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Abstract

Spatial-interaction models are being increasingly considered in economics, and
have a long tradition in geography, regional science and urban economics. In
this paper, we derive a new central limit theorem, a new law of large numbers
and a new uniform law of large numbers for spatial processes, or random fields.
Such limit theorems form the essential building blocks towards developing an
asymptotic theory of M-estimators for spatial processes, including maximum
likelihood and generalized method of moments estimators. The development of
a general estimation theory has been hampered by lack of general limit theo-
rems. In this paper, we establish limit theorems that are applicable to a broad
range of data processes in economics and other fields. In particular, we extend
the literature by considering weakly dependent random fields located on arbi-
trary unevenly spaced lattices in d-dimensional Euclidean space, and allow for
spatial processes that are non-stationary, possibly with unbounded moments.
We provide weak, yet primitive, sufficient conditions for each of the theorems.

JEL Classification: C10, C21, C31
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1 Introduction1

Spatial-interaction models have a long tradition in geography, regional science
and urban economics. For the last two decades spatial-interaction models have
also been increasingly considered in economics and the social sciences, in gen-
eral. Applications range from their traditional use in agricultural, environmen-
tal, urban and regional economics to other branches of economics including
international trade, industrial organization, labor, public economics, political
economics, and macroeconomics.2

The proliferation of spatial-interaction models in economics was accompa-
nied by an upsurge in contributions to a rigorous theory of estimation and test-
ing of spatial-interaction models.3 Much of those developments have focused on
Cliff-Ord type models; cp. Cliff and Ord (1973, 1981). However, the develop-
ment of a general theory of estimation for (possibly) nonlinear spatial-interaction
models under sets of assumptions that are both general and accessible for in-
terpretation by applied researchers has been hampered by a lack of pertinent
central limit theorems (CLTs), uniform laws of large numbers (ULLNs), and
laws of large numbers (LLNs). Evidently, such limit theorems form the basic
modules one would typically employ in deriving the asymptotic properties of M-
estimators for nonlinear spatial-interaction models, such as maximum likelihood
(ML) and generalized method of moments (GMM) estimators. The purpose of
this paper is to introduce a new CLT, ULLN and LLN for spatial processes (or
random fields or multi-dimensional processes) under assumptions appropriate
for many spatial processes in economics. As discussed in more detail below, our
assumptions allow for nonstationary processes; in particular we allow processes
to be heteroskedastic, and to have trending moments. Our assumptions also
allow for sample regions of general configuration and, more importantly, for
unevenly spaced locations. To accommodate Cliff-Ord type processes, we fur-

1We are grateful to Benedikt M. Pötscher for his valuable comments. We also thank the
participants of the First World Conference of the Spatial Econometrics Association, Cam-
bridge, July 2007, as well as the seminar participants at University of Maryland for helpful
discussions. This research benefitted from a University of Maryland Ann G. Wylie Disserta-
tion Fellowship for the first author and from financial support from the National Institute of
Health through SBIR grant 1 R43 AG027622 for the second author.

2 Some recent applications include Audretsch and Feldmann (1996), Baltagi, Egger and
Pfaffermayr (2005), Bell and Bockstael (2000), Betrand, Luttmer and Mullainathan (2000),
Besley and Case (1995), Brock and Durlauf (2001), Case (1991), Cohen and Morrison Paul
(2004), Conley and Dupor (2003), De Long and Summers (1991), Hanushek et al (2003),
Holtz-Eakin (1994), Ionnides and Zabel (2003), Keller and Shiue (2007) , Kling, Ludwig and
Katz (2007), Pinkse, Slade and Brett (2002), Rees, Zaks and Herries (2003), Sacredote (2001),
Shroder (1995) and Topa (2001).

3 Some recent contributions to the theoretical econometrics literature include Baltagi and Li
(2001a,b), Baltagi, Song, Jung and Koh (2005), Baltagi, Song and Koh (2003), Bao and Ullah
(2007), Brock and Durlauf (2007), Conley (1999), Conley and Molinari (2007), Conley and
Topa (2007), Das, Kelejian and Prucha (2003), Driscol and Kraay (1998), LeSage and Pace
(2007), Kapoor, Kelejian and Prucha (2007), Kelejian and Prucha (2007a,b, 2004, 2002, 2001,
1999, 1998), Korniotis (2005), Lee (2007a,b,c, 2004, 2003, 2002), Pinkse and Slade (1998),
Pinkse, Slade, and Brett (2002), Robinson (2007a,b), Sain and Cressie (2007), Su and Yang
(2007), Yang (2005), and Yu, de Jong and Lee (2006).
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thermore permit random variables to depend on the sample, i.e., to form trian-
gular arrays. For short, we consider arrays of weakly dependent nonstationary
random fields on irregular lattices in Rd.
To put our contribution into context, we begin by highlighting key differ-

ences of the limit theory of random fields, where the index set is a subset of the
Rd, d > 1, from the limit theory for one-dimensional processes, i.e., processes
where the index set is a subset of the real line such as time series processes.
First, there is no natural order in the Rd. Moreover, the higher dimensionality
and more complex geometry of the index sets give rise to different modes of
convergence, e.g., Van Hove or Fischer modes of convergence.4 In contrast to
the one-dimensional case, restrictions on the configuration and growth behavior
of the index sets therefore play an important role in the limit theory of random
fields. Second, there is also a wider choice over definition of weak dependence,
and in particular, mixing. Unlike mixing coefficients in the standard time series
literature, those of random fields depend not only on the distance between two
datasets, but also their sizes. Given a distance, it is natural to expect more de-
pendence between two larger sets than between two smaller sets. Failure to take
into account the cardinalities of index sets may result in trivial notions of de-
pendence and leave out many dependent processes encountered in applications.
For instance, Dobrushin (1968a,b) demonstrates that the multidimensional ana-
logue of the standard time series α-mixing condition is not satisfied by simple
two-state Markov chains on Z2.
There is a vast literature on CLTs for weakly dependent random fields un-

der various mixing conditions, including Neaderhouser (1978, α-mixing), Na-
hapetian (1980, 1987, α- and φ-mixing), Bolthausen (1982, α-mixing), Bradley
(1992, ρ∗-mixing), Guyon (1995, α-mixing), and McElroy and Politis (2000,
α-mixing). These results have been obtained for random fields on the inte-
ger lattice Zd and are, therefore, not immediately applicable to many spatial
processes of interest, e.g., real estate prices, given that housing units are fre-
quently unevenly spaced. Moreover, some of these theorems, e.g., Neaderhouser
(1978) and McElroy and Politis (2000) rest on more stringent moment and mix-
ing assumptions.
Apart from allowing for unevenly spaced locations, our CLT differs from the

previous results in other critical aspects. First, our CLT relies only on fairly min-
imal assumptions with respect to the geometry and growth behavior of sample
regions. This is in contrast to the existing CLTs, e.g., Nahapetian (1980, 1987),
McElroy and Politis (2000) who restrict the sample regions to rectangles and
adopt, respectively, Van Hove and Fischer modes of convergence. Neaderhouser
(1978) also exploits the Van Hove mode of convergence. Bolthausen (1982) and
Guyon (1995) require the sample regions to form a strictly increasing sequence,
in which each subsequent set contains the preceding one, and Bolthausen (1982)
additionally requires the size of the border to be negligible relative to that of
the whole region.
Second, spatial processes encountered in applications are often nonstationary

4For formal definitions, see, e.g., Nahapetian (1991).
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and, in particular, heteroskedastic, since spatial units often differ in various
important dimensions such as size. However, most of the available results, e.g.,
Bolthausen (1982), Nahapetian (1980, 1987) maintain strict stationarity.5 Our
CLT accommodates nonstationary processes. Furthermore, to the best of our
knowledge, there seem to be no results that allow for processes with unbounded
moments, to which we will also refer to as trending spatial processes in analogy
with time series processes. Spatial processes with unbounded moments may
arise in a wide range of economic applications. For instance, real estate prices
usually shoot up as one moves from the periphery to the center of a big city.
Individual incomes in the European Union countries rise in the northwestern
direction.6

Third, our CLT handles arrays of random fields, i.e., allows random variables
to depend on the sample. This is important since spatial processes defined by
the widely used class of Cliff-Ord models depend on the sample.7

ULLNs are essential tools for establishing consistency of nonlinear estima-
tors; cp., eg., Gallant and White (1988), p. 19, and Pötscher and Prucha (1997),
p. 17. Generic ULLN for time series processes have been introduced by An-
drews (1987, 1992), Newey (1991) and Pötscher and Prucha (1989, 1994a,b).
These ULLNs are generic in the sense that they transform pointwise LLNs into
uniform ones, given some form of stochastic equicontinuity of the summands.8 .
ULLNs for time series processes, by their nature, assume evenly spaced observa-
tions on a line. They are not immediately suitable for fields on unevenly spaced
lattices. The generic ULLN for random fields introduced in this paper is an
extension of the one-dimensional ULLNs given in Pötscher and Prucha (1994a)
and Andrews (1992). In addition to the generic ULLN, we also provide low level
sufficient conditions for stochastic equicontinuity that are easy to check.9

Our pointwise weak LLN for spatial processes on general lattices in Rd is
based on a subset of the assumptions maintained for our CLT, which facilitates
their joint use in the proof of consistency and asymptotic normality of spatial
estimators. The overwhelming majority of the existing LLNs10 are strong laws

5Conley (1999) makes an important contribution towards developing an estimation theory
of GMM estimators for spatial processes. In deriving the limiting distribution of his estimators,
he utilizes Bolthausen’s (1982) CLT, and thus maintains stationarity of the spatial processes.

6Cressie (1993) provides numerous examples of trending spatial processes.
7The recent CLT proposed by Pinske, Shen and Slade (2006) also allows for nonstationarity

and dependence on the sample. This CLT relies on a set of high level assumptions including
conditions on the rates of decay of the correlation among Bernstein’s blocks, and the ability
to select appropriate blocks. Of course, a crucial step in verifying a CLT for a particular
process using Bernstein’s blocking method is to demonstrate that it is indeed possible to form
appropriate blocks. We note that there are α-mixing processes that are covered by our CLT
but not by Pinske, Shen and Slade (2006). Thus, on a technical level, neither of the CLTs
contains nor dominates the other.

8For different definitions of stochastic equicontinuity see Section 3 of the present paper or
Pötscher and Prucha (1994a).

9The existing literature on the estimation of nonlinear spatial models has maintained high-
level assumptions such as first moment continuity to imply uniform convergence; cp., e.g.,
Conley (1999). The results in this paper are intended to be more accessible, and in allowing,
e.g., for nonstationarity, to cover larger classes of processes.
10 See, e.g., Smythe (1973), Moricz (1978), Klesov (1981), Peligrad and Gut (1999), Noczaly
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for fields on partially ordered rectangles in Zd, which prevents their use in more
general settings.
The remainder of the paper is organized as follows. Section 2 defines the

underlying weak dependence concepts and provides essential mixing inequalities.
Our CLT for arrays of nonstationary α- and φ-mixing random fields on irregular
lattices is presented in Section 3. The generic ULLN, pointwise LLN and various
sufficient conditions are discussed in Section 4. All proofs are relegated to the
appendix.

2 Weak Dependence Concepts and Mixing In-
equalities
Establishing limit theorems for fields on irregular lattices poses various tech-

nical problems stemming from the higher dimensionality and intricate geometry
of sample regions. First, there is a myriad of ways in which index sets can grow.
The two basic asymptotic structures commonly used in the spatial literature are
the so-called increasing domain and infill asymptotics, see, e.g., Cressie (1993),
p. 480. In this paper, we employ increasing domain asymptotics. Second, for a
CLT to hold, the variance of partial sums must obey a certain growth behavior
(Ibragimov, 1962). Deriving a CLT hence involves determining the growth rate
of the variances of partial sums, which in turn requires establishing bounds on
the cardinalities of some basic sets on the lattice. Finally, there is also a wider
choice over definition of mixing. As discussed below, not all of them are sensible
and useful in applications, and therefore, should be handled with caution.
Before presenting our main results, we therefore tackle these issues. We con-

sider spatial processes located on a (possibly) unevenly spaced lattice D ⊆ Rd,
d ≥ 1. It proves convenient to consider Rd as endowed with the metric ρ(i, j) =
max1≤l≤d |jl − il|, and the corresponding norm |i| = max1≤l≤d |il|, where il de-
notes the l-th component of i. Let B(i, h) = {j ∈ Rd : ρ(i, j) ≤ h} denote the
d-dimensional ball of radius h > 0 centered in i ∈ Rd. Note that given our met-
ric B(i, h) represents a d-dimensional hyper-cube. For any subsets U, V ⊂ D we
define the distance between them as ρ(U,V ) = inf {ρ(i, j) : i ∈ U and j ∈ V }.
Furthermore, for any finite subset U ⊂ D we denote its cardinality by |U |.
Throughout the sequel, we maintain the following assumption concerning D.

Assumption 1 The lattice D ⊂ Rd, d ≥ 1, is infinite countable. All elements
in D are located at distances of at least d0 > 0 from each other, i.e., ∀ i,
j ∈ D : ρ(i, j) ≥ d0; w.l.o.g. we assume that d0 > 1.

