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Over the last decades, spatial-interactionmodels have been increasingly used in economics. However, the
development of a sufficiently general asymptotic theory for nonlinear spatial models has been hampered
by a lack of relevant central limit theorems (CLTs), uniform laws of large numbers (ULLNs) and pointwise
laws of large numbers (LLNs). These limit theorems form the essential building blocks towards developing
the asymptotic theory of M-estimators, including maximum likelihood and generalized method of
moments estimators. The paper establishes a CLT, ULLN, and LLN for spatial processes or random fields
that should be applicable to a broad range of data processes.
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1. Introduction

Spatial-interaction models have a long tradition in geography,
regional science and urban economics. For the last two decades,
spatial-interaction models have also been increasingly considered
in economics and the social sciences, in general. Applications range
from their traditional use in agricultural, environmental, urban
and regional economics to other branches of economics including
international economics, industrial organization, labor and public
economics, political economy, and macroeconomics.
The proliferation of spatial-interaction models in economics

was accompanied by an upsurge in contributions to a rigorous
theory of estimation and testing in spatial models. However,
most of those contributions have focused on linear models of the
Cliff–Ord type, cp. Cliff and Ord (1973, 1981), and Baltagi et al.
(2007) for recent contributions. The development of a general
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asymptotic estimation theory for nonlinear spatial models under
sets of assumptions that are both general and accessible for
interpretation by applied researchers has been hampered by a lack
of relevant central limit theorems (CLTs), uniform laws of large
numbers (ULLNs), and pointwise laws of large numbers (LLNs)
for dependent nonstationary spatial processes, also referred to as
random fields. These limit theorems are the fundamental building
blocks for the asymptotic theory of nonlinear spatialM-estimators,
e.g., maximum likelihood and generalized method of moments
estimators, and test statistics.2
Against this background, the aim of the paper is to establish

a set of limit theorems under assumptions that are sufficiently
general to accommodate a number of critical features frequently
exhibited by processes in economic applications. Consequently,
these limit theorems should allow for the development of a general
asymptotic theory for parametric and non-parametric estimators
of a wide range of linear and nonlinear spatial economic models.
Many spatial processes in economics are nonstationary in that they

2 Conley (1999) makes an important contribution towards developing an
asymptotic theory of GMM estimators for spatial processes. However, in deriving
the limiting distribution of his estimator, he assumes stationarity which allows him
to utilize Bolthausen’s (1982) CLT for stationary random fields on Zd .
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are heteroskedastic and/or that the extent of dependence between
variables may vary with locations. Furthermore, the processes
may have asymptotically unbounded moments, in analogy with
trending moments in the times series literature. For example, real
estate prices often shoot up as one moves from the periphery
towards the center of a megapolis; see, e.g., Bera and Simlai (2005)
who report on sharp spikes in the variances of housing prices
in Boston; for more examples, see also Cressie (1993). Spatial
processes in economics are also typically not located on Zd, but
on unevenly spaced lattices. Additionally, to cover some important
classes of processes (e.g., Cliff–Ord type processes) where the
random variables are also indexed by the sample size, it is critical
to allow for a triangular array nature of the random field.
Towards these objectives, the paper derives a CLT, ULLN, and,

for completeness, also an exemplary LLN for dependent random
fields that (i) allow the random field to be nonstationary and
even to exhibit asymptotically unbounded moments, (ii) allow for
unevenly spaced locations and for general forms of sample regions,
and (iii) allow the randomvariables to dependon the sample, i.e., to
form a triangular array.
There exists an extensive literature on CLTs for mixing random

fields. A comprehensive survey of this literature is provided in
the importantmonographs by Bulinskii (1989), Nahapetian (1991),
Doukhan (1994), Guyon (1995), Rio (2000) andBradley (2007). As it
turns out, none of the existing CLTs accommodates all of the above
features essential for economic applications.
Our CLT for α-mixing random fields extends the Bolthausen

(1982) and Guyon (1995) CLTs using Rio’s (1993) covariance
inequality. In the time series literature, Rio’s inequality was
employed by Doukhan et al. (1994) to derive a CLT for stationary
α-mixing processes under an optimal set of moment and mixing
conditions. Using the same inequality, Dedecker (1998) obtained a
CLT for stationary α-mixing random fields on Zd. Building on these
results, we establish a CLT for nonstationary α-mixing random
fields on unevenly spaced lattices. As in Doukhan et al. (1994)
and Dedecker (1998), Rio’s (1993) inequality enables us to prove
a CLT from amild set of moment andmixing conditions. A detailed
comparison of the proposed CLT with the existing results is given
in Section 3.
ULLNs are the key tools for establishing consistency of nonlinear

estimators; cp., e.g., Gallant and White (1988), p. 19, and Pötscher
and Prucha (1997), p. 17. Generic ULLNs for time series processes
have been introduced by Andrews (1987, 1992), Newey (1991) and
Pötscher and Prucha (1989, 1994a,b). These ULLNs are generic in
the sense that they transform pointwise LLNs into ULLNs given
some form of stochastic equicontinuity of the summands. ULLNs
for time series processes, by their nature, assume evenly spaced
observations on a line. They are not suitable for fields on unevenly
spaced lattices. The generic ULLN for random fields introduced in
this paper extends the one-dimensional ULLNs given in Pötscher
and Prucha (1994a) and Andrews (1992). In addition to the generic
ULLN, we provide low level sufficient conditions for stochastic
equicontinuity that are relatively easy to check.3
For completeness, we also give a pointwise weak LLN, which is

based on a subset of the assumptions maintained in our CLT. Thus,
the trio of the results established in this paper can be used jointly
in the proof of consistency and asymptotic normality of spatial
estimators. Of course, the generic ULLN can also be combined with
other LLNs.

3 The existing literature on the estimation of nonlinear spatial models has
maintained high-level assumptions such as first moment continuity to imply
uniform convergence; cp., e.g., Conley (1999). The results in this paper are intended
to be more accessible, and in allowing, e.g., for nonstationarity, to cover larger
classes of processes.
The remainder of the paper is organized as follows. Section 2
introduces the requisite notation and definitions. The CLT for
arrays of nonstationaryα- andφ-mixing random fields on irregular
lattices is presented in Section 3. The generic ULLN, pointwise LLN
and various sufficient conditions are discussed in Section 4. All
proofs are relegated to the Appendices A–C. A longer version of
the paper with additional discussions and more detailed proofs is
available on the authors’ web pages.

2. Weak dependence concepts and mixing inequalities

In this section, we introduce the notation and definitions used
throughout the paper. We consider spatial processes located on
a (possibly) unevenly spaced lattice D ⊆ Rd, d ≥ 1. It proves
convenient to consider Rd as endowed with the metric ρ(i, j) =
max1≤l≤d |jl − il|, and the corresponding norm |i| = max1≤l≤d |il|,
where il denotes the l-th component of i. The distance between any
subsets U, V ∈ D is defined as ρ(U, V ) = inf {ρ(i, j) : i ∈ U and
j ∈ V }. Furthermore, let |U| denote the cardinality of a finite subset
U ∈ D.
The two basic asymptotic methods commonly used in the

spatial literature are the so-called increasing domain and infill
asymptotics, see, e.g., Cressie (1993), p. 480. Under increasing
domain asymptotics, the growth of the sample is ensured by an
unbounded expansion of the sample region. In contrast, under infill
asymptotics, the sample region remains fixed, and the growth of
the sample size is achieved by sampling points arbitrarily dense
in the given region. In this paper, we employ increasing domain
asymptotics, which is ensured by the following assumption on the
lattice D.

Assumption 1. The lattice D ⊂ Rd, d ≥ 1, is infinite countable. All
elements in D are located at distances of at least ρ0 > 0 from each
other, i.e., ∀i, j ∈ D : ρ(i, j) ≥ ρ0; w.l.o.g. we assume that ρ0 > 1.

The assumption of a minimum distance has also been used by
Conley (1999). It turns out that this single restriction on irregular
lattices also provides sufficient structure for the index sets to
permit the derivation of our limit results. In contrast to many
CLTs in the literature (e.g., Neaderhouser (1978a,b), Nahapetian
(1987), Bolthausen (1982) and McElroy and Politis (2000)) we
do not impose any restrictions on the configuration and growth
behavior of the index sets. Based on Assumption 1, Lemma A.1 in
the Appendix A gives bounds on the cardinalities of some basic sets
in D that will be used in the proof of the limit theorems.
We now turn to the dependence concepts used in our theorems.

Let {Xi,n; i ∈ Dn, n ∈ N} be a triangular array of real random
variables defined on a probability space (Ω, F, P), where Dn is
a finite subset of D, and D satisfies Assumption 1. Further, let
A and B be two sub-σ -algebras of F. Two common concepts of
dependence between A and B are α- and φ-mixing, which have
been introduced, respectively, by Rosenblatt and Ibragimov. The
degree of dependence ismeasured in terms of the following α- and
φ-mixing coefficients:

α(A,B) = sup(|P(A ∩ B)− P(A)P(B)|, A ∈ A, B ∈ B),

φ(A,B) = sup(|P(A|B)− P(A)|, A ∈ A, B ∈ B, P(B) > 0).

The concepts of α- and φ-mixing have been used extensively in
the time series literature as measures of weak dependence. Recall
that a time series process {Xt}∞−∞ is α-mixing if

lim
m→∞

sup
t
α(Ft
−∞
, F+∞t+m) = 0

where Ft
−∞
= σ(. . . , Xt−1, Xt) and F∞t+m = σ(Xt+m, Xt+m+1, . . .).

