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Abstract

We study linear peer effect models where peers interact in groups and individual’s outcomes
are linear in the group mean outcome and characteristics. We allow for unobserved random
group effects as well as observed fixed group effects. The specification is in part motivated by
the moment conditions imposed in Graham (2008). We show that these moment conditions
can be cast in terms of a linear random group effects model and that they lead to a class of
GMM estimators with parameters generally identified as long as there is sufficient variation
in group size or group types. We also show that our class of GMM estimators contains a
Quasi Maximum Likelihood estimator (QMLE) for the random group effects model, as well
as the Wald estimator of Graham (2008) and the within estimator of Lee (2007) as special
cases. Our identification results extend insights in Graham (2008) that show how assumptions
about random group effects, variation in group size and certain forms of heteroscedasticity
can be used to overcome the reflection problem in identifying peer effects. Our QMLE and
GMM estimators accommodate additional covariates and are valid in situations with a large
but finite number of different group sizes or types. Because our estimators are general moment
based procedures, using instruments other than binary group indicators in estimation is straight
forward. Our QMLE estimator accommodates group level covariates in the spirit of Mundlak
and Chamberlain and offers an alternative to fixed effects specifications. This model feature
significantly extends the applicability of Graham’s identification strategy to situations where
group assignment may not be random but correlation of group level effects with peer effects can
be controlled for with observable group level characteristics. Monte-Carlo simulations show that
the bias of the QMLE estimator decreases with the number of groups and the variation in group
size, and increases with group size. We also prove the consistency and asymptotic normality of
the estimator under reasonable assumptions..
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1 Introduction

Peer effects are of great interest to empirical researchers and policy makers. The idea that individu-
als are affected by their peers motivates policies that try to manipulate peer composition for better
outcomes. Peer effects are often confounded by group level effects. An example are teacher effects
in a class room setting. Identifying peer effects is notoriously challenging due to the reflection prob-
lem (Manski, 1993; Angrist, 2014) as well as due to spurious peer effects originating from group
level effects. Random group allocation may be one way to overcome these identification problems.
With groups formed at random, a random effects specification for group level characteristics can
be adopted. An alternative approach consists in postulating that, conditional on observed group
level characteristics, group level effects can be viewed as randomly assigned. Regression control
techniques based on observed group characteristics then lead to a similar random effects specifi-
cation, but without the need to appeal to random group assignment. We propose estimators that
can accommodate both scenarios.

Random group assignment plays a prominent role in the empirical peer effects literature in a
number of fields including education, labor, firm, finance and development studies. Recent ex-
amples from this literature include Sacerdote (2001); Duflo and Saez (2003); Zimmerman (2003);
Stinebrickner and Stinebrickner (2006); Kang (2007); Graham (2008); Guryan et al. (2009); Car-
rell et al. (2009, 2013); Duflo et al. (2011); Sojourner (2013); Booij et al. (2017); Garlick (2018);
Fafchamps and Quinn (2018); Cai and Szeidl (2018); Frijters et al. (2019). Assuming group effects
to be independent of observed individual and group characteristics is plausible when groups are
formed at random. Ignoring group effects or assuming fixed group effects (Lee, 2007) leads to
consistent but less efficient estimators. Random group effects themselves have important empirical
interpretations. For example, researchers in education policy often treat random class effects as
unobserved teacher effects (e.g., Nye et al. 2004; Rivkin et al. 2005; Chetty et al. 2011). Absent
random group assignment, the estimators we propose can accommodate observed group level effects
that can come from information about group characteristics such as the training and experience of
teachers, or averages of individual group member characteristics. Group level characteristics can be
interpreted as parametrizations of group effects in the spirit of Mundlak (1978) and Chamberlain
(1980). The choice between a random effects or fixed effects estimator then depends less on random
group assignment but more on whether group specific effects are believed to be observable or not.
In some cases there may be independent interest in the effects of group specific covariates. An
example is the effect of teacher training on student performance. In such cases a random effects
estimator is the preferred choice because fixed effects estimators are often unable to identify these
types of group level effects.

Our analysis extends insights in Graham (2008) that show how assumptions about random group
effects, variation in group size and certain forms of heteroscedasticity can be used to overcome the
reflection problem in identifying peer effects. We give an interpretation of the conditional variance
(CV) estimator of Graham (2008) in terms of a GMM estimator based on moment conditions
for the within-group variance and between-group variance. We show that the moment conditions
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underlying Graham (2008) are the score function of a quasi maximum likelihood (QML) estimator
for a random group effects model. The QMLE can be shown to be the best GMM estimator in
the class of estimators using moment conditions for the within and between variances of outcomes
individually, rather than combining them into a single moment condition as is the case for the CV
estimator, or focusing only on the within variation as is the case of the CMLE of Lee (2007).

One limitation of the conditional variance estimator proposed by Graham is the fact that it
amounts to a difference in difference identification strategy for the variances that requires groups
to fall into two size categories. As shown in Graham (2008) the resulting procedure takes the form
of a Wald estimator for a set of binary instruments. This setting is restrictive in applications where
groups may not be easily separated into two categories or where a more general set of instruments
needs to be considered. The estimators that we propose are general GMM based procedures
that accommodate additional covariates as well as offer flexibility in terms of the instruments
and the number of moment conditions that are being used. We illustrate these points by explicitly
considering moment based estimators that exploit exogenous variation in group size as well as
general group level heteroscedasticity as instruments. In contrast to the CMLE of Lee (2007),
which is a member of the class of GMM estimators we consider, our QMLE uses both the within
and between variance. This leads to efficiency gains under correct specification but comes at the
cost of potential miss-specification bias if the assumption of observed fixed and unobserved random
group effects is incorrect. The trade-offs are similar to related results for fixed and random effects
in the panel literature.

Our work is also related to the literature in spatial econometrics started by the work of Cliff
and Ord (1973, 1981) and Anselin (1988).1 Recently, there is a growing number of studies using
spatial methods to model social network effects, e.g., Lee (2007), Bramoullé et al. (2009), and
Kuersteiner and Prucha (2020). The strength of social links can be characterized by proximity
in the social network space. We extend Kelejian et al. (2006) and Lee (2007) by considering a
random group effects specification. Spatial models were traditionally estimated with maximum
likelihood (ML), e.g., Ord (1975). Kelejian and Prucha (1998, 1999) develop generalized method of
moments (GMM) estimators based on linear and quadratic moments. While this paper utilizes a
quasi-maximum likelihood estimation method, the score function depends on linear quadratic forms
of the error terms. Properties of quadratic moment conditions were introduced by Kelejian and
Prucha (1998, 1999) in the cross section case, and Kapoor et al. (2007) and Kuersteiner and Prucha
(2020) in a panel setting. Moreover, Kelejian and Prucha (2001) and Kelejian and Prucha (2010)
develop a central limit theorem for linear quadratic forms, which is the basis for the asymptotic
analysis in this paper.

The linear-in-means peer effect model in Manski (1993) is a special case of a spatial model with
group-wise equal dependence, see Kelejian and Prucha (2002) and Kelejian et al. (2006). Kelejian
and Prucha (2002) were the first to study the group-wise equal dependence spatial model. They

1Anselin (2010) offers a brief review of the development of spatial econometrics literature over the past thirty
years.
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show that if there is one group in a single cross section and the model has equal spatial weights, two-
stage least squares (2SLS), GMM and QMLE methods all yield inconsistent estimators, although
consistent estimation with 2SLS and GMM is possible for panel data. However, Kelejian et al.
(2006) point out that if group fixed effects are incorporated and the panel is balanced, the estimators
are inconsistent. The results in Kelejian et al. (2006) show the importance of variation in group
size in identification of spatial models with blocks of equal weights. The QMLE developed in this
paper and the conditional maximum likelihood estimator in Lee (2007) both rely on group size
variation for identification although we show that identification exploiting heteroscedastic errors is
also possible. Extensions include Lee et al. (2010) who allow for specific social structure within
each group and Liu and Lee (2010) and Liu et al. (2014) who allow for non-row normalized weight
matrices. The linear spatial model has also been applied to the empirical evaluation of peer effects
by Lin (2010) and Boucher et al. (2014). Bramoullé et al. (2009) study a broader range of social
interaction models and give conditions for identification.

The paper is organized as follows. In Section 2 we consider identification of endogenous peer
effects in a simple setting without covariates for the CV, CML and QML estimators. Section 3
presents the full model that allows for covariates and general variation in group size. Section 4
summarizes the technical conditions we impose and presents theoretical results for the QMLE.
Section 5 contains a small Monte Carlo experiment. Proofs are collected in an appendix.

2 Peer Effects with Random Group Effects

We start the discussion by presenting a simple model without covariates, to introduce and discuss
basic features of our new quasi-maximum likelihood estimator (QMLE), and connect it to the
conditional variance (CV) estimator in Graham (2008) and the conditional maximum likelihood
(CMLE) estimator in Lee (2007). The model decomposes variation in outcomes of a cross-section of
individuals into idiosyncratic noise, group level random effects and correlation that is due to group
level interaction. Quadratic moment conditions implied by this random effects specification lead
to efficient GMM, quasi maximum likelihood, and under additional distributional assumptions,
maximum likelihood estimators. Estimators based on these moment conditions include the CV
estimator of Graham (2008), the QMLE as well as the CMLE of Lee (2007) as special cases.

Let yir be an observed outcome of individual i in group r which has mr members, let αr be
an unobserved group level effect and let ϵir be unobserved individual specific characteristics. We
observe data for R groups as well as a categorical variable Dr which determines group type. An
example is when there are three group sizes such that Dr ∈ {′small′,′medium′,′ large′} . However,
Dr could be a characteristic that is not necessarily related to group size. An example is when
groups are defined by classrooms of schools in urban, suburban or rural districts and Dr is used
to denote urbanicity. Classes could also be categorized by sociodemographic composition such as
whether English or other languages are the native language spoken by students in the class. We
allow for type-dependent heteroscedasticity. Types add flexibility to the specification by relaxing
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the constraints the model imposes on the relationship between group variance and group size. In
some cases type specific heteroscedasticity provides identifying variation that is separate from group
size variation.

The peer effects model is stated in terms of a structural equation

yir = λȳ(−i)r + αr + ϵir, (1)

where ȳ(−i)r = 1
mr−1

∑mr
j ̸=i yjr is the leave-out-mean of the outcome variables. The parameter λ

captures the endogenous peer effects, see Manski (1993). The structural form emphasizes the de-
composition of yir into a social interaction term λȳ(−i)r, a group level effect αr and an idiosyncratic
error term ϵir. For example, when yir is a measure of student performance and r is a class-room
index then αr can be interpreted as a class-room or teacher effect while ϵir are unobserved student
characteristics for student i in classroom r. Cross-sectional independence of ϵir can be justified by
random group assignment such as in the application of Graham (2008). The assumptions we impose
on ϵir and αr are in line with the random effects panel literature where group level dependence
of unobservables is modeled with the common factor αr. We leave possible generalizations of this
framework to cases where ϵir is allowed to be dependent for future work.

Following Graham (2008) who emphasizes random assignments of individuals to groups, we
assume that αr is a random effect independent of ϵir. As shown by Graham (2008) for a slightly
different model based on full rather than leave-out means, the random effects nature of the model
leads to a set of quadratic moment conditions that can be exploited for identification. We expand
on these ideas by showing that the implied moment conditions are related to the moment conditions
of a random effects pseudo likelihood estimator. Transformations of these moments turn out to
coincide with moments used by Graham (2008) as well as Lee (2007) who considers a fixed effects
version of the model. Lee (2007) focuses on identification of λ based on group size variation.
Here we emphasize a random effects specification where identification is driven by heterogeneity at
the group level that could result from sources including but not limited to class size variation. A
literature on linear instrumental variables methods gives conditions under which λ can be identified
in models that have additional exogenous covariates Zr, e.g., Angrist (2014) or Bramoullé et al.
(2009).2 Besides the conventional instrumental variables strategies, alternative strategies are also
available, see Lee (2007), Graham (2008) for a modified model or Kuersteiner and Prucha (2020).
Let Yr = (y1r, ..., ymrr)

′
, ϵr = (ϵ1r, ..., ϵmrr)

′
, and let Im denote the m−dimensional identity matrix,

let ιm denote the m−dimensional column vector of ones, and define the weight matrix Wmr for
group r as Wmr = 1

mr−1(ιmr ι
′
mr

− Imr ). The off-diagonal elements of this matrix are all equal to
1

mr−1 and the diagonal elements are 0. The model can be written in matrix notation as

Yr = λWmrYr + αrιmr + ϵr. (2)
2The leave-out-mean ȳ(−i)r can be viewed as a special case of a Cliff-Ord-type (Cliff and Ord 1973, 1981) spatial

lag. Kelejian and Prucha (1998) give an early basic condition for identification by IV.
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To isolate or identify the social interaction effect, we impose the following restrictions on unobserv-
ables.

Assumption 1. For r = 1, . . . , R the r-th group is associated with a categorical variable Dr ∈
{1, 2, ..., J} with J ⩾ 1 being fixed and finite, and for each category j ∈ {1, 2, ..., J} there is at
least one group r with Dr = j. For r = 1, ..., R and i = 1, ...,mr the disturbance terms ϵir are
independently distributed across all i and r, with E [ϵir|Dr,mr] = 0 and E

[
ϵ2ir|Dr,mr

]
= σ2

ϵ0,Dr
,

0 < aϵ ⩽ σ2
ϵ0,Dr

⩽ aϵ < ∞ and where σ2
ϵ0,Dr

is a function only of Dr. There exists some ηϵ > 0
such that E[|ϵir|4+ηϵ ] < ∞.

Note that the variance E
[
ϵ2ir|Dr,mr

]
= σ2

ϵ0,Dr
has the representation σ2

ϵ0,Dr
= σ2

ϵ0,11 {Dr = 1}+
...+ σ2

ϵ0,J1 {Dr = J} where σ2
ϵ0,1, ...., σ

2
ϵ0,J are fixed parameters to be estimated.

Assumption 2. For r = 1, ..., R, the group effects αr are independently and identically distributed,
with E [αr|Dr,mr] = 0 and E

[
α2
r |Dr,mr

]
= σ2

α0, where 0 ≤σ2
α0 ≤ aα < ∞. There exists some

ηα > 0 such that E
[
|αr|4+ηα

]
< ∞. Also, {αr : r = 1, ..., R} are independent of {ϵir : i =

1, ...,mr; r = 1, ..., R}.

Assumption 1 implies in particular that individuals do not self select into groups based on
unobserved characteristics and Assumption 2 suggests that there is no matching between group
characteristics and individual characteristics. This no sorting or matching assumption can some-
times be motivated by specific empirical designs. For example, in the Project STAR experiment
that Graham (2008) considers, kindergarten students and teachers are randomly assigned to class-
rooms. This random assignment mechanism justifies interpreting αr as the classroom or teacher
effect. It also justifies assuming that αr and ϵir are mutually independent random variables, see
Graham (2008) Assumption 1.1. Assumption 1 allows ϵir to be homoscedastic across all groups
when J = 1 or heteroscedastic across different categories of Dr when J ⩾ 2. This formulation
contains the case considered by Graham (2008) where J = 2 as a special case. In line with Graham
(2008) we assume that αr is homoscedastic across different categories for ease of exposition. It is
possible to relax this assumption under scenario (i) of Lemma 2.1 but we leave a full development
of the heteroscedastic case to future work.

Assumptions 1 and 2 above imply moment conditions. These moment conditions take the form
of restrictions on the within and between group variance. As discussed in more detail below, these
moment conditions are fundamental to the ML estimator. In particular, we show that the score of
the ML estimator is a weighted average of those fundamental moment conditions.

To derive the moment conditions, define the composite error term Ur = αrιmr + ϵr where Ur is
an mr × 1 vector with elements uir = αr + ϵir. Let ūr and ϵ̄r be the mean of uir and ϵir in group
r. Let Ür = Ur − ūrιmr be the vector of within-group deviations from the mean of Ur and let Ÿr
and ϵ̈r be defined in a similar manner. It can be shown that ȳr = ūr/(1 − λ) = (αr + ϵ̄r)/(1 − λ)
with ūr = αr + ϵ̄r, and Ÿr = mr−1

mr−1+λ Ür = mr−1
mr−1+λ ϵ̈r. Two conditional moment conditions, one for

the within-group variance, the other for the between group variance, arise from the model in (2)
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under Assumptions 1 and 2. The expected value of the within-group and between-group squares
of group r are

varwr = E

[
Ÿ ′
r Ÿr

mr − 1 |mr, Dr

]
= E

[
(mr − 1)Ü ′

rÜr
(mr − 1 + λ)2 |mr, Dr

]
= (mr − 1)2

(mr − 1 + λ)2σ
2
ϵ,Dr

, (3)

varbr = E
[
ȳ2
r |mr, Dr

]
= E

[
ū2
r

(1 − λ)2 |mr, Dr

]
= 1

(1 − λ)2

(
σ2
α +

σ2
ϵ,Dr

mr

)
, (4)

where σ2
ϵ,Dr

= σ2
ϵ,11 {Dr = 1} + ...+ σ2

ϵ,J1 {Dr = J} .
To see how these moment conditions can achieve the identification of λ consider the case where

σ2
ϵ,Dr

= σ2
ϵ,Ds

but mr ̸= ms. Then, Equation (3) implies that

(mr − 1 + λ

ms − 1 + λ
)2 = (mr − 1)3

(ms − 1)3

E
[
Ÿ ′
s Ÿs|ms, Ds

]
E
[
Ÿ ′
r Ÿr|mr, Dr

] . (5)

Alternatively consider the case where mr = ms = m and σ2
ϵ,Dr

̸= σ2
ϵ,Ds

, then combining (3) and (4)
gives

(m− 1 + λ)2

(1 − λ)2 = E
[
ȳ2
r |m,Dr

]
− E

[
ȳ2
s |m,Ds

]
E
[
Ÿ ′
r Ÿr/[m(m− 1)3]|m,Dr

]
− E

[
Ÿ ′
s Ÿs/[m(m− 1)3]|m,Ds

] . (6)

Expressions on the left hand side of both (5) and (6) in principle can be solved for λ if we restrict
λ ∈ (−1, 1) andmr ⩾ 2, as both expressions are monotonic functions of λ. Equation (6) is a modified
version of Equation (9) in Graham (2008) that accounts for the leave-out-mean specification we
consider. The numerator differences out the variance of αr which is assumed constant across types.
This restriction is also imposed by Graham (2008) in his Assumption 1.2. In Lemma 2.1 below we
outline the exact conditions under which identification is possible.

The discussion above shows that under additional assumptions on λ and group size, identifi-
cation of λ is possible through moment conditions related to within and between variance when
there is variation in either group size mr or idiosyncratic error variance σ2

ϵ,Dr
. We now formal-

ize the discussion into Lemma 2.1 below. Let the parameter vector be θ =
(
λ, σ2

α, σ
2
ϵ,1, ..., σ

2
ϵ,J

)′

and, for clarity, let the true parameter vector be denoted by θ0 =
(
λ0, σ

2
α0, σ

2
ϵ0,1, ..., σ

2
ϵ0,J

)′
. For

identification, we further assume that group size mr ⩾ 2 and impose the following assumption on
λ.

Assumption 3. The parameter of the endogenous peer effects λ0 ∈ Λ, where Λ is a compact subset
of (−1, 1). Assume that θ0 ∈ Θ with Θ = Λ × [0, aα] × [aϵ, aϵ] × . . .× [aϵ, aϵ] compact.

The estimation procedures we propose in this paper can be implemented with the availability
of a general set of valid instruments and are valid for cases where J ⩾ 1 as long as J is fixed and
finite. In the simple model without covariates the available instruments are group size mr and
categorical variable Dr. These instruments are valid if assignment to groups is random in a way
that generates random variation in group size or category. Utilizing Equation (3) and (4), and
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using group size mr and the categorical variable Dr as instruments yields the following conditional
moment restriction E[χr(θ0)|mr, Dr] = 0 with

χr(θ) =
[
χwr (θ)
χbr(θ)

]
=

 (mr−1+λ)2Ÿ ′
r Ÿr

(mr−1)2 − (mr − 1)σ2
ϵ,Dr

(1 − λ)2ȳ2
r − σ2

α − σ2
ϵ,Dr
mr

.

 . (7)

Identification of the parameter θ is possible with variation in group size for a given category or
variation in the idiosyncratic variance over categories for the same group size. This is summarized
in the following lemma. The proof of the lemma is given in Appendix C.

Lemma 2.1. Suppose Assumptions 1-3 hold. Then the parameter θ0 is identified under the follow-
ing two scenarios:

(i) There are two groups r and s such that mr ̸= ms and Dr = Ds, and therefore σ2
ϵ0,Dr

= σ2
ϵ0,Ds

.
Then the parameter θ0 is identified in Θ. In particular, the moment conditions E[χwq (θ)|mq, Dq] = 0
and E[χbq(θ)|mq, Dq] = 0 for q = r, s with χwr (θ) and χbr(θ) defined in (7) identify λ0, σ2

ϵ0,Dr
,and

σ2
α0. If J > 1 the remaining parameters σ2

ϵ0,j with j ∈ {1, ..., J} and j ̸= Dr are identified by
E(χwq (θ)|mq, Dq) = 0 for q ̸= r or s and Dq = j.

(ii) There are two groups r and s, such that mr = ms and σ2
ϵ0,Dr

̸= σ2
ϵ0,Ds

. Then the parameter
θ0 is identified in Θ. In particular, the moment condition E[νq(θ)|mq, Dq] = 0, q = r, s uniquely
identifies λ0 and σ2

α0, where

νq(θ) = χbq(θ) −
χwq (θ)

mq(mq − 1) = (1 − λ)2ȳ2
q − σ2

α −
(mq − 1 + λ)2Ÿ ′

q Ÿq

mq(mq − 1)3 (8)

with χwq (θ) and χbq(θ) defined in (7). The remaining parameters σ2
ϵ0,j are identified by E(χwq (θ)|mq, Dq) =

0 for Dq = j for j ∈ {1, ..., J}.

Full identification is achieved in Scenario (i) with group size variation in at least one category. As
an example, consider types that describe urbanicity such that Dr = Ds = 1 denotes two classrooms
r and s that are both located in an urban school but where mr ̸= ms such that the classrooms differ
in size, while the remaining categories d = 2, ..., J may have the same group sizes. In this setting θ0

is identified without any further constraints on the variances σ2
ϵ,j . If the number of distinct group

sizes exceeds the number of categories J then it automatically must be the case that there exist
some category that is associated with at least two distinct group sizes. Note that the result holds
irrespective of whether the constraint of homoscedastic errors σ2

ϵ0,Dr
= σ2

ϵ0,Ds
is imposed on the

model or not. From Scenario (i) we see that variation in group size alone can provide variation that is
sufficient for identification. Furthermore, in the homoscedastic case where only a common variance
parameter σ2

ϵ is specified, two distinct group sizes are sufficient for identification by the result in
Scenario (i). This corresponds to the identification result of the conditional maximum likelihood
estimator (CMLE) in Lee (2007), the score function of which can be written as φ(mr)χwr (θ), where
φ(mr) is a function of mr.

While variation in group size serves as the source of identification in Scenario (i), identification
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based on the moment condition E[χr(θ)|mr, Dr] = 0 is also possible without group size variation
as long as there is some other form of group heterogeneity. As is shown in the proof for Scenario
(ii) of Lemma 2.1, utilizing mq = m and E [νq(θ)|mq, Dq] = 0 for q = r, s yields (6). From (6) we
see that the endogenous peer effect parameter λ is identified if there is heteroscedasticity across
groups of the same size for at least one size, and that λ can be estimated from the sample analog
of (6). The intuition of identification in Scenario (ii) echoes that of the conditional variance (CV)
estimator of Graham (2008). Similar to Graham (2008), (8) is based on the relationship between
the within-group and between-group variance as captured by νr(θ) , and can be used to construct
a Wald type moment condition like in (6) using the categorical variable as the instrument.

The above discussion focused on identification based on the moment vector χr(θ). We next
discuss the importance of these moment conditions for efficient estimation, and their relationship
to the score of the Gaussian ML estimator. The optimal moment function corresponding to χr(θ)
is given by χ∗

r(θ) = φ∗(mr, Dr)χr(θ) where, focusing on the case with J = 2 for exposition, 3

φ∗ (mr, Dr) = E[ ∂
∂θ′χr(θ0)|mr, Dr]

(
E[χr(θ0)χr(θ0)′|mr, Dr]

)−1

=



1
(mr−1+λ)σ2

ϵ0,Dr

− mr

(1−λ)(σ2
ϵ0,Dr

+mrσ2
α0)

0 − m2
r

2(σ2
ϵ0,Dr

+mrσ2
α0)2

−1{Dr=1}
2σ4

ϵ0,1
− 1{Dr=1}mr

2(σ2
ϵ0,1+mrσ2

α0)2

−1{Dr=2}
2σ4

ϵ0,2
− 1{Dr=2}mr

2(σ2
ϵ0,2+mrσ2

α0)2


. (9)

Clearly, it follows that E[χ∗
r(θ0)] = 0 by iterated expectations. We note that the moment condition

in (6) underlying the CV estimator is based on a linear transformation of φ∗ (mr, Dr) . Furthermore,
as we shall see in the next section, under the additional assumption that α and ϵ follow a Gaussian
distribution, the score function of the log likelihood for group r is exactly the negative of χ∗

r(θ),
that is

∂lnLr(θ0)/∂θ = −χ∗
r(θ0),

where lnLr(θ) denotes the log likelihood function for group r conditional on (m1, ...,mR, D1, ..., DR).
From these observations we see that the matrices φ∗ (mr, Dr) can be viewed to provide the optimal
weighting for the basic moment functions χr(δ); compare also the corresponding discussion for the
general model for more details.

