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The paper derives a general Central Limit Theorem (CLT) and asymptotic distributions for sample
moments related to panel data models with large n. The results allow for the data to be cross sectionally
dependent, while at the same time allowing the regressors to be only sequentially rather than strictly
exogenous. The setup is sufficiently general to accommodate situationswhere cross sectional dependence
stems from spatial interactions and/or from the presence of common factors. The latter leads to the need
for random norming. The limit theorem for sample moments is derived by showing that the moment
conditions can be recast such that a martingale difference array central limit theorem can be applied.
We prove such a central limit theorem by first extending results for stable convergence in Hall and
Heyde (1980) to non-nested martingale arrays relevant for our applications. We illustrate our result by
establishing a generalized estimation theory for GMM estimators of a fixed effect panel model without
imposing i.i.d. or strict exogeneity conditions. We also discuss a class of Maximum Likelihood (ML)
estimators that can be analyzed using our CLT.
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1. Introduction

In this paperwe develop a central limit theory for data setswith
cross-sectional dependence. Importantly, the theory is sufficiently
general to cover panel data sets, allowing the data to be cross sec-
tionally dependent, while at the same time allowing for regressors
that are only sequentially (rather than strictly) exogenous. The pa-
per considers cases where the time series dimension T is fixed. Our
results also cover purely cross-sectional data sets.

At the center of our results lies a cross-sectional conditional
moment restriction that avoids the assumption of cross-sectional
independence. The paper proves a central limit theorem for
the corresponding sample moment vector by extending results
of Hall and Heyde (1980) for stable convergence of martingale
difference arrays to a situation of non-nested information sets
arising in cross-sections and panel data sets. We then show that by
judiciously constructing information sets in a way that preserves
a martingale structure for the moment vector in the cross-section
our martingale array central limit theorem is applicable to cross-
sectionally dependent panel and spatial models.

The classical literature on dynamic panel data has generally
assumed that the observations, including observations on the
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exogenous variables, which were predominantly treated as se-
quentially exogenous, are cross sectionally independent. The as-
sumption of cross sectional independencewill be satisfied inmany
settings where the cross sectional units correspond to individuals,
firms, etc., and decisions are not interdependent or when depen-
dent units are sampled at random as discussed in Andrews (2005).
However in many other settings the assumption of cross-sectional
independence may be violated. Examples where it seems appro-
priate to allow for cross sectional dependence in the exogenous
variables may be situations where regressors constitute weighted
averages of data that include neighboring units (as is common in
spatial analysis or in social interaction models), situations where
the cross sectional units refer to counties, states, countries or in-
dustries, and situations where random sampling from the popula-
tion is not feasible.

A popular approach to model cross sectional dependence is
through common factors; see, e.g., Phillips and Sul (2007), Bai
and Ng (2006a,b), Pesaran (2006), and Andrews (2005) for recent
contributions. This represents an important class of models, how-
ever they are not geared towards modeling cross sectional inter-
actions.2 Our approach allows for factor structures in addition to

2 Bai and Ng (2006a,b) allow for cross sectional correlation in the idiosyncratic
disturbances, but assume that the disturbance process is independent of the factors
and loadings. The setups considered in the other papers imply that the observations
are independent in the cross sectional dimension conditional on the common
factors.
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Abstract

The paper derives a general Central Limit Theorem (CLT) and asymptotic distributions for sample mo-

ments related to panel data models with large . The results allow for the data to be cross sectionally

dependent, while at the same time allowing the regressors to be only sequentially rather than strictly

exogenous. The setup is sufficiently general to accommodate situations where cross sectional dependence

stems from spatial interactions and/or from the presence of common factors. The latter leads to the need

for random norming. The limit theorem for sample moments is derived by showing that the moment condi-

tions can be recast such that a martingale difference array central limit theorem can be applied. We prove

such a central limit theorem by first extending results for stable convergence in Hall and Hedye (1980)

to non-nested martingale arrays relevant for our applications. We illustrate our result by establishing a

generalized estimation theory for GMM estimators of a fixed effect panel model without imposing i.i.d. or

strict exogeneity conditions. We also discuss a class of Maximum Likelihood (ML) estimators that can be

analyzed using our CLT.

Keywords: Cross-sectional dependence, spatial martingale difference sequence, Central Limit Theorem,

spatial, panel, GMM, MLE, multinomial choice, social interaction.



1 Introduction 1

In this paper we develop a central limit theory for data sets with cross-sectional dependence. Importantly,

the theory is sufficiently general to cover panel data sets, allowing the data to be cross sectionally de-

pendent, while at the same time allowing for regressors that are only sequentially (rather than strictly)

exogenous. The paper considers cases where the time series dimension  is fixed. Our results also cover

purely cross-sectional data-sets.

At the center of our results lies a cross-sectional conditional moment restriction that avoids the as-

sumption of cross-sectional independence. The paper proves a central limit theorem for the corresponding

sample moment vector by extending results of Hall and Heyde (1980) for stable convergence of martingale

difference arrays to a situation of non-nested information sets arising in cross-sections and panel datasets.

We then show that by judiciously constructing information sets in a way that preserves a martingale struc-

ture for the moment vector in the cross-section our martingale array central limit theorem is applicable to

cross-sectionally dependent panel and spatial models.

The classical literature on dynamic panel data has generally assumed that the observations, including

observations on the exogenous variables, which were predominantly treated as sequentially exogenous,

are cross sectionally independent. The assumption of cross sectional independence will be satisfied in

many settings where the cross sectional units correspond to individuals, firms, etc., and decisions are not

interdependent or when dependent units are sampled at random as discussed in Andrews (2005). However

in many other settings the assumption of cross-sectional independence may be violated. Examples where

it seems appropriate to allow for cross sectional dependence in the exogenous variables may be situations

where regressors constitute weighted averages of data that include neighboring units (as is common in

spatial analysis or in social interaction models), situations where the cross sectional units refer to counties,

states, countries or industries, and situations where random sampling from the population is not feasible.

A popular approach to model cross sectional dependence is through common factors; see, e.g., Phillips

and Sul (2007), Bai and Ng (2006a,b), Pesaran (2006), and Andrews (2005) for recent contributions. This

represents an important class of models, however they are not geared towards modeling cross sectional

interactions.2 Our approach allows for factor structures in addition to general, unmodelled (through

1Our thanks for very helpful comments are owed to David Drukker, Nazgul Jenish, Harry Kelejian, Benedikt Pötscher,

Peter Robinson and two anonymous referees. We also thank participants of conferences at the Advanced Institute in Vienna,

at Cemmap in London, at the Cowles Foundation, the Swiss Economists Abroad Conference and at seminars at Boston

University, ETH Zurich, NYU Stern School of Business and Rutgers University for their helpful comments. Ingmar Prucha

gratefully acknowledges financial support from the National Institute of Health through the SBIR grants R43 AG027622 and

R44 AG027622.
2Bai and Ng (2006a,b) allow for cross sectional correlation in the idiosyncractic disturbances, but assume that the distur-

bance process is independent of the factors and loadings. The setups considered in the other papers imply that the observations
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covariates) cross-sectional dependence of the observed sample. Using the GMM estimator for a linear

panel model as an example, we illustrate that conventional inference methods remain valid under the

conditions of our central limit theory when samples are not i.i.d. in the cross-section. These results extend

findings in Andrews (2005) to situations where samples are not i.i.d. even after conditioning on a common

factor. Given that our assumptions allow for factor structures, our limit theory involves and accommodates

random norming. Technically this is achieved by establishing stable convergence and not just convergence

in distribution for the underlying vector of sample moments. We prove a martingale central limit theorem

for stable convergence by extending results of Hall and Heyde (1980) to allow for non-nested -fields that

naturally arise in our setting.

Another popular approach to model cross sectional dependence is to allow for spatial interactions in

terms of spatial lags as is done in Cliff and Ord (1981) type models. Dynamic panel data models with

spatial interactions have recently been considered by, e.g., Mutl (2006), and Yu, de Jong and Lee (2008,

2012). All of those papers assume that the exogenous variables are fixed constants and thus maintain strict

exogeneity. The methodology developed in this paper should be helpful in developing estimation theory

for Cliff-Ord type spatial dynamic panel data models with sequentially exogenous regressors.

While some of the classical literature on dynamic panel data models allowed for cross sectional cor-

relation in the exogenous variables, this was, to the best of our knowledge, always combined with the

assumption that the exogenous variables are strictly exogenous. This may stem from the fact that strict

exogeneity conveniently allows the use of limit theorems conditional on all of the exogenous variables.

There are many important cases where the strict exogeneity assumption does not hold, and regressors,

apart from time-lagged endogenous variables, or other potential instruments are only sequentially exoge-

nous. Examples given by Keane and Runkle (1992) include rational expectations models or models with

predetermined choice variables as regressors. Other examples are the effects of children on the labor force

participation of women considered by Arellano and Honore (2001, p. 3237) or the relationship between

patents and R&D expenditure studied by Hausman, Hall and Griliches (1984); see, e.g., Wooldridge (1997)

for further commentary on strict vs. sequential exogeneity.

Motivated by the above, the main aim of our paper is to develop a general central limit theory for

sample moments of a panel data set, where we allow for cross sectional dependence in the explanatory

variables and disturbances (and thus in the dependent variable), while allowing for some of the explanatory

variables to be sequentially exogenous. The setup will be sufficiently general to accommodate cross sectional

dependence due to common factors and/or spatial interactions, both of which can affect the covariates. Our

results are different from central limit theorems for spatial process such as Bolthausen (1982) and Jenish

and Prucha (2009, 2012) because we do not impose a spatial structure on the cross-sectional dimension of

are independent in the cross sectional dimension conditional on the common factors.
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the panel. As a result the high level conditions that need to be checked to apply our CLT are relatively

simple compared to the spatial CLT’s. On the other hand, the conditional moment restrictions we impose

are often synonymous with correct specification of an underlying model which may not be required by

CLT’s for mixing processes as in Bolthausen (1982).

The paper is organized as follows. In Section 2 we formulate the moment conditions, and give our basic

result concerning the limiting distribution of the normalized sample moments. The analysis establishes

not only convergence in distribution but stable convergence. In Section 3 we illustrate how the central

limit theory can be applied to efficient GMM estimators for linear panel models. We derive their limiting

distribution, and give a consistent estimator for the limiting variance covariance matrix. In Section 4 we

present regularity conditions for a class of maximum likelihood estimators (MLE) and show how our CLT

can be applied. We give examples of specific multinomial choice models that fit our framework. Concluding

remarks are given in Section 5. Basic results regarding stable convergence as well as all proofs are relegated

to the appendices.

2 Central Limit Theory

2.1 Moment Conditions

In the following we develop a central limit theory (CLT) for a vector of sample moments for panel data

where  and  denote the cross section and time dimension, respectively. For the CLT developed in this

section we assume that sample averages are taken over , with  tending to infinity and  fixed. We allow

for purely cross-sectional data-sets by allowing for  = 1 in the CLT. However, this condition may need

to be strengthened to   0 for some 0  1 for specific models and data transformations.

Our basic central limit theorem is stated for averages

() = −12
X
=1

 (1)

over the cross-section of  × 1 random vectors  = (01     
0
 )

0.3 The dimension of the sub-vectors

 is  × 1 and thus allowed to depend on . The index  is an identifier for a particular unit, where

units could be individuals, firms, industries, counties, etc. While units may refer to geographic entities,

no spatial structure is explicitly imposed on  On the other hand, the index  is given the conventional

notion of sequential time.

3With stronger assumptions than we impose in this paper it may be possible to prove a multivariate CLT for () based

on the martingale structure of  only, ie. without regard to the time series nature of . An example is the case when the

random vectors  are exchangeable. Without such additional assumptions a detailed treatment of the time series structure

of  is needed.
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In introducing our basic CLT the aim is to provide a convenient module that can be readily used to

establish, in particular, a CLT for the sample moment vector associated with GMM estimators and the

score of the log-likelihood function of ML estimators. For GMM estimators  will typically refer to the,

say,  sample moments between a vector of instruments and some basic disturbances for unit  in period

. For ML estimation  will typically refer to the score of the log likelihood function corresponding to

unit  and period , with  =  the dimension of the parameter vector of interest. In the following we set

 =
P

=1 

We next give some basic notational definitions used throughout the paper. All variables are assumed

to be defined on a probability space (ΩF   ). With , , ,  and  we denote, respectively,

the dependent variable, the sequentially exogenous covariates, the strictly exogenous covariates, unit spe-

cific unobserved effects and idiosyncratic disturbances. The particular meaning of sequential and strict

exogeneity will be made explicit below. Furthermore, it proves helpful to introduce the following nota-

tion:  = (1      ),  = (1      ),  = (1      ),  = (1      ), 

 = (1     ),

 = (1     ), 

 = (1     ), and − = (1     −1 +1 ). Although not explicitly

denoted, these random variables as well as the  are allowed to depend on the sample size , i.e., to form

triangular arrays.

Our setup is aimed at accommodating fairly general forms of cross-sectional dependence in the data.