This definition captures the basic idea of diminishing dependence
between different events as the distance between them increases.
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To generalize these concepts to random fields, one could re-
sort to a direct analogy with the time-series literature and, for in-
stance, definemixing coefficients over theσ -algebras generated by
the half-spaces perpendicular to the coordinate axes. However, as
demonstrated by Dobrushin (1968a,b), the resulting mixing con-
ditions are generally restrictive for d > 1. They are violated even
for simple two-state Markov chains on Z2. The problem with def-
initions of this ilk is that they neglect potential accumulation of
dependence between σ -algebras σ(Xi; i ∈ V1) and σ(Xi; i ∈ V2)
as the sets V1 and V2 expand while the distance between them is
kept fixed. Given a fixed distance, it is natural to expect more de-
pendence between two larger sets than between two smaller sets.
Thus, generalizing mixing concepts to random fields in a prac-

tically useful way requires accounting for the sizes of subsets on
whichσ -algebras reside.Mixing conditions that depend on subsets
of the lattice date back to Dobrushin (1968a,b). They were further
expanded by Bolthausen (1982) and Nahapetian (1987). Following
these authors, we adopt the following definitions of mixing:

Definition 1. For U ⊆ Dn and V ⊆ Dn, let σn(U) = σ(Xi,n; i ∈ U),
αn(U, V ) = α(σn(U), σn(V )) and φn(U, V ) = φ(σn(U), σn(V )).
Then, the α- and φ-mixing coefficients for the random field
{Xi,n; i ∈ Dn, n ∈ N} are defined as follows:

αk,l,n(r) = sup(αn(U, V ), |U| ≤ k, |V | ≤ l, ρ(U, V ) ≥ r),
φk,l,n(r) = sup(φn(U, V ), |U| ≤ k, |V | ≤ l, ρ(U, V ) ≥ r),

with k, l, r, n ∈ N. To account for the dependence of the random
field on n, we define furthermore:

αk,l(r) = sup
n
αk,l,n(r), φk,l(r) = sup

n
φk,l,n(r).

As shown by Dobrushin (1968a,b), the weak dependence
conditions based on the above mixing coefficients are satisfied
by large classes of random fields including Gibbs fields. These
mixing coefficients were also used by Doukhan (1994) and
Guyon (1995), albeit without dependence on n. The α-mixing
coefficients for arrays of random fields in McElroy and Politis
(2000) are defined identically to αk,l(r). Doukhan (1994) provides
an excellent overview of various mixing concepts.
A key role in establishing limit theorems for mixing processes

is played by covariance inequalities. Early covariance inequalities
for α- and φ-mixing fields are collected, e.g., in Hall and Heyde
(1980), pp. 277–280. In these inequalities, covariances are bounded
by power moments. As such, they do not allow for ‘‘lower’’, e.g.,
logarithmic, moments and are, therefore, not sharp. These
inequalities were later improved by various authors including
Herrndorf (1985), Bulinskii (1988), Bulinskii and Doukhan (1987),
and Rio (1993). The proof of the α-mixing part of our CLT relies on
Rio’s (1993) inequality. Instead of moments, it is based on upper-
quantile functions, which makes explicit the relationship between
themixing coefficients and tail distribution of the process. To state
this result and to formulate the assumptions of our CLT, we need
the following definitions.

Definition 2. (i) For a random variable X , the ‘‘upper-tail’’ quan-
tile function QX : (0, 1)→ [0,∞) is defined as

QX (u) = inf{t : P(X > t) ≤ u}.

(ii) For the non-increasing sequence of the mixing coefficients{
α1,1(m)

}∞
m=1, setα1,1(0) = 1 and define its ‘‘inverse’’ function

αinv(u): (0, 1)→ N ∪ {0} as:

αinv(u) = max
{
m ≥ 0 : α1,1(m) > u

}
.

Remark 1. For a detailed discussion of the ‘‘upper-tail’’ quantile
function see, e.g., Bradley (2007), Vol. 1, pp. 318. It proves helpful
to re-state some of those properties. For a random variable X , let
FX (x) = P(X ≤ x) denote the cumulative distribution function and
let F−1X (u) = inf {x : FX (x) ≥ u} be the usual quantile function of X .
Then

QX (u) = F−1X (1− u).

Clearly, QX (u) is non-increasing in (0, 1). Furthermore, if U is a
random variable that is uniformly distributed on [0, 1], then the
random variable QX (U) has the same distribution as X , and thus
for any Borel function f : R→ R such that E |f (X)| <∞, we have

Ef (X) =
∫ 1

0
f (QX (u))du.

If X and Y are random variables such that X ≤ Y a.s., then for all
u ∈ (0, 1), QX (u) ≤ QY (u). If X ≥ 0 a.s., then for all u ∈ (0, 1),
QX (u) ≥ 0.

Using the upper-tail quantile function, Rio (1993) obtains a
sharper covariance inequality for α-mixing variables. In deriving
our CLT, we will use the following slightly weaker version of Rio’s
inequality given in Bradley (2007, Vol. 1, p. 320): Suppose that X
and Y are two real-valued random variables such that E |X | < ∞,
E |Y | <∞ and

∫ 1
0 Q|X |(u)Q|Y |(u)du <∞. Let α = α(σ(X), σ (Y )),

then

|Cov(X, Y )| ≤ 4
∫ α

0
Q|X |(u)Q|Y |(u)du. (1)

3. Central limit theorem

In this section, we provide a CLT for random fields with
(possibly) asymptotically unbounded moments. Let {Zi,n; i ∈ Dn,
n ∈ N} be an array of zero-mean real random fields on a probability
space (Ω, F, P), where the index sets Dn are finite subsets of D ⊂
Rd, d ≥ 1, which is assumed to satisfy Assumption 1. In the
following, let Sn =

∑
i∈Dn Zi,n and σ

2
n = Var(Sn).

The CLT focuses on α- and φ-mixing fields which satisfy,
respectively, the following sets of assumptions.

Assumption 2 (Uniform L2 Integrability). There exists an array of
positive real constants

{
ci,n
}
such that

lim
k→∞

sup
n
sup
i∈Dn
E[
∣∣Zi,n/ci,n∣∣2 1(∣∣Zi,n/ci,n∣∣ > k)] = 0,

where 1(·) is the indicator function.

To formulate the next assumption, let

Q
(k)
i,n := Q|Zi,n/ci,n|1(|Zi,n/ci,n|>k),

denote the ‘‘upper-tail’’ quantile function of |Zi,n/ci,n|1(|Zi,n/ci,n| >
k), and let αinv(u) denote the inverse function of α1,1(m) as given
in Definition 2(ii).

Assumption 3 (α-mixing). The α-mixing coefficients satisfy:

(a) limk→∞ supn supi∈Dn
∫ 1
0 α

d
inv(u)

(
Q
(k)
i,n (u)

)2
du = 0,

(b)
∑
∞

m=1m
d−1αk,l(m) <∞ for k+ l ≤ 4,

(c) α1,∞(m) = O(m−d−ε) for some ε > 0.

Assumption 4 (φ-mixing). The φ-mixing coefficients satisfy:

(a)
∑
∞

m=1m
d−1φ

1/2
1,1 (m) <∞,

(b)
∑
∞

m=1m
d−1φk,l(m) <∞ for k+ l ≤ 4,

(c) φ1,∞(m) = O(m−d−ε) for some ε > 0.
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Assumption 5. lim infn→∞ |Dn|−1M−2n σ
2
n > 0, where Mn =

maxi∈Dn ci,n.

Based on the above set of assumptions, we can now state the
following CLT.

Theorem 1. Suppose {Dn} is a sequence of arbitrary finite subsets of
D, satisfying Assumption 1, with |Dn| → ∞ as n → ∞. Suppose
further that {Zi,n; i ∈ Dn, n ∈ N} is an array of zero-mean real-valued
random variables satisfying Assumption 2 andwhere the random field
is either

(a) α-mixing satisfying Assumption 3, or
(b) φ-mixing satisfying Assumption 4.

If in addition Assumption 5 holds, then

σ−1n Sn H⇒ N(0, 1).

Clearly, the CLT can be readily extended to vector-valued ran-
dom fields using the standard Cramér-Wold device. Assumption 2
is a standard moment assumption seen in CLTs for time series pro-
cesses with trending moments; see, e.g., De Jong (1997) and the
references cited therein. It is implied by uniform Lr boundedness
for some r > 2: supn,i∈Dn E

∣∣Zi,n/ci,n∣∣r <∞, see Billingsley (1986),
p. 219.
The nonrandom constants ci,n in Assumption 2 are scaling

numbers that allow for processes with asymptotically unbounded
(trending) second moments. As remarked in the Introduction,
economic data are frequently nonstationary. They may even
exhibit dramatic differences in the magnitudes of their second
moments. As an example, Bera and Simlai (2005) report on sharp
spikes in the variances of housing prices in Boston. Of course, in
this context, one could also expect household incomes, household
wealth, property taxes, etc., to show similar features. Empirical
researchers may be reasonably concerned in such situations as to
whether an asymptotic theory that assumes uniformly bounded
moments would provide a good approximation of the small
sample distribution of their estimators and test statistics. Towards
establishing an asymptotic theory that is reasonably robust to such
‘‘irregular’’ behavior of second moments, Assumption 2 avoids the
assumption that the second moments are uniformly bounded.
In the case of uniformly L2-bounded fields, the scaling numbers

ci,n can be set to 1. In the case when there is no uniform bound
on the second moments, they would typically be chosen as ci,n =
max(vi,n, 1), where v2i,n = EZ

2
i,n. A simple but illustrative example

of a process with asymptotically unbounded second moments is
the process Zi,n = ci,nXi, where the ci,n are nonrandom constants
increasing in |i|, and {Xi} is a uniformly square integrable family. In
the case d = 1, a CLT for this class of processes was established by
Peligrad and Utev (2003), see Corollary 2.2.
Assumption 5 is a counterpart to Assumption 2, and may be

viewed as an asymptotic negligibility condition, which ensures
that no single summand dominates the sum. In the case of
uniformly L2-bounded fields, it reduces to lim infn→∞ |Dn|−1σ 2n >
0,which is the condition used byGuyon (1995); cp. also Bolthausen
(1982).
To further illuminate some of the implications of Assumptions 2

and 5, we consider two special cases of the above illustrative
example: Let {Zi, i ∈ Dn ⊂ Zd} be an independent zero-mean
random field with Dn = [1; n]d and |Dn| = nd. Suppose EZ2i = |i|

γ

for some γ > 0. Then, as discussed above, c2i = |i|
γ ,M2n = n

γ and
σ 2n ∼ n

(γ+d). Clearly, in this case Assumptions 2 and 5 are satisfied
for all γ > 0. Next, suppose that EZ2i = 2

|i|. Then, c2i = 2
|i|,M2n =

2n and σ 2n ∼ n
d−12n, and hence, lim infn→∞ |Dn|−1M−2n σ

2
n = 0.