The result that ∂ lnLr(θ0)/∂θ = −χ∗
r(θ0) for the score function under Gaussianity establishes

the asymptotic efficiency of the GMM estimator based on E [χr(θ)|mr, Dr] = 0 under the assump-
tion of Gaussian distributions for the unobservables. When the unobservables are not Gaussian
then the GMM estimator has the interpretation of a quasi maximum likelihood estimator (QMLE).
Similarly, in Lee (2007) the score function of the conditional maximum likelihood estimator (CMLE)

3See our Online Appendix for details. The derivation uses Lemma B.1 and the special properties of matrices
Ω(θ), I − λW and W described in Appendix B.1. In the Online Appendix we also give an explicit expression for the
variance covariance matrix of χr(δ).

9



for group r is the optimal moment function corresponding to E [χwr (θ)|mr] = 0 under the assump-
tion of homoscedastic and normally distributed errors ϵir. While the CMLE of Lee (2007) is not
efficient under the assumptions we postulate in this paper, it shares robustness properties of within
group panel estimators in cases where the group effects are possibly correlated with covariates in
the model. Under those circumstances, random effects quasi maximum likelihood estimators are
generally not expected to be consistent.

Our discussion so far highlights variance as the source of identification, with variation in either
size mr or variance of the idiosyncratic error terms σ2

ϵ,Dr
across groups as conditions. We show that

variation in group size and error term variance is a source of identification in the QMLE, CVE and
CMLE. In all, the CMLE utilizes how the within-group variance changes with λ and size when error
terms are homoscedastic, while the CVE exploits the relationship between the within-group variance
and between-group variance in relation to λ and size when there is either variation in group size or
heteroscedasticity across groups. Our QMLE uses both pieces of information. All three estimators
remain valid without covariates, and may achieve identification as long as there are at least two
different group sizes in the limit in the case of homoscedasticity. This complements other results in
the literature. For example, Proposition 4 in Bramoullé et al. (2009) states that in the setting of
Lee (2007), λ is identified by instrumenting (I−W )WY with (I−W )W 2Z, (I−W )W 3Z, where Z
is a matrix of exogenous covariates, in line with the spatial literature on the estimation of Cliff-Ord
type models. Their result is due to the fact that they only exploit restrictions for the conditional
mean of ϵ. In Graham (2008) as well as in this paper additional constraints on the distribution
of α and ϵ are imposed and shown to be useful in the identification of peer effects. Under these
conditions including Z offers additional sources of variation, but identification is possible with or
without it.

Adding covariates is critically important in empirical applications. Consider adding the co-
variate matrix Z. This leads to two additional moment conditions E

[
Z̈ ′
rÜr|mr, Dr

]
= 0 and

E [z̄′
rūr|mr, Dr] = 0, where z̄r = ι′mr

Zr/mr is the group mean of Zr and Z̈r = Zr − ιmr z̄r is the
deviation from group mean. Moreover, Ÿr and ȳr now need to be replaced by Ÿr − mr−1

mr−1+λ Z̈rβ and
ȳr − z̄rβ

1−λ respectively. The score function of the QMLE then is the same as the moment condi-
tions of the best GMM corresponding to these two moment functions in addition to the moments
E [χr(θ)|mr, Dr] = 0. In the same way, in the presence of covariates and assuming homoscedasticity
of ϵ, Lee’s CMLE estimator is based on E

[
Z̈ ′
rÜr

]
= 0 in addition to E [χwr (θ)|mr] = 0 and the

relative efficiency considerations discussed in this section continue to apply to the situation with
covariates.

3 General Model

In this section we generalize the model to allow for individual characteristics, average individual
characteristics of peers and group level covariates. We assume that we have access to observations
on R groups belonging to J categories, where 1 ⩽ J < ∞ is fixed. We consider asymptotics where

10



the number of groups R tends to infinity and where the number of different group sizes is finite.
For the asymptotic identification of λ0 and σ2

α0 this setup assumes that in the limit we observe
infinitely many groups for at least two group sizes or two categories, echoing the requirement of
variation in either group sizes or categories for identification in Section 2. In designs that allow for
heteroscedasticity, we also need infinitely many groups for each category j ∈ {1, ..., J} to identify
the variance parameters σ2

ϵ0,j . Let r = 1, ..., R denote the group index, let Dr denote the category of
group r, and let mr denote the size of group r. The total sample size is then given by N =

∑R
r=1mr.

Suppose further that interactions occur within each group, but not across groups, and that peer
effects work through the mean outcome and mean characteristics of peers in the same group. The
linear-in-means peer effects model that includes endogenous as well as exogenous peer effects then
is given by

yir = β1 + λȳ(−i)r + x1,irβ2 + x̄2,(−i)rβ3 + x3,rβ4 + αr + ϵir, (10)

where x1,ir and x2,ir are both row vectors of predetermined characteristics of individual i in group
r, x̄2,(−i)r = 1

mr−1
∑mr
j ̸=i x2,jr is a vector of average characteristics of i’s peers, x3,r is a vector of

observed group characteristics. The variables in x1,ir and x2,ir can be non-overlapping, partially
overlapping or totally overlapping. The error term consists of two components, the group effect
αr and the disturbance term ϵir. We treat x1,ir, x2,ir, x3,r, Dr and mr as non-stochastic, while
noting that at the expense of more complex notation we could also think of the analysis as being
conditional on these variables. In this model, peer effects work through the mean peer outcome
ȳ(−i)r and mean peer characteristics x̄2,(−i)r. In Manski’s terminology, λȳ(−i)r in (10) reflects en-
dogenous peer effects, and x̄2,(−i)rβ3 is the exogenous peer effect, also referred to as contextual
peer effects. The covariates x̄2,(−i)r and x3,r contain group level information and can be interpreted
as parametrizations of group level fixed effects in the spirit of Mundlak (1978) and Chamberlain
(1980). For example, x3,r can contain full group averages of individual characteristics or be com-
posed of other characteristics that only vary at the group level. The CMLE, as in the conventional
panel case, cannot account for this group level information. This can be a limitation in cases where
the effects of group level characteristics are of independent interest in the analysis. An example is
the effects of teacher education and training on class test scores.

Let zir = (1, x1,ir, x̄2,(−i)r, x3,r) be the row vector of all exogenous variables, let β = (β1, β
′
2, β

′
3, β

′
4)′

be the corresponding coefficient vector, and let kZ denote the number of columns in zir. A compact
form of model (10) is

yir = λȳ(−i)r + zirβ + αr + ϵir. (11)

The model can be further written as a Cliff-Ord type spatial model. To see this let Yr =
(y1r, ..., ymrr)′, Zr = (z′

1r, ..., z
′
mrr)

′, ϵr = (ϵ1r, ..., ϵmrr)′. The model for group r can be expressed in
matrix form as

Yr = λWmrYr + Zrβ + Ur, (12)

where Ur = αrιmr + ϵr. Let Y = [Y ′
1 , Y

′
2 , ..., Y

′
R]′, Z = [Z ′

1, Z
′
2, ..., Z

′
R]′, U = [U ′

1, U
′
2, ..., U

′
R]′, and
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W = diagRr=1{Wmr } such that the model for the whole sample is given by

Y = λWY + Zβ + U. (13)

In the spatial literature W is referred to as a spatial weight matrix and WY as a spatial lag. In
analyzing the model in (13) we maintain the random effects specification detailed in Assumptions
1 and 2 of Section 2, which imply that αr ∼ (0, σ2

α) and ϵir ∼ (0, σ2
ϵ,Dr

), where Dr ∈ {1, ..., J} with
J ⩾ 1 fixed and finite. The specification allows for heteroscedasticity at the group level as long as
there are only a finite number of different parameters. For example, we could allow for σ2

ϵ,Dr
to be

different for small and large groups, or more generally for all groups of a certain size mr. On the
other hand we do not cover the case where σ2

ϵ,Dr
differs for each individual group r, as this would

lead to an infinite dimensional parameter space.
The parameters of interest are λ, σ2

α, σ
2
ϵ,1, ..., σ

2
ϵ,J and β. Their respective true values are

λ0, σ
2
α0, σ

2
ϵ0,1, ..., σ

2
ϵ0,J and β0. In analyzing the model it will be convenient to concentrate the

log-likelihood function with respect to β for given values of θ = (λ, σ2
α, σ

2
ϵ1, ..., σ

2
ϵJ)′. Let Θ de-

note the parameter space for θ , and let δ = (θ′, β′)′ denote the vector of all parameters. Under
Assumptions 1 and 2 the expression for the variance covariance matrix Ω0 of U is

Ω0 = Ω(θ0) = diagRr=1 Ωr(θ0) = diagRr=1{σ2
ϵ0,Dr

Imr + σ2
α0ιmr ι

′
mr

}.

To define the quasi-maximum likelihood estimator (QMLE) for the peer effects model in (11)
note that solving for Y from (13) yields the reduced from:

Y = (I − λW )−1Zβ + (I − λW )−1U. (14)

If αr and ϵir follow normal distributions,

Y ∼ N((I − λW )−1Zβ, (I − λW )−1Ω(θ)(I − λW ′)−1). (15)

The corresponding log likelihood function is

lnLN (θ, β) = −N

2 ln(2π) + 1
2 ln |(I − λW )2Ω(θ)−1|

− 1
2(Y − λWY − Zβ)′Ω(θ)−1(Y − λWY − Zβ) (16)

and the corresponding QMLE is given by

δ̂N = (θ̂′
N , β̂

′
N )′ = argmaxθ,β lnLN (θ, β). (17)

It is convenient to concentrate out β and to obtain the QMLE for θ first. The first order condition
for β is

∂ lnLN (θ, β)
∂β

= (Y − λWY − Zβ)′Ω(θ)−1Z = 0, (18)

12



which leads to
β̂N (θ) = (Z ′Ω(θ)−1Z)−1Z ′Ω(θ)−1(I − λW )Y. (19)

Plugging β̂N (θ) back into (16) yields the following concentrated log likelihood function,

QN (θ) = 1
N

lnLN (θ, β̂N (θ))

= − ln(2π)
2 + 1

2N ln |(I − λW )2Ω(θ)−1| − 1
2N Y ′(I − λW )′MZ(θ)(I − λW )Y, (20)

where
MZ(θ) = Ω(θ)−1 − Ω(θ)−1Z(Z ′Ω(θ)−1Z)−1Z ′Ω(θ)−1. (21)

Then the QMLE for θ, θ̂N = (λ̂N , σ̂2
α,N , σ̂

2
ϵ1,N , ..., σ̂

2
ϵJ,N )′ is given by

θ̂N = argmaxθQN (θ). (22)

Plugging θ̂N back into (19), the QMLE for β is

β̂N = β̂N (θ̂N ) = (Z ′Ω(θ̂N )−1Z)−1Z ′Ω(θ̂N )−1(I − λ̂NW )Y. (23)

A formal result regarding the asymptotic identification of the model parameters is given in
the next section. We provide some intuition for that result, by extending our earlier discussion of
identification for the canonical model without covariates to our model (13) with covariates. Let ∥.∥
be the Euclidean norm on Rk, where k is a generic positive bounded integer. Using the relationships
Ür = (mr−1+λ0)

mr−1 Ÿr − Z̈rβ0 and ūr = (1 − λ0)ȳr − z̄rβ0, the moment functions related to the full
model can be written as follows

χr(δ) =


χwr (δ)
χbr(δ)
χzwr (δ)
χzbr (δ)

 =



∥∥∥mr−1+λ
mr−1 Ÿr − Z̈rβ

∥∥∥2
− (mr − 1)σ2

ϵ,Dr

[(1 − λ)ȳr − z̄rβ]2 − σ2
α − σ2

ϵ,Dr
mr

Z̈ ′
r

(
mr−1+λ
mr−1 Ÿr − Z̈rβ

)
z̄′
r ((1 − λ)ȳr − z̄rβ)


where χwr (δ) and χbr(δ) summarize the restrictions on the unobservables, and are natural extensions
of the moment conditions considered before in (7) for the model without covariates. The additional
moment restrictions χzwr (δ) and χzbr (δ) relate to the exogeneity of Zr relative to ϵr and αr. A
formal asymptotic identification result will be given in the next section. Intuitively, for given λ

the last two moment conditions identify β, while the first two identify λ, σ2
α, σ

2
ε,j , j = 1, ..., J in an

analogous manner as described in the discussion of Lemma 2.1 for the model without covariates.
As for the model without covariates there is a representation of the score of the log-likelihood

in terms of the fundamental moment conditions. To describe the relationship between moments
and the score we define the matrix
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φ(mr, Dr) =



1
(mr−1+λ0)σ2

ϵ0,Dr

− mr

(1−λ0)(σ2
ϵ0,Dr

+mrσ2
α0)

1
(mr−1+λ0)σ2

ϵ0,Dr

β′
0 − mr

(1−λ0)(σ2
ϵ0,Dr

+mrσ2
α0)β

′
0

0 − m2
r

2(σ2
ϵ0,Dr

+mrσ2
α0)2 0 0

−1(Dr=1)
2σ4

ϵ0,1
− mr1(Dr=1)

2(σ2
ϵ0,1+mrσ2

α0)2 0 0
...

...
...

...
−1(Dr=J)

2σ4
ϵ0,J

− mr1(Dr=J)
2(σ2

ϵ0,J +mrσ2
α0)2 0 0

0 0 − 1
σ2

ϵ0,Dr

IkZ
− mr

σ2
ϵ0,Dr

+mrσ2
α0
IkZ


.

(24)

Furthermore observe that the log-likelihood function can be written as lnLN (δ) = −N
2 ln(2π) +∑R

r=1 lnLr(δ) where

lnLr(δ) = 1
2 ln |(Imr − λWmr )2Ωr(θ)−1|

− 1
2(Yr − λWmrYr − Zrβ)′Ωr(θ)−1(Yr − λWmrYr − Zrβ)

is the log-likelihood function for group r. Then it can be shown that4

∂ lnLr(δ0)
∂δ

= −χ∗
r(δ0) = −φ(mr, Dr)χr (δ0) .

As is well known, the score of the log-likelihood function, S(δ) = −
∑R
r=1

∂ lnLr(δ)
∂δ can be inter-

preted as a moment function corresponding to the moments E [S(δ0)] = −
∑R
r=1E

[
∂ lnLr(δ0)

∂δ

]
= 0.

Furthermore, under a Gaussian assumption the score is an optimal moment function.5 From this
we see that the matrices φ(mr, Dr) can be viewed to provide the optimal weighting for the basic
moment functions χr(δ). Under Gaussian assumptions the optimal GMM estimator coincides with
the maximum likelihood estimator and is asymptotically efficient under the stated assumptions.

4 Theoretical Results

We next state our assumptions for the general model. We maintain Assumptions 1-3 on ϵ, α and λ.
In the following we add assumptions regarding the exogenous variables, and the sizes and relative

4See our Online Appendix for details. The derivation uses Lemma B.1 and the special properties of matrices
Ω(θ), I − λW and W described in Appendix B.1. In the Online Appendix we also give an explicit expression for the
variance covariance matrix of χr(δ).

5Observe that

E

[
∂S(δ0)

∂δ′

]
[V ar (S(δ0))]−1 S(δ0) =

(
−

R∑
r=1

E

[
∂2lnLr(δ0)

∂δ∂δ′

])( R∑
r=1

E

[
∂lnLr(δ0)

∂δ

∂lnLr(δ0)
∂δ′

])−1

S(δ0)

= S(δ0).

in light of the information matrix equality.
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magnitudes of groups in the sample. Let Im,j ⊂ {1, ..., R} be the index set of all groups in category j
with size equal tom. Thus if r ∈ Im,j , thenDr = j andmr = m. Let Rm,j be the cardinality of Im,j ,
in other words Rm,j is the number of groups in category j with size equal to m, and let Rj be the
number of groups in category j, that is Rj =

∑R
r=1 1(Dr = j) =

∑M̄
m=2Rm,j , where the upper bound

M̄ on the group size is specified in the next assumption below. Furthermore let ωm,j = Rm,j/R

denote the share of groups in category j with size equal to m, and let ωj = Rj/R =
∑M̄
m=2 ωm,j

be the share of groups in category j. Below we maintain the following assumption regarding the
group sizes and their relative magnitudes.

Assumption 4. (a) The sample size N goes to infinity; (b) The group size is bounded in the sense
that there exists some positive constant M̄ such that 2 ⩽ mr ⩽ M̄ < ∞ for r = 1, 2, ..., R; (c) The
limit ω∗

m,j = limN→∞ ωm,j exists and ω∗
m,j < 1 for all 2 ⩽ m ⩽ M̄ and j, and ω∗

j = limN→∞ ωj =∑M̄
m=2 ω

∗
m,j > 0 for all j.

The restriction that the minimal group size is 2 rules out singleton groups. A member of
such a group has no peers. Assumption 4(b) imposes a fixed upper bound on group size. In
many applications this is not a serious constraint. The assumption is more restrictive than Lee
(2007) who allows for group size to grow with sample size. It is worth pointing out that increasing
group sizes generally reduce the convergence rates for estimators of peer effects parameters, and as
demonstrated by Kelejian and Prucha (2002) in some cases lead to inconsistency of these estimators.

Assumption 4(c) states that asymptotically, no single type-group size combination can dominate
the sample by requiring that ω∗

m,j < 1 for all 2 ⩽ m ⩽ M̄ and j. In addition, all types j occur in
the sample in an asymptotically non-negligible way because ω∗

j > 0 for all j. On the other hand,
we do allow that for certain combinations of j and m the limit ω∗

m,j is zero, allowing for some group
sizes of type j to occur infrequently or not at all in the sample.

Observe that N =
∑R
r=1mr =

∑J
j=1

∑M̄
m=2mRm,j . Since group size is bounded, the num-

ber of groups R goes to infinity as N goes to infinity. Since
∑J
j=1

∑M̄
m=2Rm,j = R, we have∑J

j=1
∑M̄
m=2 ωm,j =

∑J
j=1 ωj = 1 and thus

∑J
j=1

∑M̄
m=2 ω

∗
m,j =

∑J
j=1 ω

∗
j = 1. Since ω∗

j > 0 by
Assumption 4(c) it follows that also Rj goes to infinity, which is needed to facilitate the consistent
estimation of σ2

ϵ,j . Assumption 4(c) implies that the limit of the average group size is given by

m∗ = lim
N→∞

N

R
= lim

N→∞

J∑
j=1

M̄∑
m=2

Rm,j
R

m =
J∑
j=1

M̄∑
m=2

ω∗
m,jm. (25)

Clearly 2 ⩽ m∗ ⩽ M̄ , since 2 ⩽ mr ⩽ M̄ .
Observe that in light of Assumptions 1, 2, and 3 the parameter space Θ for θ =

(
λ, σ2

ασ
2
ϵ,1, ..., σ

2
ϵ,J

)′

is a compact subset of the Euclidean space R2+J . Observe further that

Imr − λWmr = (1 + λ

mr − 1)I∗
mr

+ (1 − λ)J∗
mr
, (26)

where I∗
mr

= Imr − ιmr ι
′
mr
/mr and J∗

mr
= ιmr ι

′
mr
/mr are symmetric, idempotent, orthogonal, and
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sum to the identity matrix. Furthermore from the results in Appendix B.1 we have |Imr −λWmr | =
[1+λ/(mr−1)]mr−1(1−λ).6 Thus the matrix Imr −λWmr is nonsingular if 1+λ/(mr−1) ̸= 0 and
1 −λ ̸= 0. Assumption 3 ensures the non-singularity of Imr −λWmr , and hence the non-singularity
of I − λW = diagRr=1{Imr − λWmr }, since for mr ⩾ 2 and λ < 1 we have 1 + λ/(mr − 1) > 0 and
1 − λ > 0.

Let z̄r = 1
mr
ι′mr

Zr be the row vector of column means of Zr, and let Z̈r = Zr − ιmr z̄r be the
deviations from the column means. Then Z ′

rI
∗
mr
Zr = Z̈ ′

rZ̈r, Z ′
rJ

∗
mr
Zr = mrz̄

′
rz̄r.

Assumption 5. (a) The N × kZ matrix Z is non-stochastic, with rank(Z) = kZ > 0 for N

sufficiently large. The elements of Z are uniformly bounded in absolute value.
(b)For 2 ⩽ m ⩽ M̄ , and 1 ⩽ j ⩽ J the following limits exist:

lim
N→∞

N−1 ∑
r∈Im,j

Z̈ ′
rZ̈r = κ̈m,j ,

lim
N→∞

N−1 ∑
r∈Im,j

mz̄′
rz̄r = κ̄m,j ,

lim
N→∞

N−1 ∑
r∈Im,j

z̄r = z̄m,j .

(c) For at least one pair of (m, j) such that ω∗
m,j > 0, and N sufficiently large, the smallest

eigenvalues of N−1∑
r∈Im,j

Z ′
rZr = N−1∑

r∈Im,j
Z̈ ′
rZ̈r + N−1∑

r∈Im,j
mz̄′

rz̄r are bounded away
from zero, uniformly in N, by some finite constant ξ

Z
> 0.

Suppose we have some N × N matrix AN (θ) = diagRr=1{p(mr, Dr, θ)I∗
mr

+ s(mr, Dr, θ)J∗
mr

},
where p(mr, Dr, θ) and s(mr, Dr, θ) are positive, uniformly continuous and bounded on Θ. An
example of an expression of this form is Ω(θ)−1 which is obtained in closed form in Equation (B.3)
in Appendix B.1. Then under Assumption 5(b), the limiting matrix of N−1Z ′AN (θ)Z always exists,
is continuous in θ and takes the form

lim
N→∞

1
N
Z ′AN (θ)Z =

J∑
j=1

M̄∑
m=2

[p(m, j, θ)κ̈m,j + s(m, j, θ)κ̄m,j ].

Furthermore, N−1Z ′AN (θ)Z converges to its limiting matrix uniformly on Θ. With p(mr, Dr, θ) >
0 and s(mr, Dr, θ) > 0, Assumption 5(a) ensures that N−1Z ′AN (θ)Z and its limiting matrix are
invertible, with the elements of the inverse matrix uniformly bounded in absolute value. In the
special case when AN (θ) is the identity matrix, limN→∞

1
NZ

′Z =
∑J
j=1

∑M̄
m=2[κ̈m,j + κ̄m,j ], which

has the smallest eigenvalue bounded above zero by some finite constant ξZ > 0. See Lemma B.5
for details and a proof.

As shown by Lemma 2.1 in Section 2, identification of λ and σ2
α requires variation in the group

6In Appendix B.1 we review additional properties of matrices of the form pI∗
m +sJ∗

m , which will be used repeatedly
in this paper. In particular, their multiplication is commutative. The products of such matrices are also of the form
of pI∗

m + sJ∗
m, and |pI∗

m + sJ∗
m| = pm−1s, (pI∗

m + sJ∗
m)−1 = 1

p
I∗

m + 1
s
J∗

m.
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size or variance of the error terms. The following assumption ensures this so that in the limit we
have non-negligible samples for at least two different group sizes or two different categories with
different variances of the idiosyncratic errors ϵir.

Assumption 6. For some sizes m and m′, and some categories j and j′ we have ω∗
m,j > 0 and

ω∗
m′,j′ > 0, and either of the following two scenarios hold,

(a) m ̸= m′, and σ2
ϵ0,j = σ2

ϵ0,j′ for some j, j′ ∈ {1, ..., J} with j = j′ or j ̸= j′.
(b) m = m′, and σ2

ϵ0,j ̸= σ2
ϵ0,j′ for some j, j′ ∈ {1, ..., J} with j ̸= j′.

The conditions in Assumption 6 are the asymptotic analogs of identification conditions imposed
in Lemma 2.1. Assumption 4 by itself is not sufficient for identification because it only implies that
no single pair (m, j) asymptotically dominates the sample. Assumption 4 alone does not guarantee
that there is enough variation in the underlying group sizes m or the variances σ2

ϵ0,j . For example,
it is possible under Assumption 4 that all groups are of the same size and that all variances σ2

ϵ0,j
are the same. Assumption 6 rules out such cases. Assumption 6(a) is related to Assumption 6.1
and Footnote 9 of Lee (2007) which requires group size variation to achieve identification for the
case where group sizes are bounded, the only case we consider. Assumption 6(b) has no analog in
Lee (2007) because of his Assumption 1 which imposes homoscedasticity on the errors ϵir. We show
that identification is possible purely based on group level heteroscedasticity even if all group sizes
are the same. This insight also extends the analysis of Graham (2008) where types and class sizes
are linked.

Below we give results on the consistency and asymptotic normality of the QMLE δ̂N = (θ̂′
N , β̂

′
N )′

defined in (17).

Theorem 4.1. Suppose Assumptions 1-6 hold, then
(a) The parameter δ0 is asymptotically identified in the sense that it is the unique maximizer

of the criterion R̄(θ, β) = limN→∞E
[

1
N lnL(θ, β)

]
.

(b) The QMLE δ̂N is consistent, i.e., δ̂N
p→ δ0 as N → ∞.

A detailed proof of the theorem is given in Appendices E.1 and E.2. As can be seen from the
proof, the argumentation that ensures part (a) of the theorem is analogous to the argumentation
used in establishing Lemma 2.1. Here is a sketch of the proof to provide some intuition. The
limiting expected value of the concentrated log likelihood function QN (θ) is

Q̄∗(θ) = C∗ + 1
2m∗

J∑
j=1

M̄∑
m=2

ω∗
m,jg(m, j, θ) +Q(2)∗(θ),

where C∗ is a constant term, g(m, j, θ) = ln |G(m, j, θ)| − trG(m, j, θ) with

G(m, j, θ) =
σ2
ϵ0,j
σ2
ϵ,j

(
m− 1 + λ

m− 1 + λ0

)2
I∗
m +

(σ2
ϵ0,j +mσ2

α0)
(σ2
ϵ,j +mσ2

α)

( 1 − λ

1 − λ0

)2
J∗
m,
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and Q(2)∗(θ) = limN→∞ Q̄
(2)
N (θ) where Q̄

(2)
N (θ) = − 1

2N η̃Z(θ)′M̃Z(θ)η̃Z(θ) with M̃Z(θ) = I −
Ω(θ)−1/2Z(Z ′Ω(θ)−1Z)−1Z ′Ω(θ)−1/2 and

η̃Z(θ) = Ω(θ)−1/2(I − λW )(I − λ0W )−1Zβ0.

