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Abstract

The development of a general inferential theory for nonlinear models with cross-sectionally

or spatially dependent data has been hampered by a lack of appropriate limit theorems. To

facilitate a general asymptotic inference theory relevant to economic applications, this paper

first extends the notion of near-epoch dependent (NED) processes used in the time series

literature to random fields. The class of processes that is NED on, say, an -mixing process,

is shown to be closed under infinite transformations, and thus accommodates models with

spatial dynamics. This would generally not be the case for the smaller class of -mixing

processes. The paper then derives a central limit theorem and law of large numbers for NED

random fields. These limit theorems allow for fairly general forms of heterogeneity including

asymptotically unbounded moments, and accommodate arrays of random fields on unevenly

spaced lattices. The limit theorems are employed to establish consistency and asymptotic

normality of GMM estimators. These results provide a basis for inference in a wide range

of models with spatial dependence.

JEL Classification: C10, C21, C31
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1 Introduction

Models with spatially dependent data have recently attracted considerable attention in var-

ious fields of economics including labor and public economics, IO, political economy, inter-

national and urban economics. In these models, strategic interaction, neighborhood effects,

shared resources and common shocks lead to interdependences in the dependent and/or

explanatory variables, with the variables indexed by their location in some socioeconomic

space.1 Insofar as these locations are deterministic, observations can be modeled as a re-

alization of a dependent heterogenous process indexed by a point in R,   1, i.e., as a

random field.

The aim of this paper is to define a class of random fields that is sufficiently general to

accommodate many applications of interest, and to establish corresponding limit theorems

that can be used for asymptotic inference. In particular, we apply these limit theorems

to prove consistency and asymptotic normality of generalized method of moments (GMM)

estimators for a general class of nonlinear spatial models.

To date, linear spatial autoregressive models, also known as Cliff-Ord (1981) type mod-

els2 , have arguably been one of the most popular approaches to modeling spatial dependence

in the econometrics literature. The asymptotic theory in these models is facilitated, loosely

speaking, by imposing specific structural conditions on the data generating process, and by

exploiting some underlying independence assumptions. Another popular approach to model

dependence is through mixing conditions. Various mixing concepts developed for time series

1The space and metric are not restricted to physical space and distance.

2For recent contributions see, e.g., Robinson (2010, 2009), Yu, de Jong and Lee (2008), Kelejian and

Prucha (2010, 2007, 2004), Lee (2007, 2004), and Chen and Conley (2001).
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processes have been extended to random fields. However, the respective limit theorems for

random fields have not been sufficiently general to accommodate many of the processes en-

countered in economics. This hampered the development of a general asymptotic inference

theory for nonlinear models with cross-sectional dependence. Towards filling this gap, Jenish

and Prucha (2009) have recently introduced a set of limit theorems (CLT, ULLN, LLN) for

-mixing random fields on unevenly spaced lattices that allow for nonstationary processes

with trending moments.

However, some important classes of dependent processes are not necessarily mixing,

including linear autoregressive (AR) and infinite moving average (MA(∞)) processes. Suf-

ficient conditions for the -mixing property of linear processes3 are fairly stringent, and

involve three types of restrictions (i) smoothness of the density functions of the innova-

tions, (ii) sufficiently fast rates of decay of the coefficients, and (iii) invertibility of the linear

process. There are examples demonstrating that the mixing property can fail for any of

these reasons. In particular, Andrews (1984) showed that a simple AR(1) process of in-

dependent Bernoulli innovations is not -mixing. Similar examples have been constructed

for random fields, see, e.g. Doukhan and Lang (2002). Thus, mixing may break down in

the case of discrete innovations. Further, Gorodetskii (1977) showed that the strong mixing

property may fail even in the case of continuously distributed (normal) innovations when

the coefficients of the linear process do not decline sufficiently fast. As these examples sug-

gest, the mixing property is generally not preserved under infinite transformations of mixing

processes. Yet stochastic processes generated as functionals of some underlying process arise

3These conditions for linear processes with general independent innovations were first established by

Gorodetskii (1977). Doukhan and Guyon (1991) generalized them to random fields.
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in a wide range of models, with autoregressive models being the leading example. Thus, it

is important to develop an asymptotic theory for a generalized class of random fields that

is “closed with respect to infinite transformations.”

To tackle this problem, the paper first extends the concept of near-epoch dependent

(NED) processes used in the time series literature to spatial processes. The notion dates

back to Ibragimov (1962), and Billingsley (1968). The NED concept, or variants thereof,

have been used extensively in the time series literature by McLeish (1975), Bierens (1981),

Wooldridge (1986), Gallant and White (1988), Andrews (1988), Pötscher and Prucha (1997),

Davidson (1992, 1993, 1994) and de Jong (1997), among others. Doukhan and Louhichi

(1999) introduced an alternative class of dependent processes called “-weakly dependent.”

In deriving our limit theorems we then only assume that the process is NED on a mixing

input process, i.e., that the process can be approximated by a mixing input process in the

NED sense, rather than to assume that the process itself is mixing. Of course, every mixing

process is trivially also NED on itself, and thus the class of processes that are NED on a

mixing input process includes the class of mixing processes. There are several advantages to

working with the enlarged class of process that are NED on a mixing process. First, linear

processes with discrete innovations, which results in the process to not satisfy the strong

mixing property, will still be NED on the mixing input process of innovations, provided the

latter are mixing. We note that, in particular, the NED property holds in both examples of

Andrews (1984) and Gorodetskii (1977), by Proposition 1 of this paper. Second, as shown

in this paper, nonlinear MA(∞) random fields are also NED under some mild conditions,

while such conditions are not readily available for mixing. Third, the NED property is often

easy to verify. For instance, the sufficient conditions for MA(∞) random fields involve only
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smoothness conditions on the functional form and absolute summability of the coefficients,

which are not difficult to check, while verification of mixing is usually more difficult.

The paper derives a CLT and an LLN for spatial processes that are near epoch dependent

on an -mixing input process. These limit theorems allow for fairly general forms of hetero-

geneity including asymptotically unbounded moments, and accommodate arrays of random

fields on unevenly spaced lattices. The LLN can be combined with the generic ULLN in

Jenish and Prucha (2009) to obtain an ULLN for NED spatial processes. In the time series

literature, CLTs for NED processes were derived by Wooldridge (1986), Davidson (1992,

1993), and de Jong (1997). Interestingly, our CLT contains as a special case the CLT of

Wooldridge (1986), Theorem 3.13 and Corollary 4.4.

In addition, we give conditions under which the NED property is preserved under trans-

formations. These results play a key role in verifying the NED property in applications.

Thus, the NED property is compatible with considerable heterogeneity and dependence, in-

variant under transformations, and leads to a CLT and LLN under fairly general conditions.

All these features make it a convenient tool for modeling spatial dependence.

As an application, we establish consistency and asymptotic normality of spatial GMM

estimators. These results provide a fundamental basis for constructing confidence intervals

and testing hypothesis for GMM estimators in nonlinear spatial models. Our results also

expand on Conley (1999), who established the asymptotic properties of GMM estimators

assuming that the data generating process and the moment functions are stationary and

-mixing.4

4This important early contribution employs Bolthausen’s (1982) CLT for stationary -mixing random

fields on the regular lattice Z2. However, the mixing and stationarity assumptions may not hold in many
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The rest of the paper is organized as follows. Section 2 introduces the concept of NED

spatial processes and gives of examples random fields satisfying this condition. Section 3

contains the LLN and CLT for NED spatial processes. Section 4 establishes the asymptotic

properties of spatial GMM estimators. All proofs are relegated to the appendices.

2 NED Spatial Processes

Let  ⊂ R,  ≥ 1, be a lattice of (possibly) unevenly placed locations in R, and let

 = {  ∈   ≥ 1} and  = {  ∈   ≥ 1} be triangular arrays of random

fields defined on a probability space (ΩF  ) with  ⊆  ⊆ . The space R is equipped

with the metric ( ) = max1≤≤ | − |, where  is the -th component of . The dis-

tance between any subsets   ⊆  is defined as (  ) = inf {( ) :  ∈  and  ∈  }.

Furthermore, let | | denote the cardinality of a finite subset  ⊂ .

The random variables  and  are possibly vector-valued taking their values in R

and R , respectively. We assume that R and R are normed metric spaces equipped

with the Euclidean norm, which we denote (in an obvious misuse of notation) as ||. For

any random vector  , let k k = [ | |]1,  ≥ 1 denote its -norm. Finally, let

F() = (;  ∈  : ( ) ≤ ) be the -field generated by the random vectors 

located in the -neighborhood of location .

Throughout the paper, we maintain these notational conventions and the following as-

sumption concerning .

Assumption 1 The lattice  ⊂ R,  ≥ 1, is infinitely countable. All elements in  are

applications. The present paper relaxes these critical assumptions.
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located at distances of at least 0  0 from each other, i.e., for all   ∈  : ( ) ≥ 0;

w.l.o.g. we assume that 0  1.

The assumption of a minimum distance has also been used by Conley (1999) and Jenish

and Prucha (2009). It ensures the growth of the sample size as the sample regions  and

 expand. The setup is thus geared towards what is referred to in the spatial literature as

increasing domain asymptotics.

We now introduce the notion of near-epoch dependent (NED) random fields.

Definition 1 Let  = {  ∈   ≥ 1} be a random field with kk  ∞,  ≥ 1,

let  = {  ∈   ≥ 1} be a random field, where || → ∞ as  → ∞, and let

 = {  ∈   ≥ 1} be an array of finite positive constants. Then the random field 

is said to be ()-near-epoch dependent on the random field  if

k −(|F())k ≤ () (1)

for some sequence () ≥ 0 with lim→∞ () = 0. The (), which are w.l.o.g. assumed

to be non-increasing, are called the NED coefficients, and the  are called NED scaling

factors.  is said to be -NED on  of size − if () = (−) for some     0.