Thus, Assumption 5 is violated in this case.
Assumption 3(a) reflects the trade-off between the conditions

on the tail functions and mixing coefficients. To connect this
assumption to the literature, we note that in the case of stationary
square integrable random fields, Assumption 3(a) is implied by a
somewhat simpler condition. More specifically, if∫ 1

0
αdinv(u)Q

2
|Zi|(u)du <∞, (2)

then, limk→∞
∫ 1
0 α

d
inv(u)

(
Q (k)
|Zi|
(u)
)2
du = 0, where i ∈ Dn and

Q (k)
|Zi|
:= Q|Zi|1(|Zi|>k). This statement is proved in the appendix after

the proof of the Corollary 1. For the case d = 1, condition (2) was
used by Doukhan et al. (1994); cp. also Dedecker (1998). In the
proof of Theorem1,we show conversely that under themaintained
assumptions

sup
n
sup
i∈Dn

∫ 1

0
αdinv(u)Q

2
i,n(u)du <∞.

In the nonstationary case, a sufficient condition for Assumption 3
(a) is given in the following lemma. This condition involves uniform
L2+δ integrability, which may be easier to verify in applications.

Corollary 1. Suppose the random field {Zi,n; i ∈ Dn, n ∈ N} satisfies
the assumptions of the α-mixing part of Theorem 1, except that
Assumptions 2 and 3(a) are replaced by: For for some δ > 0

lim
k→∞

sup
n
sup
i∈Dn
E
[∣∣Zi,n/ci,n∣∣2+δ 1 (∣∣Zi,n/ci,n∣∣ > k)] = 0, (3)

and
∞∑
m=1

α1,1(m)m[d(2+δ)/δ]−1 <∞. (4)

Then, Assumptions 2 and 3(a), and hence the conclusion of Theorem 1
hold.

Condition (3) is a typical moment assumption used in the
CLTs for α-mixing processes. As shown in the proof of the
Corollary 1, Condition (4) is weaker than the mixing condition∑
∞

m=1m
d−1α1,1(m)δ/(2+δ) <∞, used in Bolthausen (1982).

We now relate Theorem 1 to existing results in the literature.
In a seminal contribution, Bolthausen (1982) introduced a CLT
for stationary α-mixing random fields on Zd, using Stein’s (1972)
lemma. The proof of Theorem 1 is also based on Stein’s (1972)
lemma, but Theorem 1 extends Bolthausen’s 1982 CLT in the
following directions: (i) it allows for nonstationary random
fields with asymptotically unbounded moments, (ii) it allows for
unevenly spaced locations and relaxes restrictions on index sets,
and (iii) allows for triangular arrays.
As discussed in the Introduction, there exists a vast literature

on CLTs for mixing random fields. However, we are not aware of a
CLT for random fields that accommodates all of the above crucial
features, and/or contains Theorem 1 as a special case. Seminal
and important contributions include Neaderhouser (1978a,b),
Nahapetian (1987), Bolthausen (1982), Guyon and Richardson
(1984), Bulinskii (1988, 1989), Bradley (1992), Guyon (1995),
Dedecker (1998), McElroy and Politis (2000), among others. All
of these CLTs are for random fields on the evenly spaced lattice
Zd, and the CLTs of Nahapetian (1987), Bolthausen (1982), Bradley
(1992) and Dedecker (1998) furthermore maintain stationarity.
The other papers permit nonstationarity but do not explicitly
allow for processes with asymptotically unbounded moments.
Also,most CLTs do not accommodate triangular arrays, and impose
restrictions on the configuration and growth behavior of sample
regions.
We next compare the moment and mixing conditions of some

of the CLTs for nonstationary random fields with those maintained
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by Theorem 1. Guyon and Richardson (1984) and Guyon (1995),
p. 11, consider random fields on Zd with uniformly bounded 2+ δ
moments, while Theorem 1 assumes uniform L2 integrability.
Moreover, Guyon and Richardson (1984) exploitmixing conditions
for α∞,∞(r), which is somewhat restrictive, as discussed earlier.
Bulinskii (1988) establishes a covariance inequality for real

random variables in Orlicz spaces, which allows him to derive
a CLT for nonstationary α-mixing fields on Zd under a set of
weak moment and mixing conditions. However, as shown by Rio
(1993), given a moment condition, Bulinskii’s inequality results
in slightly stronger mixing conditions than those implied by Rio’s
(1993) inequality, which was used in deriving Theorem 1 and
Corollary 1. For instance, in the case of finite 2 + δ moments,
Bulinskii’s (1988) CLT would involve the mixing condition∑
∞

m=1m
d−1α1,1(m)δ/(2+δ) < ∞. As noted above, this condition

is stronger than Condition (4) postulated in Corollary 1. Finally,
Neaderhouser (1978a,b) and McElroy and Politis (2000) rely on
more stringent moment and mixing conditions than Theorem 1.

4. Uniform law of large numbers

Uniform laws of large numbers (ULLNs) are key tools for
establishing consistency of nonlinear estimators. Suppose the true
parameter of interest is θ0 ∈ Θ , where Θ is the parameter space,
and θ̂n is a corresponding estimator defined as the maximizer of
some real valued objective function Qn(θ) defined on Θ , where
the dependence on the data is suppressed. Suppose further that
EQn(θ) is maximized at θ0, and that θ0 is identifiably unique. Then
for θ̂n to be consistent for θ0, it suffices to show that Qn(θ) −
EQn(θ) converge to zero uniformly over the parameter space;
see, e.g., Gallant and White (1988), pp. 18, and Pötscher and
Prucha (1997), pp. 16, for precise statements, which also allow the
maximizers of EQn(θ) to depend on n. For many estimators the
uniform convergence ofQn(θ)−EQn(θ) is established from aULLN.
In the following, we give a generic ULLN for spatial processes.

The ULLN is generic in the sense that it turns a pointwise LLN
into the corresponding uniform LLN. This generic ULLN assumes (i)
that the random functions are stochastically equicontinuous in the
sensemade precise below, and (ii) that the functions satisfy an LLN
for a given parameter value. For stochastic processes this approach
was taken by Newey (1991), Andrews (1992), and Pötscher and
Prucha (1994a).4 Of course, to make the approach operational for
random fields, we need an LLN, and therefore we also give an LLN
for random fields. This LLN is exemplary, but has the convenient
feature that it holds under a subset of the conditions maintained
for the CLT. We also report on two sets of sufficient conditions for
stochastic equicontinuity that are fairly easy to verify.
Just as for our CLT, we consider again arrays of random fields

residing on a (possibly) unevenly spaced lattice D, where D ⊂ Rd,
d ≥ 1, is assumed to satisfy Assumption 1. However, for the
ULLN the array is not assumed to be real-valued. More specifically,
in the following let {Zi,n; i ∈ Dn, n ∈ N}, with Dn a finite
subset of D, denote a triangular array of random fields defined
on a probability space (Ω, F, P) and taking their values in Z ,
where (Z,Z) is ameasurable space. In applications, Z will typically
be a subset of Rs, i.e., Z ⊆ Rs, and Z ⊆ Bs, where Bs

denotes the s-dimensional Borel σ -field. We remark, however,
that it suffices for the ULLN below if (Z,Z) is only a measurable
space. Further, in the following, let

{
fi,n(z, θ), i ∈ Dn, n ∈ N

}
4 We note that the uniform convergence results of Bierens (1981), Andrews
(1987), and Pötscher and Prucha (1989, 1994b) were obtained from closely related
approach by verifying the so-called first moment continuity condition and from
local laws of large numbers for certain bracketing functions. For a detailed
discussion of similarities and differences, see Pötscher and Prucha (1994a).
and
{
qi,n(z, θ), i ∈ Dn, n ∈ N

}
be doubly-indexed families of real-

valued functions defined on Z × Θ , i.e., fi,n: Z × Θ → R and
qi,n: Z × Θ → R, where (Θ, ν) is a metric space with metric ν.
Throughout the paper, the fi,n(·, θ) and qi,n(·, θ) are assumedZ/B-
measurable for each θ ∈ Θ and for all i ∈ Dn, n ≥ 1. Finally, let
B(θ ′, δ) be the open ball

{
θ ∈ Θ : ν(θ ′, θ) < δ

}
.

4.1. Generic uniform law of large numbers

The literature contains various definitions of stochastic equicon-
tinuity. For a discussion of different stochastic equicontinuity con-
cepts see, e.g., Andrews (1992) and Pötscher and Prucha (1994a).
We note that apart from differences in the mode of convergence,
the essential differences in those definitions relate to the degree of
uniformity. We shall employ the following definition.5

Definition 3. Consider the array of random functions {fi,n(Zi,n, θ),
i ∈ Dn, n ≥ 1}. Then fi,n is said to be
(a) L0 stochastically equicontinuous onΘ iff for every ε > 0

lim sup
n→∞

1
|Dn|

∑
i∈Dn

P(sup
θ ′∈Θ

sup
θ∈B(θ ′,δ)

|fi,n(Zi,n, θ)

− fi,n(Zi,n, θ ′)| > ε)→ 0 as δ→ 0;
(b) Lp stochastically equicontinuous, p > 0, onΘ iff

lim sup
n→∞

1
|Dn|

∑
i∈Dn

E(sup
θ ′∈Θ

sup
θ∈B(θ ′,δ)

|fi,n(Zi,n, θ)

− fi,n(Zi,n, θ ′)|p)→ 0 as δ→ 0;
(c) a.s. stochastically equicontinuous onΘ iff

lim sup
n→∞

1
|Dn|

∑
i∈Dn

sup
θ ′∈Θ

sup
θ∈B(θ ′,δ)

|fi,n(Zi,n, θ)

− fi,n(Zi,n, θ ′)| → 0 a.s. as δ→ 0.

Stochastic equicontinuity-type concepts have been usedwidely
in the statistics and probability literature; see, e.g., Pollard
(1984). Andrews (1992), within the context of one-dimensional
processes, refers to L0 stochastic equicontinuity as termwise
stochastic equicontinuity. Pötscher and Prucha (1994a) refer to the
stochastic equicontinuity concepts in Definition 3(a) [(b)], [[(c)]]
as asymptotic Cesàro L0 [Lp], [[a.s.]] uniform equicontinuity, and
adopt the abbreviations ACL0UEC [ACLpUEC],[[a.s.ACUEC]]. The
following relationships among the equicontinuity concepts are
immediate: ACLpUEC H⇒ ACL0UEC ⇐H a.s.ACUEC .
In formulating our ULLN, we will allow again for trending

moments. We will employ the following domination condition.

Assumption 6 (Domination Condition). There exists an array of
positive real constants

{
ci,n
}
such that for some p ≥ 1:

lim sup
n→∞

1
|Dn|

∑
i∈Dn

E(dpi,n1(di,n > k))→ 0 as k→∞

where di,n(ω) = supθ∈Θ
∣∣qi,n(Zi,n(ω), θ)∣∣ /ci,n.

