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Abstract

This paper develops an estimation methodology for network data generated

from a system of simultaneous equations, which allows for network interdepen-

dencies via spatial lags in the endogenous and exogenous variables, as well as

in the disturbances. By allowing for higher-order spatial lags our specification

provides important flexibility in modeling network interactions. The estimation

methodology builds, among others, on the two-step generalized method of mo-

ments (GMM) estimation approach introduced in Kelejian and Prucha (1998,

1999, 2004). The paper considers limited and full information estimators, and

one- and two-step estimators, and establishes their asymptotic properties. In

contrast to some of the earlier two-step estimation literature our asymptotic

results facilitate joint tests for the absence of all forms of network spillovers.

Key Words: Cliff-Ord spatial model; Limited information estimation; Full in-

formation estimation; Two-stage least squares estimation; Three-stage least

squares estimation; Generalized method of moments estimation
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1 Introduction1

In this paper we develop a generalized estimation theory for simultaneous equa-

tion systems for cross sectional data with possible network interactions in the

dependent variables, the exogenous variables and the disturbances. A leading

application will be spatial networks. However, since network interdependen-

cies are modeled only to relate to a measure of proximity, without assuming

that observations are indexed by location, the developed methodology can be

of interest to the estimation of a much wider class of networks, including social

networks.

There is substantial empirical evidence of cross sectional interdependence

among observations in many areas of economics both at the macro level, where

cross sectional units may, e.g., be countries, states or counties, as well as at

the micro level where cross sectional units may, e.g., be industries, firms or

individuals.2

An important class of models for spatial networks originates from the seminal

work by Whittle (1954) and Cliff and Ord (1973, 1981). In those models cross-

sectional interactions are modeled through spatial lags, where the weights used

in forming the spatial lags are reflective of the relative importance of the links

between neighbors for the generation of spillovers. In a spatial setting the

relative importance would typically be taken to be inversely related to a measure

of distance. The usefulness of those models for the analysis of a wide class of

networks beyond spatial networks stems from the recognition that the notion of

distance is not confined to geographic distance.3

1We are grateful to the editor, a guest editor, and three anonymous referees for their very
helpful comments. We gratefully acknowledge financial support from the National Institute of
Health through SBIR grants R43 AG027622 and R44 AG027622. We also thank the CESifo
for their hospitality.

2For instance, Conley and Ligon (2002) or Ertur and Koch (2007) document spatial
spillovers in economic growth. Holtz-Eakin (1994) or Audretsch and Feldmann (1996) put
forward evidence for spatial spillovers in productivity. Egger, Pfaffermayr, and Winner (2005)
provide evidence for spatial interdependencies of value added tax rates, and Devereux, Lock-
wood, and Redoano (2008) for spatial corporate tax rates. Case, Hines, and Rosen (1993)
report on spatial budget spillovers. The results in Behrens, Ertur, and Koch (2012) suggest
that bilateral trade flows exhibit spatial interdependence, and Baltagi, Egger, and Pfaffermayr
(2007, 2008) and Blonigen, Davies, Waddell, and Naughton (2007) illustrate that the same
holds true for bilateral foreign direct investment.

Pinkse, Slade, and Brett (2002) provide evidence for spatial price competition among
wholesale-gasoline terminals. For contributions to the literature on social interactions see,.e.g.,
Ballester, Calvó-Armegol and Zenou (2006), Lee (2007b), Calvó-Armengol, Patacchini and
Zenou (2009), Blume, Bock, Durlauf and Ionnides (2011), Cohen-Cole, Liu and Zenou (2018),
and Liu (2014).

3As stated, we think Cliff-Ord type models provide important tools for analyzing networks.
However, we also want to point out an important literature in statistics where spatial depen-
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Spatial econometrics has a long history in geography, regional science and

urban economics; see, e.g., Anselin (1988). For the last two decades the devel-

opment of econometric methods of inference for Cliff-Ord type models has also

been an active area of research in economics.4 Most of the literature focused on

single-equation models where a single dependent variable, say, yi, is determined

for units i = 1, . . . , n. However, in economics it is frequent that the outcomes for

several dependent variables, say, yi1, . . . , yiG, are determined jointly by a system

of equations for units i = 1, . . . , n. In this case the simultaneous nature of the

outcomes can stem from two sources, interactions between different economic

variables as well as interactions between cross sectional units.

Surprisingly, the literature on the estimation of simultaneous systems of spa-

tially interrelated cross sectional equations has been quite limited until recently.

Kelejian and Prucha (2004) provide, by extending the methodology developed in

Kelejian and Prucha (1998, 1999) for single equations, an early development of

generalized method of moments (GMM) estimators for such models. However,

as discussed in more detail below, they do not provide a full asymptotic the-

ory for all considered estimators and their setup only covers first-order spatial

lags. Liu (2014, 2019, 2020), Cohen-Cole, Liu, and Zenou (2018), and Liu and

Saraiva (2019) build and extend the methodology of Kelejian and Prucha (2004)

within the context of social interaction models with first order spatial lags, and

cross sectionally independent disturbances. Their contributions include one-step

GMM estimation methods that utilize both linear and quadratic moment condi-

tions, identification conditions, bias correction procedures for many instruments,

heteroskedasticity, and an estimation methodology for a simultaneous system of

equations with binary outcomes generated from an incomplete information net-

work game. Other recent contributions to the literature on spatial simultaneous

equation models are Baltagi and Deng (2015), who consider an extension of a

two-equation system with first-order spatial lags to panels. Wang, Li, and Wang

(2014) analyze the quasi maximum likelihood estimator for such a system in the

cross section. Yang and Lee (2017) consider identification and quasi maximum

likelihood estimation for a multi-equation system with a first-order spatial lag

in the dependent variable. Yang and Lee (2019) provide an extension to dy-

namic panel data models allowing for multiple weights matrices. In contrast to

the current paper, the above cited literature only considers first-order spatial

dence is molded via random Markov fields and conditional autoregressive models; see e.g.,
Cressie (1993).

4See, e.g., Anselin (2010) for a review of the development of spatial econometric methods.
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lags in the dependent variable, and does not also consider spatial spillovers in

the disturbance process. Those papers also differ in terms of the considered

estimation methodology. In particular, a methodological focus of this paper is

on two-step estimation, while also covering one-step estimation.

Within the context of Cliff-Ord type models two-step procedures are gen-

erally less efficient than one-step procedures. However, they are attractive,

especially for situations where the instruments are strong and the efficiency

loss is small, because of their relative computational simplicity. An important

limitation of the two-step estimation methodology developed in Kelejian and

Prucha (2004) is that the paper only establishes the consistency of the estima-

tor for the spatial autoregressive parameter in the disturbance process, but not

its asymptotic normality. As a result, the methodology does not facilitate a

joint test for the absence of spatial interactions in the dependent variables, the

exogenous variables and the disturbances. Closely related to this is that Kele-

jian and Prucha (2004) do not consider efficiently weighted GMM estimators for

the spatial autoregressive parameters, since that paper lacked the knowledge of

the limiting distribution for those estimators.

Another important limitation of the earlier paper is that it only allowed for

first-order spatial lags. Allowing for higher-order spatial lags is important for

at least two reasons. First, the researcher may not be sure about the chan-

nel through which interactions occur – e.g., though geographic proximity, or

technological proximity, or both. By allowing for higher-order spatial lags the

researcher can consult the data on this issue. Second, as argued below, higher-

order spatial lags can be used to partially relax the requirement regarding a

priori knowledge of what weights should be assigned to different units in the

construction of a spatial lag.5 Given the complexity of our systems specifica-

tion, we do not pursue nonparametric estimation here.

The paper is organized as follows: Section 2 specifies the considered simulta-

neous equation system with spatial/cross sectional network interactions. In this

section we also discuss two exemplary applications. The first example highlights

how higher-order spatial lags can be used to achieve a more flexible specification

of the spatial weights. The second example considers a social interaction model

where individuals make interdependent choices on the level of effort for multi-

5The term higher-order spatial lags seems to have been imported from the time series
literature. However, in contrast to the time series literature there is not a natural ordering
of the lags. Different spatial lags model different pathways for network dependence, and the
corresponding spatial autoregressive parameters reflect their importance.
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ple activities. In Section 3, we discuss the moment conditions underlying the

considered GMM estimators for the regression parameters and the parameters

of the disturbance process. The paper focuses on two-step estimation proce-

dures. It turns out that the distribution of the GMM estimator for the spatial

autoregressive parameters of the disturbance process depends on the estimator

of regression parameters. Section 4 is hence devoted to give generic results con-

cerning the consistency and asymptotic normality of two-step GMM estimators.

In particular, we give generic results concerning the joint limiting distribution

of estimators for all model parameters of interest, which can be utilized in the

usual way to form general Wald tests regarding the model parameters. Results

for one-step estimators are in essence delivered as a special case of two-step

estimation. In Section 5 we consider specific limited and full information two-

step estimators, and provide specific expressions for consistent estimators of the

associated asymptotic variance-covariance (VC) matrices of those estimators.

In Section 6 we consider limited and full information one-step estimators that

combine the linear and quadratic moment conditions used by the two-step esti-

mators. The last section concludes with a summary of our findings and possible

directions for future research. All technical derivations are given in appendices

and in an Online Supplementary Appendix. In the Online Supplementary Ap-

pendix we also report on a Monte Carlo study of the small sample properties of

the various estimators and test statistics.

Throughout the paper we adopt the following notations and conventions. Let

(An)n∈N be some sequence of matrices, then we denote the (i, j)-th element of

An with aij,n. If An is nonsingular, then we denote its inverse with A−1
n , and

the (i, j)-th element of A−1
n with aijn . Let An be of dimension pn × pn, then

the maximum column sum and row sum matrix norms of An are, respectively,

defined as

∥An∥1 = max
1≤j≤pn

∑pn

i=1 |aij,n| and ∥An∥∞ = max
1≤i≤pn

∑pn

j=1 |aij,n| .

If ∥An∥1 ≤ c and ∥An∥∞ ≤ c for some finite constant c which does not depend

on n, then we say that the row and column sums of the sequence of matrices

An are uniformly bounded in absolute value. We note that if the row and

column sums of the matrices An and Bn are uniformly bounded in absolute

value, then so are the row and column sums of An + Bn and AnBn; cf., e.g.,

Kapoor, Kelejian and Prucha (2007, Remark A2). For any square matrix An,

An = (An +A′
n)/2, and for any vector or matrix An, ∥An∥ = [tr(A′

nAn)]
1/2,
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where tr denotes the trace operator. Let An,g, g = 1, . . . G, be a sequence of

matrices, then diagGg=1(An,g) denotes the block diagonal matrix, where An,g is

the g-th diagonal block.

2 Model

In the following, we specify our simultaneous system of G equations for G en-

dogenous variables observed for n cross sectional units.

2.1 Structural Form Model

In specifying the system we allow for two sources of simultaneity. First, the

observations for the g-th endogenous variable for the i-th unit may depend

on observations of the other endogenous variables for the i-th unit, as in the

classical text book simultaneous equation system.6 Second, simultaneity may

stem from Cliff and Ord (1973, 1981) type higher-order cross-sectional network

interactions, where spatial interactions represent a leading application.

As remarked, the model specification will be fairly general and allows for

network interactions modeled by, possibly, higher-order spatial lags in the de-

pendent variables, the exogenous variables and the disturbances. More specifi-

cally, let g denote the equation index, then we assume that the cross-sectional

data are generated by the following system (g = 1, . . . , G):

yg,n =

G∑
l=1

blg,nyl,n +

K∑
k=1

ckg,nxk,n +

G∑
l=1

[
p∑

s=1

λlg,s,nWs,n

]
yl,n + ug,n,(1)

ug,n =

[
q∑

r=1

ρg,r,nMr,n

]
ug,n + εg,n,

where yg,n is the n× 1 vector of cross-sectional observations on the dependent

variable in the g-th equation, xk,n is the n× 1 vector of cross-sectional observa-

tions on the k-th exogenous variable, which is taken to be nonstochastic,7 ug,n

is the n× 1 disturbance vector in the g-th equation, Ws,n and Mr,n are n× n

weights matrices, εg,n is the n×1 vector of innovations entering the disturbance

6Our specification differs from, e.g., Anselin (1988) and Wang, Lee and Bao (2018) who
consider systems for one variable.

7In treating the exogenous variables as non-stochastic, the analysis may be viewed as
conditional on the exogenous variables.
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process for the g-th equation, and n denotes the sample size. With blg,n and

ckg,n we denote the (scalar) parameters corresponding to the l-th endogenous

and k-th exogenous variables, respectively. Of course, the structural model pa-

rameters are not identified without certain restrictions. Those restrictions will

be introduced below.

Consistent with the usual terminology for Cliff-Ord type network interac-

tions, we refer to Ws,n and Mr,n as spatial weights matrices, to

yl,s,n = Ws,nyl,n and ug,r,n = Mr,nug,n

as spatial lags, and to the (real scalar) parameters λlg,s,n and ρg,r,n as spatial

autoregressive parameters. The weights matrices carry the information on the

links between units and on the relative weight of those links, and the spatial

autoregressive parameters describe the strength of the spillovers. Although

originally introduced for spatial networks, Cliff-Ord type interaction models

do not require the indexing of observations by location. In general they only

rely on a measure of distance in the formation of the spatial weights. Since the

notions of space and distance or proximity are not confined to geographic space,

these models have, as discussed in the introduction, also been applied in various

other settings. This includes social interaction models, where one considered

specification has been to assign to each of the i-th individual’s friends a weight

of 1/ni, where ni denotes the total number of friends of i, while assigning zero

weights to individuals not belonging to the circle of friends. In the following,

we continue to refer to yl,s,n and ug,r,n and λlg,s,n and ρg,r,n as spatial lags and

spatial autoregressive parameters, but note the wider applicability.

The reason for allowing the elements of the spatial weights matrices to de-

pend on the sample size is to permit – as is frequent practice in applications –

normalizations of these matrices where the normalization factor(s) depend on

the sample size.8 The i-th element of yl,s,n is given by yil,s,n =
∑n

j=1 wij,s,nyjl,n.

We note that even if the elements of the spatial weights matrices do not depend

on the sample size, the elements of the spatial lag yl,s,n and, analogously, the

elements of ug,r,n will generally depend on the sample size. This in turn implies

that also the elements of yg,n and ug,n will generally depend on the sample size,

i.e., form triangular arrays. In allowing the elements of xk,n to depend on the

8The normalizing factors may in turn affect the parameters of the spatial lags, which is
the reason for allowing the parameters in (1) to depend on the sample size; see, e.g., Kelejian
and Prucha (2010) for further discussions regarding normalizations.
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sample size, we implicitly also allow for some of the exogenous variables to be

spatial lags of exogenous variables. For example, the elements of xk,n could be

of the form xik,n =
∑n

j=1 wij,s,nξj where ξj is some basic exogenous variable.

Thus the model accommodates, as remarked above, cross-sectional interactions

in the endogenous variables, the exogenous variables, and the disturbances.

The above model generalizes the spatial simultaneous equation model con-

sidered in Kelejian and Prucha (2004) in allowing for higher-order spatial lags.9

Consistent with the terminology introduced by Anselin and Florax (1995) in a

single-equation context, we refer to the above model as a simultaneous spatial

autoregressive model of order p with spatially autoregressive disturbances of or-

der q, for short, a simultaneous SARAR(p,q) model.10 One reason for allowing

for multiple spatial weights matrices is that they can capture different forms

of proximity between units. For example, within the context of R&D spillovers

between firms, one matrix may refer to geographic proximity between firms, and

the other may correspond to a measure of proximity in the product space. As

another example, as discussed in more detail below, within the context of a so-

cial interaction model different matrices may refer to different circles of friends,

e.g., one matrix may identify the very close friends, and a second matrix the

other friends. Additionally, as discussed below, an estimation theory that allows

for multiple spatial weights matrices can also be used to accommodate certain

parameterizations of the spatial weights.

Model (1) can be written more compactly as

Yn = YnBn +XnCn +YnΛn +Un, (2)

Un = UnRn +En

with

Yn = (y1,n, ...,yG,n)n×G, Xn = (x1,n, ...,xK,n)n×K ,

Un = (u1,n, ...,uG,n)n×G, En = (ε1,n, ..., εG,n)n×G,

Yn = (y1,1,n, ...,y1,p,n, ...,yG,1,n, ...,yG,p,n)n×pG,

Un = (u1,1,n, ...,u1,q,n, ...,uG,1,n, ...,uG,q,n)n×qG,

and where the parameter matrices Bn = (blg,n)G×G, Cn = (clg,n)K×G, Λn =

9Extensions of the estimation methodology will be discussed later.
10For single equations higher order SARmodels have been considered by Blommestein (1983,

1985) and Huang (1984), among others, and more recently by Bell and Bockstael (2000), Cohen
and Morrison Paul (2007), Badinger and Egger (2010), and Lee and Liu (2010).
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(λlg,s,n)pG×G, and Rn = (ρg,r,n)qG×G are defined conformably.11

2.2 Exemplary Applications

We next motivate the importance of considering higher-order spatial lags with

two examples. The first example illustrates how higher-order spatial lags can be

useful for certain parameterizations of the spatial weights. The second example

formulates a social interaction model where the utility maximizing solution is

described by a system of equations with higher-order spillovers as defined in (1).

