m(b )¸  (14)

where bΨ
 (b e) = ( b

(b e)) is an estimator of the variance-covariance matrix of the
limiting distribution of the normalized sample moments 12m(b ). In particular we haveb

(
b e) = b4(2)−1 £¡A +A

0


¢ ¡
A +A

0


¢¤
(15)

+ b2−1ba0ba
+ −1(b(4) − 3b4)(A)

0(A)

+ −1b(3)

£ba0(A) + ba0(A)
¤


where ba = bTb and
bT = bT(b e) = H

bP∗bP∗ = bP∗(e) = (−1H0
H)

−1(−1H0
Z∗(e))×£

(−1Z0∗(e)H)(
−1H0

H)
−1(−1H0

Z∗(e))¤−1b = b(b e) = −−1 £Z0 ¡I − eM0


¢
(A +A

0
) (I − eM) bu¤

and b2 = b2(b e), b(3) = b(3) (b e) and b(4) = b(4) (b e) are standard sample estimators
of 2, (3) = 3, 

(4) = 4 based on b = (I − eM) bu.
For  = 1   (0 ≤ ∗ ≤ ), the terms involving the third and fourth moments are zero

in the above expressions for b
(b e) because we maintained in Assumption 4 that, the

diagonal elements of the matrices A are zero for  = 1   (0 ≤ ∗ ≤ ) If ∗ = , then

all terms involving the third and fourth moments no longer appear in the above expressions forb
(b e).
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3.3 Asymptotic Properties of Two-step IV/GMM Estimators

In the following we give results concerning the joint limiting distribution of the final stage

estimators b and b. As remarked above, in the appendix we also give generic results concern-
ing the consistency and joint asymptotic normality of two-step IV/GMM estimators that are

sufficiently general so that they can be used readily to obtain the joint limiting distribution for

alternative combinations of IV/GMM estimators for 0 and 0.

In preparation of the next theorem we first give, without proof, an expression for the

variance-covariance matrix used to normalize the limiting distribution of b and b. In partic-
ular, consider

Ω =

"
Ω
 Ω




Ω
0
 Ω




#
and Ψ =

"
Ψ

 Ψ



Ψ
0
 Ψ




#
(16)

with

Ω
 = P∗0Ψ


 P

∗


Ω
 = P∗0Ψ


 (Ψ


 )

−1J
£
J0(Ψ


 )

−1J
¤−1



Ω
 =

£
J0(Ψ


 )

−1J
¤−1



Ψ
 = 2−1H0

H

Ψ
 = 2−1H0

 [a1    a] + (3)−1H0
 [(A1)     (A)] 

Ψ
 = (

)=1 

where

J = Γ

∙
1

20

¸


The elements 

 are defined as


 = 4−1

£
(A0 +A)A

¤
+ 2−1a0a

+ ((4) − 34)−1(A)
0(A)

+ (3)−1
£
a0(A) + (A)

0a
¤

with (3) = 3 and (4) = 4, and where a = T with

T = HP
∗


P∗ = Q
−1
HHQHZ∗(0)[Q

0
HZ∗(0)Q

−1
HHQHZ∗(0)]

−1

 = −−1Z0
¡
I − 0M

0


¢
(A +A

0
) (I − 0M)u

In the appendix we prove the following theorem concerning the joint limiting distribution

of b and b.
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Theorem 1 Suppose Assumptions 1-8 hold, sup |0| ∞, sup |0| ∞, and that min(Ψ) ≥
  0. Then, b is efficient among the class of GMM estimators based on GS2SLS resid-

uals, and∙
12(b − 0)

12(b − 0)

¸
=

∙
P∗0 0

0
£
J0(Ψ


 )

−1J
¤−1

J0(Ψ

 )

−1

¸
Ψ12  + (1)

where


→ (0 I+)

Furthermore min(Ω) ≥   0.

Kelejian and Prucha (1998) considered two-step GMM/IV estimation for a model with-

out outside endogenous variables. They only considered the first stage GMM estimator e
and established its consistency. They also derived the limiting distribution of the S2SLS and

GS2SLS estimator for their setting, but did not derive the joint limiting distribution of the

GMM/IV estimators. The above joint-asymptotic-normality result fills in an important gap

in their theory toward allowing a joint test for the absence of spatial dependencies, i.e., for a

joint test 0 : 0 = 0 0 = 0. We also note that in contrast to Arraiz et al. (2010) and

Kelejian and Prucha (2010), and as in Kelejian and Prucha (1998), we cover here quadratic

moment conditions corresponding to weights matrices A with non-zero diagonal elements,

which leads to terms involving the third and fourth moments of the innovations in Ψ.

Observe that

Ω =

∙
P∗0 0

0
£
J0(Ψ


 )

−1J
¤−1

J0(Ψ

 )

−1

¸
Ψ

∙
P∗ 0

0 (Ψ

 )

−1J
£
J0(Ψ


 )

−1J
¤−1 ¸ 

Given that min(Ω) ≥   0 it follows from Corollary F.4 in Pötscher and Prucha

(1997) that ∙ b − 0b − 0

¸
∼ (0Ω) (17)

We next define a consistent estimator for Ω. In particular, consider

bΩ =

" bΩ


bΩ
bΩ0


bΩ


#
 bΨ =

" bΨ


bΨ
bΨ0


bΨ


#
(18)
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with

bΩ
 = bP∗0 bΨ


bP∗bΩ

 = bP∗0 bΨ


³bΨ


´−1 bJ ∙bJ0 ³bΨ


´−1 bJ¸−1 
bΩ
 =

∙bJ0 ³bΨ


´−1 bJ¸−1 
bΨ
 = b2−1H0

HbΨ
 = b2−1H0

 [ba1    ba] + b(3) −1H0
 [(A1)     (A)] bΨ

 = ( b
)

where bJ(b) = bΓ ∙ 1

2b
¸

and where bP∗, ba, b
, and the estimators for the moments of the innovations  are

as defined after (14), but with e replaced by b.9 For interpretation, observe that bΩ
 =b2[bZ∗(b)0Z∗(b)]−1, i.e., the above expression for the estimator of variance-covariance matrix

of the joint distribution of b and b delivers the usual estimator for the variance-covariance
matrix of the GS2SLS estimator as a special case.

The next theorem establishes the consistency of bΩ(b) for Ω.

Theorem 2 Suppose Assumptions 1-8 hold, sup |0| ∞, sup |0| ∞, and that min(Ψ) ≥
  0. Then bΨ(b) −Ψ = (1) and bΩ(b) −Ω = (1). Furthermore Ψ = (1),

Ψ−1 = (1), Ω = (1) and Ω−1 = (1)

In light of the theorem inference can be based on (17) with Ω replaced by bΩ. The Monte

Carlo study in section 4 shows that this approximation of the small-sample distribution works

well.

4 Monte Carlo Study

In this section, we report on a small Monte Carlo study to explore the finite-sample properties

of the estimators proposed in this paper. The Monte Carlo design is influenced by those used

in Anselin and Florax (1995), Kelejian and Prucha (1999, 2007), and Arraiz et al. (2010).

9We note that the consistency result given below holds as long as a consistent estimator for 0 is used in

the formulation of the estimators Ω and Ψ. The suggestion of using  rather than  is motivated by the
fact  is a more efficient estimator.
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4.1 Monte Carlo Experiments

The model we employ in our Monte Carlo analysis is a special case of the one specified in

(1) and (2) with M =W, one outside endogenous variable in Y = ey and one exogenous
variable in X = x:

y = x + ey + Wy + u (19)

u = Wu + ²

We have dropped the zero subscripts used to identify the true parameter values to simplify the

notation. The outside endogenous variable is assumed to be generated as:

ey = exe + ye + e² (20)

where ex is an exogenous variable, e² is an  × 1 vector of innovations, and e and e are
coefficients. To simulate the data we employ the reduced form of the models, which is given byµ

yey
¶
=

µ
I− W −Π
− eΠ I

¶−1µ
m1

m2

¶
 (21)

where m1 = x + u, m2 = exe + e², u = (I − W)
−1², Π = I, and eΠ = eI. We focus

on estimating the parameters δ = (  )0 and . For each configuration of parameters, we

generated 2500 Monte Carlo runs based on the (correlated) draws of e² and ².
The two  × 1 regressors x and ex are normalized versions of income per-capita and

the proportion of housing units, respectively, which are rental in 1980 for 760 counties in US

mid-western states. The data were taken from Kelejian and Robinson (1995). We use the

same normalization of the original data as in Arraiz et al. (2010), by subtracting from each

observation of each variable the corresponding sample average, and then dividing that result

by the sample standard deviation. We stack each vector of normalized observations twice

underneath each other and draw the first  values of these normalized variables in our Monte

Carlo experiments of sample size . Hence, for sample sizes larger than 760 the last  − 760
observations were repeated. The set of normalized observations on these variables is fixed in

repeated samples in our Monte Carlo runs.

We considered five values for  and for , namely: −8−3 0 3 8 In all of our experiments
we chose  = e = 2,  = 1, and e = −1. We assume that the innovations corresponding to
unit , ² and e², are i.i.d. draws from a bivariate normal distribution with mean zero and

covariance matrix

2
∙
2 1

1 2

¸


We consider two values for , namely, 5 and 1.

We chose  = 1 and e = −1 to avoid identification problems. At the conventional choices
of  = e = 1 the matrix inverse in equation (21) does not exist when  = 0. We plan to discuss
the restricted parameter space in future research.

We consider 4 different spatial-weights matrices, that we refer to as weights matrix 1,   ,

4. We use north-east modified-rook matrices as in Arraiz et al. (2010).
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The north-east modified-rook matrix corresponds to a space in which units located in the

northeastern portion are closer to each other and have more neighbors than the units in other

quadrants. This leads to a distribution of units in space akin to the one of northeastern versus

western states of the US. To define these matrices, assume a square grid with both the  and

 coordinates only taking on the values 1 15 2 25  ̄. Let the units in the northeastern

quadrant of this matrix be located at the indicated discrete coordinates:  ≤  ≤ ̄ and

 ≤  ≤ ̄. Let the remaining units be located only at integer values of the coordinates:

 = 1 2  − 1 and  = 1 2  − 1. Accordingly, the number of units located in the
northeastern quadrant is inversely related to  in this set-up.

For this space, define the Euclidean distance between any two units, 1 and 2 with coor-

dinates of (1 1) and (2 2), respectively, as (1 2) =
h
(1 − 2)

2 + (1 − 2)
2
i12

Now,

define the ( )-th element of our row-normalized weights matrixW as

 = ∗
X

=1

∗ 

∗ =
½
1 if 0  (1 2) ≤ 1
0 else



We used four configurations of sample size  and reference coordinates on the lattice cap-

tured by and ̄. We refer to the corresponding spatial-weights matrices as matrices 1 through

4. In terms of tuples (;; ̄) these matrices are described follows: Matrix 1 (486; 5; 15), which

has approximately 25% units in the north-east; Matrix 2 (974; 7; 21), which has approximately

25% units in the north-east; Matrix 3 (485; 14; 20), which has approximately 75% units in the

north-east; and Matrix 4 (945; 20; 28), which has approximately 76% units in the north-east.

A north-east modified-rook matrix is illustrated in Figure 1 in Arraiz et al. (2010) for the case

in which  = 2 and  = 5.