We now have the following generic ULLN.

Theorem 2. Suppose {Dn} is a sequence of arbitrary finite subsets of
D, satisfying Assumption 1, with |Dn| → ∞ as n → ∞. Let (Θ, ν)
be a totally bounded metric space, and suppose {qi,n(z, θ), i ∈ Dn,
n ∈ N} is a doubly-indexed family of real-valued functions defined
on Z × Θ satisfying Assumption 6. Suppose further that the qi,n
(Zi,n, θ)/ci,n are L0 stochastically equicontinuous on Θ , and that for

5 All suprema and infima over subsets of Θ of random functions used below are
assumed to be P-a.s. measurable. For sufficient conditions see, e.g., Pollard (1984),
Appendix C, or Pötscher and Prucha (1994b), Lemma 2.
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all θ ∈ Θ0,whereΘ0 is a dense subset of Θ , the stochastic functions
qi,n(Zi,n, θ) satisfy a pointwise LLN in the sense that

1
Mn |Dn|

∑
i∈Dn

[
qi,n(Zi,n, θ)− Eqi,n(Zi,n, θ)

]
→ 0

i.p. [a.s. ] as n→∞, (5)

whereMn = maxi∈Dn ci,n. Let Qn(θ) = [Mn |Dn|]
−1∑

i∈Dn qi,n(Zi,n, θ),
then

(a)

sup
θ∈Θ

|Qn(θ)− EQn(θ)| → 0 i.p. [a.s. ] as n→∞ (6)

(b) Q n(θ) = EQn(θ) is uniformly equicontinuous in the sense that

lim sup
n→∞

sup
θ ′∈Θ

sup
θ∈B(θ ′,δ)

∣∣Q n(θ)− Q n(θ ′)∣∣→ 0 as δ→ 0. (7)

The above ULLN adapts Corollary 4.3 in Pötscher and Prucha
(1994a) to arrays of random fields, and also allows for asymp-
totically unbounded moments. The case of uniformly bounded
moments is covered as a special case with ci,n = 1 andMn = 1.
The ULLN allows for infinite-dimensional parameter spaces. It

only maintains that the parameter space is totally bounded rather
than compact. (Recall that a set of ametric space is totally bounded
if for each ε > 0 it can be covered by a finite number of ε-balls).
If the parameter space Θ is a finite-dimensional Euclidian
space, then total boundedness is equivalent to boundedness, and
compactness is equivalent to boundedness and closedness. By
assuming only that the parameter space is totally bounded, the
ULLN covers situations where the parameter space is not closed,
as is frequently the case in applications.
Assumption 6 is implied by uniform integrability of individual

terms, dpi,n, i.e., limk→∞ supn supi∈Dn E(d
p
i,n1(di,n > k)) = 0, which,

in turn, follows from their uniform Lr -boundedness for some r > p,
i.e., supn supi∈Dn

∥∥di,n∥∥r <∞.
Sufficient conditions for the pointwise LLN and the main-

tained L0 stochastic equicontinuity of the normalized function
qi,n(Zi,n, θ)/ci,n are given in the next two subsections. The theorem
only requires the pointwise LLN (5) to hold on a dense subset Θ0,
but, of course, also covers the case whereΘ0 = Θ .
As it will be seen from the proof, L0 stochastic equicontinuity

of qi,n(Zi,n, θ)/ci,n and the Domination Assumption 6 jointly imply
that qi,n(Zi,n, θ)/ci,n is Lp stochastic equicontinuous for p ≥ 1,
which in turn implies uniform convergence of Qn(θ) provided
that a pointwise LLN is satisfied. Therefore, the weak part of
the ULLN will continue to hold if L0 stochastic equicontinuity
and Assumption 6 are replaced by the single assumption of Lp
stochastic equicontinuity for some p ≥ 1.

4.2. Pointwise law of large numbers

The generic ULLN is modular in the sense that it assumes a
pointwise LLN for the stochastic functions qi,n(Zi,n; θ) for fixed
θ ∈ Θ . Given this feature, a ULLN can be obtained by combining
the generic ULLN with available LLNs. In the following, we give
an exemplary LLN for arrays of real random fields {Zi,n; i ∈
Dn, n ∈ N} taking values in Z = R with possibly asymptotically
unbounded moments, which can in turn be used to establish a LLN
for qi,n(Zi,n; θ). The LLN below has the convenient feature that it
holds under a subset of assumptions of the CLT, Theorem 1, which
simplifies their joint application.
The CLT was derived under the assumption that the random

field was uniformly L2 integrable. As expected, for the LLN it
suffices to assume uniform L1 integrability.
Assumption 2∗ (Uniform L1 Integrability). There exists an array of
positive real constants

{
ci,n
}
such that

lim
k→∞

sup
n
sup
i∈Dn
E
[∣∣Zi,n/ci,n∣∣ 1 (∣∣Zi,n/ci,n∣∣ > k)] = 0,

where 1(·) is the indicator function.

A sufficient condition for Assumption 2* is supn supi∈Dn E∣∣Zi,n/ci,n∣∣1+η < ∞ for some η > 0. We now have the following
LLN.

Theorem 3. Suppose {Dn} is a sequence of arbitrary finite subsets of
D, satisfying Assumption 1, with |Dn| → ∞ as n → ∞. Suppose
further that {Zi,n; i ∈ Dn, n ∈ N} is an array of real random fields
satisfying Assumption 2* and where the random field is either

(a) α-mixing satisfying Assumption 3 (b) with k = l = 1, or
(b) φ-mixing satisfying Assumption 4 (b) with k = l = 1.

Then
1

Mn |Dn|

∑
i∈Dn

(
Zi,n − EZi,n

) L1
→ 0,

where Mn = maxi∈Dn ci,n.

The existence of first moments is assured by the uniform
L1 integrability assumption. Of course, L1-convergence implies
convergence in probability, and thus the Zi,n also satisfies a weak
law of large numbers. Comparing the LLN with the CLT reveals
that not only the moment conditions employed in the former are
weaker than those in the latter, but also the dependence conditions
in the LNN are only a subset of themixing assumptionsmaintained
for the CLT.
There is a vast literature onweak LLNs for time series processes.

Most recent contributions include Andrews (1988) and Davidson
(1993), among others. Andrews (1988) established an L1-law for
triangular arrays of L1-mixingales. Davidson (1993) extended the
latter result to L1-mixingale arrays with trending moments. Both
results are based on the uniform integrability condition. In fact, our
moment assumption is identical to that of Davidson (1993). The
mixingale concept, which exploits the natural order and structure
of the time line, is formally weaker than that of mixing. It allows
these authors to circumvent restrictions on the sizes of mixingale
coefficients, i.e., rates at which dependence decays. In contrast,
the above LLN maintains assumptions on the rates of decay of the
mixing coefficients.
The above LLN can be readily used to establish a pointwise

LLN for stochastic functions qi,n(Zi,n; θ) under the α- and φ-mixing
conditions on Zi,n postulated in the theorem. For instance, suppose
that qi,n(·, θ) is Z/B-measurable and supn supi∈Dn E|qi,n(Zi,n; θ)/
ci,n|1+η <∞ for each θ ∈ Θ and some η > 0, then qi,n(Zi,n; θ)/ci,n
is uniformly L1 integrable for each θ ∈ Θ . Recalling that the
α- and φ-mixing conditions are preserved under measurable
transformation, we see that qi,n(Zi,n; θ) also satisfies an LNN for a
given parameter value θ .

4.3. Stochastic equicontinuity: Sufficient conditions

In the previous sections, we saw that stochastic equicontinuity
is a key ingredient of a ULLN. In this section, we explore various
sufficient conditions for L0 and a.s. stochastic equicontinuity
of functions fi,n(Zi,n, θ) as in Definition 3. These conditions
place smoothness requirement on fi,n(Zi,n, θ) with respect to the
parameter and/or data. In the following,wewill present two sets of
sufficient conditions. The first set of conditions represent Lipschitz-
type conditions, and only requires smoothness of fi,n(Zi,n, θ) in
the parameter θ . The second set requires less smoothness in
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the parameter, but maintains joint continuity of fi,n both in the
parameter and data. These conditions should cover a wide range
of applications and are relatively simple to verify. Lipschitz-
type conditions for one-dimensional processes were proposed
by Andrews (1987, 1992) and Newey (1991). Joint continuity-
type conditions for one-dimensional processes were introduced
by Pötscher and Prucha (1989). In the following, we adapt those
conditions to random fields.
We continue to maintain the setup defined at the beginning of

the section.

4.3.1. Lipschitz in parameter

Condition 1. The array fi,n(Zi,n, θ) satisfies for all θ, θ ′ ∈ Θ and
i ∈ Dn, n ≥ 1 the following condition:∣∣fi,n(Zi,n, θ)− fi,n(Zi,n, θ ′)∣∣ ≤ Bi,nh(ν(θ, θ ′)) a.s.,
where h is a nonrandom function such that h(x) ↓ 0 as x ↓ 0, and
Bi,n are random variables that do not depend on θ such that for some
p > 0

lim sup
n→∞
|Dn|−1

∑
i∈Dn

EBpi,n <∞[
lim sup

n→∞
|Dn|−1

∑
i∈Dn

Bi,n <∞ a.s.

]
.

Clearly, each of the above conditions on the Cesàro sums of
Bi,n is implied by the respective condition on the individual terms,
i.e., supn supi∈Dn EB

p
i,n <∞ [supn supi∈Dn Bi,n <∞ a.s.].

Proposition 1. Under Condition 1, fi,n(Zi,n, θ) is L0 [a.s.] stochasti-
cally equicontinuous onΘ.

4.3.2. Continuous in parameter and data
In this subsection, we assume additionally that Z is a metric

space with metric τ and Z is the corresponding Borel σ -field.
We consider functions of the form:

fi,n(Zi,n, θ) =
K∑
k=1

rki,n(Zi,n)ski,n(Zin, θ), (8)

where rki,n : Z → R and ski,n(·, θ) : Z → R are real-valued
functions, which are Z/B-measurable for all θ ∈ Θ , 1 ≤ k ≤ K ,
i ∈ Dn, n ≥ 1. We maintain the following assumptions.

Condition 2. The random functions fi,n(Zi,n, θ) defined in (8) satisfy
the following conditions:
(a) For all 1 ≤ k ≤ K

lim sup
n→∞

1
|Dn|

∑
i∈Dn

E
∣∣rki,n(Zi,n)∣∣ <∞.