2.2.1 Parameterized Spatial Weights

As part of the specification of the model in (1) the researcher has to specify

the elements of the spatial weights matrices. When those elements are specified

incorrectly, the model is misspecified and the estimates will generally be in-

consistent. Allowing for higher-order spatial lags provides important flexibility

and robustness in modeling network interactions. However, while adding higher

order spatial lags helps to address potential specification errors, it does not, of

course, eliminate the possibility; for a recent contribution on an omnibus test

for weights matrix misspecification see Lee, Phillips and Rossi (2021).

In the following we discuss exemplarily how higher-order spatial lags can be

used to allow for certain flexible parameterizations of the spatial weights. For

simplicity of notation we drop subscripts n. Spatial weights are often specified

as a function of some distance measure, possibly combined with some contiguity

measure. LetW = (wij) be the basic spatial weights matrix, let dij denote some

distance measure between units i and j, and let d∗ij be some contiguity measure

taking on values of one or zero. Then, the researcher may specify the weights

as the product of the contiguity measure and a polynomial in dij , treating the

coefficients of the polynomial as unknown parameters:12

wij = d∗ij
[
λ1dij + . . .+ λpd

p
ij

]
.

Now, suppose the researcher models yg as a function of, say, λlgWyl, then

clearly

λlgWyl =

[
λlg

p∑
s=1

λsWs

]
yl =

[
p∑

s=1

λlg,sWs

]
yl

11For clarity, we note that the g-th column of Λn and Rn are, respectively, given by
[λ1g,1,n, . . . , λ1g,p,n, . . . , λGg,1,n, . . . , λGg,p,n]

′ and [0, . . . , 0, ρg,1,n, . . . , ρg,q,n, 0, . . . , 0]′.
12Alternatively the researcher could specify a polynomial in 1/dij .
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with λlg,s = λlgλs,Ws = (wij,s), and wij,s = d∗ijd
s
ij . In allowing for higher-order

spatial lags, model (1) covers this specification as a special case. Of course, the

above specification of spatial weights is entirely illustrative, and model (1) will

cover many other specifications, including specifications with alternate basis

functions instead of power functions, and more general measures of distance

and contiguity. The same ideas also apply to the modeling of the disturbance

process.13

2.2.2 Social Interactions in Multiple Activities

The following example extends Cohen-Cole, Liu and Zenou (2018). We follow

their basic setup, but allow for more flexible peer effects. More specifically,

consider a model where n individuals choose effort levels for G activities, say

yi1, . . . , yiG, allowing for peer effects among p groups of peers, e.g., for p = 2 we

may distinguish between very close friends and other friends. Now let w∗
ij,s be

one or zero depending on whether individual j belongs to the s-th peer group

of individual i, and let nis be the size of that peer group. Let wij,s = w∗
ij,s/nis

denote the corresponding normalized weights, let yig,s =
∑n

j=1 wij,syjg denote

the average effort level for activity g by the s-th group of peers, and assume

that the utility of individual i is of the following linear-quadratic form:

u(yi1, . . . , yiG) = v(yi1, . . . , yiG, yi1,1, . . . yi1,p, . . . , yiG,1, . . . , yiG,p) (3)

=

G∑
g=1

π∗
igyig +

G∑
g=1

yig

G∑
l=1

p∑
s=1

λ∗lg,syil,s︸ ︷︷ ︸
payoff

−1

2

G∑
g=1

b∗gy
2
ig −

G∑
g=1

G∑
l=1,l ̸=g

b∗lgyigyil︸ ︷︷ ︸
cost

.

The specification considered in Cohen-Cole, Liu and Zenou (2018) corresponds

to p = 1. The first-order conditions for the maximum of u(yi1, . . . , yiG) yield

yig = πig +

G∑
l=1,l ̸=g

blgyil +

G∑
l=1

p∑
s=1

λlg,syil,s

13The above observations are related to Pinkse and Slade (1998), who estimate, in a single-
equation context, the spatial weights corresponding to the dependent variable nonparamet-
rically. Given the complexity of our systems specification, we do not pursue nonparametric
estimation here.
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with πig = π∗
ig/b

∗
g, blg = −b∗lg/b∗g, λlg,s = λ∗lg,s/b

∗
g, or in matrix notation

yg = πg +

G∑
l=1,l ̸=g

blgyl +

G∑
l=1

p∑
s=1

λlg,sWsyl (4)

with πg = [π1g, . . . , πng]
′. Similar to Cohen-Cole, Liu and Zenou (2018) assume

that πg can be modeled as

πg =

K∑
k=1

ckgxk + ug. (5)

Substituting (5) into (4) then shows that the utility maximizing vectors of effort

for the G activities are defined as the solution of a model of the form specified

in (1).

We note that by specifying the Ws to be block diagonal, we can accom-

modate situations where the individuals i = 1, . . . , n belong to, say, C groups

which, e.g., represent class rooms. Also, some of the xk covariates may rep-

resent group indicator variables, and others may be spatial lags of some basic

covariates.

2.3 Reduced Form and Structural Model with Exclusion

Restrictions

Towards computing the reduced form of the above model, let

yn = vec(Yn), xn = vec(Xn), un = vec(Un), εn = vec(En),

and let

Wn =
[
W′

1,n, . . . ,W
′
p,n

]′
, Mn =

[
M′

1,n, . . . ,M
′
q,n

]′
.

Observing that vec(Yn) = (IG ⊗Wn)yn and vec(Un) = (IG ⊗Mn)un, and

that vec(A1A2) = (A′
2 ⊗ I)vec(A1) for any two conformable matrices A1 and

A2, it is readily seen that the spatial simultaneous equation system (2) can be

re-written in stacked notation as

yn = B∗
nyn +C∗

nxn + un, (6)

un = R∗
nun + εn,

10



where B∗
n = [(B′

n ⊗ In) + (Λ′
n ⊗ In) (IG ⊗Wn)], C

∗
n = (C′

n ⊗ In), and R∗
n =

(R′
n ⊗ In) (IG ⊗Mn) . Assuming invertability of InG −B∗

n and InG −R∗
n, the

reduced form of the system is now given by

yn = (InG −B∗
n)

−1
[C∗

nxn + un] , (7)

un = (InG −R∗
n)

−1
εn.

As remarked, the structural parameters of the spatial simultaneous equation

system (1) and (2) are not identified unless we impose exclusion restrictions. Let

βg,n, γg,n, λg,n, and ρg,n denote the Gg×1, Kg×1, pg×1 and qg×1 vectors of

non-zero elements of the g-th column of Bn, Cn, Λn, and Rn, respectively, and

let Yg,n, Xg,n, Yg,n, and Ug,n be the corresponding matrices of observations

on the endogenous variables, exogenous variables, spatially lagged endogenous

variables, and spatially lagged disturbances appearing in the structural equation

for the g-th endogenous variable. Then, system (2) can be expressed as (g =

1, . . . , G):

yg,n = Zg,nδg,n + ug,n, (8)

ug,n = Ug,nρg,n + εg,n,

where Zg,n = [Yg,n,Xg,n,Yg,n] and δg,n = [β′
g,n,γ

′
g,n,λ

′
g,n]

′.

2.4 Model Assumptions

We maintain the following assumptions regarding the spatial weights matrices

and model parameters.

Assumption 1 For s = 1, ..., p and r = 1, ..., q: (a) All diagonal elements

of Ws,n and Mr,n are zero. (b) ∥Ws,n∥1 ≤ c, ∥Mr,n∥1 ≤ c for some finite

constant c which does not depend on n, and ∥Ws,n∥∞ = 1, ∥Mr,n∥∞ = 1.

Assumption 2 (a) The matrices InG − B∗
n are nonsingular. (b) The spatial

autoregressive parameters satisfy supn
∑

r∈Ig,ρ
|ρg,r,n| < 1 for g = 1, . . . , G,

where Ig,ρ = {rg,1, . . . , rg,qg} ⊆ {1, . . . , q} denotes the set of indices associated

with the elements of ρg,n. (c) The row and column sums of the matrices [InG−
B∗

n]
−1 are uniformly bounded in absolute value.

The above assumptions are in line with the recent spatial literature. Assump-

tion 1(a) entails a normalization rule. Assumption 1(b) implies that the row and

11



column sums of the matrices Ws,n and Mr,n are uniformly bounded in absolute

value. The assumption that ∥Ws,n∥∞ = 1 and ∥Mr,n∥∞ = 1 implies a normal-

ization for the parameters. For interpretation, let W∗
s,n be some spatial weights

matrix with
∥∥W∗

s,n

∥∥
∞ ̸= 1 and let λ∗lg,s,n be the corresponding spatial autore-

gressive parameter on W∗
s,nyl,n. Now define Ws,n = W∗

s,n/
∥∥W∗

s,n

∥∥
∞ and

λlg,s,n = λ∗lg,s,n
∥∥W∗

s,n

∥∥
∞, then ∥Ws,n∥∞ = 1 and λlg,s,nWs,n = λ∗lg,s,nW

∗
s,n.

Thus the normalizations ∥Ws,n∥∞ = 1 and ∥Mr,n∥∞ = 1 can always be

achieved by appropriately re-scaling the elements of the spatial weights matrix,

provided the corresponding spatial autoregressive parameter is correspondingly

redefined; for further discussions see Kelejian and Prucha (2010).14

Assumption 2(a) ensures that the first equation of the expression for the re-

duced form in (7) is well defined. In allowing in Assumption 2(b) for the index

set Ig,ρ to vary with g we allow for different orders of spatial lags in the distur-

bance process of different equations. Next observe that R∗
n = diagGg=1

[
R∗

g,n

]
with R∗

g,n = R∗
g,n(ρg,n) =

∑
r∈Ig,ρ

ρg,r,nMr,n. In light of this it follows from

Assumptions 1(b) and 2(b) that ∥R∗
n∥∞ ≤ maxg

∑
r∈Ig,ρ

|ρg,r,n| < 1, which

in turn implies that InG − R∗
n is nonsingular. Consequently, also the second

equation of the expression for the reduced form in (7) is well defined, and

thus yn is uniquely defined by the model. Assumptions 1(b) and 2(b) imply

even that supn
∥∥R∗

g,n

∥∥
∞ < 1, which implies that the row sums of the matrices[

In −R∗
g,n

]−1
are uniformly bounded in absolute value. To see this observe

that ∥
[
In −R∗

g,n

]−1 ∥∞≤ 1/
[
1−

∥∥R∗
g,n

∥∥
∞

]
≤ 1/

[
1− supn

∥∥R∗
g,n

∥∥
∞

]
< ∞.

The above arguments use results in Horn and Johnson (1985, p. 301).

Assumption 3 (a) The matrix of (nonstochastic) exogenous regressors Xn in

(2) has full column rank (for n sufficiently large). Furthermore, the elements

of Xn are uniformly bounded in absolute value by some finite constant. (b) The

elements of the parameter matrices Bn, Cn and Λn are uniformly bounded in

absolute value.

An assumption such as Assumption 3(a) is common in the spatial literature.

In treating Xn as nonstochastic, our analysis should be viewed as conditional on

14The suggested re-scaling is simple and practically implementable even if n is large. In
situations where n is sufficiently small such that the eigenvalues of the spatial weights matrices
are computable, one could alternatively normalize each spatial weights matrix by its spectral
radius, which would in conjunction with the next assumptions entail an expansion of the
admissible parameter space.
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Xn. Note that in part (b) of Assumption 3 uniformity refers to n. Assumption

3(b) is trivially satisfied, if the parameters do not depend on the sample size,

since any real number is finite.

We next state the assumptions maintained w.r.t. εn. In the following let

Vn = [v1.n, . . . ,vG,n] be an n × G matrix of basic innovations and let vn =

vec(Vn).

Assumption 4 The innovations εn are generated as follows:

εn = (Σ′
⋆ ⊗ In)vn, (9)

where Σ′
⋆ is a nonsingular G×G matrix and the random variables {vig,n : i =

1, ..., n, g = 1, ..., G} are, for each n, identically and independently distributed

with zero mean, unitary variance, and finite 4 + ν moments for some ν > 0,

and their distribution does not depend on n. Furthermore, let Σ = Σ′
⋆Σ⋆.

The above assumption on the innovation process is in line with the speci-

fication of the disturbance terms for a classical simultaneous equation system.

Let εn(i) denote the i-th row of En, then, observing that En = VnΣ⋆, it is

readily seen that the innovation vectors {εn(i) : 1 ≤ i ≤ n} are i.i.d. with zero

mean and VC matrix Σ. With respect to the stacked innovation vector, the

assumption implies that Eεn = 0 and Eεnε
′
n = Σ⊗ In.

Given (7), we note that Assumption 4 implies furthermore that Eun = 0

and Eyn = (InG −B∗
n)

−1
C∗

nxn, and that the VC matrices of un and yn are

given by, respectively,

Ωu,n = (InG −R∗
n)

−1(Σ⊗ In)(InG −R∗′
n )

−1,

Ωy,n = (InG −B∗
n)

−1Ωu,n(InG −B∗′
n )

−1.

Assumptions 2 and 4 imply that the row and column sums of the VC matrix

of un (and similarly those of yn) are uniformly bounded in absolute value, thus

limiting the degree of correlation between, respectively, the elements of un and

of yn.

Remark: Under the above assumptions it is shown in Lemmata A.2 and A.3

that all random variables in [Yn,Xn,Yn] have uniformly bounded finite fourth

13



moments, and that

n−1Z′
g,nAnug,n − n−1EZ′

g,nAnug,n = op(1)

for any n×n real matrixAn whose row and column sums are bounded uniformly

in absolute value.

For purposes of estimation it proves helpful to apply a spatial Cochrane-

Orcutt transformation to the model. In particular, premultiplying (8) by In −
R∗

g,n(ρg,n) yields

y∗g,n = Z∗g,nδg,n + εg,n, (10)

with y∗g,n = y∗g,n(ρg,n) =
[
In −R∗

g,n(ρg,n)
]
yg,n and Z∗g,n = Z∗g,n(ρg,n) =[

In −R∗
g,n(ρg,n)

]
Zg,n. Stacking the transformed equations yields

y∗n = Z∗nδn + εn, (11)

with y∗n =
[
y′
∗1,n, . . . ,y

′
∗G,n

]′
, Z∗n = diagGg=1 [Z∗g,n], δn =

[
δ′1,n, . . . , δ

′
G,n

]′
and where εn is as defined above.

3 Moment Conditions

Recall that from the Cochrane-Orcutt transformed form of the model (10) we

have

εg,n = εg,n(ρg,n, δg,n) =
[
In −R∗

g,n(ρg,n)
]
[yg,n − Zg,nδg,n] .

The estimators for the model parameters ρg,n and δg,n considered in this paper

will utilize a set of linear and quadratic moment conditions of the form (g =

1, . . . , G)

Emδ
g,n(ρg,n, δg,n) = En−1H′

nεg,n = 0, (12)

Emρ
g,n(ρg,n, δg,n) = E


n−1ε′g,nA1,nεg,n

...

n−1ε′g,nAS,nεg,n

 = 0, (13)

where the n×pH instrument matrixHn in the linear form and the n×n weighting

matrices As,n in the quadratic forms are non-stochastic. In the following we

14



will also simply write mδ
g,n and mρ

g,n for the sample moment vector at the true

parameter values.15

We maintain the following assumptions regarding the instruments Hn. Spe-

cific choices of instruments and a discussion of how the nonlinearity of Eyn in

the parameters generates instruments from within the model are given after the

assumptions.

Assumption 5 : The instrument matrices Hn are nonstochastic and have full

column rank pH ≥ Gg + Kg + pg (for all n large enough). Furthermore, the

elements of the matrices Hn are uniformly bounded in absolute value. Addi-

tionally Hn is assumed to contain, at least, the linearly independent columns of

Hn = [Xn,M1,nXn, . . . ,Mp,nXn].

The inclusion of Hn in Hn ensures that the exogenous variables on the right

hand side (r.h.s.) of the Cochrane-Orcutt transformed model serve as their own

best instruments. For limited information estimators it suffices to postulate

that Hn is assumed to contain, at least, the linearly independent columns of

[Xg,n,M1,nXg,n, . . . ,Mp,nXg,n].

Assumption 6 The instruments Hn satisfy furthermore:

(a) QHH = limn→∞ n−1H′
nHn is finite and nonsingular.

(b) QHZ,g = plimn→∞n
−1H′

nZg,n and QHMZ,r,g = plimn→∞n
−1H′

nMr,nZg,n

are finite and have full column rank.

(c) Let QHZ,g∗(ρg,n) = QHZ,g −
∑

r∈Ig,ρ
ρg,r,nQHMZ,r,g, then

λmin

[
QHZ,g∗(ρg,n)

′Q−1
HHQHZ,g∗(ρg,n)

]
≥ c for some c > 0.

The above assumptions are in the spirit of those maintained, e.g., in Kelejian

and Prucha (1998, 2004, 2010) and Lee (2003). We first discuss Assumption 5.

The best instruments for Yg,n and Yg,n are given by their conditional means.

Observe that in light of (6) we have

Eyn = (InG −B∗
n)

−1
C∗

nxn

with B∗
n = [(B′

n ⊗ In) + (Λ′
n ⊗ In) (IG ⊗Wn)]. For large n the accurate com-

putation of the inverse of InG−B∗
n, which is of dimension nG×nG and depends

15We note that our setup could be readily modified to accommodate for Hn and for the
As,n to vary with g at the expense of further complicating the notation.
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on unknown parameters, will be challenging if not impossible, unless the weights

matrices are sparse. Furthermore, even in the single equation case existing re-

sults on the asymptotic properties of GMM estimators based on the best instru-

ments have so far only been obtained by restricting the parameter space to a

compact interval in, say, (−1, 1). To avoid those difficulties and limitations we

employ an approximation of the best instruments, which is consistent in spirit

with the approach adopted in the above cited literature.

