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Abstract

We suggest a non-parametric heteroscedasticity and autocorrelation consistent (HAC) estimator

of the variance–covariance (VC) matrix for a vector of sample moments within a spatial context. We

demonstrate consistency under a set of assumptions that should be satisfied by a wide class of spatial

models. We allow for more than one measure of distance, each of which may be measured with error.

Monte Carlo results suggest that our estimator is reasonable in finite samples. We then consider a

spatial model containing various complexities and demonstrate that our HAC estimator can be

applied in the context of that model.
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1. Introduction1

Spatial models are an important tool in economics, regional science and geography in
analyzing a wide range of empirical issues.2 Typically, these models focus on spatial
interactions, which could be due to competition between cross sectional units, copy-cat
policies, net work issues, spill-overs, externalities, regional issues, etc. Applications in the
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.jeconom.2006.09.005

nding author. Tel.: +1301 405 3492; fax: +1 301 405 3542.

dress: kelejian@econ.umd.edu (H.H. Kelejian).

Badi Baltagi and three anonymous referees for valuable suggestions and helpful comments. We are

to John Benedetto, Immanuel Bomze, Roger Horn, and Benedikt Pötscher for helpful discussions.

k Irani Arraiz for excellent research assistance. Both authors gratefully acknowledge support from

Science Foundation through Grant SES-0001780.

ferences on spatial models are Cliff and Ord (1973, 1981), Anselin (1988), and Cressie (1993).

www.elsevier.com/locate/jeconom
dx.doi.org/10.1016/j.jeconom.2006.09.005
mailto:kelejian@econ.umd.edu


ARTICLE IN PRESS
H.H. Kelejian, I.R. Prucha / Journal of Econometrics 140 (2007) 131–154132
recent literature include, for example, the determinants of various forms of productivity,
various categories of local public expenditures, vote seeking and tax setting behavior,
population and employment growth, contagion problems, and the determinants of welfare
expenditures.3 To facilitate the empirical analysis of spatial issues the formal development
of estimation methods for spatial models has received increasing attention in recent years.4

The purpose of this paper is two-fold: First we suggest, within a spatial context, a non-
parametric heteroscedasticity and autocorrelation consistent (HAC) estimator of a variance–
covariance (VC) matrix for a vector of sample moments of the form n�1=2H 0u, where H is a
non-stochastic matrix, u is a vector of disturbances, and n is the sample size—i.e., a spatial
HAC, (SHAC). The need to estimate the VC matrix of such a vector of sample moments arises
frequently within the context of instrumental variable (IV) estimation. We demonstrate the
consistency of our SHAC estimator under a set of relatively simple assumptions that cover, in
particular, the important and widely used class of Cliff–Ord type models.
HAC estimators have been the focus of extensive research in the time series literature. A

classic reference in that literature is Grenander and Rosenblatt (1957). Contributions to
this research in the econometrics literature include, among others, Newey and West (1987),
Gallant and White (1988), Andrews (1991), Andrews and Monahan (1992), Pötscher and
Prucha (1997) and de Jong and Davidson (2000).
In the statistics literature Priestley (1964) made early contributions towards an extension

of HAC estimation for spatial processes within the context of estimating spectral densities
of stationary random fields (with the index an element of Z2). The theoretical econometrics
literature relating to HAC estimators for spatially dependent data is relatively sparse. To
the best of our knowledge, the first contributions to the theoretical econometrics literature
are Conley (1996, 1999). However, the approach we take in this paper differs from that of
Conley in important ways. Conley assumes that the underlying data generating process is
represented by continuous-index random field (with the index an element of a metric
space), and explicitly models sampling from this process. He assumes that the data
generating process is spatially stationary and spatially alpha mixing. Our setup is different
and aims, among other things, to accommodate spatial processes that are generated by
Cliff–Ord type models. Those models do not explicitly index observations in terms of
elements of a metric space (although they can accommodate such interpretations) and
generate the observations as the solution of a simultaneous equation system. Spatial
dependences are modeled in terms of a so-called spatial weights matrix. Even if the
underlying innovations are i.i.d., this will in general result in a spatial process that is non-
stationary simply if the respective units have different numbers of neighbors, as is
frequently the case in applications.5 Our dependence assumptions are stated in terms of
3Some applications along these lines are, e.g., Audretsch and Feldmann (1996), Bell and Bockstael (2000),

Bernat (1996), Besley and Case (1995), Bollinger and Ihlanfeldt (1997), Buettner (1999), Case (1991), Case et al.

(1993), Dowd and LeSage (1997), Holtz-Eakin (1994), Kelejian and Robinson (2000, 1997, 1993), Pinkse et al.

(2002), Pulvino (1998), Rey and Boarnet (2004), Shroder (1995), and Vigil (1998).
4Recent theoretical contributions include Baltagi and Li (2004, 2001a,b), Baltagi et al. (2003), Conley (1999),

Kelejian and Prucha (2004, 2002, 2001, 1999, 1998, 1997), Kelejian et al. (2004), Lee (2004, 2003, 2002, 2001a,b),

LeSage (2000, 1997), Pace and Barry (1997), Pinkse and Slade (1998), Pinkse et al. (2002), and Rey and Boarnet

(2004).
5This is consistent with the view of, e.g., Fuentes (2002a,b) who states that spatial processes are often ‘‘non-

stationary, in the sense that the spatial structure depends on location’’. Of course, there are also many situations

where stationarity is appropriate and our setup allows for a wide set of stationary processes.



ARTICLE IN PRESS
H.H. Kelejian, I.R. Prucha / Journal of Econometrics 140 (2007) 131–154 133
simple conditions on a decomposition of the VC matrix, which accommodates non-
stationary and (unconditionally) heteroscedastic processes. Another distinguishing feature
is that our setup and proofs allows for a triangular array structure of the data. The reason
for this is that technically this structure arises due the presence of spatial lags, which are
often the focus of attention in Cliff–Ord type models.

Pinkse et al. (2002) consider a specific Cliff–Ord type spatial model and demonstrate,
within the context of that model, the consistency of a SHAC estimator. Their consistency
result is given under a set of high level assumptions, which seem substantially more
complex than those maintained in this paper. Driscoll and Kraay (1998) also provide
results regarding the consistent non-parametric estimation of a large sample VC matrix for
spatially dependent data. However, in contrast to the above cited papers and our
specifications, their approach relates to a panel data model in which the number of time
periods T limits to infinity.

Our specifications also accommodate situations in which the researcher considers more
than one distance measure and is unsure about which one to use in the specification of the
SHAC estimator. To that effect we allow for the researcher to employ several distance
measures, and we show that our estimator remains consistent, as long as the ‘‘true’’
distance measure is included in the set of measures employed by the researcher.6 We also
allow for measurement errors relating to the distance measures. Our consistency result is
also generic in the sense that the estimated residuals used in the formulation of the SHAC
estimator may correspond to a variety of linear and non-linear models, provided they are
n1=2-consistently estimated.

All of our asymptotic results are derived under the assumption of a single cross section
in which the number of cross sectional units n tends to infinity. Generalizations to a finite
number of cross section, T, are trivial. We also give Monte Carlo results which suggest that
our SHAC estimator yields reasonable results in finite samples.

The second part of the paper considers a general spatial regression model that allows
for endogenous regressors, their spatial lags, as well as exogenous regressors. The
model may, in particular, represent the ith equation of a simultaneous system of
equations.7 The disturbance process allows for general patterns of correlation and
heteroscedasticity. We define an IV estimator for this model and derive its asymptotic
distribution. We then apply our results concerning SHAC estimation derived in the
first part of this paper to obtain a consistent estimator for the asymptotic VC matrix of
the IV estimator.