(b) For a sequence of sets {Km}with Km ∈ Z, the family of nonrandom
functions ski,n(z, ·), 1 ≤ k ≤ K , satisfy the following uniform
equicontinuity-type condition: For each m ∈ N,

sup
n
sup
i∈Dn
sup
z∈Km

sup
θ ′∈Θ

sup
θ∈B(θ ′,δ)

∣∣ski,n(z, θ)− ski,n(z, θ ′)∣∣→ 0

as δ→ 0.

(c) Also, for the sequence of sets {Km}

lim
m→∞

lim sup
n→∞

1
|Dn|

∑
i∈Dn

P
(
Zi,n 6∈ Km

)
= 0.

We now have the following proposition, which extends parts of
Theorem 4.5 in Pötscher and Prucha (1994a) to arrays of random
fields.
Proposition 2. Under Condition 2, fi,n(Zi,n, θ) is L0 stochastically
equicontinuous onΘ.

We next discuss the assumptions of the above proposition
and provide further sufficient conditions. We note that the fi,n
are composed of two parts, rki,n and ski,n, with the continuity
conditions imposed only on the second part. Condition 2 allows
for discontinuities in rki,n with respect to the data. For example,
the rki,n could be indicator functions. A sufficient condition
for Condition 2(a) is the uniform L1 boundedness of rki,n,
i.e., supn supi∈Dn E

∣∣rki,n(Zi,n)∣∣ <∞.
Condition 2(b) requires the nonrandom functions ski,n to be

equicontinuous with respect to θ uniformly for all z ∈ Km.
This assumption will be satisfied if the functions ski,n(z, θ),
restricted to Km × Θ , are equicontinuous jointly in z and θ .
More specifically, define the distance between the points (z, θ)
and (z ′, θ ′) in the product space Z × Θ by r((z, θ); (z ′, θ ′)) =
max

{
ν(θ, θ ′), τ (z, z ′)

}
. This metric induces the product topology

on Z×Θ . Under this product topology, let B((z ′, θ ′), δ) be the open
ball with center (z ′, θ ′) and radius δ in Km×Θ . It is now easy to see
that Condition 2(b) is implied by the following condition for each
1 ≤ k ≤ K

sup
n
sup
i∈Dn

sup
(z′,θ ′)∈Km×Θ

sup
(z,θ)∈B((z′,θ ′),δ)

∣∣ski,n(z, θ)− ski,n(z ′, θ ′)∣∣→ 0

as δ→ 0,

i.e., the family of nonrandom functions
{
ski,n(z, θ)

}
, restricted to

Km×Θ , is uniformly equicontinuous on Km×Θ . Obviously, if both
Θ and Km are compact, the uniform equicontinuity is equivalent to
equicontinuity, i.e.,

sup
n
sup
i∈Dn

sup
(z,θ)∈B((z′,θ ′),δ)

∣∣ski,n(z, θ)− ski,n(z ′, θ ′)∣∣→ 0 as δ→ 0.

Of course, if the functions furthermore do not depend on i and n,
then the condition reduces to continuity on Km×Θ . Clearly, if any
of the above conditions holds on Z×Θ , then it also holds onKm×Θ .
Finally, if the sets Km can be chosen to be compact, then

Condition 2(c) is an asymptotic tightness condition for the average
of themarginal distributions of Zin. Condition 2(c) can frequently be
implied by a mild moment condition. In particular, the following
is sufficient for Condition 2(c) in the case Z = Rs: Km ↑ Rs is
a sequence of Borel measurable convex sets (e.g., a sequence of
open or closed balls), and lim supn→∞ |Dn|

−1∑
i∈Dn Eh(Zin) < ∞

where h : [0,∞) → [0,∞) is a monotone function such that
limx→∞ h(x) = ∞; for example, h(x) = xp with p > 0. The
claim follows from LemmaA4 in Pötscher and Prucha (1994b)with
obvious modification to the proof.
We note that, in contrast to Condition 1, Condition 2 will

generally not cover random fields with trending moments since in
this case part (c) would typically not hold.

5. Concluding remarks

The paper derives a CLT, ULLN, and, for completeness, also
an exemplary LLN for spatial processes. In particular, the limit
theorems (i) allow the random field to be nonstationary and
to exhibit asymptotically unbounded moments, (ii) allow for
locations on unevenly spaced lattices in Rd and for general forms
of sample regions, and (iii) allow the random variables to form a
triangular array.
Spatial data processes encountered in empirical work are

frequently not located on evenly spaced lattices, are nonstationary,
and may even exhibit spikes in their moments. Random variables
generated by the important class of Cliff–Ord type spatial processes
form triangular arrays. The catalogues of assumptions maintained
by the limit theorems developed in this paper are intended to
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accommodate all these features in order to make these theorems
applicable to a broad range of data processes in economics.
CLTs, ULLNs and LLNs are the fundamental building blocks

for the asymptotic theory of nonlinear spatial M-estimators,
e.g., maximum likelihood and generalized method of moments
estimators, and test statistics. An interesting direction for future
research would be to generalize the above limit theorems to
random fields that are not mixing, but can be approximated by
mixing fields. This could be achieved, for example, by introducing
the concept of near-epoch dependent random fields similar to the
one used in the time-series literature. We are currently working in
this direction.
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Appendix A. Cardinalities of basic sets on irregular lattices
in Rd

The following lemma establishes bounds on the cardinalities of
basic sets in D that will be used in the proof of the limit theorems.
Its proof is elementary and is therefore omitted.

Lemma A.1. Suppose that Assumption 1 holds. Let Bi(r) be the closed
ball of the radius r centered in i ∈ Rd. Then,

(i) The ball Bi(1/2) with i ∈ Rd contains at most one element of D,
i.e., |Bi(1/2) ∩ D| ≤ 1.

(ii) There exists a constant C <∞ such that for h ≥ 1

sup
i∈Rd
|Bi(h) ∩ D| ≤ Chd,

i.e., the number of elements of D contained in a ball of radius h
centered at i ∈ Rd is O(hd) uniformly in i.

(iii) For m ≥ 1 and i ∈ Rd let

Ni(1, 1,m) = |{j ∈ D : m ≤ ρ(i, j) < m+ 1}|

be the number of all elements of D located at any distance h ∈
[m,m + 1) from i. Then, there exists a constant C < ∞ such
that

sup
i∈Rd
Ni(1, 1,m) ≤ Cmd−1.

(iv) Let U and V be some finite disjoint subsets of D. For m ≥ 1 and
i ∈ U let

Ni(2, 2,m) = |{(A, B) : |A| = 2, |B| = 2, A ⊆ U with i ∈ A,
B ⊆ V and ∃ j ∈ B with m ≤ ρ(i, j) < m+ 1}|

be the number of all different combinations of subsets of U
composed of two elements, one of which is i, and subsets of V
composed of two elements, where for at least one of the elements,
say j, we have m ≤ ρ(i, j) < m+ 1. Then there exists a constant
C <∞ such that

sup
i∈U
Ni(2, 2,m) ≤ Cmd−1 |U| |V | .
(v) Let V be some finite subset of D. For m ≥ 1 and i ∈ Rd let

Ni(1, 3,m) = |{B : |B| = 3, B ⊆ V and ∃ j ∈ B
with m ≤ ρ(i, j) < m+ 1}|

be the number of the subsets of V composed of three elements, at
least one of which is located at a distance h ∈ [m,m+ 1) from i.
Then there exists a constant C <∞ such that

sup
i∈Rd
Ni(1, 3,m) ≤ Cmd−1 |V |2 .

Appendix B. Proofs of CLT

The proof of Theorem 1 adapts the strategy employed by
Bolthausen (1982) in proving his CLT for stationary random fields
on regular lattices.

B.1. Some useful Lemmata

Lemma B.1 (Bradley, 2007, Vol. 1, pp. 326, for q = 1). Let α(m),
m = 1, 2, . . . be a non-increasing sequence such that 0 ≤ α(m) ≤ 1
and α(m) → 0 as m → ∞. Set α(0) = 1 and define the ‘‘inverse
function’’ α−1 : (0, 1)→ N ∪ {0} as

α−1(u) = max {m ≥ 0 : α(m) > u} for u ∈ (0, 1).

Let f : (0, 1)→ [0,∞) be a Borel function, then for q ≥ 1:

(a)
∑
∞

m=1m
q−1

∫ α(m)
0 f (u)du ≤

∫ 1
0

[
α−1(u)

]q f (u)du,
(b)

∫ 1
0

[
α−1(u)

]q du ≤ q∑∞m=1 α(m)mq−1, for any q ≥ 1.
Proof of Lemma B.1. The proof is similar to Bradley (2007), Vol. 1,
pp. 326, and is available on the authors’ webpages. �

Lemma B.2. Let Y ≥ 0 be some non-negative randomvariable, let FY
and QY be the c.d.f. and the upper-tail quantile function of Y , and for
some k > 0 let F (k)Y and Q (k)Y be the c.d.f. and the upper-tail quantile
function of Y1(Y > k). Furthermore, define

u(k) = P(Y > k) = 1− FY (k),

then QY (u) ≤ k for u ∈ [u(k), 1), and

Q (k)Y (u) =
{
QY (u) for u ∈ (0, u(k))
0 for u ∈ [u(k), 1).

Proof of Lemma B.2. In light of Remark 1 for u ∈ (0, 1):

QY (u) = inf{y : FY (y) ≥ 1− u},

Q (k)Y (u) = inf{y : F
k
Y (y) ≥ 1− u}.

Furthermore, observe that

F (k)Y (y) = P (Y1(Y > k) ≤ y) =

{0 y < 0
FY (k) 0 ≤ y ≤ k
FY (y) y > k

since P (Y1(Y > k) = 0) = P(Y ≤ k) = FY (k).
Let u ∈ [u(k), 1): Then 1− u(k) ≥ 1− u, and thus

QY (u) = inf{y : FY (y) ≥ 1− u} ≤ inf{y : FY (y) ≥ 1− u(k)}
= inf{y : FY (y) ≥ FY (k)} ≤ k, (B.1)

and

Q (k)Y (u) = inf{y : F
(k)
Y (y) ≥ 1− u} ≤ inf{y : F

(k)
Y (y) ≥ 1− u

(k)
}

= inf{y : F (k)Y (y) ≥ FY (k)} = 0, (B.2)

since F (k)Y (y) ≥ FY (k) for all y ≥ 0.
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Now let u ∈ (0, u(k)): Then 1− u(k) < 1− u and

{y : F (k)Y (y) ≥ 1− u} ⊆ {y : F
(k)
Y (y) > 1− u

(k)
}

= {y : F (k)Y (y) > FY (k)}.