It is easy to see that θ0 is a global maximizer ofQ(2)∗(θ), given that −Q̄(2)
N (θ) is the quadratic form of

an idempotent and thus positive semi-definite matrix, and Q(2)∗(θ0) = 0. However, this does not en-
sure that θ0 is a unique global maximizer. Identification thus comes from

∑J
j=1

∑M̄
m=2 ω

∗
m,jg(m, j, θ).

Note that for any symmetric positive definite m × m matrix A, ln |A| − tr(A) ⩽ −m with equal-
ity if and only if A is an identity matrix.7 For any m and j, g(m, j, θ) is maximized if and
only if G(m, j, θ) = Im, which is equivalent to E [χr(θ)|mr = m,Dr = j] = 0 with χr(θ) =
(χwr (θ), χbr(θ)) defined in (7). It now follows from an asymptotic analogue of Lemma 2.1 that
in either case (i) or (ii) of Assumption 6, θ0 is the only solution to E [χr(θ)|mr = m,Dr = j] = 0
and E [χr(θ)|mr = m′, Dr = j′] = 0. Thus for any θ ̸= θ0,

min
(
g(m, j, θ0) − g(m, j, θ), g(m′, j′, θ0) − g(m′, j′, θ)

)
> 0.

As a result, θ0 is the unique global maximizer of Q̄∗(θ) when one of the two scenarios holds true
for some ω∗

m,j > 0 and ω∗
m′,j′ > 0.

To study the asymptotic distribution of the estimator, first note that under Assumptions 1 and 2,
the third and fourth moments of ϵir and αr exist. Let E

[
ϵ3ir|Dr = j

]
= µ

(3)
ϵ0,j , E

[
ϵ4ir|Dr = j

]
= µ

(4)
ϵ0,j ,

E
[
α3
r

]
= µ

(3)
α0 and E

[
α4
r

]
= µ

(4)
α0 . Also, define Γ0 and Υ0 as

Γ0 = lim
N→∞

N−1E

[
−∂2lnLN (δ0)

∂δ∂δ′

]
,

Υ0 = lim
N→∞

N−1E

[
∂lnLN (δ0)

∂δ

∂lnLN (δ0)
∂δ′

]
.

As shown in Appendix E.3, the two limiting matrices exist. Specific expressions are given in
Appendix F. When ϵir and αr both follow normal distributions, Υ0 = Γ0.

The next lemma shows that Γ0 is positive definite under the maintained assumptions. The
lemma also provides a sufficient condition on the moments of ε under which Υ0 is p.d..

Lemma 4.1. Suppose Assumptions 1-6 hold, then Γ0 is positive definite. Under the additional
assumption that µ(4)

ε0,j − σ4
ε0,j > (µ(3)

ϵ0,j)2/σ2
ε0,j for all j ∈ {1, ..., J}, Υ0 is also positive definite.

The proof of the lemma is in Appendix F. Note that from Holder’s inequality we have µ(4)
ε0,j −

σ4
ε0,j ⩾ (µ(3)

ϵ0,j)2/σ2
ε0,j . The sufficient condition is mild in that it only postulates that the inequality

holds strongly. Of course, the condition holds, e.g., for the Gaussian distribution.
With both Υ0 and Γ0 ensured to be positive definite, we have the following theorem.

7To see this, note that under the maintained assumptions the eigenvalues of A, say, λi, are positive and ln |A| −
tr [A] =

∑m

i=1 [ln(λi) − λi]. The claim is seen to hold by observing that the function f(x) = ln(x) − x ≤ −1 for
x ∈ (0, ∞) with a unique maximum at x = 1, and observing that A = Im if and only if λi = 1 for i = 1, . . . , m.
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Theorem 4.2. Under Assumptions 1-6, and assuming that δ0 is in the interior of the parameter
space Θ defined in Assumption 3 and that µ(4)

ε0,j − σ4
ε0,j > (µ(3)

ϵ0,j)2/σ2
ε0,j for j ∈ {1, ..., J}, we have

√
N(δ̂N − δ0) d−→ N(0,Γ−1

0 Υ0Γ−1
0 ) as N → ∞.

The proof of the theorem is given in Appendix E.3. We next discuss consistent estimators for the
matrices Γ0 and Υ0 composing the asymptotic variance covariance matrix. An inspection shows that
Γ0 = Γ(δ0, s0) and Υ0 = Υ(δ0, µ

(3)
α0 , µ

(4)
α0 , µ

(3)
ϵ0,1, ..., µ

(3)
ϵ0,J , µ

(4)
ϵ0 ..., µ

(4)
ϵ0,J , s0), with s0 = (s0,1, ..., s0,J ,m

∗)
and

s0,j = [κ̈2,j , ...κ̈M̄,j , κ̄2,j , ..., κ̄M̄,j , z̄2,j , ..., z̄M̄,j , ω
∗
2,j , ..., ω

∗
M̄,j

],

and where the functions Γ(.) and Υ(.) are continuous. Since the functions Γ(.) and Υ(.) are
continuous, consistent estimators for Γ0 and Υ0 can be readily obtained by replacing the arguments
of those functions by consistent estimators thereof. Let ŝN be the sample analogue of s0, then clearly
ŝN

p→ s0 in light of Assumptions 4 and 5. Recall further that by Theorem 4.1 the QMLE estimator
δ̂N is consistent for δ0, and suppose we have consistent estimators for µ(3)

α0 , µ(4)
α0 , µ(3)

ϵ0,1, ..., µ
(3)
ϵ0,J , and

µ
(4)
ϵ0,1..., µ

(4)
ϵ0,J , denoted as µ̂(3)

α , µ̂
(4)
α , µ̂

(3)
ϵ,1 , ...µ̂

(3)
ϵ,J , µ̂

(4)
ϵ,1 , ...µ̂

(4)
ϵ,J . Now define Γ̂N and Υ̂N as

Γ̂N = Γ(δ̂N , ŝN ), (27)

Υ̂N = Υ(δ̂N , µ̂(3)
α , µ̂(4)

α , µ̂
(3)
ϵ,1 , ...µ̂

(3)
ϵ,J , µ̂

(4)
ϵ,1 , ...µ̂

(4)
ϵ,J , ŝN ), (28)

then it follows from Slutsky’s theorem that Γ̂N and Υ̂N are consistent estimators for Γ0 and Υ0.
A consistent estimator for the variance covariance matrix of the limiting distribution is given by
Γ̂−1
N Υ̂N Γ̂−1

N .
The above discussion assumed the availability of consistent estimators for the third and fourth

moment of the error components. In the following we now define consistent estimators for µ(3)
α0 ,

µ
(4)
α0 and µ

(3)
ϵ0,j , µ

(4)
ϵ0,j , j = 1, ..., J . To motivate the estimators consider the composite error term

for individual i in group r, uir = αr + ϵir, and let ūr = 1
mr

∑mr
i=1 uir, and üir = uir − ūr . Then

ūr = αr + ϵ̄r and üir = ϵir − ϵ̄r, where ϵ̄r is the group mean of ϵir. It is readily verified that under
Assumptions 1 and 2, we have

E
[
ü3
ir

]
= (1 − 3

mr
+ 2
m2
r

)µ(3)
ϵ0,Dr

,

E
[
ü2
irūr

]
= (mr − 1)

m2
r

µ
(3)
ϵ0,Dr

,

E
[
ū3
r

]
= µ

(3)
α0 +

µ
(3)
ϵ0,Dr

m2
r

,

E
[
ü4
ir

]
= m3

r − 4m2
r + 6mr − 3
m3
r

µ
(4)
ϵ0,Dr

+ 3(mr − 1)(2mr − 3)
m3
r

σ4
ϵ0,Dr

,
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E
[
ū4
r

]
= µ

(4)
α0 + 1

m3
r

µ
(4)
ϵ0,Dr

+ 3mr − 1
m3
r

σ4
ϵ0,Dr

+ 6
mr

σ2
α0σ

2
ϵ0,Dr

.

Next define for group r,

f (3)
ϵ,r =


1
mr

∑mr
i=1 ü

3
ir/(1 − 3

mr
+ 2

m2
r
) mr ⩾ 3

1
mr

∑mr
i=1 ü

2
irūr/( 1

mr
− 1

m2
r
) mr = 2

,

f (3)
α,r = ū3

r − f (3)
ϵ,r /m

2
r ,

f (4)
ϵ,r = m3

r

m3
r − 4m2

r + 6mr − 3 [( 1
mr

mr∑
i=1

ü4
ir)-

3(mr − 1)(2mr − 3)
m3
r

σ4
ϵ0,Dr

],

f (4)
α,r = ū4

r − f (4)
ϵ,r /m

3
r − 3(mr − 1)

m3
r

σ4
ϵ0,Dr

− 6
mr

σ2
α0σ

2
ϵ0,Dr

.

Then E
[
f

(3)
ϵ,r

]
= µ

(3)
ϵ0,Dr

, E
[
f

(3)
α,r

]
= µ

(3)
α0 , E

[
f

(4)
ϵ,r

]
= µ

(4)
ϵ0,Dr

, E
[
f

(4)
α,r

]
= µ

(4)
α0 . By Lemma B.4(a),

1
Rj

∑R
r=1 1(Dr = j)f (l)

ϵ,r
p→ µ

(l)
ϵ0,j and 1

R

∑R
r=1 f

(l)
α,r

p→ µ
(l)
α0 for l = 3, 4 and j = 1, ..., J as R goes to

infinity.
To construct feasible counterparts of these estimates, consider the estimated disturbances ûir =

yir − λ̂ȳ(−i)r − zirβ̂, where λ̂ and β̂ denote the QML estimators, and let ˆ̄ur = 1
mr

∑mr
i=1 ûir and

ˆ̈uir = ûir − ˆ̄uir. Feasible counterparts, say, f̂ (3)
ϵ,r , f̂ (3)

α,r, f̂ (4)
ϵ,r , f̂ (4)

α,r of f (3)
ϵ,r , f (3)

α,r, f (4)
ϵ,r , f (4)

α,r can now be
defined by replacing ūr and üir with ˆ̄ur and ˆ̈uir, and σ2

α0 and σ2
ϵ0,j with their QML estimators. Now

consider the following estimators for the third and fourth moments of the error components: µ̂(3)
α =∑R

r=1 f̂
(3)
α,r/R, µ̂(4)

α =
∑R
r=1 f̂

(4)
α,r/R, µ̂(3)

ϵ,j =
∑R
r=1 1(Dr = j)f̂ (3)

ϵ,r /Rj , µ̂(4)
ϵ,j =

∑R
r=1 1(Dr = j)f̂ (4)

ϵ,r /Rj ,
j = 1, ..., J .

The next theorem establishes that valid inference based on standardized statistics is possible.
At the core of this result is the fact that Γ̂N

p→ Γ0 and Υ̂N
p→ Υ0 as shown in Appendix E.

Theorem 4.3. Under Assumptions 1-6, and assuming that µ(4)
ε0,j − σ4

ε0,j > (µ(3)
ϵ0,j)2/σ2

ε0,j for j ∈

{1, ..., J}, and Γ̂N , Υ̂N defined in (27) and (28) we have
√
N
(
Γ̂−1
N Υ̂N Γ̂−1

N

)−1/2
(δ̂N −δ0) d−→ N(0, I)

as N → ∞.

The proof of the theorem is in Appendix E.

5 Monte Carlo Results

We conduct Monte-Carlo (MC) experiments to assess the finite sample properties of the quasi-
maximum likelihood (QML) estimator δ̂N . The data generating mechanism is determined by the
main model in (10). For simplicity, x1,ir, x2,ir and x3,r each only includes a scalar variable. We set
the true value of the parameters to λ0 = 0.5, σ2

α0 = 0.25, β10 = 1, β20 = 1,β30 = 1, and β40 = 1,
while σ2

ϵ0 = 1 in the case of homoscedasticity. The model for the data generating process (DGP) is
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thus
yir = 0.5ȳ(−i)r + 1 + x1,ir + x̄2,(−i)r + x3,r + αr + ϵir. (29)

The inputs xj,ir, αr and ϵir are generated as follows. In the case when x1 = x2, x1,ir = x2,ir ∼
i.i.d.N(0, 1). In the case when x1 ̸= x2, x1,ir and x2,ir are generated mutually independently, each
drawn from an i.i.d.N(0, 1). We then calculate the leave-out-mean x̄2,(−i)r =

∑
j ̸=i x2j,r/(mr − 1).

Group characteristics are drawn as x3,r ∼ i.i.d.N(0, 1). In the case of homoscedastic normal errors
in Tables 1 to 5, the idiosyncratic error terms ϵir are i.i.d N(0, 1) and group effects αr are i.i.d
N(0, 0.25). Both ϵir and αr are drawn independently of x1,ir, x2,ir, x3,r, and of each other. The
dependent variable yir is calculated using Equation (14). In Table 6, we use homoscedastic but
nonnormal errors. In the case of the skew-normal distribution, we set the location parameter to
0, scale to 1 and shape to 0.9/

√
1 − 0.92. Therefore, skewness is 0.472 and kurtosis is 3.321. In

the case of the student distribution, degrees of freedom are set to 6. Therefore, skewness is 0 and
kurtosis is 6. In both cases, αr and ϵir are independently drawn from identical distributions and
then standardized to have mean 0 and variances 0.25 and 1 respectively. In Table 7, group effects
αr are still i.i.d N(0, 0.25), ϵir follow normal distributions but are allowed to be heteroscedastic.
In the first case (Columns 1-2), we randomly select half of the groups into category 1, with ϵir

i.i.d N(0, 0.5). The other half of the groups have ϵir i.i.d N(0, 1.5). In the second case (Columns
3-4), ϵir are i.i.d N(0, 1). But we randomly divide the groups into two categories and allow for
heteroscedasticity of ϵir between categories in estimation. In the third case (Columns 5-6), groups
are randomly divided into two categories, with σ2

ϵr ∈ {0.5, 1.5} and ϵir i.i.d N(0, σ2
ϵr). In the fourth

case, groups are randomly divided into four categories with σ2
ϵr ∈ {0.4, 0.8, 1.2, 1.6} and ϵir i.i.d

N(0, σ2
ϵr).

The number of groups R is selected from the set {50, 100, 200, 400, 800, 1600}. In Tables 1, 2 and
6, group size mr is drawn from a discrete uniform distribution U{2, 6} so that the average group size
is 4. Small group sizes are motivated by applications to college room mates, friendship networks
in the Add Health data set or golf tournaments, see Sacerdote (2001), Goldsmith-Pinkham and
Imbens (2013) and Guryan et al. (2009). In Tables 3 and 4, group size is drawn from U{13, 25}.
The distribution is motivated by Project STAR where class size ranges from 13 to 25. We also
consider the case when mr is drawn from U{3, 5}, U{4, 8}, U{8, 30} and U{10, 22} in Table 5 to
examine how the distribution of group size affects the performance of the estimator. Note that
U{3, 5} has the same mean as U{2, 6} but smaller variance, U{4, 8} has the same variance as
U{2, 6} but larger mean. Meanwhile U{8, 30} has the same mean as U{13, 25} but larger variance,
U{10, 22} has the same variance as U{13, 25} but smaller mean.

In Tables 1-6, we compare our QML estimator with the conditional maximum likelihood (CML)
estimator of Lee (2007). Table 7 does not present CMLE estimates as it does not allow for het-
eroscedasticity. Lee (2007) assumes normality of the error terms. Our discussion suggests that the
CMLE is in fact consistent under nonnormal errors, as it can be viewed as a GMM estimator based
on the moment conditions from the within equation. When group effects are in fact independent of
the observed characteristics, the CML estimator is still consistent but less efficient than our QML
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estimator. The comparison thus helps to evaluate the efficiency gain of our estimator over the CML
estimator in finite samples. The CML estimator is based on within-group variation hence σ2

α, β1

and β4 are not identified.
We generate 5000 repetitions for each of the experiments. Tables 1-7 summarize the results of

the Monte Carlo (MC) experiments. Each panel displays the MC median, MC robust standard
errors (Rob.Std.Dev.), MC sample standard deviation (Std.Dev.), MC median of the estimated
standard deviation (Est.Std.Dev.), and the mean rejection rate of the Wald test with significance
level 0.05 of our QMLE and Lee’s CMLE across 5000 repetitions. The robust standard errors are
defined as IQ/1.35, where IQ denotes the inter-quantile range, that is IQ = C0.75 − C0.25 with
C0.75 and C0.25 being the 75th and 25th percentile respectively. If the distribution of the estimate
is normal, IQ/1.35 is (apart from rounding errors) equal to the standard deviation. The null
hypothesis for the Wald test is that the estimate equals its true value. Critical values for the test
are obtained at 5% significance level and are based on the asymptotic approximation in Theorem
4.3.

Identification of our models is more challenging, the larger group sizes are, all else equal. This
follows from the work of Kelejian and Prucha (2002). Identification is also more difficult when
there is less variation in group sizes, or less variation in type specific variances or both. Finally,
identification is more difficult in designs where x1,ir = x2,ir because the implied correlation between
x1,ir and x̄2,(−i)r reduces the overall variation in the covariates. Standard finite sample theory for the
Gaussian regression model shows that maximum likelihood estimators for the variance parameters
are biased in finite samples. In fixed effects panel regressions this finite sample bias can lead to
inconsistent estimates of the variance parameter due to incidental parameter bias, as demonstrated
by Neyman and Scott (1948). In the current context, we expect the CML estimator to suffer
from such incidental parameter bias because the moment conditions that identify λ depend on the
estimated variances. We also expect Wald type statistics, such as the t-ratio, to perform poorly in
designs where identification is problematic, in line with insights from Dufour (1997).

Tables 1 and 2 contain results for small groups and homoscedastic Gaussian errors. In Table
1 where x1 ̸= x2, both the QMLE and CMLE perform well, with the CMLE being more biased
for the parameter λ in sample sizes where R is below 200. The QMLE is generally less biased and
significantly more precise than CMLE, demonstrating the expected efficiency gains of QMLE. Size
is better controlled for CMLE but the size distortions for the parameters λ and β do not exceed
7% in the smallest sample sizes even for the QMLE. Size distortions for the t-ratios of the two
estimated variance parameters are somewhat larger, reaching 11.6% for the t-ratio for σ2

α when
R = 50. The size distortion seems to be due both to some estimator bias as well as standard errors
that are a bit too small. Size distortions for all parameters disappear in the larger samples. In
Table 2 where x1 = x2 the CMLE for λ is even more biased in small samples, and considerably
more volatile than in the design in Table 1. The performance of the QMLE is not very different
from the case with x1 ̸= x2. The standard deviation measured by IQ/1.35 is somewhat larger than
when x1 ̸= x2, as are size distortions, confirming the intuition that this design is more difficult to
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identify.
Tables 3 and 4 differ from Tables 1 and 2 in that they consider the same designs but with

larger group sizes, now drawn from the uniform distribution on the interval [13, 25] . In Table 3
we consider the case with x1 ̸= x2. The QMLE remains roughly unbiased across all sample sizes.
The robust standard deviation roughly doubles relative to the small group size case and the size
properties for t-ratios of the parameters λ and β deteriorate in samples where R ≤ 100 with size
reaching around 10% in some cases. Size remains well controlled in larger samples with R ≥ 200.
The size distortions for the variance parameters are not much affected by the larger class sizes.
The CMLE is even more biased when R = 50 but less biased for larger sample sizes compared to
Tables 1 and 2. This is consistent with incidental parameter bias which is expected to decrease
with increasing group size. In addition the CMLE now is significantly less precise. This is in line
with results by Lee (2007). Table 4 contains results for the case x1 = x2 and large group sizes.
The QMLE remains largely unbiased across all sample sizes but there is notable loss in estimator
precision as measured by IQ/1.35, indicating the more challenging estimation environment. In line
with theoretical predictions, estimator precision increases monotonically with sample size. Size
distortions are now pronounced with empirical size reaching more than 20% in the smaller samples.
The CMLE controls size well across all four designs. This comes at the cost of much less precise
and sometimes more biased estimated parameters.

Table 5 explores the effects that variation in group size has on both estimators. The case with
U{3, 5} maintains the same mean group size as in Table 2 but reduces the group size variance. We
only report results for λ. The bias of the QMLE is not affected while the CMLE is somewhat less
biased. The variance of both estimators increases. For the QMLE size distortions are somewhat
larger than in Table 2. The design with U{4, 8} increases the mean while leaving the variance of
class sizes unchanged relative to Table 2. Overall, the results for this case are quite similar to the
scenario with U{3, 5}. The designs with U{8, 30} and U{10, 22} both improve identification relative
to the design in Table 4. For the QMLE this results in unchanged good unbiasedness properties
except when R = 50 where we now see a small amount of bias, somewhat lower variance and slightly
improved size properties. For the CMLE bias increases while variance somewhat improves relative
to the results in Table 4 and the size properties remain similar.The larger bias for the CMLE may
be related to a larger fraction of smaller classes in both designs. Smaller group sizes tend to amplify
incidental parameter bias.

Table 6 explores the effects that non-Gaussian error distributions have on the estimators. For the
skew-normal distribution we see little difference to the results in Table 2 both for the QMLE and the
CMLE estimator. The QMLE is also robust to the second design which uses a t-distribution with
6 degrees of freedom. The CMLE is more sensitive to this fat-tailed distribution. It is somewhat
more biased and has higher variance compared to the Gaussian case. In addition, we now observe
size distortions for the t-ratio related to the parameter λ. These size distortions don’t disappear in
larger samples and seem to be due to the fact that the standard errors show a significant downward
bias. This is most likely due to the fact that Lee (2007) bases standard errors on Gaussian error
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distributions. The final set of results we discuss are in Table 7 where we examine the effects of
heteroscedasticity on the QMLE. We do not report results for the CMLE since this estimator was
designed for the homoscedastic case only. The first set of results are based on a design where
class size varies according to a U{2, 6} distribution and where we maintain x1 = x2. Compared
to a homoscedastic design the QMLE is somewhat less variable with no change in bias. The size
properties of the t-ratio are overall comparable between the two cases, with slightly smaller size
distortions in the heteroscedastic case when R = 50. We also consider a scenario where group size
is fixed at m = 4 while the type specific variances vary. While the QMLE continues to be nearly
unbiased it has a higher variance. The size properties of t-ratios are slightly worse than in the
homoscedastic case. For larger sample sizes both standard errors and t-ratios are well behaved.

6 Conclusion

In this paper, we show that moment conditions underlying the conditional variance method of
Graham (2008) can be related to and motivated from a general class of linear peer effects models
with random group effects. When augmented with group specific covariates our specification of
the peer effects model is appropriate for settings where people are randomly assigned to groups or
where group level heterogeneity is credibly controlled for with observed group level characteristics.
We show that the quasi maximum likelihood estimator (QMLE) related to a linear Gaussian spec-
ification, as well as Graham’s estimator and the fixed effects estimator of Lee (2007) are contained
in the class of GMM estimators we consider. Under Gaussian error assumptions the QMLE is the
most efficient estimator in this class. We study conditions of identification, extending results in
Graham (2008) and Lee (2007) for a simple model without covariates and a general model with
covariates estimated by QML. We also establish that our QMLE is asymptotically normal and we
construct consistent standard error formulas. Monte Carlo results show that our QML estimator
has good small sample properties. Our model allows for heteroscedasticity in idiosyncratic terms,
while maintaining the assumption of homoscedastic group effects. We leave the development of
estimators for heteroscedastic group effects to future work.
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Appendix

A Monte Carlo Simulation Results

Table 1: Simulation Results: mr ∼ U{2, 6}, Homoscedastic Normal Errors, x1 ̸= x2

QMLE CMLE
λ σ2

α σ2
ϵ β1 β2 β3 β4 λ σ2

ϵ β2 β3
True value

0.500 0.250 1.000 1.000 1.000 1.000 1.000 0.500 1.000 1.000 1.000
50 groups, 200 observations

Median 0.500 0.214 0.979 0.999 0.998 0.998 1.001 0.541 1.004 1.018 1.025
Rob.Std.Dev. (0.070) (0.177) (0.118) (0.173) (0.076) (0.162) (0.178) (0.379) (0.239) (0.132) (0.274)

Std.Dev. [0.074] [0.198] [0.119] [0.184] [0.076] [0.162] [0.184] [0.428] [0.275] [0.139] [0.294]
Est.Std.Dev. 0.067 0.163 0.110 0.166 0.075 0.153 0.168 0.370 0.131 0.272

Rej. 0.070 0.116 0.095 0.074 0.050 0.063 0.064 0.036 0.039 0.041
100 groups, 400 observations

Median 0.498 0.233 0.990 1.002 0.998 0.997 0.999 0.524 1.007 1.008 1.012
Rob.Std.Dev. (0.049) (0.128) (0.084) (0.122) (0.053) (0.110) (0.121) (0.257) (0.162) (0.091) (0.190)

Std.Dev. [0.050] [0.131] [0.085] [0.126] [0.053] [0.109] [0.125] [0.280] [0.176] [0.095] [0.195]
Est.Std.Dev. 0.048 0.120 0.081 0.119 0.053 0.109 0.120 0.256 0.091 0.191

Rej. 0.057 0.099 0.074 0.059 0.052 0.051 0.059 0.046 0.043 0.044
200 groups, 800 observations

Median 0.500 0.241 0.995 1.000 1.000 1.001 0.998 0.512 1.003 1.004 1.004
Rob.Std.Dev. (0.035) (0.089) (0.060) (0.085) (0.037) (0.080) (0.087) (0.182) (0.116) (0.066) (0.134)

Std.Dev. [0.035] [0.092] [0.060] [0.087] [0.038] [0.078] [0.087] [0.188] [0.119] [0.066] [0.138]
Est.Std.Dev. 0.034 0.087 0.059 0.085 0.038 0.077 0.085 0.178 0.064 0.134

Rej. 0.051 0.078 0.062 0.054 0.048 0.054 0.057 0.052 0.051 0.054
400 groups, 1600 observations

Median 0.500 0.245 0.998 1.000 1.000 0.999 1.001 0.504 1.001 1.002 1.001
Rob.Std.Dev. (0.024) (0.061) (0.041) (0.059) (0.027) (0.056) (0.060) (0.129) (0.081) (0.045) (0.093)

Std.Dev. [0.024] [0.063] [0.042] [0.060] [0.027] [0.054] [0.060] [0.129] [0.082] [0.045] [0.094]
Est.Std.Dev. 0.024 0.062 0.042 0.060 0.027 0.055 0.060 0.125 0.045 0.094

Rej. 0.049 0.061 0.054 0.048 0.050 0.046 0.051 0.046 0.047 0.049
800 groups, 3200 observations

Median 0.500 0.247 0.999 0.999 0.999 0.999 0.999 0.504 1.001 1.001 1.000
Rob.Std.Dev. (0.017) (0.045) (0.031) (0.043) (0.019) (0.038) (0.043) (0.090) (0.056) (0.032) (0.066)

Std.Dev. [0.017] [0.046] [0.030] [0.043] [0.019] [0.039] [0.043] [0.088] [0.056] [0.031] [0.067]
Est.Std.Dev. 0.017 0.044 0.030 0.043 0.019 0.039 0.043 0.089 0.032 0.066

Rej. 0.056 0.064 0.053 0.053 0.048 0.054 0.054 0.044 0.043 0.051
1600 groups, 6400 observations

Median 0.500 0.249 0.999 1.001 1.000 0.999 1.000 0.503 1.002 1.001 1.002
Rob.Std.Dev. (0.012) (0.032) (0.021) (0.031) (0.013) (0.027) (0.030) (0.063) (0.040) (0.022) (0.046)

Std.Dev. [0.012] [0.032] [0.021] [0.031] [0.013] [0.027] [0.031] [0.063] [0.041] [0.023] [0.047]
Est.Std.Dev. 0.012 0.032 0.021 0.030 0.013 0.027 0.030 0.063 0.022 0.047

Rej. 0.055 0.057 0.052 0.054 0.047 0.046 0.057 0.050 0.050 0.048

1. Median value, robust standard deviation (IQ/1.35), standard deviation, median of estimated standard deviation and mean rejection
rate of the Wald test of our QMLE and Lee’s CMLE across 5000 repetitions. The CMLE is based on the within-group variation hence
σ2

α, β1, β4 are not estimated. Also, Lee(2007) does not offer estimate of the variance for σ2
ϵ .

