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a b s t r a c t

The development of a general inferential theory for nonlinear models with cross-sectionally or spatially
dependent data has been hampered by a lack of appropriate limit theorems. To facilitate a general
asymptotic inference theory relevant to economic applications, this paper first extends the notion of
near-epoch dependent (NED) processes used in the time series literature to random fields. The class of
processes that is NED on, say, an α-mixing process, is shown to be closed under infinite transformations,
and thus accommodates models with spatial dynamics. This would generally not be the case for the
smaller class of α-mixing processes. The paper then derives a central limit theorem and law of large
numbers for NED random fields. These limit theorems allow for fairly general forms of heterogeneity
including asymptotically unbounded moments, and accommodate arrays of random fields on unevenly
spaced lattices. The limit theorems are employed to establish consistency and asymptotic normality of
GMM estimators. These results provide a basis for inference in a wide range of models with spatial
dependence.

© 2012 Elsevier B.V. All rights reserved.

1. Introduction

Models with spatially dependent data have recently attracted
considerable attention in various fields of economics including
labor and public economics, IO, political economy, international
and urban economics. In these models, strategic interaction,
neighborhood effects, shared resources and common shocks
lead to interdependences in the dependent and/or explanatory
variables, with the variables indexed by their location in some
socioeconomic space.2 Insofar as these locations are deterministic,
observations can be modeled as a realization of a dependent
heterogeneous process indexed by a point in Rd, d > 1, i.e., as a
random field.

The aim of this paper is to define a class of random fields
that is sufficiently general to accommodate many applications of
interest, and to establish corresponding limit theorems that can
be used for asymptotic inference. In particular, we apply these
limit theorems to prove consistency and asymptotic normality of

∗ Corresponding author. Tel.: +1 3014053499; fax: +1 3014053542.
E-mail addresses: nazgul.jenish@nyu.edu (N. Jenish), prucha@econ.umd.edu

(I.R. Prucha).
1 Tel.: +1 212 998 3891.
2 The space and metric are not restricted to physical space and distance.

generalized method of moments (GMM) estimators for a general
class of nonlinear spatial models.

To date, linear spatial autoregressive models, also known as
Cliff and Ord (1981) type models,3 have arguably been one of the
most popular approaches to modeling spatial dependence in the
econometrics literature. The asymptotic theory in these models
is facilitated, loosely speaking, by imposing specific structural
conditions on the data generating process, and by exploiting some
underlying independence assumptions. Another popular approach
tomodel dependence is throughmixing conditions. Variousmixing
concepts developed for time series processes have been extended
to random fields. However, the respective limit theorems for
random fields have not been sufficiently general to accommodate
many of the processes encountered in economics. This hampered
the development of a general asymptotic inference theory for
nonlinearmodelswith cross-sectional dependence. Towards filling
this gap, Jenish and Prucha (2009) have recently introduced a set
of limit theorems (CLT, ULLN, LLN) for α-mixing random fields on
unevenly spaced lattices that allow for nonstationary processes
with trending moments.

3 For recent contributions see, e.g., Robinson (2010, 2009), Yu et al. (2008),
Kelejian and Prucha (2010, 2007, 2004), Lee (2007, 2004), and Chen and Conley
(2001).
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However, some important classes of dependent processes are
not necessarily mixing, including linear autoregressive (AR) and
infinite moving average (MA(∞)) processes. Sufficient conditions
for the α-mixing property of linear processes4 are fairly stringent,
and involve three types of restrictions (i) smoothness of the density
functions of the innovations, (ii) sufficiently fast rates of decay of
the coefficients, and (iii) invertibility of the linear process. There
are examples demonstrating that the mixing property can fail for
any of these reasons. In particular, Andrews (1984) showed that
a simple AR(1) process of independent Bernoulli innovations is
not α-mixing. Similar examples have been constructed for random
fields, see, e.g. Doukhan and Lang (2002). Thus, mixing may break
down in the case of discrete innovations. Further, Gorodetskii
(1977) showed that the strong mixing property may fail even in
the case of continuously distributed (normal) innovations when
the coefficients of the linear process do not decline sufficiently fast.
As these examples suggest, the mixing property is generally not
preserved under infinite transformations of mixing processes. Yet
stochastic processes generated as functionals of some underlying
process arise in a wide range of models, with autoregressive
models being the leading example. Thus, it is important to develop
an asymptotic theory for a generalized class of random fields that
is ‘‘closed with respect to infinite transformations’’.

To tackle this problem, the paper first extends the concept of
near-epoch dependent (NED) processes used in the time series
literature to spatial processes. The notion dates back to Ibragimov
(1962), and Billingsley (1968). The NED concept, or variants
thereof, have been used extensively in the time series literature
by McLeish (1975), Bierens (1981), Wooldridge (1986), Gallant
and White (1988), Andrews (1988), Pötscher and Prucha (1997),
Davidson (1992, 1993, 1994) and de Jong (1997), among others.
Doukhan and Louhichi (1999) introduced an alternative class of
dependent processes called ‘‘θ-weakly dependent’’.

In deriving our limit theorems we then only assume that the
process is NED on a mixing input process, i.e., that the process
can be approximated by a mixing input process in the NED
sense, rather than to assume that the process itself is mixing.
Of course, every mixing process is trivially also NED on itself,
and thus the class of processes that are NED on a mixing input
process includes the class of mixing processes. There are several
advantages to working with the enlarged class of process that
are NED on a mixing process. First, linear processes with discrete
innovations, which results in the process to not satisfy the strong
mixing property, will still be NED on the mixing input process
of innovations, provided the latter are mixing. We note that, in
particular, the NED property holds in both examples of Andrews
(1984) and Gorodetskii (1977), by Proposition 1 of this paper.
Second, as shown in this paper, nonlinear MA(∞) random fields
are also NED under some mild conditions, while such conditions
are not readily available for mixing. Third, the NED property is
often easy to verify. For instance, the sufficient conditions for
MA(∞) random fields involve only smoothness conditions on
the functional form and absolute summability of the coefficients,
which are not difficult to check, while verification of mixing is
usually more difficult.

The paper derives a CLT and an LLN for spatial processes that
are near epoch dependent on an α-mixing input process. These
limit theorems allow for fairly general forms of heterogeneity
including asymptotically unboundedmoments, and accommodate
arrays of random fields on unevenly spaced lattices. The LLN can
be combined with the generic ULLN in Jenish and Prucha (2009)

4 These conditions for linear processes with general independent innovations
were first established by Gorodetskii (1977). Doukhan and Guyon (1991)
generalized them to random fields.

to obtain a ULLN for NED spatial processes. In the time series
literature, CLTs for NED processes were derived by Wooldridge
(1986), Davidson (1992, 1993) and de Jong (1997). Interestingly,
our CLT contains as a special case the CLT of Wooldridge (1986,
Theorem 3.13 and Corollary 4.4).

In addition, we give conditions under which the NED property
is preserved under transformations. These results play a key role in
verifying the NED property in applications. Thus, the NED property
is compatible with considerable heterogeneity and dependence,
invariant under transformations, and leads to a CLT and LLN under
fairly general conditions. All these features make it a convenient
tool for modeling spatial dependence.

As an application, we establish consistency and asymptotic
normality of spatial GMM estimators. These results provide
a fundamental basis for constructing confidence intervals and
testing hypothesis forGMMestimators in nonlinear spatialmodels.
Our results also expand on Conley (1999), who established the
asymptotic properties of GMM estimators assuming that the data
generating process and the moment functions are stationary and
α-mixing.5

The rest of the paper is organized as follows. Section 2
introduces the concept of NED spatial processes and gives
of examples random fields satisfying this condition. Section 3
contains the LLN and CLT for NED spatial processes. Section 4
establishes the asymptotic properties of spatial GMM estimators.
All proofs are relegated to the Appendices.

2. NED spatial processes

Let D ⊂ Rd, d ≥ 1, be a lattice of (possibly) unevenly placed
locations in Rd, and let Z = {Zi,n, i ∈ Dn, n ≥ 1} and ε =

{εi,n, i ∈ Tn, n ≥ 1} be triangular arrays of random fields defined
on a probability space (Ω, F, P)with Dn ⊆ Tn ⊆ D. The space Rd is
equippedwith themetric ρ(i, j) = max1≤l≤d |jl − il|, where il is the
l-th component of i. The distance between any subsets U, V ⊆ D is
defined as ρ(U, V ) = inf {ρ(i, j) : i ∈ U and j ∈ V }. Furthermore,
let |U| denote the cardinality of a finite subset U ⊂ D.

The random variables Zi,n and εi,n are possibly vector-valued
taking their values in Rpz and Rpε , respectively. We assume that
Rpz andRpε are normedmetric spaces equippedwith the Euclidean
norm, which we denote (in an obvious misuse of notation) as |·|.
For any random vector Y , let ∥Y∥p =


E |Y |

p1/p , p ≥ 1, denote
its Lp-norm. Finally, let Fi,n(s) = σ(εj,n; j ∈ Tn : ρ(i, j) ≤ s)
be the σ -field generated by the random vectors εj,n located in the
s-neighborhood of location i.

Throughout the paper, we maintain these notational conven-
tions and the following assumption concerning D.

Assumption 1. The lattice D ⊂ Rd, d ≥ 1, is infinitely countable.
All elements in D are located at distances of at least ρ0 > 0 from
each other, i.e., for all i, j ∈ D : ρ(i, j) ≥ ρ0; w.l.o.g. we assume
that ρ0 > 1.

The assumption of a minimum distance has also been used by
Conley (1999) and Jenish and Prucha (2009). It ensures the growth
of the sample size as the sample regions Dn and Tn expand. The
setup is thus geared towards what is referred to in the spatial
literature as increasing domain asymptotics.