The (non-parametric) model of spatial correlation and heteroscedasticity is specified in
Section 2. That section also contains a discussion of the model assumptions. In Section 3
we specify our SHAC estimator. We first consider the case of single and then the case of
6The economics of a particular application will typically suggest a set of possible distance measures. Our setup

only maintains that one of these measures is the ‘‘true’’ one, and does not require for the researcher to combine

different distance measures into one distance measure. The specification of our estimator is thus quite different

from specifications where distance is taken to be a p-dimensional Euclidean distance in Rp, which may, e.g., be

viewed as composed of a set of lower dimensional Euclidean distances. Of course, the case of one p-dimensional

distance measure is included as a special case.
7Among other things, this model differs from the ith equation’s specifications considered in Kelejian and

Prucha (2004) in that their disturbance VC matrix is parametrically specified, while ours is not, and our

specifications here allow for some of the endogenous regressors to be generated by a non-linear model, while theirs

do not.
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multiple distance measures. In this section we give our central results concerning the
consistency of SHAC estimators. In Section 4 we specify a general spatial model which
allows the disturbance process to be of the general form considered in Section 2. Section 4
also contains large sample results concerning the estimator of the regression parameters of
that model, as well as of our SHAC estimator of the VC matrix involved. In Section 5 we
report on a limited Monte Carlo study.8 Section 6 contains conclusions and suggestions for
further work. Technical details are relegated to the appendix.
It will be helpful to introduce the following notation: Let An with n 2 N be some matrix;

we then denote the ði; jÞth element of An as aij;n. Similarly, if vn with n 2 N is a vector, then
vi;n denotes the ith element of vn. An analogous convention is adopted for matrices and
vectors that do not depend on the index n, in which case the index n is suppressed on the
elements. If An is a square matrix, then A�1n denotes the inverse of An. If An is singular, then
A�1n should be interpreted as the generalized inverse of An. Further, let ðBnÞn2N be some
sequence of n� n matrices. Then we say the row and column sums of the (sequence of)
matrices Bn are bounded uniformly in absolute value if there exists a constant cBo1 (that
does not dependent of n) such that

max
1pipn

Xn

j¼1

jbij;njpcB and max
1pjpn

Xn

i¼1

jbij;njpcB for all n 2 N

holds. For future reference we note that if ðBnÞn2N and ðAnÞn2N are sequences of n� n

matrices whose row and column sums are bounded uniformly in absolute value, then so are
the row and column sums of An þ Bn and AnBn. Also, if Cn is a sequence of q� n matrices
whose elements are uniformly bounded in absolute value, then so are the elements of CnAn,
see, e.g., Kelejian and Prucha (1998).

2. A model for spatial correlation

In the following we specify a general cross sectional disturbance process, allowing for
unknown forms of heteroscedasticity and correlations across spatial units. Our SHAC
estimator will be based on estimated disturbances. We will maintain a generic and simple
set of assumptions concerning the estimated disturbances, which should make our
estimator applicable in many situations involving linear and non-linear models, provided
that the model parameters are estimated n1=2-consistently. The results do not depend on
the interpretation of the spatial process as a disturbance process. The case where the
process is observed is covered as a trivial special case.

2.1. Assumptions

We assume that the n� 1 disturbance vector un is generated as follows:

un ¼ Rn�n, (1)

where �n is a n� 1 vector of innovations and Rn is an n� n non-stochastic matrix
whose elements are not known. Now let Hn be a n� ph non-stochastic matrix of instru-
ments. The asymptotic distribution of corresponding IV estimators will then typically
8In a different context, Monte Carlo results relating to non-parametric estimation of asymptotic variances are

also given in Conley and Molinari (2005).
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involve the VC matrix

Cn ¼ ðcij;nÞ ¼ VCðn�1=2H 0nunÞ ¼ n�1H 0nSnHn, (2)

where Sn ¼ ðsij;nÞ denotes the VC matrix of un. The focus of the first part of this paper is to
find a consistent estimator for Cn and to prove the consistency of that estimator under a
set of assumptions that is suitable in a spatial context.9

Let u0n ¼ ðu1;n; . . . ; un;nÞ, û0n ¼ ðû1;n; . . . ; ûn;nÞ, and �0n ¼ ð�1;n; . . . ; �n;nÞ where ûn is an
estimator for un. Also, at this point, assume there is a meaningful distance measure,
with the usual properties, between units i and j, say dij;n ¼ dji;nX0. We allow for the case
where the researcher measures those distances with error as say d�ij;n ¼ d�ji;nX0.10

We can now state the set of maintained assumptions. A detailed discussion of those
assumptions will be given in the next subsection. The assumptions maintain that various
quantities are uniformly bounded by some finite constants, which do not depend on i or n.

Assumption 1. For each n41, �i;n is i.i.d. ð0; 1Þ with Ej�i;nj
qpcE for some qX4, with

0ocEo1.

Assumption 2. The (non-stochastic) matrix Rn is non-singular and the row and column
sums of Rn and R�1n are bounded uniformly in absolute value by some constant cR,
0ocRo1.

Assumption 3. The (non-stochastic) instrument matrix Hn has full column rank ph for n

large enough, and its elements are uniformly bounded in absolute value by some constant
cH , 0ocHo1.

We assume that the researcher can select a distance dn40 such that dn " 1 as n!1.
For each unit i ¼ 1; . . . ; n, let ‘i;n denote the number of units (neighbors) j for which
d�ij;npdn, i.e.,

‘i;n ¼
Xn

j¼1

1d�ij;n
� dn,

and let ‘n ¼ max1pipnð‘i;nÞ.

Assumption 4. (a) E‘2n ¼ oðn2tÞ where tp 1
2
ðq� 2Þ=ðq� 1Þ and q is defined in Assumption

1; (b)
Pn

j¼1 jsij;njd
rS

ij;npcS for some rSX1 and 0ocSo1, where sij;n is the (i; j)th element of
Sn.

Assumption 5. The distance measure employed by the researcher is given by

d�ij;n ¼ dij;n þ vij;nX0,

where vij;n ¼ vji;n denotes the measurement errors, jvij;njpcV with 0ocVo1, and ðvij;nÞ is
independent of ð�i;nÞ.

Our next assumption relates to the estimator ûn.
9We note that the elements of respective vectors and matrices are allowed to depend on the sample size, i.e., to

form triangular arrays. This accommodates, among others, the case where the disturbances are generated from

Cliff–Ord type models; see, e.g., Kelejian and Prucha (1999) on this point.
10At a later point we extend our results to the case involving multiple distances, each measured with error.
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Assumption 6. There exist finite-dimensional vectors zi;n and Dn such that ûi;n � ui;n ¼

zi;nDn, and

n�1
Xn

i¼1

kzi;nk
2 ¼ Opð1Þ and n1=2kDnk ¼ Opð1Þ:11

2.2. Discussion of the assumptions

A widely used model for spatial correlation is the spatial AR(1) model introduced by
Cliff and Ord (1973, 1981):

un ¼ rW nun þ �n; jrjo1,

where r is a scalar parameter and W n is an n� n spatial weighting matrix. This model is a
variant of a model introduced by Whittle (1954), and can be viewed as a special case of (1)
with12

Rn ¼ ðIn � rW nÞ
�1.

A typical assumption in the literature for this model is that Rn satisfies Assumption 2; see,
e.g., Lee (2002, 2003, 2004) and Kelejian and Prucha (1998, 1999, 2004).13 More generally,
a special case of (1) is the spatial ARMAðp; qÞ model in which case

Rn ¼ ðIn � r1W 1;n � � � � � rqW p;nÞ
�1
½In þ l1M1;n þ � � � þ lqMq;n�,

where for r ¼ 1; . . . ; p and s ¼ 1; . . . ; q, rr and ls are scalar parameters, and W r;n and Ms;n

are spatial weighting matrices. On an intuitive level, if a4b the ith row of W a;n selects
neighbors which are more distant in some relevant space to the ith unit than does the ith
row of W b;n, and similarly for the ith rows of Ma;n and Mb;n; see Anselin (1988, 2001b) for
a further discussion.
Assumption 1 implies that the VC matrix of un is given by Sn ¼ RnR0n. Assumption 2

then implies that the row and column sums of Sn are uniformly bounded in absolute value,
and so the extent of correlation is restricted. In a time series context this condition ensures
that the process possesses a fading memory. We note that the extent of correlation is
necessarily restricted in virtually all large sample theory,—see, e.g. Amemiya (1985,
Chapter 3, 4) and Pötscher and Prucha (1997, Chapter 5, 6).
Another implication of Assumptions 1 and 2 is, as is readily seen, that the qth moments

of ui;n are uniformly bounded.
The spatial model specified in Section 4 is conditional on the exogenous variables and

the weighting matrix, which are therefore taken as matrices of constants. The IVs used to
estimate such spatial models are typically formulated in terms of the exogenous variables
and the weighting matrix. Our Assumption 3 is consistent with this scenario.
Assumption 4(a) relates to the bandwidth of the SHAC estimator considered below.