In particular, analogous to Andrews (2005), who considers static models, we allow in each period  for the

possibility of regressors and disturbances (and thus for the dependent variable) to be affected by common

shocks that are captured by a sigma field C ⊂ F . A special case arises when  denotes a vector of common
shocks such that C = (). Alternatively or concurrently we allow for cross sectional dependence due

to “spatial lags” in the sense that some of the variables may be weighted cross-sectional averages of some

basic variables.4 In the following let C = C1 ∨    ∨ C where ∨ denotes the sigma field generated by the
union of two sigma fields. For simplicity we will also write C = C in the following. In the important
special case where common shocks are not present we have C = C = {∅Ω}.

As remarked, the CLT developed in this section will provide a basic module towards deriving a gen-

eralized limit theory for GMM and ML estimators. The estimator specific details regarding () are not

directly relevant and will be suppressed for the discussion of the CLT. However, to further motivate the

results of this section we note that if () denotes either the sample moment vector associated with GMM

estimators or the score of the log-likelihood function of ML estimators considered below, then () can

be expressed as () = (), where  is a non-stochastic matrix of dimension  ×  where  ≤ .

Furthermore, towards establishing the limit properties of specific estimators interest will typically focus

4We note that spatial lags will generally depend on the sample size, which motivates why the variables are allowed to form

triangular arrays.
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on expressions of the form () = (), where  is a ∗×  matrix, which may depend on C in light
of the potential presence of common factors. This motivates that we will also provide limit theorems for

(), where  is some general (potentially) stochastic ∗ ×  matrix, which is measurable w.r.t. to C.
We next state a set of mild regularity conditions. To formulate our main moment conditions we define

the following information sets.

Definition 1 Let {G  = 0     +1} with G0 = {∅Ω} be a non-decreasing sequence of sub--fields
of F and let {B   = 1       = 1     } be sub--fields of F , with both G and B generated by
subsets of the random vectors (    )


=1. Let  be any permutation of (1  )→ ( (1)    ()) 

Then the sub-fields G and B satisfy

G(−1)+ ⊆ B (2)

and {B   = 1       = 1     } is invariant to any reordering of the random variables (    )→³
() () () () ()

´
in the following sense: Let B be the sub-sigma field generated from the per-

muted sample
³
() () () () ()

´
 Then B = B() for all permutations  () of  elements

and all  = 1   and  = 1  

We formulate our basic conditional moment restriction with respect to B which implies that the
moment restriction holds for all reorderings of the sample. On the other hand, G(−1)+ is constructed
for a fixed, yet arbitrary, ordering of the sample with the purpose of forming a martingale to which our

martinagale CLT can be applied.

For the results in this section the specifics of the information sets are not of interest. However to

motivate the above definitions we note that the information sets considered in connection with our GMM

estimator will be of the form5

B = 
n¡

   

−1 

¢
=1

 −
o

and G(−1)+ = 
n¡

   

−1 

¢
=1

 ()
−1
=1

o


(3)

The basic moment condition for our GMM estimator will be  [|B ∨ C ] = 0. Now let  denote a
1× vector of available instruments, with the property that they are measurable w.r.t. 

½³
 

´
=1

¾
,

and let  = 0 denote the vector of sample moments. Then within this setting, the moment condition

critical to deriving the CLT, 
£
|G(−1)+ ∨ C

¤
= 0 clearly holds. The specification of the above

information sets will be discussed in more detail in the section on GMM estimation. At this point we only

5A special case of (3) arises when  =  and no other covariates and fixed effects are present. Then, B =



−1

=1

 −


and G(−1)+ = 


−1

=1




−1
=1


 In this configuration, the theory in this sec-

tion provides a CLT for () directly, without reference to an underlying model.
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note (i) that the definition of B is such that the basic moment condition is independent of the ordering
of the data and (ii) measurability of the  w.r.t. G(−1)++1 is satisfied for any particular ordering
of the data because G(−1)++1 is constructed for that particular ordering. Also, the definition of B
formalizes the distinction between sequentially exogenous variables  and strictly exogenous variables

, in that for the former the basic moment condition is only assumed to hold for 

 but not for  .

The sequential nature of the moment restriction allows for dynamic models where  could contain lagged

dependent variables. The fact that the conditioning set contains variables not only for unit , but also for

 6=  reflects that we allow for cross sectional dependence (even if common shocks are not present).

The ML estimators we consider in Section 4 satisfy regularity conditions that imply that the score of

the log-likelihood can be written as () =
P

=1

P
=1  where the  are functions of the data and

unknown parameters. Under the regularity conditions in Section 4 it follows that  [|B ∨ C] = 0

such that our martingale CLT can be applied. More specifically, we consider models where the  are

such that B and G(−1)+ can be specified as

B = 
n¡

 

−1

¢
=1

 −
o

and G(−1)+ = 
n¡

 

−1

¢
=1

 ()
−1
=1

o
 (4)

We impose the following moment restrictions on .

Assumption 1 The following conditions hold for all  = 1      ,  = 1     ,  ≥ 1:
(a) Let kk denote the Euclidean norm, then for some   0,


h
kk2+ |B ∨ C

i
≤  (5)

where  is uniformly integrable.

(b) The  are measurable with respect to G(−1)++1∨C and the following conditional moment restriction
holds:

 [|B ∨ C ] = 0 (6)

(c) Let ̃() = diag
³
̃1  ̃

´
with ̃ = −1

P
=1 

0
, then there exist a matrix  = diag(1   ),

where for each ,  has finite elements and is positive definite ,  is C measurable, and as →∞,

̃ − 
→ 0

Assumption 1(a) ensures the existence of various expectations considered subsequently. The condition

in Assumption 1(b) is the key moment condition we impose on  If  is the moment vector or the

score of an estimator, as it will be in our leading examples, then Assumption 1(b) usually implies correct

specification of a conditional moment restriction or of the likelihood used as the basis for estimation.

Assumption 1(b) implies, of course, that

 [] = 0 (7)
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More importantly, because G(−1)+ ∨ C ⊆ B ∨ C  it follows that 
£
|G(−1)+ ∨ C

¤
= 0 which,

together with the fact that G(−1)+ ∨ C is non-decreasing, leads to the construction of the martingale
difference sequence central to our CLT. Assumption 1(b) is thus slightly stronger than needed for the

CLT. We note that equations (5) and (6) could be replaced with 
h
kk2+ |G(−1)+ ∨ C

i
≤  and


£
|G(−1)+ ∨ C

¤
= 0 without affecting our results. However, these conditions do depend on the

particular ordering of the cross-section underlying the construction of G(−1)+ and may not hold for
other orderings of the sample, at least not without additional assumptions. We impose (5) and (6) to

guarantee that our results are robust to arbitrary ordering of the sample.

As an important example consider again moment vectors of the form  = 0 as discussed after

Definition 1 where the  are i.i.d. conditional on B = 

½³
   


−1 

´
=1

¾
. Then (6) clearly

holds. Of course,  being i.i.d. does not imply that  is independent in the cross-section because 

could be cross-sectionally dependent. In addition, if the elements of  are only sequentially exogenous

instead of strictly exogenous, one cannot condition on all of the exogenous variables when analyzing the

limit distribution of () Thus, in this setting a CLT for i.i.d. sequences cannot be applied to (), even

when  is i.i.d.

The moment condition (6) in Assumption 1(b) is formulated for a situation where the common factors

are only sequentially exogenous. While this assumption may be natural from a modelling perspective,

it turns out that Assumption 1(b) is not quite strong enough to establish a central limit theorem. The

next condition strengthens (6) by requiring that the common factors are orthogonal to all elements of the

sequence .

Assumption 2 The  are measurable with respect to G(−1)++1 ∨ C and the following conditional
moment restrictions hold:

 [|B ∨ C] = 0 (8)

Remark 1 Condition (8) implies (6) because B∨C ⊂ B∨C. An example where moment condition
(8) is satisfied are models where the common factors are strictly exogenous. This is a typical assumption

in the panel data literature with common factors. An example of a model for , where  depends on

common shocks  and satisfies (8) is  =  where () and () are independent and  [|B] = 0.
As remarked, our analysis includes the important case where no common factors are present by allowing

C = {Ω ∅}, as is typical in the spatial literature.6 In this case conditions (6) and (8) are identical, and
Assumption 2 is automatically implied by Assumption 1.

Additional implications of Assumption 1(b) are that 
£


0


¤
= 0 for  6=  or  6= , and thus


£


0


¤
= diag

¡

£
1

0
1

¤
  

£


0


¤¢
 (9)

6See, e.g., Baltagi at al. (2009), Kapoor et al. (2007), Lee and Yu (2010), and Yu et al. (2012).
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To interpret Assumption 1(c) consider the matrix of second order sample moments

() = −1
X
=1


0
 (10)

Then in light of (9) we have 
£
()

¤
= 

h
̃()

i
. Assumption 1(c) holds under a variety of low level

conditions with

 = plim−1
X
=1


£


0
|C
¤


An example of such a low level condition is the conditional i.i.d. assumption of Andrews (2005), in which

case  = 
£


0
|C
¤
. Another example would be a condition that imposes some form of cross-sectional

mixing. A third example would be to postulate cross-sectional stationarity and appeal to the ergodic theo-

rem. If  is a moment vector of the form 0 where  is a vector of instruments, and  is conditionally

homoskedastic with 
£
2|B ∨ C

¤
= 2, then ̃ − 

→ 0 with  = 2 plim−1
P

=1 [
0
|C] can

be implied solely from convergence assumptions on the second order sample moments of the instruments.

If C = {∅Ω}, i.e., no common factors are present, then  is a matrix of fixed constants.

The following lemma provides a sufficient condition for Assumption 1(c).

Lemma 1 Suppose Assumptions 1(a) and 2 hold, and


£


0
|B ∨ C

¤
= 

£


0
|F(−1)+

¤
(11)

for any cross sectional ordering of the data and where F(−1)+ is defined in (12) below. Let ̄() =

diag
¡
̄1  ̄

¢
with

̄ = −1
X
=1


£


0
|B ∨ C

¤


and assume that there exist a matrix  = diag(1   ), where for each ,  has finite elements and is

positive definite ,  is C measurable, and ̄ − 
→ 0 as →∞. Then Assumption 1(c) holds.

One potential application of the lemma is in the context of GMM estimation with moment vectors

 = 0. For the exemplary setting discussed after Definition 1 we have 
£


0
|B ∨ C

¤
=


£
2|B ∨ C

¤
0. The condition (11) would then hold if, e.g., the  are homoskedastic conditionally

on B ∨ C or independent conditionally on B = 

½³
   


−1 

´
=1

¾
.

When (6) holds but not (8) several cases leading to different limiting distributions for the central limit

theorem below can be distinguished. For the proof of the CLT and the statement of the next assumption

we need to introduce additional -fields ( = 1       = 1     ):

F(−1)+ = G(−1)+ ∨ C (12)
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and F0 = C. The -fields F(−1)+ differ in two important regards from B ∨ C  First, they are
arranged sequentially, to accommodate the application of the CLT. Second, they contain the entire -fields

C rather than C  The later gives rise to the following assumption.

Assumption 3 Let ̌ = (̌
0
1     ̌

0
 )

0 =  − 
 where 

 =
¡

£
01|F

¤
  

£
0 |F(−1)+

¤¢0
,

and let  = −1
P

=1 

 . Furthermore, let ̌() = diag

¡
̌1  ̌

¢
with ̌ = −1

P
=1 ̌̌

0
, then

there exist a matrix ̌ = diag(̌1  ̌ ), where for each , ̌ has finite elements and is positive definite

, ̌ is C measurable, and
̌ − ̌

→ 0 (13)

as →∞. In addition, one of the following statements holds:
(a) 

→  where  is finite a.s. and C measurable.
(b)
√


→  where  is finite a.s. and C measurable.
(c)
√


→ 0

Remark 2 Assumption 2 implies that  = 0 and thus Assumption 2 automatically implies Assumption

3(c). If no common shocks are present, Assumption 3(c) is also automatically implied by Assumption 1.

Finally, note that our setting does not imply that the random variables  are exchangeable. For

example, let  =  where  is i.i.d.  (0 1) and independent of  with C =  ()  | | ≤   ∞
a.s. Furthermore, let  be nonrandom factor loadings with || ≤  ∞ such that lim→∞ −1

P
=1 

2


exists. It can be checked that  satisfies our conditions with B = (−), in particular,  =

2 lim→∞ −1
P

=1 
2
 which is C-measurable. On the other hand,  does not satisfy the conditions in

Andrews (2005) because, conditional on C  is not identically distributed and  is not exchangeable. To

see the latter, note that for example 
£
2
¤
= 2

£
2
¤
which depends on  and contradicts exchangeability

(see Kingman, 1978, p.185). The reason why  is not necessarily exchangeable comes from the fact that

we only restrict the conditional mean of the distribution while the concept of exchangeability imposes

restrictions on the entire distribution.

2.2 Limit Theorems

In this section we establish the limiting distribution of the moment vector () = −12
P

=1  and then

give a discussion of the strategy by which the result is derived. In fact, we not only establish convergence

in distribution of (), but we establish C-stable convergence of (), which allows us to establish the
joint limiting distribution for

³
() 

´
for any matrix valued random variable  that is C measurable.