We now introduce the notion of near-epoch dependent (NED)
random fields.

5 This important early contribution employs Bolthausen’s (1982) CLT for
stationary α-mixing random fields on the regular lattice Z2 . However, the mixing
and stationarity assumptionsmay not hold inmany applications. The present paper
relaxes these critical assumptions.
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Definition 1. Let Z = {Zi,n, i ∈ Dn, n ≥ 1} be a random field withZi,np < ∞, p ≥ 1, let ε = {εi,n, i ∈ Tn, n ≥ 1} be a random field,
where |Tn| → ∞ as n → ∞, and let d =


di,n, i ∈ Dn, n ≥ 1


be

an array of finite positive constants. Then the random field Z is said
to be Lp(d)-near-epoch dependent on the random field ε ifZi,n − E(Zi,n|Fi,n(s))


p ≤ di,nψ(s) (1)

for some sequence ψ(s) ≥ 0 with lims→∞ ψ(s) = 0. The ψ(s),
which are w.l.o.g. assumed to be non-increasing, are called the NED
coefficients, and the di,n are called NED scaling factors. Z is said to
be Lp-NED on ε of size −λ if ψ(s) = O(s−µ) for some µ > λ >
0. Furthermore, if supn supi∈Dn di,n < ∞, then Z is said to be
uniformly Lp-NED on ε.

Recall that Dn ⊆ Tn. Typically, Tn will be an infinite subset of D,
and often Tn = D. However, as discussed in more detail in Jenish
and Prucha (2011), to cover Cliff–Ord type processes Tn is allowed
to depend on n and to be finite provided that it increases in size
with n.

The role of the scaling factors

di,n

is to allow for the possibility

of ‘‘unbounded moments’’, i.e., supn supi∈Dn di,n = ∞. Unbounded
moments may reflect trends in the moments in certain directions,
in which case we may also use, as in the time series literature,
the terminology of ‘‘trending moments’’. The NED property is
thus compatible with a considerable amount of heterogeneity.
In establishing limit theorems for NED processes, we will have
to impose restrictions on the scaling factors di,n. In this respect,
observe thatZi,n − E(Zi,n|Fi,n(s))


p ≤

Zi,np +
E(Zi,n|Fi,n(s))


p

≤ 2
Zi,np

by the Minkowski and the conditional Jensen inequalities. Given
this, wemay choose di,n ≤ 2

Zi,np, and consequently w.l.o.g. 0 ≤

ψ(s) ≤ 1; see, e.g., Davidson (1994, p. 262), for a corresponding
discussion within the context of time series processes. Note that
by the Lyapunov inequality, if Zi,n is Lp-NED, then it is also Lq-NED
with the same coefficients


di,n

and {ψ(s)} for any q ≤ p.

Our definition of NED for spatial processes is adapted from
the definition of NED for time series processes. In the time
series literature, the NED concept first appeared in the works of
Ibragimov (1962) and Billingsley (1968), although they did not
use the present term. The concept of time series NED processes
was later formalized by McLeish (1975), Wooldridge (1986),
Gallant and White (1988). These authors considered only L2-NED
processes. Andrews (1988) generalized it to Lp-NED processes for
p ≥ 1. Davidson (1992, 1993, 1994) and de Jong (1997) further
extended it to allow for trending time series processes.

We note that aside from the NED condition, a number of dif-
ferent notions of dependence have been used in the time series
literature. For instance, Pötscher and Prucha (1997) considered a
more general dependence condition (called Lp-approximability).
They use more general approximating functions than the condi-
tional mean in Definition 1 to describe the dependence structure
of a process. Similar conditions are also used by Lu (2001), Lu
and Linton (2007), among others. These conditions allow for more
general choices of approximating functions than the conditional
expectation. One of the main results in this paper is a central
limit theorem, which requires the existence of second moments.
Since for p = 2 the conditional mean is the best approximator
in the sense of minimizing the mean squared error, our use the
conditional mean as an approximating function is not restrictive.
Still, in particular applications it may be convenient to work with
some other Fi,n(s)-measurable approximating function, say hi,s,n.

Of course, if one can show that
Zi,n − hi,s,n


2 ≤ di,nψ(s), then

this also established (1) for p = 2.
In the spatial literature, NED processes were considered in

the special context of density estimation by Hallin et al. (2001,
2004), albeit they did not use this term. The first paper proves
asymptotic normality of the kernel density estimator for linear
random fields, the secondpaper shows L1-consistency of the kernel
density estimator for nonlinear functionals of i.i.d. random fields.
We note that neither of these papers establishes a central limit
theorem for nonlinear NED random fields.

As discussed earlier, an important motivation for considering
NED processes is that mixing is generally not preserved under
transformations involving infinitelymany arguments. However, as
illustrated below, the output process is generated as a function of
infinitely many input variables in a wide range of models. In those
situations, mixing of the input process does not necessarily carry
over to the output process, and thus limit theorems for averages
of the output process cannot simply be established from limit
theorems for mixing processes. Nevertheless, as with time series
processes, we show below that limit theorems can be extended
to spatial processes that are NED on a mixing input process,
provided the approximation error declines ‘‘sufficiently fast’’ as the
conditioning set of input variables expands.

We now give examples of NED spatial processes. First, spatial
Cliff and Ord (1981) type autoregressive processes are NED
under some weak conditions on the spatial weight coefficients.
These models have been used widely in applications. For recent
contributions on estimation strategies for these models see, e.g.,
Robinson (2010, 2009), Kelejian and Prucha (2010, 2007, 2004)
and Lee (2007, 2004). The second example is linear infinite moving
average (MA(∞)) random fields. In preparation of the example,we
first give amore general result, which shows that theNEDproperty
is satisfied by random fields generated from nonlinear Lipschitz
type functionals of some Rpε -valued random field ε = {εin, i ∈ D}:

Zin = Hin((εjn)j∈D) (2)

where Hin : ED
→ Rpz , E ⊆ Rpε , are measurable functions

satisfying for all e, e′
∈ EDHin(e)− Hin(e′)

 ≤


j∈D

wijn
ej − e′

j

 withwijn ≥ 0 (3)

with

lim
s→∞

sup
n,i∈D


j∈D:ρ(i,j)>s

wijn = 0, and ∥ε∥2 = sup
n,i∈D

∥εin∥2 < ∞. (4)

Proposition 1. Under conditions (3)–(4), Z = {Zin, i ∈ Dn, n ≥

1} given by (2) is well-defined, and is L2-NED on ε with ψ(s) =

∥ε∥2 supn,i∈D


j∈D:ρ(i,j)>swijn.

We now use the above proposition to establish the NED
property for linear MA (∞) random fields. Linear MA (∞) random
fields may arise as solutions of autoregressive models. For any k ∈

N and fixed vectors vl ∈ Zd, l = 1, . . . , k, consider the following
autoregressive random field:

Zi =

k
l=1

alZi−vl + εi (5)

where a =
k

l=1 |al| < 1, {εi, i ∈ Zd
} are i.i.d. with ∥εi∥q <

∞, q ≥ 1. Model (5) is also known as a k-nearest-neighbor or
interaction model with the radius of interaction r = max1≤l≤k |vl|.

As shown byDoukhan and Lang (2002), there exists a stationary
solution of (5) given by:

Zi =

∞
m=0


m1+···+mk=m

m!

m1! . . .mk!
am1
1 . . . amk

k εi−(m1v1+···+mkvk)
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with mi ∈ N. Thus, (5) can be represented as a linear random field
Zi =


j∈Zd wjεi−j, with

wj =

∞
m≥|j|/r


V (j,m)

m!

m1! . . .mk!
am1
1 . . . amk

k ,

where V (j,m) = {(m1, . . . ,mk) ∈ Nk
: m1 + · · · + mk =

m,m1v1 + · · · + mkvk = j}, observing that V (j,m) is empty if
m < |j| /r . Observing further that
m1+···+mk=m

m!

m1! . . .mk!

am1
1 . . . amk

k

 = am

the coefficientswj can be bounded aswj
 ≤

∞
m≥|j|/r


m1+···+mk=m

m!

m1! . . .mk!

am1
1 . . . amk

k


=

∞
m≥|j|/r

am = (1 − a)−1a|j|/r .

Rewriting the process Zi as Zi =


j∈Zd wijεj with wij = wi−j it
follows from Proposition 1 that the random field (5) is Lp-NED on
ε with the NED coefficientsψ(s) = ∥ε∥q(1− a)−1(1− a1/r)−1as/r .

The asymptotic theory of AR and MA (∞), satisfying the NED
condition, can be useful in a variety of empirical applicationswhere
the data are cross sectionally correlated. For instance, Pinkse et al.’s
(2002) study of spatial price competition among firms that produce
differentiated products in one example of an empirical application
with cross sectional dependence. They model the price charged by
firm at location i in the geographic (or product characteristic) space
as a linear spatial autoregressive process. Another example is Fogli
and Veldkamp (2011) who investigate spatial correlation in the
female labor force participation (LFP). In particular, they consider
a spatial autoregression of county i’s LFP rate on LFP rates of its
neighbors. Dell (2010) examines the impact of mita, the forced
mining labor system in colonial Peru and Bolivia, on household
consumption and child growth across different regions. Although
her model is not spatially autoregressive, the regressors and errors
exhibit persistent spatial correlation, which can be modeled as a
spatial NED process.

As discussed, an attractive feature of NED processes is that the
NED property is preserved under transformations. Econometric
estimators are usually defined either explicitly as functions
of some underlying data generating processes or implicitly as
optimizers of a function of the data generating process. Thus, if the
data generating process is NEDon some input process, the question
arises under what conditions functions of random fields are also
NED on the same input process.