2. Data generating process is based on model (10): yir = β1 + λȳ(−i)r + x1,irβ2 + x̄2,(−i)rβ3 + x3,rβ4 + αr + ϵir , with the true
parameter values given in the top panel of the table. Group size mr is drawn from a discrete uniform distribution U{2, 6} . Sample
is generated by: x1,ir ∼ N(0, 1), x2,ir ∼ N(0, 1), and x̄2,(−i)r is the leave out mean of x2,ir, x3,r ∼ N(0, 1), αr ∼ N(0, 0.25), and
ϵir ∼ N(0, 1). All variables are independent of each other across i and r .
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Table 2: Simulation Results: mr ∼ U{2, 6}, Homoscedastic Normal Errors, x1 = x2

QMLE CMLE
λ σ2

α σ2
ϵ β1 β2 β3 β4 λ σ2

ϵ β2 β3
True value

0.500 0.250 1.000 1.000 1.000 1.000 1.000 0.500 1.000 1.000 1.000
50 groups, 200 observations

Median 0.501 0.202 0.976 0.992 0.999 0.994 0.989 0.592 1.036 1.013 0.995
Rob.Std.Dev. (0.114) (0.241) (0.130) (0.251) (0.122) (0.338) (0.246) (0.514) (0.313) (0.198) (0.455)

Std.Dev. [0.114] [0.275] [0.129] [0.250] [0.122] [0.336] [0.253] [0.632] [0.417] [0.222] [0.533]
Est.Std.Dev. 0.106 0.230 0.116 0.236 0.115 0.313 0.235 0.488 0.193 0.444

Rej. 0.090 0.120 0.100 0.084 0.081 0.091 0.082 0.042 0.040 0.036
100 groups, 400 observations

Median 0.499 0.230 0.988 0.999 1.001 0.998 1.003 0.539 1.019 1.011 1.008
Rob.Std.Dev. (0.081) (0.179) (0.090) (0.179) (0.084) (0.243) (0.180) (0.335) (0.197) (0.136) (0.304)

Std.Dev. [0.080] [0.190] [0.092] [0.177] [0.085] [0.239] [0.178] [0.375] [0.237] [0.141] [0.326]
Est.Std.Dev. 0.077 0.172 0.085 0.170 0.083 0.227 0.170 0.327 0.133 0.303

Rej. 0.077 0.104 0.078 0.079 0.070 0.077 0.074 0.040 0.044 0.044
200 groups, 800 observations

Median 0.501 0.239 0.995 0.999 0.999 0.996 0.995 0.528 1.013 1.005 1.000
Rob.Std.Dev. (0.055) (0.128) (0.065) (0.119) (0.060) (0.164) (0.119) (0.231) (0.142) (0.092) (0.206)

Std.Dev. [0.055] [0.129] [0.064] [0.122] [0.059] [0.163] [0.120] [0.241] [0.147] [0.094] [0.213]
Est.Std.Dev. 0.055 0.126 0.062 0.121 0.059 0.163 0.121 0.229 0.093 0.208

Rej. 0.061 0.082 0.062 0.060 0.054 0.058 0.057 0.042 0.043 0.044
400 groups, 1600 observations

Median 0.500 0.243 0.999 0.998 1.000 0.998 0.998 0.509 1.005 1.002 1.000
Rob.Std.Dev. (0.040) (0.091) (0.045) (0.087) (0.042) (0.117) (0.085) (0.159) (0.097) (0.064) (0.143)

Std.Dev. [0.039] [0.090] [0.045] [0.087] [0.042] [0.117] [0.086] [0.163] [0.098] [0.065] [0.147]
Est.Std.Dev. 0.039 0.090 0.044 0.086 0.042 0.117 0.086 0.159 0.065 0.146

Rej. 0.055 0.068 0.058 0.058 0.048 0.055 0.055 0.046 0.046 0.049
800 groups, 3200 observations

Median 0.501 0.248 0.999 0.999 0.999 0.999 0.999 0.509 1.004 1.001 0.999
Rob.Std.Dev. (0.027) (0.062) (0.031) (0.060) (0.030) (0.080) (0.060) (0.111) (0.069) (0.047) (0.103)

Std.Dev. [0.028] [0.064] [0.031] [0.061] [0.030] [0.083] [0.061] [0.115] [0.070] [0.046] [0.104]
Est.Std.Dev. 0.028 0.064 0.032 0.061 0.030 0.083 0.061 0.113 0.046 0.103

Rej. 0.049 0.059 0.043 0.050 0.050 0.053 0.054 0.049 0.048 0.050
1600 groups, 6400 observations

Median 0.500 0.249 1.000 1.000 1.000 0.999 1.000 0.503 1.001 1.001 1.000
Rob.Std.Dev. (0.020) (0.047) (0.023) (0.043) (0.021) (0.060) (0.043) (0.078) (0.047) (0.032) (0.073)

Std.Dev. [0.020] [0.046] [0.023] [0.043] [0.021] [0.059] [0.043] [0.078] [0.048] [0.032] [0.072]
Est.Std.Dev. 0.020 0.046 0.022 0.043 0.021 0.059 0.043 0.079 0.032 0.072

Rej. 0.052 0.056 0.054 0.048 0.049 0.052 0.053 0.042 0.048 0.048

1. Median value, robust standard deviation (IQ/1.35), standard deviation, median of estimated standard deviation and mean rejection
rate of the Wald test of our QMLE and Lee’s CMLE across 5000 repetitions. The CMLE is based on the within-group variation hence
σ2

α, β1, β4 are not estimated. Also, Lee(2007) does not offer estimate of the variance for σ2
ϵ .

2. Data generating process is based on model (10): yir = β1 +λȳ(−i)r +x1,irβ2 + x̄2,(−i)rβ3 +x3,rβ4 +αr +ϵir , with the true parameter
values given in the top panel of the table. Group size mr is drawn from a discrete uniform distribution U{2, 6} . Sample is generated
by: x1,ir ∼ N(0, 1), x2,ir = x1,ir , and x̄2,(−i)r is the leave out mean of x2,ir, x3,r ∼ N(0, 1), αr ∼ N(0, 0.25), and ϵir ∼ N(0, 1). All
variables are independent of each other across i and r .
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Table 3: Simulation Results: mr ∼ U{13, 25}, Homoscedastic Normal Errors, x1 ̸= x2

QMLE CMLE
λ σ2

α σ2
ϵ β1 β2 β3 β4 λ σ2

ϵ β2 β3
True value

0.500 0.250 1.000 1.000 1.000 1.000 1.000 0.500 1.000 1.000 1.000
50 groups, 950 observations

Median 0.500 0.224 0.994 0.999 0.998 0.992 0.999 0.599 1.007 1.005 0.991
Rob.Std.Dev. (0.151) (0.184) (0.050) (0.311) (0.035) (0.370) (0.323) (1.781) (0.198) (0.101) (0.597)

Std.Dev. [0.255] [0.970] [0.054] [0.519] [0.035] [0.384] [0.518] [1.840] [0.214] [0.104] [0.611]
Est.Std.Dev. 0.140 0.167 0.050 0.291 0.034 0.362 0.292 1.732 0.099 0.601

Rej. 0.097 0.166 0.054 0.096 0.054 0.080 0.094 0.044 0.046 0.046
100 groups, 1900 observations

Median 0.501 0.235 0.997 0.999 0.999 0.996 1.000 0.510 0.999 1.001 0.988
Rob.Std.Dev. (0.105) (0.132) (0.036) (0.219) (0.024) (0.258) (0.217) (1.216) (0.136) (0.071) (0.422)

Std.Dev. [0.121] [0.185] [0.036] [0.250] [0.024] [0.265] [0.249] [1.264] [0.143] [0.073] [0.427]
Est.Std.Dev. 0.101 0.125 0.035 0.210 0.024 0.256 0.210 1.206 0.069 0.422

Rej. 0.072 0.119 0.053 0.071 0.045 0.067 0.070 0.058 0.057 0.049
200 groups, 3800 observations

Median 0.500 0.243 0.999 0.999 1.000 0.994 1.000 0.517 1.001 1.002 0.997
Rob.Std.Dev. (0.073) (0.092) (0.026) (0.151) (0.017) (0.182) (0.151) (0.849) (0.094) (0.050) (0.302)

Std.Dev. [0.077] [0.107] [0.025] [0.159] [0.017] [0.184] [0.160] [0.847] [0.095] [0.049] [0.301]
Est.Std.Dev. 0.072 0.091 0.025 0.149 0.017 0.181 0.149 0.853 0.049 0.298

Rej. 0.060 0.084 0.049 0.056 0.051 0.060 0.057 0.046 0.048 0.050
400 groups, 7600 observations

Median 0.500 0.246 0.999 1.000 1.000 0.999 1.001 0.490 0.999 0.999 1.000
Rob.Std.Dev. (0.052) (0.068) (0.018) (0.109) (0.012) (0.127) (0.112) (0.606) (0.068) (0.034) (0.211)

Std.Dev. [0.054] [0.071] [0.018] [0.111] [0.012] [0.130] [0.111] [0.605] [0.068] [0.035] [0.212]
Est.Std.Dev. 0.051 0.065 0.018 0.106 0.012 0.128 0.106 0.600 0.034 0.210

Rej. 0.051 0.065 0.051 0.055 0.054 0.056 0.050 0.051 0.050 0.052
800 groups, 15200 observations

Median 0.499 0.249 1.000 1.001 1.000 1.000 1.001 0.499 0.999 1.000 1.003
Rob.Std.Dev. (0.036) (0.047) (0.013) (0.075) (0.008) (0.093) (0.074) (0.426) (0.047) (0.024) (0.152)

Std.Dev. [0.037] [0.049] [0.012] [0.077] [0.008] [0.092] [0.077] [0.434] [0.048] [0.025] [0.151]
Est.Std.Dev. 0.036 0.047 0.012 0.075 0.008 0.091 0.075 0.424 0.024 0.149

Rej. 0.056 0.062 0.050 0.054 0.052 0.052 0.055 0.054 0.054 0.055
1600 groups, 30400 observations

Median 0.500 0.249 1.000 1.001 1.000 1.000 1.000 0.500 1.001 1.000 1.002
Rob.Std.Dev. (0.025) (0.033) (0.009) (0.052) (0.006) (0.063) (0.053) (0.306) (0.033) (0.017) (0.108)

Std.Dev. [0.026] [0.033] [0.009] [0.053] [0.006] [0.064] [0.053] [0.300] [0.033] [0.017] [0.106]
Est.Std.Dev. 0.026 0.033 0.009 0.053 0.006 0.064 0.053 0.300 0.017 0.105

Rej. 0.051 0.054 0.054 0.055 0.051 0.049 0.049 0.047 0.043 0.050

1. Median value, robust standard deviation (IQ/1.35), standard deviation, median of estimated standard deviation and mean rejection
rate of the Wald test of our QMLE and Lee’s CMLE across 5000 repetitions. The CMLE is based on the within-group variation hence
σ2

α, β1, β4 are not estimated. Also, Lee(2007) does not offer estiamte of the variance for σ2
ϵ .

2. Data generating process is based on model (10): yir = β1 + λȳ(−i)r + x1,irβ2 + x̄2,(−i)rβ3 + x3,rβ4 + αr + ϵir , with the true
parameter values given in the top panel of the table. Group size mr is drawn from a discrete uniform distribution U{13, 25} . Sample
is generated by: x1,ir ∼ N(0, 1), x2,ir ∼ N(0, 1), and x̄2,(−i)r is the leave out mean of x2,ir, x3,r ∼ N(0, 1), αr ∼ N(0, 0.25), and
ϵir ∼ N(0, 1). All variables are independent of each other across i and r .
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Table 4: Simulation Results: mr ∼ U{13, 25}, Homoscedastic Normal Errors, x1 = x2

QMLE CMLE
λ σ2

α σ2
ϵ β1 β2 β3 β4 λ σ2

ϵ β2 β3
True value

0.500 0.250 1.000 1.000 1.000 1.000 1.000 0.500 1.000 1.000 1.000
50 groups, 950 observations

Median 0.500 0.225 0.987 1.001 1.005 0.995 0.995 0.545 1.003 0.999 0.898
Rob.Std.Dev. (0.553) (0.788) (0.073) (1.121) (0.091) (2.123) (1.109) (2.141) (0.241) (0.163) (3.344)

Std.Dev. [0.592] [1.868] [0.078] [1.198] [0.093] [2.076] [1.194] [2.301] [0.272] [0.167] [3.482]
Est.Std.Dev. 0.634 0.836 0.079 1.251 0.109 2.517 1.265 2.120 0.162 3.336

Rej. 0.230 0.238 0.066 0.231 0.114 0.242 0.229 0.045 0.045 0.043
100 groups, 1900 observations

Median 0.486 0.253 0.991 1.032 1.004 1.055 1.025 0.490 0.996 1.001 1.036
Rob.Std.Dev. (0.439) (0.625) (0.055) (0.888) (0.070) (1.669) (0.870) (1.463) (0.160) (0.112) (2.286)

Std.Dev. [0.422] [0.931] [0.056] [0.849] [0.070] [1.566] [0.851] [1.512] [0.171] [0.116] [2.366]
Est.Std.Dev. 0.473 0.599 0.059 0.940 0.082 1.883 0.931 1.475 0.113 2.321

Rej. 0.221 0.231 0.067 0.218 0.129 0.224 0.220 0.049 0.052 0.049
200 groups, 3800 observations

Median 0.500 0.241 0.996 0.994 1.001 0.994 0.999 0.515 1.000 0.999 0.947
Rob.Std.Dev. (0.320) (0.414) (0.040) (0.636) (0.052) (1.218) (0.639) (1.062) (0.119) (0.079) (1.659)

Std.Dev. [0.308] [0.572] [0.040] [0.619] [0.051] [1.153] [0.620] [1.055] [0.118] [0.080] [1.643]
Est.Std.Dev. 0.340 0.416 0.043 0.677 0.059 1.341 0.678 1.044 0.079 1.638

Rej. 0.195 0.208 0.066 0.190 0.132 0.189 0.189 0.046 0.052 0.047
400 groups, 7600 observations

Median 0.495 0.252 0.997 1.011 1.002 1.019 1.009 0.480 0.998 1.000 1.024
Rob.Std.Dev. (0.248) (0.320) (0.031) (0.495) (0.041) (0.939) (0.498) (0.712) (0.078) (0.057) (1.154)

Std.Dev. [0.236] [0.381] [0.030] [0.474] [0.039] [0.889] [0.473] [0.735] [0.081] [0.057] [1.178]
Est.Std.Dev. 0.249 0.307 0.031 0.494 0.043 0.968 0.497 0.735 0.056 1.153

Rej. 0.171 0.181 0.073 0.169 0.134 0.172 0.170 0.048 0.056 0.052
800 groups, 15200 observations

Median 0.498 0.250 0.998 1.004 1.000 1.010 1.004 0.505 1.000 1.000 0.992
Rob.Std.Dev. (0.175) (0.219) (0.022) (0.351) (0.030) (0.672) (0.351) (0.517) (0.058) (0.040) (0.821)

Std.Dev. [0.168] [0.242] [0.022] [0.336] [0.029] [0.641] [0.337] [0.523] [0.058] [0.040] [0.826]
Est.Std.Dev. 0.178 0.218 0.022 0.356 0.030 0.684 0.356 0.520 0.040 0.817

Rej. 0.129 0.144 0.073 0.130 0.113 0.132 0.127 0.052 0.051 0.052
1600 groups, 30400 observations

Median 0.497 0.253 0.999 1.005 1.001 1.007 1.007 0.498 1.000 1.001 1.004
Rob.Std.Dev. (0.127) (0.158) (0.016) (0.254) (0.021) (0.484) (0.253) (0.369) (0.041) (0.028) (0.586)

Std.Dev. [0.123] [0.165] [0.016] [0.246] [0.021] [0.468] [0.246] [0.368] [0.041] [0.028] [0.577]
Est.Std.Dev. 0.126 0.155 0.016 0.253 0.021 0.484 0.253 0.368 0.028 0.577

Rej. 0.111 0.120 0.076 0.110 0.093 0.108 0.111 0.047 0.050 0.050

1. Median value, robust standard deviation (IQ/1.35), standard deviation, median of estimated standard deviation and mean rejection
rate of the Wald test of our QMLE and Lee’s CMLE across 5000 repetitions. The CMLE is based on the within-group variation hence
σ2

α, β1, β4 are not estimated. Also, Lee(2007) does not offer estiamte of the variance for σ2
ϵ .

2. Data generating process is based on model (10): yir = β1 + λȳ(−i)r + x1,irβ2 + x̄2,(−i)rβ3 + x3,rβ4 + αr + ϵir , with the true
parameter values given in the top panel of the table. Group size mr is drawn from a discrete uniform distribution U{13, 25} . Sample
is generated by: x1,ir ∼ N(0, 1), x2,ir = x1,ir , and x̄2,(−i)r is the leave out mean of x2,ir, x3,r ∼ N(0, 1), αr ∼ N(0, 0.25), and
ϵir ∼ N(0, 1). All variables are independent of each other across i and r .
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Table 5: Simulation Results for λ : Alternative Group Size Distributions, Homoscedastic Normal
Errors, x1 = x2

mr ∼ U{3, 5} mr ∼ U{4, 8} mr ∼ U{8, 30} mr ∼ U{10, 22}
QMLE CMLE QMLE CMLE QMLE CMLE QMLE CMLE
λ λ λ λ λ λ λ λ

True value
0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500

50 Groups
Median 0.502 0.561 0.494 0.575 0.487 0.545 0.481 0.567

Rob.Std.Dev. (0.222) (0.916) (0.257) (0.993) (0.331) (1.090) (0.457) (1.682)
Std.Dev. [0.201] [1.580] [0.241] [1.193] [0.340] [1.136] [0.451] [1.777]

Est.Std.Dev. 0.205 0.887 0.243 0.953 0.330 1.088 0.483 1.603
Rej. 0.163 0.064 0.175 0.058 0.175 0.040 0.209 0.051

100 Groups
Median 0.500 0.542 0.497 0.549 0.493 0.531 0.496 0.550

Rob.Std.Dev. (0.164) (0.629) (0.184) (0.667) (0.243) (0.758) (0.329) (1.140)
Std.Dev. [0.151] [0.734] [0.175] [0.736] [0.237] [0.785] [0.325] [1.184]

Est.Std.Dev. 0.152 0.614 0.179 0.659 0.242 0.761 0.348 1.129
Rej. 0.140 0.054 0.145 0.049 0.151 0.050 0.188 0.046

200 Groups
Median 0.502 0.534 0.503 0.518 0.498 0.534 0.500 0.537

Rob.Std.Dev. (0.110) (0.437) (0.127) (0.459) (0.171) (0.529) (0.249) (0.812)
Std.Dev. [0.108] [0.464] [0.127] [0.481] [0.169] [0.534] [0.240] [0.811]

Est.Std.Dev. 0.110 0.430 0.129 0.460 0.173 0.538 0.254 0.793
Rej. 0.113 0.046 0.119 0.049 0.121 0.047 0.168 0.047

400 Groups
Median 0.497 0.507 0.500 0.517 0.499 0.511 0.497 0.501

Rob.Std.Dev. (0.081) (0.298) (0.095) (0.333) (0.124) (0.383) (0.183) (0.552)
Std.Dev. [0.079] [0.312] [0.093] [0.332] [0.124] [0.381] [0.173] [0.561]

Est.Std.Dev. 0.080 0.299 0.093 0.325 0.125 0.379 0.185 0.557
Rej. 0.085 0.046 0.093 0.050 0.105 0.046 0.135 0.049

800 Groups
Median 0.501 0.508 0.500 0.505 0.498 0.501 0.501 0.499

Rob.Std.Dev. (0.058) (0.211) (0.067) (0.229) (0.088) (0.265) (0.129) (0.388)
Std.Dev. [0.057] [0.216] [0.065] [0.232] [0.087] [0.266] [0.127] [0.388]

Est.Std.Dev. 0.057 0.211 0.066 0.228 0.089 0.267 0.130 0.394
Rej. 0.067 0.051 0.072 0.049 0.080 0.047 0.107 0.046

1600 Groups
Median 0.499 0.506 0.500 0.499 0.501 0.504 0.499 0.497

Rob.Std.Dev. (0.040) (0.150) (0.046) (0.161) (0.062) (0.188) (0.093) (0.274)
Std.Dev. [0.040] [0.152] [0.047] [0.163] [0.062] [0.187] [0.091] [0.278]

Est.Std.Dev. 0.040 0.149 0.047 0.161 0.063 0.189 0.093 0.278
Rej. 0.059 0.048 0.061 0.052 0.066 0.044 0.077 0.050

1. Median value, robust standard deviation (IQ/1.35), standard deviation, median of estimated standard
deviation and mean rejection rate of the Wald test of our QMLE and Lee’s CMLE across 5000 repetitions.
For simplicity, we only present estimates of the endogeneous peer effects (λ).
2. Data generating process is based on model (10): yir = β1 +λȳ(−i)r +x1,irβ2 + x̄2,(−i)rβ3 +x3,rβ4 +αr +ϵir

, with the λ = 0.5 and all β s being 1. Sample is generated by: x1,ir ∼ N(0, 1), x2,ir = x1,ir and x̄2,(−i)r is
the leave out mean of x2,ir, x3,r ∼ N(0, 1), αr ∼ N(0, 0.25), and ϵir ∼ N(0, 1). All variables are independent
of each other across i and r.
3. Group size mr is drawn from U{3, 5} (Case 1), U{4, 8} (Case 2), U{8, 30} (Case 3), U{10, 22} (Case 4).
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Table 6: Simulation Results: Homoscedastic but Nonnormal Errors, mr ∼ U{2, 6}, x1 = x2
Skew Normal Student Distribution

QMLE CMLE QMLE CMLE
λ β3 λ β3 λ β3 λ β3

True value
0.500 1.000 0.500 1.000 0.500 1.000 0.500 1.000

50 Groups
Median 0.500 0.993 0.580 0.991 0.499 1.004 0.610 1.010

Rob.Std.Dev. (0.119) (0.345) (0.525) (0.443) (0.106) (0.303) (0.633) (0.386)
Std.Dev. [0.114] [0.339] [0.634] [0.516] [0.109] [0.315] [0.862] [0.470]

Est.Std.Dev. 0.107 0.314 0.483 0.446 0.099 0.288 0.487 0.390
Rej. 0.091 0.089 0.047 0.033 0.084 0.084 0.078 0.034

100 Groups
Median 0.501 1.002 0.539 0.993 0.500 1.001 0.553 1.007

Rob.Std.Dev. (0.080) (0.241) (0.346) (0.309) (0.074) (0.213) (0.422) (0.268)
Std.Dev. [0.080] [0.236] [0.380] [0.325] [0.075] [0.219] [0.468] [0.284]

Est.Std.Dev. 0.077 0.228 0.326 0.301 0.070 0.207 0.328 0.262
Rej. 0.082 0.070 0.046 0.043 0.070 0.071 0.085 0.042