In essence, as will be seen, ‘n plays the same role as the bandwidth parameter (multiplied
11For definiteness, let A be some vector or matrix, then kAk ¼ ½TrðA0AÞ�1=2. We note that this norm is

submultiplicative, i.e., kABkpkAkkBk.
12For a review of some applications of this model see, e.g., Anselin (2001a).
13Of course, if �n ¼ F1=2

n Zn, where F
1=2
n is a diagonal matrix with non-negative uniformly bounded elements and

the elements of Zn are i.i.d., then we can take Rn ¼ ðIn � rW nÞ
�1F1=2

n . The matrix Rn then satisfies Assumption 2,

provided the row and column sums of ðIn � rW nÞ
�1 are uniformly bounded in absolute value.
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by two) in the time series literature in that in conjunction with a kernel function specified
below it limits the number of sample covariances entering into the SHAC estimator
to no more than n‘n. Clearly Assumption 4 implies that ‘n ¼ opðn

tÞ: Also observe that
the bound tm ¼

1
2ðq� 2Þ=ðq� 1Þp1

2; for q ¼ 4 we have tm ¼
1
3 and as q!1 we have

tm !
1
2
.

Our consistency proof relies, in part, upon Chebyshev’s inequality. Among other things,
Assumptions 4(a) and (b) ensure that the bias and variance terms limit to zero. Along with
our other assumptions, part (a) also ensures that the probability limit of the HAC
estimator based on estimated disturbances is asymptotically equivalent to one which has
the same form but is based on true disturbances. Among other things, part (b) restricts the
extent of correlation in relation to the distances between cross sectional units, which are
implicitly assumed to (eventually) increase as the sample size increases.14 As an illustration
and comparison with the time series literature consider the case where all units are
arranged in an ordered fashion on a line, with the distance between the ith and jth
unit equal to ji � jj and the covariance between them equal to s2ur

ji�jj for some jrjo1.
Then Assumption 4(b) would be satisfied for, e.g., rS ¼ 1 since

P1
i¼1 jr

iji ¼ jrj=
ð1� jrjÞ2o1. Assumption 4(b) generalizes this feature.

Assumption 5 specifies that the measurement errors are uniformly bounded and
independent of the model disturbances. Clearly, the non-negativity of the measured
distances implies that the measurement errors depend in part upon the ‘‘true’’ distances
involved.15

Assumption 6 should be satisfied for most cases in which ûn is based upon n1=2-consistent
estimators of regression coefficients. For example, using evident notation, consider the
non-linear regression model yi;n ¼ f ðxi;n;bÞ þ ui;n. Let b̂n denote the non-linear least
squares estimator and let ûi;n ¼ yi;n � f ðxi;n; b̂nÞ. Assuming that f is differentiable and
applying the mean value theorem it is readily seen that ûi;n � ui;n ¼ zinDn with zin ¼

½qf ðxi;n; bÞ=q b �b�n where b�n is, element by element, between b̂n and b, and Dn ¼ b̂n � b.
Under typical assumptions maintained for the non-linear regression model, zin and Dn will
satisfy the conditions postulated in Assumption 6; cp., e.g., Pötscher and Prucha (1986).
3. Spatial HAC estimators

In this section, we first specify a class of kernel functions. We then suggest consistent
SHAC estimators for Cn based on this class, which determines weights for the different
covariances as a function of measured distances between respective units. We first consider
the case where the researcher employs a single distance measure, possibly measured with
error, and provide a result for the consistency of the corresponding SHAC estimator. We
then extend the discussion to the case where the researcher is unsure about the proper
choice of a distance measure. We formulate a SHAC estimator that employs several
distance measures, and demonstrate the consistency of the estimator as long as the ‘‘true’’
distance measure, possibly measured with error, is among those considered by the
researcher.
14As an illustration, Assumption 4(b) would not be reasonable for cases in which the sample size increases

because of more intensive sampling within a given distance, e.g., increased sampling within a given neighborhood.

Cressie (1993, p. 57) refers to this case as ‘‘ infill asymptotics’’.
15We note that Conley (1999) also maintains bounded measurement errors.
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3.1. A single distance measure

Let Kð:Þ denote the kernel function. Then the weights for the different covariances will
be of the form Kðd�ij;n=dnÞ where d�ij;nX0 and dn40 are as in Assumptions 4 and 5.

Assumption 7. The kernel K : R! ½�1; 1�, with Kð0Þ ¼ 1, KðxÞ ¼ Kð�xÞ, KðxÞ ¼ 0 for
jxj41, satisfies

jKðxÞ � 1jpcK jxj
rK ; jxjp1, (3)

for some rKX1 and 0ocKo1.

Note that Kðd�ij;n=dnÞ ¼ Kðd�ji;n=dnÞ since d�ij;n ¼ d�ji;n. Of course, since d�ij;n=dnX0 it would
have sufficed to define K on the Rþ. We have specified the Kernel as is usual in the time
series literature where frequently the difference between two time periods (rather than the
absolute difference) divided by the truncation lag is used as an argument in the Kernel
function.
Clearly if (3) holds for some rKX1, then it also holds for rK ¼ 1. The larger the value of

rK for which this condition is satisfied, the flatter and smoother the kernel will be at zero;
compare, e.g., Pötscher and Prucha (1997, p. 129). We note that this condition is satisfied
for many of the usual kernels such as the rectangular kernel, Bartlett or triangular kernel,
the Parzen kernel, Tukey–Hanning kernel, Blackman–Tukey kernel, quadratic spectral
kernel, exponential density kernel, etc.; see Brockwell and Davis (1991, pp. 359–361), and
Andrews (1991).
Using evident notation, the ðr; sÞth element of the true VC matrix Cn in (2) and our

corresponding SHAC estimator of it are given by, respectively,

crs;n ¼ n�1
Xn

i¼1

Xn

j¼1

hir;nhjs;nsij;n, (4)

ĉrs;n ¼ n�1
Xn

i¼1

Xn

j¼1

hir;nhjs;nûi;nûj;nKðd�ij;n=dnÞ. (5)

For later reference, let Ĉn ¼ ðĉrs;nÞ: For purposes of comparison with the time series
literature consider, from a spatial perspective, the degenerate case where all units are
arranged on a line in an ordered fashion and dij;n ¼ ji � jj which is measured without error.
Let hi:;n denote the ith row of Hn. In this case, Ĉn would reduce to

Ĉn ¼ Kð0Þn�1
Xn

i¼1

h0i:;nhi:;nû2
i;n

þ
Xn�1

j¼1
Kðj=dnÞ

Xn�j

i¼1

½h0i:;nhiþj:;n þ h0iþj:;nhi:;n�ûi;nûiþj;n, ð6Þ

which is an expression familiar from the time series literature, see, e.g., Pötscher and
Prucha (1997, Chapter 12). On the other hand, it will typically be the case in a spatial
context that dij;nadiþr;jþr;n so that expressions comparable to (6) will not exist. The next
theorem establishes the consistency of our estimator Ĉn defined by (5).
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Theorem 1. Let Cn ¼ ðcrs;nÞ and Ĉn ¼ ðĉrs;nÞ be as defined by (4) and (5). Given the model

in (1) and Assumptions 1–7,

Ĉn �Cn ¼ opð1Þ.