Various conditions that ensure preservation of the NED
property under transformations have been established in the time
series literature by Gallant andWhite (1988) and Davidson (1994).
In fact, these results extend to random fields. In particular, the NED
property is preserved under summation and multiplication, and
carries over froma randomvector to its components and vice versa.
For future reference, we now state some results for generalized
classes of nonlinear functions. Their proofs are analogous to those
in the time series literature, and therefore omitted.

Consider transformations of Zi,n given by a family of functions
gi,n : Rpz → R. The functions gi,n are assumed Borel-measurable
for all n and i ∈ D. They are furthermore assumed to satisfy the
following Lipschitz condition: For all (z, z•) ∈ Rpz × Rpz and all
i ∈ Dn and n ≥ 1:gi,n(z)− gi,n(z•)

 ≤ Bi,n(z, z•) |z − z•
| (6)

where Bi,n(z, z•) : Rpz × Rpz → R+ is Borel-measurable. Of
course, this condition would be devoid of meaning without further
restrictions on Bi,n(z, z•), which are given in the next propositions.

Proposition 2. Suppose gi,n(·) satisfies Lipschitz condition (6) withBi,n(z, z•)
 ≤ C < ∞, for all (z, z•) ∈ Rpz × Rpz and all i and n.

If for p ≥ 1 the {Zi,n} are Lp-NED of size −λ on

εi,n

with scaling

factors

di,n

, then gi,n(Zi,n) is also Lp-NED of size −λ on


εi,n

with

scaling factors

2Cdi,n


.6

Proposition 3. Suppose gi,n(·) satisfies Lipschitz condition (6) with

sup
s

B(s)i,n


2
< ∞ and sup

s

B(s)i,n

Zi,n −Z s
i,n


r
< ∞ (7)

for some r > 2, where B(s)i,n = Bi,n(Zi,n,Z s
i,n) and Z s

i,n =

E

Zi,n|Fi,n(s)


. If
gi,n(Zi,n)2 < ∞ and Zi,n is L2-NED of size −λ

on

εi,n

with scaling factors


di,n

, then gi,n(Zi,n) is L2-NED of size

−λ(r − 2)/(2r − 2) on

εi,n

with scaling factors

d′

i,n = d(r−2)/(2r−2)
i,n sup

s

B(s)i,n

(r−2)/(2r−2)

2

×

B(s)i,n

Zi,n −Z s
i,n

r/(2r−2)

r
.

Thus, the NED property is hereditary under reasonably weak
conditions. These conditions facilitate verification of the NED
property in practical application. In particular, we will use them
in the proof of asymptotic normality of spatial GMM estimators in
Section 4.

3. Limit theorems

3.1. Law of large numbers

In this section, we present a LLN for real valued random fields
Z = {Zi,n, i ∈ Dn, n ≥ 1} that are L1-NED on some vector-valued
α-mixing random field ε = {εi,n, i ∈ Tn, n ≥ 1} with the NED
coefficients {ψ(s)} and scaling factors


di,n

, where Dn ⊆ Tn ⊆ D

and the lattice D satisfies Assumption 1. For ease of reference, we
state below the definition of the α-mixing coefficients employed
in the paper.

Definition 2. Let A and B be two σ -algebras of F, and let

α(A,B) = sup(|P(AB)− P(A)P(B)|, A ∈ A, B ∈ B).

For U ⊆ Dn and V ⊆ Dn, let σn(U) = σ(εi,n; i ∈ U) and
αn(U, V ) = α(σn(U), σn(V )). Then, the α-mixing coefficients for
the random field ε are defined as:

α(u, v, r) = sup
n

sup
U,V
(αn(U, V ), |U| ≤ u, |V | ≤ v, ρ(U, V ) ≥ r).

Dobrushin (1968) showed that weak dependence conditions
based on the above mixing coefficients are satisfied by broad
classes of random fields including Markov fields. In contrast to
standard mixing numbers for time-series processes, the mixing
coefficients for random fields depend not only on the distance
between two datasets but also their sizes. To explicitly account for
such dependence, it is furthermore assumed that

α(u, v, r) ≤ ϕ(u, v)α(r) (8)

where the functionϕ(u, v) is nondecreasing in each argument, andα(r) → 0 as r → ∞. The idea is to account separately for the two

6 The proof of the proposition shows that
gi,n(Zi,n)− E


gi,n(Zi,n)|Fi,n(s)


p ≤

2C
Zi,n −Z s

i,n


p , which explains the 2 in the scaling factor for gi,n(Zi,n).
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different aspects of dependence: (i) decay of dependence with the
distance, and (ii) accumulation of dependence as the sample region
expands. The two common choices of ϕ(u, v) in the random fields
literature are

ϕ(u, v) = (u + v)τ , τ ≥ 0, (9)
ϕ(u, v) = min {u, v} . (10)

The above mixing conditions have been used extensively in
the random fields literature including Takahata (1983), Nahapetian
(1987), Bulinskii (1989), Bulinskii andDoukhan (1990) and Bradley
(1993). They are satisfied by fairly large classes of random fields.
Bradley (1993) provides examples of random fields satisfying
conditions (8)–(9) with u = v and τ = 1. Furthermore, Bulinskii
(1989) constructs moving average random fields satisfying the
same conditionswith τ = 1 for any given decay rate of coefficientsα(r). Clearly, standard mixing coefficients in the time series
literature are covered by conditions (8)–(9) when τ = 0.

Following the literature, we employ the above mixing condi-
tions for the input random field, and impose further restrictions
on the decay rates of the mixing coefficients.

Assumption 2. (a) There exist nonrandom positive constants
ci,n, i ∈ Dn, n ≥ 1


such that Zi,n/ci,n is uniformly Lp-bounded

for some p > 1, i.e., supn supi∈Dn E
Zi,n/ci,np < ∞.

(b) The α-mixing coefficients of the input field ε satisfy (8)
for some function ϕ(u, v) which is nondecreasing in each
argument, and someα(r) such that


∞

r=1 r
d−1α (r) < ∞.

Theorem 1. Let {Dn} be a sequence of arbitrary finite subsets of D
such that |Dn| → ∞ as n → ∞, where D ⊂ Rd, d ≥ 1 is as
in Assumption 1, and let Tn be a sequence of subsets of D such that
Dn ⊆ Tn. Suppose further that Z = {Zi,n, i ∈ Dn, n ≥ 1} is L1-NED
on ε = {εi,n, i ∈ Tn, n ≥ 1} with the scaling factors di,n. If Z and ε
satisfy Assumption 2, then

1
Mn |Dn|


i∈Dn


Zi,n − EZi,n

 L1
→ 0,

where Mn = maxi∈Dn max(ci,n, di,n).

This LLN can be used to establish uniform convergence of
random functions by combining it with the generic ULLN given in
Jenish and Prucha (2009), which transforms pointwise LLNs (at a
given parameter value) into ULLNs.

Assumption 2(a) is a standard moment condition employed in
weak LLNs for dependent processes. It requires the existence of
moments of order slightly greater than 1. As in Theorem 2, ci,n and
di,n are the scaling factors that reflect themagnitudes of potentially
trending moments. The case of variables with uniformly bounded
moments is covered by setting ci,n = di,n = 1. The LLN
does not require any restrictions on the NED coefficients. In
the time series literature, weak LLNs for NED processes have
been obtained by Andrews (1988) and Davidson (1993), among
others. Andrews (1988) derives an L1-law for triangular arrays of
L1-mixingales. He then shows that NED processes are L1-
mixingales, and hence, satisfy his LLN. Davidson (1993) extends the
latter result to processes with trending moments.

3.2. Central limit theorem

In this section, we present a CLT for real valued random fields
Z = {Zi,n, i ∈ Dn, n ≥ 1} that are L2-NED on some vector-valued
α-mixing random field ε = {εi,n, i ∈ Tn, n ≥ 1} with the NED
coefficients {ψ(s)} and scaling factors


di,n

, where Dn ⊆ Tn ⊆ D

and the lattice D satisfies Assumption 1. In the following, we will

use the following notation:

Sn =


i∈Dn

Zi,n; σ 2
n = var(Sn).

The CLT relies on the following assumptions.

Assumption 3. The α-mixing coefficients of ε satisfy (8) and (9)
for some τ ≥ 0 andα(r), such that for some δ > 0

∞
r=1

rd(τ∗+1)−1α δ
2(2+δ) (r) < ∞, (11)

where τ∗ = δτ/(2 + δ).

Assumption 3 restricts the dependence structure of the input
process ε. Note that if τ = 1 this assumption also covers the case
where ϕ(u, v) is given by (10).

Assumption 4 (Uniform L2+δ Integrability).
(a) There exists an array of positive constants


ci,n

such that

lim
k→∞

sup
n

sup
i∈Dn

E[|Zi,n/ci,n|2+δ1(|Zi,n/ci,n| > k)] = 0,

where 1(·) is the indicator function and δ > 0 is as in
Assumption 3.

(b) infn |Dn|
−1M−2

n σ 2
n > 0, where Mn = maxi∈Dn ci,n.

(c) NED coefficients satisfy


∞

r=1 r
d−1ψ(r) < ∞.

(d) NED scaling factors satisfy supn supi∈Dn c
−1
i,n di,n ≤ C < ∞.