Given ∥B∗
n∥ < 1 we have (InG −B∗

n)
−1

=
∑∞

d=0(B
∗
n)

d and thus Eyn =∑∞
d=0 (B

∗
n)

d
C∗

nxn. In light of the structure of B∗
n it is not difficult to see that

the blocks of (InG −B∗
n)

−1
can be expressed as infinite weighted sums of the

matrices In, {Wj1,n}
p
j1=1, {Wj1,nWj2,n}

p
j1,j2=1, {Wj1,nWj2,nWj3,n}

p
j1,j2,j3=1,

. . . Adopting the notation [Ej ]
m
j=1 := [E1, . . . ,Em] for any set of conformable

matrices E1, . . . ,Em, define

X1,n = [Wj1,nXn]
p
j1=1 ,

X2,n = [Wj1,nWj2,nXn]
p
j1,j2=1 ,

...

XR,n = [Wj1,nWj2,n . . .WjR,nXn]
p
j1,j2,...,,jR=1 ,

and let HR,n = [Xn,X1,n, . . . ,XR,n]. Now suppose Ws1 , . . . ,Wsg are the spa-

tial weights matrices appearing in Yg,n, then by including in Hn the linearly in-

dependent columns of
[
HR,n,Ws1HR,n, . . . ,WsgHR,n

]
, we may view the fitted

values of Zg,n as computationally simple approximations of the best instruments

EZg,n. Suppose further that Mr1 , . . . ,Mrg are the spatial weights matrices in

the disturbance process of the g-th equation, then by including in Hn also

the linearly independent columns of Mr1

[
HR,n,Ws1HR,n, . . . ,WsgHR,n

]
,. . .,

Mrg

[
HR,n,Ws1HR,n, . . . ,WsgHR,n

]
we may view the fitted values of Z∗g,n as

computationally simple approximations of the best instruments EZ∗g,n. The

Monte Carlo results presented in the Online Supplementary Appendix suggest

that in many situations relatively low values of R are sufficient for providing

a good approximation. A discussion, in a simplified context, as to how instru-

ments are generated from within the model is given in Appendix F in the Online

Supplementary Appendix.

Assumption 6(a) is standard. Assumption 6(b) is a sufficient condition that

ensures the identification of δg,n from linear moment conditions corresponding

to the untransformed model (8). Assumption 6(c) is used to ensure identification
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from linear moment conditions corresponding to the transformed model (10).

Those assumptions are crucial for the consistency of the first-step estimators

of δg,n from linear moment conditions only. A more detailed discussion of

those assumptions, including scenarios where those conditions will not hold,

are provided in Appendix F in the Online Supplementary Appendix. Of course,

within the context of one-step estimation identification is still possible with

the use of the quadratic moment conditions, even if identification by the linear

moment conditions fails. More detailed remarks and references are provided in

Appendix F in the Online Supplementary Appendix.

We will maintain the following assumptions regarding the matrices As,n in

the quadratic moment conditions (12).

Assumption 7 : The row and column sums of the matrices As,n, s = 1, ..., S,

are bounded uniformly in absolute value by some finite constant and, further-

more, all diagonal elements of As,n are zero for any s = 1, ..., S.

The assumptions that the diagonal elements of As,n are zero ensures that

the moment conditions are robust against heteroskedasticity. Exemplary speci-

fications for As,n include

Mr,n, M′
r,nMr,n − diag(M′

r,nMr,n),

Ws,n, W′
s,nWs,n − diag(W′

s,nWs,n), M′
s,nWs,n − diag(M′

s,nWs,n).

For computational purposes and for proving consistency, it is convenient to

re-write the moment conditions in (13) as

γg,n − Γg,nrg,n(ρg,n) = 0, (14)

where

γg,n
S×1

=


γ1,g,n

...

γS,g,n

 , Γg,n
S×q∗g

=


Γ11,g,n Γ12,g,n Γ13,g,n

...
...

...

ΓS1,g,n ΓS2,g,n ΓS3,g,n

 , rg,n
q∗g×1

(ρg,n) =

 r1,g,n

r2,g,n

r3,g,n
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with

γs,g,n = n−1Eu′
g,nAsnug,n,

Γs1,g,n = n−1(2Eu′
g,nM

′
rg,1,nAs,nug,n, ..., 2Eu′

g,nM
′
rg,qg ,n

As,nug,n),

Γs2,g,n = −n−1(Eu′
g,nM

′
rg,1,nAs,nMrg,1,nug,n, ..., Eu′

g,nM
′
rg,qg ,n

As,nMrg,qg ,n
ugg,n),

Γs3,g,n = −n−1(2Eu′
g,nM

′
rg,1,nAs,nMrg,2,nug,n, ..., 2Eu′

g,nM
′
rg,qg−1,nAs,nMrg,qg ,n

ug,n),

r1,g,n = (ρg,rg,1,n, ..., ρg,rg,qg ,n)
′,

r2,g,n = (ρ2g,rg,1,n, ..., ρ
2
g,rg,qg ,n

)′,

r3,g,n = (ρg,rg,1,nρg,rg,2,n, ..., ρg,rg,1,nρg,rg,qg ,n, ..., ρg,rg,qg−1,nρg,rg,qg ,n)
′,

recalling the definition of the index set Ig,ρ = {rg,1, . . . , rg,qg} ⊆ {1, . . . , q} and

where q∗g = 2qg + qg(qg − 1)/2.16

For the case of two-step estimation, let δ̃g,n be some estimator for δg,n,

let ũg,n = yg,n − Zg,nδ̃g,n, and let Γ̃g,n and γ̃g,n denote the corresponding

estimators of Γg,n and γg,n, respectively, which are obtained by suppressing

the expectations operator and replacing ug,n by ũg,n in the above expressions.

Then

mρ
g,n(ρg, δ̃g,n) = γ̃g,n − Γ̃g,nrg,n(ρg). (15)

4 Generic Asymptotic Properties

In this section we give a generic discussion of the asymptotic properties of GMM

estimators for ρg,n and δg,n corresponding to the moment conditions in (12)

and (13). A main focus is on two-step estimators. Two-step estimators are

appealing, since they are computationally simple, and since in a single-equation

context the loss of efficiency has been found to be small under various reasonable

scenarios, provided that the instruments are not weak; see, e.g. Das et al. (2003)

and the Monte Carlo results presented in the Online Supplementary Appendix.

A two-step procedure may also provide some robustness for the estimation of

δg,n against misspecification of the disturbance process. As will be seen below,

the limiting distribution of the GMM estimators for ρg,n will depend on the

16To clarify the double indexing notation, consider the example where Ig,ρ = {2, 4, 5} and
thus qg = 3. In this case, and dropping the subscript n, r1,g = (ρg,2, ρg,4, ρg,5)′, r2,g = (ρ2g,2,

ρ2g,4, ρ
2
g,5)

′ and r3,g = (ρg,2ρg,4, ρg,2ρg,5, ρg,4ρg,5)′. The weight matrices in Γs1,g , Γs2,g ,
and Γs3,g are indexed analogously.
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estimator of δg,n used in computing the estimated residual. That is, δg,n is not a

nuisance parameter for ρg,n (although the reverse is true). As a consequence, the

derivation of the limiting distribution of the two-step estimators is technically

more challenging. We will discuss one-step estimators later on in the paper.

In essence the results in this section also deliver the limiting distribution of

one-step estimators as a special case.

The GMM estimators for the autoregressive parameter vectors ρn intro-

duced below generalize the GMM estimators in Kelejian and Prucha (2004). In

contrast to Kelejian and Prucha (2004), we not only accommodate higher-order

spatial disturbance processes, but we also provide for a full asymptotic theory

for those estimators. As a result, we are able to introduce more efficient esti-

mators, and provide results on the joint limiting distribution of the estimators

for all model parameters.

4.1 Consistency of GMM Estimator for ρ

Let Υ̃gg,n be some S × S symmetric positive semidefinite (moments) weighting

matrix. Then a corresponding GMM estimator for ρg,n can be defined as

ρ̃g,n = ρ̃g,n(Υ̃gg,n) = argmin
ρg:

∑
r∈Ig,ρ |ρg,r|∈[−aρ,aρ]

mρ
g,n(ρg, δ̃g,n)

′Υ̃gg,nm
ρ
g,n(ρg, δ̃g,n)

(16)

with aρ ≥ 1. We note that the objective function for ρ̃g,n remains well defined

even for values of ρg for which In−R∗′
g,n(ρg) is singular, which allows us to take

as the optimization space a compact set containing the true parameter space.

We postulate the following additional assumption to establish consistency of

ρ̃g,n.

Assumption 8 The smallest eigenvalue of Γ′
g,nΓg,n is uniformly bounded away

from zero.

Assumption 9 Υ̃g,n −Υg,n = op(1), where Υg,n is an S × S non-stochastic

symmetric positive definite matrix. The largest eigenvalues of Υg,n are bounded

uniformly from above, and the smallest eigenvalues of Υg,n are bounded uni-

formly away from zero (and, thus, by the equivalence of matrix norms, Υg,n

and Υ−1
g,n are O(1)).

Assumption 8 requires Γ′
g,nΓg,n to be nonsingular and in conjunction with

Assumption 9 ensures that the smallest eigenvalue of Γ′
g,nΥg,nΓg,n is uniformly
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bounded away from zero. This will be sufficient to demonstrate that ρg,n is

identifiable unique w.r.t. the nonstochastic analogue of the objective function

of the GMM estimator17

Emρ
g,n(ρg, δg,n)

′Υg,nEmρ
g,n(ρg, δg,n)

=
[
γg,n − Γg,nrg,n(ρg,n)

]′
Υg,n

[
γg,n − Γg,nrg,n(ρg,n)

]
.

Some additional remarks on this assumption and connections to the GMM lit-

erature are provided in Appendix F in the Online Supplementary Appendix.

Assumption 9 ensures that Υ̃g,n is positive definite with probability trending

to one. Of course, Assumption 9 is satisfied for Υ̃g,n = Υg,n = IS . In this

case, the estimator defined by (16) reduces to a nonlinear least squares estima-

tor. Choices of Υ̃g,n which result in efficient estimates of ρg,n will be discussed

below in conjunction with the asymptotic normality result.

Our basic consistency result for ρ̃g,n is given by the next theorem.

Theorem 1 (Consistency) Let ρ̃g,n = ρ̃g,n(Υ̃g,n) denote the GMM estima-

tor for ρg,n defined by (16). Suppose Assumptions 1-9 hold, and suppose that

n1/2(δ̃g,n − δg,n) = Op(1), then,

ρ̃g,n − ρg,n
p→ 0 as n→ ∞.

4.2 Asymptotic Distribution of GMM Estimator for ρ

The limiting distribution of the GMM estimator ρ̃g,n will generally depend on

the estimator δ̃g,n used to compute estimated disturbances. To define GMM

estimators for δg,n we can employ the moment conditions (12). Leading exam-

ples for limited and full information GMM estimators for δg,n will be the spatial

2SLS and 3SLS estimators defined in the next section. To keep the discussion

general we maintain the following assumption regarding δ̃g,n.

Assumption 10 The estimator δ̃g,n is asymptotically linear in εn in the sense

that

n1/2(δ̃g,n − δg,n) = n−1/2
G∑

h=1

T′
gh,nεh,n + op(1)

with Tgh,n = Fgh,nPgh,n, where Fgh,n and Pgh,n are, respectively, n× pF and

pF × pδg real non-stochastic matrices whose elements are uniformly bounded

17For a definition of identifiable uniqueness, see, e.g., Definition 3.1 in Pötscher and Prucha
(1997).
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in absolute value by a finite constant, and where pδg is the dimension of the

parameter vector δg,n. (We note that under the maintained assumptions the

elements of Tgh,n are again uniformly bounded in absolute value by a finite

constant).

In the Appendix A we show that our spatial 2SLS and 3SLS estimators sat-

isfy this assumption. For 2SLS estimators of the parameters of the, say, first

equation,
∑G

h=1 T
′
1h,nεh,n reduces to T′

11,nε1,n. Also note that under Assump-

tions 4 and 10 we have n1/2(δ̃g,n − δg,n) = Op(1), as is assumed by Theorem

1.

In preparation of our result concerning the asymptotic distribution of the

GMM estimator we next define the matrices that will compose the limiting VC

matrix. In particular, consider the S × qg matrix

Jg,n = −E∂mg,n

∂ρg,n

= Γg,n
∂rg,n(ρn,g)

∂ρg,n

, (17)

and the S × S matrix Ψρρ
gg,n =

(
ψρρ
rs,gg,n

)
where

ψρρ
rs,gg,n = σ2

gg(2n)
−1tr

[(
Ar,n +A′

r,n

) (
As,n +A′

s,n

)]
(18)

+n−1α′
g,r,n

[
G∑

h=1

G∑
l=1

σhlT
′
gh,nTgl,n

]
αg,s,n,

with

αg,r,n = −n−1E
[
Z′

g,n(In −R∗′
g,n(ρg,n))(Ar,n +A′

r,n)(In −R∗
g,n(ρg,n))ug,n

]
.

As shown in the proof of the subsequent theorem, Ψρρ
gg,n is the asymptotic

VC matrix of the sample moment vector mρ
g,n(ρg, δ̃g,n). The second term in

(18) stems from the fact that the sample moment vector depends on estimated

residuals. If the true residuals could be observed, we could take δ̃g,n = δg,n or

Tgh,n = 0, in which case the second term in (18) is zero.

Theorem 2 (Asymptotic Normality) Let ρ̃g,n = ρ̃g,n(Υ̃g,n) denote the GMM

estimator for ρg,n defined by (16). Then given Assumptions 1-10, and given

that λmin(Ψ
ρρ
gg,n) ≥ c∗Ψ > 0, we have

n1/2(ρ̃g,n − ρg,n) =
[
J′
g,nΥg,nJg,n

]−1
J′
g,nΥg,nξg,n + op(1), (19)
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where

ξg,n =


ξg1,n
...

ξgS,n

 = −n−1/2


1
2ε

′
g,n(A1,n +A′

1,n)εg,n +α′
g,1,n

∑G
h=1 T

′
gh,nεh,n

...
1
2ε

′
g,n(AS,n +A′

S,n)εg,n +α′
g,S,n

∑G
h=1 T

′
gh,nεh,n


(20)

and (Ψρρ
gg,n)

−1/2ξg,n
d→ N(0, IS). Furthermore n1/2(ρ̃g,n − ρg,n) = Op(1) and

λmin

[
Ωρρ

gg,n(Υg,n)
]
≥ const > 0 for

Ωρρ
gg,n(Υg,n) = (J′

g,nΥg,nJg,n)
−1J′

g,nΥg,nΨ
ρρ
gg,nΥg,nJg,n(J

′
g,nΥg,nJg,n)

−1.

(21)

The above theorem implies that the difference between the cumulative distri-

bution function of n1/2(ρ̃g,n−ρg,n) and that of N
[
0,Ωρ̃g,n

]
converges pointwise

to zero, which justifies the use of the latter distribution as an approximation of

the former.18

Remark. Clearly,Ωρρ
gg,n((Ψ

ρρ
gg,n)

−1) =
[
J′
g,n(Ψ

ρρ
gg,n)

−1Jg,n

]−1
andΩρρ

gg,n(Υg,n)−
Ωρρ

gg,n((Ψ
ρρ
gg,n)

−1) is positive semi-definite for any Υg,n. Thus, choosing Υ̃g,n as

a consistent estimator for (Ψρρ
gg,n)

−1 leads to the efficient GMM estimator. As

discussed in the proof of the above theorem, the elements of Ψρρ
gg,n are uniformly

bounded in absolute value and, hence, λmax

(
Ψρρ

gg,n

)
≤ c∗∗Ψ for some c∗∗Ψ < ∞.

Since by assumption also 0 < c∗Ψ ≤ λmin(Ψ
ρρ
g,n), it follows that the conditions on

the eigenvalues of Υg,n postulated in Assumption 9 are automatically satisfied

by (Ψρρ
gg,n)

−1.

We next define a consistent estimator for Ωρρ
gg,n(Υg,n). As a preliminary

result we have the following lemma.

Lemma 1 : Suppose Assumptions 1-4 hold. For g, h = 1, . . . , G define

σ̃gh,n = n−1ε̃′g,nε̃h,n (22)

with ε̃g,n = y∗g,n(ρ̃g,n) − Z∗g,n(ρ̃g,n)δ̃g,n and assume δ̃g,n − δg,n = op(1) and

ρ̃g,n − ρg,n = op(1), then σ̃gh,n − σgh = op(1).