The performance of our GMM/IV estimator depends on the relative noise in the system.

To provide information on the relative noise we now report for each experiments the Monte

Carlo average of an 2 measure. This 2 measure is calculate as the squared sample correlation

coefficient between y and

y =

µ
I− W −Π
− eΠ I

¶−1µ
m1

m2

¶


with m1 = x and m2 = exe.
The number of Monte Carlo repetitions was 2 500.

4.2 Monte Carlo Results

The detailed Monte Carlo results are given in Tables 1—20 in appendix E. The tables present

the results for the final-stage GS2SLS estimator b = (b0 b0 b)0 and GMM estimator b
defined by (13) and (14), and Wald tests based on the variance covariance estimator bΩ

14



defined by (18). There are four parameters of interest (, , , and ) and 5 true values

of , causing there to be 20 tables of results. In all cases, we used the instrument matrix

H = [x exWxWexW2xW2ex].
Each table presents the results for the estimator for a specific parameter and contains

12 columns. The first column specifies the true values of , the second column specifies the

W-matrix. The third and fourth columns contain the median of the point estimates for the

parameter for the cases of  = 5 and  = 1, respectively. The fifth and sixth columns contain

the standard deviations (Std.Dev.) of the point estimates when  = 5 and  = 1. The seventh

and eighth columns contain the means of the estimated standard deviations (Est.Std.Dev.) of

the parameter estimates when  = 5 and  = 1. The ninth and tenth columns contain the

rejection rates (Rej.Rate) of Wald test at the 5% level against the true null hypothesis that

the parameter equals its true value when  = 5 and  = 1. The eleventh and twelfth columns

contain the average 2 values when  = 5 and  = 1.

The Monte Carlo results are encouraging, and suggest that the derived large-sample dis-

tributions for our estimators provides a reasonable approximation to the actual small-sample

distributions. An inspection of the Monte Carlo results suggests (1) that the small-sample

biases of the estimators are small for each of the parameters, (2) that the rejection rates are

close to nominal size, (3) that the means of the estimated standard deviations of the parameter

estimators over the Monte Carlo repetitions are close to the actual standard deviations, and

(4) our estimator and our large-sample approximation to its distribution work well for the

considered experiments.

5 Conclusion

In this paper we develop an IV/GMM estimation framework for the estimation of a spatial-

autoregressive model with autoregressive disturbances, where the right-hand-side variables may

include “outside”endogenous variables in addition to a spatial lag in the dependent variables,

as well as exogenous variables. Our model includes the standard SARAR(1,1) model as a

special case. The focus of our paper is on two-step estimators, because of their computational

simplicity. Our analysis implicitly also contains the basic modules for an analysis of one-step

estimators, which is actually mathematically less challenging.

The paper establishes the consistency of our IV/GMM estimators. Furthermore, the paper

derives their joint asymptotic distribution, which can be readily used for, e.g., a Wald test

of the joint hypothesis that there are no spatial interactions in the dependent variable, the

disturbances and exogenous variables. Apart from deriving the asymptotic properties of the

IV/GMM estimators, we provide a Monte Carlo analysis which shows that the small-sample

distributions are well approximated by the derived large-sample distributions.
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A Appendix: Asymptotic Linearity of S2SLS and GS2SLS Es-

timators

Lemma A.1 : For fixed  let a = () be some  × 1 vector where the absolute elements
are uniformly bounded in  by some finite constant, and let A = () be some  × 

matrix, where the row sums of the absolute elements are bounded uniformly in  by some finite

constant. Let  = () be some  × 1 random vector with supmax

=1 ||  ∞ for

some   1, and let  = () = a +A. Then supmax

=1 || ∞.

Proof.Let  = supmax

=1 ||,  = supmax


=1

P
=1 || and  = supmax


=1 ||.

Clearly

|| = ||+
¯̄̄̄
¯̄ X
=1



¯̄̄̄
¯̄ ≤ ||+ X

=1

|| ||

= ||+
⎛⎝ X

=1

||
⎞⎠ X

=1

 || ≤  + 

X
=1

 ||

with  = || 
³P

=1 ||
´
. Since 0 ≤  ≤ 1 and

P
=1  = 1 it follows from

Lyapunov’s inequality that

X
=1

 || ≤
⎡⎣ X
=1

 ||
⎤⎦1

and hence

 || ≤ 2
⎧⎨⎩

 +



X
=1

 ||
⎫⎬⎭ ≤ 2

⎧⎨⎩
 + 




X
=1



⎫⎬⎭
= 2

©

 + 




ª
∞

which proves the claim since ,  and  do not depend on  and . ¥

Lemma A.2 : Given Assumptions 1-3 and 5, and given that sup |0| ∞ and sup |0| 
∞ we have

 ||2+ ≤  ∞ (A.1)

where  does not depend on , and .
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Proof.Recall that Z = [XYWy]. By assumptionX is non-stochastic with sup sup || 
∞, and so (A.1) holds trivially if  corresponds to an element of X. By assumption

sup sup ||2+ ∞ and thus (A.1) also holds trivially if  corresponds to an element

of Y. Next consider

y =Wy = 1 + 2 + 3

1 = (I − 0W)
−1X0

2 = (I − 0W)
−1Y0

3 = (I − 0W)
−1(I − 0M)

−1

Observe further that


¯̄


¯̄2+ ≤ 31+ n|1|2+ + |2|2+ + |3|2+
o


Recall that by assumption the row and column sums of the absolute elements of (I−0W)
−1

and (I−0M)
−1, and hence those of (I−0W)

−1(I−0M)
−1 are bounded uniformly

in  by some finite constant. Given that the elements of X0 are uniformly bounded clearly

sup sup |1|2+ ∞. Under the maintained assumptions the 2+  absolute moments of the

elements of Y0 and  are uniformly bounded. Consequently we also have by Lemma A.1

that sup sup |2|2+ ∞ and sup sup |3|2+ ∞, which completes the proof. ¥

Lemma A.3 : Suppose Assumptions 1-3, 6 and 7 hold. Consider the S2SLS estimator

eδ = (bZ0Z)−1bZ0y
where bZ = PHZ and PH = H(H

0
H)

−1H0
. Then

(a) 12(eδ−δ0) = −12T0 + (1) with T = FP and where

P = Q−1HHQHZ[Q
0
HZQ

−1
HHQHZ]

−1

F =
¡
I − 0M

0


¢−1
H

(b) −12T0 = (1).

(c) P is a finite matrix and eP −P = (1) for

eP = (
−1H0

H)
−1(−1H0

Z)×
[(−1Z0H)(

−1H0
H)

−1(−1H0
Z)]

−1

(d) min(
−1T0T) ≥  for some   0 for all large .

Proof.Clearly

12(eδ − δ0) = eP0−12F0
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where eP and F are defined in the lemma. Assumption 7 entails eP = P+(1) with P finite,

which establishes (b). Since by Assumption 3 the row and column sums of (I − 0M)
−1

are uniformly bounded in absolute value, and since by Assumption 6 the elements of H are

uniformly bounded in absolute value, it follows that the elements of F are uniformly bounded in

absolute value. By Assumption 2, () = 0 and (
0
) = 2I. Therefore, 

−12F0 = 0
and the elements of  (−12F0) = 2−1F0F are also uniformly bounded in absolute

value. Thus, by Chebyshev’s inequality −12F0 = (1), and consequently 
12(eδ−δ0) =

P0−12F0 + (1) and P
0−12F0 = (1). This establishes (a) and (b), recalling that

T = FP. Next observe that

min(
−1T0T) ≥ min

h¡
I − 0M

0


¢−1
(I − 0M)

−1
i
min

£
−1H0

H

¤
min

©
[Q0HZQ

−1
HHQHZ]

−1Q0HZQ
−1
HHQ

−1
HHQHZ[Q

0
HZQ

−1
HHQHZ]

−1ª
≥ 

for some   0 in light of Assumptions 3 and 7, since min
£
−1H0

H

¤ ≥ minQHH2  0 for

 sufficiently large. This establishes (d). ¥

Lemma A.4 : Suppose Assumptions 1-3, 6 and 7 hold. Consider the GS2SLS estimatorbδ(b) = [bZ∗(b)0Z∗(b)]−1bZ∗(b)0y∗(b)
where bZ∗(b) = PH Z∗(b), where b is any 12-consistent estimator for 0. Then
(a) 12[bδ(b)−δ0] = −12T∗0  + (1) with T

∗
 = F

∗
P

∗
 and where

P∗ = Q
−1
HHQHZ∗(0)[Q

0
HZ∗(0)Q

−1
HHQHZ∗(0)]

−1

F∗ = H

(b) −12T∗0  = (1).

(c)P∗ = (1) and bP∗ −P∗ = (1) foreP∗ = (−1H0
H)

−1(−1H0
Z∗(b))×£

(−1Z0∗(b)H)(
−1H0

H)
−1(−1H0

Z∗(b))¤−1 
(d) min(

−1T∗0T∗) ≥  for some   0 for all large .

Proof.Note from (1) and (2) that

y∗(̂) = Z∗(̂)δ0 +  − (̂ − 0)Mu

and hence

12[bδ(̂)− δ0]
=
h
−1bZ0∗(̂)Z∗(̂)i−1 −12bZ0∗(̂) [ − (̂ − 0)Mu]

= bP∗0 h−12F∗0  − (̂ − 0)
−12F∗∗0 

i

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where bP∗ is defined in the lemma, and with F∗ = H and F
∗∗
 = (I − 0M

0
)
−1
 0

H. In

light of Assumption 7, and since ̂ is 
12-consistent, it follows that

−1bZ0∗(̂)Z∗(̂)−Q0HZ∗(0)Q−1HHQHZ∗(0) = (1)

Since by Assumption 7 we have Q0HZ∗(0)Q
−1
HHQHZ∗(0) = (1) and

[Q0HZ∗(0)Q
−1
HHQHZ∗(0)]

−1 = (1) it follows that

[−1bZ0∗(̂)Z∗(̂)]−1 − [Q0HZ∗(0)Q−1HHQHZ∗(0)]−1 = (1);

compare, e.g., Pötscher and Prucha (1997), Lemma F1. In light of this it follows further thatbP∗−P∗ = (1) and P
∗
 = (1), with P∗ defined in the lemma. By argumentation analogous

to that in the proof of Lemma A.3 it is readily seen that −12F∗0  = (1) and 
−12F∗∗0  =

(1). Consequently 12[bδ(̂)−δ0] = P∗0−12F∗0  + (1) and P
∗0


−12F∗0  = (1),

observing again that ̂−0 = (1). This establishes (a)-(c) recalling that T
∗
 = F

∗
P

∗
. Next

observe that

min(
−1T∗0T

∗
) ≥ min

h
Q
0−12
HH −1H0

HQ
−12
HH

i
min

©
[Q0HZ∗(0)Q

−1
HHQHZ∗(0)]

−1

×Q0HZ∗(0)Q−1HHQHZ∗(0)[Q0HZ∗(0)Q−1HHQHZ∗(0)]−1
ª

≥ min
£
Q−1HH

¤
min

©
[Q0HZ∗(0)Q

−1
HHQHZ∗(0)]

−1ªmin £−1H0
H

¤
≥ min

£
Q−1HH

¤
min

©
[Q0HZ∗(0)Q

−1
HHQHZ∗(0)]

−1ªmin £Q−1HH¤ 2
for some   0 in light of Assumption 7, since min

£
−1H0

H

¤ ≥ minQHH2  0 for 

sufficiently large. This establishes (d). ¥
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B Appendix: Generic Consistency and Asymptotic Normality

of Two-step Estimators

In the following we establish a generic consistency and asymptotic normality result for IV/GMM

estimators. In (10) - (12) we used the notation eδ, eu and e for the 2SLS estimator for δ0,
2SLS residuals and the initial GMM estimator for 0. In abuse of notation, we use in the

following the same symbols to denote a generic estimator for δ0, correspondingly defined

residuals, and a generic GMM estimator for 0.