Establishing joint limits is a requirement for the continuous mapping theorem to apply.7 Applying the

7See, e.g., Pötscher and Prucha (2001), pp. 207, for discussions and examples of this requirement.
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continuous mapping theorem allows us to establish the limiting distribution of transformations of (), e.g.,

of () or 
0
()(), which is important for establishing the limiting distribution of typical estimators

and test statistics. In particular, the developed limit theory allows us to accommodate random norming,

where the need for random norming arises from the presence of the common factors represented by C.
To prove stable convergence of () we first establish a general central limit theorem for zero mean,

square integrable martingale arrays {F 1 ≤  ≤   ≥ 1} with differences , which we expect to

be useful in many other contexts. We next present a formal definition of stable convergence, cf. Daley

and Vere-Jones (1988, p. 644). Various equivalent conditions are summarized in Proposition A.1 in the

appendix.

Definition 2 Let (ΩF   ) be a probability space and let B (R) denote the Borel -field on R. If

{ :  = 1 2   } and  are R-valued random vectors on (ΩF   ), and F0 is a -field such that

F0 ⊂ F, then


→  (F0-stably)

if for all  ∈ F0 and all  ∈ B (R) with  ( ∈ ) = 0

 ({ ∈ } ∩ )→  ({ ∈ } ∩ )

as →∞ and where  denotes the boundary of .

The next theorem extends results in Hall and Heyde (1980) by establishing stable convergence without

requiring that the -fields F are nested in the sense of Hall and Heyde’s condition (3.21), in other

words satisfy F ⊆ F+1. This is achieved at the cost of restricting stable convergence to F0 rather
than establishing it on all of F . The nesting condition F ⊆ F+1 may be quite natural in a time

series setting but does not hold for panel data with increasing cross-sectional sample size. It is therefore

necessary to prove a modified version of Hall and Heyde’s CLT adapted to our panel data structure. We

note that when F0= {0Ω}, F0-stable convergence is convergence in distribution. Thus the former always
implies the latter.

Theorem 1 Let {F 1 ≤  ≤   ≥ 1} be a zero mean, square integrable martingale array with
differences  Let F0 = ∩∞=1F0 with F0 ⊆ F1 for each  and  [1|F0] = 0 and let 2 be an a.s.
finite random variable measurable w.r.t. F0. If

max

|| → 0 (14)

X
=1

2


→ 2 (15)
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and


³
max


2


´
is bounded in  (16)

then

 =

X
=1


→  (F0-stably)

where the random variable  has characteristic function 
£
exp

¡−1
2
22

¢¤
. In particular, 

→ 

(F0-stably) where  ∼ (0 1) is independent of  (possibly after redefining all variables on an extended

probability space).

The conditions imposed in Theorem 1 are identical to the conditions of Hall and Heyde (1980, Theorem

3.2, p.58) except for their condition (3.21) postulating F ⊆ F+1, which we do not require. On the
other hand, our conclusion is weaker because we only establish F0-stable rather than F-stable convergence.
Eagleson (1975) obtains a result similar to ours by also assuming measurability of  w.r.t F0 without
requiring Hall and Heyde’s condition (3.21). The corollary after Theorem 3 in Eagleson (1975) maintains

an identical catalogue of assumptions as Hall and Heyde (1980, Corollary 3.1, pp.58) except for their

condition (3.21). However, in contrast to Hall and Heyde’s corollary, Eagleson’s corollary only establishes

convergence in distribution and not stable convergence. The corollary after Theorem 2 in Eagleson (1975)

establishes stable convergence, however he derives this result only at the expense of assuming almost sure

convergence and not just convergence in probability in (15). Our result then shows that Hall and Heyde’s

condition (3.21) is sufficient but not necessary to establish stable convergence, on a restricted -field, under

(15). This is in some contrast to what is implied by Hall and Heyde’s comment on Eagleson’s result (see

Hall and Heyde, 1980, p 59). The difference between Eagleson’s result and ours lies in the proof strategy.

While Eagleson establishes convergence of the conditional distributions, we are modifying Hall and Heyde’s

proof which is based on showing joint convergence. Both convergence concepts imply stable convergence

by Réyni (1963) and Aldous and Eagleson (1978) whose results are summarized in Proposition A.1 in the

appendix. Dedecker and Merlevede (2002) establish a result similar to Eagleson’s (1975) under weaker

conditions but by imposing stationarity which we do not require.

Our next result applies Theorem 1 to the panel structure specific to  This is possible because of the

particular way we construct the filtrations F(−1)+ defined in (12) to generate a martingale structure.

Theorem 2 (a) Suppose Assumptions 1 and 2 hold. Then

()
→  12 (C-stably), (17)

where  ∼  (0 ), and  and C (and thus  and  ) are independent.

(b)Let  be some ∗ ×  matrix that is C measurable with finite elements and rank ∗ . Suppose

11



Assumptions 1 and 2 hold, then

()
→ ( 0)12∗ (C-stably), (18)

where ∗ ∼  (0 ∗), and ∗ and C (and thus ∗ and  0) are independent. If Assumptions 1 and 3(a)
hold, then


³
() −

√


´
→ (̌ 0)12∗ (C-stably), (19)

and () diverges. If Assumptions 1 and 3(b) hold then

()
→ (̌ 0)12∗ + (C-stably). (20)

If Assumptions 1 and 3(c) hold, then (20) holds with  = 0.

The proof of Theorem 2 employs Theorem 1 for martingale difference arrays and uses Propositions A.1

and A.2 in the Appendix in conjunction with the Cramer-Wold device. We illustrate the proof strategy

here and assume for the remainder of this section that Assumption 2 holds to simplify the argument. A

detailed proof is given in the appendix. Let  = (01 
0
2     

0
 )
0 be some nonstochastic vector, where 

is of dimension  × 1 and where 0 = 1. Then

0() = −12
X
=1

0 (21)

Next, let 1 = 0, and for  = 1      define

+1 = −12011

++1 = −12022
...

(−1)++1 = −120 

(22)

such that we can express 0() as

0() =
+1X
=1

. (23)

To establish the limiting distribution of
P+1

=1  through the martingale difference array CLT we utilize

the information sets in (12). Clearly the construction of these information sets is such that F−1 ⊆ F,

 is F-measurable, and  [|F−1] = 0 in light of Assumption 2 and observing that F(−1)+ ⊆
B ∨ C. The proof of the first part of Theorem 2 in the appendix proceeds by verifying that under the

maintained assumptions the martingale difference array {F 1 ≤  ≤  + 1  ≥ 1} satisfies all
remaining conditions postulated by Theorem 1. Given that this CLT delivers stable convergence (and not

just convergence in distribution) the claims in (17) and (18) then follow from Propositions A.1 and A.2.

12



The construction of the information sets F(−1)+ = G(−1)+ ∨ C as in (12) is crucial. To provide
some additional insights into the ideas underlying the construction of the information sets it may be helpful

to consider again the information sets (3) which will be used in connection with our GMM estimator.

For our GMM estimator we will have (−1)++1 = −120, where  will be be a function of³
 

´
=1
. At first glance it may seem unusual to include()

−1
=1 in the information set G(−1)+,

and one may be tempted to use the information sets B ∨ C where B = 

½³
   


−1 

´
=1

¾
instead. However, we emphasize that it is precisely because of the inclusion of ()

−1
=1

that  is indeed

F-measurable for all , as required by the CLT.8 Using B ∨ C for the sequence of information sets
would have lead to a violation of this measurability condition. Alternatively, one may have been tempted

to use B∨C for the sequence of information sets, i.e., to include − in place of ()−1=1. However this

would have lead to a violation of the assumption that the information sets are non-decreasing.

2.3 Examples and Special Cases

In this section we further discuss Theorem 2 by considering some examples and special cases. Obviously

an important special case is  = 1, i.e., when we have a single cross section. We consider a further

specialization by assuming exemplarily that 1 = 011, which can be interpreted as the moment vector

of a cross sectional regression without fixed effects.9 Dropping subscripts  for notational convenience we

have  = 0, and the information sets corresponding to (3) are given by

B = 
©
()


=1 ()


=1 6=

ª


G = 
n
()


=1 ()

−1
=1

o
.

Since 
h
kk2+ |B ∨ C

i
= 

h
||2+ |B ∨ C

i
[0]

1+2
and  [|B ∨ C] = 0 [|B ∨ C], and

assuming that the 2 +  moments of the  are uniformly bounded, it is readily seen that the following

conditions imply the conditions of Assumption 1:

(a) 
h
||2+ |B ∨ C

i
≤  with sup [


 ] ∞ for some   1. (The measurability of  w.r.t. G+1

holds trivially.)

(b)  [|B ∨ C] = 0

(c) −1
P

=1 
2


0
 →  where  is C-measurable, has finite elements and is positive definite 

8Within the context of establishing the limiting distribution of linear quadratic forms composed of independent distur-

bances Kelejian and Prucha (2001) employed somewhat related ideas; cp. also Yu et al. (2012). However their setups

differ substantially from ours, and these papers do not consider sequentially exogenous covariates, nor common factors and

corresponding stable convergence.
9We thank one of the referees for suggesting this special case.
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Of course for  = 1 Assumption 1 also implies Assumption 2. By Theorem 2 we then have ()
→  12

(C-stably),where  ∼  (0 ), and  and  are independent. When  = 1 the result that ()
→  12

(C-stably) also follows directly from Theorem 3.2 of Hall and Heyde (1980) with F = G ∨ C, because
in this case the nesting condition F ⊆ F+1 is satisfied.

We next demonstrate that given the assumptions maintained above, the CLT is invariant to the ordering

of the sample. Let  be any permutation of (1  )→ ( (1)    ())  We now fix the original ordering

of the observations by identifying it with the sequence of indices (1  )  Define

B = 
©
(())


=1 (())


=1 6=

ª
= 

©
()


=1 (())


=1 6=

ª


G = 
n
(())


=1 (())

−1
=1

o
= 

n
()


=1 (())

−1
=1

o


then clearly G ⊆ G+1, G ⊆ B, and () = 0
()

() is measurable w.r.t G+1. Observing further
that B = B() and that the above conditions are assumed to hold for all  it is readily seen that
conditions (a) and (b) above also hold with  and B replaced with () and B. Since condition (c) is
clearly invariant to the ordering of the data it follows that the CLT is indeed invariant to the ordering of

the data. The fact that the ordering is irrelevant also applies when   1 because G
(−1)+ ⊆ B() for

all perturbations  and  = 1  

The next special case concerns marginal convergence of components within 0() Noting that

0() =
+1X
=1

 =

X
=1

Ã
−12

X
=1

0

!

where (−1)++1 = −120 one can consider the convergence of 
−12P

=1 
0
 for a fixed  As

for  = 1, in this case we can apply Theorem 3.2 of Hall and Heyde (1980) with F = G(−1)+ ∨ C
and F0 = C, because in this case F ⊆ F+1 is again satisfied. Given Assumption 1 and 2 we have

−12
P

=1  → 
12
  (C-stably) where  ∼  (0 ), and  and  are independent. In other words,

marginal convergence of −12
P

=1 
0
 for each component within 0() can be established using the

existing limit theory of Hall and Heyde (1980). Unfortunately, marginal convergence of all the components

in 0() has, as is well known, no bearing on the joint limit. The following elementary example, inspired

by Hall and Heyde (1980, p. 65, Example 1) illustrates this point.

Example 1 Let 1 () 2 ()  for  ∈ [0 1]  be two independent standard Brownian Motions defined
on (ΩF   )  Consider the partition 0 = 0  1  2  −1   = 1 of the inter-

val [0 1] with  =  Define the triangular arrays 1 =
√
 (1 ()−1 (−1)) and 2 =√

 (2 ()−2 (−1)) where in the following we set 1 = 1 and 2 = 2 to simplify nota-

tion. By the properties of standard Browning Motion it follows that 1 and 2 are mutually independent

Gaussian random variables with distribution  (0 1)  Because by definition  (0) = 0 it follows that
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−12
P

=1  = (1) by construction for all  and  = 1 2 It then follows trivially, letting  = (1 2)

and  = (1 2) ∼  (0 2)  that

−12
X
=1


→ 

Now let  = (1 2)
0 with  = 1 (1), and let  = (1 2)

0 be a vector of constants such that

21 + 22 = 1. Define

(−1)++1 =

(
−1211 for  = 1

−1222 for  = 2

with 1 = 0. It follows immediately and by construction that

0() = −12
X
=1

0 =
P2+1

=1  = −12
X
=1

11 + 

Ã
−12

X
=1

2

!
2

= 11 (1) + 21 (1)2 (1)

which has the same distribution as 11 + 212 This implies that trivially,P2+1
=1  → 11 + 212,

and thus by the Cramer-Wold device

() = −12
X
=1


→
"

1

12

#
 (24)

This shows that the two components of , while asymptotically uncorrelated, are not independent. Define

the -fields

G = 
n
(1)

−1
=1

o


G+ = 
n
(1)


=1  (2)

−1
=1

o


It follows for  = 1  2+ 1 that G ⊂ G+1 such that G is an increasing sequence of -fields. We
show in the appendix that,

nP
=1G 1 ≤  ≤ 2+ 1

o
is a zero mean square integrable martingale

which satisfies all conditions of Hall and Heyde (1980, Theorem 3.2) except for Condition (3.21) which

requires that G ⊆ G+1 To see that this condition is violated, choose exemplarily  = 3  = 5 Then

G35 = 
n
(1)

3
=1  12

o
but G45 = 

n
(1)

4
=1

o
, which does not include G35 as a subset because 12 is

no longer included and because in moving from  to  + 1 the definition of 1 changed. This example

makes clear that the nesting Condition (3.21), while quite natural in a pure time series context, cannot

be imposed in a panel or spatial setting where the cross-section size increases and random variables may

depend on the sample size 

Theorem 3.2 of Hall and Heyde (1980), were it applied to
P

=1 would imply that 
0() =

P2+1
=1 

→
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¡
21 + 222

¢12
 where  ∼  (0 1) and  is independent of  Of course, the theorem cannot be ap-

plied here because their Condition (3.21) is violated. We next show that indeed the limit of
P2+1

=1 

is not characterized by
¡
21 + 222

¢12
. To see this note that the Cramer-Wold theorem applied to¡

21 + 22
2
¢12

 indicates that

() = −12
X
=1


→
"

1

32

#
(25)

where 1 2 3 are independent (0 1).
10 This implies that the two components are asymptotically inde-

pendent, contradicting (24). This example shows that the conclusion of Theorem 3.2 of Hall and Heyde

(1980) may not hold without their Condition (3.21). As discussed earlier, marginal convergence can be

established using Hall and Heyde and the limiting marginal distributions are identical to the marginals of

(25). However, the marginal distributions contain no information about the dependence between the first

and second component.