We note that in the above lemma ρ̃g,n and δ̃g,n can be any consistent esti-

18This follows from Corollary F4 in Pötscher and Prucha (1997). Compare also the discus-
sion on pp. 86-87 in that reference.
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mators. Now let Γ̃g,n be defined as in (15) and corresponding to (17) define

J̃g,n = Γ̃g,n
∂rg,n(ρ̃n.g)

∂ρg,n

. (23)

Furthermore, corresponding to (18) consider the following estimator Ψ̃ρρ
gg,n =(

ψ̃ρρ
rs,gg,n

)
for Ψρρ

gg,n, where

ψ̃ρρ
rs,gg,n = σ̃2

gg,n(2n)
−1tr

[(
Ar,n +A′

r,n

) (
As,n +A′

s,n

)]
(24)

+n−1α̃′
g,r,n

[
G∑

h=1

G∑
l=1

σ̃hl,nT̃
′
gh,nT̃gl,n

]
α̃g,s,n,

with

α̃g,r,n = −n−1
[
Z′

g,n(In −R∗′
g,n(ρ̃g,n))(Ar,n +A′

r,n)(In −R∗
g,n(ρ̃g,n))ũg,n

]
,

where T̃gh,n is some estimator for Tgh,n, and ũg,n = yg,n − Zg,nδ̃g,n. Given

estimators for Jg,n and Ψρρ
gg,n we can now formulate the following estimator for

Ωρρ
gg,n:

Ω̃ρρ
gg,n(Υ̃g,n) = (J̃′

g,nΥ̃g,nJ̃g,n)
−1J̃′

g,nΥ̃g,nΨ̃
ρρ
gg,nΥ̃g,nJ̃g,n(J̃

′
g,nΥ̃g,nJ̃g,n)

−1.

(25)

The next theorem establishes the consistency of Ψ̃ρρ
g,n and Ω̃ρρ

gg,n.

Theorem 3 (VC Matrix Estimation) Suppose all assumptions of Theorem 2

hold, except for Assumption 9, and suppose that n−1T̃′
gh,nT̃gl,n−n−1T′

gh,nTgl,n =

op(1). Then, provided that ρ̃g,n − ρg,n = op(1),

Ψ̃ρρ
gg,n −Ψρρ

gg,n = op(1), (Ψ̃
ρρ
gg,n)

−1 − (Ψρρ
gg,n)

−1 = op(1),

and Ψρρ
gg,n = O(1), (Ψρρ

gg,n)
−1 = O(1). If furthermore Assumption 9 holds, then,

Ω̃ρρ
gg,n −Ωρρ

gg,n = op(1), (Ω̃
ρρ
gg,n)

−1 − (Ωρρ
gg,n)

−1 = op(1),

and Ωρρ
gg,n = O(1), (Ωρρ

gg,n)
−1 = O(1).

Note that for the first part of the above theorem ρ̃g,n can be any consistent

estimator.
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4.3 Joint Asymptotic Distribution of Estimators for ρ and

δ

In the following, let δn= [δ
′
1,n, . . . , δ

′
G,n]

′ and ρn= [ρ
′
1,n, . . . ,ρ

′
G,n]

′, and let δ̃n= [

δ̃′1,n, . . . , δ̃
′
G,n]

′ and ρ̃n= [ρ̃′
1,n, . . . , ρ̃

′
G,n]

′ denote the corresponding estimators as

defined in the previous subsections. In this section, we derive the joint limiting

distribution of δ̃n and ρ̃n. Knowledge of the joint asymptotic distribution of

all model parameters will then enable the researcher to test for the presence of

network spillovers in any of the dependent variables, explanatory variables, or

disturbances in the system.

As shown in the proof of the next theorem, the joint limiting distribution

of the estimators will depend on the joint limiting distribution of the following

vector of linear and quadratic forms [η′
n, ξ

′
n]

′ with η′
n = [η′

1,n, . . . ,η
′
G,n]

′ and

ξ′n = [ξ′1,n, . . . , ξ
′
G,n]

′, where ηg,n = n−1/2
∑G

h=1 T
′
gh,nεh,n and the ξg,n are

defined in (20). Let

Tn =


T11,n . . . TG1,n

...
. . .

...

T1G,n . . . TGG,n

 ,
then the VC matrix of [η′

n, ξ
′
n]

′ is given by

Ψn =

[
Ψδδ

n Ψδρ
n

Ψδρ′
n Ψρρ

n

]
, (26)

where

Ψρρ
n = Eξnξ

′
n =


Ψρρ

11,n . . . Ψρρ
1G,n

...
. . .

...

Ψρρ
G1,n . . . Ψρρ

GG,n

 ,
Ψδδ

n = Eηnη
′
n = n−1T′

n(Σ⊗ In)Tn,

Ψδρ
n = Eηnξ

′
n = n−1T′

n(Σ⊗ In)Tndiag
G
g=1 [αg,1,n, . . . ,αg,S,n] ,

24



and where the (r, s)-th element of Ψρρ
gh,n is given by

ψρρ
rs,gh,n = σ2

gh,n(2n)
−1tr

[(
Ar,n +A′

r,n

) (
As,n +A′

s,n

)]
+n−1α′

g,r,n

[
G∑

u=1

G∑
v=1

σuv,nT
′
gu,nThv,n

]
αh,s,n.

Analogous to (24) consider the following estimator Ψ̃ρρ
gh,n =

(
ψ̃ρρ
rs,gh,n

)
for

Ψρρ
gh,n, where

ψ̃ρρ
rs,gh,n = σ̃2

gh,n(2n)
−1tr

[(
Ar,n +A′

r,n

) (
As,n +A′

s,n

)]
+n−1α̃′

g,r,n

[
G∑

u=1

G∑
v=1

σ̃uv,nT̃
′
gu,nT̃hv,n

]
α̃h,s,n,

with

α̃g,r,n = −n−1
[
Z′

g,n(In −R∗′
g,n(ρ̃g,n))(Ar,n +A′

r,n)(In −R∗
g,n(ρ̃g,n))ũg,n

]
,

with T̃gh,n being some estimator for Tgh,n, and ũg,n = yg,n − Zg,nδ̃g,n. Next,

consider the estimators

Ψ̃δδ
n = n−1T̃′

n(Σ̃n⊗In)T̃n,

Ψ̃δρ
n = n−1T̃′

n(Σ̃n⊗In)T̃ndiag
G
g=1 ([α̃g,1,n, . . . , α̃g,S,n]) ,

then our estimator for Ψn can be formulated as

Ψ̃n =

[
Ψ̃δδ

n Ψ̃δρ
n

Ψ̃δρ′
n Ψ̃ρρ

n

]
. (27)

We now have the following theorem concerning the joint limiting distribution

of δ̃n − δn and ρ̃n − ρn.

Theorem 4 (Asymptotic Normality) Let ρ̃n= [ρ̃′
1,n, . . . , ρ̃

′
G,n]

′ where ρ̃g,n =

ρ̃g,n(Υ̃g,n) denotes the GMM estimator for ρg,n defined by (16), and let δ̃n= [δ̃′1,n, . . . , δ̃
′
G,n]

′

be an estimator for δ, where δ̃g,n is asymptotically linear in εn. Then given

Assumptions 1-10, n−1T̃′
gh,nT̃kl,n − n−1T′

gh,nTkl,n = op(1), and given that

λmin(Ψn) ≥ c for some c > 0, we have

n1/2

[
δ̃n − δn

ρ̃n − ρn

]
=

[
I 0

0 diagg[
[
J′
g,nΥg,nJg,n

]−1
J′
g,nΥg,n]

][
ηn

ξn

]
+ op(1),
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with

Ψ−1/2
n

[
ηn

ξn

]
d→ N(0, Id),

where d =
∑G

g=1(Gg +Kg + pg + qg). Furthermore, let

Ωn =

[
I 0

0 diagGg=1

(
(J′

g,nΥg,nJg,n)
−1J′

g,nΥg,n

) ]Ψn (28)

×

[
I 0

0 diagGg=1

(
Υg,nJg,n(J

′
g,nΥg,nJg,n)

−1
) ] ,

Ω̃n =

[
I 0

0 diagGg=1

(
(J̃′

g,nΥ̃g,nJ̃g,n)
−1J̃′

g,nΥ̃g,n

) ] Ψ̃n

×

[
I 0

0 diagGg=1

(
Υ̃g,nJ̃g,n(J̃

′
g,nΥ̃g,nJ̃g,n)

−1
) ] .

Then, Ψ̃n − Ψn = op(1), Ψ̃
−1
n − Ψ−1

n = op(1), Ψn = O(1), Ψ−1
n = O(1) and

Ω̃n −Ωn = op(1), Ω̃
−1
n −Ω−1

n = op(1), Ωn = O(1), Ω−1
n = O(1).

Theorem 4 implies that the difference between the joint cumulative distri-

bution function of the estimators of all model parameters n1/2[(δ̃n−δn)
′, (ρ̃n−

ρn)
′]′ and that of N(0,Ωn) converges pointwise to zero so that using the latter

as an approximation of the former is justified.19 The theorem also states that

Ω̃n is a consistent estimator of Ωn. Of course, since the marginal distribution of

a multivariate normal distribution is normal, the above theorem also establishes

the limiting distribution of any subvector of n1/2[(δ̃n − δn)
′, (ρ̃n − ρn)

′]′.

5 Limited and Full Information Two-Step Esti-

mators

In the previous section we developed generic results regarding the asymptotic

properties of two-step GMM estimators for the parameters of model (1). The

results show that the limiting distribution of GMM estimators for ρg,n, which

employ an initial estimator for δg,n in computing estimated residuals, will gen-

erally depend on the limiting distribution of the latter. Thus, establishing the

proper asymptotic theory for specific estimators is “delicate”. In this section,

19This follows from Corollary F4 in Pötscher and Prucha (1997). Compare also the discus-
sion on pp. 86-87 in that reference.
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we define specific limited and full information estimators and provide specific

expressions for their asymptotic VC matrices.

5.1 Definition of Limited Information Estimators

In the following we define, in a sequence of steps, a specific generalized spatial

two-stage least squares (GS2SLS) estimator of δg,n and a GMM estimator of

ρg,n based on GS2SLS residuals. WLOG we consider the estimation of the

parameters of the g-th equation.

Step 1a: 2SLS estimator of δg,n

As a first step, we apply 2SLS to the g-th equation of the untransformed model

(8) using the instrument matrix Hn in Assumptions 5 and 6 to estimate δg,n.

The 2SLS estimator, say δ̃g,n, is then defined as

δ̃g,n = (Z̃′
g,nZg,n)

−1Z̃′
g,nyg,n, (29)

where Z̃g,n = PHnZg,n = (Ỹg,n,Xg,n, Ỹg,n), Ỹg,n = PHnYg,n, Ỹg,n = PHnYg,n,

and where PHn = Hn(H
′
nHn)

−1H′
n.

20

Step 1b: Initial GMM estimator of the vector ρg,n based on 2SLS

residuals

Let ũg,n = ug,n(δ̃g,n) = yg,n − Zg,nδ̃g,n denote the 2SLS residuals of the g-

th equation, and let mρ
g,n(ρg,n, δ̃g,n) denote the corresponding sample moment

vector as defined in (15). Our initial GMM estimator for ρg,n is now defined as

ρ̃g,n = argmin
ρg :

∑
r∈Ig,ρ |ρg,r|∈[−aρ,aρ]

mρ
g,n(ρg,n, δ̃g,n)

′mρ
g,n(ρg,n, δ̃g,n) (30)

with aρ ≥ 1.

Step 2a: GS2SLS estimator of δg,n

Analogous to Kelejian and Prucha (1998), we next compute a generalized spatial

two-stage least squares (GS2SLS) estimator of δg,n, δ̂g,n(ρ̃g,n). This estimator

is defined as the 2SLS estimator of the g-th equation of the spatially Cochrane-

Orcutt transformed model (10) with ρg,n replaced by ρ̃g,n, i.e.,

δ̂g,n = δ̂g,n(ρ̃g,n) = [Ẑ∗g,n(ρ̃g,n)
′Z∗g,n(ρ̃g,n)]

−1Ẑ∗g,n(ρ̃g,n)
′y∗g,n(ρ̃g,n), (31)

20In the previous section we used tilde to denote generic estimators. In the following tilde
is used to denote our initial 2SLS based estimators.
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where y∗g,n(ρ̃g,n) =
[
In −R∗

g,n(ρ̃g,n)
]
yg,n, Z∗g,n(ρ̃g,n) =

[
In −R∗

g,n(ρ̃g,n)
]
Zg,n,

and Ẑ∗g,n(ρ̃g,n) = PHnZ∗g,n(ρ̃g,n). We shall also utilize the following estimator

for the (g, g)-th block of Ψδδ
n (corresponding to δ̂g,n):

Ψ̂δδ
gg,n = σ̂gg[n

−1Ẑ∗g,n(ρ̃g,n)
′Ẑ∗g,n(ρ̃g,n)]

−1,

where σ̂gg,n = n−1ε̂′g,nε̂g,n with ε̂g,n = y∗g,n(ρ̃g,n)− Z∗g,n(ρ̃g,n)δ̂g,n.

Step 2b: Efficient GMM estimator of ρg,n based on GS2SLS residuals

Let ûg,n = yg,n−Zg,nδ̂g,n denote the GS2SLS residuals of the g-th equation,

and let mρ
g,n(ρg,n, δ̂g,n) denote the corresponding sample moment vector as

defined in (15). Then, the corresponding efficient GMM estimator for ρg,n

based on GS2SLS residuals is given by

ρ̂g,n = argmin
ρg :

∑
r∈Ig,ρ |ρg,r|∈[−aρ,aρ]

mρ
g,n(ρg,n, δ̂g,n)

′(Ψ̂ρρ
gg,n)

−1mρ
g,n(ρg,n, δ̂g,n), (32)

where Ψ̂ρρ
gg,n = (ψ̂ρρ

rs,gg,n ) is an estimator of the VC matrix of the limiting dis-

tribution of the normalized sample moments n1/2mρ
g,n(ρg,n, δ̂g,n). Specifically,

we have

ψ̂ρρ
rs,gg,n = (2n)−1σ̂2

gg,ntr
[
(Ar,n +A′

r,n)(As,n +A′
s,n)
]

+α̂′
g,r,nΨ̂

δδ
gg,nα̂g,s,n,

with

α̂g,r,n = −n−1
[
Z′

∗g,n(ρ̃g,n)(Ar,n +A′
r,n)(In −R∗

g,n(ρ̃g,n))ûg,n

]
.

The claim that (Ψ̂ρρ
gg,n)

−1 provides the efficient weighting of the sample moments

will be established by Theorem 5 below.

5.2 Asymptotic Properties of Limited Information Esti-

mators

In this subsection, we derive results concerning the joint limiting distribution

of the GS2SLS estimators ρ̂g,n and δ̂g,n by applying the generic limit theory

developed in Theorem 4. In preparation we first specialize the expressions for
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estimators of the (g, g)-th blocks of Ψδρ
n , Ψρρ

n and Ωδδ
n , Ωδρ

n , Ωρρ
n as implied by

the specific structure of δ̂g,n and ρ̂g,n. More specifically, let

Ω̂δδ
gg,n = Ψ̂δδ

gg,n, Ω̂δρ
gg,n = Ψ̂δρ

gg,nĴg,n, Ω̂ρρ
gg,n =

[
J̃′
g,n

(
Ψ̂ρρ

gg,n

)−1

J̃g,n

]−1

,

with

Ψ̂δρ
gg,n = Ψ̂δδ

gg,n [α̂g,1,n, . . . , α̂g,S,n] ,

Ĵg,n =
(
Ψ̂ρρ

gg,n

)−1

J̃g,n

[
J̃′
g,n

(
Ψ̂ρρ

gg,n

)−1

J̃g,n

]−1

,

and J̃g,n = Jg,n(ρ̃g,n). We now have the following result concerning the joint

asymptotic distribution of δ̂g,n and ρ̂g,n.

Theorem 5 (Joint Asymptotic Normality of ρ̂g,n and δ̂g,n) Suppose Assump-

tions 1-8 hold, and that the smallest eigenvalues of Ψn are bounded away from

zero.21 Then, ρ̂g,n is efficient among the class of GMM estimators based on

GS2SLS residuals, and[
δ̂g,n − δg,n)

ρ̂g,n − ρg,n)

]
∼ AN

[
n−1

(
Ω̂δδ

gg,n Ω̂δρ
gg,n

Ω̂δρ′
gg,n Ω̂ρρ

gg,n

)]
.

In the above theorem the estimators for the asymptotic VC matrix of ρ̂g,n

and δ̂g,n employ ρ̃g,n as an estimator for ρg,n. The theorem continues to hold

if ρ̃g,n is replaced by ρ̂g,n (or any other consistent estimator).

5.3 Definition of Full Information Estimators

In the previous section we discussed GS2SLS estimation, where the parameters

of each equation are estimated separately from the spatially Cochrane-Orcutt

transformed model (10). In the following, we consider full information esti-

mation, where all parameters are estimated jointly from the stacked spatially

Cochrane-Orcutt transformed model (11). In particular, we will consider a gen-

eralized spatial three-stage least squares (GS3SLS) estimator.

Step 3a: GS3SLS estimator of δn

21Explicit expressions for the sub-matrices composing Ψn specialized to ρ̂g,n and δ̂g,n are
given in the proof of the theorem.
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The GS3SLS estimator of δn based on the stacked spatially Cochrane-Orcutt

transformed model (11) is given by

̂̂
δn = [Ẑ′

∗n(ρ̂n)(Σ̂
−1
n ⊗ In)Z∗n(ρ̂n)]

−1Ẑ′
∗n(ρ̂n)(Σ̂

−1
n ⊗ In)

−1y∗n(ρ̂n), (33)

where y∗n(ρ̂n) =
[
y′
∗1,n(ρ̂1,n), . . . ,y

′
∗G,n(ρ̂G,n)

]′
, Z∗n(ρ̂n) = diagGg=1 [Z∗g,n(ρ̂g,n)],

Ẑ∗n(ρ̂n) = diagGg=1

[
Ẑ∗g,n(ρ̂g,n)

]
with Ẑ∗g,n(ρ̂g,n) = PHnZ∗g,n(ρ̂g,n), and where

Σ̂n = (σ̂gh,n) with σ̂gh,n = n−1ε̂′g,nε̂h,n and ε̂g,n = y∗g,n(ρ̂g,n)−Z∗g,n(ρ̂g,n)δ̂g,n.