Remark 1. Although the estimator Ĉn is symmetric and consistent, it may not be positive
semi-definite in finite samples. In many cases the distance measure will correspond to a
Euclidean norm in Rp, pX1, and d�ij=d ¼ kzi � zjkp ¼ ½

Pp
l¼1 ðzli � zljÞ

2
�1=2, where the

vectors zi ¼ ½z1i; . . . ; zpi�
0 describe certain characteristics of unit i, and where we have

dropped subscripts n for notational convenience. A leading example would be the case of
geographic distances, in which case zi would be of dimension 2� 1 and would contain the
(normalized) geographic coordinates of unit i. We next discuss the case of Euclidean
distance measures in more detail, and provide for this case general conditions regarding
kernel functions that ensures that Ĉn is positive semi-definite. Given the non-negativity
of distance measures, our discussion will focus w.l.o.g. on the restriction of the
kernel function to ½0;1Þ. Let Pp be the class of continuous functions j : ½0;1Þ ! R

with jð0Þ ¼ 1 and where for all positive integers n the matrix

½jðkzi � zjkpÞ�
n
i; j¼1

is positive semi-definite for any points z1; . . . ; zn in Rp. Clearly, if a kernel function K

belongs to Pp and d�ij=d ¼ kzi � zjkp, then Ĉn is positive semi-definite. A complete
description of the class Pp is given in the seminal article by Schoenberg (1938).16

He established that Pp � Ppþ1 and that j is an element of Pp if and only if it is of
the form

jðxÞ ¼ G
p

2

� �Z 1
0

2

rx

� �ðp�2Þ=2
J ðp�2Þ=2ðrxÞdF ðrÞ; xX0, (7)

where F is a probability distribution function on ½0;1Þ and J ðp�2Þ=2 is a Bessel function of
order ðp� 2Þ=2. The functions jðxÞ defined by (7) are ½ðp� 2Þ=2�-times differentiable on
ð0;1Þ, where ½a� denotes the greatest integer less than or equal to a. The following result
covers the triangular kernel and generalizations thereof: Consider the class of kernel
functions

KnðxÞ ¼
ð1� xÞn; 0pxp1;

0; x41:

(

Then KnðxÞ is an element of Pp if and only if nXðpþ 1Þ=2. This result is due to by
Golubov (1981). It establishes in particular that K1ðxÞ belongs to P1 and K2ðxÞ belongs P1

and P2; for a recent reference and discussion of functions of the from (7) see, e.g., Gneiting
(2002).

Remark 2. As a by-product of proving Theorem 1 we also obtain information on the
rate of convergence. In particular, suppose the following additional assumptions
16Schoenberg’s (1938) results utilizes Bochner’s (1933) theorem, that establishes the equivalence between

positive definite functions and characteristic functions of finite measures on Rp. Bochner’s theorem has been used

widely, including by Priestley (1981) and Yaglom (1962) within the context of spectral density estimation. It also

underlies results given, e.g., in Conley (1999) and Pötscher and Prucha (1997), regarding the positive

semidefiniteness of smoothed periodogram estimators.
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hold: E‘2nðdnÞ ¼ oðdZ
nÞ; dn ¼ Oðn2t=ZÞ and d�1n ¼ Oðn�2t=ZÞ for some Z40.17 Then we

have ĉrs;n � crs;n ¼ OpðgnÞ with

gn ¼ maxfn�1=2þ1=qþtð1�1=qÞ; n�2r�t=Zg

with r� ¼ minfrS;rKg. The implied optimal rate for gn is achieved for t� ¼ 1
2½q� 2�=½q�

1þ 2qðr�=ZÞ�o 1
2
ðq� 2Þ=ðq� 1Þ and is given by n�½ðq�2Þðr�=ZÞ�=½q�1þ2qðr�=ZÞ�. We note that t�

falls within the range postulated for t in Assumption 4. As q!1 we have t� !
1=½2þ 4ðr�=ZÞ� and the optimal rate is given by n�ðr�=ZÞ=½1þ2ðr�=ZÞ�.

3.2. Multiple distance measures

We now generalize the above result by allowing the researcher to consider several
distance measure between units i and j, namely dij;m;n ¼ dji;m;n, m ¼ 1; . . . ;M. We allow for
measurement errors in the measurement of these distances. In the following let d�ij;m;n ¼

d�ji;m;nX0 denote the distance measures employed by the researcher. Corresponding to each
of these measures, we assume that the researcher can select a distance dm;n40 such that
dm;n " 1 as n!1, m ¼ 1; . . . ;M. For each unit i ¼ 1; . . . ; n, let ‘i;n denote the number of
units (neighbors) j for which d�ij;m;npdm;n for at least one m ¼ 1; . . . ;M, i.e.,

‘i;n ¼
Xn

j¼1

1�
YM
m¼1

1d�ij;m;n4dm;n

 !
,

and let ‘n ¼ max1pipnð‘i;nÞ. Of course, if M ¼ 1, then, dropping subscript m, we have

‘i;n ¼
Pn

j¼1 ð1� 1d�ij;n4dn
Þ ¼

Pn
j¼1 1d�ij;npdn

, which is the expression for ‘i;n employed above in

our discussion of the case of a single distance measure. We now replace Assumptions 4 and
5 by the following two assumptions.

Assumption 4*. (a) E‘2n ¼ oðn2tÞ where tp1
2
ðq� 2Þ=ðq� 1Þ and q is defined in Assumption

1; (b)
Pn

j¼1 jsij;njd
rS

ij;1;npcS for some rSX1 and 0ocSo1.

Assumption 5
*
. The distance measures employed by the researcher are given by

d�ij;m;n ¼ dij;m;n þ vij;m;nX0,

where vij;m;n ¼ vji;m;n denotes the measurement errors, jvij;m;njpcV with 0ocVo1, and
fðvij;m;nÞ, m ¼ 1; . . . ;Mg is independent of ð�i;nÞ.

Remark 3. Assumption 4*(b) is postulated to hold w.l.o.g. for the first distance measure,
since we can always relabel the measures. It is important to note that we do not assume
that the researcher knows the distance measure for which Assumption 4*(b) holds. We only
postulate that the set of measures considered by the researcher contains the ‘‘true’’ distance
measure, i.e., the measure for which Assumption 4*(b) holds.
17For example, and as discussed in more detail in our Monte Carlo study below, if spatial units are located on a

square grid (of respective length one) and the distance dij;n between units is given by the Euclidean distance, then

‘nðdnÞp4ðdn þ cV Þ
2
� 4ðdn þ cV Þ þ 4, and thus E‘2nðdnÞ ¼ oðdZ

n) for Z44.
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Our SHAC estimator for the ðr; sÞth element of the true VC matrix Cn defined by (4) is,
in the present case of multiple distance measures, now given by

ĉrs;n ¼ n�1
Xn

i¼1

Xn

j¼1

hir;nhjs;nûi;nûj;nK min
m
fd�ij;m;n=dm;ng

� �
. (8)

As is evident from the specification, the estimator includes all covariance terms for which

at least one of the ratios d�ij;m;n=dm;n is less than one. The next theorem establishes the

consistency of our estimator Ĉn defined by (8).

Theorem 2. Let Cn ¼ ðcrs;nÞ and Ĉn ¼ ðĉrs;nÞ be as defined by (4) and (8). Given the model in

(1) and Assumptions 1–3, 4*, 5*, 6, 7,

Ĉn �Cn ¼ opð1Þ.

Clearly Theorem 2 is a generalization of Theorem 1. The importance of this
generalization is that in practice researchers can consider ‘‘many’’ distance measures
between units and base their SHAC estimator on just the minimum of the measured ratios
described in (8).

4. A general spatial regression model

In this section we derive the limiting distribution of an IV estimator for the parameters of a
single Cliff–Ord type spatial equation, which may be part of a system of equations, and may
contain spatial lags of the exogenous, as well as endogenous variables. Formal estimation of
such models in the single equation case has been recently considered by, e.g., Lee (2002, 2003,
2004) and Kelejian and Prucha (1998, 1999), and in the systems case by Kelejian and Prucha
(2004). In contrast to this earlier literature, in this paper we do not impose any specific
structure on the disturbance process apart from that provided by (1). We also allow for
endogenous regressors which could be generated by a non-linear model. We derive the limiting
distribution of the IV estimator of the regression parameters. It will become clear that, in light
of Theorem 2, the VC matrix involved in that distribution can be consistently estimated.

4.1. Model specification

Consider the Cliff–Ord type regression model

yn ¼ X nb0 þ l0W nyn þ Y ng0 þ un; jl0jo1, (9)

where yn is an n� 1 vector of observations on the dependent variable corresponding to n

cross sectional units, X n is a corresponding n� kx matrix of observations on kx non-
stochastic regressors, W n is an n� n weighting matrix of known constants, Y n is a
corresponding n� ry matrix of observations on ry endogenous variables, un is the
disturbance vector, and b0, l0; and g0 are correspondingly defined parameters. The
disturbance vector un is assumed to be generated according to (1), which allows for general
patterns of spatial correlation and heteroscedasticity.