As Example 1 shows, joint limit results can sometimes be derived from first principles when more

information about the data distribution is available. An approach that works more generally is to establish

the limiting distribution of
P2+1

=1  and then appeal to the Cramer-Wold Theorem. We now show how

Theorem 1 can be used to that end. We introduce the sigma field C =  (1 (1))  To apply Theorem 1

we need to enlarge the filtration G(−1)+ to F(−1)+ = G(−1)+ ∨ C This change only affects the
conditional means of  for  ≤ + 1 Given that  [|F−1] 6= 0 for  ≤ + 1 the {F} do
not form a martingale difference sequence. However, as for the construction of ̌ in Assumption 3, one

can subtract the conditional mean  [|F−1] from  yielding

̌ =

(
 − [|F−1]  ≤ + 1

   + 1


Then, by construction ̌ is a martingale difference sequence with respect to the filtration F since


£
̌|F−1

¤
= 0 for all  ≤ 2+ 1 and F ⊆ F+1. The fields F do not satisfy Hall and Heyde’s

Condition 3.21, but we show in the appendix that
P2+1

=1 ̌
→ 2 (C-stably) by Theorem 1 andP+1

=1  [|F−1] = 1 for all  Because stable convergence implies joint convergence with all C
measurable random variables we can apply the continuous mapping theorem and conclude that

0() =
2+1X
=1

 =

2+1X
=1

̌ +

+1X
=1

 [|F] → 1 + 2

By the Cramer Wold Theorem we obtain again the correct results (24) for the limiting distribution of ().

Finally consider two examples that illustrate the role of common factors.

10This is readily confirmed by verifying that the characteristic functions of

21 + 22

2
12

 and 11+232 are identical.
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Example 2 Consider estimating the mean of  in  =  where  =  with  i.i.d. standard Gaussian

mutually independent of  , and 2 = 2, where 2 is distributed chi-square with   2 degrees of freedom.

Then (1     ) is distributed multivariate Student  with  [] =  where  = 0. The  have variance

( − 2) and are uncorrelated (but not independent). The MLE for  is ̄; see Zellner (1976) and

 [| ] = 0 Theorem 2 can be applied directly to ̄ and the limiting distribution is
√
̄ →  (C-stably)

where  is standard normal and independent of  Thus, the limit is mixed normal. More specifically, the

limiting distribution is Student  with  degrees of freedom. Of course, given the simplicity of the example

the result can also be derived directly by observing that
√
̄ is distributed Student  for each ; see Kelejian

and Prucha (1985).

The next example is a further illustration of the role Assumption 3 plays in handling non-standard

situations where Assumption 2 fails.

Example 3 Now change the model and assume that  =  with  =  + with   standard Gaussian

and mutually independent. In this case  =  [] = 0 and the MLE is again ̄ However, now  [| ] = 

such that Theorem 2 needs to be applied to ̌ =  −  [| ] =  where  satisfies all conditions of

Theorem 2 Of course, 1
√

P

=1 ̌ →  (C-stably) where  is is standard normal and independent of 
It follows that

√
 (̄ − ) = 1

√

P

=1 ̌ →  (C-stably) and thus ̄ →  =  by Theorem 2 and (19).

Examples 2 and 3 illustrate that common factors affecting the error term can have very different impli-

cations for the limiting distribution of an estimator. In the first case, the effects are quite benign while in

the second case the bias remains dominant asymptotically. The examples illustrate that Theorem 2 is quite

flexible and can even be used to analyze estimators that do not produce usable inference asymptotically.

Example 3 highlights that the bias terms of the limiting distribution may not always be correctable.

The case where no common factors are present remains an important area application for the above

limit theorems. The reason for focusing our examples on cases where common factors are present is to

highlight some of the additional subtleties arising from such situations.

3 GMM Estimators

In this section we consider the following linear panel data model ( = 1     ;  = 1      ):

 = 0 + 0 +  +  (26)

where, consistent with the notation above, ,  and  denote, respectively, the dependent variable,

the sequentially exogenous and strictly exogenous explanatory variables (conditional on the unobserved

components), 0 and 0 are vectors of unknown parameters,  is an individual specific effect not observed
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by the econometrician and  is an unobserved error term. For the purpose of this section we assume that

 and  are scalar valued, and  and  respectively are 1×  and 1×  vectors, and the vectors of

parameters are defined conformably. Since  may include lagged endogenous variables the specification

covers dynamic models. For the subsequent discussion it proves convenient to rewrite the model more

compactly as

 = 0 +  +  (27)

where  = ( ) and 0 = (
0
0 

0
0)
0 ∈ R. We maintain the general setup of Section 2 and assume that

sample averages are taken over , with  tending to infinity and  fixed.

As discussed in the introduction, much of the dynamic panel data literature maintains that the data

are distributed i.i.d. in the cross sectional dimension. That is, let  = (1      ),  = (
0
1     

0
 )

and  = (1      ), then in this setting (  ) or equivalently (  ) would be distributed

independently and identically across . As discussed, this assumption is appropriate for many micro-

econometric applications but problematic in many other situations. This includes situations where 

corresponds to countries, states, regions, industries, etc., and situations where common factors are present.

Also, in many spatial settings it would not make sense to assume that  and/or  are independent over

 because elements of  and /or  may be weighted averages of characteristics of neighboring units, i.e.,

be spatial lags in the sense of Cliff and Ord (1981). Common factors and spatial interactions may both be

present at the same time.

We consider moment conditions that are based on linear transformations of (27) such that


£
0

+


¤
= 0 for  = 1     + (28)

with + ≤  , where  = ( )  denotes a 1 × ( + ) vector of instruments corresponding to ,

and + =
¡
+1  

+
+

¢
denotes a vector of transformed disturbances with + =

P
= , where the

 are known, nonstochastic constants. The class of transformations considered includes first differences,

+ = +1 − , as well as the Helmert transformation, 
+
 =  [ − (+1 +   +  ) ( − )],

2 = ( − )( − +1), for  = 1      . The class of transformations is thus fairly general. As a special

case we also have + = , for  = 1      .

The sample moment vector corresponding to the moment conditions (28) is given by

() = −12
X
=1

  =
¡
1

+
1  +

+
+

¢0
 (29)

For the subsequent discussion it proves convenient to express the transformed disturbances more compactly

as +0 = Π0 where Π is a + ×  matrix with  -th element . Observe that the lower diagonal

elements of Π are zero. Furthermore, let  = 
+

=1(). Then we can express the moment vectors as
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 =  0

+0
 =  0

Π
0
 =

P
=1

0
, where  denotes the -th column of Π. Let


×1

=

(
[11     ]

0 for  ≤ +

[11     ++ ]
0 for   +

(30)

where by construction  = ( + 1)2 +  for  ≤ + and  = + for   +, then  0
 =h

0 01×(+−)
i0
. We next rewrite the sample moment vector such that it fits into the setup of Section

2. To that effect define the matrices  =
h
  0×(+−)

i0
and let  =

£
01  

0


¤0
with

 = [11     ]
0  =  (31)

then () = −12
P

=1 =() with  = [1     ].

The GMM estimator corresponding to the moment conditions (28) is defined as

̃ =
³
0Ξ̃

´−1
Ξ̃

where  = −1
P

=1
0
Π

0
,  = −1

P
=1

0
Π

0
, and Ξ̃ is some weight matrix. The above expression

for the GMM estimator is consistent with expressions given in the dynamic panel data literature under the

assumption of cross sectional independence of the observations; compare, e.g., Arellano and Bond (1991).

The asymptotic distribution of the GMM estimator ̃ is well established when the observations are

i.i.d. When all explanatory variables (outside of time lags of the dependent variable) are strictly exogenous,

cross sectional dependence between the explanatory variables across units can also be handled readily by

performing the analysis conditional on all strictly exogenous variables, i.e., by conditioning on 1     .

This is essentially the approach taken in the early literature on static panel data models. It is also the

approach taken by Mutl (2006), and Yu, de Jong and Lee (2008, 2012) in analyzing Cliff-Ord type spatial

dynamic panel data models. However, as discussed, strict exogeneity rules out many important cases where

 affects future values of the regressor.

In the following we illustrate how the theory developed in Section 2 can be utilized to derive the

asymptotic distribution of ̃ for situations where some or all regressors are allowed to be only sequentially

rather than strictly exogenous, while at the same time allowing the data to be cross sectionally dependent.

We maintain the following assumption, which will be shown to imply Assumption 1 with  as defined in

(31).

Assumption 4 For some   0, 1 and 1 with 1+ 1  1, and some finite constant  (which

is taken, w.l.o.g., to be greater than one) the following conditions hold with B and G(−1)+ defined
by (3) and  = 1      ,  = 1     ,  ≥ 1:
(a) For some random variables ,


h
||2+ |B ∨ C

i
≤  (32)
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where the  norms of the random variables , i.e., kk = [ ||]1, are uniformly bounded by .
Furthermore, the (2+) norms of the random variables  ,  and  are uniformly bounded by .

(b) The following conditional moment restrictions hold:

 [|B ∨ C ] = 0 (33)

(c) Let ̃() = diag
³
̃1  ̃

´
with ̃ = −1

P
=1 

0
 = −1

P
=1 

2


0
, then there exist a

matrix  = diag(1   ), where for each ,  has finite elements and is positive definite ,  is C
measurable, and ̃ − 

→ 0 as →∞ If 
£
2|B ∨ C

¤
= 2 then  = 2 plim−1

P
=1 

0


A special case for which condition (32) of Assumption 4(a) holds is the case where the 2+-th conditional

moments of  are bounded by some constant, in which case we can take  = ∞. A sufficient condition
for this special case is for the  to be i.i.d. conditional on B = 

½³
   


−1 

´
=1

¾
with finite

2 + -th moment. Of course, , which is what matters for the CLT, is not necessarily independent even

under these stronger assumptions, and thus as discussed after Assumption 1, even in this case a CLT for

i.i.d. sequences cannot be applied.

It is of interest to compare Assumption 4(b) with the moment conditions typically maintained under

the assumption that (  ) is i.i.d.. For this discussion we also assume the absence of common factors

for simplicity. Clearly, under cross sectional independence the conditions in Assumption 4(b) can be stated

equivalently by replacing the conditioning sets by 
  


−1. In particular, Assumption 4(b) simplifies

to


£
|

  

−1

¤
= 0 (34)

This is in contrast to the assumption that

 [|
 ] = 0 (35)

which is typically maintained in the literature under cross sectional independence. Clearly condition (34)

rules out autocorrelation in the disturbances, even if  does not contain a lagged endogenous variable,

while condition (35) does not.11 If the model is dynamic and linear condition (35) also rules out autocor-

relation in the disturbances. In this case conditions (34) and (35) are equivalent, since then 
 already

incorporates the information contained in −1 through the lagged values of the dependent variable. We

note that the need to include −1 in the conditioning information set stems from the use of a martingale

difference CLT, while the i.i.d. case can simply be handled by a CLT for i.i.d. random vectors.

The following assumptions play the same role as Assumptions 2 and 3 in Section 2.

11Specific forms of autocorrelated disturbances such as AR(1) disturbances could be accommodated by reformulating the

moment conditions w.r.t. to the basic innovations entering the disturbance process.

20



Assumption 5 The following conditional moment restrictions hold:

 [|B ∨ C] = 0 (36)

Assumption 6 Let ̌ = (̌
0
1     ̌

0
 )

0 = −
 where 


 =

¡
01 [1|F]   0

£
|F(−1)+

¤¢0
,

and let  = −1
P

=1 

 . Furthermore, let ̌() = diag

¡
̌1  ̌

¢
with ̌ = −1

P
=1 ̌̌

0
 =

−1
P

=1

¡
 −

£
|F(−1)+

¤¢2


0
, then there exist a matrix ̌ = diag(̌1  ̌ ), where for each

, ̌ has finite elements and is positive definite , ̌ is C measurable, and ̌ − ̌
→ 0 as →∞. In

addition, one of the following statements holds:

(a) 
→  where  is finite a.s. and C measurable.