Below, we shall also utilize the following estimator for Ψδδ
n (corresponding tô̂

δn): ̂̂
Ψ

δδ

n =
[
n−1Ẑ′

∗n(ρ̂n)(Σ̂
−1
n ⊗ In)Ẑ∗n(ρ̂n)

]−1

and we denote the (g, h)-th blocks of Ψδδ
n and

̂̂
Ψ

δδ

n with Ψδδ
gh,n and

̂̂
Ψ

δδ

gh,n,

respectively.

Step 3b: GMM estimator of ρg,n based on GS3SLS residuals

In a final step we compute a further GMM estimator of ρg,n based on the

GS3SLS residuals ̂̂ug,n = yg,n−Zg,n
̂̂
δg,n, where

̂̂
δg,n denotes the g-th component

of
̂̂
δn. Let m

ρ
g,n(ρg,n,

̂̂
δg,n) denote the corresponding sample moment vector as

defined in (15). Then, the corresponding GMM estimator for ρg,n based on

GS3SLS residuals is given by

̂̂ρg,n = argmin
ρg :

∑
r∈Ig,ρ |ρg,r|∈[−aρ,aρ]

mρ
g,n(ρg,n,

̂̂
δg,n)

′
( ̂̂
Ψ

ρρ

gg,n

)−1

mρ
g,n(ρg,n,

̂̂
δg,n),

(34)

where
̂̂
Ψ

ρρ

gg,n is an estimator of the VC matrix Ψρρ
gg,n of the limiting distribution

of the normalized sample moments n1/2mρ
g,n(ρg,n,

̂̂
δg,n). Towards presenting

the asymptotic distribution of ̂̂ρ1,n, . . . ,
̂̂ρG,n we need estimators not only for

the (g, g)-th block of Ψρρ
n , but more generally for the (g, h)-th block Ψρρ

gh,n. Let̂̂
Ψ

ρρ

n and
̂̂
Ψ

ρρ

gh,n denote the estimators for Ψρρ
n and Ψρρ

gh,n, respectively, then the

(r, s)-th element of
̂̂
Ψ

ρρ

gh,n is defined as

̂̂
ψ
ρρ

rs,gh,n = (2n)−1σ̂2
gh,ntr

[
(Ar,n +A′

r,n)(As,n +A′
s,n)
]

(35)

+ ̂̂α′
g,r,n

̂̂
Ψ

δδ

gh,n
̂̂αh,s,n,
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with ̂̂αg,r,n = −n−1
[
Z′

g,n(In −R∗′
g,n(ρ̂g,n))(Ar,n +A′

r,n)(In −R∗
g,n(ρ̂g,n))̂̂ug,n

]
.

5.4 Asymptotic Properties of Full Information Estimators

In this subsection, we derive results concerning the joint limiting distribution

of the GS3SLS estimators ̂̂ρn and
̂̂
δn by applying again the generic limit theory

developed in Theorem 4. In preparation, we first specialize the expressions for

estimators of Ψδρ
n , Ψρρ

n and Ωδδ
n , Ωδρ

n , Ωρρ
n as implied by the specific structure

of ̂̂ρn and
̂̂
δn. More specifically, let

̂̂
Ω

δδ

n =
̂̂
Ψ

δδ

n ,
̂̂
Ω

δρ

n =
̂̂
Ψ

δρ

n diag
G
g=1

(̂̂
Jg,n

)
,

̂̂
Ω

ρρ

n = diagGg=1

(̂̂
J
′

g,n

) ̂̂
Ψ

ρρ

n diag
G
g=1

(̂̂
Jg,n

)
,

with

̂̂
Ψ

δρ

n =
̂̂
Ψ

δδ

n diag
G
g=1

(
[ ̂̂αg,1,n, . . . , ̂̂αg,S,n]

)
,

̂̂
Jg,n =

( ̂̂
Ψ

ρρ

gg,n

)−1

Ĵg,n

[
Ĵ′
g,n

( ̂̂
Ψ

ρρ

gg,n

)−1

Ĵg,n

]−1

,

and with Ĵg,n = Jg,n(ρ̂g,n). The next theorem establishes the joint limiting

distribution of ̂̂ρn and
̂̂
δn.

Theorem 6 (Joint Asymptotic Normality of ̂̂ρn and
̂̂
δn) Suppose Assumptions

1-8 hold, and that the smallest eigenvalues of Ψn are bounded away from zero.22

Then, [
(
̂̂
δn − δn)

(̂̂ρn − ρn)

]
∼ AN

n−1

 ̂̂
Ω

δδ

n
̂̂
Ω

δρ

n̂̂
Ω

δρ′

n
̂̂
Ω

ρρ

n

 .
The estimators ̂̂ρg,n based on GS3SLS residuals are efficient within their class.

In the above theorem the estimators for the asymptotic VC matrix of ̂̂ρn

and
̂̂
δn employ ρ̂g,n as an estimator for ρg,n. The theorem continues to hold if

ρ̂g,n is replaced by ̂̂ρg,n (or any other consistent estimator).

22Explicit expressions for the sub-matrices Ψn are given in the proof of the theorem.
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6 Limited and Full Information One-Step Esti-

mators

In the following we discuss the one-step analogues to the two-step estimators

considered in the previous section. For simplicity we assume the availability of

a consistent estimator for Σ, say Σ̃n = (σ̃gh,n).

Towards defining our one-step limited information GMM estimator, consider

the stacked moment vector

mg,n(ρg,n, δg,n) =

[
mL

g,n(ρg,n, δg,n)

mQ
g,n(ρg,n, δg,n)

]
,

wheremL
g,n(ρg,n, δg,n) = mδ

g,n(ρg,n, δg,n) andmQ
g,n(ρg,n, δg,n) = mρ

g,n(ρg,n, δg,n)

are the vectors of linear and quadratic sample moments for the g-th equation

as defined in (12) and (13).23 Let

ΨLL
gg,n = σgg,n

[
n−1H′

nHn

]
and ΨQQ

gg,n = σ2
gg,nK

QQ
n ,

with KQQ
n = (kQQ

rs,n) and

kQQ
rs,n = (2n)−1tr

[
(Ar,n +A′

r,n)(As,n +A′
s,n)
]
.

Then, Emg,n(ρg,n, δg,n) = 0 and

V C(n1/2mg,n(ρg,n, δg,n)) =

[
ΨLL

gg,n 0

0 ΨQQ
gg,n

]
.

Let Ψ̃LL
gg,n and Ψ̃QQ

gg,n denote the corresponding estimators, where σgg,n is re-

placed by some consistent estimator σ̃gg,n. Then the one-step limited informa-

tion GMM estimator is defined as

(δ̂og,n, ρ̂
o
g,n) = argmin

ρg,n,δg,n

mg,n(ρg,n, δg,n)
′

[
Ψ̃LL

gg,n 0

0 Ψ̃QQ
gg,n

]−1

mg,n(ρg,n, δg,n).

(36)

For ease of distinction from the two-step limited information estimators de-

fined in the previous section we refer to this estimator as the Linear-Quadratic

23The purpose of switching the superscripts from δ and ρ to L for “linear” and Q for
“quadratic” is to emphasize that for one-step estimators both moment vectors are used for
estimating both ρg,n and δg,n.
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Generalizes Spatial 2SLS (LQ-GS2SLS) estimator. A simple adaptation of the

methodology used to derive the limiting distribution of two-step estimators

yields [
(δ̂og,n − δg,n)

(ρ̂o
g,n − ρg,n)

]
∼ AN

[
0, n−1Ω̂o

g,n

]
.

with Ω̂o
g,n = (Ŝo

g,n)
−1 and

Ŝo
g,n =

[
Ŝo,LL
g,n Ŝo,LQ

g,n

Ŝo,QL
g,n Ŝo,QQ

g,n

]
,

Ŝo,LL
g,n = σ̂o−1

gg,n[n
−1Ẑ∗g,n(ρ̂

o
g,n)

′Ẑ∗g,n(ρ̂
o
g,n)] + σ̂o−2

gg,nα̂
o
g,n(K

QQ
n )−1α̂o′

g,n,

Ŝo,LQ
g,n = Ŝo,QL′

g,n = −σ̂o−2
gg,nα̂

o
g,n(K

QQ
n )−1Jg,n(ρ̂

o
g,n),

Ŝo,QQ
g,n = σ̂o−2

gg,nJ
′
g,n(ρ̂

o
g,n)

(
KQQ

n

)−1
Jg,n(ρ̂

o
g,n),

where σ̂o
gg,n = n−1ε̂o′g,nε̂

o
g,n with ε̂og,n = y∗g,n(ρ̂

o
g,n)−Z∗g,n(ρ̂

o
g,n)δ̂

o
g,n, and where

α̂o
g,n = [α̂o

g,1,n, . . . , α̂
o
g,S,n] with α̂o

g,r,n = −n−1
[
Z′

∗g,n(ρ̂
o
g,n)(Ar,n +A′

r,n)(In −R∗
g,n(ρ̂

o
g,n))û

o
g,n

]
and ûo

g,n = yg,n − Zg,nδ̂
o
n.

The one-step estimator defined in (36) is efficient among GMM estimators

based on the moment conditions Emg,n(ρg,n, δg,n) = 0. However, a comparison

of the above expressions for the asymptotic VC matrix of the one-step estimator

with those for the two-step estimator given by Theorem 5 reveals that in the

case where Zg,n only contains exogenous variables, and thus αg,n = 0, both

estimators have the same limiting distribution.

Our setup contains as an important special case models without spatial lags

in the disturbances (i.e., where ρg,n = 0 is known). Obviously the LQ-GS2SLS

estimator, which combines both linear and quadratic moment conditions, re-

mains well defined in this case, and we obtain (δ̂og,n−δg,n) ∼ AN
[
0, n−1(Ŝo,LL

g,n )−1
]

as a special case. The use of quadratic moment conditions may be especially

beneficial in cases where identification by the linear moments is weak; see, e.g.,

Kuersteiner and Prucha (2020) for a recent discussion.

Towards defining our one-step full information GMM estimator consider the
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stacked sample moment vector

mn(ρn, δn) =



mL
1,n(ρ1,n, δ1,n)

...

mL
G,n(ρG,n, δG,n)

mQ
1,n(ρ1,n, δ1,n)

...

mQ
G,n(ρG,n, δG,n)


.

Let

ΨLL
n = Σn ⊗

[
n−1H′

nHn

]
,

ΨQQ
n =


ΨQQ

11,n . . . ΨQQ
1G,n

...
. . .

...

ΨQQ
G1,n . . . ΨQQ

GG,n

 = ΣSQ,n ⊗KQQ
n ,

with ΨQQ
gh,n = σ2

gh,nK
QQ
n and ΣSQ,n = (σ2

gh,n). Then, Em(ρn, δn) = 0 and

V C(mn(ρn, δn)) = n−1

[
ΨLL

n 0

0 ΨQQ
n

]
.

Let Ψ̂LL
n and Ψ̂QQ

n denote the corresponding estimators where σgh,n is replaced

by some consistent estimator σ̃gh,n. Then the one-step full information GMM

estimator is defined as

(
̂̂
δ
o

n,
̂̂ρo

n) = argmin
ρn,δn

mn(ρn, δn)
′

[
Ψ̂LL

n 0

0 Ψ̂QQ
n

]−1

mn(ρn, δn).

For ease of distinction from the two-step full information estimators defined in

the previous section we refer to this estimator as the Linear-Quadratic Gen-

eralizes Spatial 3SLS (LQ-GS3SLS) estimator. Again, a simple adaptation of

the methodology used to derive the limiting distribution of two-step estimators

yields [ ̂̂
δ
o

n − δn)̂̂ρo

n − ρn)

]
∼ AN

[
n−1 ̂̂Ωo

n

]
,
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with
̂̂
Ω

o

n = (
̂̂
S
o

n)
−1 and

̂̂
S
o

n =

 ̂̂
S
LL

n
̂̂
S
LQ

n̂̂
S
QL

n
̂̂
S
QQ

n

 ,
̂̂
S
o,LL

n = n−1Ẑ′
∗n(
̂̂ρo

n)[(
̂̂
Σ

o

n)
−1 ⊗ In]Ẑ∗n(̂̂ρo

n)

+diagGg=1[
̂̂αo

g,n][(
̂̂
Σ

o

SQ,n)
−1 ⊗ (KQQ

n )−1]diagGg=1[
̂̂αo′
g,n],

Ŝo,LQ
g,n = Ŝo,LQ′

g,n = −diagGg=1[
̂̂αo

g,n][(
̂̂
Σ

o

SQ,n)
−1 ⊗ (KQQ

n )−1]diagGg=1[Jg,n(̂̂ρo

n)],

Ŝo,QQ
g,n = diagGg=1[J

′
g,n(

̂̂ρo

n)][(
̂̂
Σ

o

SQ,n)
−1 ⊗ (KQQ

n )−1]diagGg=1[Jg,n(̂̂ρon)],
where

̂̂
Σ

o

n = (̂̂σo

gh,n) and
̂̂
Σ

o

SQ,n = (̂̂σo2

gh,n) with
̂̂σo

gh,n = n−1̂̂εo′g,n̂̂εoh,n and ̂̂εog,n =

y∗g,n(̂̂ρo

g,n)− Z∗g,n(̂̂ρo

g,n)
̂̂
δ
o

g,n, and where ̂̂αo

g,n = [ ̂̂αo

g,1,n, . . . ,
̂̂αo

g,S,n] with

̂̂αo

g,r,n = −n−1
[
Z′

∗g,n(
̂̂ρo

g,n)(Ar,n +A′
r,n)(In −R∗

g,n(
̂̂ρo

g,n))
̂̂ug,n

]
and ̂̂uo

g,n = yg,n − Zg,n
̂̂
δ
o

n.

A comparison of the above expression for the asymptotic VC matrix of the

one-step full information estimator with that for the two-step estimator given

by Theorem 6 reveals that in the case where the Zg,n only contain exogenous

variables, and thus αg,n = 0, both estimators have the same limiting distribu-

tion.

7 Concluding Remarks

This paper develops estimation methodologies for a cross-sectional simultaneous

equation model in G variables, where simultaneity stems from interdependencies

in the G variables as well as from network interdependencies. Taking guidance

from the spatial literature network interdependencies are modeled in the form of

weighted averages. For simplicity, and consistent with the spatial literature, we

refer to those weighted averages as spatial lags. We allow for higher order spatial

lags in the endogenous variables, exogenous variables and disturbances. As a

consequence, the model provides for significant flexibility in modeling network

effects.

The paper develops an estimation theory for both limited and full informa-
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tion generalized method of moments estimators, which utilize both linear and

quadratic moment conditions. We consider both two-step and one-step estima-

tors. An important aim in specifying our estimators was that the estimators

remain feasible even for very large data sets and general weights matrices.

To explore the small sample properties of our estimators we conducted a

Monte Carlo study. The details of the design and the results of that study are

given in Appendix G in the Online Supplementary Appendix. In general, the

results are encouraging. We consider scenarios where the parameters are well

identified by the linear moment conditions as well as scenarios where they are

not. The study includes the maximum likelihood (ML) estimator for compari-

son. In the well identified case the biases of all considered estimators are fairly

small. As expected, the ML estimator has the smallest root mean squared error

(RMSE). However, in general, the ML estimator only dominates the GS3SLS

estimator slightly, and the GS3SLS estimator dominates the GS2SLS estima-

tor. The differences in RMSE are the most pronounced for the estimates of

the autoregressive parameters in the disturbance process. For the scenarios

where identification by linear moment conditions alone is weak, the GS2SLS

and GS3SLS estimators can, as expected, be substantially biased. In these sce-

narios the LQ-GS2SLS and LQ-GS3SLS estimators can greatly outperform the

GS2SLS and GS3SLS estimators. However, for the well identified scenarios the

benefit of combining linear and quadratic moment conditions seems limited.

We expect the model will be helpful for empirical research in both macro and

micro economic settings, as well as areas outside of economics. As illustrated

in the paper, one potential application is for modeling social interactions in

different activities; e.g., the level of different physical activities among groups of

friends connected via an activity tracker such as Fitbit. Suggestions for future

research include an extension of the methodology to panel data, as well as an

extension that allows for measurement errors in the data.
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A Appendix: Preliminary Results

In this appendix we collect some preliminary results. All proofs are relegated

to the Online Supplementary Appendix.

A.1 Asymptotic Linearity of S2SLS, GS2SLS and GS3SLS

Assumption 10 postulates that the estimators of the regression parameters are

asymptotically linear. In the following we show that the S2SLS, GS2SLS and

GS3SLS estimators are indeed asymptotically linear.

Lemma A.1 : Let An = (aij,n) be some mn ×mn real matrix where the row

sums of the absolute elements are bounded uniformly in n by some finite con-

stant. Let µn = (µ1,n, . . . , µmn,n) and ηn = (η1,n, . . . , ηmn,n)
′ be some mn × 1

random vectors with supn maxmn
i=1E |µi,n|p < ∞ and supn maxmn

i=1E |ηi,n|p <

∞ for some p > 1, and let ξn = (ξ1,n, . . . , ξmn,n)
′ = µn + Anηn. Then

supn maxmn
i=1E |ξi,n|p <∞.

Lemma A.2 : Suppose Assumptions 1-4 hold. Let Zn = [Yn,Xn,Yn], then

E
∣∣zij,n∣∣4 ≤ C <∞, (A.1)

where C does not depend on i,j and n.