200 Groups
Median 0.501 1.000 0.520 0.998 0.499 1.001 0.534 1.002

Rob.Std.Dev. (0.057) (0.169) (0.235) (0.209) (0.051) (0.152) (0.295) (0.186)
Std.Dev. [0.058] [0.171] [0.254] [0.217] [0.052] [0.154] [0.313] [0.189]

Est.Std.Dev. 0.055 0.164 0.228 0.208 0.051 0.149 0.229 0.182
Rej. 0.074 0.068 0.058 0.046 0.065 0.062 0.121 0.047

400 Groups
Median 0.500 1.000 0.515 0.999 0.501 0.998 0.516 0.998

Rob.Std.Dev. (0.039) (0.115) (0.169) (0.143) (0.036) (0.107) (0.204) (0.128)
Std.Dev. [0.039] [0.116] [0.172] [0.148] [0.036] [0.109] [0.219] [0.131]

Est.Std.Dev. 0.039 0.117 0.160 0.146 0.036 0.106 0.159 0.127
Rej. 0.054 0.053 0.059 0.047 0.056 0.056 0.131 0.052

800 Groups
Median 0.500 1.000 0.504 0.998 0.501 0.998 0.510 0.998

Rob.Std.Dev. (0.028) (0.086) (0.116) (0.104) (0.026) (0.076) (0.152) (0.091)
Std.Dev. [0.028] [0.084] [0.119] [0.104] [0.026] [0.077] [0.155] [0.093]

Est.Std.Dev. 0.028 0.083 0.112 0.102 0.026 0.075 0.112 0.089
Rej. 0.052 0.055 0.062 0.052 0.056 0.052 0.137 0.058

1600 Groups
Median 0.500 1.000 0.504 0.999 0.501 1.000 0.504 1.001

Rob.Std.Dev. (0.019) (0.057) (0.084) (0.071) (0.018) (0.052) (0.103) (0.064)
Std.Dev. [0.019] [0.058] [0.085] [0.071] [0.018] [0.054] [0.106] [0.064]

Est.Std.Dev. 0.020 0.059 0.079 0.072 0.018 0.054 0.079 0.063
Rej. 0.045 0.045 0.068 0.043 0.054 0.053 0.136 0.051

1. Median value, robust standard deviation (IQ/1.35), standard deviation, median of estimated stan-
dard deviation and mean rejection rate of the Wald test of our QMLE and Lee’s CMLE across 5000
repetitions. For simplicity, we only present estimates of the endogeneous peer effects (λ) and exoge-
nous peer effects (β3).
2. Data generating process is based on model (10): yir = β1 + λȳ(−i)r + x1,irβ2 + x̄2,(−i)rβ3 + x3,rβ4 +
αr +ϵir , with λ = 0.5 and all β s being 1. Group size mr is drawn from a discrete uniform distribution
U{2, 6}. Sample is generated by: x1,ir ∼ N(0, 1), x2,ir = x1,ir , and x̄2,(−i)r is the leave out mean of
x2,ir, x3,r ∼ N(0, 1). All variables are independent of each other across i and r .
3. In the case of Skew normal distribution, location is 0, scale is 1 and shape is 0.9/

√
1 − 0.92. In the

case of student distribution, degree of freedom is 6. In all cases, αr and ϵir are indepdently drawn
from identical distribtion and standardized to have mean 0 and variance 0.25, 1 respectively.
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Table 7: Simulation Results: Heteroscedastic Normal Errors, x1 = x2

mr ∼ U{2, 6} mr = 4 for all
σ2

ϵ ∈ {0.5, 1.5} σϵ = 1 for all σ2
ϵ ∈ {0.5, 1.5} σ2

ϵ ∈ {0.4, 0.8, 1.2, 1.6}
λ β3 λ β3 λ β3 λ β3

True value
0.500 1.000 0.500 1.000 0.500 1.000 0.500 1.000

50 Groups
Median 0.502 0.994 0.504 0.990 0.485 1.047 0.499 1.003

Rob.Std.Dev. (0.097) (0.298) (0.116) (0.352) (0.246) (0.794) (0.305) (0.989)
Std.Dev. [0.100] [0.299] [0.118] [0.352] [0.783] [2.493] [0.969] [3.083]

Est.Std.Dev. 0.090 0.265 0.106 0.311 0.173 0.566 0.172 0.545
Rej. 0.079 0.085 0.093 0.098 0.104 0.103 0.144 0.141

100 Groups
Median 0.502 0.996 0.501 0.999 0.500 1.003 0.500 1.002

Rob.Std.Dev. (0.067) (0.196) (0.080) (0.239) (0.147) (0.479) (0.182) (0.591)
Std.Dev. [0.067] [0.200] [0.079] [0.235] [0.479] [1.509] [0.639] [2.012]

Est.Std.Dev. 0.064 0.191 0.077 0.227 0.125 0.410 0.130 0.422
Rej. 0.077 0.076 0.074 0.074 0.085 0.081 0.122 0.114

200 Groups
Median 0.500 1.004 0.500 0.998 0.496 1.011 0.498 1.007

Rob.Std.Dev. (0.046) (0.140) (0.055) (0.168) (0.099) (0.321) (0.114) (0.365)
Std.Dev. [0.047] [0.140] [0.056] [0.166] [0.187] [0.593] [0.327] [1.018]

Est.Std.Dev. 0.045 0.136 0.055 0.163 0.092 0.300 0.096 0.312
Rej. 0.068 0.065 0.068 0.067 0.070 0.067 0.093 0.086

400 Groups
Median 0.500 1.002 0.500 1.000 0.498 1.002 0.500 1.000

Rob.Std.Dev. (0.033) (0.098) (0.040) (0.122) (0.068) (0.221) (0.072) (0.236)
Std.Dev. [0.032] [0.097] [0.040] [0.119] [0.088] [0.283] [0.128] [0.405]

Est.Std.Dev. 0.032 0.097 0.039 0.117 0.066 0.214 0.069 0.222
Rej. 0.056 0.057 0.059 0.059 0.057 0.055 0.067 0.061

800 Groups
Median 0.500 0.999 0.500 1.000 0.500 1.002 0.500 1.001

Rob.Std.Dev. (0.023) (0.071) (0.028) (0.082) (0.049) (0.161) (0.050) (0.160)
Std.Dev. [0.023] [0.069] [0.028] [0.083] [0.053] [0.171] [0.056] [0.180]

Est.Std.Dev. 0.023 0.069 0.028 0.083 0.047 0.152 0.049 0.159
Rej. 0.055 0.050 0.059 0.054 0.050 0.050 0.056 0.055

1600 Groups
Median 0.500 1.001 0.500 1.001 0.499 1.003 0.500 0.998

Rob.Std.Dev. (0.016) (0.048) (0.020) (0.060) (0.033) (0.109) (0.035) (0.116)
Std.Dev. [0.016] [0.049] [0.020] [0.059] [0.034] [0.111] [0.037] [0.120]

Est.Std.Dev. 0.016 0.049 0.020 0.059 0.033 0.108 0.035 0.113
Rej. 0.053 0.053 0.055 0.059 0.046 0.044 0.050 0.045

1. Median value, robust standard deviation (IQ/1.35), standard deviation, median of estimated standard deviation
and mean rejection rate of the Wald test of our QMLE across 5000 repetitions. For simplicity, we only present
estimates of the endogeneous peer effects (λ) and exogenous peer effects (β3).
2. Data generating process is based on model (10): yir = β1 + λȳ(−i)r + x1,irβ2 + x̄2,(−i)rβ3 + x3,rβ4 + αr + ϵir ,
with λ = 0.5 and all β s being 1. Sample is generated by: x1,ir ∼ N(0, 1), x2,ir = x1,ir and x̄2,(−i)r is the leave
out mean of x2,ir, x3,r ∼ N(0, 1), αr ∼ N(0, 0.25). When there are more than one category of σϵ, groups are
equally distributed into different categories. All variables are independent of each other across i and r.
3. In the first case (Columns 1-2), the model has both heteroscedasticity and group size variation. In the second
case (Columns 3-4),the DGP has homoscedastic σ2

ϵ and group size variation. But the estimation process assumes
two categories of σ2

ϵ . In both case 1 and case 2, group size mr is drawn from U{2, 6}. In Cases 3 and 4, group
size is 4 for all.
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B Preliminaries

In proving consistency and asymptotic normality of the QMLE estimator we encounter linear
quadratic forms of the form

SN (θ) = U ′AN (θ)U + U ′aN (θ) (B.1)

where AN (θ) is an N×N non-stochastic matrix, aN (θ) is an N−dimensional non-stochastic column
vector, and where AN (θ) and aN (θ) exhibit some special structures. In the following we describe
that structure in more detail, and collect some basic lemmata used in proving the consistency and
asymptotic normality of the QMLE.

We adopt the following notation: Partition an N ×N matrix AN into R×R submatrices, with
the (r, r′)-th submatrix being an mr × mr′ matrix, r, r′ = 1, ..., R. We then denote the (r, r′)-th
submatrix of AN as A(r,r′),N , and the (i, j)-th element of AN as aij,N , 1 ⩽ i ⩽ N , 1 ⩽ j ⩽ N .
Partition an N × 1 vector aN into R subvectors, with the r-th subvector being an mr × 1 vector.
We then denote the r-th subvector of aN as a(r),N and the i-th element of aN as ai,N . In line with
Kelejian and Prucha (2001), we call the column and row sums of an N×N matrix AN (θ) uniformly
bounded in absolute value if there exists some finite constant C (which does not depend on N or
θ) such that

supθ∈Θ
∑N
i=1 |a(θ)ij,N | ≤ C, supθ∈Θ

∑N
j=1 |a(θ)ij,N | ≤ C.

A corresponding definition applies to rectangular matrices. Of course, if the row sums of AN (θ)
are uniformly bounded in absolute value, and the elements of aN (θ) are uniformly bounded in
absolute value, then the elements of AN (θ)aN (θ) are uniformly bounded in absolute value. Note
that if the row and column sums of AN (θ) and BN (θ) are uniformly bounded in absolute value,
then AN (θ) +BN (θ) and AN (θ)BN (θ) (if dimension permits addition or multiplication) also have
row and column sums uniformly bounded in absolute value.8

B.1 Basic Properties of Matrices Forming the Log-Likelihood Function

Recall that θ = (θ1, ..., θJ+2), with θ1 = λ, θ2 = σ2
α, and θj+2 = σ2

ϵ,j for j = 1, ..., J , and that
in light of Assumptions 1, 2, and 3 the parameter space Θ is compact. An inspection of the
expression of the log-likelihood function shows that it depends on the following set of matrices:
I − λW , (I − λW )−1, Ω(θ), Ω(θ)−1, W . For generic functions p(mr, Dr, θ) and s(mr, Dr, θ) all
these matrices are symmetric block diagonal matrices of the form

AN (θ) = diagRr=1
{
p(mr, Dr, θ)I∗

mr
+ s(mr, Dr, θ)J∗

mr

}
. (B.2)

8This is readily seen by argumentation in line with Kelejian and Prucha (1999).
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In particular, by replacing p (.) and s (.) with specific functions ϕS , ϕΩ, ϕW , ψS , ψΩ and ψW defined
below, one obtains

I − λW = diagRr=1
{
ϕS(mr, θ)I∗

mr
+ ψS(mr, θ)J∗

mr

}
(B.3)

(I − λ0W )−1 = diagRr=1

{
ϕ−1
S (mr, θ0)I∗

mr
+ ψ−1

S (mr, θ0)J∗
mr

}
,

Ω0 = diagRr=1{ϕΩ(mr, Dr, θ0)I∗
mr

+ ψΩ(mr, Dr, θ0)J∗
mr

},

Ω(θ)−1 = diagRr=1{ϕ−1
Ω (mr, Dr, θ)I∗

mr
+ ψ−1

Ω (mr, Dr, θ)J∗
mr

},

W = diagRr=1{ϕW (mr, θ)I∗
mr

+ ψW (mr, θ)J∗
mr

},

where
ϕS(mr, θ) = mr−1+λ

mr−1 , ψS(mr, θ) = 1 − λ,

ϕΩ(mr, Dr, θ) = σ2
ϵ,Dr

, ψΩ(mr, Dr, θ) = σ2
ϵ,Dr

+mrσ
2
α.

ϕW (mr, θ) = − 1
mr−1 , ψW (mr, θ) = 1

(B.4)

It is readily seen that there exists an open bounded set Θo such that Θ ⊂ Θo ⊂ (−1, 1) ×RJ+1

such that the placeholder functions p(mr, Dr, θ) and s(mr, Dr, θ), explicitly defined in (B.4), are
continuously differentiable on Θo. Thus, by Bolzano-Weierstrass’ extreme value theorem there
exists a positive constant C, which does not depend on θ, such that

0 ≤ |p(mr, Dr, θ)| , |s(mr, Dr, θ)| , |∂p(mr, Dr, θ)/∂θi| , |∂s(mr, Dr, θ)/∂θi| ≤ C < ∞, (B.5)

for all θ ∈ Θ. 9 This implies that p(mr, Dr, θ) and s(mr, Dr, θ) are both uniformly continuous on
Θ. Observing that ϕΩ(mr, Dr, θ) and ψΩ(mr, Dr, θ) are positive on Θ it follows further that there
exists a positive constant c, which does not depend on θ, such that

0 < c ≤ ϕΩ(mr, Dr, θ), ψΩ(mr, Dr, θ) ≤ C < ∞. (B.6)

Since I∗
mr

and J∗
mr

are orthogonal and idempotent, the multiplication of block diagonal matrices,
where the blocks are of the form p(mr, Dr, θ)I∗

mr
+ s(mr, Dr, θ)J∗

mr
, yields a matrix with the same

structure. Furthermore the multiplication of those matrices is commutative. More specifically, let

AN (θ) = diagRr=1
{
p(mr, Dr, θ)I∗

mr
+ s(mr, Dr, θ)J∗

mr

}
and ÅN (θ) = diagRr=1

{
p̊(mr, Dr, θ)I∗

mr
+ s̊(mr, Dr, θ)J∗

mr

}
, then

AN (θ)ÅN (θ) = diagRr=1
{
p(mr, Dr, θ)p̊(mr, Dr, θ)I∗

mr
+ s(mr, Dr, θ)̊s(mr, Dr, θ)J∗

mr

}
.

9Of course, since mr only takes on finitely many values, the constants can also be taken such that they do not
depend on mr. We note, although not stated explicitly, all subsequent uniformity results also hold uniformly for
mr ∈ {m : 2 ≤ m ≤ M̄}.
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In addition, AN (θ) and ÅN (θ) commute, AN (θ)ÅN (θ) = ÅN (θ)AN (θ). Also,

|AN (θ)| =
J∏
j=1

M̄∏
m=2

|p(m, j, θ)I∗
m + s(m, j, θ)J∗

m|Rm,j =
J∏
j=1

M̄∏
m=2

[
p(m, j, θ)m−1s(m, j, θ)

]Rm,j
, (B.7)

as is readily checked observing that pI∗
m + sJ∗

m = p{Im + [(s− p)/(pm)]ιmι′m} and applying Propo-
sition 31 in Dhrymes (1978), Section 2.7 on p. 38, to compute the determinant of the matrix in
curly brackets. Furthermore,

tr (AN (θ)) =
J∑
j=1

M̄∑
m=2

Rm,j ((m− 1)p(m, j, θ) + s(m, j, θ)) .

and

1
N
Z ′AN (θ)Z = 1

N

R∑
r=1

(
p(mr, Dr, θ)Z ′

rI
∗
mr
Zr + s(mr, Dr, θ)Z ′

rJ
∗
mr
Zr
)

(B.8)

=
J∑
j=1

M̄∑
m=2

p(m, j, θ) 1
N

∑
r∈Im,j

Z̈ ′
rZ̈r + s(m, j, θ) 1

N

∑
r∈Im,j

mz̄′
rz̄r

 .
We note that the row and column sums of any matrix AN (θ) of the form (B.2) are uniformly

bounded in absolute value, if p(mr, Dr, θ) and s(mr, Dr, θ) are uniformly bounded in absolute value
(observing that mr is bounded by Assumption 4). We note further that in light of Assumption 5 the
elements ofN−1Z ′AN (θ)Z are uniformly bounded in absolute value. If additionally p(mr, Dr, θ) and
s(mr, Dr, θ) are positive and bounded away from zero, then also the elements of

(
N−1Z ′AN (θ)Z

)−1

are uniformly bounded; see Lemma B.5. Consequently the elements of
(
N−1Z ′Ω(θ)Z

)−1 are uni-
formly bounded, and the row and column sums of Z(Z ′Ω(θ)Z)−1Z ′ = N−1Z

(
N−1Z ′Ω(θ)Z

)−1
Z ′,

Ω(θ)−1Z
(
N−1Z ′Ω(θ)Z

)−1
Z ′Ω(θ)−1 and MZ(θ) are uniformly bounded in absolute value. As a re-

sult, MZ(θ) and ∂MZ(θ)/∂θi = −MZ(θ) (∂Ω(θ)/∂θi)MZ(θ) have row and column sums uniformly
bounded in absolute value.

In all, if a matrix AN (θ) is the product of I − λW , (I − λW )−1, Ω(θ), Ω(θ)−1, W , ∂Ω(θ)/∂θi,
and MZ(θ), then both AN (θ) and ∂AN (θ)/∂θi have row and column sums uniformly bounded in
absolute value, and the elements of AN (θ)Zβ0 are uniformly bounded in absolute value over θ ∈ Θ
and N .

B.2 Limit Theorems for Linear Quadratic Forms in U

The following result follows trivially from Lemma A.1 in Kelejian and Prucha (2010), and is only
given for the convenience of the reader.

Lemma B.1. [Mean and Covariance] Let A and B be N ×N nonstochastic symmetric matrices,
which are partitioned into R2 submatrices and let a and b be N × 1 vectors, which are conformably
partitioned into R subvectors. Let aij and bij denote the (i, j)-th element of A and B, let A(r,r′) and
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B(r.r′) denote the (r, r′)-th block of dimension mr×mr′, let vecD(A(r,r)) and vecD(B(r,r)) denote the
column vectors of the diagonal elements of A(r.r) and B(r.r), let ai and bi denote the i-th element
of a and b, and a(r) and b(r) denote the r-th subvectors of dimension mr × 1. Let Jm be the m×m

matrix of ones. Then, under Assumptions 1 and 2,

E(U ′AU + U ′a) = tr(Ω0A),

Cov(U ′AU + U ′a, U ′BU + U ′b) = 2 tr (AΩ0BΩ0) + a′Ω0b

+
R∑
r=1

vecD(A(r,r))′ vecD(B(r,r))(µ
(4)
ϵ0,Dr

− 3σ4
ϵ0,Dr

) +
R∑
r=1

[
tr(A(rr)Jmr )

] [
tr(B(rr)Jmr )

]
(µ(4)
α0 − 3σ4

α0)

+
R∑
r=1

(
vecD(A(r,r))′b(r) + vecD(B(r,r))′a(r)

)
µ

(3)
ϵ0,Dr

+
R∑
r=1

[
ι′mr

A(rr)Jmrb(r) + ι′mr
B(rr)Jmra(r)

]
µ

(3)
α0 .

Proof. Let H = [σα0 diagRr=1 {ιmr } ,diagRr=1{σϵ0,DrImr }]. Consider the (N + R) × 1 dimensional
vector

ξ = (α1/σα0, ...., αR/σα0, ϵ
′
1/σϵ0,D1 , ..., ϵ

′
R/σϵ0,DR

)′,

Then U = Hξ, and
U ′AU + U ′a = ξ′(H ′AH)ξ + ξ′(H ′a). (B.9)

Note that by Assumptions 1 and 2, the elements of ξ are independently distributed with E [ξ] =
0(N+R)×1, Var (ξ) = IN+R. Denote the i-th entry of ξ as ξi, 1 ⩽ i ⩽ N +R. Denote the third and
fourth moments of ξi as µ(3)

ξi
and µ

(4)
ξi

respectively. Under Assumptions 1 and 2, when 1 ⩽ i ⩽ R,
µ

(3)
ξi

= µ
(3)
α0 /σ

3
α0 and µ

(4)
ξi

= µ
(4)
α0 /σ

4
α0. When R + m1 + ... + mr−1 + 1 ⩽ i ⩽ R + m1 + ... + mr,

µ
(3)
ξi

= µ
(3)
ϵ0,Dr

/σ3
ϵ0,Dr

and µ
(4)
ξi

= µ
(4)
ϵ0,Dr

/σ4
ϵ0,Dr

. Furthermore, there exists some ηξ > 0 such that
E[|ξi|4+ηξ ] < ∞.

Using the transformation of linear quadratic forms in (B.9) and applying Lemma A.1 in Kelejian
and Prucha (2010) yields,

E
[
U ′AU + U ′a

]
= E[ξ′(H ′AH)ξ + ξ′(H ′a)] = tr(H ′AH) = tr (AΩ0) ,

observing that
HH ′ = σ2

α0 diagRr=1
{
ιmr ι

′
mr

}
+ diagRr=1

{
σ2
ϵ0,Dr

Imr

}
= Ω0.
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Furthermore the variance of the linear quadratic forms in U is given by

Cov(U ′AU + U ′a, U ′BU + U ′b)

= Cov
(
ξ′(H ′AH)ξ + ξ′(H ′a), ξ′(H ′BH)ξ + ξ′(H ′b)

)
=2 tr

(
H ′AHH ′BH

)
+ a′HH ′b

+
N+R∑
i=1

(H ′AH)ii(H ′BH)ii(µ(4)
ξi

− 3) +
N+R∑
i=1

[(H ′AH)ii(H ′b)i + (H ′BH)ii(H ′a)i]µ(3)
ξi

=2 tr (AΩ0BΩ0) + a′Ω0b

+
R∑
r=1

vecD(A(r,r))′ vecD(B(r,r))(µ
(4)
ϵ0,Dr

− 3σ4
ϵ0,Dr

) +
R∑
r=1

[
tr(A(rr)Jmr )

] [
tr(B(rr)Jmr )

]
(µ(4)
α0 − 3σ4

α0)

+
R∑
r=1

(vecD(A(r,r))′b(r) + vecD(B(r,r))′a(r))µ
(3)
ϵ0,Dr

+
R∑
r=1

(
ι′mr

A(rr)Jmrb(r) + ι′mr
B(rr)Jmra(r)

)
µ

(3)
α0 .

Lemma B.2. [Central Limit Theorem] Suppose Assumptions 1-6 hold. For l = 1, . . . , L let A(l)
N

be non-stochastic N × N matrices where the row and column sums of the absolute elements are
uniformly bounded in N , and let a(l)

N be N × 1 non-stochastic vectors where the absolute elements
are uniformly bounded in N . Let SN = [S(1)

N , S
(2)
N , .., S

(L)
N ]′ be an L × 1 vector of linear quadratic

forms of U , with
S

(l)
N = U ′A

(l)
N U + U ′a

(l)
N , l = 1, ..., L.

Let ΣS,N denote variance covariance matrix of SN , where explicit expressions for the elements of
ΣS,N are readily obtained from Lemma B.1, and assume that ρmin(ΣS,N ) ≥ c for some constant
c > 0. Let ΣS,N = Σ1/2

S,NΣ1/2
S,N , then

Σ−1/2
S,N (SN − E [SN ]) d−→ N(0, IL)

as N → ∞.
(Note that under Assumption 5 the conditions postulated for a(l)

N hold if a(l)
N = B

(l)
N Zβ0, and the

B
(l)
N are non-stochastic N × N matrices where the row and column sums of the absolute elements

are uniformly bounded in N .)

Proof. Let H and ξ be defined as in the proof of Lemma B.1, so that U = Hξ. Upon substitution
of this expression for U we have

S
(l)
N = ξ′Ã

(l)
N+Rξ + ξ′ã

(l)
N+R

where Ã(l)
N+R = (1/2)H ′(A(l)

N + A
(l)′
N )H, ã(l)

N+R = H ′a
(l)
N . Clearly, in light of Assumptions 1 and

2, ξ satisfies Assumptions A.1 and A.3 in Kelejian and Prucha (2010). Furthermore, given the
maintained assumptions on A

(l)
N and a

(l)
N , and since the row an column sums of H are uniformly
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bounded in absolute value, it follows that the row and column sums of Ã(l)
N+R and the elements

of ã(l)
N+R are uniformly bounded in absolute value. This verifies that those matrices and vectors

satisfy the conditions of Assumption A.2 in Kelejian and Prucha (2010). The lemma now follows
from Theorem A.1 in Kelejian and Prucha (2010).

As above, let Θo be an open bounded set with Θ ⊂ Θo ⊂ (−1, 1) ×RJ+1.

Lemma B.3. [Uniform Convergence] Let Θ0 be an open set containing Θ. Let AN (θ) and BN (θ)
be N ×N matrices and let SN (θ) be a linear-quadratic form of U :

SN (θ) = U ′AN (θ)U + U ′BN (θ)Zβ0

where AN (θ) and BN (θ) are differentiable N×N matrices defined for θ ∈ Θ0. Suppose Assumptions
1-5 hold, and suppose the row and column sums of AN (θ), BN (θ), ∂AN (θ)/∂θi and ∂BN (θ)/∂θi, i =
1, ..., J + 2, are bounded in absolute value uniformly in N and θ. Then N−1SN (θ)− N−1E [SN (θ)]
converges uniformly to zero i.p., i.e.,

plim
N→∞

sup
θ∈Θ

|N−1SN (θ) −N−1E [SN (θ)] | = 0.

Remark B.1. Given the uniform convergence in probability of N−1SN (θ) to its mean and the
equicontinuity of N−1SN (θ), we have plim

N→∞
|N−1SN (θ̂N )−N−1E [SN (θ0)] | = 0 as N goes to infinity

if θ̂N → θ0.

Proof. To prove the lemma we verify that N−1SN (θ) and N−1S̄N (θ) = N−1E [SN (θ)] satisfy the
conditions postulated by Corollary 2.2 of Newey (1991); cp., also Theorem 3.1(a) and the discussion
after eq. (2.7) in Pötscher and Prucha (1994).