Consequently, {y : F (k)Y (y) ≥ 1− u} ⊆ {y : y > k}. Observing that
for y > kwe have F (k)Y (y) = FY (y), it follows that

Q (k)Y (u) = inf{y : FY (y) ≥ 1− u} = QY (u). (B.3)

The claims of the lemma now follow from (B.1)–(B.3). �

B.2. Proof of theorem and corollaries

Proof of Theorem 1. We give the proof for α-mixing fields. The
argument for φ-mixing fields is similar. The proof is lengthy, and
for readability we break it up into several steps.
1. Notation and reformulation. Define

Xi,n = Zi,n/Mn

where Mn = maxi∈Dn ci,n is as in Assumption 5. Let σ 2n,Z =

Var
[∑

i∈Dn Zi,n
]
and σ 2n,X = Var

[∑
i∈Dn Xi,n

]
= M−2n σ

2
n,Z . Since

σ−1n,X

∑
i∈Dn

Xi,n = σ−1n,Z
∑
i∈Dn

Zi,n,

to prove the theorem, it suffices to show that σ−1n,X
∑
i∈Dn Xi,n H⇒

N(0, 1). In this light, it proves convenient to switch notation from
the text and to define

Sn =
∑
i∈Dn

Xi,n, σ 2n = Var

(∑
i∈Dn

Xi,n

)
.

That is, in the following, Sn denotes
∑
i∈Dn Xi,n rather than∑

i∈Dn Zi,n, and σ
2
n denotes the variance of

∑
i∈Dn Xi,n rather than

of
∑
i∈Dn Zi,n.
We next establish the moment and mixing conditions for Xi,n

implied by the assumptions of theCLT. Observe that bydefinition of
Mn, we have

∣∣Xi,n∣∣ ≤ ∣∣Zi,n/ci,n∣∣ and hence E[∣∣Xi,n∣∣2 1(∣∣Xi,n∣∣ > k)] ≤
E[
∣∣Zi,n/ci,n∣∣2 1(∣∣Zi,n/ci,n∣∣ > k)]. Thus, in light of Assumption 2,
lim
k→∞

sup
n
sup
i∈Dn
E[
∣∣Xi,n∣∣2 1(∣∣Xi,n∣∣ > k)] = 0, (B.4)

i.e., the Xi,n are uniformly L2 integrable. This further implies that

‖X‖22 = sup
n
sup
i∈Dn
E
∣∣Xi,n∣∣2 <∞. (B.5)

Clearly, themixing coefficients for Xi,n and Zi,n are identical, and
thus the mixing conditions postulated in Assumption 3 for Zi,n also
apply to Xi,n.
Using the new notation, Assumption 5 further implies:

lim inf
n→∞
|Dn|−1σ 2n > 0. (B.6)

2. Truncated random variables. In the following, we will consider
truncated versions of the Xi,n. For k > 0 we define the following
random variables

X (k)i,n = Xi,n1(|Xi,n| ≤ k), X̃ (k)i,n = Xi,n1(|Xi,n| > k), (B.7)

and the corresponding variances as

σ 2n,k = Var

[∑
i∈Dn

X (k)i,n

]
, σ̃ 2n,k = Var

[∑
i∈Dn

X̃ (k)i,n

]
.

We note that∣∣σn − σn,k∣∣ ≤ σ̃n,k. (B.8)

To see this, define

Sn,k =
∑
i∈Dn

X (k)i,n − EX
(k)
i,n , S̃n,k =

∑
i∈Dn

X̃ (k)i,n − EX̃
(k)
i,n ,

and observe that Sn = Sn,k + S̃n,k, σn = ‖Sn‖2, σn,k =
∥∥Sn,k∥∥2 and

σ̃n,k =
∥∥̃Sn,k∥∥2. The inequality in (B.8) is now readily established

using Minkowski’s inequality.
In the following, let Fi,n(x) and Qi,n be the c.d.f. and the upper-

tail quantile function of
∣∣Xi,n∣∣, let F (k)i,n and Q (k)i,n be the c.d.f. and the

upper-tail quantile function of
∣∣∣̃X (k)i,n ∣∣∣, respectively, and let

u(k)i,n = P
(∣∣Xi,n∣∣ > k) = 1− Fi,n(k).

Next, we deduce from Assumption 3 some basic properties of
the upper-tail quantile function of

∣∣Xi,n∣∣ and ∣∣∣̃X (k)i,n ∣∣∣ that will be
utilized in the proof below.
We first establish that

lim
k→∞

sup
n
sup
i∈Dn

∫ 1

0
αdinv(u)

(
Q (k)i,n (u)

)2
du = 0, (B.9)

where αinv(u) is the inverse of α1,1(m) given in Definition 2. Since∣∣Xi,n∣∣ 1(|Xi,n| > k) ≤
∣∣Zi,n/ci,n∣∣ 1(|Zi,n/ci,n| > k), in light of

Remark 1, we have

Q (k)i,n (u) ≤ Q|Zi,n/ci,n|1(|Zi,n/ci,n|>k)(u).

Proposition (B.9) now follows immediately from Assumption 3(a).
Next, we establish that

sup
n
sup
i∈Dn

∫ 1

0
αdinv(u)Q

2
i,n(u)du = K1 <∞. (B.10)

In light of (B.9), for any finite ε > 0 there exists a k < ∞ (which
may depend on ε) such that

sup
n
sup
i∈Dn

∫ 1

0
αdinv(u)

(
Q (k)i,n (u)

)2
du ≤ ε.

By Lemma B.2,

Q 2i,n(u) ≤


(
Q (k)i,n (u)

)2
for u ∈ (0; u(k)i,n )

k2 for u ∈ [u(k)i,n ; 1).

Hence, using the above inequality and Part (b) of Lemma B.1 with
q = d, it is readily seen that∫ 1

0
αdinv(u)Q

2
i,n(u)du ≤ ε + dk

2
∞∑
m=1

α1,1(m)md−1 <∞

since
∑
∞

m=1 α1,1(m)m
d−1 < ∞ by Assumption 3(b). This verifies

Proposition (B.10).
3. Bounds for variances. In the following, we will use the weaker
version of Rio’s covariance inequality given in (1). Using this
inequality gives

|cov(Xi,n, Xj,n)| ≤ 4
∫ α1,1(ρ(i,j))

0
Qi,n(u)Qj,n(u)du. (B.11)

Also, in light of the convention α1,1(0) = 1, Remark 1, and (B.5) we
have:

Var(Xi,n) =
∫ 1

0
Q 2i,n(u)du =

∫ α1,1(0)

0
Q 2i,n(u)du

≤ sup
n
sup
i∈Dn
EX2i,n = ‖X‖

2
2 <∞.
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We next establish a bound on σ 2n . Using Lemma A.1(iii) and (B.11)
yields:

σ 2n ≤
∑
i,j∈Dn

∣∣cov(Xi,n, Xj,n)∣∣ ≤ 4∑
i,j∈Dn

∫ α1,1(ρ(i,j))

0
Qi,n(u)Qj,n(u)du

≤ 2
∑
i∈Dn

∑
j∈Dn

∫ α1,1(ρ(i,j))

0

[
Q 2i,n(u)+ Q

2
j,n(u)

]
du

≤ 4
∑
i∈Dn

∞∑
m=0

∑
j∈Dn:ρ(i,j)∈[m,m+1)

∫ α1,1(ρ(i,j))

0
Q 2i,n(u)du

≤ 4
∑
i∈Dn

∞∑
m=0

Ni(1, 1,m)
∫ α1,1(m)

0
Q 2i,n(u)du

≤ 4C |Dn|‖X‖22 + 4C |Dn| sup
n,i∈Dn

∞∑
m=1

md−1
∫ α1,1(m)

0
Q 2i,n(u)du

≤ 4C |Dn|‖X‖22 + 4C |Dn| sup
n,i∈Dn

∫ 1

0
αdinv(u)Q

2
i,n(u)du ≤ |Dn|B2,

(B.12)

with B2 = 4C(‖X‖22+ K1) <∞. The first inequality in the last line
follows from Part (a) of Lemma B.1 by setting α(m) = α1,1(m) and
f (u) = Q 2i,n(u). The last inequality follows from (B.5) and (B.10).
Thus, supn |Dn|−1σ 2n < ∞. By condition (B.6), there exists an

N∗ and B1 > 0 such that for all n ≥ N∗, we have B1|Dn| ≤ σ 2n .
Combining this inequality with (B.12) yields for n ≥ N∗:

0 < B1|Dn| ≤ σ 2n ≤ B2|Dn|, (B.13)

where 0 < B1 ≤ B2 <∞.
Since X̃ (k)i,n is a measurable function of Xi,n, clearly α(σ (̃X

(k)
i,n ),

σ (̃X (k)j,n )) ≤ α(σ(Xi,n), σ (Xj,n)). Using analogous arguments as
above, it is readily seen that for each k > 0:

σ̃ 2n,k ≤ 4C |Dn| sup
n,i∈Dn

{
E
(
X̃ (k)i,n

)2
+

∫ 1

0
αdinv(u)

(
Q (k)i,n (u)

)2
du
}
.

(B.14)

In light of the l.h.s. inequality (B.13) and inequality (B.14), we have

lim
k→∞

sup
n≥N∗

σ̃ 2n,k

σ 2n
≤ 4

C
B1
lim
k→∞

sup
n
sup
i∈Dn
E
(
X̃ (k)i,n

)2
+ 4
C
B1
lim
k→∞

sup
n
sup
i∈Dn

∫ 1

0
αdinv(u)

(
Q (k)i,n (u)

)2
du.