B.1 Generic Consistency

In the following we provide a general consistency result for some generic GMM estimator for

0 defined as e = arg min
∈[−]

m(eδ )0 eΥm(eδ ) (B.1)

where (−1 1) ⊂ [− ],   1. We will maintain the following assumptions regarding eδ
and eΥ.

Assumption B.1 : The estimator eδ is asymptotically linear in the sense that
12[eδ − δ0] = −12T0 + (1) (B.2)

with T = FP, where F and P are nonstochastic × and × matrices whose elements

are uniformly bounded in absolute value and where the smallest eigenvalue of −1(T0T) is

bounded away from zero.

Assumption B.2 : The moment weights matrix eΥ satisfies that eΥ −Υ = (1), where

Υ are  ×  non-stochastic symmetric positive definite matrices. Furthermore the smallest

eigenvalue of Υ is bounded away from zero, and the largest eigenvalue of Υ is bounded from

above (by a finite constant).

We now have the following consistency result for e.
Theorem B.1 (Theorem on Consistency of e) Suppose Assumptions 1-5, 8, B.1 and
B.2 hold, and suppose sup |0| ∞ and sup |0| ∞. Then,

e − 0
→ 0 as →∞.
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Proof.Theorem on Consistency of e.10 The existence and measurability of e is
assured by, e.g., Lemma 3.4 in Pötscher and Prucha (1997). The objective function of the

weighted nonlinear least squares estimator and its corresponding non-stochastic counterpart

are given by, respectively,

( ) =m(eδ )0 eΥm(eδ )
=
heΓ( 2)0 − ei0 eΥ

heΓ( 2)0 − ei
() =

£
Γ( 

2)0 − 
¤0
Υ

£
Γ( 

2)0 − 
¤


where

e = −1

⎡⎢⎣ eu0A1eu
...eu0Aeu

⎤⎥⎦  eΓ = −1

⎡⎢⎣ 2eu0M0
A1eu −eu0M0

A1Meu
...

...f2u0M0
Aeu −eu0M0

AMeu
⎤⎥⎦ 

and the nonstochastic counter parts  and Γ are defined in (9). To prove the consistency

of e we show that the conditions of, e.g., Lemma 3.1 in Pötscher and Prucha (1997) are

satisfied for the problem at hand. We first show that 0 is an identifiably unique sequence of

minimizers of . Observe that () ≥ 0 and that (0) = 0, since  = Γ[0 
2
0]

0 by
(9)). Utilizing Assumption 8 and B.2 we get

()−(0) = ()

=
£
− 0 

2 − 20
¤
Γ0ΥΓ

£
− 0 

2 − 20
¤0

≥ min(Υ)min(Γ
0
Γ)

£
− 0 

2 − 20
¤ £
− 0 

2 − 20
¤0

≥ ∗ [− 0]
2

for some ∗  0. Hence for every  0 and  we have:

inf
{∈[−]:k−0k≥}

[()−(0)]

≥ inf
{∈[−]:k−0k≥}

2∗ [− 0]
2 = ∗2  0

which proves that 0 is identifiably unique. Next let Φ = [Γ−] and eΦ = [eΓ−e],
then ¯̄

( )−()
¯̄
=
¯̄̄£
 2 1

¤ heΦ0 eΥ
eΦ −Φ0ΥΦ

i £
 2 1

¤0 ¯̄̄
≤
°°°eΦ0 eΥ

eΦ −Φ0ΥΦ

°°°°° 2 1°°2
≤
°°°eΦ0 eΥ

eΦ −Φ0ΥΦ

°°° [1 + ()2 + ()4]
10The basic structure of the proof is similar to the consistency proof for the GMM estimator for the spatial-

autoregressive parameter considered in Kelejian and Prucha (1999). The earlier paper considered a more restric-

tive set of moment conditions and did not allow for “outside” endogenous variables.
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Observe that eu − u = D∆

where D = −Z and ∆ = eδ − 0. In light of Lemma A.2 we have  ||2+ ≤   ∞.
Under Assumption B.1 we have −12T0 = (1) and hence 12 k∆k = (1). Next

observe that the elements of Φ and eΦ are all of the form −10A and −1eu0Aeu
where the row and column sums of A are bounded uniformly in absolute value. It now follows

immediately from part (a) of Lemma C.1 in Kelejian and Prucha (2010) that eΦ −Φ
→ 0,

and that the elements of eΦ and Φ are, respectively, (1) and (1). The elements of eΥ

and Υ have the analogous properties in light of Assumption B.2. Given this it follows from

the above inequality that ( )−() converges to zero uniformly over the optimization

space [− ], i.e.,

sup
∈[−]

¯̄
( )−()

¯̄
≤
°°°eΦ0 eΥ

eΦ −Φ0ΥΦ

°°° [1 + ()2 + ()4] → 0

as →∞. The consistency of e now follows directly from Lemma 3.1 in Pötscher and Prucha
(1997). ¥

B.2 Generic Asymptotic Normality

We now establish the joint asymptotic normality of the estimator e of Theorem B.1 and some

estimator
eeδ. We maintain the following assumption regarding eeδ.

Assumption B.3 : The estimator
eeδ is asymptotically linear in the sense that

12[
eeδ − δ0] = −12T•0  + (1) (B.3)

with T• = F•P•, where F• and P• are nonstochastic ×• and •×• matrices whose elements
are uniformly bounded in absolute value and where the smallest eigenvalue of −1(T•0T•) is
bounded away from zero.

The limiting distribution of
ee = µeeδ0 e¶0 will depend on the limiting distribution of

v = (v
0
 v

0
 )
0 where

v = −12F•0  (B.4)

v = −12

⎡⎢⎣ 0A1 + a01
...

0A + a
0


⎤⎥⎦ 
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with a = T with  = −−1Z0 (I − 0M
0
) (A + A

0
) (I − 0M)u. By

Lemma A.1 in Kelejian and Prucha (2010) we have under Assumptions 1-5, 8, B.1 and B.3

that v has mean zero and its variance-covariance matrix is given by

Ψ =

"
Ψ

 Ψ



Ψ
0
 Ψ




#
(B.5)

with

Ψ
 = 2−1F•0F

•


Ψ
 = 2−1F•0 [a1    a] + (3)−1F•0 [(A1)     (A)] 

Ψ
 = (

)=1

with


 = 4−1

£
(A0 +A)A

¤
+ 2−1a0a

+ ((4) − 34)−1(A)
0(A)

+ (3)−1
£
a0(A) + (A)

0a
¤

where (3) = 3 and (4) = 4. Also let

J = Γ

∙
1

20

¸
(B.6)

and

Ω =

"
Ω
 Ω




Ω
0
 Ω




#
(B.7)

with

Ω
 = P•0Ψ


 P

•


Ω
 = P•0Ψ


 ΥJ(J

0
ΥJ)

−1

Ω
 = (J0ΥJ)

−1J0ΥΨ

 ΥJ(J

0
ΥJ)

−1

We next give results concerning the asymptotic normality e, and consequently concerning
the joint asymptotic normality of

ee = µeeδ0 e¶0.
Theorem B.2 (Theorem on Asymptotic Normality of e) Let e be the weighted non-
linear least squares estimators defined by (B.1). Suppose Assumptions 1-5, 8, B.1 and B.2 hold,

sup |0|  ∞ and sup |0|  ∞, and suppose the smallest eigenvalue of Ψ
 is bounded

away from zero, then

12(e − ) = −(J0ΥJ)
−1J0Υ (Ψ


 )

12  + (1) (B.8)
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where

 = − (Ψ
 )

−12
v

→ (0 I)

Furthermore 12(e − 0) = (1) and

Ω
 (Υ) = (J

0
ΥJ)

−1J0ΥΨ

 ΥJ(J

0
ΥJ)

−1 ≥   0.

Proof.Theorem on Asymptotic Normality of e.11 We have shown in Theorem B.1

that the GMM estimator e is consistent. Apart on a set whose probability tends to zero the
estimator satisfies the following first order condition

m(eδ e)0 eΥ
m(eδ e)


= 0

Substituting the mean value theorem expression

m(eδ e) =m(eδ 0) + m(eδ )


(e − 0)

into the first order condition yields

m(eδ e)
0

eΥ
m(eδ )


12(e − 0) = −m(eδ e)

0
eΥ

12m(eδ 0) (B.9)

where  is some between value. Observe that

m(eδ )


= −eΓ ∙ 1

2

¸
(B.10)

and consider the nonnegative scalars

eΞ = m(eδ e)
0

eΥ
m(eδ )


=

∙
1

2e
¸0 eΓ0 eΥ

eΓ ∙ 1

2

¸
 (B.11)

Ξ =

∙
1

20

¸0
Γ0ΥΓ

∙
1

20

¸


In proving Theorem B.1 we have demonstrated that eΓ−Γ → 0 and that the elements of eΓ
and Γ are (1) and (1), respectively. By Assumption B.2 we have eΥ −Υ = (1) and

also that the elements of eΥ and Υ are (1) and (1), respectively. Since e and  are

consistent and bounded in absolute value, clearly

eΞ −Ξ → 0 (B.12)

11The structure of the proof is similar to that of the asymptotic normality proof for the GMM estimator of

the spatial-autoregressive paramter given in Kelejian and Prucha (2009). The earlier paper considered a more

restrictive set of moment conditions and did not allow for “outside” endogenous variables.

24



as →∞, and furthermore eΞ = (1) and Ξ = (1). In particular Ξ ≤ ∗∗Ξ where ∗∗Ξ is

some finite constant. In light of Assumptions B.2 and 8 we have Ξ ≥ min(Υ)min(Γ
0
Γ)(1+

42) ≥ ∗Ξ for some 
∗
Ξ  0. Hence 0  Ξ−1 ≤ 1∗Ξ ∞, and thus we also have Ξ−1 = (1).