The assumption of a minimum distance has also been used by Conley (1999).
It assures unbounded expansion of sample regions, and rules out infill asymp-
totics. It turns out that this single restriction on irregular lattices also provides
sufficient structure for the index sets to permit the derivation of our limit re-
sults. Based on Assumption 1, Lemma A.1 in the Appendix establishes bounds

and Tomacs (2000).
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on the cardinalities of some basic sets in D that will be used in the proof of the
limit theorems.
We now turn to the weak dependence concepts employed in our theorems.

Let X = {Xi,n; i ∈ Dn, n ∈ N} be a triangular array of real random fields
defined on a common probability space (Ω,F, P ), where Dn is a finite subset of
D, and D satisfies Assumption 1. Further, let A and B be two sub- σ-algebras
of F. Two common measures of dependence between A and B , are α- and
φ-mixing introduced, respectively, by Rosenblatt (1956) and Ibragimov (1962),
defined as:

α(A,B) = sup(|P (A ∩B)− P (A)P (B)|, A ∈ A, B ∈ B),
φ(A,B) = sup(|P (A | B)− P (A)|, A ∈ A, B ∈ B, P (B) > 0).

The concepts of α- and φ-mixing have been used extensively in the time series
literature as measures of weak dependence. Recall that a time series process
{Xt}∞−∞ is α-mixing [φ-mixing] if

lim
m→∞

sup
t
α(Ft−∞,F

+∞
t+m) = 0

[ lim
m→∞

sup
t
φ(Ft−∞,F

+∞
t+m) = 0],

where Ft−∞ = σ(...,Xt−1,Xt) and F∞t+m = σ(Xt+m,Xt+m+1...). This definition
captures the basic idea of diminishing dependence between different events as
the distance between them increases.
To generalize these concepts to random fields, one could use formulations in

close analogy with those employed for time-series processes. For instance, let
Ha
k be a collection of all half-spaces of the type {i = (i1, ..., id) ∈ Rd, ik ≤ a} and

let Hb
k be a collection of all half-spaces of the type {i = (i1, ..., id) ∈ Rd, ik ≥ b},

with a < b, a, b ∈ R, which are formed by the hyperplanes perpendicular to
the k-th coordinate axis, k = 1, .., d. Define α-mixing coefficient in the k-th
direction as

αk(r) = sup{α(V1, V2) : V1 ∈ Ha
k , V2 ∈ Hb

k, ρ(V1, V2) ≥ r},

where α(V1, V2) = α(σ(Xi; i ∈ V1), σ(Xi; i ∈ V2)). The multidimensional coun-
terpart to the conventional α-mixing coefficient is then obtained by taking supre-
mum over all ddirections, i.e.,

bα(r) = sup
1≤k≤d

αk(r).

These conditions were considered by Eberlein and Csenki (1979) and Hegerfeldt
and Nappi (1977), who showed that some Ising ferromagnet lattice systems sat-
isfy the condition bα(r)→ 0 as r→∞. However, as demonstrated by Dobrushin
(1968a,b), the latter condition is generally restrictive for d > 1. It is violated
even for simple two-state Markov chains on D = Z2. The problem with de-
finitions of this ilk is that they neglect potential accumulation of dependence
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between σ-algebras σ(Xi; i ∈ V1) and σ(Xi; i ∈ V2) as sets V1 and V2 expand
while the distance between them is kept fixed. Given a fixed distance, it is
natural to expect more dependence between two larger sets than between two
smaller sets.
Thus, extending mixing concepts to random fields in a practically useful way

requires accounting for the sizes of subsets on which σ-algebras reside. Mixing
conditions that depend on subsets of the lattice date back to Dobrushin (1968b).
They were further expanded by Nahapetian (1980, 1987) and Bolthausen (1982).
Following these authors, we adopt the following definitions of mixing:

Definition 1 For U ⊆ Dn and V ⊆ Dn, let σn(U) = σ(Xi,n; i ∈ U), αn(U,V ) =
α(σn(U), σn(V )) and φn(U,V ) = φ(σn(U), σn(V )). Then the α- and φ-mixing
coefficients for the array of random fields X are defined as follows:

αn(k, l, r) = sup(αn(U,V ), |U | ≤ k, |V | ≤ l, ρ(U,V ) ≥ r),

φn(k, l, r) = sup(φn(U, V ), |U | ≤ k, |V | ≤ l, ρ(U,V ) ≥ r),

with k, l, r, n ∈ N. Furthermore, we will refer to

α(k, l, r) = sup
n

αn(k, l, r),

φ(k, l, r) = sup
n

φn(k, l, r),

as the corresponding uniform α- and φ-mixing coefficients.

As shown by Dobrushin (1968a,b), the weak dependence conditions based
on the above mixing coefficients are satisfied by a large class of random fields
including Gibbs fields. These mixing coefficients were also used by Doukhan
(1994) and Guyon (1995), albeit without dependence on the sample. Given the
array formulation, our definition allows for the latter dependence. The α-mixing
coefficients for arrays of random fields used in McElroy and Politis (2000) are
identical to ours. Doukhan (1994) provides an excellent overview of various
mixing concepts.
We further note that if Yi,n = f(Xi,n) is a Borel-measurable function of

Xi,n, then σYn (U) = σ(Yn,i, i ∈ U) ⊆ σXn (U), and hence c
Y
n (U, V ) ≤ cXn (U, V ),

cYn (k, l, r) ≤ cXn (k, l, r), c
Y (k, l, r) ≤ cX(k, l, r) for c ∈ {α, φ}. Thus α- and

φ-mixing conditions are preserved under transformation.
The value of the above mixing concepts in establishing limit theorems stems

from the availability of corresponding moment inequalities. For convenience and
ease of reference, we collect in the following lemma the covariance inequalities
for α- and φ-mixing fields, which are central for proving our limit theorems.

Lemma 1 Suppose U and V are finite sets in Dn with |U | = k, |V | = l and
h = ρ(U, V ), and let f and g be respectively σn(U)- and σn(V )-measurable.

(i) If E|f |p <∞ and E|g|q <∞ with 1
p +

1
q +

1
r = 1, p, q > 1 and r > 0, then

|E(fg)−E(f)E(g)| < 8α
1
r
n (k, l, h)(E|f |p)

1
p (E|g|q) 1q
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(ii) If E|f |p <∞ and E|g|q <∞ with 1
p +

1
q = 1, p, q > 1, then

|E(fg)−E(f)E(g)| < 2φ
1
p
n (k, l, h)(E|f |p)

1
p (E|g|q) 1q

(iii) If |f | < C1 <∞ and |g| < C2 <∞ a.s., then

|E(fg)−E(f)E(g)| < 4C1C2αn(k, l, h)

|E(fg)−E(f)E(g)| < 2C1C2φn(k, l, h)

For a proof of the above inequalities, see, e.g., Hall and Heyde (1980), p.
277. The inequalities were originally derived by Ibragimov (1962).

3 Central Limit Theorem
Let Z = {Zi,n; i ∈ Dn, n ∈ N} be an array of centered real random fields
on a probability space (Ω,F, P ), where the index sets Dn are finite subsets of
D ⊂ Rd, d ≥ 1, which is assumed to satisfy Assumption 1. In the following, let
Sn =

P
i∈Dn

Zi,n and σ2n = V ar(Sn).
In this section, we provide a CLT for the normalized partial sums σ−1n Sn of

the array Z with possibly unbounded moments. Our CLT focuses on α- and
φ-mixing fields and is based, respectively, on the following sets of assumptions.

Assumption 2 (Uniform L2+δ integrability) There exists an array of positive
real constants {ci,n} such that

lim
k→∞

sup
n
sup
i∈Dn

E[|Zi,n/ci,n|2+δ 1(|Zi,n/ci,n| > k)] = 0,

where 1(·) is the indicator function.

Assumption 3 (α-mixing) The uniform α-mixing coefficients satisfy

(a)
P∞

m=1m
d−1α(1, 1,m)δ/(2+δ) <∞,

(b)
P∞

m=1m
d−1α(k, l,m) <∞ for k + l ≤ 4,

(c) α(1,∞,m) = O(m−d−ε) for some ε > 0.

Assumption 4 (φ-mixing) The uniform φ-mixing coefficients satisfy

(a)
P∞

m=1m
d−1φ(1, 1,m)(1+δ)/(2+δ) <∞,

(b)
P∞

m=1m
d−1φ(k, l,m) <∞ for k + l ≤ 4,

(c) φ(1,∞,m) = O(m−d−ε) for some ε > 0.
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Assumption 5 lim infn→∞ |Dn|−1M−2n σ2n > 0, where Mn = maxi∈Dn
ci,n.

Based on the above set of assumptions, we can formulate the following CLT
for arrays of nonstationary random fields with possibly unbounded moments.

Theorem 1 Suppose {Dn} is a sequence of arbitrary finite subsets of D, sat-
isfying Assumption 1, with |Dn| → ∞ as n → ∞. Suppose further that Z =
{Zi,n; i ∈ Dn, n ∈ N} is an array of real random fields with zero mean, where Z
is either

(a) α-mixing satisfying Assumptions 2 and 3 for some δ > 0, or

(b) φ-mixing satisfying Assumptions 2 and 4 for some δ ≥ 0.

Suppose also that Assumption 5 holds, then

σ−1n Sn =⇒ N(0, 1).

The uniform Lp integrability condition postulated in Assumption 2 is a
standard moment assumption seen in the CLTs for one-dimensional trending
processes, e.g., Wooldridge (1986), Wooldridge and White (1988), Davidson
(1992, 1993), and de Jong (1997). It ensures the existence of the (2 + δ)-th
absolute moments of Zi,n. A sufficient condition implying uniform L2+δ inte-
grability of Zi,n/ci,n is their uniform Lr boundedness for some r > 2 + δ, i.e.,
supn supi∈Dn

|Zi,n/ci,n|r <∞, see, e.g., Billingsley (1986), pp. 219.
The constants ci,n are scale factors that account for potentially unbounded

moments of summands. For example, in the case of unbounded variances
v2i,n = EZ2i,n the scale factors may be chosen as ci,n = max(vi,n, 1), and As-
sumption 2 would require uniform L2+δ integrability of the array Zi,n/vi,n for
some δ > 0. Within the context of time series processes, Davidson (1992) refers
to the case with unbounded variances as global nonstationarity to distinguish
it from the case of asymptotic covariance stationarity where the variance of
normalized partial sums converges. In case the Zi,n are uniformly Lr bounded
for some r > 2 the scale factors ci,n can be set to 1. While this case allows
for some heterogeneity of the marginal distributions of Zi,n, it would, e.g., not
accommodate unbounded variances.
Spatial processes with unbounded moments, which correspond to trending

processes in the time series literature, arise frequently in economics, geostatis-
tics, epidemiology, regional and urban studies. A simple example from eco-
nomics is real estate prices in a big city which frequently spike up as one moves
from the outskirts of the city to its center.11Cressie (1993) contains numer-
ous examples of spatial data exhibiting considerable heterogeneity and trend.

11For example, Bera and Simlai (2005) report on such spikes in housing prices and the
variance of housing prices for central Boston.
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These applications thus call for limit theorems covering spatial processes with
unbounded moments.
Presently, to the best of our knowledge, there are no limit results for such

spatial processes. All CLTs in the random fields literature rely on some form of
uniform boundedness of Zi. Therefore, when comparing our CLT with the exist-
ing results for d > 1, we shall always refer to the case ci,n = 1. For the reference
case, our moment Assumption 2 is slightly stronger than that in Bolthausen
(1982), who assumes L2+δ boundedness instead of integrability. This is not sur-
prising since Bolthausen (1982) deals with strictly stationary processes, whereas
our result allows for nonstationarity.12

Assumptions 3 and 4 restrict the dependence structure of the process Z.
Assumption 3 is identical to the α-mixing conditions in Bolthausen (1982),
seemingly, with the exception of Assumption 3c, in place of which Bolthausen
postulates α(1,∞,m) = o(m−d). However, as pointed out by Goldie and Morrow
(1986), p. 278, Bolthausen (1982) assumes polynomial decay of mixing coeffi-
cients. Therefore, our assumption and those in Bolthausen (1982) are equivalent.
Assumption 4a parallels the φ-mixing condition used by Nahapetian (1991) to
derive a CLT for strictly stationary φ-mixing random fields, see Theorem 7.2.2.
Since φ-mixing is generally stronger than α-mixing, the rate of decay of mixing
coefficients in Assumption 4a is slower than in Assumption 3a, and the corre-
sponding moment condition (Assumption 2 with δ = 0) in the φ-mixing case is
weaker than that in the α-mixing case (Assumption 2 with δ > 0). As shown
in Bolthausen (1982), Assumptions 3 can be replaced with the following single
condition:

P∞
m=1m

d−1α(2,∞,m)δ/(2+δ) < ∞. Similarly, it is easy to see that
the condition

P∞
m=1m

d−1φ(2,∞,m)(1+δ)/(2+δ) <∞ subsumes Assumptions 4.
Finally, Assumption 5 limits the growth behavior of v2i,n = EZ2i,n.

13 For ex-

ample, consider the case where Dn = [−n;n]d ⊂ Zd, Zi,n satisfies Assumption
2 with ci = max(vi, 1), the Zi,n are uncorrelated, and v2i,n grows with |i|. Then,
Assumption 5 rules out exponential growth of the variances. However, Assump-
tion 5 allows v2i,n to grow at the rate of any finite nonnegative power of |i| . To see
this, let v2i ∼ |i|

γ for some γ > 0, thenMn ∼ nγ/2 and σ2n =
P

i∈Dn
v2i ∼ n(γ+d).