(b)
√


→  where  is finite a.s. and C measurable.
(c)
√


→ 0

The next theorem establishes the basic asymptotic properties of the GMM estimator ̃ when common

factors are either strictly exogenous or have an asymptotically negligible effect on the estimator bias.

Under the same conditions we also give a result in Theorem 5 that can be utilized to establish the limiting

distribution of test statistics, allowing for random norming corresponding to the common factors captured

by C.

Theorem 3 Suppose Assumptions 4 and 5 hold, and that 
→ , Ξ̃

→ Ξ, where  and Ξ are C-
measurable,  and Ξ have finite elements and  has full column rank and Ξ is positive definite 

(a) Then as →∞,
12(̃ − 0)

→ Ψ12∗ (C-stably),
with

Ψ = (0Ξ)−10ΞΦΞ(0Ξ)−1

and where Φ = 0 = plim→∞ −1
P

=1

P
=1 

2


0


0
 is positive definite , ∗ is independent

of C (and hence of Ψ) and ∗ ∼ (0 ). If in addition, 
£
2|F(−1)+

¤
= 2 for a constant 2 holds,

then Φ = 2 plim→∞
¡
−1

P
=1

0
ΠΠ

0

¢
.

(b) Suppose  is some ∗ ×  matrix, ∗ ≤ , that is C measurable with finite elements and rank ∗ ,
then

12(̃ − 0)
→ (Ψ0)12∗ (C-stably) ,

where ∗ ∼  (0 ∗), and ∗ and C (and thus ∗ and Ψ0) are independent.

(c) Let Φ() = −1
P

=1
0

+
 

+0
  and suppose that

−1
X
=1


0


0


→ 0 for  6=  (37)
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then Φ() −Φ → 0 and Φ
−12
()

()
→ + (C-stably) with + ∼ 

¡
0 

+

¢
.

The next result considers cases where the common factors are only sequentially exogenous, i.e., only

(33) but not necessarily (36) holds, and where the resulting effect on the bias of the estimator may be

asymptotically non-negligible. Part(a) of the theorem considers a case where the estimator is inconsistent

and converges to a random limit while the Part(b) of the theorem covers a case where the estimator is

root- consistent but not asymptotically mixed normal. Part(c) considers the case where the estimator

remains asymptotically mixed normal, but allows for  and ̌ to differ.

Theorem 4 Suppose Assumption 4 holds, and that 
→ , Ξ̃

→ Ξ, where  and Ξ are C-measurable,
 and Ξ have finite elements and  has full column rank and Ξ is positive definite 

(a) If in addition Assumption 6(a) holds then

12(̃ − 0 − (0Ξ)−10Ξ)
→ Ψ̌12∗ (C-stably)

where Ψ̌ = (0Ξ)−10Ξ̌ 0Ξ(0Ξ)−1, and where ∗ is independent of C (and hence of Ψ̌) and
∗ ∼ (0 ). Furthermore ̃ − 0

→ (0Ξ)−10Ξ

(b) If in addition Assumption 6(b) holds then 12(̃ − 0)
→ Ψ̌12∗ + (0Ξ)−10Ξ (C-stably) 

(c) If in addition Assumption 6(c) holds then 12(̃ − 0)
→ Ψ̌12∗ (C-stably) 

For efficiency (conditional on C) we can select Ξ = Φ−1, in which case Ψ = (0Φ−1)−1. To construct
a feasible efficient GMM estimator consider the following estimator for Φ

eΦ() = −1
X
=1

 0
e+0 e+ 

where e = (e1     e ) with e =  − ̃, and ̃ denotes the initial GMM estimator with weight

matrix Ξ̃ = , or some other consistent estimator for 0. The GMM estimator with weight matrix

Ξ̃ = eΦ−1
()
is then given by,

̂ =
³
0eΦ−1()

´−1

eΦ−1
()



The above expression for the GMM estimator ̂ is again consistent with expressions given in the dynamic

panel data literature under the assumption of cross sectional independence of the observations.

By Theorem 3 the limiting variance covariance matrix of ̂ is then given by Ψ = (
0Φ−1)−1, which

can be estimated consistently by Ψ̂ =
³
0eΦ−1()

´−1
, provided it is shown that eΦ() is indeed a consistent

estimator for Φ. Next, let  be a ∗×  full row rank matrix and  a ∗× 1 vector, and consider the Wald
statistic

 =

°°°°³Ψ̂
0
´−12√

(̂ − )

°°°°2
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to test the null hypothesis 0 : 0 =  against the alternative 1 : 0 6= . The next theorem establishes

the consistency of eΦ(), and shows that  is distributed asymptotically chi-square, even if Ψ is allowed to
be random due to the presence of common factors represented by C.

Theorem 5 Suppose the assumptions of Theorem 3 hold, that Φ() = −1
P

=1
0

+0
 + −Φ → 0, that

̃
→ 0, and that the fourth moments of   and  are uniformly bounded by a finite constant. TheneΦ() −Φ → 0, and

Ψ̂−12

√
(̂ − 0)

→ ∗ ∼ (0 )

Furthermore


¡
  2∗1−

¢→ 

where 2∗1− is the 1−  quantile of the chi-square distribution with ∗ degrees of freedom.

Theorem 5 extends results of Andrews (2005) to the case of generally dependent cross-sectional samples.

It establishes that conventional statistical tests remain valid under the postulated assumptions.

Remark 3 The specification of the instruments as  = (

 ) was chosen for expositional simplicity.

Clearly the above discussion also applies if the vectors of instruments  are more generally allowed to be


£{ }=1¤ measurable functions of the regressors where the dimension of the vectors may depend on

, but not on . The above discussion also applies if the ,  ≤ , depend on 0 and are measurable w.r.t.


£{ }=1¤∨ C . The crucial property, pertaining to the instruments and the data transformation, that

is used in establishing the moment conditions (33) and (36) is that  0
 is B ∨ C measurable, which

clearly is the case even under the above generalized specifications. We note further that the sample moment

vector (29) is a function of the true disturbances , and thus the specific functional form of the model (26)

does not enter in the derivation of the limiting distribution of the sample moment vector. (Of course, it

affects the limiting distribution of a corresponding GMM estimator.) Thus the central limit theory developed

above should be a useful basic module for establishing the limiting distribution of GMM estimators for a

fairly general class of possibly nonlinear dynamic models with cross sectional dependencies, and a fairly

general class of data transformations, including forward transformations that allow for time-varying unit

specific effects.12

4 Maximum Likelihood Estimation

We consider a class of likelihood estimators that satisfy our assumptions in Section 2. For concreteness

we assume that the econometrician has a model allowing him to specify the partial likelihood function of

12Examples include forward looking variants of transformations considered by Ahn, Lee and Schmidt (2001,2006).
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an outcome variable  = (1   ) conditional on sequentially exogenous covariates  = (1      ).

For ease of notation we omit exogenous covariates  which could easily be added to the analysis.

The outcome variables  may depend on individual specific effects  and common factors , which are

treated in this section as random effects, and are assume to be captured by the partial likelihood function.

This setting is quite different from the recent panel literature on interactive effects such as Pesaran (2006)

or Bai (2009) which essentially conditions on the factors and loadings and estimates them as nuisance

parameters. In our setting this is not feasible in general because  is assumed fixed. In addition, an

important special case covered are models without common factors.

Assume that the measure  () =  (( )

=1 ∈ ) has a parametric density 

¡
( )


=1 ;  

¢
with

respect to a -finite product measure . Because we distinguish sequentially exogenous and endogenous

variables the joint density is assumed to admit a representation


¡
( )


=1 ;  

¢
=

Q
=1 

¡
( )


=1 

¡
−1 


−1

¢
=1
;  

¢
(38)

=
Q

=1 
¡
()


=1 |

¡
−1 




¢
=1
; 
¢

¡
()


=1 |

¡
−1 


−1

¢
=1
; 
¢

where  ∈ Θ ⊂ R is the finite dimensional parameter of interest and  is an additional parameter governing

the covariates. The covariates  are then weakly exogenous in the terminology of Engle, Hendry and

Richard (1983). In light of (38) the maximum likelihood estimator is the maximizer of the partial likelihood

 () =
Q

=1 
¡
()


=1 |

¡
−1 




¢
=1
; 
¢
.13 Assuming that  () is twice continuously differentiable

in  and that the score of the partial log-likelihood  log ()  determines the maximum likelihood

estimator, ̂ can be written as the solution to

 log

³
̂

´
 = 0

We assume that the score has a representation

 log ()  =
P

=1

P
=1  () (39)

for some function  () that satisfies the conditions in Assumption 7 and that depends on (

 


)


=1 and

We give examples indicating that these restrictions hold in many cases of interest. In addition, it should

be stressed that  only needs to be specified to verify our regularity conditions for a particular model,

but is not needed to compute the likelihood estimator. We use the short hand notation  =  (0) 

The following assumptions ensure that Theorem 2 can be applied to . We focus on correctly specified

likelihood models in the sense of satisfying the restriction  [|B ∨ C] = 0.

Assumption 7 For  = 1       = 1       ≥ 1, the  satisfy Assumptions 1 and 2, and the  ()

are continuously differentiable for all  ∈ int (Θ).
13 In calling () the partial log-likelihood function we adopt the terminology of Cox (1975); see, e.g., also Pötscher and

Prucha (1997), pp. 157.
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To establish a limiting distribution for ̂ we postulate the following additional regularity conditions

commonly used in the literature. The existence of respective conditional expectations and probability

limits is implicitly assumed.

Assumption 8 (a) The true parameter 0 ∈ int (Θ).
(b) ̂

→ 0

(c) For all  in some open neighborhood of 0 and  = 1      , let

() = plim
→∞

−1
P

=1
£
 ()

0
 () |C

¤


 () = plim
→∞

−1
X
=1


£
 () 

0|C¤ 
Then for some   0

sup
k−0k≤

°°−1P
=1  ()

0
 ()−  ()

°° =  (1) 

sup
k−0k≤

°°−1P
=1  () 

0 − ()
°° =  (1) 

Furthermore () and () are continuous at 0 a.s., and  = (0) and  =  (0) are nonsingular



Theorem 6 Suppose Assumptions 7 and 8 hold, and let Ω =
P

=1  and  =
P

=1.

(a) Then

12
³
̂ − 0

´
→ Ψ12∗ and Ψ−1212

³
̂ − 0

´
→ ∗

with Ψ = −1Ω
0−1, and where ∗ ∼  (0 ) and independent of C, and thus of Ω,  and Ψ.

(b) Let Ω̂ =
P

=1 ̂ and ̂ =
P

=1 ̂ with

̂ = −1
P

=1 

³
̂

´
0
³
̂

´
and ̂ = −1

P
=1 

³
̂

´
0

then Ω̂
→ Ω and ̂

→ . Furthermore, let Ψ̂ = ̂−1 Ω̂̂
0−1
 , then Ψ̂

→ Ψ.

The leading example for the result in Theorem 6 are models without common factors. In that case,

Ω and  are constants and the MLE has a standard limiting distribution. The importance of the result

lies in the fact that it allows for fairly general dependence structures in the underlying data distributions.

Under these circumstances the score while uncorrelated, is generally not independent even conditional

on covariates or factors. A martingale CLT then is an alternative way to establish an asymptotic limiting

distribution. When common factors are present the limiting distribution of ̂ in general is mixed asymptotic

normal. These points are illustrated with the following example.
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Example 4 (Dynamic Game) We now discuss a class of models where the form of  and Assumption

2 easily follow from a conditional independence assumption. We consider a dynamic multinomial choice

model that arises out of individual utility maximization or from a dynamic game. Individual  chooses

alternative  from a set {1  } based on observable state variables  which are common knowledge
and private signals  Let ε = (1  ) a = (1  ) and x = (1  ) where x is observed

by all individuals and the econometrician and  is only observed by individual  but not by either the

econometrician nor the other individuals. Let  = 1 { = } be the indicator variable that individual
 chooses alternative  and set  = (1  )

0  There are no common shocks in this model. We

denote by  (x ) =  the optimal choice of individual  at time  as a function of common and private

information. We also assume that conditional on x the private signals  are independent across  Given

this assumption the choices 1   are independent of each other conditional on x

Assuming a parametric model with a finite dimensional parameter  the choice probabilities are given by

 (x ) =  ( = 1|x ) =  ( (x  ) =  |x )

and  (|x ) =
Q

=1  (x )
 . Then, using conditional independence and assuming that (xy) is

a Markov process and x is weakly exogenous, the transition density of (xy) can be written as

 (x+1y+1|xy ) =
Q

=1  (+1|x+1 ) 
¡
x+1|xy 

¢
 (40)

This is of the same form as the terms in the last product on the r.h.s. of (38) with the added simplification

that  (+1|x+1 ) does not depend on +1.

We next show that the score of the partial log likelihood based on (40) satisfies Assumption 2, if sufficient

conditions on the differentiability of  (+1|x+1 ) with respect to  are imposed. The partial log likelihood
of the sample {yx}=1 is given by

log () = log
Q

=1

Q
=1  (|x ) =

X
=1

X
=1

X
=1

 log  (x ) 

From this we see that the score is of the form (39) with

 () ≡
X
=1



 (x )

 (x )




Observing that  is independent of  conditional on x it follows that ( | B∨C) = (x ) with
B as in (4) and C = {0Ω}. Since

P
=1  (x )  = 0 we have ( | B ∨ C) = 0 and thus

the score  log ()  satisfies Assumption 2.