The parameter space Θ is compact by assumption. We next verify that N−1S̄N (θ) is uniformly
equicontinuous. By Lemma B.1, N−1S̄N (θ) = N−1 tr(Ω0A(θ)). Let θ, θ′ ∈ Θ, then by the mean
value theorem

tr(Ω0AN (θ)) = tr(Ω0AN (θ′)) + [tr(Ω0
∂AN (θ∗)
∂θ1

), ..., tr(Ω0
∂AN (θ∗)
∂θJ+2

)](θ − θ′).

where θ∗ is a “vector of between values”. Note that the row and column sums of AN (θ), ∇θi
AN (θ) =

∂AN (θ)/∂θi, Ω0, and consequently the row and column sums of Ω0AN (θ) and (Ω0∇θi
AN (θ)), are

uniformly (in θ and N) bounded in absolute value. Consequently there exists a constant CA which
does not depend on θ, θ′, or N such that∣∣∣N−1 tr (Ω0AN (θ)) −N−1 tr

(
Ω0AN (θ′)

)∣∣∣ ⩽ CA||θ − θ′||, (B.10)

which establishes that N−1S̄N (θ) = N−1 tr(Ω0AN (θ)) is uniformly equicontinuous on Θ.
We next prove point-wise convergence i.p. of N−1SN (θ) − N−1E [SN (θ)] to zero. In light of

Chebychev’s inequality it suffices to show that the variance of N−1SN (θ) converges to 0 for any
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θ ∈ Θ. Let AN = (AN (θ) +A′
N (θ)) /2 and aN = BN (θ)Zβ0, then by Lemma B.1, the variance of

SN (θ) is

Var
(
N−1/2SN (θ)

)
=N−1 tr

(
ANΩ0ANΩ0

)
+N−1a′

NΩ0aN

+N−1
N∑
i=1

(aii,N )2(µ(4)
ϵ0,Dr(i)

− 3σ4
ϵ0,Dr(i)

) +N−1
R∑
r=1

(
tr(A(rr),NJmr )

)2
(µ(4)
α − 3σ4

α0)

+2N−1
N∑
i=1

aii,Nai,Nµ
(3)
ϵ0,Dr(i)

+ 2N−1
R∑
r=1

(
ι′mr

A(rr),NJmra(r),N
)
µ(3)
α .

Under our assumptions the row and column sums of Ω0, AN , and thus of ANΩ0ANΩ0 are uniformly
bounded. Furthermore, it is readily seen that the elements of aN are uniformly bounded in absolute
value. Consequently N−1 tr

(
ANΩ0ANΩ0

)
, N−1a′

NΩ0aN , and all sums in the above expression are
seen to be bounded by a finite constant uniformly in N . In turn this implies that Var(N−1SN (θ)) →
0.

Finally we prove that N−1SN (θ) satisfies the following Lipschitz condition:∣∣∣N−1SN (θ) −N−1SN (θ′)
∣∣∣ ≤ CN

∥∥θ − θ′∥∥
for all θ, θ′ ∈ Θ and some nonnegative random variable CN that does not depend on θ, θ′ and where
CN = Op(1). It proves again convenient to rewrite as SN (θ) as SN (θ) = ξ′ÃN (θ)ξ + ξ′ãN (θ) with
ÃN (θ) = H ′AN (θ)H and ãN (θ) = H ′BN (θ)Zβ0, where H and ξ are defined as in the proof of
Lemma B.1. Under the maintained assumptions ÃN (θ) and ãN (θ) are differentiable for θ ∈ Θo,
and the row and column sums of ÃN (θ), ∂ÃN (θ)/∂θi and the elements of ãN (θ), ∂ãN (θ)/∂θi are
uniformly bounded in absolute value in θ and N , with i = 1, ..., J+2. Consequently, for some finite
constant, say K, we have |ãi,N (θ)| ≤ K/2 and, using the mean value theorem,

N+R∑
j=1

∣∣ãij,N (θ) − ãij,N (θ′)
∣∣ ≤

N+R∑
j=1

∥∂ãij,N (θ∗)/∂θ∥
∥∥θ − θ′∥∥ ≤ K

∥∥θ − θ′∥∥ ,
with θ∗ a “between value”. Observing further that |ξiξj | ⩽ (ξ2

i + ξ2
j )/2 we have for any θ, θ′ ∈ Θ∣∣∣N−1SN (θ) −N−1SN (θ′)

∣∣∣ =
∣∣∣N−1ξ′

[
ÃN (θ) − ÃN (θ′)

]
ξ +N−1ξ′[ãN (θ) − ãN (θ′)]

∣∣∣
≤ 2

N +R

N+R∑
i=1

N+R∑
j=1

∣∣ãij,N (θ) − ãij,N (θ′)
∣∣ (ξ2

i + ξ2
j )/2 + 2

N +R

N+R∑
i=1

[|ãi,N (θ)| +
∣∣ãi,N (θ′)

∣∣] |ξi|

≤ 1
N +R

N+R∑
i=1

ξ2
i

N+R∑
j=1

∣∣ãij,N (θ) − ãij,N (θ′)
∣∣+ 1

N +R

N+R∑
j=1

ξ2
j

N+R∑
i=1

∣∣ãij,N (θ) − ãij,N (θ′)
∣∣

+ 2K
N +R

N+R∑
i=1

|ξi|
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and consequently
∣∣N−1SN (θ) −N−1SN (θ′)

∣∣ ≤ CN ∥θ − θ′∥ where

CN = 2K
N +R

N+R∑
i=1

(ξ2
i + |ξi|).

Since Eξ2
i = 1, it follows that ECN ≤ 4KE(ξ2

i + |ξi|) ≤ 8K, and thus CN is Op(1). Having verified
all conditions of Corollary 2.2 of Newey (1991), this concludes the proof of the lemma.

The following Lemma is helpful in proving Theorem E.1 later. Motivated by the proof of
Theorem E.1, we define the following variables: ϕ̄ = (1−λ̂)β0

1−λ0
− β̂, φ̄ = 1−λ̂

1−λ0
, z̄r = 1

mr

∑mr
i=1 zir,

ϕ̈r = mr−1+λ̂
mr−1+λ0

β0 − β̂, φ̈r = 1 + λ̂−λ0
mr−1+λ0

, z̈ir = zir − z̄r.

Lemma B.4. Suppose Assumptions 1-5 hold, and let ψ(.) be a finite positive scalar function of
mr, 0 < cψ ⩽ ψ(mr) ⩽ Cψ < ∞ for r = 1, ..., R. Assume that λ̂ p→ λ0 and β̂

p→ β0.Let p1 and p2

be integers such that p1 ⩾ 0, p2 ⩾ 0 and p1 + p2 ⩽ 4, then:
(a) The term 1

Rj

∑R
r=1 1(Dr = j)ψ(mr)

∑mr
i=1 ü

p1
ir ū

p2
r has a finite expected value, and its deviation

from the expected value converges in probability to zero as R → ∞.
(b) For integers 0 ⩽ s1 ⩽ p1, 0 ⩽ s2 ⩽ p2, and s1 + s2 ⩾ 1,

1
Rj

R∑
r=1

1(Dr = j)ψ(mr)
mr∑
i=1

(z̈irϕ̈r)s1(φ̈rüir)p1−s1(z̄rϕ̄)s2(φ̄ūr)p2−s2 →p 0.

(c) As R goes to infinity,

1
Rj

R∑
r=1

1(Dr = j)ψ(mr)
mr∑
i=1

[(φ̈rüir)p1(φ̄ūr)p2 − üp1
ir ū

p2
r ] →p 0.

Proof. (a) With both mr and 1(Dr = j)ψ(mr) being finite and 0 ⩽ p1 +p2 ⩽ 4, Assumptions 1 and
2 imply that E

[
|1(Dr = j)ψ(mr)

∑mr
i=1 ü

p1
ir ū

p2
r |1+ηµ

]
≤ Cµ < ∞ uniformly in r for some constant

Cµ and some ηµ > 0, and that 1(Dr = j)ψ(mr)
∑mr
i=1 ü

p1
ir ū

p2
r are independently distributed across

r. The claim thus follows from Theorem 5.4.1 and Corollary(ii) to that theorem in Chung (2001).
(b) Under Assumption 5, the elements of z̄r and z̈ir are uniformly bounded in absolute value

by some constants 0 < CZ < ∞. Under Assumptions 3 and 4, |φ̈| and |φ̄| are uniformly bounded
by some constants 0 < Cφ < ∞. Let |ϕ̈r|1, |β0|1, |β0 − β̂|1 be the ℓ1 norm of ϕ̈r, β0 and β0 − β̂

respectively. Observe that mr − 1 + λ0 ⩾ ϵλ for some ϵλ > 0, and thus

|ϕ̈r|1 = | mr − 1 + λ̂

mr − 1 + λ0
β0 − β̂|1

= | (λ̂− λ0)β0
mr − 1 + λ0

+ (β0 − β̂)|1

⩽ |λ̂− λ0||β0|1
1
ϵλ

+ |β0 − β̂|1.
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Therefore,

|ψ(mr)||z̈irϕ̈r|s1 |φ̈rüir|p1−s1 |z̄rϕ̄|s2 |φ̄ūr|p2−s2

⩽CψC
s1+s2
Z C(p1+p2−s1−s2)

φ (|λ̂− λ0||β0|1
1
ϵλ

+ |β0 − β̂|1)s1 |ϕ̄|s2 |üir|p1−s1 |ūr|p2−s2 ,

and∣∣∣∣∣ 1
Rj

R∑
r=1

1(Dr = j)ψ(mr)
mr∑
i=1

(z̈irϕ̈r)s1(φ̈rüir)p1(z̄rϕ̄)s2(φ̄ūr)p2

∣∣∣∣∣
⩽

1
Rj

R∑
r=1

1(Dr = j)
mr∑
i=1

|ψ(mr)||z̈irϕ̈r|s1 |φ̈rüir|p1−s1 |z̄rϕ̄|s2 |φ̄ūr|p2−s2

⩽CψC
s1+s2
Z C(p1+p2−s1−s2)

φ (|λ̂− λ0||β0|1
1
ϵλ

+ |β0 − β̂|1)s1 |ϕ̄|s2 1
Rj

R∑
r=1

1(Dr = j)
mr∑
i=1

|üir|p1−s1 |ūr|p2−s2 .

Note that ϕ̄ →p 0. With s1 ⩾ 0, s2 ⩾ 0 and s1 + s2 ⩾ 1, (|λ̂− λ0||β0|1 1
ϵλ

+ |β0 − β̂|1)s1 |ϕ̄|s2 →p 0.
By part (a) of the Lemma, 1

Rj

∑R
r=1 1(Dr = j)

∑mr
i=1 |üir|p1−s1 |ūr|p2−s2 is bounded in probability.

Consequently the equation above converges to 0 in probability.
(c) We can rewrite φ̈r = 1 + ς̈r, and φ̄ = 1 + ς̄, where ς̈r = λ̂−λ0

mr−1+λ0
, ς̄ = − λ̂−λ0

1−λ0
. Since

mr −1+λ0 > ϵλ for some ϵλ > 0 and |λ̂−λ0| < 2, both ς̈r and ς̄ are uniformly bounded in absolute
value and there exists some constant 0 < Cς < ∞ such that |ς̈r| ⩽ Cς |λ̂− λ0| and |ς̄r| ⩽ Cς |λ̂− λ0|.
Next observe that by the mean-value theorem, for p ⩾ 1 we have (1 +x)p = 1 + px(1 + x̃)p−1 where
x̃ lies between x and 0. The equation also holds trivially for p = 0. Consequently,

|φ̈p1
r φ̄

p2 − 1| =
∣∣∣(1 + p1ς̈r(1 + ˜̈ς)p1−1

) (
1 + p2ς̄r(1 + ˜̄ς)p2−1

)
− 1

∣∣∣
=
∣∣∣p1p2ς̈r(1 + ˜̈ς)p1−1ς̄r(1 + ˜̄ς)p2−1 + p1ς̈r(1 + ˜̈ς)p1−1 + p2ς̄r(1 + ˜̄ς)p2−1

∣∣∣
⩽ p1p2|ς̈r ς̄r||(1 + ˜̈ς)p1−1(1 + ˜̄ς)p2−1| + p1|ς̈r||(1 + ˜̈ς)p1−1| + p2|ς̄r||(1 + ˜̄ς)p2−1|

where ˜̈ς lies between ς̈ and 0, ˜̄ς lies between ς̄ and 0, and thus ˜̈ς and ˜̄ς are both uniformly bounded
in absolute value. Therefore |(1 + ˜̈ς)p1−1(1 + ˜̄ς)p2−1|, |(1 + ˜̈ς)p1−1| and |(1 + ˜̄ς)p2−1| are all uniformly
bounded. Therefore there exists some constant 0 < Cp < ∞ such that

|φ̈p1
r φ̄

p2 − 1| ⩽ Cp|λ̂− λ0|,

and
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∣∣∣∣∣ 1
Rj

R∑
r=1

1(Dr = j)ψ(mr)
mr∑
i=1

((φ̈rüir)p1(φ̄ūr)p2 − üp1
ir ū

p2
r )
∣∣∣∣∣

⩽
1
Rj

R∑
r=1

1(Dr = j)
mr∑
i=1

|ψ(mr)| |φ̈p1
r φ̄

p2 − 1| |üp1
ir ū

p2
r |

⩽CφCp|λ̂− λ0| 1
Rj

R∑
r=1

1(Dr = j)
mr∑
i=1

|üp1
ir ū

p2
r | .

By part (a) of the lemma, 1
Rj

∑R
r=1 1(Dr = j)

∑mr
i=1 |üp1

ir ū
p2
r | is bounded in probability. The lemma

then follows.

Lemma B.5. Suppose Assumption 5 holds. Let

AN (θ) = diagRr=1
{
p(mr, θ)I∗

mr
+ s(mr, θ)J∗

mr

}
,

where, for 2 ≤ mr ≤ M̄ , the scalar functions p(mr, θ) and s(mr, θ) are positive and continuous on
the compact parameter space Θ. Let SN (θ) = N−1Z ′AN (θ)Z, then there exist positive constants c
and C that do not depend on θ and N such that

0 < c ≤ λmin [SN (θ)] ≤ λmax [SN (θ)] ≤ C < ∞. (B.11)

Furthermore
sup
θ∈Θ

|SN (θ) − S(θ)| → 0 as N → ∞, (B.12)

where S(θ) =
∑M̄
m=2

∑J
j=1[p(m, θ)κ̈m,j + s(m, θ)κm,j ]. The elements of S(θ) are continuous on Θ,

and
0 < c ≤ λmin [S(θ)] ≤ λmax [S(θ)] ≤ C < ∞. (B.13)

Remark B.2. It follows from the uniform convergence of SN (θ) and the continuity of S(θ) that if
θ̂N →p θ0, then

∣∣∣SN (θ̂N ) − S(θ0)
∣∣∣ →p 0 as N → ∞.

Proof. Observe that by the Bolzano-Weierstrass’ extreme value theorem there exist positive con-
stants c and C, which do not depend on θ, such that

0 < c ≤ p(mr, θ), s(mr, θ) ≤ C < ∞.

Since mr only takes on finitely many values the constants c and C can be chosen such that the
above inequalities hold for all m. By Assumption 5 we have 0 < ξ

Z
≤ λmin[N−1∑

r∈Im,j
Z̈ ′
rZ̈r +

N−1∑
r∈Im,j

mz̄′
rz̄r] for some pair of (m, j). Since the elements of Z are bounded in absolute

value it follows further that there exists a finite constant ξZ such that for all pairs of (m, j),
λmax[N−1∑

r∈Im,j
Z̈ ′
rZ̈r] ≤ ξZ < ∞ and λmax[N−1∑

r∈Im,j
mz̄′

rz̄r] ≤ ξZ < ∞; see, e.g., Johnson
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and Horn (1985), Lemma 5.6.10 and the equivalence of matrix norms. Next observe that

SN (θ) = N−1
R∑
r=1

(
p(mr, θ)Z ′

rI
∗
mr
Zr + s(mr, θ)Z ′

rJ
∗
mr
Zr
)

=
M̄∑
m=2

J∑
j=1

p(m, θ)N−1 ∑
r∈Im,j

Z̈ ′
rZ̈r + s(m, θ)N−1 ∑

r∈Im,j

mz̄′
rz̄r

 .
Consequently

λmin [SN (θ)] = inf
ϕ∈RkZ

ϕ′SN (θ)ϕ
ϕ′ϕ

≥
M̄∑
m=2

J∑
j=1

inf
ϕ∈RkZ

ϕ′
(
p(m, θ)N−1∑

r∈Im,j
Z̈ ′
rZ̈r + s(m, θ)N−1∑

r∈Im,j
mz̄′

rz̄r
)
ϕ

ϕ′ϕ

≥ c
M̄∑
m=2

J∑
j=1

inf
ϕ∈RkZ

ϕ′
(
N−1∑

r∈Im,j
Z̈ ′
rZ̈r +N−1∑

r∈Im,j
mz̄′

rz̄r
)
ϕ

ϕ′ϕ

≥ cξ
Z
> 0

and

λmax [SN (θ)] ≤ sup
ϕ∈RkZ

ϕ′SN (θ)ϕ
ϕ′ϕ

≤
M̄∑
m=2

J∑
j=1

(
p(m, θ) sup

ϕ∈RkZ

ϕ′[N−1∑
r∈Im,j

Z̈ ′
rZ̈r]ϕ

ϕ′ϕ
+ s(m, θ) sup

ϕ∈RkZ

ϕ′[N−1∑
r∈Im,j

mz̄′
rz̄r]ϕ

ϕ′ϕ

)

≤ 2
M̄∑
m=2

J∑
j=1

CξZ < ∞.

This proves the first part of the lemma. Next observe that

sup
θ∈Θ

|SN (θ) − S(θ)|

≤ sup
θ∈Θ

M̄∑
m=2

J∑
j=1

p(m, θ)
∣∣∣∣∣∣N−1 ∑

r∈Im,j

Z̈ ′
rZ̈r − κ̈m,j

∣∣∣∣∣∣+ s(m, θ)

∣∣∣∣∣∣N−1 ∑
r∈Im,j

mz̄′
rz̄r − κ̄m,j

∣∣∣∣∣∣


≤ C
M̄∑
m=2

J∑
j=1

∣∣∣∣∣∣N−1 ∑
r∈Im,j

Z̈ ′
rZ̈r − κ̈m,j

∣∣∣∣∣∣+
∣∣∣∣∣∣N−1 ∑

r∈Im,j

mz̄′
rz̄r − κ̄m,j

∣∣∣∣∣∣
 → 0

by Assumption 5. Clearly S(θ) is continuous given the assumptions maintained w.r.t. p(mr, θ) and
s(mr, θ). Recall that by Assumption 5 we have 0 < ξ

Z
≤ λmin[N−1∑

r∈Im,j
Z̈ ′
rZ̈r+N−1∑

r∈Im,j
mz̄′

rz̄r]
for some pair of (m, j). Therefore and since the eigenvalues of a matrix are continuous functions

46



of the elements of the matrix we have for some pair of (m, j)

0 < ξ
Z

≤ lim
N→∞

λmin

N−1 ∑
r∈Im,j

Z̈ ′
rZ̈r +N−1 ∑

r∈Im,j

mz̄′
rz̄r


= λmin

 lim
N→∞

N−1 ∑
r∈Im,j

Z̈ ′
rZ̈r + lim

N→∞
N−1 ∑

r∈Im,j

mz̄′
rz̄r


= λmin [κ̈m,j + κm,j ] ,

and we have for all pairs of (m, j),

λmax(κ̈m,j) = λmax[ lim
N→∞

N−1 ∑
r∈Im,j

Z̈ ′
rZ̈r] = lim

N→∞
λmax[N−1 ∑

r∈Im,j

Z̈ ′
rZ̈r] ≤ ξZ < ∞,

λmax(κm,j) = λmax[ lim
N→∞

N−1 ∑
r∈Im,j

mz̄′
rz̄r] = lim

N→∞
λmax[N−1 ∑

r∈Im,j

mz̄′
rz̄r] ≤ ξZ < ∞.

The remainder of the proof of (B.13) is analogous to the proof of (B.11).
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C Proof of Lemma 2.1

We first consider Scenario (i) . By assumption there are two groups r and s such that mr ̸= ms

and E
[
ϵ2ir|mr, Dr

]
/E

[
ϵ2is|ms, Ds

]
= σ2

ϵ0,Dr
/σ2

ϵ0,Ds
= 1 . Now consider

E [χwr (θ)|mr, Dr] =
(mr − 1 + λ)2E

[
Ÿ ′
r Ÿr

]
(mr − 1)2 − σ2

ϵ,Dr
(mr − 1) = 0. (C.1)

Using E
[
Ÿ ′
r Ÿr

]
= (mr − 1)2/ (mr − 1 + λ0)2 σ2

ϵ0,Dr
gives

E [χwr (θ)|mr, Dr] = (mr − 1)[
(mr − 1 + λ)2σ2

ϵ0,Dr

(mr − 1 + λ0)2 − σ2
ϵ,Dr

] = 0

which leads to the equation

(mr − 1 + λ)2σ2
ϵ0,Dr

= σ2
ϵ,Dr

(mr − 1 + λ0)2 . (C.2)

Now use the moment condition for groups r and s and noting that σ2
ϵ0,Dr

/σ2
ϵ0,Ds

= σ2
ϵ,Dr

/σ2
ϵ,Ds

= 1
It follows that

(mr − 1 + λ)2

(ms − 1 + λ)2 = (mr − 1 + λ0)2

(ms − 1 + λ0)2 . (C.3)

Clearly the equation in (C.3) holds for λ = λ0. The RHS is constant in λ. The LHS is a monotonic
function in λ. To see this, compute the derivative ∂h (λ) /∂λ of

h (λ) = (mr − 1 + λ)2

(ms − 1 + λ)2

given by

∂h (λ)
∂λ

= 2(mr − 1 + λ)
(ms − 1 + λ)2 − 2(mr − 1 + λ)2(ms − 1 + λ)

(ms − 1 + λ)4

= 2(mr − 1 + λ)(ms − 1 + λ) (ms −mr)
(ms − 1 + λ)4 .

Since λ > −1, mr > 1 and ms > 1 then sign (∂h (λ) /∂λ) = sign (ms −mr) . This implies that (C.3)
can only have one solution when mr ̸= ms. Thus E [χwr (θ)|mq, Dq] = 0, q = r, s alone identifies
λ under Scenario (i). Plugging λ = λ0 into (C.2) and noting that mr − 1 + λ0 > 0 shows that
σ2
ϵ0,Dr

is identified. By assumption, σ2
ϵ0,Dr

= σ2
ϵ0,Ds

such that σ2
ϵ0,Ds

is also identified. The remaining
moments E [χwr (θ)|mq, Dq] = 0, q ̸= r, s now determine the remaining parameters σ2

ϵ,j .
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Now consider

E
[
χbr(θ)|mr, Dr

]
= (1 − λ)2Eȳ2

r − σ2
α −

σ2
ϵ,Dr

mr

= (1 − λ)2

(1 − λ0)2

(
σ2
α,0 +

σ2
ϵ0,Dr

mr

)
−
(
σ2
α +

σ2
ϵ,Dr

mr

)

We already established that E
[
χwq (θ)|mq, Dq

]
= 0, q = r, s imply that λ = λ0, σ2

ϵ,Dq
= σ2

ϵ0,Dq

for q = r, s. Then, for λ = λ0, σ
2
ϵ,Dr

= σ2
ϵ0,Dr

,

E
[
χbr(θ)|mr, Dr

]
= (1 − λ)2

(1 − λ0)2

(
σ2
α,0 +

σ2
ϵ0,Dr

mr

)
−
(
σ2
α +

σ2
ϵ,Dr

mr

)
= 0 (C.4)

reduces to σ2
α = σ2

α,0, and thus also σ2
α,0 is identified. If there are additional groups with sizes

different from mr and ms then moment conditions related to these groups constitute overidentifying
restrictions.

Now consider Scenario (ii). By assumption, mr = ms = m and σ2
ϵ0,Dr

̸= σ2
ϵ0,Ds

. Thus

E [νr(θ)|mr, Dr] − E [νs(θ)|ms, Ds]

=(1 − λ)2
(
E
[
ȳ2
r |m,Dr

]
− E

[
ȳ2
s |m,Ds

])
−(m− 1 + λ)2

(
E

[
Ÿ ′
r Ÿr

m(m− 1)3 |m,Dr

]
− E

[
Ÿ ′
s Ÿs

m(ms − 1)3 |m,Ds

])
.

=
[

(1 − λ)2

(1 − λ0)2 − (m− 1 + λ)2

(m− 1 − λ0)2

]
σ2
ϵ0,Dr

− σ2
ϵ0,Ds

m

observing that,

E
[
ȳ2
r |m,Dr

]
− E

[
ȳ2
s |m,Ds

]
=
σ2
α0 + σ2

ϵ0,Dr
m

(1 − λ0)2 −
σ2
α0 + σ2

ϵ0,Ds
m

(1 − λ0)2 =
σ2
ϵ0,Dr

− σ2
ϵ0,Ds

m(1 − λ0)2 ,

and

E

[
Ÿ ′
r Ÿr

m(m− 1)3 |m,Dr

]
− E

[
Ÿ ′
s Ÿs

m(m− 1)3 |m,Ds

]
= 1
m (m− 1 − λ0)2

(
σ2
ϵ0,Dr

− σ2
ϵ0,Ds

)
.

Since σ2
ϵ0,Dr

− σ2
ϵ0,Ds

̸= 0 it follows that E [νr(θ)|mr, Dr] − E [νs(θ)|ms, Ds] = 0 implies

(m− 1 + λ)2

(1 − λ)2 = (m− 1 + λ0)2

(1 − λ0)2 .