Observing that |Dn| = (2n + 1)d, it is then readily seen that Assumption 5
holds for arbitrary γ > 0. In the reference case, where v2i = O(1) and hence
Mn = O(1), Assumption 5 reduces to lim infn→∞ |Dn|−1σ2n > 0, which is the
condition employed by Bolthausen (1982). It rules out asymptotically degen-
erate distributions. In the literature on CLTs for time series processes with
unbounded moments, similar assumptions were used by Wooldridge (1986) and

12Guyon (1995), p. 111, gives a CLT for nonstationary α-mixing random fields based on the
conditions of Bolthausen (1982). He, too, assumes uniform L2+δ boundedness. However, an
important step of the proof that depends critically on the moment conditions is missing (for
more details, see discussion below), thus raising concerns about his assumptions. His result
is for random fields on the regular grid Zd with Dn ↑ Zd. Furthermore, it does not allow for
trending moments and arrays.
13Extensions to variables with asymptoticaly vanishing variances is one direction for future

research. In the one-dimensional literature, this task was accomplished by Davidson (1993a)
and de Jong (1997).
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Davidson (1992). These authors assume supn nM
2
n < ∞, while adopting the

normalization σ2n = 1. We note that in the case of D = Z and normalized vari-
ances σ2n = 1, Assumption 5 becomes lim infn→∞ n−1M−2n > 0, or equivalently
lim supn→∞ nM2

n <∞.
Of course, the above CLT can be readily generalized to vector-valued ran-

dom fields using the standard Cramér-Wold device. We note that as a special
case our CLT also contains a CLT for time series processes. As for the above-
cited recent results in the one-dimensional literature, no strict comparison can
be drawn as they are formulated for variables that are near-epoch dependent
on mixing processes. Nevertheless, if one considers their special case where
variables themselves are mixing, our CLT would include the CLTs of Davidson
(1992, Theorem 3.6) and Wooldridge (1986, Theorem 3.13).
In the spatial context, the α-mixing part of our CLT extends Bolthausen’s

(1982) CLT in a number of important directions. First, it allows for the em-
pirically important case where D ⊂ Rd is an unevenly spaced lattice. Second,
it relaxes the assumption of stationarity. This is important, since many spatial
processes considered in applied work may exhibit heteroskedasticity and other
forms of nonstationarity, as sample units may often vary in size and other di-
mensions. Moreover, our CLT permits unbounded moments, and can thus also
be applied to spatial processed that exhibit spikes in some of the moments.
Third, it allows for the random variables to depend on the sample, as is, e.g.,
the case for the widely used class of Cliff-Ord type spatial processes. Finally,
the CLT lifts Bolthausen’s restrictions on the growth behavior of sets, namely
that Dn ↑ D and |∂Dn|/ |Dn|→ 0, where ∂Dn is the border of Dn. The latter
condition requires sets to grow in at least two non-opposing directions, and as
a result, rules out sets that stretch in one direction. These patterns may arise
under various spatial sampling procedures described in Ripley (1981), p. 19.
To provide additional insights and explain the rationale for strengthening

the moment condition, we outline the structure of our proof. Perhaps, the most
popular approach to proving CLTs for weakly dependent variables is Bernstein’s
blocking method. It involves splitting the sum into alternating big-small blocks
and showing that the big blocks behave asymptotically as independent or mar-
tingale difference variables. In the spatial literature, this approach was, e.g.,
taken by Neaderhouser (1978), Nahapetian (1980, 1987), McElroy and Politis
(2000). This method has, however, some undesirable features in the spatial con-
text. First, as pointed out by Bolthausen (1982), this method leads to mixing
conditions of the type: lim

r→∞ α(∞,∞, r) → 0. As noted earlier, this type of
conditions are violated in many applications. Second, sectioning the sum into
blocks and accounting for the sizes of blocks and remaining edges, already te-
dious on Zd, becomes a daunting task on unevenly spaced lattices. It seems that
as a result, the existing results based on Bernstein’s method typically impose
quite stringent restrictions on the configuration and growth behavior of Dn. For
instance, Nahapetian (1980, 1987), McElroy and Politis (2000) restrict Dn to
rectangles in Zd and adopt, respectively, some variant of Van Hove and Fischer
mode of tendency of sets to infinity. Loosely speaking, these conditions require
Dn to expand in all d directions and also assume that |∂Dn|/|Dn → 0. For
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exact definitions, see, e.g., Nahapetian (1991). Neaderhouser (1978) also relies
on the Van Hove mode of convergence. In passing, we remark that the above
results are also more restrictive than our CLT in other aspects: Nahapetian
(1980, 1987) considers stationary fields, Neaderhouser (1978) and McElroy and
Politis (2000), while permitting nonstationarity, rest on stronger moment and
mixing assumptions.
In contrast, following Bolthausen (1982), our proof is based on Stein’s lemma

(1972); see Lemma B.1 in the Appendix. It exploits the differential equation
satisfied by the characteristic function of the standard normal law. Stein’s
method allows us to circumvent mixing conditions of the type α(∞,∞, r) and
to accommodate sample regions of arbitrary configuration and growth behavior.
Our proof consists of three major steps. First, we demonstrate that the variances
of the appropriately normalized partial sums are bounded from above. Second,
we consider approximations of the partial sums Sn =

P
i∈Dn

Xi,n in terms of
partial sums Skn =

P
i∈Dn

Xi,n1(|Xi,n| ≤ k), which correspond to the truncated
versions of the scaled random variables with truncation point k. We then show
that the limiting distribution of normalized Sn can be obtained as the sequential
limiting distribution of Skn by letting first n and then k to infinity. The last and
crucial step associated with Stein’s method is to verify that, when properly
normalized, Skn have the standard normal limiting distribution.
Bolthausen’s proof builds on the arguments by Ibragimov and Linnik (1971),

p. 345, to demonstrate that given stationarity and a regular lattice, the par-
tial sums based on the truncated and original random variables converge to the
same limiting distribution. Their argument exploits the fact that for stationary
variables limn→∞ |Dn|−1σ2n = σ20 < ∞. In our setting that allows for nonsta-
tionarity and irregular lattices, |Dn|−1 σ2n need not converge, and therefore, we
provide a different argument justifying the reduction to truncated variables.14

4 Uniform and Pointwise Law of Large Numbers
Uniform laws of large numbers (ULLNs) are a key tool for establishing consis-
tency of nonlinear estimators. Suppose the true parameter of interest is θ0 ∈ Θ,
where Θ is the parameter space, and bθn is a corresponding estimator defined as
the maximizer of some real valued objective function Qn(θ) defined on Θ, where
the dependence on the data is suppressed. Suppose further that EQn(θ) is max-
imized at θ0 and that θ0 is identifiably unique. Then for bθn to be consistent for
θ0, it suffices to show that Qn(θ)−EQn(θ) converge to zero uniformly over the
parameter space; see, e.g., Gallant and White (1988), pp. 18, and Pötscher and
Prucha (1997), pp. 16, for precise statements, which also allow the maximizers
of EQn(θ) to depend on n. For many estimators the uniform convergence of
Qn(θ)−EQn(θ) is established from a ULLN.

14The proof given in Guyon (1995) p.112 is similar to Bolthausen’s, but does not furnish
an explicit justification for the reduction to truncated variables in the nonstationary case. In
supplying a rigorous argument for such reduction, we had to place slightly stronger conditions
on the moments than Guyon.
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In the following, we give a generic ULLN for spatial processes. The ULLN
is generic in the sense that it turns a pointwise LLN into the corresponding
uniform LLN. This generic ULLN assumes (i) that the random functions are
stochastically equicontinuous in the sense made precise below, and (ii) that the
functions satisfy a LLN for a given parameter value. For stochastic processes
this approach was taken by Newey (1991), Andrews (1992), and Pötscher and
Prucha (1994a).15 Of course, to make the approach operational for random
fields we need an LLN, and therefore we also introduce a new LLN for random
fields. This LLN matches well with our CLT in that it holds under a subset of
the conditions maintained for the CLT. We also report on two sets of sufficient
conditions for stochastic equicontinuity that are fairly easy to verify.
As for our CLT, we consider again arrays of random fields residing on a

(possibly) unevenly spaced lattice D, where D ⊂ Rd, d ≥ 1, is assumed to
satisfy Assumption 1. However, for the ULLN the array is not assumed to
be real-valued. More specifically, in the following let {Zi,n; i ∈ Dn, n ∈ N},
with Dn a finite subset of D, denote a triangular array of random fields defined
on a probability space (Ω,F, P ) and taking their values in Z, where (Z,Z)
is a measurable space. In applications, Z will typically be a subset of Rs,
i.e., Z ⊂ Rs, and Z ⊂ Bs, where Bs denotes the s-dimensional Borel σ-field.
We remark, however, that it suffices for the ULLN below if (Z,Z) is only a
measurable space. Further, in the following let {fi,n(z, θ), i ∈ Dn, n ∈ N} and
{qi,n(z, θ), i ∈ Dn, n ∈ N} be doubly-indexed families of real-valued functions
defined on Z ×Θ, i.e., fi,n: Z ×Θ → R and qi,n: Z ×Θ → R, where (Θ, ν) is
a metric space with metric ν. Throughout the paper, the fi,n(·, θ) and qi,n(·, θ)
are assumed Z/B-measurable for each θ ∈ Θ and for all i ∈ Dn, n ≥ 1. Finally,
let B(θ0, δ) be the open ball

©
θ ∈ Θ : ν(θ0, θ) < δ

ª
.

4.1 Generic Uniform Law of Large Numbers

The literature contains various definitions of stochastic equicontinuity. For a dis-
cussion of different stochastic equicontinuity concepts see, e.g., Andrews (1992)
and Pötscher and Prucha (1994a). We note that apart from differences in the
mode of convergence, the essential differences in those definitions relate to the
degree of uniformity. We shall employ the following definition.16

Definition 2 Consider array of random functions {fi,n(Zi,n, θ), i ∈ Dn, n ≥ 1}.
Then fi,n is said to be

15We note that the uniform convergence results of Bierens (1981), Andrews (1987), and
Pötscher and Prucha (1989, 1994b) were obtained from closely related approach by verifying
the so-called first moment continuity condition and from local laws of large numbers for certain
bracketing functions. For a detailed discussion of similarities and differences see Pötscher and
Prucha (1994a).
16All suprema and infima over subsets of Θ of random functions used below are assumed

to be P -a.s. measurable. For sufficient conditions see, e.g., Pollard (1984), Appendix C, or
Pötscher and Prucha (1994b), Lemma 2.
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(a) L0 stochastically equicontinuous on Θ iff for every ε > 0

lim sup
n→∞

1

|Dn|
X
i∈Dn

P ( sup
θ0∈Θ

sup
θ∈B(θ0,δ)

¯̄
fi,n(Zi,n, θ)− fi,n(Zi,n, θ

0)
¯̄
> ε)→ 0 as δ → 0;

(b) Lp stochastically equicontinuous, p > 0, on Θ iff

lim sup
n→∞

1

|Dn|
X
i∈Dn

E( sup
θ0∈Θ

sup
θ∈B(θ0,δ)

¯̄
fi,n(Zi,n, θ)− fi,n(Zi,n, θ

0)
¯̄p
)→ 0 as δ → 0;

(c) a.s. stochastically equicontinuous on Θ iff

lim sup
n→∞

1

|Dn|
X
i∈Dn

sup
θ0∈Θ

sup
θ∈B(θ0,δ)

¯̄
fi,n(Zi,n, θ)− fi,n(Zi,n, θ

0)
¯̄
→ 0 a.s. as δ → 0.

Andrews (1992), within the context of one-dimensional processes, refers to
L0 stochastic equicontinuity as termwise stochastic equicontinuity. Pötscher
and Prucha (1994a) refer to the stochastic equicontinuity concepts in Definition
2(a) [ (b)], [[ (c)]] as asymptotic Cesàro L0 [Lp], [[a.s.]] uniform equiconti-
nuity, and adopt the abbreviations ACL0UEC [ACLpUEC], [[ a.s.ACUEC]].
The following relationships among the equicontinuity concepts are immediate:
ACLpUEC =⇒ ACL0UEC ⇐= a.s.ACUEC.
In formulating our ULLN, we will allow again for trending moments. We

will employ the following domination condition.

Assumption 6 (Domination Condition): There exists an array of positive real
constants {ci,n} such that for some p ≥ 1 :

lim sup
n→∞

1

|Dn|
X
i∈Dn

E( dpi,n1(di,n > k))→ 0 as k →∞

where di,n(ω) = supθ∈Θ |qi,n(Zi,n(ω), θ)| /ci,n.

We now have the following generic ULLN.