Furthermore, if sup sup∈
 ∞, then  is said to be uniformly -NED on 

Recall that  ⊆ . Typically,  will be an infinite subset of , and often  = .

However, as discussed in more detail in Jenish and Prucha (2011), to cover Cliff-Ord type

processes  is allowed to depend on  and to be finite provided that it increases in size

with .

The role of the scaling factors {} is to allow for the the possibility of “unbounded

moments”, i.e., sup sup∈
 = ∞. Unbounded moments may reflect trends in the
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moments in certain directions, in which case we may also use, as in the time series literature,

the terminology of “trending moments”. The NED property is thus compatible with a

considerable amount of heterogeneity. In establishing limit theorems for NED processes, we

will have to impose restrictions on the scaling factors . In this respect, observe that

k −(|F())k ≤ kk + k(|F())k ≤ 2 kk

by the Minkowski and the conditional Jensen inequalities. Given this, we may choose  ≤

2 kk, and consequently w.l.o.g. 0 ≤ () ≤ 1; see, e.g., Davidson (1994), p. 262, for

a corresponding discussion within the context of time series processes. Note that by the

Lyapunov inequality, if  is -NED, then it is also -NED with the same coefficients

{} and {()} for any  ≤ .

Our definition of NED for spatial processes is adapted from the definition of NED for

time series processes. In the time series literature, the NED concept first appeared in the

works of Ibragimov (1962) and Billingsley (1968), although they did not use the present

term. The concept of time series NED processes was later formalized by McLeish (1975),

Wooldridge (1986), Gallant and White (1988). These authors considered only 2-NED

processes. Andrews (1988) generalized it to -NED processes for  ≥ 1 Davidson (1992,

1993, 1994) and de Jong (1997) further extended it to allow for trending time series processes.

We note that aside from the NED condition, a number of different notions of dependence

have been used in the time series literature. For instance, Pötscher and Prucha (1997)

considered a more general dependence condition (called -approximability). They use

more general approximating functions than the conditional mean in Definition 1 to describe

the dependence structure of a process. Similar conditions are also used by Lu (2001),
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Lu and Linton (2007), among others. These conditions allow for more general choices of

approximating functions than the conditional expectation. One of the main results in this

paper is a central limit theorem, which requires the existence of second moments. Since

for  = 2 the conditional mean is the best approximator in the sense of minimizing the

mean squared error, our use the conditional mean as an approximating function is not

restrictive. Still, in particular applications it may be convenient to work with some other

F()-measurable approximating function, say . Of course, if one can show that

k − k2 ≤ (), then this also established (1) for  = 2.

In the spatial literature, NED processes were considered in the special context of density

estimation by Hallin, Lu and Tran (2001), and Hallin, Lu and Tran (2004), albeit they

did not use this term. The first paper proves asymptotic normality of the kernel density

estimator for linear random fields, the second paper shows 1-consistency of the kernel

density estimator for nonlinear functionals of i.i.d. random fields. We note that neither of

these papers establishes a central limit theorem for nonlinear NED random fields.

As discussed earlier, an important motivation for considering NED processes is that

mixing is generally not preserved under transformations involving infinitely many arguments.

However, as illustrated below, the output process is generated as a function of infinitely

many input variables in a wide range of models. In those situations, mixing of the input

process does not necessarily carry over to the output process, and thus limit theorems for

averages of the output process cannot simply be established from limit theorems for mixing

processes. Nevertheless, as with time series processes, we show below that limit theorems

can be extended to spatial processes that are NED on a mixing input process, provided

the approximation error declines “sufficiently fast” as the conditioning set of input variables
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expands.

We now give examples of NED spatial processes. First, spatial Cliff and Ord (1981)

type autoregressive processes are NED under some weak conditions on the spatial weight

coefficients. These models have been used widely in applications. For recent contributions

on estimation strategies for these models see, e.g., Robinson (2010, 2009), Kelejian and

Prucha (2010, 2007, 2004), and Lee (2007, 2004). The second example is linear infinite

moving average (MA(∞)) random fields. In preparation of the example, we first give a more

general result, which shows that the NED property is satisfied by random fields generated

from nonlinear Lipschitz type functionals of some R-valued random field  = {  ∈ }:

 = (()∈) (2)

where  : E → R , E ⊆ R , are measurable functions satisfying for all  0 ∈ E

|()−(
0)| ≤

X
∈



¯̄
 − 0

¯̄
with  ≥ 0 (3)

with

lim
→∞

sup
∈

X
∈:()

 = 0 and kk2 = sup
∈

kk2 ∞ (4)

Proposition 1 Under conditions (3)-(4), = {  ∈   ≥ 1} given by (2) is well-

defined, and is 2-NED on  with () = kk2 sup∈
P

∈:() .

We now use the above proposition to establish the NED property for linear MA(∞)

random fields. Linear MA(∞) random fields may arise as solutions of autoregressive models.

For any  ∈ N and fixed vectors  ∈ Z,  = 1  , consider the following autoregressive

random field:

 =

X
=1

− +  (5)
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where  =
P

=1 ||  1, {,  ∈ Z} are i.i.d. with kk  ∞,  ≥ 1. Model (5)

is also known as a -nearest-neighbor or interaction model with the radius of interaction

 = max1≤≤ ||.

As shown by Doukhan and Lang (2002), there exists a stationary solution of (5) given

by:

 =

∞X
=0

X
1++=

!

1!!
1

1 

 −(11++)

with  ∈ N. Thus, (5) can be represented as a linear random field  =
P

∈Z − ,

with

 =

∞X
≥||

X
 ()

!

1!!
1

1 

 

where  () =
©
(1 ) ∈ N : 1 + + = 11 + + = 

ª
, observ-

ing that  () is empty if   || . Observing further that
X

1++=

!

1!!
|1

1 

 | = 

the coefficients  can be bounded as

| | ≤
∞X

≥||

X
1++=

!

1!!
|1

1 

 | =
∞X

≥||
 = (1− )−1||

Rewriting the process  as  =
P

∈Z  with  = − it follows from Proposition

1 that the random field (5) is -NED on  with the NED coefficients () = kk(1 −

)−1(1− 1)−1

The asymptotic theory of AR and MA(∞)  satisfying the NED condition, can be useful

in a variety of empirical applications where the data are cross sectionally correlated. For

instance, Pinkse et al.’s (2002) study of spatial price competition among firms that produce

differentiated products in one example of an empirical application with cross sectional de-

pendence. They model the price charged by firm at location  in the geographic (or product
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characteristic) space as a linear spatial autoregressive process. Another example is Fogli and

Veldkamp (2011) who investigate spatial correlation in the female labor force participation

(LFP). In particular, they consider a spatial autoregression of county ’s LFP rate on LFP

rates of its neighbors. Dell (2010) examines the impact of mita, the forced mining labor

system in colonial Peru and Bolivia, on household consumption and child growth across dif-

ferent regions. Although her model is not spatially autoregressive, the regressors and errors

exhibit persistent spatial correlation, which can be modeled as a spatial NED process.

As discussed, an attractive feature of NED processes is that the NED property is pre-

served under transformations. Econometric estimators are usually defined either explicitly

as functions of some underlying data generating processes or implicitly as optimizers of a

function of the data generating process. Thus, if the data generating process is NED on

some input process, the question arises under what conditions functions of random fields are

also NED on the same input process.

Various conditions that ensure preservation of the NED property under transformations

have been established in the time series literature by Gallant andWhite (1988), and Davidson

(1994). In fact, these results extend to random fields. In particular, the NED property

is preserved under summation and multiplication, and carries over from a random vector

to its components and vice versa. For future reference, we now state some results for

generalized classes of nonlinear functions. Their proofs are analogous to those in the time

series literature, and therefore omitted.

Consider transformations of  given by a family of functions  : R → R. The

functions  are assumed Borel-measurable for all  and  ∈ . They are furthermore

assumed to satisfy the following Lipschitz condition: For all ( •) ∈ R × R and all
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 ∈  and  ≥ 1:

|()− (
•)| ≤ ( 

•) | − •| (6)

where ( 
•) : R ×R → R+ is Borel-measurable. Of course, this condition would be

devoid of meaning without further restrictions on ( 
•), which are given in the next

propositions.

Proposition 2 Suppose (·) satisfies Lipschitz condition (6) with |( 
•)| ≤  ∞,

for all ( •) ∈ R × R and all  and . If for  ≥ 1 the {} are -NED of size −

on {} with scaling factors {}, then () is also -NED of size − on {}

with scaling factors {2}.5

Proposition 3 Suppose (·) satisfies Lipschitz condition (6) with

sup


°°°()


°°°
2
∞ and sup



°°°()


¯̄̄
 − e



¯̄̄°°°

∞ (7)

for some   2 where 
()
 = ( e

) and
e
 =  [|F()]. If k()k2 

∞ and  is 2-NED of size − on {} with scaling factors {}  then () is

2-NED of size −( − 2)(2 − 2) on {} with scaling factors

0 = 
(−2)(2−2)
 sup



°°°()


°°°(−2)(2−2)
2

°°°()


¯̄̄
 − e



¯̄̄°°°(2−2)




Thus, the NED property is hereditary under reasonably weak conditions. These condi-

tions facilitate verification of the NED property in practical application. In particular, we

will use them in the proof of asymptotic normality of spatial GMM estimators in Section 4.

5The proof of the proposition shows that k()− [()|F()]k ≤ 2
 − 


,

which explains the 2 in the scaling factor for ().
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3 Limit Theorems

3.1 Law of Large Numbers

In this section, we present a LLN for real valued random fields  = {  ∈   ≥ 1}

that are 1-NED on some vector-valued -mixing random field  = {  ∈   ≥ 1}

with the NED coefficients {()} and scaling factors {}, where  ⊆  ⊆  and the

lattice  satisfies Assumption 1. For ease of reference, we state below the definition of the

-mixing coefficients employed in the paper.