Let eΞ+ denote the generalized inverse of eΞ. It then follows as a special case of Lemma F1 in
Pötscher and Prucha (1997) that eΞ is nonsingular eventually with probability tending to one,
that eΞ+ = (1), and that eΞ+ −Ξ−1 → 0 (B.13)

as →∞.
Premultiplying (B.9) by eΞ+ and rearranging terms yields

12(e − ) =
h
1− eΞ+ eΞi12(e − )− eΞ+ m(eδ e)


eΥ

12m(eδ 0)
In light of the above discussion the first term on the RHS is zero on -sets of probability tending

to one. This yields

12(e − ) = −eΞ+ m(eδ e)


eΥ
12m(eδ 0) + (1) (B.14)

Observe that eΞ+ m(eδ e)


eΥ −Ξ−1
∙

1

20

¸0
Γ0Υ = (1) (B.15)

and observe that

m(eδ 0) = −1

⎡⎢⎣ eu0C1(0)eu
...eu0C(0)eu

⎤⎥⎦
with C1() = (12) (I − 0M

0
) (+

0
) (I − 0M), and thateu − u = D∆

where D = −Z and ∆ = eδ − δ0. In light of Lemma A.2 we have  ||2+ ≤  

∞. Under Assumption B.1 we have −12T0 = (1) and hence 12 k∆k = (1). It

now follows from part (c) of Lemma C.1 in Kelejian and Prucha (2010) that the elements of

m(eδ 0) can be expressed as
−12eu0C(0)eu = −12u0C(0)u + 0

12
³eδ − δ0´+ (1)

where

 = −2−1Z0C(0)u

Furthermore, the lemma implies that the elements of  are uniformly bounded in absolute

value. Utilizing  = (I − 0M)
−1 and Assumption B.1 we have

12m(eδ 0) = −12

⎡⎢⎣
1
2
0(A1 +A01) + a

0
1

...
1
2
0(A +A

0
) + a

0


⎤⎥⎦+ (1) (B.16)
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where a = T,  = 1     . Observe that the elements of a are uniformly bounded

in absolute value. As discussed before the theorem the VC matrix of the vector of quadratic

forms on the RHS of (B.16) is given by Ψ

 = () as defined in (B.5). By assumption

min(Ψ

 ) ≥   0. Since the matrices , the vectors a, and the innovations  satisfy

all of the remaining assumptions of the central limit theorem for vectors of linear quadratic

forms given as Theorem A.1 in Kelejian and Prucha (2010) it follows that

 = (Ψ

 )

−12 −12

⎡⎢⎣
1
2
0(A1 +A01) + a

0
1

...
1
2
0(A +A

0
) + a

0


⎤⎥⎦ → (0 I) (B.17)

Since the row and column sums of the matrices  are uniformly bounded in absolute value,

and since the elements of a and the variances are uniformly bounded by finite constants it

is readily seen from (B.5) that the elements of Ψ

 , and hence those of (Ψ


 )

12
are uniformly

bounded. It now follows from (B.14), (B.15) and (B.17) that

12(e − 0) = −Ξ−1
∙

1

20

¸0
Γ0Υ (Ψ


 )

12  + (1) (B.18)

Observing that Ξ = J
0
ΥJ, where J = Γ[1 20]

0, this establishes (B.8). Since all of the
nonstochastic terms on the RHS of (B.18) are (1) it follows that 12(e − 0) = (1).

Next recall that 0  ∗Ξ ≤ Ξ ≤ ∗∗Ξ ∞. Hence
Ω
 = Ξ−1 J

0
ΥΨ


 ΥJΞ

−1


≥ min (Ψ

 ) [min (Υ)]

2 min(Γ
0
Γ)(1 + 4

2
0)(

∗∗
Ξ )

2 ≥   0.

This establishes the last claim of the theorem. ¥

Theorem B.3 (Theorem on Asymptotic Normality of
ee = µeeδ0 e¶0) Let e be the

weighted nonlinear least squares estimators defined by (B.1). Suppose Assumptions 1-5, 8,

and B.1-B.3 hold, sup |0|  ∞ and sup |0|  ∞, and suppose additionally the smallest
eigenvalues of Ψ and P

•0
P

•
 are bounded away from zero, then"

12(
eeδ − δ0)

12(e − 0)

#
=

∙
P•0 0

0 (J0ΥJ)
−1J0Υ

¸
Ψ12  + (1)

where

 = Ψ
−12
 v

→ (0 I•+)

Furthermore 12(
eeδ − δ0) = (1), 

12(e − 0) = (1) and

min(Ω) = min

½∙
P•0 0

0 (J0ΥJ)
−1J0Υ

¸
Ψ

∙
P• 0

0 ΥJ(J
0
ΥJ)

−1

¸¾
≥   0
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Proof.Theorem on Asymptotic Normality of
ee = µeeδ0 e¶0. By Assumption B.3

and Theorem B.2 we have"
12(

eeδ − δ0)
12(e − 0)

#
=

∙
P•0v

(J0ΥJ)
−1J0Υv




¸
+ (1)

and hence clearly"
12(

eeδ − δ0)
12(e − 0)

#
=

∙
P•0 0

0 (J0ΥJ)
−1J0Υ

¸
Ψ12  + (1)

where  = Ψ
−12
 v. It is readily checked that the linear quadratic forms composing v satisfy

all the assumptions of Theorem A.1 in Kelejian and Prucha (2010), and hence the claim that


→ (0 I•+) follows directly from that theorem.

Next observe that

min(Ω) ≥ min(Ψ)min

½∙
P•0P• 0

0 (J0ΥJ)
−1J0ΥΥJ(J

0
ΥJ)

−1

¸¾
≥ min(Ψ)min

©
min(P

•0
P

•
) min(Θ)

ª
with Θ = (J

0
ΥJ)

−1J0ΥΥJ(J
0
ΥJ)

−1. Analogous as in the consistency proof of e
we have

min(Θ) ≥ [min (Υ)]
2 min(Γ

0
Γ)(1 + 4

2
0)(

∗∗
Ξ )

2 ≥   0

Since min(Ψ) and min(P
•0
P

•
) are bounded away from zero by assumption it follows that

min(Ω) ≥   0 as claimed. ¥
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C Appendix: Proofs of Consistency and Asymptotic Normality

of Two-step IV/GMM Estimators

Lemma C.1 : Suppose Assumptions 1-8 hold, sup |0|  ∞ and sup |0|  ∞, and
suppose additionally that the smallest eigenvalues of Ψ


 are bounded away from zero. Let e

and b be the GMM estimators for 0 defined in (12) and (14), respectively. Then e− 0 =

(1) and b − 0 = (1).

Proof.The proof utilizes Theorem B.1. Given the maintained assumptions it suffices to

verify Assumptions B.1 and B.2 for the respective estimators.

(a) Proof of e − 0 = (1): The estimators e is based on S2SLS residuals. Assumption
B.1 is clearly satisfied in light of Lemma A.3. Next observe that for e we have eΥ = Υ = I.

Thus also Assumption B.2 clearly holds, which completes the proof of the claim.

(b) Proof of b − 0 = (1): The estimator b is based on GS2SLS residuals. As-

sumption B.1 is clearly satisfied in light of Lemma A.4. Next observe that for b we haveeΥ =
h bΨ

 (bδ e)i−1 and Υ = [Ψ

 ]
−1
, where Ψ


 is defined in (16). By assumption

the smallest eigenvalues of Ψ

 are bounded away from zero, and thus the largest eigenval-

ues of Υ = [Ψ

 ]
−1
are bounded from above. We next show that the smallest eigenvalue

of Υ = [Ψ

 ]
−1
is bounded away from zero by showing that the largest eigenvalue of Ψ




is bounded from above. For that it suffices to show that the elements of Ψ

 are uniformly

bounded in . First note that the elements of  are uniformly bounded in absolute value in

light of part (b) of Lemma C.1 in Kelejian and Prucha (2010). Hence

−1a0a = −10P
∗0
H

0
HP

∗
 = (1)

in light of Assumptions 6 and 7. Using the Cauchy-Schwartz inequality and taking into account

Assumption 4 it is then readily seen that the elements of Ψ

 are (1).

We next show that
h bΨ

 (bδ e)i−1 − [Ψ
 ]
−1
= (1). Utilizing Lemma F.1 in Kelejian

and Prucha (1997) it suffices to show that bΨ
 −Ψ

 = (1). In light of Assumption 5 and

Lemma C.1 in Kelejian and Prucha (2010) we have b −  = (1) and  = (1). By

Lemma A.4 we have furthermore bP∗ − P∗ = (1) and P
∗
 = (1). Since −1H0

H = (1)

by Assumption 6 we have

−1ba0ba = b0bP∗0 ¡−1H0
H

¢ bP∗b = −10P
∗0
H

0
HP

∗
 + (1)

= −1a0a + (1)

and −1a0a = (1). Similarly

−1ba0(A) = −1a0(A) + (1)

and −1a0(A) = (1). Observing that b2 = 2 + (1), b(3) = 3 + (1), b(4) =

4 + (1) it now follows that b
(bδ e) = 


 + (1), which completes the proof. For
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later use we note that the above arguments also hold if e is replaced by any other consistent
estimator. ¥

Proof of Theorem 1: The proof utilizes Theorem B.3, which considers estimators
eeδ ande(eδ), where the latter is defined in (B.1). For the problem at hand both eeδ and eδ correspond

to the GS2SLS estimator bδ. Thus in this case Assumptions B.1 for eδ and Assumption B.3
for

eeδ coincide. It has been verified in the proof of Lemma C.1 that the GS2SLS estimatorbδ satisfies these assumptions. Furthermore, for the problem at hand eΥ =
³bΨ



´−1
and

Υ = (Ψ

 )

−1
and it has also been verified in the proof of Lemma C.1 that those moment

weights matrices satisfy Assumption B.2. Also, given thatΥ = (Ψ

 )

−1
it follows immediately

from Theorem B.2 that b is efficient. For P∗ as defined in Lemma A.4 pertaining the the
GS2SLS estimator we haveP∗0P∗ =

£
Q∗(0)0Q−1Q∗(0)

¤−1
and thus min(P

∗0
P

∗
) ≥ 

for some   0 by Assumption 7. Observing that all other assumptions utilized by Theorem

B.3 concludes the proof. ¥

Proof of Theorem 2: In the proof of Lemma C.1 we have demonstrated that bΨ
 −Ψ

 =

(1),
h bΨ



i−1
− [Ψ

 ]
−1

= (1) and that Ψ

 = (1) and [Ψ


 ]
−1

= (1). By similar

arguments we see that bΨ
 −Ψ

 = (1) bΨ
 −Ψ

 = (1), andΨ

 = (1) andΨ

 = (1).

This establishes that bΨ −Ψ = (1) and Ψ = (1). In the proof of Lemma C.1 it has

been verified that the moment weights matrices eΥ =
³bΨ



´−1
and Υ = (Ψ


 )

−1
satisfy

Assumption B.2. Hence it follows from the discussion around (B.12) and (B.13) in the proof of

Theorem B.2 that

∙bJ0 ³bΨ


´−1 bJ¸−1 − hJ0 (Ψ
 )

−1
J

i−1
= (1) and

h
J0 (Ψ


 )

−1
J

i−1
=

(1). From the proof of Theorem B.1 we also have bJ − J = (1) and J = (1), and

by Lemma A.4 we have bP∗ − P∗ = (1) and P
∗
 = (1). Given this it is readily seen from

(18) that bΩ −Ω = (1) and Ω = (1). Since min(Ψ) ≥   0 by assumption, and

min(Ω) ≥   0 by Theorem 1 it follows further that Ψ−1 = (1) and Ω−1 = (1). ¥
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D Appendix: Proof of Claims in Text

Assumption 5 maintains that the endogenous regressors Y have finite uniformly bounded 2+

moments for some   0, and that

−1Z0Au −−1Z0Au = (1) (D.1)

for any matrix A whose row and column sums are uniformly bounded in absolute value. In

the following we verify the claim, made in the text after this assumption, that those properties

are automatically implied if y and Y are generated by a simultaneous system of  equations

with Cliff-Ord type spatial interactions as considered in Kelejian and Prucha (2004). For

definiteness, let y denote the × 1 vector of observations of the -th endogenous variable in
the system, and w.l.o.g. let (1) represent the first equation in the system so that y = y1.