Theorem 2 Suppose {Dn} is a sequence of arbitrary finite subsets of D, satis-
fying Assumption 1, with |Dn|→∞ as n→∞. Let (Θ, ν) be a totally bounded
metric space, and suppose {qi,n(z, θ), i ∈ Dn, n ∈ N} is a doubly-indexed family
of real-valued functions defined on Z × Θ satisfying Assumptions 6. Suppose
further that the qi,n(Zi,n, θ)/ci,n are L0 stochastically equicontinuous on Θ, and
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that for all θ ∈ Θ0, where Θ0 is a dense subset of Θ, the stochastic functions
qi,n(Zi,n, θ) satisfy a pointwise LLN in the sense that

1

Mn |Dn|
X
i∈Dn

[qi,n(Zi,n, θ)−Eqi,n(Zi,n, θ)]→ 0 i.p. [a.s.] as n→∞, (1)

where Mn = maxi∈Dn
ci,n. Let Qn(θ) = [Mn |Dn|]−1

P
i∈Dn

qi,n(Zi,n, θ), then

(a)
sup
θ∈Θ

|Qn(θ)−EQn(θ)|→ 0 i.p. [a.s.] as n→∞ (2)

(b) Qn(θ) = EQn(θ) is uniformly equicontinuous in the sense that

lim sup
n→∞

sup
θ0∈Θ

sup
θ∈B(θ0,δ)

¯̄
Qn(θ)−Qn(θ

0)
¯̄
→ 0 as δ → 0. (3)

The above ULLN adapts Corollary 4.3 in Pötscher and Prucha (1994a) to
arrays of random fields, and also allows for trending moments. The case of
bounded moments is covered as a special case with ci,n = 1 and Mn = 1.
The ULLN allows for infinite-dimensional parameter spaces. It only main-

tains that the parameter space is totally bounded rather than compact. (Recall
that a set of a metric space is totally bounded if for each ε > 0 it can be covered
by a finite number of ε-balls). If the parameter space Θ is a finite-dimensional
Euclidian space, then total boundedness is equivalent to boundedness, and com-
pactness is equivalent to boundedness and closedness. By assuming only that
the parameter space is totally bounded, the ULLN covers situations where the
parameter space is not closed, as is frequently the case in applications.
Assumption 6 is implied by uniform integrability of individual terms, dpi,n,

i.e., limk→∞ supn supi∈Dn
E(dpi,n1(di,n > k)) = 0, which, in turn, follows from

their uniform Lr-boundedness for some r > p, i.e., supn supi∈Dn
kdi,nkr <∞.

Sufficient conditions for the pointwise LLN and the maintained L0 stochastic
equicontinuity of the normalized function qi,n(Zi,n, θ)/ci,n are given in the next
two subsection. The theorem only requires the pointwise LLN (1) to hold on a
dense subset Θ0, but, of course, also covers the case where Θ0 = Θ.
As it will be seen from the proof, L0 stochastic equicontinuity of qi,n(Zi,n, θ)/ci,n

and the Domination Assumption 6 jointly imply that qi,n(Zi,n, θ)/ci,n is Lp sto-
chastic equicontinuous for p ≥ 1, which in turn implies uniform convergence of
Qn(θ) provided that a pointwise LLN is satisfied. Therefore, the weak part of
ULLN will continue to hold if L0 stochastic equicontinuity and Assumption 6
are replaced by the single assumption of Lp stochastic equicontinuity for some
p ≥ 1.

4.2 Pointwise Law of Large Numbers

The generic ULLN assumes a pointwise LLN for the stochastic functions qi,n(Zi,n; θ)
for fixed θ ∈ Θ. In the following, we introduce a LLN for arrays of real ran-
dom fields {Zi,n; i ∈ Dn, n ∈ N} taking values in Z = R with possibly trending
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moments, which can in turn be used to establish a LLN for qi,n(Zi,n; θ). The
LLN below holds under a subset of assumptions of the CLT, Theorem 1, which
facilitates their joint application. The CLT was derived under the assumption
that the random field was uniformly L2+δ integrable. As expected, for the LLN
it suffices to assume uniform L1 integrability.

Assumption 2 * (Uniform L1 integrability) There exists an array of positive
real constants {ci,n} such that

lim
k→∞

sup
n
sup
i∈Dn

E[|Zi,n/ci,n|1(|Zi,n/ci,n| > k)] = 0,

where 1(·) is the indicator function.

A sufficient condition for Assumption 2* is supn supi∈Dn
E |Zi,n/ci,n|1+η <

∞ for some η > 0. We now have the following LLN.

Theorem 3 Suppose {Dn} is a sequence of arbitrary finite subsets of D, satis-
fying Assumption 1, with |Dn|→∞ as n→∞. Suppose further that {Zi,n; i ∈
Dn, n ∈ N} is an array of real random fields satisfying Assumptions 2* and
where the random field is either

(a) α-mixing satisfying Assumption 3(b) with k = l = 1, or

(b) φ-mixing satisfying Assumption 4(b) with k = l = 1.

Then
1

Mn |Dn|
X
i∈Dn

(Zi,n −EZi,n)
L1→ 0,

where Mn = maxi∈Dn ci,n.

The existence of first moments is assured by the uniform L1 integrability
assumption. Of course, L1-convergence implies convergence in probability, and
thus the Zi,n also satisfies a weak law of large numbers. The theorem also cov-
ers uniformly bounded variables as a special case with ci,n = 1 and Mn = 1.
Comparing the LLN with the CLT reveals that not only the moment conditions
employed in the former are weaker than those in the latter, but also the de-
pendence conditions in the LNN are only a subset of the mixing assumptions
maintained for the CLT.
There is a massive literature on weak LLNs for time series processes. Most re-

cent contributions include Andrews (1988) and Davidson (1993b), among others.
Andrews (1988) established an L1-law for triangular arrays of L1-mixingales.
Davidson (1993b) extended the latter result to L1-mixingale arrays with trend-
ing moments. Both results are based on the uniform integrability condition.
In fact, our moment assumption is identical to that of Davidson (1993b). The
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mixingale concept, which exploits the natural order and structure of the time
line, is formally weaker than that of mixing. It allows these authors to cir-
cumvent restrictions on the sizes of mixingale coefficients, i.e., rates at which
dependence decays. Mixingales are not well-defined for random fields, without
imposing a special order structure on the index space. Therefore, we cast our
LLN in terms of mixing variables. Furthermore, due to the higher dimensional-
ity and unevenness of the lattice, we have to make assumptions on the rates of
decay of mixing coefficients.
The above LLN can be readily used to establish a pointwise LLN for sto-

chastic functions qi,n(Zi,n; θ) under the α- and φ-mixing conditions on Zi,n pos-
tulated in the theorem. For instance, suppose that qi,n(·, θ) is Z/B-measurable
and supn supi∈Dn

E |qi,n(Zi,n; θ)/ci,n|1+η < ∞ for each θ ∈ Θ and some η > 0,
then qi,n(Zi,n; θ)/ci,n is uniformly L1 integrable for each θ ∈ Θ. Recalling that
the α- and φ-mixing conditions are preserved under measurable transformation,
we see that qi,n(Zi,n; θ) also satisfies a LNN for a given parameter value θ.

4.3 Stochastic Equicontinuity: Sufficient Conditions

In the previous sections, we saw that stochastic equicontinuity is a key ingredi-
ent of a ULLN. In this section, we explore various sufficient conditions for L0
and a.s. stochastic equicontinuity of functions fi,n(Zi,n, θ) as in Definition 2.
These conditions place smoothness requirement on fi,n(Zi,n, θ) with respect to
the parameter and/or data. In the following, we will present two sets of suffi-
cient conditions. The first set of conditions represent Lipschitz-type conditions,
and only requires smoothness of fi,n(Zi,n, θ) in the parameter θ. The second
set requires less smoothness in the parameter, but maintains joint continuity
of fi,n both in the parameter and data. These conditions should cover a wide
range of applications and are relatively simple to verify. Lipschitz-type condi-
tions for one-dimensional processes were proposed by Andrews (1987, 1992) and
Newey (1991). Joint continuity-type conditions for one-dimensional processes
were introduced by Pötscher and Prucha (1989). In the following we adapt those
conditions to random fields.
We continue to maintain the setup defined at the beginning of the section.

4.3.1 Lipschitz in Parameter

Condition 1 The array fi,n(Zi,n, θ) satisfies for all θ, θ
0 ∈ Θ and i ∈ Dn,

n ≥ 1 the following condition:¯̄
fi,n(Zi,n, θ)− fi,n(Zi,n, θ

0)
¯̄
≤ Bi,nh(ν(θ, θ

0)) a.s.,

where h is a nonrandom function such that h(x) ↓ 0 as x ↓ 0, and Bi,n are
random variables that do not depend on θ such that for some p > 0

lim sup
n→∞

|Dn|−1
X
i∈Dn

EBp
i,n <∞ [ lim sup

n→∞
|Dn|−1

X
i∈Dn

Bi,n <∞ a.s.]
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Clearly, each of the above conditions on the Cesàro sums of Bi,n is implied by
the respective condition on the individual terms, i.e., supn supi∈Dn

EBp
i,n <∞

[ supn supi∈Dn
Bi,n <∞ a.s.]

Proposition 1 Under Condition 1, fi,n(Zi,n, θ) is L0 [ a.s.] stochastically equicon-
tinuous on Θ.

4.3.2 Continuous in Parameter and Data

In this subsection, we assume additionally that Z is a metric space with metric
τ and with Z the corresponding Borel σ-field. Also, let BΘ(θ, δ) and BZ(z, δ)
denote δ-balls respectively in Θ and Z.
We consider functions of the form:

fi,n(Zi,n, θ) =
KX
k=1

rki,n(Zi,n)ski,n(Zin, θ), (4)

where rki,n : Z → R and ski,n(·, θ) : Z → R are real-valued functions, which
are Z/B-measurable for all θ ∈ Θ, 1 ≤ k ≤ K, i ∈ Dn, n ≥ 1. We maintain the
following assumptions.

Condition 2 The random functions fi,n(Zi,n, θ) defined in (4) satisfy the fol-
lowing conditions:

(a) For all 1 ≤ k ≤ K

lim sup
n→∞

1

|Dn|
X
i∈Dn

E |rki,n(Zi,n)| <∞.

(b) For a sequence of sets {Km} with Km ∈ Z the family of nonrandom func-
tions ski,n(z, ·), 1 ≤ k ≤ K, satisfy the following uniform equicontinuity-
type condition:

sup
n
sup
i∈Dn

sup
z∈Km

sup
θ0∈Θ

sup
θ∈B(θ0,δ)

¯̄
ski,n(z, θ)− ski,n(z, θ

0)
¯̄
→ 0 as δ → 0.

(c) Also, for the sequence of sets {Km}

lim
m→∞

lim sup
n→∞

1

|Dn|
X
i∈Dn

P (Zi,n /∈ Km) = 0.

We now have the following proposition, which extends parts of Theorem 4.5
in Pötscher and Prucha (1994a) to arrays of random fields.
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Proposition 2 Under Condition 2, fi,n(Zi,n, θ) is L0 stochastically equicontin-
uous on Θ.

We next discuss the assumptions of the above proposition and provide further
sufficient conditions. We note that the fi,n are composed of two parts, rki,n and
ski,n, with the continuity conditions imposed only on the second part. Condition
2 allows for discontinuities in rki,n with respect to the data. For example, the
rki,n could be indicator functions. A sufficient condition for Condition 2(a) is
the uniform L1 boundedness of rki,n, i.e., supn supi∈Dn

E |rki,n(Zi,n)| <∞.
Condition 2(b) requires nonrandom functions ski,n to be equicontinuous with

respect to θ uniformly for all z ∈ Km. This assumption will be satisfied if the
functions ski,n(z, θ), restricted to Km ×Θ, are equicontinuous jointly in z and
θ. More specifically, define the distance between the points (z, θ) and (z0, θ0)
in the product space Z ×Θ by r((z, θ); (z0, θ0)) = max

©
ν(θ, θ0), τ(z, z0)

ª
. This

metric induces the product topology on Z×Θ. Under this product topology let
B((z0, θ0), δ) be the open ball with center (z0, θ0) and radius δ in Km × Θ. It
is now easy to see that Condition 2(b) is implied by the following condition for
each 1 ≤ k ≤ K

sup
n
sup
i∈Dn

sup
(z0,θ0)∈Km×Θ

sup
(z,θ)∈B((z0,θ0),δ)

¯̄
ski,n(z, θ)− ski,n(z

0, θ0)
¯̄
→ 0 as δ → 0,

i.e., the family of nonrandom functions {ski,n(z, θ)}, restricted to Km × Θ, is
uniformly equicontinuous onKm×Θ. Obviously, if both Θ andKm are compact,
the uniform equicontinuity is equivalent to equicontinuity, i.e.,

sup
n
sup
i∈Dn

sup
(z,θ)∈B((z0,θ0),δ)

¯̄
ski,n(z, θ)− ski,n(z

0, θ0)
¯̄
→ 0 as δ → 0.

Of course, if the functions furthermore do not depend on i and n, then the
condition reduces to continuity onKm×Θ. Clearly if any of the above conditions
holds on Z ×Θ, then it also holds on Km ×Θ.
Finally, if the sets Km can be chosen to be compact, then Condition 2(c) is

an asymptotic tightness condition for the average of the marginal distributions
of Zin. Condition 2(c) can frequently be implied by a mild moment condition.
In particular, the following is sufficient for Condition 2(c) in case Z = Rs:
Km ↑ Rs is a sequence of Borel measurable convex sets (for example, a sequence
of open or closed balls), and lim supn→∞ |Dn|−1

P
i∈Dn

Eh(Zin) < ∞ where
h : [0,∞)→ [0,∞) is a monotone function such that limx→∞ h(x) =∞.17
We note that, in contrast to Condition 1, Condition 2 will generally not

cover random fields with trending moments since in this case part (c) would
typically not hold.

17For example h(x) = xp for some p > 0. The claim follows from lemma A4 in Pötscher
and Prucha (1994b) with obvious modification to the proof.