Definition 2 Let A and B be two -algebras of F, and let

(AB) = sup(| ()−  () ()|  ∈ A  ∈ B)

For  ⊆  and  ⊆ , let () = (;  ∈ ) and ( ) = (() ( )).

Then, the -mixing coefficients for the random field  are defined as:

(  ) = sup

sup


((  ) | | ≤  | | ≤  (  ) ≥ )

Dobrushin (1968) showed that weak dependence conditions based on the above mixing

coefficients are satisfied by broad classes of random fields including Markov fields. In contrast

to standard mixing numbers for time-series processes, the mixing coefficients for random

fields depend not only on the distance between two datasets but also their sizes. To explicitly

account for such dependence, it is furthermore assumed that

(  ) ≤ ( )b() (8)

where the function ( ) is nondecreasing in each argument, and b() → 0 as  → ∞.

The idea is to account separately for the two different aspects of dependence: (i) decay of
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dependence with the distance, and (ii) accumulation of dependence as the sample region

expands. The two common choices of ( ) in the random fields literature are

( ) = (+ )   ≥ 0 (9)

( ) = min { }  (10)

The above mixing conditions have been used extensively in the random fields literature

including Takahata (1983), Nahapetian (1987), Bulinskii (1989), Bulinskii and Doukhan

(1990), and Bradley (1993). They are satisfied by fairly large classes of random fields.

Bradley (1993) provides examples of random fields satisfying conditions (8)-(9) with  = 

and  = 1. Furthermore, Bulinskii (1989) constructs moving average random fields satisfying

the same conditions with  = 1 for any given decay rate of coefficients b() Clearly, standard
mixing coefficients in the time series literature are covered by conditions (8)-(9) when  = 0.

Following the literature, we employ the above mixing conditions for the input random

field, and impose further restrictions on the decay rates of the mixing coefficients.

Assumption 2 (a) There exist nonrandom positive constants {  ∈   ≥ 1} such

that  is uniformly -bounded for some   1,

i.e., sup sup∈
 || ∞

(b) The -mixing coefficients of the input field  satisfy (8) for some function ( ) which

is nondecreasing in each argument, and some b() such that P∞=1 −1b () ∞.
Theorem 1 Let {} be a sequence of arbitrary finite subsets of  such that || → ∞

as →∞ where  ⊂ R,  ≥ 1 is as in Assumption 1, and let  be a sequence of subsets

of  such that  ⊆ . Suppose further that  = {  ∈   ≥ 1} is 1-NED on
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 = {  ∈   ≥ 1} with the scaling factors . If  and  satisfy Assumption 2, then

1

 ||
X
∈

( −)
1→ 0

where  = max∈
max( )

This LLN can be used to establish uniform convergence of random functions by combining

it with the generic ULLN given in Jenish and Prucha (2009), which transforms pointwise

LLNs (at a given parameter value) into ULLNs.

Assumption 2(a) is a standard moment condition employed in weak LLNs for dependent

processes. It requires existence of moments of order slightly greater than 1. As in Theorem 2

below,  and  are the scaling factors that reflect the magnitudes of potentially trending

moments. The case of variables with uniformly bounded moments is covered by setting  =

 = 1 The LLN does not require any restrictions on the NED coefficients. In the time

series literature, weak LLNs for NED processes have been obtained by Andrews (1988) and

Davidson (1993), among others. Andrews (1988) derives an 1-law for triangular arrays of

1-mixingales. He then shows that NED processes are 1-mixingales, and hence, satisfy his

LLN. Davidson (1993) extends the latter result to processes with trending moments.

3.2 Central Limit Theorem

In this section, we present a CLT for real valued random fields  = {  ∈   ≥ 1}

that are 2-NED on some vector-valued -mixing random field  = {  ∈   ≥ 1}

with the NED coefficients {()} and scaling factors {}, where  ⊆  ⊆  and the
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lattice  satisfies Assumption 1. In the following, we will use the following notation:

 =
X
∈

; 
2
 = ()

The CLT relies on the following assumptions.

Assumption 3 The -mixing coefficients of  satisfy (8) and (9) for some  ≥ 0 and b(),
such that for some   0

∞X
=1

(∗+1)−1b 
2(2+) () ∞ (11)

where ∗ = (2 + ).

Assumption 3 restricts the dependence structure of the input process  Note that if

 = 1 this assumption also covers the case where ( ) is given by (10).

Assumption 4 (a) (Uniform 2+ integrability) There exists an array of positive con-

stants {} such that

lim
→∞

sup

sup
∈

[||2+ 1(||  )] = 0

where 1(·) is the indicator function and   0 is as in Assumption 3.

(b) inf ||−1−2 2  0, where  = max∈
.

(c) NED coefficients satisfy
P∞

=1 
−1() ∞

(d) NED scaling factors satisfy sup sup∈
−1 ≤  ∞

Assumptions 4(a),(b) are standard in the limit theory of mixing processes, e.g., Wooldridge

(1986), Davidson (1992), de Jong (1997), and Jenish and Prucha (2009). Assumption 4(a) is

satisfied if  are uniformly -bounded for   2+, i.e., sup∈
kk ∞.
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Assumption 4(b) is an asymptotic negligibility condition that ensures that no single sum-

mand influences disproportionately the entire sum. In the case of uniformly 2+-bounded

fields, 4(b) reduces to lim inf→∞ ||−12  0, as is, e.g., maintained in Bolthausen (1982).

Assumption 4(c) controls the size of the NED coefficients which measure the error in the

approximation of  by . Intuitively, the approximation errors have to decline sufficiently

fast with each successive approximation. Assumption 4(c) is satisfied if () = (−−) for

some   0 i.e., () is of size −. Finally, Assumption 4(d) is a technical condition, which

ensures that the order of magnitude of the NED scaling factors does not exceed that of the

2 +  moments. For instance, suppose the constant  can be chosen as  = kk2+ ,

and the NED scaling numbers as  ≤ 2 kk2. Then Assumption 4(d) is satisfied, since

by Lyapunov’s inequality, kk2 ≤ kk2+. This condition has also been used by de

Jong (1997) and Davidson (1992).

Theorem 2 Suppose {} is a sequence of finite subsets such that || → ∞ as  → ∞

and {} is a sequence of subsets such that  ⊆  ⊆  of the lattice  satisfying

Assumption 1 Let  = {  ∈   ≥ 1} be a real valued zero-mean random field that

is 2-NED on a vector-valued -mixing random field  = {  ∈   ≥ 1}. Suppose

Assumptions 3 and 4 hold, then

−1  =⇒ (0 1)

Theorem 2 contains the CLT for -mixing random fields given in Jenish and Prucha

(2009) as a special case. It also contains as a special case the CLT for time series NED

processes of Wooldridge (1986), see Theorem 3.13 and Corollary 4.4.
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Theorem 2 can be easily extended to vector-valued fields using the standard Cramér-

Wold device.

Corollary 1 Suppose {} is a sequence of finite subsets such that || → ∞ as  → ∞

and {} is a sequence of subsets such that  ⊆  ⊆  of the lattice  satisfying

Assumption 1 Let  = {  ∈   ≥ 1} with  ∈ R be a zero-mean random field

that is 2-NED on a vector-valued -mixing random field  = {  ∈   ≥ 1}. Suppose

Assumptions 3 and 4 hold with || denoting the Euclidean norm of  and 2 replaced

by min(Σ), where Σ =  () and min() is the smallest eigenvalue, then

Σ−12  =⇒ (0 )

Furthermore, sup ||−1 max (Σ) ∞, where max() denotes the largest eigenvalue.

4 Large Sample Properties of Spatial GMM Estimators

We now apply the limit theorems of the previous section to establish the large sample

properties of spatial GMM estimators under a reasonably general set of assumptions that

should cover a wide range of empirical problems. More specifically, our consistency and

asymptotic normality results (i) maintain only that the spatial data process is NED on

an -mixing basis process to accommodate spatial lags in the data process as discussed

above, (ii) allow for unevenly placed locations, and (iii) allow for the data process to be

non-stationary, which will frequently be the case in empirical applications. We also give our

results under a set of primitive sufficient conditions for easier interpretation by the applied
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researcher.6

We continue with the basic set-up of Section 2. Consider the moment function  : R

×Θ → R , where Θ denotes the parameter space, and let 0 ∈ Θ denote the parameter

vector of interest (which we allow to depend on  for reasons of generality). Suppose the

following moment conditions hold

( 0) = 0 (12)

Then, the corresponding spatial GMM estimator is defined as

b = argmin
∈Θ

( ) (13)

where : Ω×Θ→ R,

( ) = ()
0()

with () = ||−1
P

∈
( ), and where the  are some positive semidefinite

weighting matrices. To show consistency, consider the following non-stochastic analogue of

, say

() = [()]
0
 [()]  (14)

where  denotes the probability limit of . Given the moment condition (12),  [(0)] =

0 the functions  are minimized at 0. In proving consistency, we follow the classical

6 In an important contribution, Conley (1999) gives a first set of results regarding the asymptotic properties

of GMM estimators under the assumption that the data process is stationary and -mixing. Conley also

maintains some high level assumption such as first moment continuity of the moment function, which in turn

immediately implies uniform convergence - see, e.g., Pötscher and Prucha (1989) for a discussion. Our results

extend Conley (1999) in several important directions, as indicated above. We establish uniform convergence

from primitive sufficient conditions via the generic uniform law of large numbers given in Jenish and Prucha

(2009) and the law of large numbers given as Theorem 1 above.
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approach; see, e.g., Gallant and White (1988) or Pötscher and Prucha (1997) for more recent

expositions. In particular, given identifiable uniqueness of 0 we establish, loosely speak-

ing, convergence of the minimizers b to the minimizers 0 by establishing convergence
of the objective function ( ) to its non-stochastic analogue () uniformly over the

parameter space.

Throughout the sequel, we maintain the following assumptions regarding the parameter

space, the GMM objective function and the unknown parameters 0.

Assumption 5 (a) The parameter space Θ is a compact metric space with metric .