The multinomial model accommodates random utility models of individuals independently maximizing util-

ity. However, it also accommodates more general dynamic games where actors play stationary Markov
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strategies taking into account decisions of other actors. Examples of such models can be found in Rust

(1994), Aguirregabiria and Mira (2007) and Bajari, Benkard and Levin (2007) who all impose the con-

ditional independence assumption.14 In these models  is the equilibrium strategy function taking into

account the strategic behavior of the other agents through x.

Despite the fact that  conditional on x are independent across  the data { } are not independent
in the cross section. Consequently  is not independent and conditioning on {x}=1 generally is not
feasible unless x is strictly exogenous. Thus, a conventional CLT based on independence could not be

applied to derive the limiting distribution of the ML estimator ̂ = argmax log (). The main result of

Theorem 6 is to provide an asymptotic theory for ̂ that does not rely on independent sampling assumptions

and thus extends the framework of Rust (1994), Aguirregabiria and Mira (2007) and Bajari, Benkard and

Levin (2007) who rely on independently sampled observations.

The conditions of Theorem 6 impose additional implicit restrictions on  (x ) which, in the case of the

complex models analyzed by Aguirregabiria or Mira (2007) and Bajari, Benkard and Levin (2007), would

require an analysis of the Markov equilibrium that determines the form of  (x ) as well as the transition

density  ( )  Such an analysis is clearly beyond the scope of this paper. In simpler cases, such as the

conditional logit model,  (x ) reduces to  ( ) where the functional form of  is known and the

conditions of Theorem 6 can be guaranteed by imposing conditions on  directly.

Example 5 (Social Interactions) Another special case of the choice model considered here is the discrete

choice model with social interactions of Brock and Durlauf (2001). Individuals  choose a binary action

from the set {−1 1} and are subject to social interaction in their neighborhood () More specifically,

individual ’s utility depends on the average subjective expected value of the other individuals’ choices,

denoted by 
()
. We observe a vector of individual characteristics  and neighborhood characteristics .

All individuals in the same neighborhood have the same realization of  The probability of choosing  = 1

from the set {−1 1} is

Pr
³
 = 1| 

()

´
=

exp
³
 + 

()

´
exp

³
− − 

()

´
+ exp

³
 + 

()

´
where  = ( + 0 + 0)  (    ) are parameters and 

()
solves


() = 

h
tanh

³

¡
 + 0 + 0

¢
+ 

()

´
|
i

and thus is a function of . The conditional log likelihood of a sample {  } then is
X
=1

( + 1)

2
log (Pr ( = 1| )) + (1− )

2
log (1− Pr ( = −1| )) 

14 In an earlier version of this paper, in Kuersteiner and Prucha (2009), we give a more detailed discussion of how these

models fit into our framework.
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where conditional independence of  given  and  is due to the random utility specification of Brock

and Durlauf (2001, Eq 1). Then,  is readily computed by taking derivatives and satisfies our regu-

larity conditions. In particular, for B = 
n
(  )


=1  −

o
 it follows that our basic moment condi-

tion  [|B] = 0 is satisfied. This is despite the fact that a sample of randomly selected individuals

{  }= across a set of neighborhoods is not independent due to the fact that  is the same for all
individuals in the same neighborhood.

5 Conclusion

Most of the literature on dynamic panel data models either assumed independence in the cross sectional

dimension, or treats regressors as strictly exogenous when allowing for cross sectional correlation. While the

assumption that observations are independently distributed in the cross sectional dimension is appropriate

for numerous applications, there are many applications where this assumption will likely be violated. Also,

as discussed in the introduction, there are many important cases where the strict exogeneity assumption

does not hold, and regressors, apart from time-lagged endogenous variables, or other potential instruments

are only sequentially exogenous.

Against this background the paper develops a new CLT for martingale difference sequences, and applies

it to develop a general central limit theory for the sample moment vectors (and transformations thereof)

of panel data. We consider examples of GMM and ML estimators for models where the regressors may be

cross sectionally correlated as well as sequentially exogenous (but not necessarily strictly exogenous). The

paper shows how the new CLT can be utilized in establishing the limiting distribution of GMM and ML

estimators in the generalized setting.

The specification of cross sectional dependence is kept general. In particular, the methodology devel-

oped in this paper will have natural application within the context of spatial/cross sectional interaction

models. A widely used class of spatial models originates from Cliff and Ord (1981). In those models,

which are often referred to as Cliff-Ord type models, spatial/cross sectional interaction and dependencies

are modeled in terms of spatial lags, which represent weighted averages of observations from neighboring

units. The weights are typically modeled as inversely related to some distance. Since space does not have

to be geographic space, those models are fairly generally applicable and have been used in a wide range

of empirical research; for a collection of recent contributions including references to applied work see, e.g.,

Baltagi, Kelejian and Prucha (2007). The methodology developed in this paper also allows for common

factors as a potential source of cross sectional dependence.
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A Appendix A: Proofs for Section 2

A.1 Stable Convergence in Distribution

The following proposition is proven in Daley and Vere-Jones (1988), p. 645-646.

Proposition A.1 Let { :  = 1 2   },  and F0 be as in Definition 2. Then the following conditions
are equivalent:

(i) 
→  (F0-stably).

(ii) For all F0-measurable  -essentially bounded random variables  and all bounded continuous functions

 : R → R

 [()]→  [()] as →∞.

(iii) For all real valued F0-measurable random variables , the pair ( ) converges jointly in distribution

to the pair ().

(iv) For all bounded continuous functions  : R × R → R, and all real valued F0-measurable random
variables ,

( )
→ ( ) (F0-stably)

(v) For all real vectors  ∈ R and all F0-measurable  -essentially bounded random variables 


£
 exp(0)

¤→ 
£
 exp(0)

¤
as →∞.

The following proposition is helpful in establishing the limiting distribution of random vectors under

random norming.

Proposition A.2 Let { :  = 1 2   }, and F0 be as in Definition 2, and let  be a F0-measurable,
a.s. finite and positive definite ×  matrix. Suppose: For any  ∈ R with 0 = 1 we have

0
→ 

12

  (F0-stably), (A.1)

with  = 0 , where  is independent of F0 (and thus of  ) and  ∼ (0 1). Then the characteristic

function of 
12

  is given by () = 
£
exp{−1

2
(0 )2}¤,  ∈ R.

(a) The above statement holds iff


→  12 (F0-stably), (A.2)

where  is independent of F0 (and thus of  ) and where  ∼ (0 ). The characteristic function of 
12

is then given by () = 
£
exp{−1

2
(0 )}¤,  ∈ R.
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(b) Let  be some F0-measurable vector, then (A.1) implies

( 0 
0) → ( 0 0) (F0-stably). (A.3)

Furthermore, let  be some ∗ ×  matrix that is F0-measurable, a.s. finite and has full row rank. Then


→  12 (F0-stably) (A.4)

where  is as defined in part (a), and hence also


→ ( 0)12∗ (F0-stably) (A.5)

where ∗ is independent of F0 (and thus of  0) and where ∗ ∼ (0 ∗). The characteristic function

of  12 and ( 0)12∗ is given by ∗(∗) = 
£
exp{−1

2
(0∗ 0∗)}

¤
, ∗ ∈ R∗.

Proof of Proposition A.2. (a) Suppose (A.1) holds. Then in light of Proposition A.1(v), for all

 ∈ R and all F0-measurable  -essentially bounded random variables  we have


£
 exp(0)

¤→ 
h
 exp(

12

 )
i

(A.6)

as →∞. Since  and  are F0-measurable, and  ∼ (0 1) we have


h
 exp(

12

 )
i
= 

h

h
exp(

12

 )|F0
ii
= 

∙
 exp{−1

2
(20 )}

¸
 (A.7)

and thus


£
 exp(0)

¤→ 

∙
 exp{−1

2
(20 )}

¸
 (A.8)

Now consider some  ∈ R, then 
£
 exp(0 12)

¤
= 

£
 exp{−1

2
(0 )}¤ by analogous argumentation

as above. In light of Proposition A.1(v) for (A.2) to hold it thus suffices to show that


£
 exp(0)

¤→ 

∙
 exp{−1

2
(0 )}

¸
. (A.9)

Choosing  and  to be such that  = , this is seen to hold in light of (A.8). Next suppose that (A.2)

and thus (A.9) holds. Then (A.6) is seen to hold in light of (A.7) and taking  = .

(b) Let  = (0 ) where  is some F0-measurable random variables, and let  =  12. By Proposition

A.1(iii) it follows that for any fixed  ∈ Rdim() and  ∈ R with 0+0 = 1 we have (0)→ (0)

jointly, because 0 is F0-measurable. By the Continuous Mapping Theorem it follows that
¡
0 0

¢→¡
0 0

¢
, and thus by the Cramer-Wold device¡

0  0 
¢→

¡
0  0 

¢
 (A.10)
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Consequently we have (0  0 )→ (0  0) (F0-stably) by Proposition A.1(iii), which establishes the first
claim.

Now take  = vec(), then it follows from (A.10) and the Continuous Mapping Theorem that

( (vec() )  ) → ( (vec() )  ) for any continuous  (). Now take  (vec() ) =  By

Proposition A.1(iii) it follows that 
→  (F0-stably), which establishes the second claim.

To prove the third claim observe that by Proposition A.1(v) 
→  (F0-stably) iff for all real

vectors ∗ ∈ R∗ and all F0-measurable  -essentially bounded random variables  we have


£
 exp(0∗)

¤→ 
h
 exp(0∗

12)
i

(A.11)

Since ,  and  are F0-measurable, and  ∼ (0 ) we have


h
 exp(0∗

12)
i
= 

h

h
exp(0∗

12)|F0
ii
= 

∙
 exp{−1

2
(0∗ 

0∗)}
¸
 (A.12)

By an analogous argument we also see that


h
 exp(0∗( 

0)12∗)
i
= 

∙
 exp{−1

2
(0∗ 

0∗)}
¸
 (A.13)

Thus in light of (A.11)-(A.13)


£
 exp(0∗)

¤→ 
h
 exp(0∗( 

0)12∗)
i


which establishes the third claim in light of Proposition A.1(v). The claim concerning the characteristic

functions is seen to hold as a special case of (A.12) and (A.13) with  = 1.

A.2 Proofs for Section 2.1

Proof for Lemma 1. Let all variables be defined as in the proof of Theorem 2 below. Under the

assumptions of the lemma we then have

 2 =

X
=1


£
2
|F−1

¤
=

X
=1

−1
X
=1

0
£


0
|F(−1)+

¤
 (A.14)

= 0̄
→ 0  = 2

We next show that

for any   0

X
=1


£
2
1 (||  ) | F−1

¤ → 0 (A.15)

To see this, observe from the proof of Theorem 2 that under Assumption 1(a) the Condition (A.26) holds,

i.e.,
P

=1
h
||2+

i
→ 0 as →∞. Hence



(
X
=1


£
2
1 (||  ) | F−1

¤)
=

X
=1


£
2
1 (||  )

¤→ 0
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as  → ∞ in light of inequality (A.29). The claim in (A.15) now follows from Chebychev’s inequality.

Furthermore, observe from the proof of Theorem 2 that under Assumption 1(a) also the Condition (A.28)

holds, i.e., sup
h
 2+

i
 ∞. Let 2 =

P
=1

2
 = 0̃, then observing that Condition (A.28)

implies that  is uniformly integrable it follows from Hall and Heyde (1980, Theorem 2.23) that


£¯̄
 2 − 2

¯̄¤→ 0 (A.16)

By Chebychev’s inequality this implies that  2 − 2
→ 0, which in turn implies that ̃

→  as

postulated in Assumption 1(c)

A.3 Proof of Martingale Central Limit Theorem

Proof of Theorem 1. The proof follows, with appropriate modifications, the strategy used by Hall and

Heyde (1980, pp. 57-58 and pp. 60) in proving their Lemma 3.1 and Theorem 3.2. First suppose that 2

is a.s. bounded such that for some   1,


¡
2  

¢
= 1 (A.17)

Define 
†
 = 1

nP−1
=1 

2
 ≤ 2

o
with 

†
1 = 1, and 

†
 =

P
=1

†
 for 1 ≤  ≤ .

By assumption {F 1 ≤  ≤   ≥ 1} is a zero mean, square integrable martingale array with
differences , i.e., (i)  is measurable w.r.t. F, (ii)  [] = 0 and 

£
2

¤
∞, (iii)  [|F ] =

 a.s. for all 1 ≤   . The differences are defined as 1 = 1, and  = −−1 for 2 ≤  ≤ .