18



5 Concluding Remarks
This paper derives a CLT, ULLN and LLN for arrays of random fields exhibiting
considerable dependence and heterogeneity. The novel feature of these limit
theorems is that they (i) allow for arrays of fields located on unevenly spaced
lattices in Rd, (ii) accommodate nonstationary fields with unbounded moments
and (iii) place minimal restrictions on the configuration and growth behavior of
index sets. The results are based on weak, yet primitive conditions which makes
them applicable in a wide range of econometric contexts. They can readily be
used to establish consistency and asymptotic normality of spatial estimators,
and in particular, those arising from the Cliff-Ord-type models.
One direction for future research is to generalize the above CLT to random

fields which are not mixing but can be approximated in some sense with mix-
ing fields. This could be achieved, for example, by introducing the concept of
near-epoch dependent random fields similar to the one used in the time-series lit-
erature. The authors are currently working in this direction. Another extension
would be to obtain a CLT for fields with variances trending to zero.
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A Appendix: Cardinalities of basic sets on ir-
regular lattices in Rd

This Appendix contains a series of calculations for the cardinalities of basic
sets in D that will be used in the proof of the limit theorems. For any i =
(i1, . . . , id) ∈ Rd let

(i, i+ 1] = (i1, i1 + 1]× ...× (id, id + 1],
[i, i+ 1] = [i1, i1 + 1]× ...× [id, id + 1],

denote, respectively, the half-open and closed unitary cubes with "south-west"
corner i. Note that given the metric, [i, i + 1] = B(j, 1/2), where j = (i1 +
1/2, ..., id + 1/2).

Lemma A.1 Suppose that Assumption 1 holds. Then,

(i) Any unitary cube B(i, 1/2) with i ∈ Rd contains at most one element of D,
i.e., |B(i, 1/2) ∩D| ≤ 1.

(ii) There exists a constant C <∞ such that for h ≥ 1

sup
i∈Rd

|B(i, h) ∩D| ≤ Chd,

i.e., the number of elements of D contained in a ball of radius h centered
at i ∈ Rd is O(hd) uniformly in i.

(iii) For m ≥ 1 and i ∈ Rd let

Ni(1, 1,m) = |{j ∈ D : m ≤ ρ(i, j) < m+ 1}|

be the number of all elements of D located at any distance h ∈ [m,m+ 1)
from i. Then, there exists a constant C <∞ such that

sup
i∈Rd

Ni(1, 1,m) ≤ Cmd−1.

(iv) Let U and V be some finite disjoint subsets of D. For m ≥ 1 and i ∈ U
let

Ni(2, 2,m) = |{(A,B) : |A| = 2, |B| = 2, A ⊆ U with i ∈ A,

B ⊆ V and ∃ j ∈ B with m ≤ ρ(i, j) < m+ 1}|

be the number of all different combinations of subsets of U composed of two
elements, one of which is i, and subsets of V composed of two elements,
where for at least for one of the elements, say j, we have m ≤ ρ(i, j) <
m+ 1. Then there exists a constant C <∞ such that

sup
i∈U

Ni(2, 2,m) ≤ Cmd−1 |U | |V | .
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(v) Let V be some finite subset of D. For m ≥ 1 and i ∈ Rd let

Ni(1, 3,m) = |{B : |B| = 3, B ⊆ V and ∃ j ∈ B with m ≤ ρ(i, j) < m+ 1}|

be the number of the subsets of V composed of three elements, at least one
of which is located at a distance h ∈ [m,m+ 1) from i. Then there exists
a constant C <∞ such that

sup
i∈Rd

Ni(1, 3,m) ≤ Cmd−1 |V |2 .

Proof of Lemma A.1(i). We prove it by contradiction. Suppose that there
is a unitary cube B(i, 1/2) contains two elements of D, say, x and y. Then
ρ(x, i) ≤ 1/2 and ρ(y, i) ≤ 1/2. Using the triangle inequality yields:

ρ(x, y) ≤ ρ(x, i) + ρ(i, y) ≤ 1/2 + 1/2 = 1 < d0,

which contradicts Assumption 1.

Proof of Lemma A.1(ii). First, observe that for any i ∈ Rd and h ≥ 1, we
have B(i, h) ⊆ B(i, [h] + 1), where [h] denotes the largest integer less than or
equal to h. Note that B(i, [h] + 1) is a d-dimensional cube with sides of length
2[h] + 2. Clearly, B(i, [h] + 1) can be partitioned into (2[h] + 2)d closed an
half-open unitary cubes. Hence, in light of Lemma A.1(i)

|B(i, h) ∩D| ≤ |B(i, [h] + 1) ∩D| ≤ (2[h] + 2)d

≤ 2d(h+ 1)d ≤ Chd

with C = 22d+1 > 0 observing that h ≥ 1. Since C depends only on d and not
on i, it follows that supi∈Rd |B(i, h) ∩D| ≤ Chd.

Proof of Lemma A.1(iii). Consider the annulus A(i,m) = {j ∈ Rd : m ≤
ρ(i, j) < m+ 1} of width 1, then

A(i,m) ⊂ B(i,m+ 1)\B(i,m− 1)

(If m = 1, the ball B(i,m − 1) collapses into a point.) Now observe that
B(i,m+1) is composed of exactly [2 (m+ 1)]d closed an half-open unitary cubes,
and B(i,m− 1) is composed of exactly [2 (m− 1)]d unitary cubes. Hence, the
number of unitary cubes making up B(i,m+ 1)\B(i,m− 1) is given by

2d
£
(m+ 1)d − (m− 1)d

¤
= 2d

"
dX

s=0

µ
d

s

¶
md−s −

dX
s=0

µ
d

s

¶
md−s(−1)s

#

≤ 2d+1

"
md−1

dX
s=1

µ
d

s

¶
m−s+1

#
≤ 2d+1

"
dX

s=1

µ
d

s

¶#
md−1 ≤ Cmd−1
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for some C > 0 that does not depend on i observing that m−s+1 ≤ 1 for s ≥ 1.
By Lemma A.1(ii), we have

Ni(1, 1,m) = |{j ∈ D : m ≤ ρ(i, j) < m+ 1}|
= |A(i,m) ∩D| ≤ |B(i,m+ 1)\B(i,m− 1)| ≤ Cmd−1,

and hence supi∈Rd Ni(1, 1,m) ≤ Cmd−1.

Proof of Lemma A.1(iv). By Lemma A.1(iii), the number of the one-element
subsets of V located at some distance h ∈ [m,m+ 1) from i ∈ U is less than or
equal to Ni(1, 1,m) ≤ Cmd−1, C < ∞. For each point j ∈ V one can form at
most |V | different two-elements subsets of V that contain j. Thus, the number of
the two-element subsets of V that have at least one element located at some dis-
tance h ∈ [m,m+1) from i is less than or equal to Ni(1, 1,m) |V | ≤ Cmd−1 |V |.
Furthermore, one can form at most |U | different two-element subsets of U that
include i. Hence, Ni(2, 2,m) ≤ Ni(1, 1,m) |V | |U | ≤ Cmd−1 |V | |U |. Thus,
supi∈U Ni(2, 2,m) ≤ Cmd−1 |U | |V |, where C does not depend on i.

Proof of Lemma A.1(v). By Lemma A.1(iii), the number of the one-element
subsets of V located at some distance h ∈ [m,m + 1) from i ∈ Rd is less
than or equal to Ni(1, 1,m) ≤ Cmd−1, C < ∞. For each point j ∈ V , one
can form at most |V |2 different three-elements subsets of V that contain j.
Then, the number of the three-element subsets of V that include at least one
point located at some distance h ∈ [m,m + 1) from i, obeys: Ni(1, 3,m) ≤
Ni(1, 1,m) |V |2 ≤ Cmd−1 |V |2. Since C does not depend on i furthermore
supi∈Rd Ni(1, 3,m) ≤ Cmd−1 |V |2 .
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B Appendix: Proof of CLT

The proof of Theorem 1 builds on the approach taken by Bolthausen (1982)
towards establishing his CLT (for stationary random fields on regular lattices).
In particular, rather than using the Bernstein blocking method, we will employ
the following lemma to establish asymptotic normality.

Lemma B.1 (Stein (1972), Bolthausen (1982), Lemma 2). Let {μn} be a se-
quence of probability measures on (R,B), where B is the Borel σ-field. Suppose
the sequence {μn} satisfies (with i denoting the imaginary unit):

(i) supn
R
y2μn(dy) <∞; and

(ii) limn→∞
R
(iλ− y) exp(iλy)μn(dy) = 0 for all λ ∈ R.

Then μn =⇒ N(0, 1).

As part of the proof, we will also show that it suffices to establish the con-
vergence of the normalized sums for bounded random variables. To that effect,
we will utilize the following lemma.

Lemma B.2 (Brockwell and Davis (1991), Proposition 6.3.9). Let Yn, n =
1, 2, ... and Vnk, k = 1, 2, ...; n = 1, 2, ..., be random vectors such that

(i) Vnk =⇒ Vk as n→∞ for each k = 1, 2, ..., ;

(ii) Vk =⇒ V as k →∞, and

(iii) limk→∞ lim supn→∞ P (|Yn − Vnk| > ε) = 0 for every ε > 0.

Then Yn =⇒ V as n→∞.

Proof of Theorem 1.We give the proof for α-mixing fields. The argument for
φ-mixing fields is analogous. The proof is lengthy, and for readability we break
it up into several steps.

1. Notation and Reformulation. Consider

Xi,n = Zi,n/Mn

where Mn = maxi∈Dn ci,n is as in Assumption 5. Let σ
2
n,Z = V ar

£P
i∈Dn

Zi,n
¤

and σ2n,X = V ar
£P

i∈Dn
Xi,n

¤
=M−2n σ2n,Z . Since

σ−1n,X
X
i∈Dn

Xi,n = σ−1n,Z
X
i∈Dn

Zi,n,
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to prove the theorem, it suffices to show that σ−1n,X
P

i∈Dn
Xi,n =⇒ N(0, 1). In

light of this, it proves convenient to switch notation from the text and to define

Sn =
X
i∈Dn

Xi,n, σ2n = V ar(Sn).

That is, in the following, Sn denotes
P

i∈Dn
Xi,n rather than

P
i∈Dn

Zi,n, and
σ2n denotes the variance of

P
i∈Dn

Xi,n rather than of
P

i∈Dn
Zi,n.

We next establish the moment and mixing conditions for Xi,n implied by
the assumptions of the CLT. Observe that by definition of Mn

1(|Xi,n| > k) = 1(|Zi,n/Mn| > k) ≤ 1(|Zi,n/ci,n| > k),

and hence

E[|Xi,n|2+δ 1(|Xi,n| > k)] ≤ E[|Zi,n/ci,n|2+δ 1(|Zi,n/ci,n| > k)].

Thus in light of Assumption 2,

lim
k→∞

sup
n
sup
i∈Dn

E[|Xi,n|2+δ 1(|Xi,n| > k)] = 0. (B.1)

Clearly, the mixing coefficients for Xi,n and Zi,n are identical, and hence
Assumptions 3 also covers the Xi,n process.
In light of our change in notation, Assumption 5 implies:

lim inf
n→∞

|Dn|−1σ2n > 0. (B.2)

2. Truncated Random Variables. In proving the CLT, we will consider truncated
versions of the Xi,n. For k > 0 we define

Xk
i,n = Xi,n1(|Xi,n| ≤ k), eXk

i,n = Xi,n1(|Xi,n| > k),

and the corresponding variances as

σ2n,k = V ar

"X
i∈Dn

Xk
i,n

#
, eσ2n,k = V ar

"X
i∈Dn

eXk
i,n

#
.

Since by (B.1) the Xi,n are uniformly L2+δ integrable, they are also uniformly
L2+δ bounded. Let

kXk2+δ = sup
n
sup
i∈D

kXi,nk2+δ,

then we have the following°°Xk
i,n

°°
2+δ
≤ kXk2+δ and

°°° eXk
i,n

°°°
2+δ
≤ kXk2+δ.
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Furthermore, by (B.1)

lim
k→∞

sup
n
sup
i∈D

k eXk
i,nk2+δ =

½
lim
k→∞

sup
n
sup
i∈D

E |Xi,n|2+δ 1(|Xi,n| > k)

¾1/(2+δ)
= 0.