(b) The functions  : R ×Θ → R are BB
 -measurable for each  ∈ Θ, and

continuous on Θ for each  ∈ R 

(c) The elements of the  ×  real matrices  are B-measurable, and  is positive

semidefinite. Furthermore  =  lim exists and  is positive definite.

(d) The minimizers 0 are identifiably unique in the sense that every   0,

lim inf→∞
£
inf∈Θ:(0)≥ [()]

0
[()]

¤
 0

Compactness of the parameter space as maintained in Assumption 5(a) is typical for the

GMM literature. Assumptions 5(b),(c) imply that (· ) is measurable for all  ∈ Θ, and

( ·) is continuous on Θ. Given those assumptions the existence of measurable functions

b that solves (13) follows, e.g., from Lemma A3 of Pötscher and Prucha (1997).

Since  is positive definite, it is readily seen that Assumption 5(d) implies that for every

  0 :

lim inf
→∞

∙
inf

∈Θ:(0)≥

¯̄
()−(0)

¯̄¸
 0
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observing that (0) = 0. Thus, under Assumption 5(d) the minimizers 0 are identifi-

ably unique; compare, e.g., Gallant and White (1988), p.19. For interpretation, consider the

important special case where 0 = 0, () does not depend on , and is continuous in

. In this case, identifiable uniqueness of 0 is equivalent to the assumption that 0 is the

unique solution of the moment conditions, i.e.,  [()] 6= 0 for all  6= 0; compare, e.g.,

Pötscher and Prucha (1997), p. 16.

4.1 Consistency

Given the minimizers 0 are identifiably unique, b is a consistent estimator for 0 if 

converges uniformly to , i.e., if sup∈Θ
¯̄
( )−()

¯̄ → 0 as  → ∞; this follows

immediately from, e.g, Pötscher and Prucha (1997), Lemma 3.1.

We now proceed by giving a set of primitive domination and Lipschitz type conditions

for the moment functions that ensure uniform convergence of  to . The conditions

are in line with those maintained in the general literature on M-estimation, e.g., Andrews

(1987), Gallant and White (1988), and Pötscher and Prucha (1989,1994).

Definition 3 Let  : R ×Θ → R be BB
 -measurable functions for each  ∈ Θ,

then:

(a) The random functions (; ) are said to be -dominated on Θ for some   1 if

sup sup∈
 sup∈Θ |(; )| ∞.

(b) The random functions (; ) are said to be Lipschitz in the parameter  on Θ if

|( )− ( 
•)| ≤ ()(( 

•)) a.s., (15)
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for all  • ∈ Θ and  ∈   ≥ 1, where  is a nonrandom function with () ↓ 0

as  ↓ 0, and  are random variables with

lim sup→∞ ||−1
P

∈



 ∞ for some   0

Towards establishing consistency of b we furthermore maintain the following moment
and mixing assumptions.

Assumption 6 The moment functions (; ) have the following properties:

(a) They are -dominated on Θ for  = 2.

(b) They are uniformly 1-NED on  = {  ∈   ≥ 1}, where  ⊆  ⊆ , and 

is -mixing with -mixing coefficients the conditions stated in Assumption 2(b).

(c) They are Lipschitz in the parameter  on Θ.

Assumption 6(a) implies that sup∈
 |(; )| ∞ for each  ∈ Θ. Assump-

tions 6(b) then allow us to apply the LLN given as Theorem 1 above the sample moments

() = ||−1
P

∈
( ).

To verify Assumption 6(b) one can use either Proposition 2 or Proposition 3 to imply this

condition from the lower level assumption that the data  are 1-NED. For example, the

 are 1-NED, if the  are 1-NED and satisfy the Lipschitz condition of Proposition

2. Note that no restrictions on the sizes of the NED coefficients are required.

Assumption 6(c) ensures stochastic equicontinuity of  w.r.t. . Stochastic equiconti-

nuity jointly with Assumption 6(a) and the pointwise LLN enable us to invoke the ULLN

of Jenish and Prucha (2009) to prove uniform convergence of the sample moments, which
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in turn is used to establish that  converges uniformly to . A sufficient condition for

Assumption 6(c) is existence of integrable partial derivatives of  w.r.t.  if  ∈ R.

Our consistency results for the spatial GMM estimator given by (13) is summarized by

the next theorem.

Theorem 3 (Consistency) Suppose {} is a sequence of finite sets of  such that ||→

∞ as →∞ where  ⊂ R  ≥ 1 is as in Assumption 1. Suppose further that Assumptions

5 and 6 hold. Then

(b 0) → 0 as →∞

and () is uniformly equicontinuous on Θ.

4.2 Asymptotic Normality

We next establish that the spatial GMM estimators defined by (13) is asymptotically nor-

mally distributed. For that purpose, we need a stronger set of assumptions than for con-

sistency, including differentiability of the moment functions in . It proofs helpful to adopt

the notation ∇ in place of .
7

Assumption 7 (a) The minimizers 0 lie uniformly in the interior of Θ with Θ ⊆ R.

Furthermore  [(0)] = 0.

(b) The functions  : R ×Θ → R are continuously differentiable w.r.t.  for each

 ∈ R 
7To ensure that the derivatives are defined on the border of Θ, we assume in the following that the

moment functions are defined on an open set containing Θ, and that the  and ∇ are restrictions to

Θ.
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(c) The functions (; 0) are uniformly 2-NED on  of size −, and for some 0  0

sup∈
 |(; 0)|2+

0
∞. The functions ∇(; ) are uniformly 1-

NED on .

(d) The input process  = {  ∈   ≥ 1}, where  ⊆  ⊆ , is -mixing and the

mixing coefficients satisfy Assumption 3 for some   0, where 0 is the same as in

Assumption 7(c).

(e) The functions ∇ are -dominated on Θ for some   1

(f) The functions ∇ are Lipschitz in  on Θ.

(g) inf min(||−1Σ)  0 where Σ =  
£P

∈
( 0)

¤
.

(h) inf min [∇(0)
0∇(0)]  0.

The first part of Assumption 7(a) is needed to ensure that the estimator b lies in the
interior of Θ with probability tending to one, and facilitates the application of the mean value

theorem to (b) around 0. The second part states in essence that the moment conditions
are correctly specified. Its violation will generally invalidate the limiting distribution result.

Assumptions 7(c),(d),(g) enable us to apply the CLT for vector-valued NED processes

given above as Corollary 1 to (0). Some low level sufficient conditions for Assumption

7(c) are given below. To establish asymptotic normality, we also need uniform convergence

of ∇ on Θ, which is implied via Assumptions 7(c),(d),(e),(f). Finally, Assumption 7(h)

ensures positive-definitness of the variance-covariance matrix of the GMM estimator.

Given the above assumptions, we have the following asymptotic normality result for the

spatial GMM estimator defined by (13).
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Theorem 4 Suppose {} is a sequence of finite sets of  such that ||→∞ as →∞

where  ⊂ R  ≥ 1 is as in Assumption 1. Suppose further that Assumptions 5- 7 hold.

Then ¡
−1 

0

−10


¢−12 ||12
³b − 0

´
=⇒ (0 )

where

 = [∇(0)]
0
 [∇(0)] and  = [∇(0)]

0

h
||−1Σ

i12


Moreover, || = (1);
¯̄
−1

¯̄
= (1); || = (1);

¯̄̄
(

0
)
−1
¯̄̄
= (1) and hence, b is

||12-consistent for 0.

As remarked above, relative to the existing literature Theorem 4 allows for nonstationary

processes and only assumes that  and ∇ are NED on an -mixing input process,

rather than postulating that  and ∇ are -mixing. As such, Theorem 4 should

provide a basis for constructing confidence intervals and hypothesis testing in a wider range

of spatial models.

Using Proposition 3, we now give some sufficient conditions for Assumption 7(c).

Assumption 8 The process {  ∈  ⊂   ≥ 1} is uniformly 2-NED on {  ∈

  ≥ 1} of size −2( − 1)( − 2) for some   2

Assumption 9 For every sequence {0} on Θ, the functions (; 0) and ∇(; 0)

satisfy Lipschitz condition (6) in , that is, for  =  or ∇:

|(; )− (
•; )| ≤ ( 

•) | − •| 

Furthermore, for the   2 as specified in Assumption 8,

sup
∈

sup


°°°()


°°°
2
∞ and sup

∈

sup


°°°()


¯̄̄
 − e



¯̄̄°°°

∞
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where 
()
 = ( e

) with
e
 =  [|F()].

5 Conclusion

The paper develops an asymptotic inference theory for a class of dependent nonstationary

random fields that could be used in a wide range of econometric models with spatial de-

pendence. More specifically, the paper extends the notion of near-epoch dependent (NED)

processes used in the time series literature to spatial processes. This allows to accommo-

date larger classes of dependent processes than mixing random fields. The class of NED

random fields is “closed with respect to infinite transformations ” and thus should be suf-

ficiently broad for many applications of interest. In particular, it covers autoregressive and

infinite moving average random fields as well as nonlinear functionals of mixing processes.

The NED property is also compatible with considerable heterogeneity and preserved under

transformations under fairly mild conditions. Furthermore, a CLT and an LLN are derived

for spatial processes that are NED on an -mixing process. Apart from covering a larger

class of dependent processes, these limit theorems also allow for arrays of nonstationary ran-

dom fields on unevenly spaced lattices. Building on these limit results, the paper develops

an asymptotic theory of spatial GMM estimators, which provides a basis for inference in a

broad range of models with cross-sectional or spatial dependence.

Much of the random fields literature assumes that the process resides on an equally

spaced grid. In contrast, and as in Jenish and Prucha (2009), we allow for locations to be

unequally spaced. The implicit assumption of fixed locations seems reasonable for a large

class of applications, especially in the short run. Still, an important direction for future work
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would be to extend the asymptotic theory to spatial processes with endogenous locations,

while maintaining a set of assumptions that are reasonably easy to interpret.8 One possible

approach may be to augment the contributions of the present paper with theory from point

processes.