Lemma A.3 : Suppose Assumptions 1-4 hold. Let Zn = [Yn,Xn,Yn] and

let An = (aij,n) be some n × n matrix, where the row and column sums of the

absolute elements are bounded uniformly in n by some finite constant. Then

n−1u′
h,nAnug,n = Op(1), n

−1ZnAnug,n = Op(1) and n
−1ZnAnZn = Op1) and

furthermore

n−1ZnAnug,n − n−1EZnAnug,n = op(1).

Lemma A.4 : Suppose Assumptions 1-4, 5 and 6 hold. Consider the S2SLS

estimator

δ̃g,n = (Ẑ′
g,nZg,n)

−1Ẑ′
g,nyg,n,
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where Ẑg,n = PHnZg,n and PHn = Hn(H
′
nHn)

−1H′
n. Then,

(a) n1/2(δ̃g,n − δg,n) = n−1/2T′
gg,nεg,n + op(1) with Tgg,n = Fgg,nPgg,n and

where

Pgg = Q−1
HHQHZ,g[Q

′
HZ,gQ

−1
HHQHZ,g]

−1,

Fgg,n =
(
In −R∗′

g,n

)−1
Hn.

(b) n−1/2T′
gg,nεg,n = Op(1).

(c) Pgg is a finite matrix and P̃gg,n −Pgg = op(1) for

P̃gg,n = (n−1H′
nHn)

−1(n−1H′
nZg,n)×

[(n−1Z′
g,nHn)(n

−1H′
nHn)

−1(n−1H′
nZg,n)]

−1.

(d) λmin(n
−1T′

gg,nTgg,n) ≥ c for some c > 0 for all large n.

Lemma A.5 : Suppose Assumptions 1-4, 5 and 6 hold. Consider the GS2SLS

estimator

δ̂g,n = [Ẑ∗g,n(ρ̂g,n)
′Z∗g,n(ρ̂g,n)]

−1Ẑ∗g,n(ρ̂g,n)
′y∗g,n(ρ̂g,n),

where Ẑ∗g,n(ρ̂g,n) = PHn
Z∗g,n(ρ̂g,n), where ρ̂g,n is any consistent estimator for

ρg,n. Then,

(a) n1/2[δ̂g,n − δg,n] = n−1/2T∗′
gg,nεg,n + op(1) with T∗

gg,n = F∗
gg,nP

∗
gg,n and

where

P∗
gg,n = Q−1

HHQHZ,g∗(ρg,n)[Q
′
HZ,g∗(ρg,n)Q

−1
HHQHZ,g∗(ρg,n)]

−1

F∗
gg,n = Hn.

(b) n−1/2T∗′
gg,nεg,n = Op(1).

(c) P∗
gg,n = Op(1) and P̃∗

gg,n −P∗
gg,n = op(1) for

P̃∗
gg,n = (n−1H′

nHn)
−1(n−1H′

nZ∗g,n(ρ̂g,n))×[
(n−1Z′

∗g,n(ρ̂g,n)Hn)(n
−1H′

nHn)
−1(n−1H′

nZ∗g,n(ρ̂g,n))
]−1

.

(d) λmin(n
−1T∗′

gg,nT
∗
gg,n) ≥ c for some c > 0 for large n.
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Lemma A.6 : Suppose Assumptions 1-4, 5-6 hold. Consider the GS3SLS

estimator

̂̂
δn =

[
Ẑ′

∗n(ρ̂n)(Σ̂
−1
n ⊗ In)Z∗n(ρ̂n)

]−1

Ẑ′
∗n(ρ̂n)(Σ̂

−1
n ⊗ In)y∗n(ρ̂n),

where Ẑ∗n(ρ̂n) = diagGg=1

[
Ẑ′

∗g,n(ρ̂g,n)
]
with Ẑ∗g,n(ρ̂g,n) = PHn

Z∗g,n(ρ̂n), and

ρ̂n =
[
ρ̂′
1,n, . . . , ρ̂

′
G,n

]′
is any consistent estimator for ρ̂n and Σ̂n is any con-

sistent estimator for Σ. Then

(a) n1/2[
̂̂
δn − δn] = n−1/2T∗∗′

n εn + op(1) with T∗∗
n = F∗∗

n P∗∗
n , and where

P∗∗
n =

[
Σ−1 ⊗Q−1

HH

]
diag [QHZ,g∗(ρg,n)]

×
{
diag

[
Q′

HZ,g∗(ρg,n)
] [

Σ−1 ⊗Q−1
HH

]
diag [QHZ,g∗(ρg,n)]

}−1

and

F∗∗
n = IG ⊗Hn.

(b) n−1/2T∗∗′
n εn = Op(1).

(c) P∗∗
n = Op(1) and P̃∗∗

n −P∗∗
n = op(1) for

P̃∗∗
n =

[
Σ̂−1

n ⊗ (n−1H′
nHn)

−1
]
diag

[
n−1H′

nZ∗g,n(ρ̂g,n)
]

×
[
n−1Ẑ′

∗n(ρ̂n)(Σ̂
−1
n ⊗ In)Z∗n(ρ̂n)

]−1

.

(d) λmin(n
−1T∗∗′

n T∗∗
n ) ≥ c for some c > 0 for large n.

A.2 Auxiliary Results for Linear Quadratic Forms

In the following we establish some auxiliary results on the relationship between

linear and quadratic forms based on some n × 1 disturbance vector un and

corresponding forms based on a predictor ũn.

Assumption A.1 For n ≥ 1 the n× 1 disturbance vector un is generated by

Rn
n×n

un
n×1

= en
n×1

,

where Rn is a non-stochastic nonsigular n× n matrix, and the row and column

sums of the absolute elements of Rn and R−1
n are bounded uniformly by some

finite constant, and the innovations en = (e1,n, . . . , en,n)
′ have the following
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properties: For each n ≥ 1 the random variables e1,n, . . . , en,n are totally inde-

pendent with Eei,n = 0, E(e2i,n) = σ2 > 0 , and sup1≤i≤n,n≥1E |ei,n|4+υ
< ∞

for some υ > 0.

Assumption A.2 : The predictor ũn for un satisfies that

ũn − un = Dn∆n,

where Dn = (dij,n) is an n × p∆ random matrix and ∆n is a p∆ × 1 random

vector. Furthermore supn sup1≤i≤n,1≤,j≤p∆
E |dij,n|2+δ

< ∞ for some δ > 0,

and n1/2 ∥∆n∥ = Op(1).

Assumption A.3 For any n× n real matrix A∗
n, whose row and column sums

are bounded uniformly in absolute value,

n−1D′
nA

∗
nun − n−1ED′

nA
∗
nun = op(1).

Remark: The above assumptions are formulated in a general fashion, so that

the results on the properties of linear quadratic forms established below can also

be utilized in a variety of contexts. For an interpretation of the results specific

to this paper, suppose that un corresponds to the disturbance term of the g-

th equation of the model defined by (1)-(8). Then the quantities considered

in Assumptions A.1-A.3 should be interpreted as un = ug,n, Dn = − Zg,n,

Rn = I −
∑

r∈Ig,ρ
ρg,r,nMr,n, en = εg,n, and ∆n = δ̃g,n − δg,n, where δ̃g,n is

some estimator for the parameter vector δg,n. Observe that under Assumptions

1-4, and given δ̃g,n a n1/2-consistent estimator, these quantities clearly satisfy

Assumptions A.1-A.3 in light of Lemmata A.1 and A.2.

Lemma A.7 : Let A∗
n be an n×n real matrix whose row and column sums are

bounded uniformly in absolute value. Suppose Assumptions A.1 and A.2 hold,

then:

(a) n−1E |u′nA∗
nun| = O(1), var(n−1u′nA

∗
nun) = o(1) and

n−1ũ′nA
∗
nũn − n−1Eu′nA

∗
nun = op(1).

(b) n−1E |D′
nA

∗
nun| = O(1), and

n−1D′
nA

∗
nũn − n−1D′

nA
∗
nun = op(1).
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(c) If furthermore Assumption A.3 holds, then

n−1/2ũ′nA
∗
nũn = n−1/2u′nA

∗
nun +α∗′

n n
1/2∆n + op(1)

with α∗
n = n−1ED′

n(A
∗
n +A∗′

n )un. (Of course, in light of (a) and (b) we

have α∗
n = O(1) and n−1D′

n(A
∗
n +A∗′

n )ũn −α∗
n = op(1).)

We next state an additional assumption regarding ∆n, which is satisfied

by the various IV estimators considered in the paper; compare Lemmata A.4-

A.6. This assumption then permits a specialization of the r.h.s. expression for

n−1/2ũ′nA
∗
nũn given in Lemma A.7(c) for the case where A∗

n = R′
nAnRn, which

will be helpful for deriving its limiting distribution. Note that given Assumption

A.1 and A∗
n = R′

nAnRn we have u′nA
∗
nun = u′nR

′
nAnRnun = e′nAnen.

Assumption A.4 (a) The vector of innovations εn = [ε′1,n, . . . , ε
′
G,n]

′ satisfies

Assumption 4. (b) The estimator ∆n is asymptotically linear in the sense that

n1/2∆n = n−1/2
G∑

h=1

T′
h,nεh,n + op(1),

with Th,n = Fh,nPh,n where the Fh,n = (fhis,n) are n × pF dimensional

real nonstochastic matrices with supn n
−1
∑n

i=1 |fhis,n|
η
< ∞ with η > 2 for

h = 1, . . . , G, s = 1, . . . , pF , and Ph,n = (phkl,n) are pF × p∆ dimensional real

nonstochastic matrices whose elements are uniformly bounded in absolute value.

We now have the following specialization of Lemma A.7(c).

Lemma A.8 : Suppose Assumptions A.1-A.3 hold where ∆n is asymptotically

linear satisfying Assumption A.4, and suppose en = εg,n. Furthermore, let An

be an n × n real matrix whose row and column sums are bounded uniformly in

absolute value.

(a) Then

n−1/2ũ′nR
′
nAnRnũn = n−1/2ε′g,nAnεg,n + n−1/2

G∑
h=1

a′h,nεh,n + op(1),

where ah,n = (ah1,n, . . . , ahn,n)
′ = Th,nαn with αn = n−1ED′

nR
′
n(An +

A′
n)Rnun. Furthermore, supn n

−1
∑n

i=1 |ahi,n|
η
<∞ for η > 2.
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(b) If furthermore the diagonal elements of An are zero, then

E

[
n−1/2ε′g,nAnεg,n + n−1/2

G∑
h=1

a′h,nεh,n

]
= 0,

var

[
n−1/2ε′g,nAnεg,n + n−1/2

G∑
h=1

a′h,nεh,n

]

= n−1σ2
ggtr [An(An +A′

n)] + n−1
G∑

h=1

G∑
l=1

σhla
′
h,nal,n.

B Appendix: Proofs for Section 4

Proof of Theorem 1: The existence and measurability of ρ̃g,n is assured by,

e.g., Lemma 3.4 in Pötscher and Prucha (1997). The objective function of the

weighted nonlinear least squares estimator and its corresponding non-stochastic

counterpart are given by, respectively,

Rn(ω,ρg) = mρ
g,n(ρg, δ̃g,n)

′Υ̃g,nm
ρ
g,n(ρg, δ̃g,n)

=
[
Γ̃g,nrg,n(ρg)− γ̃g,n

]′
Υ̃g,n

[
Γ̃g,nrg,n(ρg)− γ̃g,n

]
Rn(ρg) =

[
Γg,nrg,n(ρg)− γn

]′
Υn

[
Γg,nrg,n(ρg)− γn

]
,

where the quantities appearing in the above equation are defined before the

theorem in the text. To prove the consistency of ρ̃g,n we show that the con-

ditions of, e.g., Lemma 3.1 in Pötscher and Prucha (1997) are satisfied for the

problem at hand. We first show that ρg,n is an identifiably unique sequence

of minimizers of Rn. Observe that Rn(ρg) ≥ 0 and that Rn(ρg,n) = 0, since

γn = Γg,nrg,n(ρg,n) by (14). Utilizing Assumptions 8 and 9 we get
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Rn(ρg)−Rn(ρg,n) = Rn(ρg)

=
[
Γg,nrg,n(ρg)− Γg,nrg,n(ρg,n)

]′
Υn

[
Γg,nrg,n(ρg)− Γg,nrg,n(ρg,n)

]
=

[
rg,n(ρg)− rg,n(ρg,n)

]′
Γ′
g,nΥnΓg,n

[
rg,n(ρg)− rg,n(ρg,n)

]
≥ λmin(Υn)λmin(Γ

′
g,nΓg,n)

[
rg,n(ρg)− rg,n(ρg,n)

]′ [
rg,n(ρg)− rg,n(ρg,n)

]
≥ λ∗

q∑
s=1

[
ρg,s − ρg,s,n

]2
for some λ∗ > 0. Hence, for every ε> 0 and n we have

inf
ρg :

∑
r∈Ig,ρ |ρg,r|∈[−aρ,aρ] and ∥ρg−ρg,n∥≥ε

[Rn(ρg)−Rn(ρg,n)]

≥ inf
ρg :

∑
r∈Ig,ρ |ρg,r|∈[−aρ,aρ] and ∥ρg−ρg,n∥≥ε

λ∗
∑

r∈Ig,ρ

[
ρg,r − ρg,r,n

]2
= λ∗ε

2 > 0,

which proves that ρg,n is identifiably unique. Next let Φn = [Γn,−γn] and
Φ̃n = [Γ̃n,−γ̃n], then∣∣Rn(ω,ρg)−Rn(ρg)

∣∣
=

∣∣∣[rg,n(ρg)
′, 1
] [

Φ̃′
nΥ̃nΦ̃n −Φ′

nΥnΦn

] [
rg,n(ρg)

′, 1
]′∣∣∣

≤
∥∥∥Φ̃′

nΥ̃nΦ̃n −Φ′
nΥnΦn

∥∥∥ ∥∥[rg,n(ρg)
′, 1]
∥∥2

≤
∥∥∥Φ̃′

nΥ̃nΦ̃n −Φ′
nΥnΦn

∥∥∥{1 + [2q + q(q − 1)/2] a4ρ
}
.

Next observe that the elements of Φn and Φ̃n are all of the form n−1Eu′
nAnun

and n−1ũ′
nAnũn, where the row and column sums of An are bounded uni-

formly in absolute value. Recall that ug,n =
[∑

r∈Ig,ρ
ρg,r,nMr,n

]
ug,n + εg,n

and observe that ũg,n − ug,n = −Zg,n(δ̃g,n − δg,n). By Assumption 1 and 2

the row and column sums of the absolute elements of
∑

r∈Ig,ρ
ρg,r,nMr,n and[∑

r∈Ig,ρ
ρg,r,nMr,n

]−1

are bounded in absolute value by some finite constant.

By Assumptions 4 the elements of εg,n are totally independent with zero mean,

positive variance and finite 4 + υ absolute moments for some υ > 0. Further-

more, observe that by Lemma A.2 the fourth absolute moments of the elements

of Zg,n are uniformly bounded by a finite constant and n1/2(δ̃g,n−δg,n) = Op(1).

It now follows immediately from Lemma A.7(a) that Φ̃n − Φn
p→ 0, that the

elements of Φn are O(1) and, consequently, that the elements of Φ̃n are Op(1).
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The elements of Υ̃n and Υn have the analogous properties in light of condi-

tion (b) in the theorem. Given this it follows from the above inequality that

Rn(ω,ρg) − Rn(ρg) converges to zero uniformly over the optimization space,

i.e.,

sup
ρg:

∑
r∈Ig,ρ |ρg,r|∈[−aρ,aρ]

∣∣Rn(ω,ρg)−Rn(ρg)
∣∣

≤
∥∥∥Φ̃′

nΥ̃nΦ̃n −Φ′
nΥnΦn

∥∥∥{1 + [2q + q(q − 1)/2] a4ρ
} p→ 0

as n → ∞. The consistency of ρ̃g,n now follows directly from Lemma 3.1 in

Pötscher and Prucha (1997). ■

Proof of Theorem 2: We have shown in Theorem 1 that the GMM estimator

ρ̃g,n defined in (16) is consistent. Apart on a set, whose probability tends to

zero, the estimator satisfies the following first-order condition

mρ
g,n(ρ̃g,n, δ̃g,n)

′Υ̃g,n

∂mρ
g,n(ρ̃g,n, δ̃g,n)

∂ρg
= 0.

Substituting the mean value theorem expression

mρ
g,n(ρ̃g,n, δ̃g,n) = mρ

g,n(ρg,n, δ̃g,n) +
∂mρ

g,n(ρ̌g,n, δ̃g,n)

∂ρg
(ρ̃g,n − ρg,n),

where ρ̌g,n is some between value, into the first-order condition yields

∂mρ
g,n(ρ̃g,n, δ̃g,n)

∂ρ′
g

Υ̃g,n

∂mρ
g,n(ρ̌g,n, δ̃g,n)

∂ρg
n1/2(ρ̃g,n − ρg,n) (B.1)

= −
∂mρ

g,n(ρ̃g,n, δ̃g,n)

∂ρ′
g

Υ̃g,nm
ρ
g,n(ρg,n, δ̃g,n).