In the above model the (i; j)th element of the weighting matrix, wij;n, would typically be
taken to be non-zero only if units i and j are related in a meaningful way, in which case
these units are said to be neighbors. The non-zero elements of W n would also typically be
assumed to decline as a measure of distance between the corresponding units increases.
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The distance measure could relate to geographic space, technology space, etc.18 In the
literature W nyn is said to be the spatial lag of yn. Our specification allows for the elements
of all data vectors and matrices to depend on the sample size. Consequently the
specification allows for X n and Y n to contain, respectively, the spatial lags of some or all of
the considered exogenous and endogenous variables. In the following it will be convenient
to express (9) more compactly as

yn ¼ Znd0 þ un, (10)

where Zn ¼ ðX n;W nyn;Y nÞ and d00 ¼ ðb
0
0; l0; g

0
0Þ.

In the following we specify a set of assumptions for model (10), which are in addition to
Assumptions 1, 2 and 4* for the disturbance process.

Assumption 8. All diagonal elements of W n are zero.

Assumption 9. (a) ðI � l0W nÞ is non-singular. (b) The row and column sums of W n; and
ðI � l0W nÞ

�1 are bounded uniformly in absolute value by some constant cW , 0ocWo1.

Assumption 10. X n has full column rank (for n large enough), and its elements are
uniformly bounded in absolute value by constant cX , 0ocXo1.

We will estimate the model by an IV procedure. Towards this end again let Hn be the
n� ph matrix of instruments. In this section we maintain the following assumptions
concerning Hn which are an extension of those given in Assumption 3.

Assumption 11. The (non-stochastic) instrument matrix Hn has full column rank phXkx þ

ry þ 1 for n large enough, and its elements are uniformly bounded in absolute value by
some constant cH , 0ocHo1. It contains at least the linearly independent columns of
ðX n;W nX nÞ. Furthermore, Hn has the following properties:
(a)
18

Rob
19

in ot
QHH ¼ limn!1 n�1H 0nHn is a finite non-singular matrix;

(b)
 QHZ ¼ p limn!1 n�1H 0nZn is a finite matrix which has full column rank kx þ ry þ 1;

(c)
 C ¼ limn!1 n�1H 0nSnHn is a finite non-singular matrix where, again, Sn ¼ Eðunu0nÞ ¼

RnR0n:
The above assumptions are consistent with those maintained for Cliff–Ord type models
in the recent literature. For further discussions and interpretations see, e.g., Kelejian and
Prucha (2004). It seems of interest to further comment on the choice of the instruments.
Clearly the optimal instruments for Zn are EZn ¼ ½X n;EðW nynÞ;EðY nÞ�. Solving (9)
‘‘partially’’ for yn and assuming that the roots of l0W n are less than unity in absolute
value19 yields

Eyn ¼ ðIn � l0W nÞ
�1
ðX nb0 þ EY ng0Þ

¼
X1
s¼0

li
0W

i
nðX nb0 þ EY ng0Þ. ð11Þ
For a discussion of some weighting matrix formulations see Anselin (1988, Chapter 3) and Kelejian and

inson (1995).

In many models the weighting matrix is row normalized and it is assumed that jl0jo1. In this case, as well as

hers, the roots of l0W n would be less than unity in absolute value and so the expansion in (11) holds.
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Under reasonable conditions, if (9) represents one equation of a linear system of equations,
the discussion in Kelejian and Prucha (2004) implies that EY n ¼

P1
s¼0 W s

nX nPs, where X n

denotes the matrix of all exogenous variables in the system and Ps are (reduced form)
parameter matrices. In applications we may now try to approximate the optimal
instruments by selecting Hn such that it includes the independent columns of
ðX n;W nX n; . . . ;W

g
nX nÞ for some gX1. Of course, if all exogenous variables in the system

are not observed, we may construct instruments based only on the observed set. We also
note that if the elements of the exogenous variables are uniformly bounded, then so will be
the elements of W s

nX n for sX1, and thus our selection of instruments will be consistent
with Assumption 11. Similarly, if one or more of the elements of Y n are generated by a
non-linear model, we are effectively assuming that the elements of EðY nÞ are uniformly
bounded and relate to X n;W nX n and, perhaps, to other variables that may or may not be
included in Hn. A final point should be noted concerning Assumption 11(b), which in
essence ensures that the instruments Hn identify the parameters. Suppose b0 ¼ 0 and
g0 ¼ 0 so that EðW nynÞ ¼ 0: It should be clear, in this case, that Assumption 11(b) will not
hold. Therefore, the estimation theory presented below will not enable the researcher to
test the hypothesis that b0 ¼ 0 and g0 ¼ 0. However, unlike for the case described in
Kelejian and Prucha (1998), our results do enable the researcher to test the hypothesis
b0 ¼ 0. Indeed, given our other assumptions, an analysis which is virtually identical to that
in Kelejian and Prucha (1998) will demonstrate that our results and corresponding testing
procedures only require that at least one element of b0 or g0 be non-zero.20

The next assumption bounds the third absolute moments of the elements yir;n of Y n.

Assumption 12. The expectations Ejyir;nj
3 are uniformly bounded by some constant cY ,

0ocYo1.

Assumption 1 maintains that the innovations have uniformly bounded fourth moments.
Given this, Assumption 12 should be satisfied for typical specifications of Cliff–Ord type
models. In particular, if (9) represents one equation of a linear system of equations such as
that considered in Kelejian and Prucha (2004), but with the disturbance processes allowed
to be of the more general form considered in this paper, then Assumption 12 holds. This
follows since the demonstration in the earlier paper that the third absolute moments of the
endogenous variables as well as their spatial lags are uniformly bounded did not depend on
the specific structure of the disturbance process and only used the features of Assumptions
1 and 2 in this paper.

4.2. Instrumental variable estimation

We next define a spatial 2SLS estimator which is based on the instruments Hn. We
derive its asymptotic distribution and provide a consistent estimator for its VC matrix that
utilizes the SHAC estimator considered in Section 4. In particular, let Ẑn ¼ PnZn where
Pn ¼ HnðH

0
nHnÞ

�1H 0n; then the spatial 2SLS estimator for the parameter vector d of (10) is
given by

d̂n ¼ ðẐ
0

nZnÞ
�1Ẑ

0

nyn. (12)
20If the weighting matrix is row normalized, that non-zero element must correspond to a non-constant

regressor—see, e.g., Kelejian and Prucha (1998).



ARTICLE IN PRESS
H.H. Kelejian, I.R. Prucha / Journal of Econometrics 140 (2007) 131–154144
Let ûn ¼ ðû1;n; . . . ; ûn;nÞ denote the 2SLS residuals, i.e., ûn ¼ yn � Znd̂n. Based on those
residuals and Hn, let Ĉn ¼ ðĉrs;nÞ; as given in (8), be the corresponding SHAC estimator of
Cn ¼ n�1H 0nSnHn and of its limit, C ¼ limn!1 n�1H 0nSnHn. We can now give the
following theorem concerning the asymptotic distribution of d̂n and the consistent
estimation of its asymptotic VC matrix.

Theorem 3. Assume the disturbance specification in (1), the model in (10), and Assumptions

1, 2, 4*, 5*, and 7–12. Then (a) n1=2ðd̂n � d0Þ!
d
Nð0;FÞ and (b) F̂n!

p
F as n!1, where

F ¼ ðQ0HZQ�1HHQHZÞ
�1Q0HZQ�1HHCQ�1HH QHZðQ

0
HZQ�1HHQHZÞ

�1,

F̂n ¼ n2ðẐ
0

nẐnÞ
�1Z0nHnðH

0
nHnÞ

�1ĈnðH
0
nHnÞ

�1H 0nZnðẐ
0

nẐnÞ
�1.

Given Theorem 3, small sample inferences concerning d0 can be based on the

approximation d̂n	Nðd0; n�1F̂nÞ.

5. A Monte Carlo study

In this section, we give some illustrative Monte Carlo results which suggest that our
SHAC estimator performs reasonably well in finite samples.