Observe that E
(
X̃ (k)i,n

)2
= EX2i,n1(|Xi,n| > k). It now follows from

(B.4) and (B.9) that

lim
k→∞

sup
n≥N∗

σ̃ 2n,k

σ 2n
= 0, (B.15)

and furthermore, utilizing (B.8),

lim
k→∞

sup
n≥N∗

∣∣∣∣1− σn,kσn
∣∣∣∣ ≤ limk→∞ supn≥N∗

σ̃n,k

σn
= 0. (B.16)

4. Reduction to bounded variables. We would like to thank Benedikt
Pötscher for helpful discussions on this step of the proof. The proof
employs a truncation argument in conjunction with Proposition
6.3.9 of Brockwell and Davis (1991). For k > 0 consider the
decomposition

Yn = σ−1n
∑
i∈Dn

Xi,n = Vnk + (Yn − Vnk)
with

Vnk = σ−1n
∑
i∈Dn

(X (k)i,n − EX
(k)
i,n ),

Yn − Vnk = σ−1n
∑
i∈Dn

(̃X (k)i,n − EX̃
(k)
i,n ),

and let V ∼ N(0, 1). We next show that Yn H⇒ N(0, 1) if

σ−1n,k

∑
i∈Dn

(X (k)i,n − EX
(k)
i,n ) H⇒ N(0, 1) (B.17)

for each k = 1, 2, . . .. We note that (B.17) will be verified in
subsequent steps.
To show that Yn H⇒ N(0, 1) given (B.17) holds, we first verify

condition (iii) of Proposition 6.3.9 in Brockwell and Davis (1991).
By Markov’s inequality

P(|Yn − Vnk| > ε) = P

(∣∣∣∣∣σ−1n ∑
i∈Dn

(̃X (k)i,n − EX̃
(k)
i,n )

∣∣∣∣∣ > ε

)
≤
σ̃ 2n,k

ε2σ 2n
.

In light of (B.15)

lim
k→∞

lim sup
n→∞

P(|Yn − Vnk| > ε) ≤ lim
k→∞

lim sup
n→∞

σ̃ 2n,k

ε2σ 2n
= 0,

which verifies the condition.
Next, observe that

Vnk =
σn,k

σn

[
σ−1n,k

∑
i∈Dn

(X (k)i,n − EX
(k)
i,n )

]
.

Suppose r(k) = limn→∞ σn,k/σn exists, then Vnk H⇒ Vk ∼
N(0, r2(k)) in light of (B.17). If furthermore, limk→∞ r(k) →
1, then Vk H⇒ V ∼ N(0, 1), and the claim that Yn H⇒
N(0, 1) would follow by Proposition 6.3.9 of Brockwell and
Davis (1991). However, in the case of nonstationary variables
limn→∞ σn,k/σn need not exist, and therefore, we have to use a
different argument to show that Yn H⇒ V ∼ N(0, 1). We shall
prove it by contradiction.
LetM be the set of all probability measures on (R,B). Observe

that we can metrizeM by, e.g., the Prokhorov distance, say d(., .).
Let µn and µ be the probability measures corresponding to Yn and
V , respectively, then µn H⇒ µ iff d(µn, µ) → 0 as n → ∞.
Now suppose that Yn does not converge to V . Then for some ε > 0
there exists a subsequence {n(m)} such that d(µn(m), µ) > ε for
all n(m). Observe that by (B.13) and (B.14) we have 0 ≤ σn,k/σn ≤
B2/B1 < ∞ for all k > 0 and all n ≥ N∗, where N∗ does
not depend on k. W. l.o.g. assume that with n(m) ≥ N∗, and
hence 0 ≤ σn(m),k/σn(m) ≤ B2/B1 < ∞ for all k > 0 and
all n(m). Consequently, for k = 1 there exists a subsubsequence
{n(m(l1))} such that σn(m(l1)),1/σn(m(l1)) → r(1) as l1 → ∞. For
k = 2 there exists a subsubsubsequence {n(m(l1(l2)))} such that
σn(m(l1(l2))),2/σn(m(l1(l2))) → r(2) as l2 → ∞. The argument can
be repeated for k = 3, 4, . . .. Now construct a subsequence {nl}
such that n1 corresponds to the first element of {n(m(l1))}, n2
corresponds to the second element of {n(m(l1(l2)))}, and so on,
then for k = 1, 2, . . . ,we have:

lim
l→∞

σnl,k

σnl
= r(k).

Moreover, it follows from (B.16) that

lim
k→∞
|r(k)− 1| ≤ lim

k→∞
lim
l→∞

∣∣∣∣r(k)− σnl,kσnl

∣∣∣∣
+ lim
k→∞

sup
n≥N∗

∣∣∣∣σn,kσn − 1
∣∣∣∣ = 0.
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Given (B.17), it follows that Vnlk H⇒ Vk ∼ N(0, r2(k)). Then, by
Proposition 6.3.9 of Brockwell and Davis (1991), Ynl H⇒ V ∼
N(0, 1) as l → ∞. Since {nl} ⊆ {n(m)}, this contradicts the
hypothesis that d(µn(m), µ) > ε for all n(m).
Thus,wehave shown that Yn H⇒ N(0, 1) if (B.17) holds. In light

of this, it suffices to prove the CLT for bounded variables. Thus, in
the following, we will assume that

∣∣Xi,n∣∣ ≤ CX <∞.
5. Renormalization. Since |Dn| → ∞ and α1,∞(mn) = O(m−d−ε), it
is readily seen that we can choose a sequencemn such that

α1,∞(mn)|Dn|1/2 → 0 (B.18)

and

mdn|Dn|
−1/2
→ 0 (B.19)

as n→∞. Now, for suchmn define:

an =
∑

i,j∈Dn,ρ(i,j)≤mn

E(Xi,nXj,n).

Using arguments similar to those employed in derivation of (B.12),
it can be easily shown that sufficiently large n, say n ≥ N∗∗ ≥ N∗:

σ 2n = an + o(|Dn|) = an(1+ o(1)). (B.20)

For n ≥ N∗∗, define

S̄n = a−1/2n Sn = a−1/2n

∑
i∈Dn

Xi,n.

To demonstrate that σ−1n Sn H⇒ N(0, 1), it therefore suffices to
show that S̄n H⇒ N(0, 1).
6. Limiting distribution of S̄n: From the above discussion supn≥N∗
ES̄2n <∞. In light of Stein’s Lemma (see, e.g., Lemma 2, Bolthausen,
1982) to establish that S̄n H⇒ N(0, 1), it suffices to show that

lim
n→∞

E[(iλ− S̄n) exp(iλS̄n)] = 0

In the following, we take n ≥ N∗∗, but will not indicate that
explicitly for notational simplicity. Define

Sj,n =
∑

i∈Dn,ρ(i,j)≤mn

Xi,n and S̄j,n = a−1/2n Sj,n,

then

(iλ− S̄n) exp(iλS̄n) = A1,n − A2,n − A3,n,

with

A1,n = iλeiλS̄n
(
1− a−1n

∑
j∈Dn

Xj,nSj,n

)
,

A2,n = a−1/2n eiλS̄n
∑
j∈Dn

Xj,n[1− iλS̄j,n − e−iλS̄j,n ],

A3,n = a−1/2n

∑
j∈Dn

Xj,neiλ(S̄n−S̄j,n).

To complete the proof, it suffices to show that E|Ak,n| → 0 as
n→∞ for k = 1, 2, 3. The latter can be verified using Lemma A.1
and arguments analogous to those in Guyon (1995), pp. 112-113.
A detailed proof of these statements is available on the authors’
webpages. This completes the proof of the theorem. �

Proof of Corollary 1. As in Theorem 1, let Q (k)i,n := Q|Zi,n/ci,n|
1(|Zi,n/ci,n|>k) and let αinv(u) be the inverse of α1,1(m) as given in
Definition 2. By Hölder’s inequality,

lim
k→∞

sup
n
sup
i∈Dn

∫ 1

0
αdinv(u)

(
Q
(k)
i,n (u)

)2
du ≤

[∫ 1

0
α
d(2+δ)/δ
inv du

]δ/(2+δ)

×

[
lim
k→∞

sup
n
sup
i∈Dn

∫ 1

0

(
Q
(k)
i,n (u)

)2+δ
du
]2/(2+δ)

. (B.21)
In light of Remark 1 and condition (3) maintained by the lemma,
we have

lim
k→∞

sup
n
sup
i∈Dn

∫ 1

0

(
Q
(k)
i,n (u)

)2+δ
du = lim

k→∞
sup
n
sup
i∈Dn
E
[∣∣Zi,n/ci,n∣∣2+δ

× 1
(∣∣Zi,n/ci,n∣∣ > k)] = 0.

Hence to complete the proof, it suffices to show that the first term
on the r.h.s. of (B.21) is finite. To see this, observe that by Part (b)
of Lemma B.1 with α(m) = α1,1(m) and q = d(2+ δ)/δ we have∫ 1

0
α
d(2+δ)/δ
inv (u)du ≤

d(2+ δ)
δ

∞∑
m=1

α1,1(m)m[d(2+δ)/δ]−1 <∞,

where the r.h.s. is finite by condition (4) maintained by the lemma.
Finally, we verify the claimmade in the discussion of Corollary 1

that the mixing condition

∞∑
m=1

α1,1(m)m[d(2+δ)/δ]−1 <∞ (B.22)

is weaker than the condition
∞∑
m=1

md−1α1,1(m)δ/(2+δ) <∞ (B.23)

used in the previous version of the CLT. To see this, observe that
condition (B.23) implies that

mdα1,1(m)δ/(2+δ) → 0. (B.24)

Next, note that the ratio of the summands in (B.22) and (B.23)
equals

[
mdα1,1(m)δ/(2+δ)

]2/δ and therefore, tends to zero as m →
∞. Hence, condition (B.23) indeed implies (B.22). �

Proof of Claim before Corollary 1. By Lemma B.2, Q (k)
|Zi|
(u) ≤

Q|Zi|(u) for each k > 0 and all u ∈ (0, 1). Consequently, for all
k > 0:∫ 1

0
αdinv(u)

(
Q (k)
|Zi|
(u)
)2
du ≤

∫ 1

0
αdinv(u)Q

2
|Zi|(u)du <∞.

Furthermore, by Lemma B.2, we have limk→∞ Q
(k)
|Zi|
(u) = 0.