Observe that
∂mρ

g,n(ρg, δ̃g,n)

∂ρg
= −Γ̃g,n

∂rg,n(ρg)

∂ρg
(B.2)
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and consider

Ξ̃g,n =
∂mρ

g,n(ρ̃g,n, δ̃g,n)

∂ρ′
g

Υ̃g,n

∂mρ
g,n(ρ̌g,n, δ̃g,n)

∂ρg
(B.3)

=
∂rg,n(ρ̃g,n)

∂ρ′
g

Γ̃′
g,nΥ̃g,nΓ̃g,n

∂rg,n(ρ̌g,n)

∂ρg
,

Ξg,n =
∂rg,n(ρg,n)

∂ρ′
g

Γ′
g,nΥg,nΓg,n

∂rg,n(ρg,n)

∂ρg
.

In proving Theorem 1 we have demonstrated that Γ̃g,n−Γg,n
p→ 0 and that the

elements of Γ̃g,n and Γg,n are Op(1) and O(1), respectively. By Assumption 9

we have Υ̃g,n −Υg,n = op(1) and also that the elements of Υ̃g,n and Υg,n are

Op(1) and O(1), respectively. Since ρ̃g,n and ρ̌g,n are consistent for ρg,n, and

the elements of ρg,n are bounded in absolute value, clearly

Ξ̃g,n −Ξg,n
p→ 0 (B.4)

as n → ∞, and furthermore Ξ̃g,n = Op(1) and Ξg,n = O(1). In particular

λmax(Ξg,n) ≤ λ∗∗Ξ where λ∗∗Ξ is some finite constant. Observe that in light of

Assumptions 8 and 9 we have

λmin(Ξg,n) ≥ λmin(Υg,n)λmin(Γ
′
g,nΓg,n)λmin

{
∂rg,n(ρg,n)

∂ρ′
g

∂rg,n(ρg,n)

∂ρg

}
≥ λ∗Ξ

for some λ∗Ξ > 0, observing that

λmin

{
∂rg,n(ρg,n)

∂ρ′
g

∂rg,n(ρg,n)

∂ρg

}
= λmin

{
Iqg + semi-positive matrix

}
≥ 1.

Hence 0 < λmax{Ξ−1
g,n} = 1/λmin(Ξg,n) ≤ 1/λ∗Ξ < ∞, and thus we also have

Ξ−1
g,n = O(1). Let Ξ̃+

g,n denote the generalized inverse of Ξ̃g,n. It then follows

as a special case of Lemma F1 in Pötscher and Prucha (1997) that Ξ̃g,n is

nonsingular eventually with probability tending to one, that Ξ̃+
g,n = Op(1), and

that

Ξ̃+
g,n −Ξ−1

g,n
p→ 0 (B.5)

as n→ ∞.
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Premultiplying (B.1) by Ξ̃+
g,n and rearranging terms yields

n1/2(ρ̃g,n − ρg,n) =
[
I − Ξ̃+

g,nΞ̃g,n

]
n1/2(ρ̃g,n − ρg,n)

−Ξ̃+
g,n

∂mρ
g,n(ρ̃g,n, δ̃g,n)

∂ρ′
g

Υ̃g,nn
1/2mρ

g,n(ρg,n, δ̃g,n).

In light of the above discussion the first term on the r.h.s. is zero on ω-sets of

probability tending to one. This yields

n1/2(ρ̃g,n − ρg,n) = −Ξ̃+
g,n

∂mρ
g,n(ρ̃g,n, δ̃g,n)

∂ρ′g
Υ̃g,nn

1/2mρ
g,n(ρg,n, δ̃g,n) + op(1).

(B.6)

Observe that

Ξ̃+
g,n

∂mρ
g,n(ρ̃g,n, δ̃g,n)

∂ρ′
g

Υ̃g,n −Ξ−1
g,n

∂rg,n(ρn.g)

∂ρ′
g

Γ′
g,nΥg,n = op(1). (B.7)

In light of (15) the elements of n1/2mρ
g,n(ρg,n, δ̃g,n) are of the form (s = 1, . . . , S)

n−1/2ũ′
g,n

[
In −R∗′

g,n(ρg,n)
]
As,n

[
In −R∗

g,n(ρg,n)
]
ũg,n

with

[
In −R∗

g,n(ρg,n)
]
ug,n = εg,n,

ũg,n − ug,n = −Zg,n(δ̃g,n − δg,n),

n1/2(δ̃g,n − δg,n) = n−1/2
G∑

h=1

T′
gh,nεh,n + op(1).

Recall that if we define ũn = ũg,n, un = ug,n, en = εg,n, Rn = In −R∗
g,n(ρg,n),

Dn = −Zg,n, ∆n = δ̃g,n − δg,n these quantities satisfy Assumptions A.1-A.3 in

light of Lemmata A.1-A.3. Hence it follows from Lemma A.8 that

n−1/2ũ′
g,n

[
In −R∗′

g,n(ρg,n)
]
As,n

[
In −R∗

g,n(ρg,n)
]
ũg,n

= n−1/2 1

2
ε′g,n(As,n +A′

s,n)εg,n + n−1/2α′
g,s,n

G∑
h=1

T′
gh,nεh,n + op(1),

where αg,s,n = −n−1EZ′
g,n

[
In −R∗′

g,n(ρg,n)
]
(As,n +A′

s,n)εg,n. Furthermore,

the lemma implies that for some η > 2 the sample moments of the absolute
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elements Th,nαg,s,n are uniformly bounded. We now have

n1/2mρ
g,n(ρg,n, δ̃g,n) (B.8)

= n−1/2


1
2ε

′
g,n(A1,n +A′

1,n)εg,n +α′
g,1,n

∑G
h=1 T

′
gh,nεh,n

...
1
2ε

′
g,n(AS,n +A′

S,n)εg,n +α′
g,S,n

∑G
h=1 T

′
gh,nεh,n

+ op(1).

Let Ψρρ
gg,n = (ψρρ

rs,gg,n) denote the VC matrix of the vector of linear quadratic

forms on the r.h.s. of (B.8), then observing that the diagonal elements of As,n

are zero and that the VC matrix of εn is Σ⊗ In, it follows from Lemma A.1 in

Kelejian and Prucha (2010) that

ψρρ
rs,gg,n =

1

2n
σ2
ggtr

[
(Ar,n +A′

r,n)(As,n +A′
s,n)
]

(B.9)

+
1

n
α′

g,r,n

[
G∑

h=1

G∑
l=1

σhlT
′
gh,nTgl,n

]
αg,s,n.

We note that λmin(Ψ
ρρ
gg,n) ≥ const > 0 by assumption. Since the matrices As,n,

the vectors of the linear forms, and – in light of Assumption 4 – the innovations

εn satisfy all of the remaining assumptions of the central limit theorem for

vectors of linear quadratic forms given in Kelejian and Prucha (2010) it now

follows that

ξg,n = −(Ψρρ
gg,n)

−1/2n−1/2


1
2ε

′
g,n(A1,n +A′

1,n)εg,n +α′
g,1,n

∑G
h=1 T

′
gh,nεh,n

...
1
2ε

′
g,n(AS,n +A′

S,n)εg,n +α′
g,S,n

∑G
h=1 T

′
gh,nεh,n


d→ N(0, IS). (B.10)

Next observe that Ψρρ
gg,n = O(1), and hence (Ψρρ

gg,n)
1/2 = O(1), since the row

and column sums of the absolute elements of Ar,n are uniformly bounded by as-

sumption, and since in light of the above assumptions the terms n−1α′
g,r,nT

′
gh,n

Tgl,nα
′
g,s,n are uniformly bounded in absolute value. It now follows from (B.6),

(B.7) and (B.10) that

n1/2(ρ̃g,n − ρg,n) = [J′
g,nΥg,nJg,n]

−1J′
g,nΥg,n(Ψ

ρρ
gg,n)

1/2ξg,n + op(1), (B.11)

observing that Ξg,n = J′
g,nΥg,nJg,n. This establishes (19). Since all of the

nonstochastic terms on the r.h.s. of (B.11) are O(1), it follows that n1/2(ρ̃g,n −
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ρg,n) = Op(1). Next recall that 0 < λ∗Ξ ≤ λmin(Ξg,n) ≤ λmax(Ξg,n) ≤ λ∗∗Ξ <∞
and observe that λmin(Ξ

−1
g,n) = 1/λmax(Ξg,n). Hence

λmin

{
Ξ−1

g,nJ
′
g,nΥg,nΨ

ρρ
gg,nΥg,nJg,nΞ

−1
g,n

}
≥ λmin

(
Ψρρ

gg,n

)
λmin (Υg,n)λmin(Ξ

−1
g,nJ

′
g,nΥg,nJg,nΞ

−1
g,n)

≥ λmin

(
Ψρρ

gg,n

)
λmin (Υg,n) /λ

∗∗
Ξ ≥ const > 0.

This establishes the last claim of the theorem. ■

Proof of Lemma 1: Observe that ũg,n = ug,n − Zg,n∆g,n with ∆g,n =

δ̃g,n − δg,n, and thus

ε̃g,n =
[
In −R∗

g,n(ρ̃g,n)
]
ũg,n

= εg,n −R∗
g,n(ρ̃g,n − ρg,n)ug,n −

[
In −R∗

g,n(ρ̃g,n)
]
Zg,n∆g,n.

Consequently

σ̃gh,n = n−1ε̃′g,nε̃h,n = n−1ε′g,nεh,n

+n−1u′
g,n

[
R∗

g,n(ρ̃g,n − ρg,n)
]′
R∗

h,n(ρ̃h,n − ρh,n)uh,n

+∆′
g,nn

−1Z′
g,n

[
In −R∗

g,n(ρ̃g,n)
]′ [

In −R∗
h,n(ρ̃h,n)

]
Zh,n∆h,n

−n−1ε′g,nR
∗
h,n(ρ̃h,n − ρh,n)uh,n − n−1ε′h,nR

∗
g,n(ρ̃g,n − ρg,n)ug,n

−n−1ε′g,n
[
In −R∗

h,n(ρ̃h,n)
]
Zh,n∆h,n − n−1ε′h,n

[
In −R∗

g,n(ρ̃g,n)
]
Zg,n∆g,n

+n−1u′
g,n

[
R∗

g,n(ρ̃g,n − ρg,n)
]′ [

In −R∗
h,n(ρ̃h,n)

]
Zh,n∆h,n

+n−1u′
h,n

[
R∗

h,n(ρ̃h,n − ρh,n)
]′ [

In −R∗
g,n(ρ̃g,n)

]
Zg,n∆g,n.

By Assumption 4 we have σgh =
∑G

l=1 σ∗lgσ∗lh and εg =
∑G

l=1 σ∗lgvl. Since

the elements of v are i.i.d. (0,1), it follows that n−1v′
lvl = 1 + op(1) and

n−1v′
lvk = op(1) for l ̸= k. Hence

n−1ε′g,nεh,n =

G∑
l=1

G∑
k=1

σ∗lgσ∗khn
−1v′

lvk =

G∑
l=1

σ∗lgσ∗lh + op(1) = σgh + op(1).

Next observe that, taking into account that εh,n =
[
In −R∗

g,n(ρg,n)
]
ug,n,

all the other terms consist of expressions of the form op(1)n
−1u′

g,nAnuh,n,

op(1)n
−1u′

g,nAnZh,n and op(1)n
−1Z′

g,nAnZh,n, where An is a matrix whose

row and column sums of the absolute elements is uniformly bounded. In light

of Lemma A.3 all those expressions are seen to be op(1), and thus σ̃gh,n−σgh =
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op(1) as claimed. ■

Proof of Theorem 3: We first demonstrate that Ψ̃ρρ
gg,n − Ψρρ

gg,n = op(1),

where the elements of Ψ̃ρρ
gg,n and Ψρρ

gg,n are defined in (18) and (24). By Lemma

1 we have σ̃gh,n − σgh = op(1). Furthermore, by assumption n−1T̃′
gh,nT̃gl,n −

n−1T′
gh,nTgl,n = op(1), where n

−1T′
gh,nTgl,n = O(1) in light of Assumption

10. Next, observe that under the maintained assumption the row and column

sums of the absolute elements of the matrices Ar,n and As,n are uniformly

bounded, and thus clearly are those of the matrices An = (aij,n) with aij,n =

(aij,r,n + aji,r,n)(aij,s,n + aji,s,n). It then follows directly from Lemma A.7 that

α̃g,r,n−αg,r,n = op(1), where αg,r,n = O(1) and α̃g,r,n = Op(1). Hence, clearly

ψ̃ρρ
rs,gg,n − ψρρ

rs,gg,n = op(1), ψ
ρρ
rs,gg,n = O(1) and ψ̃ρρ

rs,gg,n = Op(1), as well as

Ψ̃ρρ
gg,n − Ψρρ

gg,n = op(1), Ψρρ
gg,n = O(1) and Ψ̃ρρ

gg,n = Op(1). Observing that

λmin(Ψ
ρρ
gg,n) ≥ c∗Ψ > 0 it follows further that (Ψ̃ρρ

gg,n)
−1 − (Ψρρ

gg,n)
−1 = op(1),

(Ψρρ
gg,n)

−1 = O(1) and (Ψ̃ρρ
gg,n)

−1 = Op(1).

By Assumption 9, Υ̃g,n−Υg,n = op(1), Υg,n = O(1) and thus Υ̃g,n = Op(1).

In proving Theorem 2 we have verified that J̃g,n − Jg,n
p→ 0, Jg,n = O(1)

and J̃g,n = Op(1), and furthermore that (J̃′
g,nΥ̃g,nJ̃g,n)

+ − (J′
g,nΥg,nJg,n)

−1 =

op(1), (J̃′
g,nΥ̃g,nJ̃g,n)

+ = Op(1) and (J′
g,nΥg,nJg,n)

−1 = O(1). The claim

that Ω̃ρρ
gg,n − Ωρρ

gg,n = op(1) and Ωρρ
gg,n = O(1) is now obvious. Observing

that λmin

[
Ωρρ

gg,n(Υg,n)
]
≥ const > 0 by Theorem 2 it follows further that

(̃Ω
ρρ

gg,n)
−1 − (Ωρρ

gg,n)
−1 = op(1), (Ω

ρρ
gg,n)

−1 = O(1) and (Ω̃ρρ
gg,n)

−1 = Op(1). ■

We shall utilize the following lemma.

Lemma B.1 : Suppose the nG×1 vector of innovations εn is generated as pos-

tulated in Assumption 4. Let A = diagGg=1(Agg), and B = diagGg=1(Bgg) be sym-

metric nG × nG matrices with zero diagonal elements, and let a=[a
′
1, . . . ,a

′
G]

′

and b=[b
′
1, . . . ,b

′
G]

′ be nG× 1 nonstochastic vectors. Then

E(ε′Aε+ a′ε) = 0

cov(ε′Aε+ a′ε, ε′Bε+ b′ε) = 2tr [A(Σ⊗ I)B(Σ⊗ I)] + a′(Σ⊗ I)b

= 2

G∑
h=1

G∑
l=1

σ2
hltr [AhhBll] +

G∑
h=1

G∑
l=1

σhla
′
hbl.
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Proof. The result follows immediately from Lemma A1 in Kelejian and Prucha

(2010), observing that the diagonal elements of A∗ = (Σ⋆ ⊗ I)A(Σ′
⋆ ⊗ I) and

B∗ = (Σ⋆ ⊗ I)B(Σ′
⋆ ⊗ I) are zero. ■

Proof of Theorem 4: Observe that ηn = n−1/2T′
nεn and thus clearly Ψδδ

n =

Eηnη
′
n = n−1T′

nEεnε
′
nTn = n−1T′

n(Σ⊗ In)Tn as claimed.

Next observe that ξgs,n = n−1/2 [ε′nBεn + b′εn] withB = diag(0, . . . ,Bgg, . . . ,0),

whereBgg = (As,n+A′
s,n)/2 and b = Tg,nαg,s,n withTg,n = [T′

g1,n, . . . ,T
′
gG,n]

′.

It now follows from Lemma B.1 that

cov(ηn, ξgs,n) = cov(n−1/2T′
nεn, n

−1/2 [ε′nBεn + b′εn])=cov(n
−1/2ηn, n

−1/2b′εn)

= n−1T′
n(Σ⊗ In)Tg,nαg,s,n

and thus

cov(ηn, ξg,n) = n−1T′
n(Σ⊗ In)Tg,n [αg,1,n, . . . ,αg,S,n]

and

Ψδρ
n = cov(ηn, ξn) = n−1T′

n(Σ⊗ In)Tndiag
G
g=1 [αg,1,n, . . . , αg,S,n]

as claimed.

Define ξgr,n = n−1/2 [ε′nAεn + a′εn] withA = diag(0, . . . ,Agg, . . . ,0) where

Agg = (Ar,n +A′
r,n)/2 and a = Tg,nαg,r,n. Then applying Lemma B.1 we see

that

cov(ξgr,n, ξhs,n) = σ2
gh,n(2n)

−1tr
[(
Ar,n +A′

r,n

) (
As,n +A′

s,n

)]
+α′

g,r,n

[
G∑

u=1

G∑
v=1

σuv,nT
′
gu,nThv,n

]
αh,s,n,

which verifies the expressions for the elements of Ψn = cov(ξn, ξn).

In light of Assumption 10 and Theorem 2 we have

n1/2

[
δ̃n − δn

ρ̃n − ρn

]
=

[
I 0

0 diagg[
[
J′
g,nΥg,nJg,n

]−1
J′
g,nΥg,n]

][
ηn

ξn

]
+ op(1).

The vector of linear-quadratic forms [η′
n, ξ

′
n]

′ is readily seen to satisfy the as-

sumptions of Theorem A.1 in Kelejian and Prucha (2010). Hence it follows from
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that central limit theorem that

Ψ−1/2
n

[
ηn

ξn

]
d→ N(0, Id),

which proves the first part of the theorem.