A Appendix: Proofs for Sections 2 and 3

Throughout, let F() = (;  ∈  : ( ) ≤ ) be the -field generated by the random

vectors  located in the -neighborhood of location . Furthermore,  denotes a generic

constant that does not depend on  and may be different from line to line.

Proof of Proposition 1: We first show that  is well-defined as the 2 limit as →∞

of the following sequence


()
 = 

µ³

()


´
∈

¶

with 
()
 =

⎧⎪⎪⎨⎪⎪⎩
 for ( ) ≤ 

0 for ( )  

To simplify notation, let  = ()∈ and () =
³

()


´
∈

. In light of (3)-(4), we have for

any ,  ∈ N:

¯̄̄

(+)
 − 

()


¯̄̄
=
¯̄̄


³
(+)

´
−

³
()

´¯̄̄
≤

X
∈:()≤+

 || 

Observe that in light of Assumption 1 the sum on the r.h.s. of the above inequality is finite.

8Pinkse et al. (2007) made an interesting contribution in this direction. Their catalogue of assumption

is at the level of Bernstein blocks. Without further sufficient conditions, verification of those assumptions

would typically be challenging in practical situations.
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Hence applying Minkovski’s inequality, we have

°°°(+) − 
()


°°°
2
=

°°°

³
(+)

´
−

³
()

´°°°
2
≤

X
∈:()≤+

 kk2

≤ kk2 sup
∈

X
∈:()

 →
→∞

0

Thus, 
()
 is a Cauchy sequence in the Banach space 2, and hence  is well-defined.

By the minimum mean-squared error property of conditional expectation, we have

k −[|F()]k2 ≤
°°° ()−

³
()

´°°°
2
≤ kk2 sup

∈

X
∈:()

 →
→∞

0

which completes the proof of the proposition.

Proof of Theorem 1: Define  = , then to prove the theorem, it suffices to show

that ||−1
P

∈
( −)

1→ 0. We first establish moment and mixing conditions

for  from those for . Observe that in light of the definition of  and Assumption

2(a)

sup
∈

 || ≤ sup
∈

 || ∞ (A.1)

Thus,  is uniformly -bounded for   1. Let F() = (;  ∈ :( ) ≤ ).

Since  is 1-NED on  = {  ∈   ≥ 1}:

sup
∈

k −(|F())k1 ≤ sup
∈

−1 () ≤ () (A.2)

observing that  = max∈
max( ). Thus  is also 1-NED on .

Next we show that for each given   0, the conditional mean  
 = (|F())

satisfies the assumptions of the 1-norm LLN of Jenish and Prucha (2009, Theorem 3).

Using the Jensen and Lyapunov inequalities gives for all   0,  ∈   ≥ 1:


¯̄
 


¯̄ ≤ {(|| |F())} ≤ sup
∈

 || ∞
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So,  
 is uniformly -bounded for   1 and hence uniformly integrable. For each fixed 

 
 is a measurable function of {;  ∈  : ( ) ≤ }. Observe that under Assumption

1 there exists a finite constant  such that the cardinality of the set { ∈  : ( ) ≤ }

is bounded by ; compare Lemma A.1 in Jenish and Prucha (2009). Hence,

 (1 1 ) ≤

⎧⎪⎪⎨⎪⎪⎩
1  ≤ 2


¡
   − 2¢    2

and thus in light of Assumption 2(b)

∞X
=1

−1 (1 1 ) ≤
2X
=1

−1 + ( )

∞X
=1

( + 2)−1b() ∞

The above shows that indeed, for each fixed ,  
 satisfies the assumptions of the

1-norm LLN of Jenish and Prucha (2009, Theorem 3). Therefore, for each  we have°°°°°||−1
X
∈

[(|F())−]

°°°°°
1

→ 0 as →∞ (A.3)

Furthermore observe that from (A.2) and the Minkowski inequality°°°°°||−1
X
∈

( −(|F()))
°°°°°
1

≤ () (A.4)

Given (A.3) and (A.4), and observing that lim→∞ () = 0 it now follows that

lim
→∞

°°°°°||−1
X
∈

( −)

°°°°°
1

= lim
→∞

lim
→∞

°°°°°||−1
X
∈

( −)

°°°°°
1

≤ lim
→∞

lim sup
→∞

°°°°°||−1
X
∈

( −(|F()))
°°°°°
1

+ lim
→∞

lim
→∞

°°°°°||−1
X
∈

((|F())− )

°°°°°
1

= 0

This completes the proof of the LLN.

The proof of the CLT builds on Ibragimov and Linnik (1971), pp. 352-355, and makes

use of the following lemmata:
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Lemma A.1 (Brockwell and Davis (1991), Proposition 6.3.9). Let ,  = 1 2  and 

 = 1 2 ;  = 1 2 , be random vectors such that

(i)  =⇒  as →∞ for each  = 1 2 

(ii)  =⇒  as →∞, and

(iii) lim→∞ lim sup→∞  (| − |  ) = 0 for every   0

Then  =⇒  as →∞

Lemma A.2 (Ibragimov and Linnik (1971)) Let (F1) and (F2) denote, respectively,

the class of F1-measurable and F2-measurable random variables  satisfying kk ∞. Let

 ∈ (F1) and  ∈ (F2) Then, for any 1 ≤    ∞ such that −1 + −1 + −1 = 1,

|( )|  41(F1F2) kk k k

where (F1F2) = sup∈F1∈F2(| ()−  () ()|).

To prove the CLT for NED random fields, we first establish some moment inequalities

and a slightly modified version of the CLT for mixing fields developed in Jenish and Prucha

(2009). It is helpful to introduce the following notation. Let  = {  ∈   ≥ 1} be

a random field, then kk := sup∈
kk for  ≥ 1.

Lemma A.3 Let {} be uniformly 2-NED on a random field {} with -mixing

coefficients (  ) ≤ ( + ) b(),  ≥ 0. Let  = P
∈

 and suppose that the

NED coefficients of {} satisfy
P∞

=1 
−1()  ∞ and kk2+  ∞ for some   0.

Then,
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(a) | ()| ≤ kk2+
n
1kk2+ [3]∗ b(2+) ([3]) + 2 ([3])

o
, where

 = ( ) and ∗ = (2 + ). If,
P∞

=1 
(∗+1)−1b(2+) ()  ∞, then for some

 ∞, not depending on 

  () ≤  || 

(b) | ()| ≤ kk2
n
3kk2+ [3]

∗ b(4+2) ([3]) + 4 ([3])
o
, where

 = ( ) and ∗ = (4 + 2). If,
P∞

=1 
(∗+1)−1b(4+2) ()  ∞ where

∗ = (4 + 2), then for some  ∞, not depending on 

  () ≤ kk2 || 

Proof of Lemma A.3: (a) For any  ∈  and   0, let

 = (|F())  =  − 

By the Jensen and Lyapunov inequalities, we have for all  ∈   ∈ N and any

1 ≤  ≤ 2 + :


¯̄


¯̄
= {|(|F())|} ≤ {(|| |F())} =  ||

and thus

°°°° ≤ kk ≤ kk2+ 
°°°° ≤ 2 kk ≤ 2 kk2+ 

Thus, both  and  are uniformly 2+ bounded. Also, note that

sup
∈

°°°°2 ≤ ()
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given that the {} is uniformly 2-NED on {} and thus the NED-scaling factors can

be chosen w.l.g. to be one. Furthermore, let () denote the -field generated by 

Since () ⊆ F(), the mixing coefficients of  satisfy

(1 1 ) ≤

⎧⎪⎪⎨⎪⎪⎩
1  ≤ 2

(  − 2)   2

where (  ) are the mixing coefficients of the input process , since the -neighborhood

of any point on  contains at most  points of  for some  that does not depend on

, see the proof of Lemma A.1 of Jenish and Prucha (2009).

Now, decompose  and and  as

 = 
[3]
 + 

[3]
  and  = 

[3]
 + 

[3]
 

where  = ( ). Then,

| ()| =
¯̄̄


³

[3]
 + 

[3]
 ; 

[3]
 + 

[3]


´¯̄̄
(A.5)

≤
¯̄̄


³

[3]
 ; 

[3]


´¯̄̄
+
¯̄̄


³

[3]
 ; 

[3]


´¯̄̄
+
¯̄̄


³

[3]
 ; 

[3]


´¯̄̄
+
¯̄̄


³

[3]
 ; 

[3]


´¯̄̄


We will now bound separately each term on the r.h.s. of the last inequality.

First, using Lemma A.2 with  =  = 2+  and  = (2+ ) yields the following bound

on the first term:

¯̄̄


³

[3]
 ; 

[3]


´¯̄̄
≤ 4

°°°[3]

°°°
2+

°°°[3]

°°°
2+


(2+)

 (1 1 [3]) (A.6)

≤ 4kk22+(2+)
³
 [3]


 [3]


 − 2 [3]

´
≤ 1kk22+ [3]∗ b(2+) ([3])
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where ∗ = (2 + ).

Second, the Cauchy-Schwartz inequality gives the following bound on the second and

third terms:

¯̄̄


³

[3]
 ; 

[3]


´¯̄̄
≤ 4

°°°[3]

°°°
2

°°°[3]

°°°
2
≤ 4kk2 ([3]) (A.7)

Similarly, the fourth term can be bounded as:

¯̄̄


³

[3]
 ; 

[3]


´¯̄̄
≤ 4

°°°[3]

°°°
2

°°°[3]

°°°
2
≤ 8kk2 ([3]) (A.8)

Collecting (A.6)-(A.8), we have

| ()| ≤ kk2+
n
1kk2+ [3]∗ b(2+) ([3]) + 2 ([3])

o
which proves the first inequality.