Under the assumptions maintained by Kelejian and Prucha (2004) it is readily seen that in

reduced form

y = c

 +C


v (D.2)

where c is a  × 1 nonstochastic vector with uniformly bounded element, C
 is a  × 

nonstochastic matrix whose row and column sums are uniformly bounded in absolute value,

and v as an ×1 vector of i.i.d. (0 1) innovations and finite fourth moments. (The vector c
represents the reduced-form mean and is a function of the nonstochastic exogenous regressors

and parameters.) Let v1 denote the first × 1 subvector of v, then  = v1.

Since the elements of v are i.i.d. with finite fourth moments it follows immediately from

Lemma A.1 that for any , 0   ≤ 2 the 2 +  absolute moments of the elements of y and

thus of the elements of Y are uniformly bounded as claimed.

Next consider

−1Z0Au = −1Z0Au = −1Z0Bv
1


with B = A (I − 0M)
−1. Since by assumption row and column sums of the absolute

elements of (I − 0M)
−1 are uniformly bounded, it follows that B has the same property.

The elements of −1Z0Au are now seen to be of one of the following kind:

1 = −1x0Bv
1
 (D.3)

2 = −1y0Bv
1
 = −1c0Bv

1
 + −1v0C

0
Bv

1


3 = −1y0W
0
Bv

1
 = −1c10W

0
Bv

1
 + −1v0C

10
W

0
Bv

1


The mean of  clearly exists. Thus to prove (D.1) it suffices to show that the variances of

 are (1). Since the covariances can be bounded by variances it suffices to show that the

variances of each of the terms on the RHS of (D.3) are (1). In light of, e.g., Remark A.1 in

Kelejian and Prucha (2004) it follows that each of the first terms on the RHS of (D.3) are of

the form −1d0v1 where the elements of d are uniformly bounded by some finite constant,
say , and hence (−1d0v1) ≤ −12 = (1). In light of, e.g., Remark A.1 in Kelejian

and Prucha (2004) it follows furthermore that each of the second terms on the RHS of (D.3)
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are of the form

−1
X
=1

v0D

v

1
 = −1v0Dv D =

⎡⎢⎣ D1 0    0
...

...
...

D 0    0

⎤⎥⎦
where the row and column sums of the  ×  matrices D


 and thus those of the matrix D

are uniformly bounded by some finite constant. In light of, e.g., Lemma A.1 in Kelejian and

Prucha (2004) we have (−1v0Dv) = −2 {[D +D
0
] [D +D

0
]} 4. Referring again

to Remark A.1 Kelejian and Prucha (2004) we see that also the row and column sums of

the absolute elements of [D +D
0
] [D +D

0
] are uniformly bounded by some finite constant,

again say . Thus (−1v0Dv) ≤ −14 = (1), which completes the proof of the

claim.
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E Tables

E.1 Results for b
This subsection contains the tables of results for b when the true value of  = 2.

Table 1: b results when =-0.8

 W Median Std. Dev. Est. Std. Dev. Rej. Rate R2

s=.5 s=1 s=.5 s=1 s=.5 s=1 s=.5 s=1 s=.5 s=1

-.8 1 2.001 2.003 .046 .091 .046 .091 .05 .046 .812 .52

-.8 2 2.000 1.998 .034 .067 .033 .066 .056 .05 .803 .503

-.8 3 2.003 2.011 .049 .101 .049 .098 .045 .059 .757 .44

-.8 4 2.002 2.006 .036 .071 .035 .07 .058 .053 .752 .433

-.3 1 1.999 2.003 .046 .095 .047 .094 .046 .052 .835 .559

-.3 2 2.000 2.002 .035 .067 .034 .068 .058 .044 .827 .544

-.3 3 2.001 2.008 .052 .106 .052 .104 .051 .056 .8 .5

-.3 4 2.002 2.004 .037 .072 .037 .073 .054 .048 .793 .49

0 1 2.001 1.999 .049 .097 .048 .096 .054 .056 .847 .581

0 2 1.999 2.003 .035 .069 .034 .069 .05 .048 .838 .565

0 3 2.003 2.007 .054 .106 .053 .106 .053 .049 .822 .536

0 4 1.999 2.001 .038 .073 .037 .075 .056 .047 .813 .521

.3 1 2.000 2.003 .049 .095 .048 .097 .05 .045 .859 .605

.3 2 1.999 1.998 .034 .071 .035 .069 .044 .054 .85 .586

.3 3 2.000 2.002 .054 .107 .053 .107 .058 .051 .842 .572

.3 4 2.000 2.003 .038 .076 .038 .076 .051 .05 .832 .552

.8 1 1.998 1.998 .05 .099 .049 .097 .053 .052 .884 .657

.8 2 2.000 1.999 .035 .071 .035 .07 .043 .048 .873 .631

.8 3 2.002 1.995 .054 .107 .054 .108 .056 .048 .88 .645

.8 4 2.002 2.000 .038 .079 .038 .076 .054 .065 .863 .613
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Table 2: b results when =-0.3

 W Median Std. Dev. Est. Std. Dev. Rej. Rate R2

s=.5 s=1 s=.5 s=1 s=.5 s=1 s=.5 s=1 s=.5 s=1

-.8 1 2.001 1.996 .042 .081 .042 .083 .053 .049 .854 .595

-.8 2 2.000 1.999 .031 .061 .03 .061 .05 .048 .845 .577

-.8 3 1.999 1.999 .042 .082 .041 .083 .056 .049 .848 .583

-.8 4 1.998 1.999 .03 .059 .03 .06 .048 .046 .843 .574

-.3 1 1.999 1.998 .043 .086 .043 .086 .051 .054 .862 .609

-.3 2 2.000 1.998 .031 .065 .031 .063 .054 .057 .853 .592

-.3 3 2.001 1.998 .045 .087 .044 .087 .054 .048 .858 .603

-.3 4 1.998 1.997 .032 .062 .031 .063 .052 .042 .852 .59

0 1 2.002 1.999 .044 .089 .044 .088 .054 .056 .868 .621

0 2 1.998 1.998 .032 .065 .032 .064 .047 .053 .858 .603

0 3 1.998 1.997 .046 .09 .045 .09 .053 .05 .866 .618

0 4 1.999 1.996 .032 .064 .032 .065 .048 .045 .858 .601

.3 1 2.001 1.997 .045 .091 .045 .089 .051 .052 .874 .635

.3 2 1.999 1.997 .033 .065 .032 .065 .056 .053 .865 .616

.3 3 1.999 1.999 .047 .094 .047 .093 .052 .048 .875 .636

.3 4 2.000 1.997 .033 .066 .033 .067 .05 .042 .865 .616

.8 1 1.998 1.999 .046 .092 .046 .092 .062 .052 .892 .673

.8 2 1.999 1.996 .033 .065 .033 .066 .052 .049 .88 .647

.8 3 2.002 2.002 .049 .099 .048 .097 .051 .06 .896 .682

.8 4 1.998 1.996 .035 .068 .034 .069 .057 .051 .881 .648
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Table 3: b results when = 0.0

 W Median Std. Dev. Est. Std. Dev. Rej. Rate R2

s=.5 s=1 s=.5 s=1 s=.5 s=1 s=.5 s=1 s=.5 s=1

-.8 1 1.999 1.994 .04 .082 .041 .082 .044 .052 .861 .607

-.8 2 2.001 1.998 .03 .059 .03 .06 .051 .047 .851 .589

-.8 3 2.000 1.998 .041 .081 .041 .082 .048 .052 .86 .605

-.8 4 1.999 1.998 .03 .061 .03 .06 .052 .05 .855 .596

-.3 1 1.999 1.996 .042 .082 .042 .083 .054 .049 .865 .616

-.3 2 1.999 1.999 .03 .062 .03 .061 .05 .054 .857 .599

-.3 3 1.998 1.995 .04 .082 .041 .083 .046 .053 .864 .614

-.3 4 1.999 1.998 .031 .061 .03 .061 .056 .052 .858 .602

0 1 2.000 1.995 .042 .084 .042 .085 .05 .055 .87 .624

0 2 2.000 2.000 .031 .062 .031 .062 .048 .053 .861 .607

0 3 1.999 1.998 .043 .085 .042 .085 .054 .051 .869 .624

0 4 1.999 1.998 .031 .061 .031 .061 .045 .049 .862 .609

.3 1 1.997 1.995 .043 .086 .043 .086 .055 .049 .875 .636

.3 2 1.998 1.997 .031 .063 .031 .063 .044 .049 .865 .617

.3 3 1.999 2.000 .043 .087 .043 .087 .048 .051 .876 .639

.3 4 2.000 1.996 .031 .062 .031 .062 .054 .056 .866 .618

.8 1 2.000 1.995 .045 .089 .044 .088 .053 .053 .89 .668

.8 2 1.998 2.000 .032 .064 .032 .064 .048 .047 .878 .643

.8 3 2.000 1.996 .046 .092 .045 .09 .055 .06 .893 .674

.8 4 2.000 2.001 .032 .065 .032 .064 .046 .056 .878 .643
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Table 4: b results when = 0.3

 W Median Std. Dev. Est. Std. Dev. Rej. Rate R2

s=.5 s=1 s=.5 s=1 s=.5 s=1 s=.5 s=1 s=.5 s=1

-.8 1 2.001 1.997 .043 .088 .042 .085 .05 .06 .863 .611

-.8 2 2.000 1.997 .031 .062 .031 .062 .051 .052 .853 .593

-.8 3 1.997 1.997 .044 .085 .044 .088 .053 .048 .863 .611

-.8 4 1.999 2.001 .033 .064 .032 .064 .058 .047 .859 .603

-.3 1 2.000 1.993 .042 .086 .042 .084 .048 .055 .865 .615

-.3 2 1.999 1.998 .031 .06 .031 .061 .048 .046 .856 .598

-.3 3 2.000 1.993 .044 .087 .043 .085 .058 .061 .863 .612

-.3 4 1.999 1.998 .031 .063 .031 .063 .046 .052 .857 .601

0 1 1.998 1.997 .043 .085 .042 .084 .059 .054 .867 .62

0 2 1.998 1.999 .031 .062 .031 .061 .061 .054 .859 .603

0 3 1.997 1.993 .042 .083 .042 .085 .049 .046 .866 .617

0 4 1.999 1.999 .031 .061 .031 .062 .049 .051 .858 .602

.3 1 1.998 1.992 .042 .084 .042 .084 .056 .058 .871 .628

.3 2 2.000 1.998 .031 .062 .031 .061 .045 .05 .862 .609

.3 3 1.998 1.994 .042 .084 .042 .084 .049 .05 .87 .625

.3 4 1.998 1.999 .03 .061 .031 .062 .043 .049 .86 .606

.8 1 1.999 1.994 .042 .084 .043 .085 .047 .048 .883 .653

.8 2 1.999 1.996 .031 .061 .031 .062 .043 .044 .871 .628

.8 3 1.998 1.992 .043 .085 .043 .085 .052 .05 .883 .654

.8 4 1.999 1.998 .03 .062 .031 .062 .044 .055 .867 .62
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Table 5: b results when = 0.8