5.1. Monte Carlo design

Our Monte Carlo design is influenced by the widely used format for the analysis of
spatial regression models by Anselin and Rey (1991) and Anselin and Florax (1995), as
well as by the format used by Andrews (1991) and Andrews and Monahan (1992) for the
analysis of HAC estimators. In particular, we consider the following special case of the
spatial model considered above:

yn ¼ X nb0 þ un,

un ¼ r0W nun þ �n; jr0jo1, (13)

with X n ¼ ½en;xn� consisting of two regressors (one of which is the intercept), and
b0 ¼ ½a0; b0�

0 ¼ ½1; 5�0. That is, we consider a linear regression model where the disturbances
follow a first-order Cliff–Ord spatial autoregressive process. The spatial units are assumed
to be located on a square grid at locations fðr; sÞ : r; s ¼ 0; 1; . . . ;mg, and thus the total
number of units is n ¼ ðmþ 1Þ2. The distance dij between units is given by the Euclidean
distance. As, e.g., in Baltagi et al. (2003) the weights matrix W n is taken to be a rook-type
matrix where two units are neighbors if their Euclidean distance is less than or equal to
one. The weights matrix is normalized such that the weights in each row sum to one. Given
this In � r0W n is non-singular, and hence un ¼ ðIn � r0W nÞ

�1�n. The �i;n are taken to be
i.i.d. standardized normal, and thus

Sn ¼ Eunu0n ¼ ðIn � r0W nÞ
�1
ðIn � r0W 0

nÞ
�1. (14)

The OLS estimator and its (normalized) VC matrix, conditional on the regressors, are
given by

b̂n ¼ ½ân; b̂n�
0 ¼ ðX 0nX nÞ

�1X 0nyn,
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VCð
ffiffiffi
n
p
ðb̂n � b0Þ j X nÞ ¼ ðn

�1X 0nX nÞ
�1
½n�1X 0nEunu0nX n�ðn

�1X 0nX nÞ
�1. (15)

Analogous to Andrews (1991) and Andrews and Monahan (1992) we consider the case
where n�1X 0nX n ¼ In, and the estimand of interest in our Monte Carlo study is taken to be
the variance of the least squares estimator corresponding to the slope parameter b0, i.e., the
(normalized) variance of b̂n. Given our setup this variance is given by

cn ¼ varð
ffiffiffi
n
p
ðb̂n � b0ÞjxnÞ

¼ n�1x0nEunu0nxn ¼ n�1
Xn

i¼1

Xn

j¼1

xi;nxj;nEui;nuj;n, ð16Þ

where xi;n denotes the ith element of xn. The SHAC estimator for cn is given by

ĉHAC;n ¼ n�1
Xn

i¼1

Xn

j¼1

xi;nxj;nûi;nûj;nKðd�ij;n=dnÞ, (17)

where ûi;n denotes the ith element of the OLS residual vector ûn ¼ yn � X nb̂n. We also
compute the estimator for cn corresponding to the ‘‘ classical’’ OLS VC matrix estimator.
Since n�1X 0nX n ¼ In this estimator is simply given by ĉOLS;n ¼ n�1

Pn
i¼1 û2

i;n. Our Monte
Carlo results relate to five experimental values for r0; namely (�0:8, �0:5, 0, 0.5, 0.8), and
two sample sizes, namely n ¼ 400 and 1024:We also consider a case in which measurement
errors are absent, and one in which they are not. In all 20 of our experiments we used the
Parzen kernel, which is consistent with Assumption 7.

For each Monte Carlo iteration we draw a set of innovations �n from a standardized
normal distribution. For a given regressor vector xn we can then generate yn from the
above model. The elements of the n� 1 vector xn are generated via the following simple
spatial autoregressive model: xn ¼ 0:3W nxn þ zn where the elements of zn are i.i.d. draws
from a uniform distribution over the interval ½0; 1�. The elements of xn are then further
standardized by subtracting the sample mean and dividing each observation by the sample
standard deviation so that n�1X 0nX n ¼ In. Although the estimand of interest is the variance
cn, which is conditional on xn, we randomly draw, similar to Andrews (1991), a new set of
regressor vectors xn for each repetition of the experiment (in the above described manner)
to reduce the dependence of the results on particular realizations of xn. As a result the
value of the estimand cn will vary across repetitions. Among other things, in the tables we
will report its average value across repetitions.

Our first set of experiments relates to the case in which measurement errors are absent in
the distance measure, i.e., d�ij;n ¼ dij where dij stands for the Euclidean distance between
units i and j. It is not difficult to check that if ‘nðdnÞ is the maximum numbers of neighbors
that satisfy dijpdn, then ‘nðdnÞp4d2

n � 4dn þ 4 and thus if dn ¼ oðnkÞ, then ‘n ¼ oðn2kÞ. In
our Monte Carlo study we took dn ¼ ½n

1=4�, where ½z� denotes the nearest integer that is less
than or equal to z.21

In our second set of experiments we allow for errors of measurement. Specifically, in this case
we assume the ‘‘true’’ Euclidean distance dij is measured as d�ij;n ¼ dij þ vij;n where vij;n denotes
a random measurement error. For the case in which dij ¼ 1; we take Pðvij;n ¼ 0Þ ¼ Pðvij;n ¼

1Þ ¼ 1
2
; for the case in which dijX2 we take Pðvij;n ¼ �1Þ ¼ Pðvij;n ¼ 0Þ þ Pðvij;n ¼ 1Þ ¼ 1

3
.

21In a future larger Monte Carlo study it may be of interest to consider specifications where dn ¼ c½n1=4� for

different values of c, as well as various other variations of the Monte Carlo design.
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For each replication we generate a set of measurement errors which are independent of the
disturbances and regressors.
5.2. Monte Carlo results

Table 1 gives results relating to small sample biases and RMSEs for our SHAC
estimator ĉHAC;n based on the Parzen kernel for sample sizes n ¼ 400 and 1024 for the case
in which the measurement errors are zero. These results are based on 1000 Monte Carlo
replications. As expected, for all cases considered, the RMSEs are lower for the sample size
1024 than for n ¼ 400: For sample size n ¼ 400 the magnitude of the biases and RMSEs
corresponding to the Parzen kernel are on average roughly 8% and 23%, respectively, of
the true value of cn. For sample size n ¼ 1024 their magnitudes are on average roughly 4%
and 16%, respectively. These results are encouraging. The RMSEs are lowest for the case
in which r ¼ 0.
Table 1 also reports results relating to small sample biases and RMSEs of the ‘‘classical’’

OLS VC matrix estimator ĉOLS;n. For the case in which r ¼ 0 this estimator is
consistent, and known to perform well. As expected, for r ¼ 0 both bias and RMSE of
the estimator ĉOLS;n are small. For ra0 the estimator is generally inconsistent. As
expected, the bias increases with jrj, and the bias remains high even as the sample size
increases.
The results in Table 1 support our theoretical findings for ĉHAC;n. Given the limited

nature of our experiments, these results can only provide limited information regarding the
relative performance of ĉHAC;n and ĉOLS;n. More informative small sample comparisons
would have to be based on a wider Monte Carlo study involving, among other things,
Table 1

Bias and RMSE of spatial HAC estimator ĉHAC;n and OLS estimator ĉOLS;n of the variance of b̂n, cn: distance

without measurement error

r cn HAC (Parzen kernel) OLS

Bias RMSE Bias RMSE

n ¼ 400

0.8 3.428 �0.452 0.911 �1.073 1.201

0.5 1.516 �0.125 0.315 �0.261 0.292

0 1.000 �0.038 0.186 �0.002 0.073

�0.5 1.062 �0.002 0.194 0.204 0.234

�0.8 1.722 0.051 0.375 0.704 0.792

Column average (of absolute values) 0.134 0.396 0.449 0.518

n ¼ 1024

0.8 3.352 �0.248 0.622 �1.014 1.068

0.5 1.506 �0.067 0.231 �0.250 0.263

0 1.000 �0.020 0.140 �0.001 0.044

�0.5 1.058 �0.001 0.147 0.199 0.211

�0.8 1.682 0.024 0.262 0.672 0.707

Column average (of absolute values) 0.072 0.280 0.427 0.458
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Table 2

Bias and RMSE of spatial HAC estimator ĉHAC;n of the variance of b̂n, cn: distance with measurement errors

r cn HAC (Parzen kernel)

Bias RMSE

n ¼ 400

0.8 3.417 �0.634 1.006

0.5 1.513 �0.173 0.345

0 1.000 �0.038 0.203

�0.5 1.064 0.044 0.228

�0.8 1.731 0.227 0.497

Column averages (of absolute values) 0.223 0.456

n ¼ 1024

0.8 3.340 �0.388 0.652

0.5 1.504 �0.104 0.245

0 1.000 �0.021 0.150

�0.5 1.058 0.029 0.167

�0.8 1.682 0.138 0.331

Column averages (of absolute values) 0.136 0.309
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heteroscedastic innovations �n, various weighting matrices, as well as various dependence
structures for xn, etc.