(B.3)

3. Bounds and Limits for Variances and Variance Ratios. Using the mixing
inequality of Lemma 1(i) with k = l = 1, p = q = 2+ δ, and r = (2+ δ)/δ gives:

|cov(Xi,n,Xj,n)| ≤ 8ᾱδ/(2+δ)(1, 1, ρ(i, j))kXk22+δ (B.4)

Since Xk
i,n and eXk

i,n are measurable functions of Xi,n, their covariances and
cross-covariances satisfy the same inequality.
We next derive bounds for σ2n. Let K1 = kXk2+δ < ∞ and observe that

K2 =
P

m≥1m
d−1ᾱδ/(2+δ)(1, 1,m) < ∞ in light of Assumption 3(a). Utilizing

Lemma A.1(iii), (B.4) and Lyapunov’s inequality yields:

σ2n ≤
X
i∈Dn

EX2
i,n +

X
i,j∈Dn,j 6=i

|cov(Xi,n,Xj,n)| (B.5)

≤
X
i∈Dn

EX2
i,n + 8

X
i,j∈Dn,j 6=i

ᾱ
δ

2+δ (1, 1, ρ(i, j))kXk22+δ

≤ |Dn|kXk22+δ + 8kXk22+δ
X
i∈Dn

∞X
m=1

X
j∈Dn:ρ(i,j)∈[m,m+1)

ᾱ
δ

2+δ (1, 1, ρ(i, j))

≤ |Dn|kXk22+δ + 8kXk22+δ
X
i∈Dn

∞X
m=1

Ni(1, 1,m)ᾱ
δ

2+δ (1, 1,m)

≤ |Dn|kXk22+δ + 8CkXk22+δ
X
i∈Dn

∞X
m=1

md−1ᾱ
δ

2+δ (1, 1,m)

≤ |Dn|
"
1 + 8C

∞X
m=1

md−1ᾱ
δ

2+δ (1, 1,m)

#
K2
1 ≤ |Dn|B2

with B2 = [1 + 8CK2]K
2
1 < ∞. In establishing the above inequality we also

used the fact that for ρ(i, j) ∈ [m,m+ 1): ᾱ(1, 1, ρ(i, j)) ≤ ᾱ(1, 1,m).
Thus, lim supn |Dn|−1σ2n <∞. By condition (B.2)

lim
n→∞

inf
l≥n

|Dl|−1σ2l > 0

and hence there exists an N∗ and B1 > 0 such that for all n ≥ N∗, we have
B1|Dn| ≤ σ2n. Combining the last two inequalities yields for n ≥ N∗:

B1|Dn| ≤ σ2n ≤ B2|Dn|, (B.6)

where 0 < B1 ≤ B2 <∞.
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Using analogous arguments, one can bound the variances and covariances ofP
Dn

Xk
i,n,

P
Dn

eXk
i,n for each k > 0, as follows:

σ2n,k = V ar

"X
Dn

Xk
i,n

#
≤ B2|Dn|,

eσ2n,k = V ar

"X
Dn

eXk
i,n

#
≤ |Dn|B0

2

∙
sup
n
sup
i∈Dn

k eXk
i,nk2+δ

¸2
,¯̄̄̄

¯cov
(X
i∈Dn

Xk
i,n,

X
i∈Dn

eXk
i,n

)¯̄̄̄
¯ ≤ |Dn|B00

2

∙
sup
n
sup
i∈Dn

k eXk
i,nk2+δ

¸
,

where B0
2 = [1 + 8CK2] <∞ and B00

2 = [2 + 8CK2]K1 <∞. Furthermore,

σ2n − σ2n,k = 2cov

(X
i∈Dn

Xk
i,n,

X
i∈Dn

eXk
i,n

)
+ eσ2n,k

≤ 2|Dn|B00
2

∙
sup
n
sup
i∈Dn

k eXk
i,nk2+δ

¸
+ |Dn|B0

2

∙
sup
n
sup
i∈Dn

k eXk
i,nk2+δ

¸2
In light of (B.1), (B.6) and the above inequalities we have:

0 ≤
σ2n,k
σ2n
≤ B2

B1
<∞ for all n ≥ N∗ and all k, (B.7)

lim
k→∞

lim sup
n→∞

eσ2n,k
σ2n

≤ lim
k→∞

lim sup
n→∞

(
B0
2

B1

∙
sup
n
sup
i∈D

k eXk
i,nk2+δ

¸2)
(B.8)

=
B0
2

B1

∙
lim
k→∞

sup
n
sup
i∈D

k eXk
i,nk2+δ

¸2
= 0.

and

lim
k→∞

sup
n≥N∗

¯̄̄̄
¯σ2n − σ2n,k

σ2n

¯̄̄̄
¯ (B.9)

≤ 2B00
2

B1

∙
lim
k→∞

sup
n
sup
i∈D

k eXk
i,nk2+δ

¸
+

B0
2

B1

∙
lim
k→∞

sup
n
sup
i∈D

k eXk
i,nk2+δ

¸2
= 0.

4. Truncation Technique.18 Our proof employs a truncation argument in con-
junction with Lemma B.2. For k > 0 consider the decomposition

Yn = σ−1n
X
i∈Dn

Xi,n = Vnk + (Yn − Vnk)

18We would like to thank Benedikt Pötscher for helpful discussions on this step of the proof.
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with

Vnk = σ−1n
X
i∈Dn

(Xk
i,n −EXk

i,n), Yn − Vnk = σ−1n
X
Dn

( eXk
i,n −E eXk

i,n),

and let V ∼ N(0, 1). We next show that Yn =⇒ N(0, 1) if

σ−1n,k
X
Dn

(Xk
i,n −EXk

i,n) =⇒ N(0, 1) (B.10)

for each k = 1, 2, . . . We note that the claim in (B.10) will be verified in subse-
quent steps.
We first verify condition (iii) of Lemma B.2. By Markov’s inequality

P (|Yn − Vnk| > ε) = P (

¯̄̄̄
¯σ−1n X

i∈Dn

( eXk
i,n −E eXk

i,n)

¯̄̄̄
¯ > ε) ≤

eσ2n,k
ε2σ2n

.

In light of (B.8)

lim
k→∞

lim sup
n→∞

P (|Yn − Vnk| > ε) ≤ lim
k→∞

lim sup
n→∞

eσ2n,k
ε2σ2n

= 0,

which verifies the condition.
Next, observe that

Vnk =
σn,k
σn

"
σ−1n,k

X
i∈Dn

(Xk
i,n −EXk

i,n)

#
.

Suppose r(k) = limn→∞ σn,k/σn exists, then Vnk =⇒ Vk ∼ N(0, r(k)2) in light
of (B.10). If furthermore, limk→∞ r(k)→ 1, then Vk =⇒ V ∼ N(0, 1), and the
claim would follow by Lemma B.2. However, in the case of nonstationary vari-
ables limn→∞ σn,k/σn need not exist, and therefore, we have to use a different
argument to show that Yn =⇒ V ∼ N(0, 1). We shall prove it by contradiction.
Let M be the set of all probability measures on (R,B). Observe that we

can metrizeM by, e.g., the Prokhorov distance, say d(., .). Let μn and μ be the
probability measures corresponding to Yn and V , respectively, then μn =⇒ μ iff
d(μn, μ)→ 0 as n→∞. Now suppose that Yn does not converge to V . Then
for some ε > 0 there exist a subsequence {n(m)} such that d(μn(m), μ) > ε
for all n(m). Observe that by (B.7) we have 0 ≤ σn,k/σn ≤ C < ∞ for all
k > 0 and all n ≥ N∗, where N∗ does not depend on k. W.l.o.g. assume that
with n(m) ≥ N∗, and hence 0 ≤ σn(m),k/σn(m) ≤ C < ∞ for all k > 0 and
all n(m). Consequently, for k = 1 there exists a subsubsequence {n(m(l1))}
such that such σn(m(l1)),1/σn(m(l1)) → r(1) as l1 →∞. For k = 2 there exists a
subsubsubsequence {n(m(l1(l2)))} such that σn(m(l1(l2))),2/σn(m(l1(l2))) → r(2)
as l2 → ∞. The argument can be repeated for k = 3, 4..... Now construct a
subsequence {nl} such that n1 corresponds to the first element of {n(m(l1))},
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n2 corresponds to the second element of {n(m(l1(l2)))}, and so on, then for
k = 1, 2, . . . ,we have:

lim
l→∞

σnl,k
σnl

= r(k). (B.11)

Moreover, since by (B.9)

lim
k→∞

sup
n≥N∗

¯̄̄̄
1− σn,k

σn

¯̄̄̄
≤ lim

k→∞
sup
n≥N∗

¯̄̄̄
1− σn,k

σn

¯̄̄̄ ¯̄̄̄
1 +

σn,k
σn

¯̄̄̄
= lim

k→∞
sup
n≥N∗

¯̄̄̄
¯σ2n − σ2n,k

σ2n

¯̄̄̄
¯ = 0

and

|r(k)− 1| =

¯̄̄̄
r(k)− σnl,k

σnl
+

σnl,k
σnl

− 1
¯̄̄̄

≤
¯̄̄̄
r(k)− σnl,k

σnl

¯̄̄̄
+ sup

nl≥N∗

¯̄̄̄
σnl,k
σnl

− 1
¯̄̄̄
,

it follows from (B.11) that

lim
k→∞

|r(k)− 1| = lim
k→∞

lim
l→∞

|r(k)− 1| (B.12)

≤ lim
k→∞

lim
l→∞

¯̄̄̄
r(k)− σnl,k

σnl

¯̄̄̄
+ lim

k→∞
sup
n≥N∗

¯̄̄̄
σn,k
σn
− 1
¯̄̄̄
= 0.

Given (B.12), it follows that Vnlk =⇒ Vk ∼ N(0, r(k)2).Then, by Lemma B.2,
Ynl =⇒ V ∼ N(0, 1) as l → ∞. Since {nl} ⊆ {n(m)}, this contradicts the
hypothesis that d(μn(m), μ) > ε for all n(m).
Thus, we have shown that Yn =⇒ N(0, 1) if (B.10) holds. In light of this it

suffices to prove the CLT for bounded variables.19 In the following, we assume
that |Xi,n| | ≤ CX <∞.

5. Renormalization. Since |Dn|→∞ and ᾱ(1,∞,m) = O(m−d−ε) it is readily
seen that we can choose a sequence mn such that

ᾱ(1,∞,mn)|Dn|1/2 → 0 (B.13)

and
md
n|Dn|−1/2 → 0 (B.14)

as n→∞. Now, for such mn define:

19Guyon (1995), p. 112, gives a CLT for non-stationary non-trending random fields on
Zd. The proof in essence asserts, without giving detailed arguments, that (B.8) holds and
that consequently it is sufficient to consider only the case of bounded random variables, while
maintaining only L2+δ-boundedness. Our arguments verify the assertion, provided that L2+δ-
boundedness is strengthened to L2+δ-uniform integrability.
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an =
X

i,j∈Dn,ρ(i,j)≤mn

E(Xi,nXj,n),

bn =
X

i,j∈Dn,ρ(i,j)>mn

E(Xi,nXj,n),

so that
σ2n = V ar(Sn) =

X
i,j∈Dn

E(Xi,nXj,n) = an + bn

Using the mixing inequality of Lemma 1(iii) with k = l = 1, Lemma A.1(ii),
and argumentation analogous to that used in (B.5) yields

|bn| ≤
X

i,j∈Dn,ρ(i,j)>mn

|cov(Xi,nXj,n)| ≤ 4CC2X |Dn|
∞X

l=mn

ld−1ᾱ(1, 1, l).

Since Assumption 3b implies
P∞

l=mn
ld−1ᾱ(1, 1, l) → 0 as n → ∞, it follows

that bn = o(|Dn|). Moreover, by (B.2) we have

lim inf
n→∞

|Dn|−1an

≥ lim inf
n→∞

|Dn|−1σ2n + lim infn→∞

©
−|Dn|−1bn

ª
= lim inf

n→∞
|Dn|−1σ2n > 0.

Hence, for some 0 < B1 <∞ and sufficiently large n we have 0 < B1|Dn| < an.
From the inequalities established in (B.5) it follows furthermore that |an| ≤P

i,j∈Dn,ρ(i,j)≤mn
|cov(Xi,n,Xj,n)| ≤ B2|Dn|. Hence, for sufficiently large n,

say n ≥ N∗∗ ≥ N∗:

0 < B1|Dn| ≤ an ≤ B2|Dn|, 0 < B1 ≤ B2 <∞, (B.15)

i.e., an ∼ |Dn| and, consequently,

σ2n = an + o(|Dn|) = an + o(an) = an(1 + o(1)).

For n ≥ N∗∗ define

S̄n = a−1/2n Sn = a−1/2n

X
i∈Dn

Xi,n.

To demonstrate that σ−1n Sn =⇒ N(0, 1), it now suffices to show that S̄n =⇒
N(0, 1).

6. Limiting Distribution of S̄n: From the above discussion supn≥N∗∗ ES̄
2
n <∞.

In light of Lemma B.1, to establish that S̄n =⇒ N(0, 1), it suffices to show that

lim
n→∞

E[(iλ− S̄n) exp(iλS̄n)] = 0
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In the following, we take n ≥ N∗∗, but will not indicate that explicitly for
notational simplicity. Define

Sj,n =
X

i∈Dn,ρ(i,j)≤mn

Xi,n and S̄j,n = a−1/2n Sj,n,

then
(iλ− S̄n) exp(iλS̄n) = A1,n −A2,n −A3,n,

with

A1,n = iλeiλS̄n(1− a−1n
X
j∈Dn

Xj,nSj,n),

A2,n = a−1/2n eiλS̄n
X
j∈Dn

Xj,n[1− iλS̄j,n − e−iλS̄j,n ],

A3,n = a−1/2n

X
j∈Dn

Xj,ne
iλ(S̄n−S̄j,n).

To complete the proof we show that E|Ai,n|→ 0 as n→∞ for i = 1, 2, 3.