 W Median Std. Dev. Est. Std. Dev. Rej. Rate R2

s=.5 s=1 s=.5 s=1 s=.5 s=1 s=.5 s=1 s=.5 s=1

-.8 1 1.999 2.007 .05 .102 .05 .099 .053 .058 .846 .58

-.8 2 2.001 1.999 .035 .07 .035 .07 .049 .046 .836 .561

-.8 3 2.001 2.006 .054 .109 .054 .108 .058 .055 .841 .568

-.8 4 2.000 1.997 .039 .077 .038 .076 .055 .055 .836 .561

-.3 1 2.004 2.009 .05 .098 .049 .098 .055 .053 .839 .565

-.3 2 2.001 2.004 .036 .072 .035 .069 .056 .058 .829 .549

-.3 3 2.001 2.006 .054 .107 .053 .106 .048 .058 .826 .544

-.3 4 2.000 2.006 .038 .076 .038 .075 .052 .053 .819 .531

0 1 2.001 2.009 .05 .098 .048 .096 .059 .057 .834 .557

0 2 2.002 2.002 .035 .069 .034 .068 .056 .05 .824 .54

0 3 2.003 2.011 .052 .103 .052 .104 .05 .046 .819 .53

0 4 1.999 2.005 .037 .073 .037 .074 .048 .044 .809 .513

.3 1 2.002 2.005 .047 .095 .047 .095 .046 .046 .829 .548

.3 2 2.002 2.007 .034 .069 .034 .067 .056 .056 .818 .53

.3 3 2.006 2.013 .053 .101 .051 .101 .058 .05 .812 .518

.3 4 2.002 2.003 .036 .073 .036 .072 .05 .056 .798 .496

.8 1 2.001 2.008 .046 .092 .046 .091 .051 .052 .821 .534

.8 2 2.000 2.002 .033 .065 .033 .065 .052 .048 .806 .509

.8 3 2.006 2.005 .048 .096 .048 .095 .057 .049 .802 .503

.8 4 1.999 2.004 .035 .069 .034 .069 .058 .05 .778 .468

36



E.2 Results for b
This subsection contains the tables of results for b when the true value of  = 1.

Table 6: b results when =-0.8

 W Median Std. Dev. Est. Std. Dev. Rej. Rate R2

s=.5 s=1 s=.5 s=1 s=.5 s=1 s=.5 s=1 s=.5 s=1

-.8 1 1.000 0.994 .031 .064 .032 .063 .047 .054 .812 .52

-.8 2 1.000 0.997 .023 .045 .023 .045 .06 .056 .803 .503

-.8 3 1.000 0.999 .033 .067 .033 .066 .056 .054 .757 .44

-.8 4 1.001 1.001 .024 .047 .024 .047 .05 .056 .752 .433

-.3 1 0.999 0.996 .032 .066 .032 .064 .058 .058 .835 .559

-.3 2 0.999 1.000 .023 .046 .023 .046 .046 .052 .827 .544

-.3 3 1.000 1.000 .034 .067 .033 .067 .06 .048 .8 .5

-.3 4 1.001 1.000 .024 .047 .024 .048 .055 .051 .793 .49

0 1 0.999 0.997 .033 .066 .032 .064 .059 .055 .847 .581

0 2 1.000 1.000 .023 .047 .023 .046 .051 .056 .838 .565

0 3 1.000 0.999 .034 .067 .033 .067 .055 .047 .822 .536

0 4 0.999 1.000 .025 .048 .024 .049 .054 .048 .813 .521

.3 1 0.999 0.996 .032 .065 .032 .064 .051 .052 .859 .605

.3 2 0.999 0.998 .023 .046 .023 .046 .045 .053 .85 .586

.3 3 1.001 0.997 .034 .066 .033 .067 .058 .045 .842 .572

.3 4 1.000 0.999 .024 .049 .024 .049 .054 .05 .832 .552

.8 1 0.998 0.995 .033 .063 .032 .064 .057 .047 .884 .657

.8 2 1.000 0.998 .023 .047 .023 .047 .055 .054 .873 .631

.8 3 1.000 0.995 .034 .066 .033 .067 .055 .048 .88 .645

.8 4 1.001 0.999 .024 .051 .024 .049 .046 .064 .863 .613
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Table 7: b results when =-0.3

 W Median Std. Dev. Est. Std. Dev. Rej. Rate R2

s=.5 s=1 s=.5 s=1 s=.5 s=1 s=.5 s=1 s=.5 s=1

-.8 1 1.000 0.997 .033 .064 .032 .065 .056 .046 .854 .595

-.8 2 1.000 0.997 .023 .046 .023 .045 .052 .057 .845 .577

-.8 3 0.999 0.997 .033 .067 .033 .065 .059 .058 .848 .583

-.8 4 0.998 0.999 .023 .046 .023 .046 .049 .053 .843 .574

-.3 1 0.999 0.995 .032 .064 .032 .065 .044 .055 .862 .609

-.3 2 1.000 0.999 .023 .046 .023 .046 .056 .053 .853 .592

-.3 3 0.999 1.000 .033 .066 .033 .066 .048 .049 .858 .603

-.3 4 0.999 0.998 .023 .046 .023 .047 .044 .049 .852 .59

0 1 1.000 0.997 .033 .065 .033 .065 .06 .051 .868 .621

0 2 0.998 0.998 .023 .046 .023 .046 .044 .052 .858 .603

0 3 1.000 0.996 .034 .066 .033 .066 .052 .052 .866 .618

0 4 0.999 0.997 .023 .047 .023 .047 .04 .052 .858 .601

.3 1 0.999 0.994 .033 .065 .033 .065 .05 .052 .874 .635

.3 2 1.000 0.998 .024 .046 .023 .046 .067 .049 .865 .616

.3 3 0.998 0.997 .033 .066 .033 .066 .055 .057 .875 .636

.3 4 0.999 0.998 .024 .047 .024 .047 .053 .051 .865 .616

.8 1 0.999 0.996 .033 .065 .033 .066 .055 .048 .892 .673

.8 2 1.000 0.997 .023 .046 .023 .046 .047 .05 .88 .647

.8 3 0.999 0.997 .034 .066 .033 .067 .05 .048 .896 .682

.8 4 0.999 0.997 .024 .047 .024 .048 .054 .047 .881 .648
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Table 8: b results when = 0.0

 W Median Std. Dev. Est. Std. Dev. Rej. Rate R2

s=.5 s=1 s=.5 s=1 s=.5 s=1 s=.5 s=1 s=.5 s=1

-.8 1 0.999 0.994 .033 .067 .033 .066 .051 .054 .861 .607

-.8 2 0.998 0.999 .023 .045 .023 .046 .045 .052 .851 .589

-.8 3 0.999 0.998 .033 .067 .033 .066 .05 .054 .86 .605

-.8 4 0.998 0.998 .024 .047 .024 .047 .055 .052 .855 .596

-.3 1 0.999 0.997 .033 .066 .033 .066 .055 .05 .865 .616

-.3 2 0.999 0.997 .023 .046 .023 .046 .051 .054 .857 .599

-.3 3 0.999 0.997 .033 .065 .033 .066 .048 .052 .864 .614

-.3 4 0.999 0.996 .024 .047 .023 .047 .063 .049 .858 .602

0 1 0.998 0.997 .033 .066 .033 .066 .051 .053 .87 .624

0 2 1.000 1.000 .023 .047 .023 .046 .052 .056 .861 .607

0 3 0.998 0.999 .033 .066 .033 .066 .054 .049 .869 .624

0 4 0.999 0.999 .023 .047 .023 .047 .049 .05 .862 .609

.3 1 0.999 0.995 .034 .066 .033 .066 .055 .053 .875 .636

.3 2 0.999 0.998 .023 .047 .023 .046 .05 .053 .865 .617

.3 3 0.998 0.997 .033 .066 .033 .066 .053 .052 .876 .639

.3 4 1.000 0.996 .023 .046 .023 .047 .048 .052 .866 .618

.8 1 0.998 0.996 .034 .068 .033 .066 .057 .055 .89 .668

.8 2 0.999 0.999 .023 .045 .023 .046 .049 .05 .878 .643

.8 3 1.000 0.997 .033 .065 .033 .066 .048 .048 .893 .674

.8 4 0.999 0.998 .023 .047 .023 .047 .048 .057 .878 .643
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Table 9: b results when = 0.3

 W Median Std. Dev. Est. Std. Dev. Rej. Rate R2

s=.5 s=1 s=.5 s=1 s=.5 s=1 s=.5 s=1 s=.5 s=1

-.8 1 1.000 0.997 .033 .069 .033 .067 .048 .057 .863 .611

-.8 2 1.001 1.000 .023 .046 .023 .046 .052 .052 .853 .593

-.8 3 1.000 0.993 .035 .067 .034 .068 .061 .049 .863 .611

-.8 4 0.999 0.998 .024 .049 .024 .049 .049 .05 .859 .603

-.3 1 0.998 0.996 .033 .069 .033 .067 .051 .064 .865 .615

-.3 2 0.999 0.998 .024 .046 .023 .046 .054 .049 .856 .598

-.3 3 1.000 0.994 .033 .068 .033 .067 .056 .056 .863 .612

-.3 4 1.000 1.000 .024 .048 .024 .048 .05 .053 .857 .601

0 1 0.998 0.996 .033 .067 .033 .066 .047 .056 .867 .62

0 2 1.000 0.997 .023 .047 .023 .046 .052 .052 .859 .603

0 3 0.999 0.995 .033 .067 .033 .066 .053 .059 .866 .617

0 4 0.999 0.998 .023 .047 .024 .047 .052 .047 .858 .602

.3 1 0.999 0.994 .033 .067 .033 .066 .054 .053 .871 .628

.3 2 0.999 0.999 .023 .046 .023 .046 .061 .053 .862 .609

.3 3 0.999 0.994 .033 .066 .033 .066 .049 .052 .87 .625

.3 4 0.999 0.998 .023 .046 .023 .047 .048 .045 .86 .606

.8 1 0.998 0.994 .034 .066 .033 .066 .054 .054 .883 .653

.8 2 0.999 0.999 .023 .047 .023 .046 .046 .054 .871 .628

.8 3 0.999 0.994 .034 .065 .033 .065 .06 .055 .883 .654

.8 4 0.999 0.997 .023 .046 .023 .046 .05 .048 .867 .62
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Table 10: b results when = 0.8

 W Median Std. Dev. Est. Std. Dev. Rej. Rate R2

s=.5 s=1 s=.5 s=1 s=.5 s=1 s=.5 s=1 s=.5 s=1

-.8 1 0.999 1.000 .034 .069 .034 .068 .048 .05 .846 .58

-.8 2 1.000 0.997 .024 .047 .024 .048 .051 .046 .836 .561

-.8 3 1.000 0.998 .035 .07 .035 .07 .054 .047 .841 .568

-.8 4 0.999 0.999 .026 .053 .026 .052 .052 .057 .836 .561

-.3 1 1.001 0.998 .034 .069 .034 .068 .054 .042 .839 .565

-.3 2 1.000 0.999 .024 .049 .024 .048 .055 .06 .829 .549

-.3 3 1.000 0.999 .035 .07 .035 .07 .054 .053 .826 .544

-.3 4 1.000 1.001 .025 .051 .026 .051 .046 .051 .819 .531

0 1 0.999 0.996 .034 .07 .034 .068 .05 .058 .834 .557

0 2 1.001 1.001 .024 .047 .024 .047 .049 .053 .824 .54

0 3 1.000 1.000 .035 .067 .035 .069 .052 .04 .819 .53

0 4 1.000 1.000 .025 .05 .025 .051 .052 .048 .809 .513

.3 1 1.000 0.997 .033 .067 .034 .068 .044 .047 .829 .548

.3 2 1.000 1.002 .023 .047 .023 .047 .052 .053 .818 .53

.3 3 1.002 1.000 .035 .068 .034 .069 .057 .051 .812 .518

.3 4 1.000 1.001 .025 .05 .025 .05 .045 .05 .798 .496

.8 1 1.001 1.001 .034 .067 .034 .067 .058 .05 .821 .534

.8 2 1.000 1.001 .024 .047 .023 .046 .059 .057 .806 .509

.8 3 1.003 0.997 .033 .067 .033 .067 .052 .046 .802 .503

.8 4 1.000 1.002 .024 .049 .024 .048 .048 .055 .778 .468
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E.3 Results for b
This subsection contains the tables of results for b. The true value of  is given in the title of
each table.