Finally, for illustrative purposes, Table 2 gives results relating to the use of the Parzen
kernel for the case in which there are errors of measurement concerning distances. The
cases considered are the same as those in Table 1. All of the results are based on 500 Monte
Carlo repetitions.22 A glance at Table 2 suggests that for all cases considered the biases and
RMSEs decrease as the sample size increases. Also, although the RMSEs are generally
larger than corresponding values in Table 1, on average the difference is, roughly, only
15% and 10% for n ¼ 400 and 1024, respectively.
6. Conclusion and suggestions for future research

In this paper we suggested a spatial HAC (SHAC) estimator of a VC matrix in a
spatial framework, and demonstrated the consistency of that estimator. An important aim
of this paper was to establish that consistency under a set of relatively simple assumptions
that covers, among others, the important and widely used class of Cliff–Ord type models.
Our assumptions allow the researcher to be unsure about which distance measure to use in
the SHAC estimator, as well as for measurement errors in the distance measures
considered. Our consistency result is also generic in the sense that residuals may
correspond to a variety of linear and non-linear models, provided they are n1=2-consistently
estimated.
22The smaller number of Monte Carlo repetitions was considered because for n ¼ 1024 even for this smaller

number of iterations, each Monte Carlo experiment corresponding to a particular value of r0 took four days to

complete on a fast PC. We also note that because of the difference in the number of Monte Carlo repetitions the

numbers for cn are slightly different in the two tables.
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In this paper we also derived the asymptotic distribution of an IV estimator for the
parameters of a general spatial model and demonstrated that a consistent estimator of the
VC matrix involved can be based on our suggested SHAC procedure.
Finally, we gave Monte Carlo results which suggest that our SHAC estimator per-

forms reasonably well in small samples. Our Monte Carlo study was based on a limited
number of experiments relating to model parameter values, only one kernel, one weighting
matrix, one process generating the regressors xn, one process for the innovations �n, and
only one specification of measurement errors relating to the measured distances under-
lying our SHAC estimator. Therefore, one suggestion for future research would be to
expand that Monte Carlo study to one which has a wider scope of experimental model
parameter values, various spatial weights matrices as well as kernels, various generating
mechanisms for xn and �n, and more than one specification of distance measurement errors.
As part of such a study it would be of interest to explore bandwidth selection issues as
well as the small sample properties of Wald-type test statistics that involve the SHAC
estimator.

Appendix A
Proof of Theorem 1. Theorem 1 is a special case of Theorem 2, which is proven below. &

Proof of Theorem 2. The ðr; sÞth element of Cn and its corresponding SHAC estimator Ĉn

as given in (4) and (8) are

crs;n ¼ n�1
Xn

i¼1

Xn

j¼1

hir;nhjs;nsij;n, (A.1)

ĉrs;n ¼ n�1
Xn

i¼1

Xn

j¼1

hir;nhjs;nûi;nûj;nKðminmfd
�
ij;m;n=dm;ngÞ. (A.2)

Clearly

ĉrs;n � crs;n ¼ ars;n þ brs;n þ crs;n, (A.3)

with

ars;n ¼ n�1
Xn

i¼1

Xn

j¼1

hir;nhjs;n½ûi;nûj;n � ui;nuj;n�K min
m
fd�ij;m;n=dm;ng

� �
,

brs;n ¼ n�1
Xn

i¼1

Xn

j¼1

hir;nhjs;n½ui;nuj;n � sij �K min
m
fd�ij;m;n=dm;ng

� �
,

crs;n ¼ n�1
Xn

i¼1

Xn

j¼1

hir;nhjs;nsij;n K min
m
fd�ij;m;n=dm;ng

� �
� 1

h i
.

To prove that ĉrs;n � crs;n ¼ opð1Þ we show that each term on the r.h.s of (A.3) is opð1Þ.
(a) Proof that ars;n ¼ opð1Þ: Observe that in light of Assumption 6

jûi;nûj;n � ui;nuj;njpjui;njkzj;nkkDnk þ juj;njkzi;nkkDnk þ kzi;nkkzj;nkkDnk
2.
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Recalling that jhir;njpcH , observing that jKðminm fd
�
ij;m;n=dm;ngÞjp1�

QM
m¼1 1d�ij;m;n4dm;n

, and
utilizing the above inequality we have

jars;njpn�1
Xn

i¼1

Xn

j¼1

hir;nkhjs;nkûi;nûj;n � ui;nuj;nkK min
m
fd�ij;m;n=dm;ng

� ���� ���
pAð1Þrs;n þ Að2Þrs;n þ Að3Þrs;n,

Að1Þrs;n ¼ c2HkDnkn
�1
Xn

i¼1

Xn

j¼1

1�
YM
m¼1

1d�ij;m;n4dm;n

 !
jui;njkzj;nk,

Að2Þrs;n ¼ c2HkDnkn
�1
Xn

i¼1

Xn

j¼1

1�
YM
m¼1

1d�ij;m;n4dm;n

 !
juj;njkzi;nk,

Að3Þrs;n ¼ c2HkDnk
2n�1

Xn

i¼1

Xn

j¼1

1�
YM
m¼1

1d�ij;m;n4dm;n

 !
kzi;nkkzj;nk.

Also observe that in light of the definition of ‘n given before Assumption 4* we havePn
j¼1ð1�

QM
m¼1 1d�ij;m;n4dm;n

Þp‘n. Let q be as in Assumption 1. It then follows from Hölder’s
inequality that

Að1Þrs;npc2HkDnkn
�1
Xn

j¼1

kzj;nk
Xn

i¼1

1�
YM
m¼1

1d�ij;m;n4dm;n

 !" #1�1=q Xn

i¼1

jui;nj
q

" #1=q

pc2Hn�1=2þ1=q‘1�1=q
n ½n1=2kDnk� n�1

Xn

j¼1

kzj;nk

" #
n�1

Xn

i¼1

jui;nj
q

" #1=q

.

As remarked in the text, in light of Assumptions 1 and 2 it is readily seen that
Ejui;nj

qpconsto1. Because of this and the other maintained assumptions all terms in
square brackets in the last inequality are seen to be Opð1Þ. Now consider

pð1Þn ¼ n�1=2þ1=q‘1�1=q
n ¼ n�1=2þ1=qþtð1�1=qÞ½n�t‘n�

1�1=q.

In light of Assumption 4*(a) we have ‘n ¼ opðn
tÞ with tptm ¼

1
2
ðq� 2Þ=ðq� 1Þ. Observing

further that �1
2
þ 1=qþ tð1� 1=qÞp� 1

2
þ 1=qþ tmð1� 1=qÞ ¼ 0 clearly pð1Þn ¼ opð1Þ and

hence Að1Þrs;n ¼ opð1Þ. By the same arguments it follows that also Að2Þrs;n ¼ opð1Þ. Applying
Hölder’s inequality we see further that

Að3Þrs;npc2HkDnk
2n�1

Xn

j¼1

kzj;nk
Xn

i¼1

1�
YM
m¼1

1d�ij;m;n4dm;n

 !" #1=2 Xn

i¼1

kzi;nk
2

" #1=2

pc2Hn�1=2‘1=2n n1=2kDnk

h i2
n�1

Xn

j¼1

kzj;nk

" #
n�1

Xn

i¼1

kzi;nk
2

" #1=2
.