Therefore, by the Dominated Convergence Theorem:

lim
k→∞

∫ 1

0
αdinv(u)

(
Q (k)
|Zi|
(u)
)2
du = 0,

as required. �

Appendix C. Proofs of ULLN and LLN

Proof of Theorem 2. In the following we use the abbreviations
ACL0UEC [ACLpUEC] [[a.s.ACUEC]] for L0 [Lp], [[a.s.]] stochastic
equicontinuity as defined in Definition 3. We first show that
ACL0UEC and the Domination Assumption 6 for gi,n(Zi,n, θ) = qi,n
(Zi,n, θ)/ci,n jointly imply that the gi,n(Zi,n, θ) is ACLpUEC, p ≥ 1.
Given ε > 0, it follows from Assumption 6 that we can choose

some k = k(ε) <∞ such that

lim sup
n→∞

1
|Dn|

∑
i∈Dn

E(dpi,n1(di,n > k)) <
ε

3 · 2p
. (C.1)

Let

Yi,n(δ) = sup
θ ′∈Θ

sup
θ∈B(θ ′,δ)

∣∣gi,n(Zi,n, θ)− gi,n(Zi,n, θ ′)∣∣p ,
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and observe that Yi,n(δ) ≤ 2pd
p
i,n, then

E
[
Yi,n(δ)

]
≤ ε/3+ EYi,n(δ)1(Yi,n(δ) > ε/3, di,n > k)
+ EYi,n(δ)1(Yi,n(δ) > ε/3, di,n ≤ k)

≤ ε/3+ 2pEdpi,n1(di,n > k)+ 2
pkpP(Yi,n(δ) > ε/3).

(C.2)

From the assumption that the gi,n(Zi,n, θ) isACL0UEC , it follows that
we can find some δ = δ(ε) such that

lim sup
n→∞

1
|Dn|

∑
i∈Dn

P(Yi,n(δ) > ε) = lim sup
n→∞

1
|Dn|

×

∑
i∈Dn

P

(
sup
θ ′∈Θ

sup
θ∈B(θ ′,δ)

∣∣gi,n(Zi,n, θ)− gi,n(Zi,n, θ ′)∣∣ > ε
1
p

)

≤
ε

3 (2k)p
. (C.3)

It now follows from (C.1)–(C.3) that for δ = δ(ε),

lim sup
1
|Dn|

∑
i∈Dn

EYi,n(δ)

≤ ε/3+ 2p lim sup
n→∞

1
|Dn|

∑
i∈Dn

Edpi,n1(di,n > k)

+ 2pkp lim sup
n→∞

1
|Dn|

∑
i∈Dn

P(Yi,n(δ) > ε/3) ≤ ε,

which implies that gi,n(Zi,n, θ) is ACLpUEC, p ≥ 1.
We next show that this in turn implies that Qn(θ) is ALpUEC ,

p ≥ 1, as defined in Pötscher and Prucha (1994a), i.e., we show
that

lim sup
n→∞

E

{
sup
θ ′∈Θ

sup
θ∈B(θ ′,δ)

∣∣Qn(θ)− Qn(θ ′)∣∣p}→ 0 as δ→ 0.

To see this, observe that

E sup
θ ′∈Θ

sup
θ∈B(θ ′,δ)

∣∣Qn(θ)− Qn(θ ′)∣∣p
≤

1
|Dn|

∑
i∈Dn

E sup
θ ′∈Θ

sup
θ∈B(θ ′,δ)

∣∣qi,n(Zi,n, θ)− qi,n(Zi,n, θ ′)∣∣p /cpi,n
=

1
|Dn|

∑
i∈Dn

EYi,n(δ)

where we have used inequality (1.4.3) in Bierens (1994). The claim
now follows since the lim sup of the last term goes to zero as
δ → 0, as demonstrated above. Moreover, by Theorem 2.1 in
Pötscher and Prucha (1994a), Qn(θ) is also AL0UEC , i.e., for every
ε > 0

lim sup
n→∞

P

{
sup
θ ′∈Θ

sup
θ∈B(θ ′,δ)

∣∣Qn(θ)− Qn(θ ′)∣∣ > ε

}
→ 0 as δ→ 0.

Given the assumed weak pointwise LLN for Qn(θ), the i.p. portion
of part (a) of the theoremnow follows directly fromTheorem3.1(a)
of Pötscher and Prucha (1994a).
For the a.s. portion of the theorem, note that by the triangle

inequality

lim sup
n→∞

sup
θ ′∈Θ

sup
θ∈B(θ ′,δ)

∣∣Qn(θ)− Qn(θ ′)∣∣ ≤ lim sup
n→∞

1
|Dn|

×

∑
i∈Dn

sup
θ ′∈Θ

sup
θ∈B(θ ′,δ)

∣∣gi,n(Zi,n, θ)− gi,n(Zi,n, θ ′)∣∣ .
The r.h.s. of the last inequality goes to zero as δ → 0, since gi,n is
a.s.ACUEC by assumption. Therefore,

lim sup
n→∞

sup
θ ′∈Θ

sup
θ∈B(θ ′,δ)

∣∣Qn(θ)− Qn(θ ′)∣∣→ 0 as δ→ 0 a.s.

i.e.,Qn is a.s.AUEC , as defined in Pötscher andPrucha (1994a). Given
the assumed strong pointwise LLN for Qn(θ) the a.s. portion of part
(a) of the theorem now follows from Theorem 3.1(a) of Pötscher
and Prucha (1994a).
Next observe that since a.s.ACUEC H⇒ ACL0UEC we have that

Qn(θ) is ALpUEC , p ≥ 1, both under the i.p. and a.s. assumptions of
the theorem. This in turn implies that Q n(θ) = EQn(θ) is AUEC , by
Theorem 3.3 in Pötscher and Prucha (1994a), which proves part (b)
of the theorem. �

Proof of Theorem 3. Define Xi,n = Zi,n/Mn, and observe that

[|Dn|Mn]−1
∑
i∈Dn

(
Zi,n − EZi,n

)
= |Dn|−1

∑
i∈Dn

(
Xi,n − EXi,n

)
.

Hence, it suffices to prove the LLN for Xi,n.
We first establish mixing and moment conditions for Xi,n from

those for Zi,n. Clearly, if Zi,n is α-mixing [φ-mixing], then Xi,n is also
α-mixing [φ-mixing] with the same coefficients. Thus, Xi,n satisfies
Assumption 3(b)with k = l = 1 [Assumption 4(b)with k = l = 1].
Furthermore, since Zi,n/ci,n is uniformly L1 integrable, Xi,n is also
uniformly L1 integrable, i.e.,

lim
k→∞

sup
n
sup
i∈Dn
E
[∣∣Xi,n∣∣ 1 (∣∣Xi,n∣∣ > k)] = 0. (C.4)

In proving the LLN we consider truncated versions of Xi,n. For
0 < k <∞ let

X (k)i,n = Xi,n1
(∣∣Xi,n∣∣ ≤ k) , X̃ (k)i,n = Xi,n−X

(k)
i,n = Xi,n1

(∣∣Xi,n∣∣ > k) .
In light of (C.4)

lim
k→∞

sup
n
sup
i∈Dn
E
∣∣∣̃X (k)i,n ∣∣∣ = 0. (C.5)

Clearly, X (k)i,n is a measurable function of Xi,n, and thus X
(k)
i,n is also

α-mixing [φ-mixing] withmixing coefficients not exceeding those
of Xi,n.
By Minkowski’s inequality

E

∣∣∣∣∣∑
i∈Dn

(
Xi,n − EXi,n

)∣∣∣∣∣
≤ 2E

∑
i∈Dn

∣∣∣̃X (k)i,n ∣∣∣+ E
∣∣∣∣∣∑
i∈Dn

(
X (k)i,n − EX

(k)
i,n

)∣∣∣∣∣ (C.6)

and thus

lim
n→∞

∥∥∥∥∥|Dn|−1∑
i∈Dn

(
Xi,n − EXi,n

)∥∥∥∥∥
1

≤ 2 lim
k→∞

sup
n
sup
i∈Dn
E
∣∣∣̃X (k)i,n ∣∣∣

+ lim
k→∞

lim
n→∞

∥∥∥∥∥|Dn|−1∑
i∈Dn

(
X (k)i,n − EX

(k)
i,n

)∥∥∥∥∥
1

(C.7)

where ‖.‖1 denotes the L1-norm. The first term on the r.h.s. of (C.7)
goes to zero in light of (C.5). To complete the proof,wenowdemon-
strate that also the second term converges to zero. To that effect, it
suffices to show that X (k)i,n satisfies an L1-norm LLN for fixed k.

Let σ 2n,k = Var
[∑

i∈Dn X
(k)
i,n

]
, then by Lyapunov’s inequality∥∥∥∥∥|Dn|−1∑

i∈Dn

(
X (k)i,n − EX

(k)
i,n

)∥∥∥∥∥
1

≤ |Dn|−1 σn,k. (C.8)
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Using Lemma A.1(iii), the mixing inequality of Thereom A.5 of Hall
and Heyde (1980) and arguments as in Step 2 of the proof of the
CLT, we have in the α-mixing case:

σ 2n,k ≤ 4|Dn|
(
k2 + CKk2

)
with C < ∞, and K =

∑
∞

m=1m
d−1α1,1 (m) < ∞ by

Assumption 3(b). Consequently, the r.h.s. of (C.8) is seen to go to
zero as n → ∞, which establishes that the X (k)i,n satisfies an L1-
norm LLN for fixed k. The proof for the φ-mixing case is analogous.
This completes the proof. �

Proof of Proposition 1. Define the modulus of continuity of
fi,n(Zi,n, θ) as

w(fi,n, Zi,n, δ) = sup
θ ′∈Θ

sup
θ∈B(θ ′,δ)

∣∣fi,n(Zi,n, θ)− fi,n(Zi,n, θ ′)∣∣ .
Further observe that

{
ω : w(fi,n, Zi,n, δ) > ε

}
⊆
{
ω : Bi,nh(δ) > ε

}
.

By Markov’s inequality and the i.p. part of Condition 1, we have

lim sup
n→∞

1
|Dn|

∑
i∈Dn

P
[
w(fi,n, Zi,n, δ) > ε

]
≤ lim sup

n→∞

1
|Dn|

∑
i∈Dn

P
[
Bi,n >

ε

h(δ)

]
≤

[
h(δ)
ε

]p
lim sup

n→∞

1
|Dn|

∑
i∈Dn

EBpi,n ≤ C1

[
h(δ)
ε

]p
→ 0

as δ→ 0

for some C1 < ∞, which establishes the i.p. part of the
theorem. For the a.s. part, observe that by the a.s. part of
Condition 1 we have a.s.

lim sup
n→∞

1
|Dn|

∑
i∈Dn

w(fi,n, Zi,n, δ)

≤ h(δ) lim sup
n→∞

1
|Dn|

∑
i∈Dn

Bi,n ≤ C2h(δ)→ 0 as δ→ 0

for some C2 < ∞, which establishes the a.s. part of the theorem.
�

Proof of Proposition 2. The proof is analogous to the first part of
the proof of Theorem 4.5 in Pötscher and Prucha (1994a), and is
therefore omitted. �
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