Using this inequality as well as the bounds on the sizes of the sets given in Lemma A.1

of Jenish and Prucha (2009), we have

  () ≤
X
∈

  () +
X

∈6=
| ()|

≤ 2|| kk22+ +

+1kk22+
X
∈

∞X
=1

X
∈:()3∈[+1)

[( )3]
∗ b(2+) ([( )3])

+2kk2+
X
∈

∞X
=1

X
∈:()3∈[+1)

 ([( )3])

≤ 2|| kk22+ +  || kk2+
" ∞X
=1

(∗+1)−1b(2+) () + ∞X
=1

−1 ()

#
≤ ||

for some constant  ∞, not depending on .
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(b) To prove the second part of the lemma, apply Lemma A.2 with  = 2 +   = 2,

and  = 2(2 + ) to obtain the following bound on the first term:

¯̄̄


³

[3]
 ; 

[3]


´¯̄̄
≤ 3kk2+kk2 [3]

∗ b(4+2) ([3])  (A.9)

where ∗ = (4 + 2). The other terms on the r.h.s. of (A.5) are bounded as in part (a).

Collecting (A.7)-(A.9) gives

| ()| ≤ kk2
n
3kk2+ [3]

∗ b(4+2) ([3]) + 4 ([3])
o

as required. Finally, using similar arguments as in the proof of part (a), we can bound

  () as

  () ≤ kk2||

for some constant  ∞, not depending on .

Theorem A.1 Suppose {} is a sequence of finite subsets of , satisfying Assumption 1,

with || → ∞ as  → ∞ Suppose further that {;  ∈   ∈ N} is an array of zero-

mean random variables with -coefficients (  ) ≤ ( + ) b() for some constants
 ∞ and  ≥ 0. Suppose for some   0 and   0

lim
→∞

sup
∈

[||2+ 1(||  )] = 0

and

b() = (−(2+1)−)

with  = max {  1}, and suppose lim inf→∞ ||−12  0, then

−1
X
∈

 =⇒ (0 1)

where 2 =  
¡P

∈


¢
.
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Proof of Theorem A.1: The proof of the theorem is largely the same as the proof of

Theorem 1 in Jenish and Prucha (2009). We will first show that all assumptions of that

theorem except Assumption 3(c) are satisfied. We will then show that the entire proof

goes through if Assumption 3(c) is replaced by the condition b() = (−(2+1)−) with

 = max {  1}.

Clearly, Assumptions 1, 2 and 5 of that theorem with  = 1 are satisfied. To verify

Assumptions 3(a) note that

∞X
=1

(1 1 )[(2+)]−1 ≤ 

∞X
=1

−2(−1)−1− ≤ 

∞X
=1

−1− ∞

since  = max {  1}. As shown in the proof of Corollary 1 in Jenish and Prucha (2009),

the latter condition implies Assumption 3(a) of Theorem 1 in Jenish and Prucha (2009).

Furthermore, it is easy to see that Assumption 3 (b) is also satisfied. Indeed, for any

+  ≤ 4, we have

∞X
=1

(  )−1 ≤ 4
∞X
=1

−1b() ≤ 

∞X
=1

−1−(2+1)− ∞

Thus, all assumptions, except Assumption 3(c), of Theorem 1 in Jenish and Prucha (2009)

hold, and hence, all steps of its proof which do not rely on that assumptions remain valid in

our case. Assumption 3(c) is only used in step 5 of that proof. Specifically, all arguments

in that step continue to hold given we show that there exists sequence  such that


||−12 → 0 as →∞ (A.10)

and

(1 || )||12 → 0 as →∞ (A.11)
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(Though 1∞ is used instead of 1|| in the proof of Theorem 1 of Jenish and Prucha

(2009), in fact the proof only relies on the coefficient 1||; see Step 9 (|3|→ 0) of

the proof in the working version of the paper).

The desired sequence  can be chosen as

 =
³
||12 log ||

´1


It is immediate that (A.10) holds,


||−12 = (log ||)−1 → 0

To verify (A.11), observe

(1 || )||12 ≤ ||+12−(2+1)−

≤ ||+12||−−12||−(2) [log ||](2+1)+

≤ ||−(2) [log ||](2+1)+ → 0

The rest of the proof is the same, word-by-word, as the proof of Theorem 1 of Jenish and

Prucha (2009).

The above CLT is in essence a variant of CLT for -mixing random fields given as

Corollary 1 of Theorem 1 in Jenish and Prucha (2009), applied to mixing coefficients of the

type (  ) ≤ (+ ) b()  ≥ 0.
Proof of Theorem 2: Since the proof is lengthy it is broken into steps.

1. Transition from  to  = 

Let  = max∈
 and  =  Also, let 

2
 =   [

P
 ] and 2 =
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  [
P

 ] =−2 2 Since

−1
X
∈

 = −1
X
∈



to prove the theorem, it suffices to show that −1
P

∈
 =⇒ (0 1). Therefore, it

proves convenient to switch notation from the text and to define

 =
X
∈

 2 =  ()

That is, in the following,  denotes
P

∈
 rather than

P
∈

, and 
2
 denotes the

variance of
P

∈
 rather than of

P
∈

. We now establish moment and mixing

conditions for  from the assumptions of the theorem. Observe that by definition of 

1(||  ) = 1(||  ) ≤ 1(||  )

and hence

[||2+ 1(||  )] ≤ [||2+ 1(||  )]

so that Assumption 4(a) implies that

lim
→∞

sup
∈

[||2+ 1(||  )] = 0 (A.12)

Hence,  is also uniformly 2+ bounded. Let k k2+ = sup∈
kk2+  Further,

note that

k −(|F())k2 = −1 k −(|F())k2 (A.13)

≤ −1() ≤ ()

since sup∈
−1 ≤   ∞, by assumption. Thus,  is uniformly 2-NED on 

with the NED coefficients (). Finally, observe that by Assumption 4(b):

inf

||−12  0 (A.14)
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Hence, there exists 0   ∞ such that for all 

|| ≤ 2 (A.15)

2. Decomposition of 

For any fixed   0, decompose  as

 =  + 

where  = (|F()),  =  − . Let

 =
X
∈

;
e = X

∈



2 =   []  e2 =  
hei

Repeated use of the Minkowski inequality yields:

| − | ≤ e, | − e| ≤  (A.16)

Observe that

 [(|F())|F())] =

⎧⎪⎪⎨⎪⎪⎩
(|F())  ≥ 

(|F())   

and hence

°° −(|F())
°°
2

= k −[|F()]−[|F()] +[(|F())|F()]k2

=

⎧⎪⎪⎨⎪⎪⎩
k −(|F())k2 ≤ () if  ≥ 

k −(|F())k2 ≤ () ≤ () if   
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since by definition the sequence () is non-increasing. Thus, for any fixed   0,
©


ª
is uniformly 2-NED on  with the same NED coefficients () as the random field {}.

Furthermore, as shown in the proof of Lemma A.3,
©


ª
is also uniformly 2+ bounded.

3. Bounds for the Variances of
P

 and
P



First note that in light of Assumption 3, and observing that ∗ = (4 + 2) ≤ ∗ =

(2 + ) and b(2+)() ≤ b 
2(2+) () we have

∞X
=1

(∗+1)−1b(2+) () ≤ ∞X
=1

(∗+1)−1b 
2(2+) () ∞

∞X
=1

(
∗+1)−1b(4+2) () ≤ ∞X

=1

(∗+1)−1b 
2(2+) () ∞

Using part (a) of Lemma A.3 with  =  and recalling (A.15), we have

|| ≤ 2 =   () ≤  || .

for some   0. Using part (b) of Lemma A.3 with  =  we have

e2 =  
³e´ ≤  || kk2 = ||() (A.17)

in light of (A.13). Hence,

lim
→∞

lim sup
→∞

e2
2
≤  lim

→∞
 () = 0 (A.18)

Furthermore, by (A.16) we have

lim
→∞

lim sup
→∞

¯̄̄̄
1− 



¯̄̄̄
≤ lim

→∞
lim sup

→∞

e


= 0 (A.19)

and hence for all  ≥ 1 and  ≥ 1




≤  ∞ (A.20)
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4. CLT for
P

∈


We now show that for any fixed   0,  satisfies Theorem A.1.

First, since sup∈

h¯̄


¯̄2+i
∞, the process ©ª is uniformly 2+0 -integrable

for 
0
= 2, i.e.,

lim
→∞

sup
∈

[
¯̄


¯̄2+2
1(
¯̄


¯̄
 )] = 0

Second, since  is a measurable function of  for any   ∈ N and   2

(  ) ≤ (   − 2) ≤  (+ )
 b ( − 2)

We next to show that b() = (−(2+1)−) for  = max {  2} and some   0. By

assumption,
∞X
=1

(∗+1)−1b 
2(2+) () ∞

where ∗ = (2 + ), which implies

b () = (−2(2+)(∗+1)) = (−[2(+2)+1]−) = (−[2+1]−)

since  ≤  + 2 for  = max {  2}. Thus, b() = (−(2+1)−) for  = .