Assumptions 4(a), (b) are standard in the limit theory of
mixing processes, e.g., Wooldridge (1986), Davidson (1992), de
Jong (1997) and Jenish and Prucha (2009). Assumption 4(a) is
satisfied if Zi,n/ci,n are uniformly Lp-bounded for p > 2 + δ, i.e.,
supn,i∈Dn

Zi,n/ci,np < ∞.
Assumption 4(b) is an asymptotic negligibility condition that

ensures that no single summand influences disproportionately
the entire sum. In the case of uniformly L2+δ-bounded fields,
Assumption 4(b) reduces to lim infn→∞ |Dn|

−1σ 2
n > 0, as is,

e.g., maintained in Bolthausen (1982). Assumption 4(c) controls
the size of the NED coefficients which measure the error in
the approximation of Zi,n by ε. Intuitively, the approximation
errors have to decline sufficiently fast with each successive
approximation. Assumption 4(c) is satisfied if ψ(r) = O(r−d−γ )
for some γ > 0, i.e., ψ(r) is of size −d. Finally, Assumption 4(d) is
a technical condition, which ensures that the order of magnitude
of the NED scaling factors does not exceed that of the 2 + δ
moments. For instance, suppose the constant ci,n can be chosen as
ci,n =

Zi,n2+δ , and the NED scaling numbers as di,n ≤ 2
Zi,n2.

Then Assumption 4(d) is satisfied, since by Lyapunov’s inequality,Zi,n2 ≤
Zi,n2+δ . This condition has also been used by de Jong

(1997) and Davidson (1992).

Theorem 2. Suppose {Dn} is a sequence of finite subsets such that
|Dn| → ∞ as n → ∞ and {Tn} is a sequence of subsets such
that Dn ⊆ Tn ⊆ D of the lattice D satisfying Assumption 1. Let
Z = {Zi,n, i ∈ Dn, n ≥ 1} be a real valued zero-mean random
field that is L2-NED on a vector-valued α-mixing random field ε =

{εi,n, i ∈ Tn, n ≥ 1}. Suppose Assumptions 3 and 4 hold, then

σ−1
n Sn H⇒ N(0, 1).

Theorem 2 contains the CLT for α-mixing random fields given
in Jenish and Prucha (2009) as a special case. It also contains as a
special case the CLT for time series NED processes of Wooldridge
(1986, see Theorem 3.13 and Corollary 4.4).

Theorem 2 can be easily extended to vector-valued fields using
the standard Cramér–Wold device.
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Corollary 1. Suppose {Dn} is a sequence of finite subsets such that
|Dn| → ∞ as n → ∞ and {Tn} is a sequence of subsets such
that Dn ⊆ Tn ⊆ D of the lattice D satisfying Assumption 1. Let
Z = {Zi,n, i ∈ Dn, n ≥ 1} with Zi,n ∈ Rk be a zero-mean random
field that is L2-NED on a vector-valued α-mixing random field ε =

{εi,n, i ∈ Tn, n ≥ 1}. Suppose Assumptions 3 and 4 hold with
Zi,n

denoting the Euclidean norm of Zi,n and σ 2
n replaced by λmin(Σn),

whereΣn = Var(Sn) and λmin(·) is the smallest eigenvalue, then

Σ−1/2
n Sn H⇒ N(0, Ik).

Furthermore, supn |Dn|
−1 λmax (Σn) < ∞, whereλmax(·) denotes the

largest eigenvalue.

4. Large sample properties of spatial GMM estimators

We now apply the limit theorems of the previous section to
establish the large sample properties of spatial GMM estimators
under a reasonably general set of assumptions that should
cover a wide range of empirical problems. More specifically, our
consistency and asymptotic normality results (i)maintain only that
the spatial data process is NED on an α-mixing basis process to
accommodate spatial lags in the data process as discussed above,
(ii) allow for unevenly placed locations, and (iii) allow for the data
process to be non-stationary, which will frequently be the case
in empirical applications. We also give our results under a set
of primitive sufficient conditions for easier interpretation by the
applied researcher.7

We continue with the basic set-up of Section 2. Consider the
moment function qi,n : Rpz × Θ → Rpq , where Θ denotes the
parameter space, and let θ0n ∈ Θ denote the parameter vector of
interest (which we allow to depend on n for reasons of generality).
Suppose the following moment conditions hold
Eqi,n(Zi,n, θ0n) = 0. (12)
Then, the corresponding spatial GMM estimator is defined asθn = argmin

θ∈Θ
Qn(ω, θ), (13)

where Qn : Ω ×Θ → R,
Qn(ω, θ) = Rn(θ)

′PnRn(θ),

with Rn(θ) = |Dn|
−1

i∈Dn
qi,n(Zi,n, θ), and where the Pn are some

positive semidefinite weighting matrices. To show consistency,
consider the following non-stochastic analogue of Qn, say

Q n(θ) = [ERn(θ)]′ P [ERn(θ)] , (14)
where P denotes the probability limit of Pn. Given the moment
condition (12), E [Rn(θ0n)] = 0, the functions Q n are minimized
at θ0n. In proving consistency, we follow the classical approach;
see, e.g., Gallant and White (1988) or Pötscher and Prucha
(1997) for more recent expositions. In particular, given identifiable
uniqueness of θ0n weestablish, loosely speaking, convergence of the
minimizersθn to the minimizers θ0n by establishing convergence
of the objective function Qn(ω, θ) to its non-stochastic analogue
Q n(θ) uniformly over the parameter space.

Throughout the sequel, wemaintain the following assumptions
regarding the parameter space, the GMM objective function and
the unknown parameters θ0n.

7 In an important contribution, Conley (1999) gives a first set of results regarding
the asymptotic properties of GMM estimators under the assumption that the
data process is stationary and α-mixing. Conley also maintains some high level
assumption such as first moment continuity of the moment function, which in turn
immediately implies uniform convergence—see, e.g., Pötscher and Prucha (1989)
for a discussion. Our results extend Conley (1999) in several important directions,
as indicated above. We establish uniform convergence from primitive sufficient
conditions via the generic uniform law of large numbers given in Jenish and Prucha
(2009) and the law of large numbers given as Theorem 1.

Assumption 5. (a) The parameter space Θ is a compact metric
space with metric ν.

(b) The functions qi,n : Rpz × Θ → Rpq are Bpz /Bpq-measurable
for each θ ∈ Θ , and continuous onΘ for each z ∈ Rpz .

(c) The elements of the pq ×pq real matrices Pn are B-measurable,
and Pn is positive semidefinite. Furthermore P = p lim Pn exists
and P is positive definite.

(d) Theminimizers θ0n are identifiably unique in the sense that for
every ε > 0, lim infn→∞


infθ∈Θ:ν(θ,θ0n)≥ε [ERn(θ)]′ [ERn(θ)]


> 0.

Compactness of the parameter space as maintained in Assump-
tion 5(a) is typical for the GMM literature. Assumptions 5(b), (c)
imply that Qn(·, θ) is measurable for all θ ∈ Θ , and Qn(ω, ·) is
continuous on Θ . Given those assumptions the existence of mea-
surable functionsθn that solves (13) follows, e.g., from Lemma A3
of Pötscher and Prucha (1997).

Since P is positive definite, it is readily seen that Assump-
tion 5(d) implies that for every ε > 0:

lim inf
n→∞


inf

θ∈Θ:ν(θ,θ0n)≥ε

Q n(θ)− Q n(θ0n)
 > 0,

observing that Q n(θ0n) = 0. Thus, under Assumption 5(d) the
minimizers θ0n are identifiably unique; compare, e.g., Gallant and
White (1988, p. 19). For interpretation, consider the important
special case where θ0n = θ0, ERn(θ) does not depend on n, and
is continuous in θ . In this case, identifiable uniqueness of θ0 is
equivalent to the assumption that θ0 is the unique solution of the
moment conditions, i.e., E [Rn(θ)] ≠ 0 for all θ ≠ θ0; compare, e.g.,
Pötscher and Prucha (1997, p. 16).

4.1. Consistency

Given the minimizers θ0n are identifiably unique, θn is a
consistent estimator for θ0n if Qn converges uniformly to Q n,
i.e., if supθ∈Θ

Qn(ω, θ)− Q n(θ)
 p

→ 0 as n → ∞; this follows
immediately from, e.g., Pötscher and Prucha (1997, Lemma 3.1).

We now proceed by giving a set of primitive domination and
Lipschitz type conditions for the moment functions that ensure
uniform convergence of Qn to Q n. The conditions are in line with
those maintained in the general literature on M-estimation, e.g.,
Andrews (1987), Gallant and White (1988), and Pötscher and
Prucha (1989, 1994).

Definition 3. Let fi,n : Rpz × Θ → Rpq be Bpz /Bpq-measurable
functions for each θ ∈ Θ , then:

(a) The random functions fi,n(Zi,n; θ) are said to be p-dominated on
Θ for some p > 1 if supn supi∈Dn E supθ∈Θ

fi,n(Zi,n; θ)p < ∞.
(b) The random functions fi,n(Zi,n; θ) are said to be Lipschitz in the

parameter θ onΘ iffi,n(Zi,n, θ)− fi,n(Zi,n, θ•)
 ≤ Li,n(Zi,n)h(ν(θ, θ•)) a.s., (15)

for all θ, θ•
∈ Θ and i ∈ Dn, n ≥ 1, where h is a nonrandom

function with h(x) ↓ 0 as x ↓ 0, and Li,n are random variables
with lim supn→∞ |Dn|

−1
i∈Dn

ELηi,n < ∞ for some η > 0.

Towards establishing consistency ofθn we furthermore main-
tain the following moment and mixing assumptions.

Assumption 6. The moment functions qi,n(Zi,n; θ) have the fol-
lowing properties:

(a) They are p-dominated onΘ for p = 2.
(b) They are uniformly L1-NED on ε = {εi,n, i ∈ Tn, n ≥ 1}, where

Dn ⊆ Tn ⊆ D, and ε is α-mixing with α-mixing coefficients the
conditions stated in Assumption 2(b).

(c) They are Lipschitz in the parameter θ onΘ .