Note that λmin(Ψ
ρρ
gg,n) ≥ λmin(Ψ

ρρ
n ) ≥ λmin(Ψn) ≥ const > 0. In proving

Theorem 3 we have shown that Ψ̃ρρ
gg,n − Ψρρ

gg,n = op(1), Ψρρ
gg,n = O(1) and

Ψ̃ρρ
gg,n = Op(1). The proof that Ψ̃ρρ

gh,n − Ψρρ
gh,n = op(1), Ψρρ

gh,n = O(1) and

Ψ̃ρρ
gh,n = Op(1) is analogous. Thus Ψ̃ρρ

n − Ψρρ
n = op(1), Ψρρ

n = O(1) and

Ψ̃ρρ
n = Op(1). Observing that λmin(Ψ

ρρ
n ) ≥ const > 0 it follows further that

(Ψ̃ρρ
n )−1 − (Ψρρ

n )−1 = op(1), (Ψ
ρρ
n )−1 = O(1) and (Ψ̃ρρ

n )−1 = Op(1).

Next recall that in proving Theorem 3 we demonstrated that α̃g,r,n−αg,r,n =

op(1), αg,r,n = O(1) and α̃g,r,n = Op(1), and furthermore that σ̃gh,n − σgh =

op(1). Since n
−1T̃′

gh,nT̃kl,n−n−1T′
gh,nTkl,n = op(1) it follows that Ψ̃

δδ
n −Ψδδ

n =

op(1) and Ψ̃δρ
n −Ψδρ

n = op(1). Also observe that in light of Assumption 10 we

have Ψδδ
n = O(1) and Ψδρ

n = O(1). This and the above results imply that

Ψ̃n − Ψn = op(1), Ψn = O(1) and Ψ̃n = Op(1). Recalling that λmin(Ψn) ≥
const > 0, it follows further that Ψ̃−1

n −Ψ−1
n = op(1), Ψ

−1
n = O(1) and Ψ̃−1

n =

Op(1).

By Assumption 9, Υ̃g,n−Υg,n = op(1), Υg,n = O(1) and thus Υ̃g,n = Op(1).

Also recall from the proof of Theorem 3 that J̃g,n − Jg,n = op(1), Jg,n = O(1)

and J̃g,n = Op(1), and furthermore that (J̃′
g,nΥ̃g,nJ̃g,n)

+ − (J′
g,nΥg,nJg,n)

−1 =

op(1), (J̃
′
g,nΥ̃g,nJ̃g,n)

+ = Op(1) and (J′
g,nΥg,nJg,n)

−1 = O(1). The claim that

Ω̃n −Ωn = op(1) and Ωn = O(1) is now obvious. Observing that

λmin(Ωn) ≥ λmin(Ψn)λmin

{
diagg[(J

′
g,nΥg,nJg,n)

−1]
}
≥ const > 0

utilizing that λmin

[
J′
g,nΥg,nJg,n)

−1
]
≥ const > 0 as demonstrated in the proof

of Theorem 2, it follows further that Ω̃−1
n − Ω−1

n = op(1), Ω
−1
n = O(1) and

Ω̃−1
n = Op(1). ■

C Appendix: Proofs for Section 5

Lemma C.1 : Suppose the assumptions of Theorem 5 hold. Let ρ̃g,n be the

initial GMM estimators defined in (30). Then ρ̃g,n− ρg,n = op(1).
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Proof. To prove the claim we verify the assumptions of Theorem 1. Assump-

tions 1-8 are maintained. Assumption 9 holds trivially with Υ̃g,n = Υg,n = I.

Observing furthermore that by Lemma A.4 we have n1/2(δ̃g,n − δg,n) = Op(1)

completes the proof. ■

Proof of Theorem 5: The proof of Theorem 5 is based on the generic

limit theory developed in Theorem 4. In light of that theorem it proves con-

venient to first derive the limiting distribution of δ̂n = (δ̂′1,n, . . . , δ̂
′
G,n)

′ and

ρ̂n = (ρ̂′
1,n, . . . , ρ̂

′
G,n)

′. The limiting distribution of δ̂g,n and ρ̂g,n is then ob-

tained as a trivial specialization. For clarity we divide the remainder of the

proof into several parts.

Part 1: (Verification of Assumption 10 for δ̂g,n) In light of Lemma A.5 we have

n1/2[δ̂g,n − δg,n] = n−1/2T′
gg,nεg,n + op(1) with

Tgg,n = HnPgg,n with Pgg,n = Q−1
HHQHZ,g∗(ρg,n)[Q

′
HZ,g∗(ρg,n)Q

−1
HHQHZ,g∗(ρg,n)]

−1,

and thus

n−1T′
gg,nThh,n = [Q′

HZ,g∗(ρg,n)Q
−1
HHQHZ,g∗(ρg,n)]

−1Q′
HZ,g∗(ρg,n)Q

−1
HH

×(n−1H′
nHn)Q

−1
HHQHZ,h∗(ρh,n)[Q

′
HZ,h∗(ρh,n)Q

−1
HHQHZ,h∗(ρh,n)]

−1.

The remaining conditions of Assumption 10 are also seen to hold in light of

Lemma A.5.

Part 2: (Specialized Expressions for Ψn and the Corresponding Estimator)

Next observe that the components of Ψn defined in (26) simplified in obvious

ways in that Tn = diagg(Tgg,n), and thus all terms involving a Tgh,n with

g ̸= h are zero. In particular, the (g, h)-th blocks of Ψδδ
n and Ψδρ

n are given by

Ψδδ
gh,n = σghn

−1T′
gg,nThh,n,

Ψδρ
gh,n = σghn

−1T′
gg,nThh,n [αh,1,n, . . . ,αh,S,n] ,

and the elements of Ψρρ
gh,n, i.e., the elements of the (g, h)-th block of Ψρρ

n are

given by

ψρρ
rs,gh,n = σ2

gh,n(2n)
−1tr

[(
Ar,n +A′

r,n

) (
As,n +A′

s,n

)]
+σgh,nn

−1α′
g,r,nT

′
gg,nThh,nαh,s,n.
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Now consider the estimator

T̂gg,n = Hn(n
−1H′

nHn)
−1(n−1H′

nZ∗g,n(ρ̃g,n))×[
(n−1Z′

∗g,n(ρ̃g,n)Hn)(n
−1H′

nHn)
−1(n−1H′

nZ∗g,n(ρ̃g,n))
]−1

,

where ρ̃g,n denotes the first-stage estimator for ρg,n, let

α̂g,r,n = −n−1
[
Z′

g,n(In −R∗′
g,n(ρ̃g,n))(Ar,n +A′

r,n)(In −R∗
g,n(ρ̃g,n))ûg,n

]
with ûg,n = yg,n−Zg,nδ̂g,n, and let σ̂gh,n = n−1ε̂′g,nε̂h,n with ε̂g,n = y∗g,n(ρ̃g,n)−
Z∗g,n(ρ̃g,n)δ̂g,n. Then the components of the estimator for Ψn defined in (27)

simplify to

Ψ̂δδ
gh,n = σ̂ghn

−1T̂′
gg,nT̂hh,n,

Ψ̂δρ
gh,n = σ̂ghn

−1T̂′
gg,nT̂hh,n [α̂h,1,n, . . . , α̂h,S,n] ,

and the elements of the estimator Ψ̂ρρ
gh,n of Ψρρ

gh,n are given by

ψ̂ρρ
rs,gh,n = σ̂2

gh,n(2n)
−1tr

[(
Ar,n +A′

r,n

) (
As,n +A′

s,n

)]
+σ̂gh,nn

−1α̂′
g,r,nT̂

′
gg,nT̂hh,nα̂h,s,n.

Note that

n−1T̂′
gg,nT̂hh,n =

[
n−1Ẑ′

∗g,n(ρ̃g,n)Ẑ∗g,n(ρ̃g,n)
]−1

n−1Ẑ′
∗g,n(ρ̃g,n)Ẑ∗h,n(ρ̃h,n)

×
[
n−1Ẑ′

∗h,n(ρ̃h,n)Ẑ∗h,n(ρ̃h,n)
]−1

,

and

n−1T̂′
gg,nT̂gg,n =

[
n−1Ẑ′

∗g,n(ρ̃g,n)Ẑ∗g,n(ρ̃g,n)
]−1

=
[
n−1Ẑ′

∗g,n(ρ̃g,n)Z∗g,n(ρ̃g,n)
]−1

.

Also note that in light of Lemma A.5 we have n−1T̂′
gg,nT̂hh,n−n−1T′

gg,nThh,n =

op(1).

Part 3: (Verification of Assumption 9 for Υg,n = (Ψρρ
gg,n)

−1 and Υ̃g,n =

(Ψ̂ρρ
gg,n)

−1 with Ψ̂ρρ
gg,n = (ψ̂ρρ

rs,gg,n)). Observe that the assumption that λmin(Ψn) ≥
c for some c > 0 implies that also λmin(Ψ

ρρ
gg,n) ≥ c. Recall furthermore that by

Lemma C.1 we have ρ̃g,n− ρg,n = op(1). It now follows directly from Theorem 3

that Ψ̂ρρ
gg,n −Ψρρ

gg,n = op(1), (Ψ̂
ρρ
gg,n)

−1 − (Ψρρ
gg,n)

−1 = op(1), and Ψρρ
gg,n = O(1),

53



(Ψρρ
gg,n)

−1 = O(1), which verifies Assumption 9.

Part 4: (Limiting Distribution of δ̂g,n and ρ̂g,n) Recall that Assumptions 1-

8 are maintained. Thus, in light of the above discussion, all assumptions of

Theorem 4 are satisfied. Next observe that since Tgh,n = 0 for g ̸= h the

expression for Ωn given in (28) simplify to:

Ωn =

[
Ωδδ

n Ωδρ
n

Ωδρ′
n Ωρρ

n

]

with

Ωδδ
n = Ψδδ

n ,

Ωδρ
n = Ψδρ

n diag
G
g=1

(
(Ψρρ

gg,n)
−1Jg,n(J

′
g,n(Ψ

ρρ
gg,n)

−1Jg,n)
−1
)
,

Ωρρ
n = diagGg=1

(
(J′

g,n(Ψ
ρρ
gg,n)

−1Jg,n)
−1J′

g,n(Ψ
ρρ
gg,n)

−1
)

Ψρρ
11,n . . . Ψρρ

1G,n
...

. . .
...

Ψρρ
G1,n . . . Ψρρ

GG,n


×diagGg=1

(
(Ψρρ

gg,n)
−1Jg,n(J

′
g,n(Ψ

ρρ
gg,n)

−1Jg,n)
−1
)
.

By Theorem 4, n1/2[(δ̂n−δn)
′, (ρ̂n−ρn)

′]′
d→ N(0,Ωn), and as a specialization,

n1/2

[
δ̂g,n − δg,n)

ρ̂g,n − ρg,n)

]
d→ N

[
Ωδδ

gg,n Ωδρ
gg,n

Ωδρ′
gg,n Ωρρ

gg,n

]
(C.1)

with

Ωδδ
gg,n = Ψδδ

gg,n = σggn
−1T′

gg,nTgg,n,

Ωδρ
gg,n = Ψδρ

gg,n(Ψ
ρρ
gg,n)

−1Jg,n(J
′
g,n(Ψ

ρρ
gg,n)

−1Jg,n)
−1,

= σggn
−1T′

gg,nTgg,n [αg,1,n, . . . ,αg,S,n] (Ψ
ρρ
gg,n)

−1Jg,n(J
′
g,n(Ψ

ρρ
gg,n)

−1Jg,n)
−1,

Ωρρ
gg,n = (J′

g,n(Ψ
ρρ
gg,n)

−1Jg,n)
−1.

Observe from part 3 of the proof that

n−1T̂′
gg,nT̂gg,n =

[
n−1Ẑ′

∗g,n(ρ̃g,n)Ẑ∗g,n(ρ̃g,n)
]−1

and that n−1T̂′
gg,nT̂gg,n − n−1T′

gg,nTgg,n = op(1). The asymptotic normal-

ity result of the theorem now follows immediately from (C.1), observing that
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Theorem 4 also established the consistency of the VC estimators. ■

Proof of Theorem 6: The proof is again based on the generic limit theory

developed in Theorem 4. For clarity we divide the proof, analogous to the proof

of Theorem 5, into several parts.

Part 1: (Verification of Assumption 10 for
̂̂
δn) In light of Lemma A.6 we have

n1/2[
̂̂
δn − δn] = n−1/2T′

nεn + op(1) with

Tn = (IG ⊗Hn)Pn, (C.2)

Pn =
[
Σ−1 ⊗Q−1

HH

]
diagGg=1 [QHZ,g∗(ρg,n)]

×
{
diagGg=1

[
Q′

HZ,g∗(ρg,n)
] [
Σ−1 ⊗Q−1

HH

]
diagGg=1 [QHZ,g∗(ρg,n)]

}−1
.

Now let Tgh,n and Pgh,n denote the (g, h)-th block of Tn and Pn, then Tgh,n =

Fgh,nPgh,n with Fgh,n = Hn. The remaining conditions of Assumption 10 are

then seen to hold in light of Lemma A.6.

Part 2: (Specialized Expressions forΨn and the Corresponding Estimator) Spe-

cialized expressions for each of the submatrices Ψδδ
n , Ψδρ

n , Ψρρ
n of Ψn defined in

(26) are readily found by substituting into those expressions the formulae for Tn

given in (C.2), and by observing that
∑G

u=1

∑G
v=1 σuv,nT

′
gu,nThv,n represents

the (g, h)-th block of Ψδδ
n = T′

n(Σ⊗ I)Tn.

Next let

̂̂
Tn = (IG ⊗Hn)

̂̂
Pn,̂̂

Pn =
[
Σ̂−1

n ⊗ (n−1H′
nHn)

−1
]
diag

[
n−1H′

nZ∗g,n(ρ̂g,n)
]

×
[
n−1Ẑ′

∗n(ρ̂n)(Σ̂
−1
n ⊗ In)Z∗n(ρ̂n)

]−1

.

Let
̂̂
Tgh,n and

̂̂
Pgh,n denote the (g, h)-th block of

̂̂
Tn and

̂̂
Pn, respectively.

Then, clearly,
̂̂
Tgh,n = Hn

̂̂
Pgh,n. Next observe that

̂̂
Ψ

δδ

n =
[
n−1Ẑ′

∗n(ρ̂n)(Σ̂
−1
n ⊗ In)Z∗n(ρ̂n)

]−1

= n−1 ̂̂T′

n(Σ̂n ⊗ In)
̂̂
Tn,

and thus the (g, h)-th block of
̂̂
Ψ

δδ

n is given by
̂̂
Ψ

δδ

gh,n =
∑G

u=1

∑G
v=1 σ̂uv,n

̂̂
T

′

gu,n
̂̂
Thv,n.

From this we see that the estimators
̂̂
Ψ

δδ

n ,
̂̂
Ψ

δρ

n ,
̂̂
Ψ

ρρ

n ,
̂̂
Ω

δδ

n ,
̂̂
Ω

δρ

n ,
̂̂
Ω

ρρ

n are special
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cases of the class of VC estimators considered by Theorem 4. Also note that in

light of Lemma A.6 we have that

n−1 ̂̂T′

gh,n
̂̂
Tgl,n −T′

gh,nTgl,n = op(1),

which verifies that also this condition of Theorem 4 holds.

Part 3: (Verification of Assumption 9 for Υg,n = (Ψρρ
gg,n)

−1 and Υ̃g,n =

(
̂̂
Ψ

ρρ

gg,n)
−1 with

̂̂
Ψ

ρρ

gg,n = (
̂̂
ψ
ρρ

rs,gg,n)) Observe that the assumption that λmin(Ψn) ≥
c for some c > 0 implies that also λmin(Ψ

ρρ
gg,n) ≥ c. Recall furthermore that by

Lemma C.1 we have ̂̂ρg,n− ρg,n = op(1). It now follows directly from Theorem 3

that
̂̂
Ψ

ρρ

gg,n −Ψρρ
gg,n = op(1), (

̂̂
Ψ

ρρ

gg,n)
−1 − (Ψρρ

gg,n)
−1 = op(1), and Ψρρ

gg,n = O(1),

(Ψρρ
gg,n)

−1 = O(1), which verifies Assumption 9.

Part 4: (Limiting Distribution of
̂̂
δg,n and ̂̂ρg,n) Recall that Assumptions 1-

8 are maintained. Thus, in light of the above discussion, all assumptions of

Theorem 4 are satisfied. It thus follows from that theorem that[
(
̂̂
δn − δn)

(̂̂ρn − ρn)

]
d→ N

[
Ωδδ

n Ωδρ
n

Ωδρ′
n Ωρρ

n

]
, (C.3)

where

Ωδδ
n = Ψδδ

n , Ωδρ
n = Ψδρ

n diag
G
g=1(Jg,n), Ωρρ

n = diagGg=1(J
′
g,n)Ψ

ρρ
n diag

G
g=1(Jg,n)

with

Ψδρ
n = Ψδδ

n diag
G
g=1[αg,1,n, . . . ,αg,S,n],

Jg,n = (Ψρρ
n )−1Jg,n

[
J′
g,n(Ψ

ρρ
gg,n)

−1Jg,n

]−1
.

The asymptotic normality result of the theorem now follows immediately from

(C.3), observing that Theorem 4 also establishes the consistency of the VC

estimators. ■
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