We next show that for sufficiently large 

0  lim inf
→∞

||−12

By (A.15),

12 ≤ inf ||−12

Since lim→∞ () = 0 there exists ∗ such that in light of (A.17) for all  ≥ ∗,

||−12e ≤ 12() ≤ 122 (A.21)
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Hence by (A.16) for all  ≥ ∗ ||−12(−e) ≤ ||−12, and thus inf ||−12 ≥

inf ||−12 − sup ||−12e. Using (A.14) and (A.21), we have
lim inf

→∞
||−12 ≥ 12 − 12

2
=

12

2
 0

Thus, for all  ≥ ∗,

−1
X
∈

 =⇒ (0 1) as →∞ (A.22)

Since the first ∗ terms do not affect the analysis below we take in the following ∗ = 1

5. CLT for −1
P

∈


Finally, using Lemma A.1 we now show that, given the maintained NED assumption,

the just established CLT in (A.22) for the approximators  can be carried over to the the

. Define

 = −1
X
∈

  = −1
X
∈

,  −  = −1
X
∈



so that we can exploit Lemma A.1 to prove that

 = −1
X
∈

 =⇒  ∼ (0 1)

We first verify condition (iii) of Lemma A.1. By Markov’s inequality and (A.18), for every

  0 we have

lim
→∞

lim sup
→∞

 (| − |  ) = lim
→∞

lim sup
→∞

 (

¯̄̄̄
¯−1 X

∈



¯̄̄̄
¯  )

≤ lim
→∞

lim sup
→∞

e2
22

= 0

Next observe that  =



£
−1

P
∈


¤
 We proceed to show  =⇒  by con-

tradiction. For that purpose let M be the set of all probability measures on (RB), and
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observe that we can metrize M by, e.g., the Prokhorov distance ( ). Let  and  be

the probability measures corresponding to  and  , respectively, then  =⇒  , or

 =⇒ , iff ( ) → 0 as  → ∞. Now suppose  does not converge to . Then for

some   0 there exists a subsequence {()} such that (() )   for all (). By

(A.20), we have 0 ≤  ≤  ∞ for all   ≥ 1. Hence, 0 ≤ ()() ≤  ∞

for all (). Consequently, for  = 1 there exists a subsubsequence {((1))} such that

((1))1((1)) → (1) as 1 → ∞. For  = 2, there exists a subsubsubsequence

{((1(2)))} such that ((1(2)))2((1(2))) → (2) as 2 → ∞. The argument can

be repeated for  = 3 4. Now construct a subsequence {} such that 1 corresponds to

the first element of {((1))}, 2 corresponds to the second element of {((1(2)))}, and

so on, then

lim
→∞




= () (A.23)

for  = 1 2    Given (A.22), it follows that as →∞

 =⇒  ∼ (0 2())

Then, it follows from (A.19) that

lim
→∞

|()− 1| ≤ lim
→∞

lim
→∞

¯̄̄̄
()− 



¯̄̄̄
+ lim

→∞
sup
≥1

¯̄̄̄



− 1
¯̄̄̄
= 0

Thus  =⇒  and thus by Lemma A.1  =⇒  ∼ (0 1) as  → ∞. Since {} ⊆

{()} this contradicts the assumption that (() )   for all (). This completes

the proof of the CLT.

Proof of Corollary 1: To prove the theorem, we apply the Cramer-Wold device, and verify

that for every  ∈ R with || = 1, −1
P

 ⇒ (0 1), where  = 0. Observe
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that using the properties of norms, we have

||  =
¯̄
0

¯̄
 ≤ || ||  = || 

and

1(||   ) = 1(
¯̄
0

¯̄
  ) ≤ 1(||   )

and thus lim→∞ sup∈
[||2+ 1(||  )] = 0. Furthermore, observe

that

k − ( | F())k2 ≤ || k −( | F())k2 ≤ ()

and that for 2 =  (
P

∈
) = 0Σ we have

inf

||−1−2 2 = inf


||−1−2 0Σ ≥ inf


||−1−2 min(Σ)  0

From this we see that under the maintained assumptions  satisfies all assumptions of the

CLT for scalar-valued random fields (Theorem 2) and, therefore, −1
P

 ⇒ (0 1) as

claimed.

Next define  =−1 , then by analogous arguments as above

|| ≤ || ||  = || 

From the maintained uniform 2+ integrability of ||  it then follows that kk2+ ≤

kk2+, which shows that the 2 +  moments of  can be bounded by a constant that

does not depend on . Consequently if follows from the last inequality in the proof of part

(a) of Lemma A.3 that

 (
X
∈

) =−2 0Σ ≤ ||
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where  ∞ does not depend on  and . Hence

sup

||−1−2 max(Σ) = sup


||−1−2 sup

||=1
0Σ ≤  ∞.

This proves the second claim of the lemma.

B Appendix: Proofs for Section 4

Proof of Theorem 3: We show that

sup
∈Θ

¯̄
()−()

¯̄ → 0 (B.1)

as →∞. As discussed in the text, given that the 0 are identifiably unique it then follows

immediately from, e.g., Pötscher and Prucha (1997), Lemma 3.1, that (b 0) → 0 as

→∞ as claimed.

We start by proving that

||−1
X
∈

[( )−( )]
→ 0 (B.2)

for each  ∈ Θ, by applying the LLN given as Theorem 1 in the text to ( ). By

Assumption 6(a), we have sup∈
 |( )|  ∞ for each  ∈ Θ and  = 2,

which verifies Assumption 2(a) for ( ) with  = 1. By Assumption 6(b), the

( ) are uniformly 1-NED on , and hence w.o.l.g. we can take  = 1. Further-

more, by Assumption 6(b) the input process  is -mixing, and the -mixing coefficients

satisfy Assumption 2(b). Consequently (B.2) follows directly from Theorem 1 applied to

( ).
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Next, by Proposition 1 of Jenish and Prucha (2009), Assumption 6(c) implies that 

is 0 stochastically equicontinuous on Θ, i.e., for every   0

lim sup
→∞

1

||
X
∈



Ã
sup

(•)≤
|( )− ( 

•)|  

!
→ 0 as  → 0

Furthermore, in light of Assumption 6(a) the ( ) clearly satisfy the domination

condition postulated by the ULLN in Jenish and Prucha (2009), stated as Theorem 2 in

that paper. Given that we have already verified the pointwise LLN in (B.2) it now follows

directly from that theorem that

sup
∈Θ

|()−()| → 0 (B.3)

with () = ||−1
P

∈
( ), and that the () are uniformly equicontinuous

on Θ in the sense that

lim sup
→∞

sup
•∈Θ

sup
(•)≤

|()−(
•)|→ 0 as  → 0

To prove (B.1), observe that

sup
∈Θ

¯̄
()−()

¯̄
(B.4)

≤ sup
∈Θ

|()
0()−()()|+ sup

∈Θ
|()

0( −  )()|

≤ sup
∈Θ

|()
0()−()()|+ 2 sup

∈Θ
|()|2 | −  | 

Furthermore observe that Assumption 6(a) we have  [sup∈Θ |( )|] ≤  and

 [sup∈Θ |( )|]2 ≤  for some finite constant . Thus

sup
∈Θ

 |()| ≤  sup
∈Θ

|()| ≤ ||−1
X
∈

 sup
∈Θ

|( )| ≤  (B.5)

45



 sup
∈Θ

|()|2 (B.6)

≤ ||−2
X

∈



∙
sup
∈Θ

|( )| sup
∈Θ

|( )|
¸

≤ ||−2
X

∈

"


µ
sup
∈Θ

|( )|
¶2#12 "



µ
sup
∈Θ

|( )|
¶2#12

≤ 

Now consider the first terms on the r.h.s. of the last inequality of (B.4). From (B.5) we see

that  |()| takes on its values in a compact set. Given (B.3) it now follows immediately

from part (a) of Lemma 3.3 of Pötscher and Prucha (1997) that

sup
∈Θ

|()
0()−()()| → 0 (B.7)

Next we show that also the second term on the r.h.s. of the last inequality of (B.4) converges

in probability to zero. To see that this is indeed the case observe that sup∈Θ |()|2 =

(1) in light of (B.6) and | −  | → 0 by assumption. This completes the proof of (B.1).

Having established that () are uniformly equicontinuous on Θ, the uniform equicon-

tinuity of() onΘ follows immediately from Lemma 3.3(b) of Pötscher and Prucha (1997).

Proof of Theorem 4: Clearly by Theorem 3 we have b − 0 = (1).

Step 1. The estimators b corresponding to the objective function (13) satisfy the fol-
lowing first order conditions:

∇(b)0 h||12(b)i = (1) (B.8)

The (1) term on the r.h.s. reflects that the first order conditions may not hold if b falls
onto the boundary of Θ, and that the probability of that event goes to zero as →∞, since
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the 0 are uniformly in the in the interior of Θ by Assumption 7(a). If b is in the interior
of Θ, then the l.h.s. of (B.8) is zero.

Taking the mean value expansion of (b) about 0 yields
(b) = (0) +∇(e)(b − 0) (B.9)

where e ∈ Θ is between b and 0 (component-by-component). Let

b = ∇(b)0∇(e) and b = ∇(b)0 h||−1Σ
i12



then combining (B.8) and (B.9) gives

||12
³b − 0

´
(B.10)

=
h
 − b+ b

i
||12

³b − 0

´
− b+∇(b)0 h||12(0)

i
+ b+ (1)

=
h
 − b+ b

i
||12

³b − 0

´
− b+ b

h
Σ−12 ||(0)

i
+ b+ (1)

where b+ denotes the generalized inverse of b.

Step 2. By Assumptions 7(c) the ( 0) are uniformly 2-NED and uniformly

2+-integrable with  = 1. Given Assumptions 7(d),(g) it is now readily seen that the

process {( 0)  ∈ } satisfies all assumptions of the CLT for vector-valued NED

processes, given as Corollary 1 in the text, with  = 1. (Note that Assumption 4(d) is

satisfied automatically since the ( 0) are uniformly 2-NED.) Hence,

Σ−12 ||(0) = Σ
−12


X
∈

( 0) =⇒ (0  ) (B.11)

with Σ =  
£P

∈
( 0)

¤
and sup max

h
||−1Σ

i
∞.