Author's personal copy

184 N. Jenish, I.R. Prucha / Journal of Econometrics 170 (2012) 178–190

Assumption 6(a) implies that supn,i∈Dn E
qi,n(Zi,n; θ)p < ∞

for each θ ∈ Θ . Assumption 6(b) then allow us to apply
the LLN given as Theorem 1 the sample moments Rn(θ) =

|Dn|
−1

i∈Dn
qi,n(Zi,n, θ).

To verify Assumption 6(b) one can use either Proposition 2
or Proposition 3 to imply this condition from the lower level
assumption that the data Zi,n are L1-NED. For example, the qi,n are
L1-NED, if the Zi,n are L1-NED and satisfy the Lipschitz condition
of Proposition 2. Note that no restrictions on the sizes of the NED
coefficients are required.

Assumption 6(c) ensures stochastic equicontinuity of qi,n w.r.t.
θ . Stochastic equicontinuity jointly with Assumption 6(a) and the
pointwise LLN enable us to invoke the ULLN of Jenish and Prucha
(2009) to prove uniform convergence of the sample moments,
which in turn is used to establish that Qn converges uniformly
to Q n. A sufficient condition for Assumption 6(c) is existence of
integrable partial derivatives of qi,n w.r.t. θ if θ ∈ Rk.

Our consistency results for the spatial GMM estimator given by
(13) is summarized by the next theorem.

Theorem 3 (Consistency). Suppose {Dn} is a sequence of finite sets
of D such that |Dn| → ∞ as n → ∞, where D ⊂ Rd, d ≥ 1 is as
in Assumption 1. Suppose further that Assumptions 5 and 6 hold. Then

ν(θn, θ0n) p
→ 0 as n → ∞,

and Q n(θ) is uniformly equicontinuous onΘ .

4.2. Asymptotic normality

We next establish that the spatial GMM estimators defined by
(13) is asymptotically normally distributed. For that purpose, we
need a stronger set of assumptions than for consistency, including
differentiability of the moment functions in θ . It proves helpful to
adopt the notation ∇θ in place of ∂/∂θ .8

Assumption 7. (a) Theminimizers θ0n lie uniformly in the interior
ofΘ withΘ ⊆ Rk. Furthermore E [Rn(θ0n)] = 0.

(b) The functions qi,n : Rpz × Θ → Rpq are continuously
differentiable w.r.t. θ for each z ∈ Rpz .

(c) The functions qi,n(Zi,n; θ0n) are uniformly L2-NED on ε of size

−d, and for some δ′ > 0 supn,i∈Dn E
qi,n(Zi,n; θ0n)2+δ′ < ∞.

The functions ∇θqi,n(Zi,n; θ) are uniformly L1-NED on ε.
(d) The input process ε = {εi,n, i ∈ Tn, n ≥ 1}, where Dn ⊆ Tn ⊆

D, isα-mixing and themixing coefficients satisfy Assumption 3
for some δ < δ′, where δ′ is the same as in Assumption 7(c).

(e) The functions ∇θqi,n are p-dominated onΘ for some p > 1.
(f) The functions ∇θqi,n are Lipschitz in θ onΘ .
(g) infn λmin(|Dn|

−1Σn) > 0 where Σn = Var


i∈Dn
qi,n(Zi,n,

θ0n)

.

(h) infn λmin

E∇θRn(θ0n)

′
∇θRn(θ0n)


> 0.

The first part of Assumption 7(a) is needed to ensure that the
estimatorθn lies in the interior of Θ with probability tending to
one, and facilitates the application of the mean value theorem
to Rn(θn) around θ0n. The second part states in essence that
the moment conditions are correctly specified. Its violation will
generally invalidate the limiting distribution result.

Assumptions 7(c), (d), (g) enable us to apply the CLT for vector-
valued NED processes given above as Corollary 1 to Rn(θ0n). Some
low level sufficient conditions for Assumption 7(c) are given

8 To ensure that the derivatives are defined on the border ofΘ , we assume in the
following that the moment functions are defined on an open set containingΘ , and
that the qi,n and ∇θqi,n are restrictions toΘ .

below. To establish asymptotic normality, we also need uniform
convergence of ∇θRn onΘ , which is implied via Assumptions 7(c),
(d), (e), (f). Finally, Assumption 7(h) ensures positive-definiteness
of the variance–covariance matrix of the GMM estimator.

Given the above assumptions, we have the following asymp-
totic normality result for the spatial GMM estimator defined
by (13).

Theorem 4. Suppose {Dn} is a sequence of finite sets of D such that
|Dn| → ∞ as n → ∞, where D ⊂ Rd, d ≥ 1 is as in Assumption 1.
Suppose further that Assumptions 5–7 hold. Then
A−1
n BnB′

nA
−1′
n

−1/2
|Dn|

1/2 θn − θ0n


H⇒ N(0, Ik),

where

An = [E∇θRn(θ0n)]′ P [E∇θRn(θ0n)] and

Bn = [E∇θRn(θ0n)]′ P

|Dn|

−1Σn
1/2

.

Moreover, |An| = O(1);
A−1

n

 = O(1); |Bn| = O(1);
BnB′

n

−1
 =

O(1) and hence,θn is |Dn|
1/2-consistent for θ0n.

As remarked above, relative to the existing literature Theorem4
allows for nonstationary processes and only assumes that qi,n
and ∇θqi,n are NED on an α-mixing input process, rather than
postulating that qi,n and ∇θqi,n are α-mixing. As such, Theorem 4
should provide a basis for constructing confidence intervals and
hypothesis testing in a wider range of spatial models.

Using Proposition 3, we now give some sufficient conditions for
Assumption 7(c).

Assumption 8. The process {Zi,n, i ∈ Dn ⊂ Tn, n ≥ 1} is uniformly
L2-NED on {εi,n, i ∈ Tn, n ≥ 1} of size −2d(r − 1)/(r − 2) for some
r > 2.

Assumption 9. For every sequence {θ0n} on Θ , the functions
qi,n(Zi,n; θ0n) and ∇θqi,n(Zi,n; θ0n) satisfy Lipschitz condition (6) in
z, that is, for gi,n = qi,n or ∇θqi,n:gi,n(z; θn)− gi,n(z•

; θn)
 ≤ Bi,n(z, z•) |z − z•

| .

Furthermore, for the r > 2 as specified in Assumption 8,

sup
n,i∈Dn

sup
s

B(s)i,n


2
< ∞ and

sup
n,i∈Dn

sup
s

B(s)i,n

Zi,n −Z s
i,n


r
< ∞

where B(s)i,n = Bi,n(Zi,n,Z s
i,n)withZ s

i,n = E

Zi,n|Fi,n(s)


.

5. Conclusion

The paper develops an asymptotic inference theory for a class
of dependent nonstationary random fields that could be used in
a wide range of econometric models with spatial dependence.
More specifically, the paper extends the notion of near-epoch
dependent (NED) processes used in the time series literature
to spatial processes. This allows us to accommodate larger
classes of dependent processes than mixing random fields. The
class of NED random fields is ‘‘closed with respect to infinite
transformations’’ and thus should be sufficiently broad for many
applications of interest. In particular, it covers autoregressive
and infinite moving average random fields as well as nonlinear
functionals of mixing processes. The NED property is also
compatible with considerable heterogeneity and preserved under
transformations under fairly mild conditions. Furthermore, a
CLT and an LLN are derived for spatial processes that are NED
on an α-mixing process. Apart from covering a larger class of
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dependent processes, these limit theorems also allow for arrays of
nonstationary random fields on unevenly spaced lattices. Building
on these limit results, the paper develops an asymptotic theory of
spatial GMM estimators, which provides a basis for inference in a
broad range of models with cross-sectional or spatial dependence.

Much of the random fields literature assumes that the process
resides on an equally spaced grid. In contrast, and as in Jenish and
Prucha (2009), we allow for locations to be unequally spaced. The
implicit assumption of fixed locations seems reasonable for a large
class of applications, especially in the short run. Still, an important
direction for futureworkwould be to extend the asymptotic theory
to spatial processes with endogenous locations, while maintaining
a set of assumptions that are reasonably easy to interpret.9 One
possible approach may be to augment the contributions of the
present paper with theory from point processes.
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Appendix A. Proofs for Sections 2 and 3

Throughout, let Fi,n(s) = σ(εj,n; j ∈ Tn : ρ(i, j) ≤ s) be
the σ -field generated by the random vectors εj,n located in the
s-neighborhood of location i. Furthermore, C denotes a generic
constant that does not depend on n and may be different from line
to line.

Proof of Proposition 1. The proof is available online on the
authors’ webpages. �

Proof of Theorem 1. Define Yi,n = Zi,n/Mn, then to prove the

theorem, it suffices to show that |Dn|
−1

i∈Dn


Yi,n − EYi,n

 L1
→ 0.

We first establish moment and mixing conditions for Yi,n from
those for Zi,n. Observe that in light of the definition of Mn and
Assumption 2(a)

sup
n,i∈Dn

E
Yi,n

p ≤ sup
n,i∈Dn

E
Zi,n/ci,np < ∞. (A.1)

Thus, Yi,n is uniformly Lp-bounded for p > 1. Let Fi,n(s) =

σ(εj,n; j ∈ Tn : ρ(i, j) ≤ s). Since Zi,n is L1-NED on ε = {εi,n, i ∈

Tn, n ≥ 1}:

sup
n,i∈Dn

Yi,n − E(Yi,n|Fi,n(s))

1 ≤ sup

n,i∈Dn

M−1
n di,nψ(s) ≤ ψ(s), (A.2)

observing that Mn = maxi∈Dn max(ci,n, di,n). Thus Yi,n is also
L1-NED on ε.