7. Proof that E|A1,n|→ 0: Note that

|A1|2 =
¯̄̄
iλeiλS̄n

¯̄̄⎛⎝1− a−1n
X
j∈Dn

Xj,nSj,n

⎞⎠2

= λ2

⎧⎪⎨⎪⎩1− 2a−1n
X
j∈Dn

Xj,nSj,n + a−2n

⎡⎣X
j∈Dn

Xj,nSj,n

⎤⎦2
⎫⎪⎬⎪⎭

and hence, observing that an = E
P

j∈Dn
Xj,nSj,n,

E |A1|2 = λ2

⎧⎨⎩1− 2a−1n X
j∈Dn

EXj,nSj,n

+a−2n

⎡⎢⎣var
⎛⎝X
j∈Dn

Xj,nSj,n

⎞⎠+
⎛⎝X
j∈Dn

EXj,nSj,n

⎞⎠2
⎤⎥⎦
⎫⎪⎬⎪⎭

= λ2

⎧⎨⎩1− 2a−1n an + a−2n

⎡⎣var
⎛⎝X
j∈Dn

Xj,nSj,n

⎞⎠+ a2n

⎤⎦⎫⎬⎭
= λ2a−2n var

⎛⎝X
j∈Dn

Xj,nSj,n

⎞⎠ = λ2a−2n var

⎛⎜⎜⎝ X
i∈Dn,j∈Dn

ρ(i,j)≤mn

Xi,nXj,n

⎞⎟⎟⎠
= λ2a−2n

X
i∈Dn,j∈Dn,i0∈Dn,j0∈Dn

ρ(i,j)≤mn,ρ(i0,j0)≤mn

cov (Xi,nXj,n;Xi0,nXj0,n) .
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By (B.15), we have

E|A1|2 ≤ C∗|Dn|−2
X

i,j,i0,j0∈Dn

ρ(i,j)≤mn,ρ(i0,j0)≤mn

|cov (Xi,nXj,n;Xi0,nXj0,n)| (B.16)

= C∗|Dn|−2
X

i,j,i0,j0∈Dn

ρ(i,j)≤mn,ρ(i0,j0)≤mn,ρ(i,i0)≥3mn

|cov (Xi,nXj,n;Xi0,nXj0,n)|

+C∗|Dn|−2
X

i,j,i0,j0∈Dn

ρ(i,j)≤mn,ρ(i0,j0)≤mn,ρ(i,i0)<3mn

|cov (Xi,nXj,n;Xi0,nXj0,n)| ,

for some C∗ < ∞. We next obtain bounds for the above inner sums for fixed
i ∈ Dn corresponding to ρ(i, i0) ≥ 3mn and ρ(i, i0) < 3mn, respectively.

7(a) First consider the case where r = ρ(i, i0) ≥ 3mn. Since ρ(i, j) ≤ mn and
ρ(i0, j0) ≤ mn, clearly ρ(i, j0) ≥ r − 2mn, ρ(j, i0) ≥ r − 2mn and ρ(j, j0) ≥
r− 2mn. Take U = {i, j} and V = {i0, j0}, then ρ(U, V ) ≥ r− 2mn ≥ 1. Since
|Xj,n| ≤ CX , using the first inequality of Lemma 1(iii) with k = l = 2, and
observing that ᾱ(k, l, h) is nonincreasing in h yields

|cov (Xi,nXj,n;Xi0,nXj0,n) | ≤ 4C4X ᾱ(2, 2, r − 2mn). (B.17)

Now define Ni(2, 2, l) as the number of all different combinations consisting of
subsets of {j : ρ(i, j) ≤ mn} composed of two elements, one of which is i, and
subsets of {j0 : ρ(i0, j0) ≤ mn} composed of two elements, one of which is i0,
where ρ(i, i0) ≥ 3mn and l ≤ ρ(i, i0) < l + 1, l ∈ N, i.e.,

Ni(2, 2, l) = |{(A,B) : |A| = 2, |B| = 2, A ⊆ {j : ρ(i, j) ≤ mn} with i ∈ A,

B ⊆ {j0 : ρ(i0, j0) ≤ mn} with i0 ∈ B and 3mn ≤ l ≤ ρ(i, i0) < l + 1}|

By Lemmata A.1(iv) and A.1(ii)

sup
i∈Rd

Ni(2, 2, l) ≤ Mld−1 |{j : ρ(i, j) ≤ mn}| |{j0 : ρ(i0, j0) ≤ mn}|

≤ M∗m
2d
n ld−1 (B.18)

for someM <∞ andM∗ <∞. Note that if l ≤ r < l+1, then ᾱ(2, 2, r−2mn) ≤
ᾱ(2, 2, l − 2mn).
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In light of (B.17) and (B.18), we now have for fixed i ∈ Dn:X
j,i0,j0∈Dn

ρ(i,j)≤mn,ρ(i0,j0)≤mn,ρ(i,i0)≥3mn

|cov (Xi,nXj,n;Xi0,nXj0,n)| (B.19)

≤ 4C4X

" ∞X
l=3mn

Ni(2, 2, l)ᾱ(2, 2, l − 2mn)

#

≤ 4C4XM∗m
2d
n

∞X
l=3mn

ld−1ᾱ(2, 2, l − 2mn)

≤ 3d−14C4XM∗m
2d
n

∞X
l=mn

ld−1ᾱ(2, 2, l) ≤ C1m
2d
n

for some C1 <∞.

7(b) Next consider the case where r = ρ(i, i0) < 3mn. Let Vi = {x ∈ Dn :
ρ(x, i) ≤ 4mn} be the collection of the elements of Dn contained in the ball of
the radius 4mn centered in i. This set will necessarily include all points i0, j, j0

such that ρ(i, i0) < 3mn, ρ(i, j) ≤ mn, and ρ(i0, j0) ≤ mn. Further, let

h(j, i0, j0) = min {ρ(i, i0), ρ(i, j), ρ(i, j0)} .

Then using the first inequality of Lemma 1(iii) twice, first with k = 1, l = 3,
and then with k = l = 1 gives

|cov (Xi,nXj,n;Xi0,nXj0,n) | ≤ |E(Xi,nXj,nXi0,nXj0,n)| (B.20)

+|E(Xi,nXj,n)||E(Xi0,nXj0,n)|
≤ 4C4X ᾱ(1, 3, hi(j, i

0, j0))

+4C4X ᾱ(1, 1, hi(j, i
0, j0))ᾱ(1, 1, ρ(i0, j0))

≤ 4C4X ᾱ(1, 3, h(j, i
0, j0)) + 4C4X ᾱ(1, 1, h(j, i

0, j0))

≤ 8C4X ᾱ(1, 3, h(j, i
0, j0)).

observing that α(k, l, h) is less than or equal to one and nondecreasing in k, l.
Now, let Wi(l) = {A ⊆ Vi : |A| = 3, l ≤ ρ(i, A) < l + 1} denote the set of

three element subsets of Vi located at distances h ∈ [l, l + 1) from i. Clearly,
the number of such sets, |Wi(l)| is no greater then Ni(1, 3, l), defined in Lemma
A.1(v), and by Lemmata A.1(v) and A.1(ii), we have

sup
i∈Rd

|Wi(l)| ≤ sup
i∈Rd

Ni(1, 3, l) ≤Mld−1 (4mn)
2d =M∗l

d−1m2d
n (B.21)

for some M < ∞ and M∗ = 2
4dM < ∞. Using (B.20) and (B.21) we have for

fixed i ∈ Dn:
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X
j,i0,j0∈Dn

ρ(i,j)≤mn,ρ(i0,j0)≤mn,ρ(i,i0)<3mn

|cov (Xi,nXj,n;Xi0,nXj0,n)| (B.22)

≤
X

j,i0,j0∈Vi

|cov (Xi,nXj,n;Xi0,nXj0,n)|

≤ 8C4X
X

j,i0,j0∈Vi

ᾱ(1, 3, h(j, i0, j0)) = 8C4X

4mnX
l=1

X
A∈Wi(l)

ᾱ(1, 3, l)

≤ 8C4XM∗m
2d
n

4mnX
l=1

ld−1ᾱ(1, 3, l) ≤ C2m
2d
n

for some C2 <∞, using Assumption 3(b).
From (B.14), (B.16), (B.19) and (B.22) we have:

E|A1|2 ≤ C∗|Dn|−2
X
i∈Dn

(C1 + C2)m
2d
n ≤ const ∗ |Dn|−1m2d

n → 0

as n→∞.

8. Proof that E|A2,n|→ 0: Observe that by Lemma A.1(ii) and (B.15)

|S̄j,n| = a−1/2n |Sj,n| ≤ a−1/2n

X
i∈Dn,ρ(i,j)≤mn

|Xi,n|

≤ CCXa
−1/2
n md

n ≤ C4|Dn|−1/2md
n.

for some C4 <∞. By (B.14) it follows that |S̄j,n|→ 0. Observe further that if z
is a complex number with |z| < 1/2, then |1− z − e−z| ≤ |z|2. Since |S̄j,n|→ 0,
there exists N∗∗∗ ≥ N∗∗ such that for n ≥ N∗∗∗ we have |S̄j,n| < 1/2 a.s. and
hence ¯̄̄

1− iλS̄j,n − e−iλS̄j,n
¯̄̄
≤
¯̄
S̄j,n

¯̄2
a.s.

Using this inequality and the same arguments as before gives:
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E|A2| ≤ const ∗ |Dn|−1/2
X
j∈Dn

ES̄2j,n ≤ const ∗ |Dn|−1/2|Dn| sup
j∈Dn

E(S̄2j,n)

≤ const ∗ |Dn|1/2a−1n sup
j∈Dn

X
i,i0∈Dn,

ρ(i,j)≤mn,ρ(i0,j)≤mn

|E(Xi,nXi0,n)|

≤ const ∗ |Dn|−1/2 sup
j∈Dn

X
i,i0∈Dn,

ρ(i,j)≤mn,ρ(i0,j)≤mn

ᾱ(1, 1, ρ(i, i0))

≤ const ∗ |Dn|−1/2 sup
j∈Dn

X
i∈Dn,ρ(i,j)≤mn

X
1≤l≤2mn

Ni(1, 1, l)ᾱ(1, 1, l)

≤ const ∗ |Dn|−1/2md
n

X
1≤l≤2mn

ld−1ᾱ(1, 1, l)

≤ C5|Dn|−1/2md
n

for some C5 < ∞. The last inequality used Assumption 3. Hence, by (B.14),
E|A2|→ 0 as n→∞.

9. Proof that |EA3,n|→ 0: Note that

|EA3| =

¯̄̄̄
¯̄Ea−1/2n

X
j∈Dn

Xj,ne
iλ(S̄n−S̄j,n)

¯̄̄̄
¯̄ ≤ const∗|Dn|−1/2

X
j∈Dn

¯̄̄
EXj,ne

iλ(S̄n−S̄j,n)
¯̄̄

and that eiλ(S̄n−S̄j,n) is σ(Xi,n, ρ(j, i) > mn)-measurable. Using the first in-

equality of Lemma 1(iii) with k = 1, l = |Dn| gives
¯̄̄
EXj,ne

iλ(S̄n−S̄j,n)
¯̄̄
≤

4CX ᾱ(1, |Dn|,mn) and hence

|EA3| ≤ const ∗ |Dn|−1/2|Dn|ᾱ(1, |Dn|,mn)

≤ const ∗ |Dn|1/2ᾱ(1,∞,mn)→ 0

as n→∞ by (B.13).
This completes the proof of the CLT.
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C Appendix: Proofs ULLN and LLN
Proof of Theorem 2: In the following we use the abbreviations ACL0UEC
[ACLpUEC] [[ a.s.ACUEC]] for L0 [Lp], [[a.s.]] stochastic equicontinuity
as defined in Definition 2. We first show that ACL0UEC and the Domina-
tion Assumptions 6 for gi,n(Zi,n, θ) = qi,n(Zi,n, θ)/ci,n jointly imply that the
gi,n(Zi,n, θ) is ACLpUEC, p ≥ 1.
Given ε > 0, it follows from Assumption 6 that we can choose some k =

k(ε) <∞ such that

lim sup
n→∞

1

|Dn|
X
i∈Dn

E(dpi,n1(di,n > k) <
ε

3 · 2p . (C.1)

Let
Yi,n(δ) = sup

θ0∈Θ
sup

θ∈B(θ0,δ)

¯̄
gi,n(Zi,n, θ)− gi,n(Zi,n, θ

0)
¯̄p
,

and observe that Yi,n(δ) ≤ 2pdpi,n, then

E [Yi,n(δ)] = E [Yi,n(δ))1(Yi,n(δ) ≤ ε/3)] +E [Yi,n(δ)1(Yi,n(δ) > ε/3)]

≤ ε/3 +EYi,n(δ)1(Yi,n(δ) > ε/3, di,n > k) (C.2)

+ EYi,n(δ)1(Yi,n(δ) > ε/3, di,n ≤ k)

≤ ε/3 + 2pEdpi,n1(di,n > k) + 2pkpP (Yi,n(δ) > ε/3)

From the assumption that the gi,n(Zi,n, θ) is ACL0UEC, it follows that we can
find some δ = δ(ε) such that

lim sup
n→∞

1

|Dn|
X
i∈Dn

P (Yi,n(δ) > ε) (C.3)

= lim sup
n→∞

1

|Dn|
X
i∈Dn

P

Ã
sup
θ0∈Θ

sup
θ∈B(θ0,δ)

¯̄
gi,n(Zi,n, θ)− gi,n(Zi,n, θ

0)
¯̄
> ε

1
p

!
≤ ε

3 (2k)
p

It now follows from (C.1), (C.2) and (C.3) that for δ = δ(ε),

lim sup
1

|Dn|
X
i∈Dn

EYi,n(δ)

≤ ε/3 + 2plim sup
n→∞

1

|Dn|
X
i∈Dn

Edpi,n1(di,n > k)

+ 2pkplim sup
n→∞

1

|Dn|
X
i∈Dn

P (Yi,n(δ) > ε/3) ≤ ε,

which implies that gi,n(Zi,n, θ) is ACLpUEC, p ≥ 1.
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We next show that this in turn implies that Qn(θ) is ALpUEC, p ≥ 1, as
defined in Pötscher and Prucha (1994a), i.e., we show that

lim sup
n→∞

E

(
sup
θ0∈Θ

sup
θ∈B(θ0,δ)

¯̄
Qn(θ)−Qn(θ

0)
¯̄p)→ 0 as δ → 0.