Clearly for any  ≤  the random variable  is measurable w.r.t. to F, since F ⊆ F. Furthermore
 [|F ] = 0 for 0 ≤    and 1 ≤  ≤ , since  [1|F0] = 0 by assumption, and for 2 ≤   

 [|F ] =  [ − −1|F ] =  [ [ − −1|F−1] |F ]

=  [(−1 − −1)|F ] = 0

We now establish that
n

†
F 1 ≤  ≤   ≥ 1

o
is also a zero mean, square integrable martingale array

with, by construction, differences
†
. Since the random variables 1     are measurable w.r.t. F,

clearly 
†
 is measurable w.r.t. F. Also, since

¯̄̄

†


¯̄̄
≤ ||  clearly 

h

†2


i
≤ 

£
2

¤
 ∞. Next

observe that 
h

†
1|F0

i
=  [1|F0] = 0 by assumption, and for 2 ≤   


h
†
|F

i
= 

h

h
†
|F−1

i
|F

i
= 0

By iterated expectations 
h

†


i
= 0 and thus 

h

†


i
= 0. Furthermore for 1 ≤    

h

†
|F

i
=


†
 This verifies that

n

†
F 1 ≤  ≤   ≥ 1

o
is indeed a zero mean, square integrable martingale

array.
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Next let 2 =
P

=1
2
, then clearly  (

2


 2)→ 0 in light of (15). Consequently

 (†
 6=  for some  ≤ ) ≤  (2  2)→ 0 (A.18)

which in turn implies  (
†


6= )→ 0, and furthermore


h¯̄̄
 exp(

†

)−  exp()

¯̄̄i
→ 0

for any  -essentially bounded and F0-measurable random variable . Consequently by Proposition A.1(v),


→ (F0-stably) iff 
†


→ (F0-stably). Observe furthermore that in view of (A.18) the martingale
differences {†

} satisfy that max
¯̄̄

†


¯̄̄
→ 0 and

P
=1

†2


→ 2. Since
¯̄̄

†


¯̄̄
≤ ||  condition (16)

implies furthermore that 
h
max

†2


i
is bounded in .

We now show that 
†


→ (F0-stably). Let 2 =
P

=1
2
 and 

†
 () =

Q
=1

³
1 + 

†


´
with

 =

(
min

©
 ≤ |2  2

ª
if 2  2

 otherwise


Observing that 
†
 = 0 for   , and that for any real number  we have |1 + |2 = (1 + 2) and

exp(2) ≥ 1 + 2, it follows that



∙¯̄̄
 † ()

¯̄̄2¸
= 

hQ
=1

³
1 + 2

†2


´i
≤ 

⎡⎣⎧⎨⎩exp
⎛⎝2

−1X
=1


†2


⎞⎠³1 + 2
†2


´⎫⎬⎭
⎤⎦

≤ ©
exp(22)

ª³
1 + 2

h

†2


i´


Since 
h

†2


i
≤ 

£
2


¤
is uniformly bounded, it follows from the above inequality that 

∙¯̄̄

†
 ()

¯̄̄2¸
is uniformly bounded in .

Now define  = exp
³


†


´
and = exp

³
−1
2
2
P

=1
†2
 +

P
=1 

³


†


´´
where  () is implic-

itly defined by  = (1 + ) exp
¡−1

2
2 +  ()

¢
as in Hall and Heyde (1980), p. 57. Then

 =  †() exp
¡−222¢+  †()( − exp

¡−222¢) (A.19)

By Proposition A.1(v) for 
†


→ (F0 stably) it is enough to show that

 ()→ 
£
exp

¡−222¢ ¤ (A.20)

for any  -essentially bounded F0-measurable random variable . Because F0 ⊂ F it follows that
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exp
¡−222¢  is F-measurable for all  and  ≤ . Hence,


h
 † () exp

¡−222¢ i = 
h
exp

¡−222¢ Q


³
1 + 

†


´i
= 

n

h
exp

¡−222¢ Q


³
1 + 

†


´
|F−1

io
= 

n
exp

¡−222¢ Q−1


³
1 + 

†


´

h³
1 + 

†


´
|F−1

io
= 

n
exp

¡−222¢ Q−1


³
1 + 

†


´o
=   

= 
n
exp

¡−222¢  h³1 + 
†
1

´
|F0

io
= 

£
exp

¡−222¢ ¤ 
Thus, in light of (A.19), for (A.20) to hold it suffices to show that


h
 †()

¡
 − exp

¡−222¢¢ i→ 0 (A.21)

Let  be some constant such that  (|| ≤ ) = 1, then 

∙¯̄̄

†
 () exp

¡−222¢  ¯̄̄2¸ ≤ 2

∙¯̄̄

†
 ()

¯̄̄2¸
is

uniformly bounded in , since 

∙¯̄̄

†
 ()

¯̄̄2¸
is uniformly bounded as shown above. Observing that || = 1

we also have 
h
||2

i
≤ 2. In light of (A.19) it follows furthermore that



∙¯̄̄
 †( − exp

¡−222¢) ¯̄̄2¸ ≤ 2 h||2i+ 2 ∙¯̄̄ † () exp ¡−222¢  ¯̄̄2¸
is uniformly bounded in , it follows that 

†
 () ( − exp

¡−222¢) is uniformly integrable. Hav-
ing established uniform integrability, Condition (A.21) now follows since as shown by Hall and Heyde

(1980, p. 58),  − exp
¡−222¢ → 0 by using Conditions (14) and (15). Thus, it follows that


†


¡
 − exp

¡−222¢¢  → 0. This completes the proof that 
†


→  (F0-stably) when 2 is a.s.

bounded.

The case where 2 is not a.s. bounded can be handled in the same way as in Hall and Heyde (1980,

p.62) after replacing their  () with 

Let  ∼ (0 1) be some random variable independent of F0, and hence independent of  (possibly
after redefining all variables on an extended probability space), then for any  -essentially bounded F0-
measurable random variable  we have  [ exp()] = 

£
 exp(−1

2
22)

¤
by iterated expectations, and

thus 
→  (F0-stably) in light of Proposition A.1(v).

A.4 Proof of Central Limit Theorem for Panel Data

Proof of Theorem 2. To prove Part (a) of the Theorem we use Proposition A.2 and follow the

approach outlined after the theorem in the text to derive the limiting distribution of 0(). In particular,
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we consider the representation 0() =
P

=1 with  =  + 1, defined by (22)-(23), and the

corresponding information sets defined in (12). We recall the definitions ( = 1       = 1     )

(−1)++1 = −120

F(−1)+ = G(−1)+ ∨ C

with 1 = 0. In the following, let  = (−1)+ +1. We also use F0 = C, then clearly F0 ⊂ F1 and

F0 = ∩∞=1F0 = C. To prove part (a) of the theorem we verify that {F 1 ≤  ≤ + 1  ≥ 1}
is a square integrable martingale difference array that satisfies the assumptions maintained by Theorem

1 with 2 = 0 , observing that 2 be an a.s. finite random variable measurable w.r.t. F0 in light of
Assumption 1.

Observing that  is constant it is readily seen that  is measurable w.r.t. to F by Assumption

1(b). Observing further that F(−1)+ ⊆ B ∨ C it follows from moment condition (8) of Assumption

2 that

 [|F−1] = 
£
(−1)++1|F(−1)+

¤
(A.22)

= −120
£
|F(−1)+

¤
= 0

Observe that kk ≤ 1 because kk = 1 and sup kk2 ≤ kk2, and recall that F(−1)+ ⊆ B ∨ C.
Consider some  with 0 ≤  ≤ , then


h
||2+ |F−1

i
= 

h¯̄
(−1)++1

¯̄2+ |F(−1)+
i

(A.23)

=
1

1+2

h¯̄
0

¯̄2+ |F(−1)+
i
≤ 1

1+2
kk2+ 

h
kk2+ |F(−1)+

i
≤ 1

1+2

n

h
kk2+ |F(−1)+

io 2+

2+

≤ 1

1+2

n

h

h
kk2+ |B ∨ C

i
|F(−1)+

io 2+

2+ ≤ 1

1+2

©

£
|F(−1)+

¤ª 2+
2+

using Lyapunov’s inequality, iterated expectations and condition (5) postulated by Assumption 1(a). For

 = 0 this implies that


h
||2 |F−1

i
≤ 1



©

£
|F(−1)+

¤ª 1
1+2  (A.24)

and for  =  we have


h
||2+ |F−1

i
≤ 1

1+2

£
|F(−1)+

¤
 (A.25)

Let  2 =
P

=1
£
2
|F−1

¤
denote the conditional variance. We next show that the following
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conditions

X
=1


h
||2+

i
→ 0 (A.26)

2 =

X
=1

2


→ 2 (A.27)

sup



h
 2+

i
= sup




"
X
=1


£
2
|F−1

¤#1+2
∞ (A.28)

are sufficient for Assumptions (14), (15), and (16) of Theorem 1. As discussed by Hall and Heyde (1980,

p. 53) Condition (14) is equivalent to

for any   0

X
=1

2
1 (||  )

→ 0

Condition (14) is now seen to hold since

X
=1


£
2
1 (||  )

¤
=

X
=1


h
||2+ 1 (||  )  ||

i
≤ −

X
=1


h
||2+

i
→ 0 (A.29)

in light of condition (A.26). Condition (15) is the same as (A.27). Condition (16) is seen to hold since


£
2

¤
= 

£
 2

¤
is uniformly bounded in light of Condition (A.28), using Lyapunov’s inequality.

We next verify Conditions (A.26), (A.27) and (A.28). Utilizing (A.25) and Assumption 1(a) it then

follows that

X
=1


h
||2+

i
=

X
=1


n

h
||2+ |F−1

io
≤  + 1

1+2
sup


 []→ 0 (A.30)

as →∞, observing that the uniform integrability of  implies that sup [] ∞. This establishes
condition (A.26). By Assumption 1(c) we have

X
=1

2
 =

X
=1

−1
X
=1

0
0
 = 0̃

→ 0  = 2. (A.31)

This verifies (A.27).

Next observe that


h
 2+

i
= 

⎡⎣Ã X
=1


£
2
|F−1

¤!1+2⎤⎦ ≤ 2 

"
X
=1

¡

£
2
|F−1

¤¢1+2#

≤ 2 

"
X
=1


h
||2+ |F−1

i#
(A.32)
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where the second line follows from inequality (1.4.3) in Bierens (1994) and the third from Lyapunov’s

inequality. Using (A.25) we have


h
 2+

i
≤ 

2


1+2

X
=1

X
=1

 [] ≤ (+ 1)
1+2

1+2
sup


 [] ∞

where the last inequality follows in light of Assumption 1(a). This establishes (A.28). Of course, in light

of (A.24) and argumentation as above we also have


£
2


¤
= 

©

£
2
|F−1

¤ª ≤ 1



h©

£
|F(−1)+

¤ª 1
1+2

i
≤ 1



(
sup


 []

) 1
1+2

∞

which establishes that  is square integrable.

Having verified all conditions of Theorem 1 it follows from that theorem that 0()
→ 

12

  (C-
stably), where  = 0 ,  is independent of C (and thus of  ) and  ∼ (0 1), possibly after

redefining all variables on an extended probability space. The claim in Part(a) of the theorem now follows

from Proposition A.2(a).

To prove Part (b) of the theorem we show that the proof of Part (a) can be readily extended to ̌ =

 − 
£
|F(−1)+

¤
where now (−1)++1 = −120̌. By construction 

£
̌|F(−1)+

¤
= 0

and so clearly  [|F−1] = 0. Of course, given that  is F(−1)++1 measurable it follows that

̌ is also F(−1)++1 measurable. Next observe that


h°°̌

°°2+ |F−1
i
≤ 

h¡kk+
°° £|F(−1)+

¤°°¢2+ |F(−1)+i
≤ 21+

h
kk2+ +

°° £|F(−1)+
¤°°2+ |F(−1)+

i
21+

h
kk2+ +

°° £|F(−1)+
¤°°2+ |F(−1)+

i
≤ 22+

h
kk2+ |F(−1)+

i
Thus, by argumentation analogous as in (A.23) we get for 0 ≤  ≤ 


h
||2+ |F−1

i
≤ 

1+2

©

£
|F(−1)+

¤ª 2+
2+

where  is a constant. From this we see that the inequalities (A.24) and (A.25) continue to hold with 1

replaced by . Consequently the the remainder of the proof is seen to carry over, with ̌ in place of  ,

which establishes that under Assumptions 1 and 3,

0
³
() −

√


´
→ ̌

12

  (C-stably) (A.33)

where ̌ = 0̌  Note that when additionally Assumption 2 holds, 
£
(−1)++1|F(−1)+

¤
= 0 and

thus  = 0, the result follows trivially from Part (a). Of course, (A.33) implies further that ̌
12

  has
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the characteristic function () =  exp{−1
2
(0̌ )2},  ∈ R. By Proposition A.2 it follows from (A.33)

that ³
() −

√


´
→ ̌ 12 (C-stably), (A.34)

where  is independent of  (and thus of ̌ ) and where  ∼ (0 ), and that


³
() −

√


´
→ (̌ 0)12∗ (C-stably) (A.35)

The claim in (18) holds observing that under Assumption 2 we have
√
 = 0 and ̌ =  . Obviously (A.35)

also establishes the claim in (19) under Assumption 3(a). The claim that under Assumption 3(a) ()

diverges is obvious since under this assumption 
→  and thus () = 

³
() −

√


´
+
√
 =

(
12), observing that the first term on the r.h.s. as well as  are (1). To verify the claim in (20)

under Assumption 3(b) observe that by Proposition A.2(b)³
() −

√
  

´
→
³
̌ 12   

´
(C-stably)

for all real valued C-measurable random variables . Since
√
 − 

→ 0 it follows furthermore that³
() −

√

√
 −    

´
→
³
̌ 12 0  

´


which in turn implies in light of the continuous mapping theorem that

(() ) =
³
(() −

√
)−(

√
 − ) + 

´
→
³
̌ 12 + 

´


It now follows from Proposition A.1(iii) that

()
→ ̌ 12 + (C-stably).