Next we show that for each given s > 0, the conditional mean
V s
i,n = E(Yi,n|Fi,n(s)) satisfies the assumptions of the L1-norm

LLN of Jenish and Prucha (2009, Theorem 3). Using the Jensen and
Lyapunov inequalities gives for all s > 0, i ∈ Dn, n ≥ 1:

E
V s

i,n

p ≤ E{E(|Yi,n|
p
|Fi,n(s))} ≤ sup

n,i∈Dn

E
Yi,n

p < ∞.

9 Pinkse et al. (2007) made an interesting contribution in this direction. Their
catalog of assumption is at the level of Bernstein blocks. Without further sufficient
conditions, verification of those assumptions would typically be challenging in
practical situations.

So, V s
i,n is uniformly Lp-bounded for p > 1 and hence uniformly

integrable. For each fixed s, V s
i,n is ameasurable function of {εj,n; j ∈

Tn : ρ(i, j) ≤ s}. Observe that under Assumption 1 there exists
a finite constant C such that the cardinality of the set {j ∈ Tn :

ρ(i, j) ≤ s} is bounded by Csd; compare Lemma A.1 in Jenish and
Prucha (2009). Hence,

αV s(1, 1, r) ≤


1, r ≤ 2s
α

Csd, Csd, r − 2s


, r > 2s

and thus in light of Assumption 2(b)
∞
r=1

rd−1αV s(1, 1, r) ≤

2s
r=1

rd−1
+ ϕ(Csd, Csd)

×

∞
r=1

(r + 2s)d−1α(r) < ∞.

The above shows that indeed, for each fixed s, V s
i,n satisfies

the assumptions of the L1-norm LLN of Jenish and Prucha (2009,
Theorem 3). Therefore, for each s, we have|Dn|

−1

i∈Dn


E(Yi,n|Fi,n(s))− EYi,n


1

→ 0 as n → ∞. (A.3)

Furthermore observe that from (A.2) and theMinkowski inequality|Dn|
−1

i∈Dn


Yi,n − E(Yi,n|Fi,n(s))


1

≤ ψ(s). (A.4)

Given (A.3) and (A.4), and observing that lims→∞ ψ(s) = 0 it now
follows that

lim
n→∞

|Dn|
−1

i∈Dn


Yi,n − EYi,n


1

= lim
s→∞

lim
n→∞

|Dn|
−1

i∈Dn


Yi,n − EYi,n


1

≤ lim
s→∞

lim sup
n→∞

|Dn|
−1

i∈Dn


Yi,n − E(Yi,n|Fi,n(s))


1

+ lim
s→∞

lim
n→∞

|Dn|
−1

i∈Dn


E(Yi,n|Fi,n(s))− EYi,n


1

= 0.

This completes the proof of the LLN. �

The proof of the CLT builds on Ibragimov and Linnik (1971,
pp. 352–355), and makes use of the following lemmata:

Lemma A.1 (Brockwell and Davis, 1991, Proposition 6.3.9). Let
Yn, n = 1, 2, . . . and Vns, s = 1, 2, . . . ; n = 1, 2, . . . , be random
vectors such that

(i) Vns H⇒ Vs as n → ∞ for each s = 1, 2, . . .
(ii) Vs H⇒ V as s → ∞, and
(iii) lims→∞ lim supn→∞ P(|Yn − Vns| > ϵ) = 0 for every ϵ > 0.

Then Yn H⇒ V as n → ∞.

Lemma A.2 (Ibragimov and Linnik, 1971). Let Lp(F1) and Lp(F2)
denote, respectively, the class of F1-measurable and F2-measurable
random variables ξ satisfying ∥ξ∥p < ∞. Let X ∈ Lp(F1) and Y ∈

Lq(F2). Then, for any 1 ≤ p, q, r < ∞ such that p−1
+q−1

+r−1
= 1,

|Cov(X, Y )| < 4α1/r(F1, F2) ∥X∥p ∥Y∥q

where α(F1, F2) = supA∈F1,B∈F2
(|P(AB)− P(A)P(B)|).



Author's personal copy

186 N. Jenish, I.R. Prucha / Journal of Econometrics 170 (2012) 178–190

To prove the CLT for NED random fields, we first establish some
moment inequalities and a slightly modified version of the CLT for
mixing fields developed in Jenish and Prucha (2009). It is helpful to
introduce the following notation. Let X = {Xi,n, i ∈ Dn, n ≥ 1} be
a random field, then ∥X∥q := supn,i∈Dn

Xi,n

q for q ≥ 1.

Lemma A.3. Let

Xi,n

be uniformly L2-NED on a random field


εi,n


with α-mixing coefficients α(u, v, r) ≤ (u + v)τα(r), τ ≥ 0. Let
Sn =


i∈Dn

Xi,n and suppose that the NED coefficients of

Xi,n


satisfy


∞

r=1 r
d−1ψ(r) < ∞ and ∥X∥2+δ < ∞ for some δ > 0.

Then,

(a)
Cov Xi,nXj,n

 ≤ ∥X∥2+δ{C1∥X∥2+δ [h/3]dτ∗αδ/(2+δ) ([h/3])+

C2ψ ([h/3])}, where h = ρ(i, j) and τ∗ = δτ/(2 + δ). If,
∞

r=1 r
d(τ∗+1)−1αδ/(2+δ)(r) < ∞, then for some C < ∞, not

depending on n

Var (Sn) ≤ C |Dn| .

(b)
Cov Xi,nXj,n

 ≤ ∥X∥2{C3∥X∥2+δ [h/3]dτ
∗αδ/(4+2δ) ([h/3]) +

C4ψ ([h/3])}, where h = ρ(i, j) and τ ∗
= δτ/(4 + 2δ). If,

∞

r=1 r
d(τ∗

+1)−1αδ/(4+2δ) (r) < ∞ where τ ∗
= δτ/(4 + 2δ),

then for some C < ∞, not depending on n

Var (Sn) ≤ C∥X∥2 |Dn| .

Proof of Lemma A.3. The proof is available online on the authors’
webpages. �

Theorem A.1. Suppose {Dn} is a sequence of finite subsets of D,
satisfying Assumption 1, with |Dn| → ∞ as n → ∞. Suppose further
that {εi,n; i ∈ Dn, n ∈ N} is an array of zero-mean random variables
with α-coefficients α(u, v, r) ≤ C(u + v)τα(r) for some constants
C < ∞ and τ ≥ 0. Suppose for some δ > 0 and γ > 0

lim
k→∞

sup
n,i∈Dn

E[|εi,n|
2+δ1(|εi,n| > k)] = 0

andα(r) = O(r−d(2µ+1)−γ )

with µ = max {τ , 1/δ}, and suppose lim infn→∞ |Dn|
−1σ 2

n > 0,
then

σ−1
n


i∈Dn

εi,n H⇒ N(0, 1)

where σ 2
n = Var


i∈Dn

εi,n

.

Proof of Theorem A.1. The proof is available online on the
authors’ webpages. �

The above CLT is in essence a variant of CLT for α-mixing
random fields given as Corollary 1 of Theorem 1 in Jenish
and Prucha (2009), applied to mixing coefficients of the type
α(u, v, r) ≤ C(u + v)τα(r), τ ≥ 0.

Proof of Theorem 2. Since the proof is lengthy it is broken into
steps.
1. Transition from Zi,n to Yi,n = Zi,n/Mn.

Let Mn = maxi∈Dn ci,n and Yi,n = Zi,n/Mn. Also, let σ 2
Z,n =

Var


Zi,n

and σ 2

Y ,n = Var


Yi,n


= M−2
n σ 2

Z,n. Since

σ−1
Y ,n


i∈Dn

Yi,n = σ−1
Z,n


i∈Dn

Zi,n,

to prove the theorem, it suffices to show that σ−1
Y ,n


i∈Dn
Yi,n H⇒

N(0, 1). Therefore, it proves convenient to switch notation from
the text and to define

Sn =


i∈Dn

Yi,n, σ 2
n = Var(Sn).

That is, in the following, Sn denotes


i∈Dn
Yi,n rather than

i∈Dn
Zi,n, and σ 2

n denotes the variance of


i∈Dn
Yi,n rather than

of


i∈Dn
Zi,n. We now establish moment and mixing conditions

for Yi,n from the assumptions of the theorem. Observe that by
definition ofMn

1(|Yi,n| > k) = 1(|Zi,n/Mn| > k) ≤ 1(|Zi,n/ci,n| > k),

and hence

E[|Yi,n|
2+δ1(|Yi,n| > k)] ≤ E[|Zi,n/ci,n|2+δ1(|Zi,n/ci,n| > k)]

so that Assumption 4(a) implies that

lim
k→∞

sup
n,i∈Dn

E[|Yi,n|
2+δ1(|Yi,n| > k)] = 0. (A.5)

Hence, Yi,n is also uniformly L2+δ bounded. Let ∥Y∥2+δ =

supn,i∈Dn

Yi,n

2+δ . Further, note thatYi,n − E(Yi,n|Fi,n(s))


2 = M−1

n

Zi,n − E(Zi,n|Fi,n(s))

2

≤ c−1
i,n di,nψ(s) ≤ Cψ(s) (A.6)

since supn,i∈Dn c
−1
i,n di,n ≤ C < ∞, by assumption. Thus, Yi,n is

uniformly L2-NED on ε with the NED coefficients ψ(m). Finally,
observe that by Assumption 4(b):

inf
n

|Dn|
−1σ 2

n > 0. (A.7)

Hence, there exists 0 < B < ∞ such that for all n

B|Dn| ≤ σ 2
n . (A.8)

2. Decomposition of Yi,n.
For any fixed s > 0, decompose Xi,n as

Yi,n = ξ si,n + ηsi,n

where ξ si,n = E(Yi,n|Fi,n(s)), ηsi,n = Yi,n − ξ si,n. Let

Sn,s =


i∈Dn

ξ si,n;
Sn,s =


i∈Dn

ηsi,n

σ 2
n,s = Var


Sn,s

, σ 2

n,s = Var
Sn,s .