Define c = (m−1+λ0)2

(1−λ0)2 , then the equation is equivalent to

(m− 1 + λ)2 = c (1 − λ)2
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which in turn is equivalent to the following polynomial in λ:,

(m− 1)2 − c+ 2 ((m− 1) + c)λ+ (1 − c)λ2 = 0.

Clearly, λ = λ0 is a solution. Consider the derivative

∂
(

(m−1+λ)2

(1−λ)2

)
∂λ

= 2(m− 1 + λ)
(1 − λ)2 + 2(m− 1 + λ)2

(1 − λ)3

= 2
(
(m− 1 + λ) (1 − λ) + (m− 1 + λ)2)

(1 − λ)3

= 2(m− 1 + λ)((1 − λ) + (m− 1 + λ))
(1 − λ)3

= 2(m− 1 + λ)m
(1 − λ)3 > 0.

Since m ⩾ 2 and λ ∈ (−1, 1) it follows that (m−1+λ)m > 0 and 1−λ > 0 such that the derivative
is positive for all values of λ on the parameter space. This implies that λ = λ0 is the only solution
to the moment condition. Once λ is identified, E [νr(θ)] = 0 identifies σ2

α as

σ2
α = E

[
(1 − λ0)2ȳ2

r − Ÿ ′
r Ÿr

mr(mr − 1)3

]
= σ2

α0.

Finally, note that νr(θ) is a function of χr(θ), and thus the moment conditions E[χr(θ0)|mr, Dr] = 0
are sufficient to identify the parameter λ and σ2

α.
Identification of the remaining parameters σ2

ϵ,j follows trivially from an inspection of χwr (θ) as
once λ is identified, σ2

ϵ,j is identified from χwr (θ) recalling that by Assumption 1 there exists some
r such that Dr = j.

D The CV estimator of Graham (2008)

In this appendix we interpret the CV estimator of Graham (2008) as based on moment conditions
developed in Section 2. Specifically, we show that the identification results in Graham (2008) can
be seen as an adapted version of Scenario (ii) of Lemma 2.1.

The peer effects model of Graham (2008) can be written as

yir = vr + ϵir + (γ − 1) ϵ̄r, (D.1)

where ϵ̄r = m−1
r

∑mr
i=1 ϵir is the group average of unobserved characteristics. The parameter γ

captures the peer effect. Taking group averages on both sides of (D.1), we get ϵ̄r = 1
γ (ȳr − vr).

Plugging back into (D.1), and letting λ̃ = 1 − 1/γ as well as αr = vr/γ, we get the following
structural model

yir = λ̃ȳr + αr + ϵir. (D.2)
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The specification differs from our main model in (1) in that it uses the full group mean ȳr rather than
the leave-out-mean ȳ(−i)r. The leave-out-mean specifications are often preferred in the literature,
see for example Angrist (2014) for a discussion. Defining W̃mr = 1

mr
ιmr ι

′
mr

, we can rewrite (D.2)
in matrix form as

Yr = λ̃W̃mrYr + αιmr + ϵr.

Using the same notation as in Section 2, it can be shown that ȳr = ūr/(1 − λ̃) with ūr = αr + ϵ̄r,
and Ÿr = Ür = ϵ̈r. Note that in the context of Model (D.2) the results in Manski (1993), Kelejian
et al. (2006) or Bramoullé et al. (2009) show that λ̃ cannot be identified by instrumenting W̃mrYr

with W̃ 2
mr
Zr when W̃mrZr is included as a covariate, observing that W̃ 2

mr
= W̃mr .

To isolate or identify the social interaction effect Graham (2008) imposes restrictions on the
unobservables and group size. Graham considers the case when J = 2 and Dr is a categorical
variable for small/regular classes, which are coded as Dr = 1 whenever mr ⩾ m̄ for some constant m̄
and Dr = 2 otherwise. Assumptions 1.1 and 1.2 in Graham (2008) amount to Assumptions 1 and 2
in Section 2. Assumption 1.3 in Graham (2008) imposes that E

[
Ÿ ′
r Ÿr|Dr = 1

]
̸= E

[
Ÿ ′
r Ÿr|Dr = 2

]
.

Observing that E
[
Ÿ ′
r Ÿr|Dr = d

]
= σ2

ϵ,d(mr−1) the latter condition is seen to be satisfied if Scenario
(ii) in Lemma 2.1 holds true. In addition, the condition is also true if mr varies and the idiosyncratic
errors ϵir are homoscedastic as in Scenario (i).

The parameter γ2 = 1/(1 − λ̃)2 is identified under Assumptions 1.1-1.3, see Proposition 1.1 in
Graham (2008). Below we prove the proposition by adapting the proof for Scenario (ii) in Lemma
2.1 to the full-mean specification, thus verifying that the CV estimator is a special case of the
moment based estimators studied in Section 2.

Under the full-mean specification of Graham (2008), our moment conditions in (7) change
correspondingly to

χ̃wr (θ) = Ÿ ′
r Ÿr − (mr − 1)σ2

ϵ,Dr
, (D.3)

χ̃br(θ) = (1 − λ̃)2ȳ2
r − σ2

α −
σ2
ϵ,Dr

mr
. (D.4)

The combined moment condition in (8) is now

ν̃r(λ̃, σ2
α) = χ̃br(θ) − χ̃wr (θ)

mr(mr − 1) = (1 − λ̃)2ȳ2
r − σ2

α − Ÿ ′
r Ÿr

mr(mr − 1) . (D.5)

Note that by design E(ν̃r(λ̃, σ2
α)|mr, Dr) = 0 at the true parameter vector θ0.

The restriction that group effect variances are homoscedastic can be exploited by taking dif-
ferences E

[
νr(λ̃, σ2

α)|mr, Dr = 1
]

− E
[
νr(λ̃, σ2

α)|mr, Dr = 2
]

to eliminate σ2
α. This implies the

following population equation for
(
1 − λ̃

)2

1
(1 − λ̃)2 = E

[
ȳ2
r |mr, Dr = 1

]
− E

[
ȳ2
r |mr, Dr = 2

]
E
[

Ÿ ′
r Ÿr

mr(mr−1) |mr, Dr = 1
]

− E
[

Ÿ ′
r Ÿr

mr(mr−1) |mr, Dr = 2
] , (D.6)

51



which is a modified version of (6). The Wald estimate for λ̃ can then be calculated from the sample
analog of the right-hand side above. Two points are worth noting. First, identification is possible
under Scenario (ii) of Lemma 2.1, i.e., when there exists some mr = ms and σ2

ϵ,Dr
̸= σ2

ϵ,Ds
. This

confirms the applicability of Lemma 2.1 to the full-mean specification. Second, due to the full-mean
specification, identification is also possible even when σ2

ϵ,1 = σ2
ϵ,2 as long as there is variation in

mr. So, in the case of homoscedasticity, group size variation alone is enough for the CV estimator
to identify λ̃. It can be shown that the score of a Gaussian likelihood estimator is a function of
χ̃r(θ) =

(
χ̃wr (θ), χ̃br(θ)

)′
and therefore the Gaussian maximum likelihood estimator shares the same

identification properties.
It is well known that identification for the case of peer effects captured by full group means

is difficult, see Manski (1993), Bramoullé et al. (2009) or Angrist (2014). In the case of the
conditional variance restrictions or likelihood approaches considered here, this manifests itself in
the fact that

(
1 − λ̃

)2
but not λ̃ is identified without additional constraints on the parameter space.

An inspection of (D.6) shows that while γ2 = 1/
(
1 − λ̃

)2
is identified, the sign of γ = 1/

(
1 − λ̃

)
is not identified, unless λ̃ is constrained to take values in (−∞, 1). The reason is that the function
1/
(
1 − λ̃

)2
is monotonically increasing on the interval (−∞, 1) and

(
1 − λ̃

)
> 0 for λ̃ ∈ (−∞, 1) .

The implied range for γ then is (0,∞) and the permissible parametrizations of the term ϵ̄r in (D.1)
is (−1,∞) . For the latter, the positive values are most relevant in peer effects applications.

52



E Proofs of Theorems 4.1, 4.2, and 4.3

We collect the proof of Theorem 4.1 in Sections E.1 and E.2. This theorem establishes the identi-
fication and the consistency of the quasi-maximum likelihood estimator. Then we provide a proof
of Theorem 4.2 and Theorem 4.3 in Section E.3 and Section E.4, respectively. These theorems
establish the asymptotic distribution of the QMLE and the consistency of our estimators for the
third and fourth moments.

E.1 Proof of Theorem 4.1(a)

For the un-concentrated log likelihood function in (16), let

R̄(θ, β) = lim
N→∞

E

[ 1
N

lnL(θ, β)
]
.

Let β̄(θ) be the maximizer of R̄(θ, β) with respect to β,

R̄(θ, β̄(θ)) = max
β

R̄(θ, β),

and let
Q̄∗∗(θ) = R̄(θ, β̄(θ)).

For the concentrated log likelihood function in (20), let Q̄∗(θ) = limN→∞E [QN (θ)]. To prove that
θ0 is identifiably unique, it suffices to show that Condition 1(a) and Condition 2 below hold; cp.,
e.g., Definition 3.1 of identifiable uniqueness and the subsequent discussion in Pötscher and Prucha
(1991). In fact, under Condition 1(a) and Condition 2 the identifiable uniqueness of the parameter
vector θ0 is equivalent with θ0 being asymptotically identified in the sense that it is the unique
maximizer of Q̄∗(θ).

Condition 1. (a) The non-stochastic functions Q̄∗(θ) and Q̄∗∗(θ) exist, and Q̄∗(θ) = Q̄∗∗(θ) are
continuous and finite ;

(b) As N goes to infinity, supθ∈Θ

∣∣∣E [QN (θ)] − Q̄∗(θ)
∣∣∣ → 0.

Condition 2. The parameter space Θ is compact, the true value θ0 is the unique maximizer of
Q̄∗(θ) (and hence Q̄∗∗(θ)) on Θ and β̄(θ0) = β0.

Condition 1(b) is used for the proof of consistency that is presented in Section E.2 below.
Given Condition 1(b) and the identifiable uniqueness of the true parameter vector consistency of
the QMLE follows immediately from, e.g., Lemma 3.1 in Poetscher and Prucha (1997), p. 16.

We combine conditions 1(a) and 1(b) as they can be established together.
■ Verification of Condition 1: To prove that Q̄∗(θ) = limN→∞E [QN (θ)] exists, it is readily
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seen that

E [QN (θ)] = − ln(2π)
2 + 1

2N ln |(I − λW )2Ω(θ)−1| (E.1)

− 1
2N tr

{
(I − λW )′MZ(θ)(I − λW )(E

[
Y Y ′])}

= − ln(2π)
2 + 1

2N ln |(I − λW )2Ω(θ)−1|

− 1
2N tr

[
(I − λW )′MZ(θ)(I − λW )(I − λ0W )−1 (Ω0 + Zβ0β

′
0Z

′) (I − λ0W )−1
]

= Q̄
(1)
N (θ) + Q̄

(2)
N (θ) + Q̄

(3)
N (θ),

with

Q̄
(1)
N (θ) = − ln(2π)

2 + 1
2N ln |(I − λW )2Ω(θ)−1| (E.2)

− 1
2N tr

[
(I − λ0W )−2(I − λW )2Ω(θ)−1Ω0

]
,

Q̄
(2)
N (θ) = − 1

2N tr
[
β′

0Z
′(I − λ0W )−1(I − λW )MZ(θ)(I − λW )(I − λ0W )−1Zβ0

]
,

Q̄
(3)
N (θ) = 1

2N tr
[
(I − λ0W )−2(I − λW )2Ω(θ)−1Z(Z ′Ω(θ)−1Z)−1Z ′Ω(θ)−1Ω0

]
,

recalling that MZ(θ) = Ω(θ)−1 − Ω(θ)−1Z(Z ′Ω(θ)−1Z)−1Z ′Ω(θ)−1 and that the matrices (I −
λ0W ),(I − λW ), Ω(θ)−1 and Ω0 all commute.

We show that the limits of Q̄(1)
N (θ), Q̄(2)

N (θ) and Q̄
(3)
N (θ) exist, in reverse order. Observe that

Q̄
(3)
N (θ) = 1

2N tr
[( 1

N
Z ′Ω(θ)−1Ω0(I − λ0W )−2(I − λW )2Ω(θ)−1Z

)( 1
N
Z ′Ω(θ)−1Z

)−1
]
.

Both matrices in square brackets are of the form considered in (B.8) with p(mr, Dr, θ) and s(mr, Dr, θ)
satisfying the assumptions of Lemma B.5. Thus their elements, and in turn the trace, are bounded in
absolute value by respective constants that do not depend on θ andN . Consequently supθ∈Θ Q̄

(3)
N (θ) ≤

const/N → 0 as N → ∞ and limN→∞ Q̄
(3)
N (θ) = 0.

Second, observe that

2Q̄(2)
N (θ) = β′

0

( 1
N
Z ′(I − λ0W )−2(I − λW )2Ω(θ)−1Z

)
β0

− β′
0

{( 1
N
Z ′(I − λ0W )−1(I − λW )Ω(θ)−1Z

)( 1
N
Z ′Ω(θ)−1Z

)−1

×
( 1
N
Z ′Ω(θ)−1(I − λW )(I − λ0W )−1Z

)}
β0. (E.3)

In light of (B.3) and (B.4) and using Lemma B.5 we see that supθ∈Θ |Q̄(2)
N (θ) − Q̄(2)∗(θ)| →p 0,
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where

Q̄(2)∗(θ) = 1
2β

′
0

(
Υ1(θ) − Υ2(θ)Υ−1

3 (θ)Υ2(θ)
)
β0,

Υ1(θ) =
J∑
j=1

M̄∑
m=2

(
ϕ2
W (m, θ)

ϕ2
W (m, θ0)ϕΩ(m, j, θ)

κ̈m,j + ψ2
W (m, θ)

ψ2
W (m, θ0)ψΩ(m, j, θ)

κ̄m,j

)
, (E.4)

Υ2(θ) =
J∑
j=1

M̄∑
m=2

(
ϕW (m, θ)

ϕW (m, θ0)ϕΩ(m, j, θ) κ̈m,j + ψW (m, θ)
ψW (m, θ0)ψΩ(m, j, θ) κ̄m,j

)
, (E.5)

Υ3(θ) =
J∑
j=1

M̄∑
m=2

( 1
ϕΩ(m, j, θ) κ̈m,j + 1

ψΩ(m, j, θ) κ̄m,j
)
, (E.6)

and where Q̄(2)∗(θ) is finite and continuous on Θ by Lemma B.5.
Third, observe that

Q̄
(1)
N (θ) = − ln(2π)

2 − 1
2N ln|(I − λ0W )−2Ω0|

+ 1
2N ln|(I − λ0W )−2(I − λW )2Ω(θ)−1Ω0| − 1

2N tr
[
(I − λ0W )−2(I − λW )2Ω(θ)−1Ω0

]
= CN + 1

2

J∑
j=1

M̄∑
m=2

Rm,j
N

ln|G(m, j, θ)| − 1
2

J∑
j=1

M̄∑
m=2

Rm,j
N

tr[G(m, j, θ)]

with

G(m, j, θ) = (Im − λWm)2Ωm,j(θ)−1(Im − λ0Wm)−2Ωm,j0

= ϕ2
W (m, θ)ϕΩ(m, j, θ0)
ϕ2
W (m, θ0)ϕΩ(m, j, θ)

I∗
m + ψ2

W (m, θ)ψΩ(m, j, θ0)
ψ2
W (m, θ0)ψΩ(m, j, θ)

J∗
m,

=
σ2
ϵ0,j
σ2
ϵ,j

( m− 1 + λ

m− 1 + λ0
)2I∗

m +
(σ2
ϵ0,j +mσ2

α0)
(σ2
ϵ,j +mσ2

α)
( 1 − λ

1 − λ0
)2J∗

m, (E.7)

and CN = − ln(2π)
2 − 1

2
∑J
j=1

∑M̄
m=2

Rm,j

N ln|(I − λ0Wm)−2Ωm,j0|. Under Assumption 4, Rm,j/N →
ω∗
m,j/m

∗. Let C∗ = limN→∞CN and

Q̄(1)∗(θ) = C∗ + 1
2m∗

J∑
j=1

M̄∑
m=2

ω∗
m,jg(m, j, θ) (E.8)

with
g(m, j, θ) = ln |G(m, j, θ)| − tr[G(m, j, θ)],

then clearly supθ∈Θ |Q̄(1)
N (θ) − Q̄(1)∗(θ)| → 0 with Q̄(1)∗(θ) finite and continuous on Θ. In all,
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supθ∈Θ |E [QN (θ)] − Q̄∗(θ)| → 0, where

Q̄∗(θ) = Q̄(1)∗(θ) + Q̄(2)∗(θ) = C∗ + 1
2m∗

J∑
j=1

M̄∑
m=2

ω∗
m,jg(m, j, θ) + Q̄(2)∗(θ),

and where Q̄∗(θ) is continuous and finite.
For the un-concentrated likelihood function,

R̄(θ, β) = lim
N→∞

1
N
E [lnLN (θ, β)]

= lim
N→∞

1
N

{
−N

2 ln(2π) + 1
2 ln |(I − λW )2Ω(θ)−1|

− 1
2 tr

[
(I − λ0W )−2(I − λW )2Ω(θ)−1Ω0

]
−1

2
(
(I − λW )(I − λ0W )−1Zβ0 − Zβ

)′
Ω(θ)−1

(
(I − λW )(I − λ0W )−1Zβ0 − Zβ

)}
= lim

N→∞
Q̄

(1)
N (θ) − lim

N→∞

1
2N

(
β′

0Z
′(I − λW )2(I − λ0W )2Ω(θ)−1Zβ0

)
+ lim
N→∞

1
N
β′

0Z
′(I − λW )(I − λ0W )Ω(θ)−1Zβ − lim

N→∞

1
2N β′Z ′Ω(θ)−1Zβ

= Q̄(1)∗(θ) − 1
2β

′
0Υ1(θ)β0 + β′

0Υ2(θ)β − 1
2β

′Υ3(θ)β,

where Υ1(θ), Υ2(θ), Υ3(θ) are defined in Equations (E.4),(E.5), and(E.6). Taking the derivative of
R̄(θ, β) with respect to β,

∂R̄(θ, β̄)
∂β

= β′
0Υ2(θ) − β̄′Υ3(θ) = 0.

Since Υ3(θ) is non-singular by Assumption 5 and Lemma B.5,

β̄(θ) = Υ3(θ)−1Υ2(θ)β0. (E.9)

Let Q̄∗∗(θ) = R̄(θ, β̄(θ)) and plug β̄(θ) above back into R̄(θ, β),

Q̄∗∗(θ) = Q̄(1)∗(θ) − 1
2β

′
0

(
Υ1(θ) − Υ2(θ)Υ−1

3 (θ)Υ2(θ)
)
β0

= Q̄(1)∗(θ) + Q̄(2)∗(θ) = Q̄∗(θ).

Note that the second order derivative

∂2R̄(θ, β)
∂β∂β′ = −Υ3(θ) = − lim

N→∞
Z ′Ω(θ)−1Z

is negative definite by Assumption 5 and Lemma B.5 uniformly in θ, thus β̄(θ) is the unique
maximizer of R̄(θ, β) over β. In all, we have Q̄∗(θ) and Q̄∗∗(θ) both exist and Q̄∗(θ) = Q̄∗∗(θ).
■ Verification of Condition 2 Since Υ3(θ0) = Υ2(θ0), β̄(θ0) = β0 is readily seen. Next we show
that θ0 is the unique global maximizer of Q̄∗(θ) on Θ. We first show that θ0 is a global maximizer of
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Q̄(2)∗(θ). To see this observe that we can rewrite Q(2)
N (θ) as Q(2)

N (θ) = − 1
2N η̃Z(θ)′M̃Z(θ)η̃Z(θ), where

M̃Z(θ) = I − Ω−1/2Z ′(Z ′Ω(θ)Z)−1ZΩ−1/2 is idempotent and positive semidefinite, and η̃Z(θ) =
Ω(θ)−1/2(I − λW )(I − λ0W )−1Zβ0. Thus Q(2)

N (θ) ≤ 0 and consequently also Q̄(2)∗(θ) ≤ 0. Next
observe, as is readily checked, that Q(2)∗(θ0) = 0. Therefore Q̄(2)∗(θ) ⩽ Q̄(2)∗(θ0) for all θ ∈ Θ.
To show that θ0 is the unique global maximizer of Q̄∗(θ) it thus suffices to show that θ0 is the
unique maximizer of

∑J
j=1

∑M̄
m=2 ω

∗
m,jg(m, j, θ). Observe that

J∑
j=1

M̄∑
m=2

ω∗
m,jg(m, j, θ) =

J∑
j=1

M̄∑
m=2

ω∗
m,j (ln |G(m, j, θ)| − tr[G(m, j, θ)]) ⩽ −m∗, (E.10)

where m∗ =
∑J
j=1

∑M̄
m=2 ω

∗
m,jm.10 The equality holds if and only if g(m, j, θ) = −1 or equivalently

G(m, j, θ) = Im for all m and j with ω∗
m,j > 0. Under the two scenarios described by Assumption

6 this is the case if and only if θ = θ0, which establishes that θ0 is the unique maximizer of∑J
j=1

∑M̄
m=2 ω

∗
m,jg(m, j, θ). To see this, observe that in light of (E.7) the equality G(m, j, θ) = Im

only holds if

(
m− 1 + λ

m− 1 + λ0

)2 σ2
ϵ0,j
σ2
ϵ,j

= 1, (E.11)

(σ2
ϵ0,j +mσ2

α0)
(σ2
ϵ,j +mσ2

α)

( 1 − λ

1 − λ0

)2
= 1. (E.12)

Note that (E.11) and (E.12) are equivalent to E [χwr (θ)|mr = m,Dr = j] = 0 and

E
[
χbr(θ)|mr = m,Dr = j

]
= 0

respectively, where χwr (θ) and χbb(θ) are defined in (7). See Equations (C.2) and (C.4) in Appendix
C. Thus mathematically G(m, j, θ) = Im is equivalent to E [χr(θ)|mr = m,Dr = j] = 0, with
χr(θ) = (χwr (θ), χbr(θ)). Utilizing Lemma 2.1, θ = θ0 is the only solution to E [χr(θ)|mr = m,Dr = j] =
0 and E [χr(θ)|mr = m′, Dr = j′] = 0 under Scenarios (i) or (ii). Therefore, θ0 is the unique global
maximizer of

∑J
j=1

∑M̄
m=2 ω

∗
m,jg(m, j, θ) and thus of Q̄∗(θ).

E.2 Proof of Theorem 4.1(b)

To prove the consistency of the QMLE estimator θ̂N we utilize Lemma 3.1 of Pötscher and Prucha
(1991). Previously we have shown that θ0 is the unique maximizer of Q̄∗(θ) on Θ, where Q̄∗(θ)
is finite and continuous. The compactness of Θ follows from Assumptions 1, 2, and 3. To prove
consistency of θ̂, it then suffices to have Condition 3. Since β̄(θ0) = β0, once we have shown that
θ̂N →p θ0, consistency of β̂N (θ̂N ) follows from Condition 4.

Condition 3. As N → ∞ , supθ∈Θ |QN (θ) − Q̄∗(θ)| →p 0.
10See Footnote 7 for details.
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Condition 4. As N → ∞, supθ∈Θ |β̂N (θ) − β̄(θ)| →p 0.

■ Verification of Condition 3: Verification of Condition 1 has shown that supθ∈Θ |E [QN (θ)] −
Q̄∗(θ)| → 0 asN → ∞. It remains to show that asN goes to infinity, supθ∈Θ |QN (θ)−E [QN (θ)] | →p

0 . Upon substitution of Y = (I − λ0W )−1(Zβ0 + U) into (20) we have

QN (θ) − E [QN (θ)] = 1
N

(
U ′AQN

(θ)U + 2U ′AQN
(θ)Zβ0 − tr[AQN

(θ)Ω0]
)
,

where
AQN

(θ) = −1
2(I − λ0W )−1(I − λW )′MZ(θ)(I − λW )(I − λ0W )−1.

The row and column sums in absolute value of (I − λ0W )−1, (I − λW ), MZ(θ) and their first
derivatives are all uniformly bounded in absolute value. It now follows from Lemma B.3 that
QN (θ) − E [QN (θ)] →p 0 uniformly in θ.
■ Verification of Condition 4:

In light of (23) we have

β̂N (θ) = (Z ′Ω(θ)−1Z)−1Z ′Ω(θ)−1(I − λW )Y

=
(
N−1Z ′Ω(θ)−1Z

)−1 (
N−1Z ′Ω(θ)−1(I − λW )(I − λ0W )−1Z

)
β0

+
(
N−1Z ′Ω(θ)−1Z

)−1 (
N−1Z ′Ω(θ)−1(I − λW )(I − λ0W )−1U

)
.

By Lemma B.3,

sup
θ∈Θ

(
N−1Z ′Ω(θ)−1(I − λW )(I − λ0W )−1U

)
→p 0.

Also
(
N−1Z ′Ω(θN )−1Z

)−1 is uniformly bounded in absolute value. By Lemma B.5,

sup
θ∈Θ

((
N−1Z ′Ω(θ)−1Z

)−1
− Υ3(θ)−1

)
→ 0

and
sup
θ∈Θ

(
N−1Z ′Ω(θ)−1(I − λW )(I − λ0W )−1Z − Υ2(θ)

)
→ 0.

In all, we have supθ∈Θ |β̂N (θ) − β̄(θ)| →p 0.