Table 11: b results when =-0.8

 W Median Std. Dev. Est. Std. Dev. Rej. Rate R2

s=.5 s=1 s=.5 s=1 s=.5 s=1 s=.5 s=1 s=.5 s=1

-.8 1 -0.798 -0.789 .062 .082 .062 .071 .04 .06 .812 .52

-.8 2 -0.801 -0.796 .045 .054 .044 .05 .051 .052 .803 .503

-.8 3 -0.796 -0.793 .04 .052 .04 .048 .051 .053 .757 .44

-.8 4 -0.799 -0.796 .029 .037 .029 .035 .056 .057 .752 .433

-.3 1 -0.798 -0.796 .061 .075 .06 .066 .047 .044 .835 .559

-.3 2 -0.798 -0.798 .043 .048 .043 .047 .05 .05 .827 .544

-.3 3 -0.798 -0.796 .038 .044 .038 .043 .051 .053 .8 .5

-.3 4 -0.799 -0.798 .027 .032 .028 .031 .044 .056 .793 .49

0 1 -0.800 -0.796 .063 .072 .06 .064 .052 .049 .847 .581

0 2 -0.798 -0.798 .042 .047 .042 .046 .051 .044 .838 .565

0 3 -0.799 -0.797 .038 .043 .038 .041 .047 .052 .822 .536

0 4 -0.800 -0.798 .027 .03 .027 .03 .052 .046 .813 .521

.3 1 -0.801 -0.796 .061 .071 .06 .063 .042 .04 .859 .605

.3 2 -0.801 -0.798 .042 .046 .042 .045 .041 .055 .85 .586

.3 3 -0.800 -0.798 .037 .042 .037 .04 .049 .062 .842 .572

.3 4 -0.800 -0.800 .027 .029 .027 .029 .048 .047 .832 .552

.8 1 -0.801 -0.799 .059 .07 .059 .061 .046 .054 .884 .657

.8 2 -0.800 -0.799 .041 .044 .042 .044 .044 .044 .873 .631

.8 3 -0.799 -0.798 .038 .039 .037 .038 .056 .047 .88 .645

.8 4 -0.800 -0.800 .027 .028 .027 .028 .051 .056 .863 .613
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Table 12: b results when =-0.3

 W Median Std. Dev. Est. Std. Dev. Rej. Rate R2

s=.5 s=1 s=.5 s=1 s=.5 s=1 s=.5 s=1 s=.5 s=1

-.8 1 -0.300 -0.299 .093 .109 .094 .111 .049 .052 .854 .595

-.8 2 -0.300 -0.303 .068 .08 .068 .083 .051 .044 .845 .577

-.8 3 -0.298 -0.297 .071 .086 .071 .086 .049 .054 .848 .583

-.8 4 -0.300 -0.295 .051 .064 .051 .064 .049 .05 .843 .574

-.3 1 -0.304 -0.298 .092 .106 .094 .107 .053 .055 .862 .609

-.3 2 -0.304 -0.301 .068 .079 .067 .079 .057 .052 .853 .592

-.3 3 -0.298 -0.295 .07 .08 .07 .083 .052 .045 .858 .603

-.3 4 -0.302 -0.299 .052 .06 .051 .061 .055 .052 .852 .59

0 1 -0.306 -0.302 .09 .103 .093 .105 .048 .047 .868 .621

0 2 -0.301 -0.302 .067 .076 .067 .077 .049 .051 .858 .603

0 3 -0.303 -0.301 .069 .08 .069 .08 .053 .051 .866 .618

0 4 -0.301 -0.297 .051 .059 .05 .059 .056 .056 .858 .601

.3 1 -0.305 -0.308 .092 .103 .092 .102 .064 .059 .874 .635

.3 2 -0.302 -0.299 .067 .075 .066 .075 .062 .058 .865 .616

.3 3 -0.305 -0.299 .068 .078 .069 .078 .05 .056 .875 .636

.3 4 -0.300 -0.299 .049 .058 .05 .058 .048 .051 .865 .616

.8 1 -0.309 -0.302 .09 .099 .091 .098 .052 .063 .892 .673

.8 2 -0.304 -0.304 .065 .071 .065 .072 .055 .048 .88 .647

.8 3 -0.302 -0.300 .067 .074 .068 .074 .05 .049 .896 .682

.8 4 -0.301 -0.304 .049 .054 .049 .054 .053 .05 .881 .648
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Table 13: b results when = 0.0

 W Median Std. Dev. Est. Std. Dev. Rej. Rate R2

s=.5 s=1 s=.5 s=1 s=.5 s=1 s=.5 s=1 s=.5 s=1

-.8 1 -0.007 -0.003 .095 .11 .094 .11 .054 .06 .861 .607

-.8 2 -0.001 -0.005 .067 .085 .068 .082 .053 .072 .851 .589

-.8 3 -0.001 -0.002 .074 .086 .074 .088 .056 .055 .86 .605

-.8 4 -0.000 0.003 .054 .064 .054 .065 .06 .047 .855 .596

-.3 1 -0.007 -0.005 .093 .107 .094 .109 .048 .053 .865 .616

-.3 2 -0.002 -0.002 .065 .081 .067 .081 .048 .051 .857 .599

-.3 3 -0.002 -0.004 .074 .086 .074 .087 .051 .047 .864 .614

-.3 4 -0.000 -0.000 .055 .065 .054 .065 .062 .054 .858 .602

0 1 -0.005 -0.004 .091 .107 .093 .108 .052 .05 .87 .624

0 2 -0.004 -0.002 .068 .08 .067 .08 .052 .056 .861 .607

0 3 -0.004 -0.003 .072 .085 .074 .086 .049 .049 .869 .624

0 4 0.001 -0.003 .054 .065 .054 .064 .051 .056 .862 .609

.3 1 -0.005 -0.005 .092 .105 .093 .106 .054 .05 .875 .636

.3 2 -0.004 -0.005 .066 .08 .067 .078 .052 .059 .865 .617

.3 3 -0.002 -0.003 .073 .085 .073 .085 .055 .053 .876 .639

.3 4 -0.000 0.000 .053 .062 .053 .063 .055 .047 .866 .618

.8 1 -0.009 -0.006 .094 .099 .092 .102 .062 .046 .89 .668

.8 2 -0.004 -0.007 .067 .077 .066 .075 .054 .057 .878 .643

.8 3 -0.007 -0.005 .074 .08 .072 .082 .058 .049 .893 .674

.8 4 -0.001 0.000 .053 .062 .053 .061 .052 .054 .878 .643
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Table 14: b results when = 0.3

 W Median Std. Dev. Est. Std. Dev. Rej. Rate R2

s=.5 s=1 s=.5 s=1 s=.5 s=1 s=.5 s=1 s=.5 s=1

-.8 1 0.296 0.294 .083 .093 .083 .095 .054 .047 .863 .611

-.8 2 0.299 0.297 .058 .07 .06 .07 .046 .054 .853 .593

-.8 3 0.298 0.299 .066 .076 .068 .077 .048 .051 .863 .611

-.8 4 0.300 0.296 .049 .056 .049 .056 .056 .052 .859 .603

-.3 1 0.295 0.290 .083 .098 .083 .097 .051 .054 .865 .615

-.3 2 0.293 0.297 .06 .072 .06 .072 .052 .058 .856 .598

-.3 3 0.295 0.292 .069 .082 .068 .079 .057 .061 .863 .612

-.3 4 0.298 0.295 .049 .057 .049 .059 .047 .049 .857 .601

0 1 0.294 0.293 .082 .1 .083 .097 .047 .06 .867 .62

0 2 0.298 0.295 .06 .073 .06 .072 .055 .053 .859 .603

0 3 0.299 0.295 .069 .082 .068 .08 .059 .056 .866 .617

0 4 0.300 0.299 .05 .06 .049 .059 .051 .054 .858 .602

.3 1 0.291 0.291 .083 .1 .083 .097 .05 .062 .871 .628

.3 2 0.295 0.294 .06 .074 .06 .072 .05 .058 .862 .609

.3 3 0.297 0.296 .069 .08 .068 .08 .055 .053 .87 .625

.3 4 0.298 0.295 .049 .06 .05 .06 .049 .047 .86 .606

.8 1 0.288 0.290 .083 .095 .083 .096 .049 .055 .883 .653

.8 2 0.297 0.296 .059 .072 .06 .071 .054 .052 .871 .628

.8 3 0.297 0.294 .067 .078 .068 .079 .048 .046 .883 .654

.8 4 0.298 0.295 .05 .061 .049 .06 .056 .055 .867 .62
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Table 15: b results when = 0.8

 W Median Std. Dev. Est. Std. Dev. Rej. Rate R2

s=.5 s=1 s=.5 s=1 s=.5 s=1 s=.5 s=1 s=.5 s=1

-.8 1 0.799 0.796 .042 .047 .042 .045 .046 .052 .846 .58

-.8 2 0.798 0.799 .03 .033 .03 .033 .047 .05 .836 .561

-.8 3 0.801 0.799 .035 .038 .035 .037 .053 .048 .841 .568

-.8 4 0.800 0.798 .026 .027 .025 .027 .059 .049 .836 .561

-.3 1 0.797 0.793 .044 .053 .043 .048 .051 .056 .839 .565

-.3 2 0.799 0.797 .031 .036 .031 .035 .052 .056 .829 .549

-.3 3 0.798 0.795 .037 .042 .036 .04 .056 .062 .826 .544

-.3 4 0.799 0.799 .026 .029 .026 .028 .046 .055 .819 .531

0 1 0.796 0.792 .046 .056 .043 .05 .058 .06 .834 .557

0 2 0.798 0.796 .032 .037 .031 .036 .054 .046 .824 .54

0 3 0.797 0.795 .036 .045 .036 .041 .049 .056 .819 .53

0 4 0.798 0.798 .027 .03 .026 .029 .057 .048 .809 .513

.3 1 0.797 0.790 .046 .062 .044 .053 .049 .065 .829 .548

.3 2 0.798 0.793 .033 .041 .032 .038 .05 .061 .818 .53

.3 3 0.797 0.792 .038 .046 .037 .043 .053 .055 .812 .518

.3 4 0.799 0.798 .026 .032 .027 .031 .048 .058 .798 .496

.8 1 0.792 0.785 .048 .067 .046 .058 .06 .072 .821 .534

.8 2 0.796 0.794 .034 .045 .033 .042 .052 .064 .806 .509

.8 3 0.797 0.788 .039 .053 .038 .047 .058 .071 .802 .503

.8 4 0.798 0.795 .028 .036 .028 .034 .049 .062 .778 .468
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E.4 Results for b
This subsection contains the tables of results for b. The true value of  is given in each table.