Repeated use of the Minkowski inequality yields:σn − σn,s
 ≤ σn,s, σn −σn,s ≤ σn,s. (A.9)

Observe that

E

E(Yi,n|Fi,n(s))|Fi,n(m)


=


E(Yi,n|Fi,n(s)), m ≥ s,
E(Yi,n|Fi,n(m)), m < s

and henceηsi,n − E(ηsi,n|Fi,n(m))

2

= ∥Yi,n − E[Yi,n|Fi,n(s)] − E[Yi,n|Fi,n(m)]
+ E[(Yi,n|Fi,n(s))|Fi,n(m)]∥2

=

Yi,n − E(Yi,n|Fi,n(m))

2 ≤ Cψ(m), ifm ≥ s,Yi,n − E(Yi,n|Fi,n(s))


2 ≤ Cψ(s) ≤ Cψ(m), ifm < s

since by definition the sequence ψ(m) is non-increasing. Thus, for
any fixed s > 0,


ηsi,n

is uniformly L2-NED on ε with the same

NED coefficients ψ(m) as the random field

Yi,n

. Furthermore,

as shown in the proof of Lemma A.3,

ηsi,n

is also uniformly L2+δ

bounded.
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3. Bounds for the Variances of


Yi,n and

ηsi,n.

First note that in light of Assumption 3, and observing that
τ ∗

= δτ/(4+2δ) ≤ τ∗ = δτ/(2+δ) andαδ/(2+δ)(r) ≤α δ
2(2+δ) (r)

we have
∞
r=1

rd(τ∗+1)−1αδ/(2+δ) (r) ≤

∞
r=1

rd(τ∗+1)−1α δ
2(2+δ) (r) < ∞,

∞
r=1

rd(τ
∗
+1)−1αδ/(4+2δ) (r) ≤

∞
r=1

rd(τ∗+1)−1α δ
2(2+δ) (r) < ∞.

Using part (a) of Lemma A.3 with Xi,n = Yi,n and recalling (A.8), we
have

B|Dn| ≤ σ 2
n = Var (Sn) ≤ C |Dn| .

for some B > 0. Using part (b) of Lemma A.3 with Xi,n = ηsi,n we
have

σ 2
n,s = Var

Sn,s ≤ C |Dn| ∥η
s
i,n∥2 = C |Dn|ψ(s) (A.10)

in light of (A.6). Hence,

lim
s→∞

lim sup
n→∞

σ 2
n,s

σ 2
n

≤ C lim
s→∞

ψ (s) = 0. (A.11)

Furthermore, by (A.9) we have

lim
s→∞

lim sup
n→∞

1 −
σn,s

σn

 ≤ lim
s→∞

lim sup
n→∞

σn,s
σn

= 0 (A.12)

and hence for all s ≥ 1 and n ≥ 1

σn,s

σn
≤ C < ∞. (A.13)

4. CLT for


i∈Dn
ξ si,n.

We now show that for any fixed s > 0, ξ si,n satisfies
Theorem A.1.

First, since supn,i∈Dn E
ξ si,n2+δ < ∞, the process


ξ si,n

is

uniformly L2+δ′-integrable for δ
′

= δ/2, i.e.,

lim
k→∞

sup
n,i∈Dn

E[|ξ si,n|
2+δ/21(|ξ si,n| > k)] = 0.

Second, since ξ si,n is a measurable function of εi,n for any u, v ∈ N
and r > 2s

αξ (u, v, r) ≤ α(uMsd, vMsd, r − 2s) ≤ C (u + v)τ α (r − 2s) .

Wenext to show thatα(r) = O(r−d(2µ+1)−γ ) forµ = max {τ , 2/δ}
and some γ > 0. By assumption,

∞
r=1

rd(τ∗+1)−1α δ
2(2+δ) (r) < ∞,

where τ∗ = δτ/(2 + δ), which implies

α (r) = o(r−2d(2+δ)(τ∗+1)/δ) = o(r−d[2(τ+2/δ)+1]−d)

= o(r−d[2µ+1]−d)

since µ ≤ τ + 2/δ for µ = max {τ , 2/δ}. Thus, α(r) =

O(r−d(2µ+1)−γ ) for γ = d.
We next show that for sufficiently large s,

0 < lim inf
n→∞

|Dn|
−1σ 2

n,s.

By (A.8),

B1/2
≤ inf |Dn|

−1/2σn.

Since lims→∞ ψ(s) = 0, there exists s∗ such that in light of (A.10)
for all s ≥ s∗,

|Dn|
−1/2σn,s ≤ Cψ1/2(s) ≤ B1/2/2. (A.14)

Hence by (A.9) for all s ≥ s∗, |Dn|
−1/2(σn−σn,s) ≤ |Dn|

−1/2σn,s, and
thus infn |Dn|

−1/2σn,s ≥ infn |Dn|
−1/2σn − supn |Dn|

−1/2σn,s. Using
(A.7) and (A.14), we have

lim inf
n→∞

|Dn|
−1/2σn,s ≥ B1/2

−
B1/2

2
=

B1/2

2
> 0.

Thus, for all s ≥ s∗,

σ−1
n,s


i∈Dn

ξ si,n H⇒ N(0, 1) as n → ∞. (A.15)

Since the first s∗ terms do not affect the analysis below we take in
the following s∗ = 1.
5. CLT for σ−1

n


i∈Dn
Yi,n.

Finally, using Lemma A.1 we now show that, given the
maintained NED assumption, the just established CLT in (A.15) for
the approximators ξ si,n can be carried over to the Yi,n. Define

Wn = σ−1
n


i∈Dn

Yi,n, Vns = σ−1
n


i∈Dn

ξ si,n,

Wn − Vns = σ−1
n


i∈Dn

ηsi,n

so that we can exploit Lemma A.1 to prove that

Wn = σ−1
n


i∈Dn

Yi,n H⇒ V ∼ N(0, 1).

We first verify condition (iii) of Lemma A.1. ByMarkov’s inequality
and (A.11), for every ϵ > 0 we have

lim
s→∞

lim sup
n→∞

P(|Wn − Vns| > ϵ)

= lim
s→∞

lim sup
n→∞

P

σ−1
n


i∈Dn

ηsi,n

 > ϵ



≤ lim
s→∞

lim sup
n→∞

σ 2
n,s

ϵ2σ 2
n

= 0.

Next observe that Vns =
σn,s
σn


σ−1
n,s


i∈Dn
ξ si,n

. We proceed to show

Wn H⇒ V by contradiction. For that purpose let M be the set
of all probability measures on (R,B), and observe that we can
metrize M by, e.g., the Prokhorov distance d(·, ·). Let µn and µ be
the probability measures corresponding toWn and V , respectively,
then Wn H⇒ V , or µn H⇒ µ, iff d(µn, µ) → 0 as n → ∞.
Now suppose µn does not converge to µ. Then for some ϵ > 0
there exists a subsequence {n(m)} such that d(µn(m), µ) > ϵ
for all n(m). By (A.13), we have 0 ≤ σn,s/σn ≤ C < ∞ for
all s, n ≥ 1. Hence, 0 ≤ σn(m),s/σn(m) ≤ C < ∞ for all
n(m). Consequently, for s = 1 there exists a subsubsequence
{n(m(l1))} such that σn(m(l1)),1/σn(m(l1)) → p(1) as l1 → ∞.
For s = 2, there exists a subsubsubsequence {n(m(l1(l2)))} such
that σn(m(l1(l2))),2/σn(m(l1(l2))) → p(2) as l2 → ∞. The argument
can be repeated for s = 3, 4 . . . . Now construct a subsequence
{nl} such that n1 corresponds to the first element of {n(m(l1))}, n2
corresponds to the second element of {n(m(l1(l2)))}, and so on,
then

lim
l→∞

σnl,s

σnl
= p(s) (A.16)
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for s = 1, 2, . . . Given (A.15), it follows that as l → ∞

Vnls H⇒ Vs ∼ N(0, p2(s)).

Then, it follows from (A.12) that

lim
s→∞

|p(s)− 1| ≤ lim
s→∞

lim
l→∞

p(s)−
σnl,s

σnl


+ lim

s→∞
sup
n≥1

σn,sσn − 1
 = 0.

Thus Vs H⇒ V and thus by Lemma A.1 Wnl H⇒ V ∼ N(0, 1)
as l → ∞. Since {nl} ⊆ {n(m)} this contradicts the assumption
that d(µn(m), µ) > ϵ for all n(m). This completes the proof of the
CLT. �

Proof of Corollary 1. The proof is available online on the authors’
webpages. �

Appendix B. Proofs for Section 4

Proof of Theorem 3. We show that

sup
θ∈Θ

Qn(θ)− Q n(θ)
 p
→ 0 (B.1)

as n → ∞. As discussed in the text, given that the θ0n are
identifiably unique it then follows immediately from, e.g., Pötscher
and Prucha (1997, Lemma 3.1), that ν(θn, θ0n) p

→ 0 as n → ∞ as
claimed.

We start by proving that

|Dn|
−1

i∈Dn


qi,n(Zi,n, θ)− Eqi,n(Zi,n, θ)

 p
→ 0 (B.2)

for each θ ∈ Θ , by applying the LLN given as Theorem 1 in
the text to qi,n(Zi,n, θ). By Assumption 6(a), we have supn,i∈Dn

E
qi,n(Zi,n, θ)p < ∞ for each θ ∈ Θ and p = 2, which verifies

Assumption 2(a) for qi,n(Zi,n, θ)with ci,n = 1. By Assumption 6(b),
the qi,n(Zi,n, θ) are uniformly L1-NED on ε, and hence w.o.l.g.
we can take di,n = 1. Furthermore, by Assumption 6(b)
the input process ε is α-mixing, and the α-mixing coefficients
satisfy Assumption 2(b). Consequently (B.2) follows directly from
Theorem 1 applied to qi,n(Zi,n, θ).