To see this, observe that

E sup
θ0∈Θ

sup
θ∈B(θ0,δ)

¯̄
Qn(θ)−Qn(θ

0)
¯̄p

= E sup
θ0∈Θ

sup
θ∈B(θ0,δ)

¯̄̄̄
¯ 1

Mn |Dn|
X
i∈Dn

£
qi,n(Zi,n, θ)− qi,n(Zi,n, θ

0)
¤¯̄̄̄¯
p

≤ E sup
θ0∈Θ

sup
θ∈B(θ0,δ)

1

Mp
n |Dn|

X
i∈Dn

¯̄
qi,n(Zi,n, θ)− qi,n(Zi,n, θ

0)
¯̄p

≤ 1

|Dn|
X
i∈Dn

E sup
θ0∈Θ

sup
θ∈B(θ0,δ)

¯̄
qi,n(Zi,n, θ)− qi,n(Zi,n, θ

0)
¯̄p
/cpi,n

=
1

|Dn|
X
i∈Dn

EYi,n(δ)

where we have used inequality (1.4.3) in Bierens (1994). The claim now follows
since the lim sup of the last term goes to zero as δ → 0, as demonstrated
above. Moreover, by Theorem 2.1 in Pötscher and Prucha (1994a), Qn(θ) is
also AL0UEC, i.e., for every ε > 0

lim sup
n→∞

P

(
sup
θ0∈Θ

sup
θ∈B(θ0,δ)

¯̄
Qn(θ)−Qn(θ

0)
¯̄
> ε

)
→ 0 as δ → 0.

Given the assumed weak pointwise LLN for Qn(θ) the i.p. portion of part (a) of
the theorem now follows directly from Theorem 3.1(a) of Pötscher and Prucha
(1994a).
For the a.s. portion of the theorem, note that by the triangle inequality

lim sup
n→∞

sup
θ0∈Θ

sup
θ∈B(θ0,δ)

¯̄
Qn(θ)−Qn(θ

0)
¯̄

= lim sup
n→∞

sup
θ0∈Θ

sup
θ∈B(θ0,δ)

1

Mn |Dn|

¯̄̄̄
¯ X
i∈Dn

qi,n(Zi,n, θ)− qi,n(Zi,n, θ
0)

¯̄̄̄
¯

≤ lim sup
n→∞

1

|Dn|
X
i∈Dn

sup
θ0∈Θ

sup
θ∈B(θ0,δ)

¯̄
gi,n(Zi,n, θ)− gi,n(Zi,n, θ

0)
¯̄
.

The r.h.s. of the last inequality goes to zero as δ → 0, since gi,n is a.s.ACUEC
by assumption. Therefore,

lim sup
n→∞

sup
θ0∈Θ

sup
θ∈B(θ0,δ)

¯̄
Qn(θ)−Qn(θ

0)
¯̄
→ 0 as δ → 0 a.s.
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i.e., Qn is a.s.AUEC, as defined in Pötscher and Prucha (1994a). Given the
assumed strong pointwise LLN for Qn(θ) the a.s. portion of part (a) of the
theorem now follows from Theorem 3.1(a) of Pötscher and Prucha (1994a).
Next observe that since a.s.ACUEC =⇒ ACL0UEC we have that Qn(θ) is

ALpUEC, p ≥ 1, both under the i.p. and a.s. assumptions of the theorem. This
in turn implies that Qn(θ) = EQn(θ) is AUEC, by Theorem 3.3 in Pötscher
and Prucha (1994a), which proves part (b) of the theorem.

Proof of Theorem 3: Define Xi,n = Zi,n/Mn, and observe that

[|Dn|Mn]
−1 X

i∈Dn

(Zi,n −EZi,n) = |Dn|−1
X
i∈Dn

(Xi,n −EXi,n) .

Hence it suffices to prove the LLN for Xi,n.
We first establish mixing and moment conditions for Xi,n from those for

Zi,n. Clearly, if Zi,n is α-mixing [φ-mixing], then Xi,n is also α-mixing [φ-
mixing] with the same coefficients. Thus, Xi,n satisfies Assumption 3b with
k = l = 1 [Assumption 4b with k = l = 1]. Furthermore, observe that by the
definition ofMn we have 1(|Xi,n| > k) = 1(|Zi,n/Mn| > k) ≤ 1(|Zi,n/ci,n| > k),
and hence

lim
k→∞

sup
n
sup
i∈Dn

E[|Xi,n|1(|Xi,n| > k)] ≤ lim
k→∞

sup
n
sup
i∈Dn

E[|Zi,n/ci,n|1(|Zi,n/ci,n| > k)] = 0,

(C.4)
i.e., Xi,n is also uniformly L1 integrable.
In proving the LLN we consider truncated versions of Xi,n. For 0 < k <∞

let

Xk
i,n = Xi,n1(|Xi,n| ≤ k), eXk

i,n = Xi,n−Xk
i,n = Xi,n1(|Xi,n| > k).

In light of (C.4)

lim
k→∞

sup
n
sup
i∈Dn

E
¯̄̄ eXk

i,n

¯̄̄
= 0. (C.5)

Clearly, Xk
i,n is a measurable function of Xi,n, and thus Xk

i,n is also α-mixing
[φ-mixing] with mixing coefficients not exceeding those of Xi,n.
By Minkowski’s inequality

E

¯̄̄̄
¯ X
i∈Dn

(Xi,n −EXi,n)

¯̄̄̄
¯ (C.6)

≤ E

¯̄̄̄
¯ X
i∈Dn

¡
Xi,n −Xk

i,n

¢¯̄̄̄¯+E

¯̄̄̄
¯ X
i∈Dn

¡
Xk
i,n −EXk

i,n

¢¯̄̄̄¯+E

¯̄̄̄
¯ X
i∈Dn

¡
EXk

i,n −EXi,n

¢¯̄̄̄¯
≤ 2E

¯̄̄̄
¯ X
i∈Dn

eXk
i,n

¯̄̄̄
¯+E

¯̄̄̄
¯ X
i∈Dn

¡
Xk
i,n −EXk

i,n

¢¯̄̄̄¯
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and thus

lim
n→∞

°°°°°|Dn|−1
X
i∈Dn

(Xi,n −EXi,n)

°°°°°
1

(C.7)

≤ 2 lim
k→∞

sup
n
sup
i∈Dn

E
¯̄̄ eXk

i,n

¯̄̄
+ lim

k→∞
lim
n→∞

°°°°°|Dn|−1
X
i∈Dn

¡
Xk
i,n −EXk

i,n

¢°°°°°
1

where k.k1 denotes the L1-norm. The first term on the r.h.s. of (C.7) goes to
zero in light of (C.5). To complete the prove we now demonstrate that also
the second term converges to zero. To that effect it suffices to show that Xk

i,n

satisfies a an L1-norm LLN for fixed k.
Let σ2n,k = V ar

£P
i∈Dn

Xk
i,n

¤
, then by Lyapunov’s inequality°°°°°|Dn|−1

X
i∈Dn

¡
Xk
i,n −EXk

i,n

¢°°°°°
1

≤ |Dn|−1 σn,k. (C.8)

Using Lemma A.1(iii) and Lemma 1(iii), we have in the α-mixing case:

σ2n,k ≤
X
i∈Dn

V ar(Xk
i,n) +

X
i∈Dn,j∈Dn

j 6=i

¯̄
Cov(Xk

i,n;X
k
j,n)
¯̄

≤ 2k2|Dn|+ 4k2
X

i∈Dn,j∈Dn

j 6=i

αX (1, 1, ρ(i, j))

≤ 2k2|Dn|+ 4k2
X
i∈Dn

∞X
m=1

X
j∈Dn:ρ(i,j)∈[m,m+1)

αX (1, 1, ρ(i, j))

≤ 2k2|Dn|+ 4k2
X
i∈Dn

∞X
m=1

Ni(1, 1,m)αX (1, 1,m)

≤ 2k2|Dn|+ 4k2C
X
i∈Dn

∞X
m=1

md−1αX (1, 1,m)

≤ |Dn|
¡
k2 + 4CKk2

¢
.

with C < ∞, and K =
P∞

m=1m
d−1αX (1, 1,m) < ∞ by Assumption 3b. Con-

sequently, the r.h.s. of (C.8) is seen to go to zero as n→∞, which establishes
that the Xk

i,n satisfies an L1-norm LLN for fixed k. The proof for the φ-mixing
case is analogous. This completes the proof.

Proof of Proposition 1. Define the modulus of continuity of fi,n(Zi,n, θ) as

w(fi,n, Zi,n, δ) = sup
θ0∈Θ

sup
θ∈B(θ0,δ)

¯̄
fi,n(Zi,n, θ)− fi,n(Zi,n, θ

0)
¯̄
.

Further observe that

{ω : w(fi,n, Zi,n, δ) > ε} ⊆ {ω : Bi,nh(δ) > ε} .
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By Markov’s inequality and the i.p. part of Condition 1, we have

lim sup
n→∞

1

|Dn|
X
i∈Dn

P [w(fi,n, Zi,n, δ) > ε]

≤ lim sup
n→∞

1

|Dn|
X
i∈Dn

P

∙
Bi,n >

ε

h(δ)

¸

≤
∙
h(δ)

ε

¸p
lim sup

n→∞

1

|Dn|
X
i∈Dn

EBp
i,n ≤ C1

∙
h(δ)

ε

¸p
→ 0 as δ → 0

for some C1 < ∞, which establishes the i.p. part of the theorem. For the a.s.
part, observe that by the a.s. part of Condition 1 we have a.s.

lim sup
n→∞

1

|Dn|
X
i∈Dn

w(fi,n, Zi,n, δ)

≤ h(δ) lim sup
n→∞

1

|Dn|
X
i∈Dn

Bi,n ≤ C2h(δ)→ 0 as δ → 0

for some C2 <∞, which establishes the a.s. part of the theorem.

Proof of Proposition 2. The proof is analogous to the first part of the proof
of Theorem 4.5 in Pötscher and Prucha (1994a). We give an explicit proof for
the convenience of the reader. Let

w(fi,n, z, δ) = sup
θ0∈Θ

sup
θ∈B(θ0,δ)

¯̄
fi,n(z, θ)− fi,n(z, θ

0)
¯̄

denote the modulus of continuity of fi,n(z, θ), and let w(ski,n, z, δ) be defined
analogously. First note that for any ε > 0, we have

P (w(fin, Zi,n, δ) > ε) ≤ P

Ã
KX
k−1

|rki,n(Zi,n)|w(ski,n, Zi,n, δ) > ε

!

≤
KX
k=1

P
³
|rki,n(Zi,n)|w(ski,n, Zi,n, δ) >

ε

K

´
≤

KX
k=1

P
³
|rki,n(Zi,n)|w(ski,n, Zi,n, δ)1Km(Zi,n) >

ε

2K

´
+

KX
k=1

P
³
|rki,n(Zi,n)|w(ski,n, Zi,n, δ)1Z−Km(Zi,n) >

ε

2K

´
.

For any m, 1 ≤ k ≤ K, and η > 0 it follows form equicontinuity Condition 2(b),
that there exists δ(m,η) > 0 such that

sup
n
sup
i∈Dn

sup
z∈Km

w(ski,n, z, δ) < η.
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By. Markov’s inequality we now have for each 1 ≤ k ≤ K:

lim sup
n→∞

1

|Dn|
X
i∈Dn

P
³
|rki,n(Zi,n)|w(ski,n, Zi,n, δ)1Km(Zi,n) >

ε

2K

´
≤ lim sup

n→∞

1

|Dn|
X
i∈Dn

P
³
|rki,n(Zi,n)| η >

ε

2K

´
≤ 2Kη

ε
lim sup

n→∞

1

|Dn|
X
i∈Dn

E |rki,n(Zi,n)| ≤
2KBη

ε

where B = lim supn→∞ |Dn|−1
P

i∈Dn
E |rki,n(Zi,n)|, which is finite by Condi-

tion 2(a). Since η was arbitrary it follows that

lim
δ→0

lim sup
n→∞

1

|Dn|
X
i∈Dn

P
³
|rki,n(Zi,n)|w(ski,n, Zi,n, δ)1Km(Zi,n) >

ε

2K

´
= 0.

Also, for each 1 ≤ k ≤ K it follows from by Condition 2(b) that

lim
m→∞

lim
δ→0

lim sup
n→∞

1

|Dn|
X
i∈Dn

P
³
|rki,n(Zi,n)|w(ski,n, Zi,n, δ)1Z−Km(Zi,n) >

ε

2K

´
≤ lim

m→∞
lim sup

n→∞

1

|Dn|
X
i∈Dn

P (1Z−Km(Zi,n)) = 0.

Hence

lim
δ→0

lim sup
n→∞

1

|Dn|
X
i∈Dn

P (w(fin, Zi,n, δ) > ε)

= lim
m→∞

lim
δ→0

lim sup
n→∞

1

|Dn|
X
i∈Dn

P (w(fin, Zi,n, δ) > ε) = 0,

which completes the proof.
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