Table 16: b results when =-0.8

 W Median Std. Dev. Est. Std. Dev. Rej. Rate R2

s=.5 s=1 s=.5 s=1 s=.5 s=1 s=.5 s=1 s=.5 s=1

-.8 1 -0.804 -0.814 .052 .109 .052 .103 .05 .066 .812 .52

-.8 2 -0.801 -0.803 .04 .083 .04 .079 .056 .061 .803 .503

-.8 3 -0.806 -0.820 .052 .107 .052 .103 .054 .067 .757 .44

-.8 4 -0.803 -0.809 .04 .082 .039 .078 .053 .064 .752 .433

-.3 1 -0.302 -0.310 .042 .089 .043 .085 .047 .062 .835 .559

-.3 2 -0.301 -0.302 .034 .067 .033 .066 .061 .058 .827 .544

-.3 3 -0.302 -0.309 .044 .088 .043 .086 .049 .053 .8 .5

-.3 4 -0.301 -0.305 .033 .066 .033 .065 .049 .053 .793 .49

0 1 -0.001 -0.003 .037 .076 .037 .073 .056 .058 .847 .581

0 2 -0.002 -0.002 .028 .057 .028 .057 .046 .051 .838 .565

0 3 -0.002 -0.004 .038 .077 .037 .074 .056 .06 .822 .536

0 4 0.000 -0.006 .028 .056 .028 .056 .06 .049 .813 .521

.3 1 0.300 0.295 .031 .063 .031 .062 .053 .058 .859 .605

.3 2 0.301 0.299 .024 .05 .024 .048 .048 .056 .85 .586

.3 3 0.299 0.297 .031 .063 .031 .061 .052 .056 .842 .572

.3 4 0.300 0.297 .023 .047 .023 .047 .053 .054 .832 .552

.8 1 0.799 0.798 .023 .047 .023 .046 .048 .057 .884 .657

.8 2 0.800 0.799 .017 .035 .017 .035 .05 .046 .873 .631

.8 3 0.800 0.798 .022 .045 .022 .044 .054 .048 .88 .645

.8 4 0.800 0.801 .016 .033 .016 .033 .053 .047 .863 .613
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Table 17: b results when =-0.3

 W Median Std. Dev. Est. Std. Dev. Rej. Rate R2

s=.5 s=1 s=.5 s=1 s=.5 s=1 s=.5 s=1 s=.5 s=1

-.8 1 -0.802 -0.805 .049 .098 .048 .096 .051 .055 .854 .595

-.8 2 -0.801 -0.800 .039 .076 .038 .076 .058 .054 .845 .577

-.8 3 -0.801 -0.806 .041 .08 .04 .081 .055 .057 .848 .583

-.8 4 -0.799 -0.803 .03 .06 .031 .061 .046 .052 .843 .574

-.3 1 -0.301 -0.304 .044 .086 .043 .087 .053 .052 .862 .609

-.3 2 -0.301 -0.300 .034 .07 .034 .068 .054 .062 .853 .592

-.3 3 -0.301 -0.304 .039 .076 .038 .076 .058 .053 .858 .603

-.3 4 -0.299 -0.302 .03 .058 .029 .059 .057 .053 .852 .59

0 1 -0.001 -0.002 .039 .08 .039 .078 .052 .056 .868 .621

0 2 0.001 0.002 .031 .062 .031 .062 .05 .055 .858 .603

0 3 -0.001 -0.003 .034 .071 .035 .07 .047 .054 .866 .618

0 4 0.000 -0.002 .027 .055 .027 .055 .05 .055 .858 .601

.3 1 0.299 0.299 .035 .072 .035 .069 .051 .057 .874 .635

.3 2 0.301 0.299 .027 .056 .027 .054 .049 .054 .865 .616

.3 3 0.300 0.298 .03 .063 .031 .063 .041 .057 .875 .636

.3 4 0.299 0.300 .025 .049 .025 .049 .048 .052 .865 .616

.8 1 0.800 0.799 .028 .057 .028 .056 .058 .048 .892 .673

.8 2 0.801 0.800 .021 .043 .021 .043 .051 .055 .88 .647

.8 3 0.800 0.799 .025 .052 .025 .051 .052 .053 .896 .682

.8 4 0.800 0.799 .02 .039 .02 .039 .049 .051 .881 .648
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Table 18: b results when = 0.0

 W Median Std. Dev. Est. Std. Dev. Rej. Rate R2

s=.5 s=1 s=.5 s=1 s=.5 s=1 s=.5 s=1 s=.5 s=1

-.8 1 -0.802 -0.804 .048 .095 .047 .095 .053 .06 .861 .607

-.8 2 -0.799 -0.799 .037 .075 .038 .075 .049 .058 .851 .589

-.8 3 -0.802 -0.803 .036 .072 .036 .072 .045 .05 .86 .605

-.8 4 -0.799 -0.804 .027 .054 .027 .054 .051 .053 .855 .596

-.3 1 -0.300 -0.301 .045 .09 .045 .09 .049 .056 .865 .616

-.3 2 -0.299 -0.303 .036 .073 .036 .071 .054 .056 .857 .599

-.3 3 -0.300 -0.301 .036 .074 .036 .073 .05 .057 .864 .614

-.3 4 -0.300 -0.300 .029 .058 .028 .057 .053 .061 .858 .602

0 1 0.003 -0.001 .043 .085 .042 .085 .057 .054 .87 .624

0 2 0.000 -0.000 .033 .069 .034 .067 .054 .065 .861 .607

0 3 -0.001 -0.002 .035 .07 .035 .07 .044 .051 .869 .624

0 4 -0.001 0.002 .028 .057 .028 .056 .054 .058 .862 .609

.3 1 0.300 0.302 .04 .08 .039 .077 .06 .058 .875 .636

.3 2 0.300 0.301 .03 .063 .031 .061 .049 .054 .865 .617

.3 3 0.301 0.300 .033 .066 .033 .066 .056 .052 .876 .639

.3 4 0.299 0.299 .026 .053 .026 .053 .044 .054 .866 .618

.8 1 0.800 0.800 .032 .064 .032 .064 .054 .05 .89 .668

.8 2 0.799 0.802 .025 .051 .025 .05 .041 .062 .878 .643

.8 3 0.802 0.799 .028 .057 .028 .057 .054 .046 .893 .674

.8 4 0.800 0.799 .023 .046 .023 .045 .053 .055 .878 .643
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Table 19: b results when = 0.3

 W Median Std. Dev. Est. Std. Dev. Rej. Rate R2

s=.5 s=1 s=.5 s=1 s=.5 s=1 s=.5 s=1 s=.5 s=1

-.8 1 -0.799 -0.800 .048 .095 .048 .095 .051 .051 .863 .611

-.8 2 -0.801 -0.799 .038 .076 .038 .076 .046 .054 .853 .593

-.8 3 -0.800 -0.799 .034 .066 .033 .067 .053 .05 .863 .611

-.8 4 -0.800 -0.798 .025 .049 .025 .049 .055 .055 .859 .603

-.3 1 -0.298 -0.296 .05 .101 .049 .098 .06 .068 .865 .615

-.3 2 -0.299 -0.299 .039 .078 .039 .078 .054 .052 .856 .598

-.3 3 -0.298 -0.298 .038 .074 .037 .074 .056 .054 .863 .612

-.3 4 -0.300 -0.295 .028 .058 .029 .057 .048 .051 .857 .601

0 1 0.001 0.002 .049 .095 .048 .096 .058 .057 .867 .62

0 2 -0.002 0.001 .039 .078 .038 .076 .059 .054 .859 .603

0 3 0.001 0.001 .037 .079 .038 .075 .046 .06 .866 .617

0 4 0.001 0.000 .03 .059 .03 .06 .054 .052 .858 .602

.3 1 0.301 0.301 .046 .093 .046 .092 .05 .057 .871 .628

.3 2 0.300 0.303 .036 .072 .036 .072 .049 .057 .862 .609

.3 3 0.300 0.300 .037 .076 .037 .075 .048 .053 .87 .625

.3 4 0.300 0.301 .03 .06 .03 .06 .051 .05 .86 .606

.8 1 0.801 0.802 .04 .081 .039 .079 .058 .056 .883 .653

.8 2 0.801 0.801 .031 .062 .031 .062 .054 .051 .871 .628

.8 3 0.800 0.799 .035 .068 .034 .068 .057 .047 .883 .654

.8 4 0.800 0.800 .029 .055 .028 .055 .056 .052 .867 .62
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Table 20: b results when = 0.8

 W Median Std. Dev. Est. Std. Dev. Rej. Rate R2

s=.5 s=1 s=.5 s=1 s=.5 s=1 s=.5 s=1 s=.5 s=1

-.8 1 -0.799 -0.786 .052 .113 .05 .101 .06 .08 .846 .58

-.8 2 -0.798 -0.795 .04 .082 .039 .078 .054 .059 .836 .561

-.8 3 -0.799 -0.793 .033 .068 .031 .063 .056 .072 .841 .568

-.8 4 -0.800 -0.797 .023 .045 .022 .044 .053 .056 .836 .561

-.3 1 -0.293 -0.275 .063 .135 .06 .121 .065 .087 .839 .565

-.3 2 -0.297 -0.284 .049 .098 .047 .094 .058 .068 .829 .549

-.3 3 -0.299 -0.289 .043 .096 .042 .084 .059 .084 .826 .544

-.3 4 -0.299 -0.289 .031 .064 .031 .062 .053 .066 .819 .531

0 1 0.006 0.029 .07 .145 .065 .13 .064 .094 .834 .557

0 2 0.002 0.016 .051 .104 .05 .1 .054 .064 .824 .54

0 3 0.005 0.018 .05 .106 .048 .096 .063 .076 .819 .53

0 4 0.003 0.007 .037 .074 .036 .072 .064 .059 .809 .513

.3 1 0.309 0.337 .075 .145 .069 .137 .077 .082 .829 .548

.3 2 0.306 0.321 .053 .109 .053 .104 .054 .07 .818 .53

.3 3 0.307 0.327 .056 .111 .053 .106 .068 .08 .812 .518

.3 4 0.301 0.308 .04 .083 .04 .08 .051 .06 .798 .496

.8 1 0.809 0.839 .073 .147 .071 .138 .07 .094 .821 .534

.8 2 0.806 0.820 .054 .109 .053 .105 .067 .079 .806 .509

.8 3 0.811 0.824 .059 .116 .058 .114 .066 .073 .802 .503

.8 4 0.803 0.815 .045 .092 .045 .089 .058 .067 .778 .468
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