Next, by Proposition 1 of Jenish and Prucha (2009),
Assumption 6(c) implies that qi,n is L0 stochastically equicontin-
uous onΘ , i.e., for every ε > 0

lim sup
n→∞

1
|Dn|


i∈Dn

P


sup
ν(θ,θ•)≤δ

qi,n(Zi,n, θ)− qi,n(Zi,n, θ•)
 > ε


→ 0 as δ → 0.

Furthermore, in light of Assumption 6(a) the qi,n(Zi,n, θ) clearly
satisfy the domination condition postulated by the ULLN in Jenish
and Prucha (2009), stated as Theorem 2 in that paper. Given that
we have already verified the pointwise LLN in (B.2) it now follows
directly from that theorem that

sup
θ∈Θ

|Rn(θ)− ERn(θ)|
p

→ 0 (B.3)

with Rn(θ) = |Dn|
−1

i∈Dn
qi,n(Zi,n, θ), and that the ERn(θ) are

uniformly equicontinuous onΘ in the sense that

lim sup
n→∞

sup
θ•∈Θ

sup
ν(θ,θ•)≤δ

|ERn(θ)− ERn(θ
•)| → 0 as δ → 0.

To prove (B.1), observe that

sup
θ∈Θ

Qn(θ)− Q n(θ)


≤ sup
θ∈Θ

Rn(θ)
′PRn(θ)− ERn(θ)PERn(θ)


+ sup

θ∈Θ

Rn(θ)
′(Pn − P)Rn(θ)


≤ sup

θ∈Θ

Rn(θ)
′PRn(θ)− ERn(θ)PERn(θ)


+ 2 sup

θ∈Θ

|Rn(θ)|
2
|Pn − P| . (B.4)

Furthermore observe that Assumption 6(a) we have E[supθ∈Θ |qi,n
(Zi,n, θ)|] ≤ K and E


supθ∈Θ

qi,n(Zi,n, θ)2 ≤ K for some finite
constant K . Thus

sup
θ∈Θ

E |Rn(θ)| ≤ E sup
θ∈Θ

|Rn(θ)| ≤ |Dn|
−1

×


i∈Dn

E sup
θ∈Θ

qi,n(Zi,n, θ) ≤ K (B.5)

E sup
θ∈Θ

|Rn(θ)|
2

≤ |Dn|
−2

i,j∈Dn

E

sup
θ∈Θ

qi,n(Zi,n, θ) sup
θ∈Θ

qj,n(Zj,n, θ)

≤ |Dn|
−2

i,j∈Dn


E

sup
θ∈Θ

qi,n(Zi,n, θ)2
1/2

×


E

sup
θ∈Θ

qj,n(Zj,n, θ)2
1/2

≤ K . (B.6)

Now consider the first terms on the r.h.s. of the last inequality
of (B.4). From (B.5) we see that E |Rn(θ)| takes on its values in a
compact set. Given (B.3) it now follows immediately from part (a)
of Lemma 3.3 of Pötscher and Prucha (1997) that

sup
θ∈Θ

Rn(θ)
′PRn(θ)− ERn(θ)PERn(θ)

 p
→ 0. (B.7)

Next we show that also the second term on the r.h.s. of the last
inequality of (B.4) converges in probability to zero. To see that this
is indeed the case observe that supθ∈Θ |Rn(θ)|

2
= Op(1) in light of

(B.6) and |Pn − P|
p

→ 0 by assumption. This completes the proof of
(B.1).

Having established that ERn(θ) are uniformly equicontinuous
on Θ , the uniform equicontinuity of Q n(θ) on Θ follows immedi-
ately from Lemma 3.3(b) of Pötscher and Prucha (1997). �

Proof of Theorem 4. Clearly by Theorem 3 we haveθn − θ0n =

op(1).
Step 1. The estimators θn corresponding to the objective

function (13) satisfy the following first order conditions:

∇θRn(θn)′Pn |Dn|
1/2 Rn(θn) = op(1). (B.8)

The op(1) term on the r.h.s. reflects that the first order conditions
may not hold if θn falls onto the boundary of Θ , and that the
probability of that event goes to zero as n → ∞, since the θ0n are
uniformly in the in the interior ofΘ by Assumption 7(a). Ifθn is in
the interior ofΘ , then the l.h.s. of (B.8) is zero.

Taking the mean value expansion of Rn(θn) about θ0n yields

Rn(θn) = Rn(θ0n)+ ∇θRn(θn)(θn − θ0n) (B.9)
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whereθn ∈ Θ is betweenθn and θ0n (component-by-component).
LetAn = ∇θRn(θn)′Pn∇θRn(θn) andBn = ∇θRn(θn)′Pn |Dn|

−1Σn
1/2

,

then combining (B.8) and (B.9) gives

|Dn|
1/2 θn − θ0n


=

I −A+

n
An

|Dn|

1/2 θn − θ0n


−A+

n ∇θRn(θn)′Pn |Dn|
1/2 Rn(θ0n)


+A+

n op(1)

=

I −A+

n
An

|Dn|

1/2 θn − θ0n


−A+

n
Bn

Σ−1/2

n |Dn| Rn(θ0n)


+A+

n op(1), (B.10)

whereA+
n denotes the generalized inverse ofAn.

Step 2. By Assumptions 7(c) the qi,n(Zi,n, θ0n) are uniformly
L2-NED and uniformly L2+δ-integrable with ci,n = 1. Given
Assumptions 7(d), (g) it is now readily seen that the process
qi,n(Zi,n, θ0n), i ∈ Dn


satisfies all assumptions of the CLT for

vector-valued NED processes, given as Corollary 1 in the text, with
cin = 1. (Note that Assumption 4(d) is satisfied automatically since
the qi,n(Zi,n, θ0n) are uniformly L2-NED.) Hence,

Σ−1/2
n |Dn| Rn(θ0n) = Σ−1/2

n


i∈Dn

qi,n(Zi,n, θ0n)

H⇒ N(0, Ipq), (B.11)

with Σn = Var


i∈Dn
qi,n(Zi,n, θ0n)


and supn λmax


|Dn|

−1Σn


< ∞.
Step 3. By Assumptions 7(c), (d), (e) the functions ∇θqi,n(Zi,n, θ)

satisfy for each θ ∈ Θ the LLN given as Theorem 1 in the text
with ci,n = 1, observing that Assumption 2(b) is implied by 3. By
argumentation analogous as used in the proof of consistency we
have

|Dn|
−1

i∈Dn


∇θqi,n(Zi,n, θ)− E∇θqi,n(Zi,n, θ)

 p
→ 0.

By Proposition 1 of Jenish and Prucha (2009), Assumption 7(f)
implies that the∇θqi,n(Zi,n; θ) are uniformly L0-equicontinuous on
Θ . Given L0-equicontinuity and Assumption 7(e), we have by the
ULLN of Jenish and Prucha (2009):

sup
θ∈Θ

|∇θRn(θ)− E∇θRn(θ)|
p

→ 0. (B.12)

and furthermore, the E∇θRn(θ) are uniformly equicontinuous on
Θ in the sense:

lim sup
n→∞

sup
θ ′∈Θ

sup
|θ−θ ′|<δ

|E∇θRn(θ)− E∇θRn(θ)| → 0 (B.13)

as δ → 0. In light of (B.12) and (B.13), and given thatθn − θ0n =

op(1) and henceθn − θ0n = op(1), if follows further that

∇θRn(θn)− E∇θRn(θ0n)
p

→ 0, and

∇θRn(θn)− E∇θRn(θ0n)
p

→ 0.

Hence,

An − An
p

→ 0 and Bn − Bn
p

→ 0, (B.14)

whereAn andBn are as defined above, and

An = [E∇θRn(θ0n)]′ P [E∇θRn(θ0n)] and

Bn = [E∇θRn(θ0n)]′ P

|Dn|

−1Σn
1/2

.

Step 4. Given Assumptions 7(e), (f), and since P is positive
definite, we have |An| = O(1) and

A−1
n

 = O(1), respectively.
Hence by, e.g., Lemma F1 in Pötscher and Prucha (1997) we haveAn = Op(1),A+

n = Op(1),An is nonsingular with probability
tending to one, andA+

n − A−1
n

p
→ 0. In light of the above it follows

from (B.10) that

|Dn|
1/2 θn − θ0n


= −A+

n
Bn

Σ−1/2

n |Dn| Rn(θ0n)

+ op(1)

= −A−1
n Bn


Σ−1/2

n |Dn| Rn(θ0n)

+ op(1).

Recalling that supn λmax

|Dn|

−1Σn

< ∞, Assumptions 7(e)

implies that |Bn| = Op(1). In light of Assumptions 7(g), (h)
BnB′

n is invertible and furthermore (BnB′
n)

−1
= O(1). ThusA−1

n BnB′
nA

−1′
n

−1
 ≤ |An|

2
(BnB′

n)
−1
 = O(1) and therefore

A−1
n BnB′

nA
−1′
n

−1/2
|Dn|

1/2 θn − θ0n


= −

A−1
n BnB′

nA
−1′
n

−1/2
A−1
n Bn


Σ−1/2

n |Dn| Rn(θ0n)

+ op(1).

The claim that

A−1
n BnB′

nA
−1′
n

−1/2
|Dn|

1/2 θn − θ0n


H⇒ N(0, Ik)
now follows, e.g., from Corollary F4(b) in Pötscher and Prucha
(1997). �
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