The claim in (20) is now seen to hold by arguments analogous to those in the proof of Proposition A.2(b).

Under Assumption 3(c) we have
√


→ 0, and thus in this case (20) holds with  = 0.

Proofs for Example 1. Using the definitions in the example it follows that
P

=1 is measurable

w.r.t. G, 
hP

=1|G−1
i
=
P−1

=1, and thus



"
X

=1



#2
≤ 

"
2+1X
=1

2


#
=
1



X
=1


£
21
¤
21 + 22

£
2
¤ 1


X
=1


£
22
¤
= 1 (A.36)

observing that  =1 (1) ∼ (0 1). Also,

2+1X
=1

2
 = 21

1



X
=1

21 + 22
2 1



X
=1

22
→ ¡

21 + 22
2
¢
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by the continuous mapping theorem and a law of large numbers for a triangular array of i.i.d. random

variables. Furthermore, in light of (A.36)


h
max


2


i
≤ 

hP2+1
=1 2



i
= 1 uniformly in 

Using Gaussianity we have 
£
4
¤
= 3 such that


hP2+1

=1 4


i
= 41

1

2

X
=1


£
41
¤
+ 42

£
4
¤ 1
2

X
=1


£
42
¤→ 0

which implies that max || → 0, recalling that in the proof of Theorem 2 we showed that condition

(A.26) implies condition (14). Thus, {G 1 ≤  ≤ 2+ 1} satisfies all conditions of Hall and Heyde
(1980, Theorem 3.2) except for condition (3.21) which requires G ⊆ G+1

For the discussion below Example 1 note that 1 and  are jointly normal with distribution"
1



#
∼ 

Ã
0

"
1 1

√


1
√
 1

#!


This implies that [1| 11  −11] = −12 and thus [+1|F] = 
£
−1211| 11  −11

¤
=

−11 for  = 1     . Observing further that  [++1|F+] = 0 it follows that

̌ =

⎧⎪⎪⎨⎪⎪⎩
0  = 1

 − 1

1 1   ≤ + 1

 + 1   ≤ 2+ 1

is a martingale difference sequence with respect to the filtration F i.e. 
£
̌|F−1

¤
= 0 for 1 ≤

 ≤ 2+ 1. Because
+1X
=1

̌ =

+1X
=2

( − 1

1) = −12

X
=1

11 − 1 = 0

it follows that

2+1X
=1

 =

2+1X
=1

̌ +

+1X
=2

 [|F] =
2+1X
=1

̌ + 1 =

2+1X
=+2

 + 1

Note that since
P+1

=1 ̌ is zero the the joint limit in
P2+1

=1 ̌ is degenerate in the sense that the

component corresponding to 1 is zero. Yet, as demonstrated above, the term
P2

=+1 ̌ =
P2

=+1

corresponding to 2 satisfies all conditions of Theorem 1. Thus it converges C-stably to (222)12 with

 ∼ (0 1) independent of  . The fact that  is measurable w.r.t C establishes the result. This example
illustrates that Condition (13) is not always satisfied. However, in this particular example it is sufficient

to concentrate on the non-degenerate part of
P2+1

=1 ̌
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B Appendix B: Proofs for Section 3

Proof of Theorem 3. To prove Part (a) of the Theorem it is enough to show that for  =  as

defined by (30) and (31) together with Assumptions 4 and 5 imply Assumptions 1 and 2. Recall that

B = 

½³
   


−1 

´
=1

 −

¾
, G(−1)+ = 

½³
   


−1 

´
=1

 ()
−1
=1

¾
and F(−1)+ =

G(−1)+ ∨ C, and observe that  is a function of
³
 

´
=1

and thus measurable w.r.t. G(−1)+.
In light of Assumption 4(b) it then follows immediately that Assumption 1(b) holds, and correspondingly

Assumptions 5 follows from Assumptions 2. Assumption 1(c) also follows immediately from Assumption

4(c).

To verify Assumption 1(a) let   0,   1,   1, and  be as in Assumption 4. Furthermore, let

 be such that 1+ 1 = 1(1 + ) and note that in light of the maintained assumptions   0. Next

observe that by Assumption 4(a)


h
kk2+ |B ∨ C

i
= kk2+ 

h
||2+ |B ∨ C

i
≤  (B.1)

with  =  kk2+. Applying the generalized Hölder’s inequality and recalling that kk ≤  by

Assumption 4(a) yields

kk1+ =
°°° kk2+°°°

1+
≤ kk

°°°kk2+°°°

≤ 

°°°kk2+°°°

 (B.2)

Next observe that

°°°kk2+°°°

=

⎧⎪⎨⎪⎩

⎡⎢⎣
¯̄̄̄
¯̄ +X
=1

°°0°°2
¯̄̄̄
¯̄
(1+2)

⎤⎥⎦
⎫⎪⎬⎪⎭
1

≤
⎧⎨⎩(+)(1+2)(2+)



+X
=1


£


0


¤(1+2)⎫⎬⎭
1

≤ (+)1+2(2+)
 (+)1

+X
=1

n

£


0


¤(1+2)o1
, (B.3)

using inequality (1.4.4) in Bierens (1994), and where  is a bound for the absolute elements of Π. Now

let  = () be some × 1 random vector with kk(2+) ≤ , then


h¡
0
¢(1+2)i

= (1+2)
X
=1


h
||(2+)

i
≤ (1+2)

X
=1

h
kk(2+)

i(2+)
(B.4)

≤ (1+2)+1
(2+)



using again inequality (1.4.4) in Bierens (1994). By Assumption 4(a) the (2+) norms of the ele-

ment of  are uniformly bounded by some finite constant . Observing further that the dimensions
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of  are bounded by  ( + ) it follows from applying inequality (B.4) that  [
0
]
(1+2) ≤

[ ( + )]
(1+2)+1(2+), and thus in light of (B.3):°°°kk2+°°°


≤ (+)2+2+1(2+)

 [ ( + )]
(1+2)+1(2+) (B.5)

Together with (B.2) this establishes that sup kk1+  ∞. Since this in turn implies the desired
uniform integrability of  it follows that also Assumption 1(a) holds.

Having verified all conditions of Assumption 1 and observing that Assumptions 5 implies Assumption

2 it follows from Theorem 2(a) that

()
→  12 (C-stably), (B.6)

where  ∼  (0 ), and  and C (and thus  and  ) are independent. Recall that = [1     ] with

 =
h
  0×(+−)

i0
. Then observing that that  0 is diagonal,  =+ = 

+
for  ≥ + it is

readily seen that min( 0) ≥ 1. Thus  has full row rank. Recalling that  is positive definite a.s. it

follows that Φ = 0 is also positive definite a.s. and thus by Proposition (A.2)(b)

() =()
→ 12 (C-stably) (B.7)

From the definition of the GMM estimator and the model given in (27) we have

12(̃ − 0) =
³
0Ξ̃

´−1
0Ξ̃()

Observing further that by assumption Ξ, , and  are C-measurable it follows from (B.7) and Proposition
A.2(b) that jointly ¡

Ξ () 
¢ →

³
Ξ  12 

´


for all real valued C-measurable random variables . Since by assumptions Ξ̃
→ Ξ and 

→  it follows

furthermore that ³
Ξ̃ − Ξ  −Ξ () 

´
→
³
0 0Ξ  12 

´
 (B.8)

Observing that 0Ξ is positive definite  and employing the continuous mapping theorem yields³
12(̃ − 0) 

´
→
³
(0Ξ)−10Ξ 12 

´
 (B.9)

and thus by Proposition A.1(iii) 12(̃ − 0)
→ (0Ξ)−10Ξ 12 (C-stably), which in turn implies

that

12(̃ − 0)
→ Ψ12∗ (C-stably) (B.10)

with Ψ = (0Ξ)−10ΞΦΞ(0Ξ)−1 and ∗ ∼ (0 ), and where ∗ and C (and thus ∗ and Ψ) are
independent. The latter claim is easily verified by arguments analogous to those in the proof of Proposition

A.2(b).
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The claim that
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follows from Assumption 4(c), observing that Φ =
P
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0
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Next assume that 
£
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= 2. To see that in this case
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since 2−1
P

=1 
0


→  in light of Assumption 4(c).

The proof of Part (b) follows from arguments analogous to those between (B.7) and (B.10), observing

that  is C-measurable.
To prove Part (c) observe that

Φ() = −1
X
=1

X
=1

X
=1


0


0
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X
=1

X
=1

2
0


0
 +  (1) = Φ+ (1)

since −1
P

=1 
0


0


→ 0 for  6=  by assumption and utilizing (B.11). Since Φ =  0 is

positive definite a.s. as discussed in the proof of Part(a) it follows that Φ
−12
()

→ Φ−12. The claim follows

in light of (B.7), and from arguments analogous to those between (B.7) and (B.10), observing that Φ is

C-measurable.
Proof of Theorem 4. Observe that

12(̃ − 0 −
³
0Ξ̃

´−1
0Ξ̃) =

³
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´−1
0Ξ̃

¡
() −
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¢
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³
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´−1
0Ξ̃̌()

where ̌() is defined in Assumption 6. For Part (a) we observe that by Theorem 2(b) ̌()
→ ̌ 12

(C-stably) where  is independent of C and  ∼ (0 ). Thus in light of and Proposition A.2(b)³
Ξ̃ − Ξ  −Ξ ̌() 

´
→
³
0 0Ξ  ̌ 12 

´


42



for all real valued C-measurable random variables . The result then follows immediately from the contin-

uous mapping theorem, and an application of Proposition A.1(iii). For Part (b) we observe that in light

of Theorem 2(b) and Proposition A.2(b)³
Ξ̃ − Ξ  −

√
 − Ξ̌()  

´
→
³
0 0 0Ξ  ̌ 12  

´
and the result again follows from the continuous mapping theorem and Proposition A.1(iii). Part (c)

follows as a special case of Part (b) with  = 0.

Proof of Theorem 5. We first show that eΦ() → Φ. Since e =  − (̃ − 0) we have

eΦ() = −1
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By assumption Φ()
→ Φ. For the + × + matrix −1
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0
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0
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by repeated application of the Cauchy-Schwarz inequality. By the boundedness of fourth moments all

expectations are bounded and thus

−1
P

=1

P
=

P
= kk kk

°°0°° | | kk = (1)

Since by assumption
°°°̃ − 0

°°° = (1) it follows that
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X
=1

0
X
=



X
=

(̃ − 0) =  (1) 
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The other terms appearing in B.12 can be treated in the same way. Therefore eΦ() → Φ as claimed, and
furthermore Ψ̂ =

³
0eΦ−1()

´−1 → Ψ = (0Φ−1)−1.
By part (a) of Theorem 3 it now follows that

12(̂ − 0)
→ Ψ12∗ (B.13)

where ∗ is independent of C (and hence of Ψ), ∗ ∼ (0 ). In light of (B.13), the consistency of Ψ̂,

and given that  has full row rank ∗ it follows furthermore that under 0³
Ψ̂0

´−12
12(̂ − ) =

³
Ψ̂0

´−12

h
12(̂ − 0)

i
=

¡
Ψ0

¢−12

h
12(̂ − 0)

i
+ (1)

Since  = (Ψ0)−12 is C-measurable and Ψ =  it then follows from part (b) of Theorem 3 that³
Ψ̂0

´−12
12(̂ − )

→ ∗ (B.14)

where ∗ ∼  (0 ∗). Hence, in light of the continuous mapping theorem,  converges in distribution to

a chi-square random variable with ∗ degrees of freedom. The claim that Ψ̂
−12


√
(̂ − 0)

→ ∗ is seen

to hold as a special case of (B.14) with  =  and  = 0.

C Appendix C: Proofs for Section 4

Proof of Theorem 6. The proof follows the classical approach, see, e.g., Newey and McFadden (1994).

Applying a first order Taylor approximation of  ()  around 0 and employing the mean value

theorem yields
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´
for some ̃ such that
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°°°. (Strictly speaking the mean value theorem should be

thought of as being applied component wise.) Next observe that for any   0
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as →∞ in light of Assumption 8. Recalling that  = (0) is nonsingular it follows that"
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Assumption 7 maintains that Assumptions 1 and 2 are satisfied. It then follows from Theorem 2(a) that

()
→ diag

³

12
1   
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´
 (C-stably)

where  ∼  (0 ) with  =  , and  and C (and thus  and  ) are independent. Observing further

that −12
P

=1

P
=1  = () with  = [  ] it follows from Theorem 2(b) that
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X
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X
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→ Ω12∗ (C-stably) (C.17)

where Ω =
P

=1 , ∗ ∼  (0 ), and ∗ and C (and thus ∗ and  ) are independent. In light of (C.16)

and (C.17), the continuous mapping theorem and Proposition A.2 it follows further that
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´
→ Ψ12∗ (C.18)
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with Ψ = −1Ω
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Clearly (C.15) also holds with ̃ replaced by ̂, which establishes that
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By analogous arguments we also have
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