Step 3. By Assumptions 7(c),(d),(e) the functions ∇( ) satisfy for each  ∈ Θ

the LLN given as Theorem 1 in the text with  = 1, observing that Assumption 2(b) is
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implied by 3. By argumentation analogous as used in the proof of consistency we have

||−1
X
∈

(∇( )−∇( ))
→ 0

By Proposition 1 of Jenish and Prucha (2009), Assumption 7(f) implies that the∇(; )

are uniformly 0-equicontinuous on Θ. Given 0-equicontinuity and Assumption 7(e), we

have by the ULLN of Jenish and Prucha (2009):

sup
∈Θ

|∇()−∇()| → 0 (B.12)

and furthermore, the ∇() are uniformly equicontinuous on Θ in the sense:

lim sup
→∞

sup
0∈Θ

sup
|−0|

|∇()−∇()|→ 0 (B.13)

as  → 0. In light of (B.12) and (B.13), and given that b − 0 = (1) and hence

e − 0 = (1), if follows further that

∇(b)−∇(0)
→ 0 and ∇(e)−∇(0)

→ 0

Hence,

b −
→ 0 and b −

→ 0 (B.14)

where b and b are as defined above, and

 = [∇(0)]
0
 [∇(0)] and  = [∇(0)]

0

h
||−1Σ

i12


Step 4. Given Assumptions 7(e),(f), and since  is positive definite, we have || = (1)

and
¯̄
−1

¯̄
= (1), respectively. Hence by, e.g., Lemma F1 in Pötscher and Prucha (1997)

we have b = (1), b+ = (1), b is nonsingular with probability tending to one, and
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b+ −−1
→ 0. In light of the above it follows from (B.10) that

||12
³b − 0

´
= − b+ b

h
Σ−12 ||(0)

i
+ (1)

= −−1 

h
Σ−12 ||(0)

i
+ (1)

Recalling that sup max

h
||−1Σ

i
∞, Assumptions 7(e) implies that || = (1). In

light of Assumption 7(g),(h) 
0
 is invertible and furthermore (

0
)
−1 = (1). Thus¯̄̄¡

−1 
0

−10


¢−1 ¯̄̄ ≤ ||2
¯̄
(

0
)
−1 ¯̄ = (1) and therefore

¡
−1 

0

−10


¢−12 ||12
³b − 0

´
= − ¡−1 

0

−10


¢−12
−1 

h
Σ−12 ||(0)

i
+ (1)

The claim that
¡
−1 

0

−10


¢−12 ||12
³b − 0

´
=⇒ (0 ) now follows, e.g., from

Corollary F4(b) in Pötscher and Prucha (1997)

Acknowledgements

We would like to thank the Editor P. M. Robinson, Associate Editor and three anonymous

referees for their valuable comments that led to substantial improvement of the paper.

We thank the participants of the Cowles Foundation Conference, Yale, June 2009, and

the seminar participants at the Columbia University for helpful discussions. This research

benefitted from a University of Maryland Ann G. Wylie Dissertation Fellowship for the first

author, and from financial support from the National Institute of Health through SBIR

grant 1 R43 AG027622 for the second author.

49



References

[1] Andrews, D.W.K., 1984, Non-strong mixing autoregressive processes. Journal of Ap-

plied Probability 21, 930-934.

[2] Andrews, D.W.K., 1987, Consistency in nonlinear econometric models: a generic uni-

form law of large numbers. Econometrica 55, 1465-1471.

[3] Andrews, D.W.K., 1988, Laws of large numbers for dependent non-identically distrib-

uted variables. Econometric Theory 4, 458-467.

[4] Bierens, H.J., 1981, Robust methods and asymptotic theory. Berlin: Springer Verlag.

[5] Billingsley, P., 1968, Convergence of probability measures. New York: John Wiley and

Sons.

[6] Bolthausen, E., 1982, On the central limit theorem for stationary mixing random fields.

Annals of Probability 10, 1047-1050.

[7] Bradley, R. ,1993, Some examples of mixing random fields. Rocky Mountain Journal of

Mathematics 23, 2, 495-519.

[8] Brockwell, P. and R. Davis, 1991, Times series: theory and methods. Springer Verlag.

[9] Bulinskii, A.V., 1989, Limit theorems under weak dependence conditions. Moscow Uni-

versity Press.

[10] Bulinskii, A.V., and P. Doukhan, 1990, Vitesse de convergence dans le theorem de

limite centrale pour des champs melangeants des hypotheses de moment faibles. C.R.

Academie Sci. Paris, Serie I, 801-105.

50



[11] Chen, X., and T. Conley, 2001, A new semiparametric spatial model for panel time

series. Journal of Econometrics105, 59-83.

[12] Cliff, A. and J. Ord, 1981, Spatial processes, models and applications. London: Pion.

[13] Conley, T., 1999, GMM estimation with cross sectional dependence. Journal of Econo-

metrics 92, 1-45.

[14] Davidson, J., 1992, A central limit theorem for globally nonstationary near-epoch de-

pendent functions of mixing processes. Econometric Theory 8, 313-329.

[15] Davidson, J., 1993, An 1 convergence theorem for heterogenous mixingale arrays with

trending moments. Statistics and Probability Letters 8, 313-329.

[16] Davidson, J., 1994, Stochastic limit theory. Oxford University Press.

[17] De Jong, R.M., 1997, Central limit theorems for dependent heterogeneous random

variables. Econometric Theory 13, 353—367.

[18] Dell, M., 2010, The persistent effects of Peru’s mining mita. Econometrica 78, 1863—

1903.

[19] Dobrushin, R., 1968, The description of a random field by its conditional distribution

and its regularity condition. Theory of Probability and its Applications 13, 197-227.

[20] Doukhan, P., and X. Guyon, 1991, Mixing for linear random fields, C.R. Academie

Sciences Paris, Serie 1, 313, 465-470.

51



[21] Doukhan, P., and G. Lang, 2002, Rates in the empirical central limit theorem for sta-

tionary weakly dependent random fields. Statistical Inference for Stochastic Processes

5, 199—228.

[22] Doukhan, P., and S. Louhichi, 1999, A new weak dependence condition and applications

to moment inequalities. Stochastic Processes and Their Applications 84, 313-342.

[23] Fogli, A., and L. Veldkamp, 2011, Nature or Nurture? Learning and geography of

female force participation. Econometrica 79, 1103-1138.

[24] Gallant, A.R. and H. White, 1988, A unified theory of estimation and inference for

nonlinear dynamic models. New York: Basil Blackwell.

[25] Gorodetskii, V. V., 1977, On the strong mixing property for linear sequences. Theory

of Probability and Applications 22, 411-413.

[26] Hallin, M., Lu, Z. and L.T. Tran, 2001, Density estimation for spatial linear processes,

Bernoulli 7, 657-668.

[27] Hallin, M., Lu, Z. and L.T. Tran, 2004, Kernel density estimation for spatial processes:

the 1 theory. Multivariate Analysis 88, 61-75.

[28] Ibragimov, I.A., 1962, Some limit theorems for stationary processes. Theory of Proba-

bility and Applications 7, 349-382.

[29] Ibragimov, I.A., and Y. V. Linnik, 1971, Independent and stationary sequences of

random variables. Wolters-Noordhoff, Groningen.

52



[30] Jenish, N., and I.R. Prucha, 2009, Central limit theorems and uniform laws of large

numbers for arrays of random fields. Journal of Econometrics 150, 86-98.

[31] Jenish, N., and I.R. Prucha, 2011, On spatial processes and asymptotic inference under

near epoch dependence, Working paper, Version January 2011.

[32] Kelejian, H.H., and I.R. Prucha, 2004, Estimation of simultaneous systems of spatially

interrelated cross sectional equations. Journal of Econometrics 118, 27-50.

[33] Kelejian, H.H., and I.R. Prucha, 2007, HAC estimation in a spatial framework. Journal

of Econometrics 140, 131-154.

[34] Kelejian, H.H. and I.R. Prucha, 2010, Specification and estimation of spatial autore-

gressive models with autoregressive and heteroskedastic disturbances. Journal of Econo-

metrics 157, 53-67.

[35] Lee, L.-F., 2004, Asymptotic distributions of quasi-maximum likelihood estimators for

spatial autoregressive models. Econometrica 72, 1899-1925.

[36] Lee, L.-F., 2007, GMM and 2SLS for mixed regressive, spatial autoregressive models.

Journal of Econometrics 137, 489—514.

[37] Lu, Z., 2001, Asymptotic normality of kernel density estimators under dependence.

Annals of Institute of Statistical Mathematics, 53, 447-468

[38] Lu, Z. and O. Linton, 2007, Local linear fitting under near epoch dependence. Econo-

metric Theory 23, 37-70.

53



[39] McLeish, D. L., 1975, Invariance principles for dependent variables. Z. Wahrsch. verw.

Gebiete 32, 165-78.

[40] Nahapetian, B., 1987, An approach to central limit theorems for dependent random

variables. Theory of Probability and its Applications 32, 589-594.

[41] Pinkse, J., L. Shen and M.E. Slade, 2007, A central limit theorem for endogenous

locations and complex spatial interactions. Journal of Econometrics 140, 215-225.

[42] Pinkse, J., L. M.E. Slade and Brett, 2002, Spatial price competition: a semiparametric

approach. Econometrica 70, 1111-1153.

[43] Pötscher, B.M. and I.R. Prucha, 1989, A uniform law of large numbers for dependent

and heterogeneous data processes. Econometrica 57, 675-683.

[44] Pötscher, B.M. and I.R. Prucha, 1994, Generic uniform convergence and equicontinuity

concepts for random functions. Journal of Econometrics 60, 23-63.

[45] Pötscher, B.M. and I.R. Prucha, 1997, Dynamic nonlinear econometric models.

Springer-Verlag, New York.

[46] Robinson, P.M., 2009, Large-sample inference on spatial dependence. The Econometrics

Journal, Tenth Anniversary Special Issue 12, S68-S82.

[47] Robinson, P.M., 2010, Efficient estimation of the semiparametric spatial autoregressive

model. Journal of Econometrics 157, 6-17.

[48] Takahata, H., 1983, On the rates in the central limit theorem for weakly dependent

random fields. Z. Wahrsch. verw. Gebiete 64, 445-456.

54



[49] Wooldridge, J., 1986, Asymptotic properties of econometric estimators. University of

California San Diego, Department of Economics, Ph.D. Dissertation.

[50] Yu, J., R. de Jong, and L.-F. Lee, 2008, Quasi-maximum likelihood estimators for

spatial dynamic panel data with fixed effects when both N and T are large. Journal of

Econometrics 146, 118-134.

55