In light of Assumption 6 all terms in square brackets in the last inequality are Opð1Þ. Now
consider

pð3Þn ¼ n�1=2‘1=2n ¼ n�ð1=2Þð1�tÞ½n�t‘n�
1=2.
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Since ‘n ¼ opðn
tÞ with tp 1

2
ðq� 2Þ=ðq� 1Þp 1

2
by Assumption 4*(a) clearly pð3Þn ¼ opð1Þ and

hence Að3Þrs;n ¼ opð1Þ. Thus ars;n ¼ opð1Þ.
(b) Proof that brs;n ¼ opð1Þ: Substitution of ui;n ¼

Pn
l¼1 ril;n�l;n into the expression for brs;n

yields

brs;n ¼ n�1
Xn

l¼1

Xn

k¼1

glk;n½�l;n�k;n � E�l;n�k;n�

with glk;n ¼
Pn

i¼1

Pn
j¼1 hir;nhjs;nril;nrjk;nKðminm fd

�
ij;m;n=dm;ngÞ. Let V n ¼ fðvij;m;nÞ;m ¼

1; . . . ;Mg be the matrix of measurement errors and let �n be the vector of innovations.
Since V n and �n are independent by Assumption 5* clearly Ebrs;n ¼ 0. It hence suffices to
show that varðbrs;nÞ ¼ oð1Þ. The variance of brs;n conditional on V n is—see, e.g., Kelejian
and Prucha (2001, p. 227)—given by

varðbrs;njVnÞ ¼ 2n�2
Xn

l¼1

Xn

k¼1

g2lk;n þ n�2
Xn

l¼1

g2ll ½E�
4
l;n � 3�.

Next observe that

Xn

k¼1

jglk;njpc2H

Xn

i¼1

jril;nj
Xn

j¼1

1�
YM
m¼1

1d�ij;m;n4dm;n

 !Xn

k¼1

jrjk;njpc2Hc2R‘n,

where we have utilized that
Pn

j¼1ð1�
QM

m¼1 1d�ij;m;n4dm;n
Þp‘n as well as Assumption 2; hencePn

k¼1 jglk;nj
2p½

Pn
k¼1 jglk;nj�

2pc4Hc4R‘
2
n. The variance of brs;n is now given by

E varðbrs;njV nÞpE 2n�2
Xn

l¼1

c4Hc4R‘
2
n þ n�2ðcE þ 4Þ

Xn

l¼1

c4Hc4R‘
2
n

( )
pconst � n�1E‘2n.

Observing again that E‘2n ¼ oðn2tÞ with tp1
2ðq� 2Þ=ðq� 1Þp1=2 shows that varðbrs;nÞ ¼

oð1Þ and hence brs;n ¼ opð1Þ.

(c) Proof that crs;n ¼ opð1Þ: Let r� ¼ minfrS;rKg, where rS and rK are as in Assumptions
4*(b) and 7. Then condition (3) for Kð:Þ also hold with rK replaced by r�. Furthermore
observe that jKðxÞ � 1jpðcK þ 1Þjxjr� for all x. Given Assumptions 1, 2 and 4*(b) we havePn

j¼1jsij;njpc2Ro1 and

Xn

j¼1

jsij;nj½dij;1;n þ cV �
r�p

Xn

j¼1

jsij;nj½dij;1;n þ cV þ 1�rS

p2rS ½cV þ 1�rS

Xn

j¼1

jsij;nj þ 2rS

Xn

j¼1

jsij;njd
rS

ij;1;npconsto1.

Hence

jcrs;njpn�1
Xn

i¼1

Xn

j¼1

jhir;nkhjs;nksij;nj K min
m
fd�ij;m;n=dm;ng

� �
� 1

��� ���
pc2H ðcK þ 1Þn�1

Xn

i¼1

Xn

j¼1

jsij;nj min
m
fd�ij;m;n=dm;ng

h ir�



ARTICLE IN PRESS
H.H. Kelejian, I.R. Prucha / Journal of Econometrics 140 (2007) 131–154 151
pc2H ðcK þ 1Þ d
�r�
1;n n�1

Xn

i¼1

Xn

j¼1

jsij;nj½dij;1;n þ cV �
r�

pconst�d
�r�
1;n ¼ oð1Þ

since d1;n !1. This establishes that crs;n ¼ opð1Þ.
Having demonstrated that all terms on the r.h.s. of (A.3) are opð1Þ this concludes the

proof. &

Derivation of optimal rate given in Remark 2: Observe that under the assumptions of the
remark we have E‘2nðdnÞ ¼ oðn2tÞ and hence ‘n ¼ opðn

tÞ, and d�1n ¼ Oðn�2t=ZÞ. From the
proof of Theorem 1 it is then readily seen that

jĉrs;n � crs;njpjars;nj þ jbrs;nj þ jcrs;nj

with ars;n ¼ Opð1Þ � ½n
�1=2þ1=q‘1�1=q

n � ¼ opðn
�1=2þ1=qþtð1�1=qÞÞ, brs;n ¼ Opðn

�1=2ðE‘2nÞ
1=2
Þ ¼

opðn
t�1=2Þ and crs;n ¼ Opðd

�r�
n Þ ¼ Opðn

�2r�t=ZÞ. Thus ĉrs;n � crs;n ¼ OpðgnÞ with gn as given

in the remark. Clearly, gn is minimized for t� as given in the remark.

Proof of Theorem 3. From (1), (10), and (12) we have

n1=2ðd̂n � d0Þ ¼Mnn�1=2L0n�n, (A.4)

where Mn ¼ ðn
�1Ẑ

0

nZnÞ
�1n�1Z0nHnðn

�1H 0nHnÞ
�1 and L0n ¼ H 0nRn. Observing that Ẑ

0

nZn ¼

Ẑ
0

nẐn ¼ Z0nHnðH
0
nHnÞ

�1H 0nZn and RnR0n ¼ Sn it follows from Assumption 11 that

Mn!
p
ðQ0HZQ�1HHQHZÞ

�1Q0HZQ�1HH ,

n�1L0nLn!
p
C, (A.5)

where both limiting matrices are finite and non-singular. Assumptions 2 and 11 imply that
the elements of Ln are uniformly bounded in absolute value. Assumption 1 and the central
limit theorem for triangular arrays given in Kelejian and Prucha (1998, p. 112) then imply
that

n�1=2L0n�n!
d
Nð0;CÞ. (A.6)

Part (a) of Theorem 3 follows trivially from (A.4) to (A.6).
Consider now part (b) of Theorem 3. We established above that n�1Ẑ

0

nẐn!
p

Q0HZQ�1HHQHZ. Next observe that

F̂n ¼ ðn
�1Ẑ

0

nẐnÞ
�1n�1Z0nHnðn

�1H 0nHnÞ
�1Ĉnðn

�1H 0nHnÞ
�1n�1H 0nZnðn

�1Ẑ
0

nẐnÞ
�1.

Part (b) of Theorem 3 then follows in light of Assumption 11, provided we can establish
the consistency of the SHAC estimator Ĉn: To show that this is indeed the case we verify
the assumptions of Theorem 2. Assumptions 1, 2, 4*, 5* and 7 are assumed to hold.
Assumption 3 is clearly implied by Assumption 11. Hence we only have to verify that the
2SLS residuals satisfy Assumption 6. Let zi;n denote the ith row of Zn, then ûi;n � ui;n ¼

zi:;nDn with Dn ¼ d0 � d̂n. Given part (a) of the theorem clearly n1=2kDnk ¼ Opð1Þ. A
sufficient condition for zi;n to satisfy the conditions of Assumption 6 is that all elements
have uniformly bounded third absolute moments; see, e.g., Lemma A.2 in Kelejian and
Prucha (1998). Since the elements of X n are uniformly bounded in absolute value
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by Assumption 10 and the third absolute moments of the elements of Y n are
uniformlybounded by Assumption 12 it only remains to be shown that
Ejȳi;nj

3pconsto1, where ȳi;n denotes the ith element of the spatial lag W nyn. Observe that

W nyn ¼W nðIn � l0W nÞ
�1X nb0 þW nðIn � l0W nÞ

�1Y ng0
þW nðIn � l0W nÞ

�1Rn�n.

Assumptions 2 and 9 imply that the row and column sums of W nðIn � l0W nÞ
�1 and

W nðIn � l0W nÞ
�1Rn are uniformly bounded in absolute value. Assumption 10 then implies

that the elements of W nðIn � l0W nÞ
�1X nb0 are uniformly bounded in absolute value. It

now follow immediately from Lemma A.2 in Kelejian and Prucha (2004) that the elements
of W nyn have third absolute moments which are uniformly bounded. This completes the
proof of part (b) of Theorem 3. &
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