E.3 Proof of Theorem 4.2

To derive the limiting distribution of the QMLE δ̂N = (θ̂′
N , β̂

′
N )′ it proves more convenient to work

with the unconcentrated log-likelihood function defined in (16). Applying the mean value theorem,
the first order condition for the QMLE can be written as

0 = 1
N1/2

∂ lnLN (δ̂N )
∂δ

= 1
N1/2

∂ lnLN (δ0)
∂δ

+ 1
N

∂ lnLN (δ̌N )
∂δ∂δ

N1/2(δ̂N − δ0),

58



where δ̌N denotes a “between” value vector. Given that δ̂N was shown to be consistent, it follows
that also the “between” value δ̌N is consistent for δ0. It is not difficult to see that

∂ lnLN (δ)
∂δ

=



− tr[(I − λW )−1W ] + U(δ)′Ω−1WY

−1
2 tr[Ω−1 diagRr=1

{
mrJ

∗
mr

}
] + 1

2U(δ)′Ω−1 diagRr=1
{
mrJ

∗
mr

}
Ω−1U(δ)

−1
2 tr[Ω−1 diagRr=1{1(Dr = 1)Imr }] + 1

2U(δ)′Ω−2 diagRr=1{1(Dr = 1)Imr }U(δ)
...
−1

2 tr[Ω−1 diagRr=1{1(Dr = J)Imr }] + 1
2U(δ)′Ω−2 diagRr=1{1(Dr = J)Imr }U(δ)

Z ′Ω−1U(δ)


with U(δ) = Y − λWY − Zβ, and thus

∂ lnLN (δ0)
∂δ

=



− tr[(I − λ0W )−1W ] + U ′Ω−1
0 W (I − λ0W )−1(Zβ0 + U)

−1
2 tr[Ω−1

0 diagRr=1
{
J∗
mr
mr
}
] + 1

2U
′Ω−1

0 diagRr=1
{
J∗
mr
mr
}

Ω−1
0 U

−1
2 tr[Ω−1

0 diagRr=1{1(Dr = 1)Imr }] + 1
2U

′Ω−2
0 diagRr=1{1(Dr = 1)Imr }U

...
−1

2 tr[Ω−1
0 diagRr=1{1(Dr = J)Imr }] + 1

2U
′Ω−2

0 diagRr=1{1(Dr = J)Imr }U
Z ′Ω−1

0 U


.

(E.13)
Furthermore, it is not difficult to see that with θ2 = σ2

α, θ2+j = σ2
ϵ,j , j = 1, ..., J , the elements

of the Hessian matrix are

∂2 lnLN (δ)
∂λ2 = − tr[(I − λW )−2W 2] − Y ′W ′Ω(θ)−1WY, (E.14)

∂2 lnLN (δ)
∂λ∂θi

= −U(δ)′Ω(θ)−1∂Ω(θ)
∂θi

Ω(θ)−1WY, (E.15)

∂2 lnLN (δ)
∂θi∂θj

= 1
2 tr[Ω(θ)−2 ∂Ω

∂θi

∂Ω
∂θj

] (E.16)

−U(δ)′Ω(θ)−1∂Ω(θ)
∂θi

Ω(θ)−1∂Ω(θ)
∂θj

Ω(θ)−1U(δ), (E.17)

∂2 lnLN (δ)
∂θi∂β

= −Z ′Ω(θ)−1∂Ω(θ)
∂θi

Ω(θ)−1U(δ), (E.18)

∂2 lnLN (δ)
∂λ∂β

= −Z ′Ω(θ)−1WY, (E.19)

∂2 lnLN (δ)
∂β∂β′ = −Z ′Ω(θ)−1Z, (E.20)

with i, j = 2, 3, ..., 2 + J and

∂Ω(θ)
∂θ2

= diagRr=1{J∗
mr
mr},

∂Ω(θ)
∂θ2+j

= diagRr=1{1(Dr = j)Imr }.

Since Y = (I − λ0W )−1(Zβ0 + U) and U(δ) = (I − λW )(I − λ0W )−1(Zβ0 + U) − Zβ, each
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element of N−1∂2 lnLN (δ)/∂δ∂δ′ is a linear quadratic form of U or Z in the form of 1
NU

′A(θ)U ,
1
NZ

′A(θ)U , 1
NZ

′A(θ)Z, and their products with β: 1
N β

′Z ′A(θ)U , 1
NZ

′A(θ)Zβ, 1
N β

′Z ′A(θ)Zβ, etc.,
where A(θ) = diagRr=1{p(mr, Dr, θ)I∗

mr
+ s(mr, Dr, θ)J∗

mr
} satisfies the conditions in Lemma B.3

and Lemma B.5. By these two lemmas, if θ̂N →p θ0, all three types of linear quadratic forms
converge to the limit of their expected value at θ0 in probability. That is as N → ∞,∣∣∣∣ 1

N
U ′A(θ̂N )U − lim

N→∞

1
N

tr[A(θ0)Ω0]
∣∣∣∣ →p 0,

| 1
N
Z ′A(θ)U | →p 0,∣∣∣∣ 1

N
Z ′A(θ̂N )Z − lim

N→∞

1
N
Z ′A(θ0)Z

∣∣∣∣ →p 0.

Also, we have β̂N →p β0. Thus by Slutsky’s theorem, the products of the linear quadratic forms
with β̂N converge in probability to the products of the expected values with β0. Therefore, as
δ̌N →p δ0,

1
N

∂ lnLN (δ̌N )
∂δ∂δ′ →p lim

N→∞

1
N
E

[
∂2 lnLN (δ0)

∂δ∂δ′

]
= −Γ0,

where the specific structure of Γ0 is given in Appendix F.
We next show that N1/2∂ lnLN (δ0)/∂δ d−→ N(0,Υ0). Each element of the score function in

(E.13) can be written as a linear quadratic form of U in the form of U ′AN (θ0)U +U ′BN (θ0)Zβ0 +
C(δ0), which has zero mean and where the row and column sums of AN (θ0) and BN (θ0) are
uniformly bounded in absolute value and where C(δ0) are constants. Using Theorem B.2,

N−1/2∂ lnLN (δ0)/∂δ d−→ N (0,Υ0)

with Υ0 = limN→∞
1
NE[∂ lnLN (δ0)

∂δ
∂ lnLN (δ0)

∂δ′ ], whose expression is given in Appendix F. In all,√
N(δ̂N − δ0) d−→ N(0,Γ−1

0 Υ0Γ−1
0 ) as N goes to infinity.

E.4 Proof of Theorem 4.3

The proof of the theorem follows from the definition of Γ̂N and Υ̂N in (27) and (28), Lemma E.1
which is stated below in this section, Assumptions 4 and 5 and Theorem 4.1 which together imply
that Γ̂N

p→ Γ0 and Υ̂N
p→ Υ0. Since by Lemma 4.1 the matrices Υ0 and Γ0 are full rank, and

thus Γ−1
0 Υ0Γ−1

0 is full rank, it follows that
(
Γ̂−1
N Υ̂N Γ̂−1

N

)−1/2 p→
(
Γ−1

0 Υ0Γ−1
0

)−1/2
. The result then

follows from the continuous mapping theorem and Theorem 4.2.

Lemma E.1. Suppose Assumptions 1-5 hold, then µ̂
(3)
α

p→ µ
(3)
α0 , µ̂(4)

α
p→ µ

(4)
α0 , and µ̂

(3)
ϵ,j

p→ µ
(3)
ϵ0,j,

µ̂
(4)
ϵ,j

p→ µ
(4)
ϵ0,j, for any j ∈ {1, ..., J}.

First note that f (3)
α,r, f

(4)
α,r, f

(3)
ϵ,r and f

(4)
ϵ,r can all be rewritten as a linear combination of finitely

many terms in the form of ψ(mr)
∑mr
i=1 ü

p1
ir ū

p2
r and some nonstochastic function f(mr, θ), with
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ψ(mr) being a finite function, p1 ⩾ 0, p2 ⩾ 0 and p1 + p2 ⩽ 4, and f(m, θ) being continuous in θ.
Also note that

1
R

R∑
r=1

f (l)
α,r =

J∑
j=1

Rj
R

(
1
Rj

R∑
r=1

1(Dr = j)f (l)
α,r

)

for l = 3 and 4. Thus our estimates for the third and fourth moments, 1
R

∑R
r=1 f

(l)
α,r and

1
Rj

R∑
r=1

1 (Dr = j) f (l)
ϵ,r ,

l = 3, 4 can all be written as a weighted sum of finitely many terms of the form

1
Rj

R∑
r=1

1(Dr = j)ψ(mr)
mr∑
i=1

üp1
ir ū

p2
r , (E.21)

and
1
Rj

R∑
r=1

1(Dr = j)f(mr, θ). (E.22)

The former converges to its mean by Lemma B.4 (a) and the latter is nonstochastic. Consequently,
1
R

∑R
r=1 f

(l)
α,r →p µ

(l)
α0 and 1

Rj

∑R
r=1 1(Dr = j)f (l)

ϵ,r →p µ
(l)
ϵ0,j for l = 3, 4 and j = 1, ..., J as R goes to

infinity. For the feasible counterparts of the terms in (E.21) and (E.22), note that θ̂− θ0 →p 0 and
f(m, θ) is continuous in θ. We have

1
Rj

R∑
r=1

1(Dr = j)f(mr, θ̂) − 1
Rj

R∑
r=1

1(Dr = j)f(mr, θ0) →p 0

by the continuous mapping theorem as. It thus remains to show that

1
Rj

R∑
r=1

1(Dr = j)ψ(mr)
mr∑
i=1

(ˆ̈up1
ir

ˆ̄up2
r − üp1

ir ū
p2
r ) →p 0. (E.23)

Let Ûr = (û1r, ..., ûmr,r)′, then

Ûr = (I − λ̂W )Yr − Zrβ̂ = (I − λ̂W )(I − λ0W )−1(Zrβ0 + Ur) − Zrβ̂

=
(
(I − λ̂W )(I − λ0W )−1Zrβ0 − Zrβ̂

)
+ (I − λ̂W )(I − λ0W )−1Ur.

Note that
(I − λ̂W )(I − λ0W )−1 = mr − 1 + λ̂

mr − 1 + λ0
I∗
mr

+ 1 − λ̂

1 − λ0
J∗
mr
,

where J∗
mr

= ιmr ι
′
mr
/mr and I∗

mr
= Imr −J∗

mr
are two orthogonal idempotent matrices that generate
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vectors of group means and vectors of deviations from the group means. Thus

ˆ̄ur = ι′mr
Ûr/mr = z̄r(

(1 − λ̂)β0
1 − λ0

− β̂) + 1 − λ̂

1 − λ0
ūr = z̄rϕ̄+ φ̄ūr,

where ϕ̄ = (1−λ̂)β0
1−λ0

− β̂, φ̄ = 1−λ̂
1−λ0

, z̄r = 1
mr

∑mr
i=1 zir. Let ˆ̈Ur = (ˆ̈u1r, ..., ˆ̈umrr)′, then

ˆ̈Ur = I∗
mr
Ûr = Z̈r

(
mr − 1 + λ̂

mr − 1 + λ0
β0 − β̂

)
+ mr − 1 + λ̂

mr − 1 + λ0
Ür,

and

¨̂uir = z̈irϕ̈r + φ̈rüir,

where ϕ̈r = mr−1+λ̂
mr−1+λ0

β0 − β̂, φ̈r = 1 + λ̂−λ0
mr−1+λ0

, z̈ir = zir − z̄r.
In all,

ˆ̈up1
ir

ˆ̄up2
r − üp1

ir ū
p2
r = (z̈irϕ̈r + φ̈rüir)p1(z̄rϕ̄+ φ̄ūr)p2 − üp1

ir ū
p2
r .

Given that p1 and p2 are nonnegative integers with p1 + p2 ⩽ 4, the above equation can be
written as a linear combination of terms of the form (z̈irϕ̈r)s1(φ̈rüir)p1−s1(z̄rϕ̄)s2(φ̄ūr)p2−s2 , and
(φ̈rüir)p1(φ̄ūr)p2 − üp1

ir ū
p2
r with 0 ⩽ s1 ⩽ p1, 0 ⩽ s2 ⩽ p2 and s1 + s2 ⩾ 1. The claim in (E.23) now

follows immediately from Lemma B.4(b)-(c).

F Variance-Covariance Matrix and Proof of Lemma 4.1

F.1 Variance-Covariance Matrix

Recall that Γ0 =limN→∞ − 1
NE

[
∂2 lnLN (δ0)

∂δ∂δ′

]
and Υ0 = limN→∞

1
NE

[
∂ lnLN (δ0)

∂δ
∂ lnLN (δ0)

∂δ′

]
. These

matrices are of dimension (2 + J + kZ) × (2 + J + kZ), symmetric, and underlie the expression for
the limiting variance covariance matrix of the QMLE estimator for δ0. In the following we give
explicit expressions for Γ0 and Υ0. Detailed derivations are provided in the Online Appendix. We
have

Υ0 =
J∑
j=1

M̄∑
m=2

φ(m, j)Ψ̄(m, j)φ(m, j)′, (F.1)

and

Γ0 =
J∑
j=1

M̄∑
m=2

φ(m, j)Ψ̄G(m, j)φ(m, j)′, (F.2)
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where

φ(m, j) =



1
(m−1+λ0)σ2

ϵ0,j
− m

(1−λ0)(σ2
ϵ0,j+mσ2

α0)
1

(m−1+λ0)σ2
ϵ0,j
β′

0 − m
(1−λ0)(σ2

ϵ0,j+mσ2
α0)β

′
0

0 − m2

2(σ2
ϵ0,j+mσ2

α0)2 0 0

−1(j=1)
2σ4

ϵ0,j
− m1(j=1)

2(σ2
ϵ0,j+mσ2

α0)2 0 0
...

...
...

...
−1(j=J)

2σ4
ϵ0,j

− m1(j=J)
2(σ2

ϵ0,j+mσ2
α0)2 0 0

0 0 − 1
σ2

ϵ0,j
IkZ

− m
σ2

ϵ0,j+mσ2
α0
IkZ


,

(F.3)
which is given in (24) and repeated here for the convenience of the reader,

Ψ̄G(m, j) = diag{2(m− 1)σ4
ε0,j

ω∗
m,j

m∗ , 2(σ2
α0 +

σ2
ε0,j
m

)2ω
∗
m,j

m∗ , σ
2
ε0κ̈m,j , (σ2

α0 +
σ2
ε0,j
m

) κ̄m,j
m

}, (F.4)

Ψ̄(m, j) =
[

Ψ̄11(m, j) Ψ̄12(m, j)
Ψ̄21(m, j) Ψ̄22(m, j)

]
, (F.5)

with

Ψ̄11(m, j) =
ω∗
m,j

m∗

 2(m− 1)σ4
ε0,j 0

0 2(σ2
α0 + σ2

ε0,j

m )2 + (µ(4)
α0 − 3σ4

α0)


+(µ(4)

ε0,j − 3σ4
ε0,j)

ω∗
m,j

m∗

 (m−1)2

m
(m−1)
m2

(m−1)
m2

1
m3

 ,
Ψ̄21(m, j) =

[
0 0

m−1
m µ

(3)
ε0,j z̄

′
m,j [µ(3)

α0 + 1
m2µ

(3)
ϵ0,j ]z̄′

m,j

]
= Ψ′

12(m, j),

Ψ̄22(m, j) =
[
σ2
ε0,jκ̈m,j 0

0 (σ2
α0 + σ2

ε0,j/m) κ̄m,j

m

]
.

Note that Ψ̄G(m, j) can be obtained by setting µ(4)
ϵ0,j − 3σ4

ϵ0,j = µ
(4)
α0 − 3σ4

α0 = µ
(3)
α0 = µ

(3)
ϵ0,j = 0 in

Ψ̄(m, j). When ϵ and α are both Gaussian, Υ0 = Γ0, consistent with what is expected from the
information matrix equality.
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F.2 Proof of the Positive Definiteness of Υ0 and Γ0

Let φ(m, j) , Ψ̄G(m, j) and Ψ̄(m, j) be as defined in (F.3), (F.4) and (F.5) respectively. We can

partition φ(m, j) as φ(m, j) =
(
Am,j Bm,j

0 Cm,j

)
, where

Am,j =



1
(m−1+λ0)σ2

ϵ0,j
− m

(1−λ0)(σ2
ϵ0,j+mσ2

α0)

0 − m2

2(σ2
ϵ0,j+mσ2

α0)2

−1(j=1)
2σ4

ϵ0,j
− m1(j=1)

2(σ2
ϵ0,j+mσ2

α0)2

...
...

−1(j=J)
2σ4

ϵ0,j
− m1(j=J)

2(σ2
ϵ0,j+mσ2

α0)2


(F.6)

is a (2 + J) × 2 matrix , Bm,j is the upper right block,

Cm,j = [− 1
σ2
ϵ0,j

IkZ
,− m

σ2
ϵ0,j +mσ2

α0
IkZ

]. (F.7)

Let ℓ = (ℓ1, ℓ2, ℓ′3, ℓ′4)′ be a (2 + 2kZ) dimensional vector, where ℓ1 and ℓ2 are scalars and ℓ3 and ℓ4
are both kZ dimensional vectors. To prove Lemma 4.1, we introduce the three lemmas below.

Lemma F.1. Suppose Assumptions 1-5 hold and ω∗
m,j > 0, then ℓ′Ψ̄G(m, j)ℓ = 0 if and only if

ℓ1 = ℓ2 = 0, ℓ3κ̈m,jℓ3 = 0 and ℓ4κ̄m,jℓ4 = 0.

Lemma F.2. Suppose Assumptions 1-5 hold and assume further that µ(4)
ε0,j − σ4

ε0,j > (µ(3)
ϵ0,j)2/σ2

ε0,j
and ω∗

m,j > 0, then ℓ′Ψ̄(m, j)ℓ = 0 if and only if ℓ1 = ℓ2 = 0, ℓ3κ̈m,jℓ3 = 0 and ℓ4κ̄m,jℓ4 = 0.

Let {(m, j)|ω∗
m,j > 0} be the set of all pairs of (m, j) such that ω∗

m,j > 0, and index its elements
with p = 1, ..., P̄ . We therefore have ω∗

mp,jp > 0 for p = 1, ..., P̄ . Note that for all j = 1, ..., J , there
exists some p such that jp = j. This is because for each j there exists some m such that ω∗

m,j > 0,
observing that ω∗

j =
∑M̄
m=2 ω

∗
m,j > 0 all j, and m ⩽ M̄ is bounded. The set of all Am,j defined in

(F.6) with ω∗
m,j > 0 is {Am,j |ω∗

m,j > 0} = {Am1,j1 , ..., AmP̄ ,jP̄
}. The Lemma below states that the

column by column concatenation of all matrices in this set has full row rank.

Lemma F.3. Suppose Assumptions 1-6 hold, then the matrix Φ = [Am1,j1 ..., AmP̄ ,jP̄
] has full row

rank.

Lemma F.1 follows easily from (F.4), observing that ω∗
m,j > 0, σ2

ϵ0,j > 0. The proofs of Lemma
F.2 and Lemma F.3 are given in the Online Appendix.

We can now utilize the above lemmas to prove that under the maintained assumptions Γ0 is
positive definite, and that the matrix Υ0 is positive definite for µ(4)

ε0,j − σ4
ε0,j > (µ(3)

ϵ0,j)2/σ2
ε0,j . We

present a proof for the positive definiteness of Υ0. The proof for the positive definiteness of Γ0 is
analogous.
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Let α = (α′
1, α

′
2) be a (2 + J + kZ) vector, where α1 is a (2 + J) × 1 vector and α2 is a kZ × 1

vector. To show that Υ0 is positive definite is equivalent to showing that α′Υα = 0 if and only if
α1 = 0 and α2 = 0. Observe that

α′Υ0α =
J∑
j=1

M̄∑
m=2,ω∗

m,j>0
α′φ(m, j)Ψ̄(m, j)φ(m, j)′α

=
J∑
j=1

M̄∑
m=2,ω∗

m,j>0
ℓ′m,jΨ̄(m, j)ℓm,j ,

where

ℓm,j = φ(m, j)′α =
(

A′
m,jα1

B′
m,jα1 + C ′

m,jα2

)
,

withAm,j and Cm,j defined in Equations (F.6) and (F.7). It thus suffices to show that ℓ′m,jΨ̄(m, j)ℓm,j =
0 for all m, j with ω∗

m,j > 0 if and only if α1 = 0 and α2 = 0. Given Lemma F.2, if ω∗
m,j > 0 and

ℓ′m,jΨ̄(m, j)ℓm,j = 0 then A′
m,jα1 = 0. Lemma F.3 indicates that for A′

m,jα1 = 0 to hold for all m
and j, we must have α1 = 0. With α1 = 0,

ℓm,j =
(

0
C ′
m,jα2

)
= −


0

1
σ2

ϵ0,j
α2

m
σ2

ϵ0,j+mσ2
α0
α2

 .

Utilizing Lemma F.2 again and noting that then 1
σ2

ϵ0,j
> 0 and m

σ2
ϵ0,j+mσ2

α0
> 0, we have α′

2κ̈m,jα2 = 0
and α′

2κ̄m,jα2 = 0 for all m and j. Consequently,

α′
2

J∑
j=1

M̄∑
m=2

(κ̈m,j + κ̄m,j)α2 = 0.

This gives α2 = 0 as
∑J
j=1

∑M̄
m=2(κ̈m,j + κ̄m,j) is positive definite under Assumption 5. In all,

α′Υ0α = 0 if and only if α = (α′
1, α

′
2) = 0 hence Υ0 is positive definite. The proof of the positive

definiteness of Γ0 follows similarly.
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Online Appendix: E�cient Peer E�ects Estimators with Group

E�ects

Guido M. Kuersteiner, Ingmar R. Prucha, and Ying Zeng

March 5, 2023

In this online appendix we present more details of the mathematical derivations which underlie

some of the results stated in the the main text. The subsequent derivations are given for the general

model. The results stated in Section 2 for the model without covariates are readily veri�ed in an

analogous manner.

1 Preliminaries

In this section, we recall some of the notation and de�nitions from the main paper. In deriving the

results in the main text, we utilize the properties of matrices of the form of diagRr=1{p(mr, Dr, θ)I
∗
mr

+

s(mr, Dr, θ)J
∗
mr

} discussed in Appendix B.1. Let A = diagRr=1{p(mr, Dr, θ)I
∗
mr

+ s(mr, Dr, θ)J
∗
mr

}
and Å = diagRr=1{p̊(mr, Dr, θ)I

∗
mr

+ s̊(mr, Dr, θ)J
∗
mr

}, then

� Inverse: If p(mr, Dr, θ) ̸= 0 and s(mr, Dr, θ) ̸= 0, A is invertible with

A−1 = diagRr=1{p(mr, Dr, θ)
−1I∗mr

+ s(mr, Dr, θ)
−1J∗

mr
}.

� Trace: tr[A] =
∑R

r=1[(mr − 1)p(mr, Dr, θ) + s(mr, Dr, θ)].

� Multiplication: AÅ = ÅA = diagRr=1{p(mr, Dr, θ)p̊(mr, Dr, θ)I
∗
mr

+s(mr, Dr, θ)̊s(mr, Dr, θ)J
∗
mr

}.

Recall that

I − λW = diagRr=1

{
ϕS(mr, θ)I

∗
mr

+ ψS(mr, θ)J
∗
mr

}
(O.1)

(I − λ0W )−1 = diagRr=1

{
ϕ−1
S (mr, θ0)I

∗
mr

+ ψ−1
S (mr, θ0)J

∗
mr

}
,

Ω0 = Ω(θ0) = diagRr=1{ϕΩ(mr, Dr, θ0)I
∗
mr

+ ψΩ(mr, Drθ0)J
∗
mr

},

Ω(θ)−1 = diagRr=1{ϕ−1
Ω (mr, Dr, θ)I

∗
mr

+ ψ−1
Ω (mr, Dr, θ)J

∗
mr

},

W = diagRr=1{ϕW (mr, θ)I
∗
mr

+ ψW (mr, θ)J
∗
mr

},
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with
ϕS(mr, θ) =

mr−1+λ
mr−1 , ψS(mr, θ) = 1− λ,

ϕΩ(mr, Dr, θ) = σ2ϵ,Dr
, ψΩ(mr, Dr, θ) = σ2ϵ,Dr

+mrσ
2
α,

ϕW (mr, θ) = − 1
mr−1 , ψW (mr, θ) = 1.

(O.2)

To simplify notation, we use ϕS for ϕS(mr, θ), ϕS0 for ϕ(mr, θ0), etc.

Let r = 1, . . . , R be the group index, and let mr denote the size of group r. The model with

covariates is given by

Yr = λWmrYr + Zrβ + Ur, Ur = αrιmr + ϵr,

and the reduced form is given by

Yr = (I − λWmr)
−1 (Zrβ + Ur) .

For each r we de�ne the row vector of group means z̄r = m−1
r ι′mr

Zr and the matrix of deviations

from group means Z̈r = Zr − ιmr z̄r. We de�ne Ÿr, ȳr, Ür and ūr in a similar manner. Furthermore,

note that Equations (O.1) and (O.2) imply that (I − λWmr)
−1 = ( mr−1

mr−1+λ)I
∗
mr

+ 1
1−λJ

∗
mr

. Observing

that I∗mr
Zr = Z̈r, I

∗
mr
Ur = Ür, J

∗
mr
Zr = z̄rιmr and J

∗
mr
Ur = ūrιmr we have Yr = Ÿr + ȳrιmr , where

Ÿr =

(
mr − 1

mr − 1 + λ

)(
Z̈rβ + Ür

)
,

ȳr =
z̄rβ + ūr
1− λ

.

Next, we rewrite the moment functions in terms of Ür(δ) =
mr−1+λ
mr−1 Ÿr−Z̈rβ, ūr(δ) = (1−λ)ȳr− z̄rβ

and ϕ and ψ in (O.2). The moment function for group r is

χr(δ) =


Ür(δ)

′Ür(δ)− (mr − 1)σ2ϵ,Dr

ū2r(δ)− (σ2α + σ2ϵ,Dr
/mr)

Z̈ ′
rÜr(δ)

z̄′rūr(δ)

 =


U ′
r (δ) I

∗
mr
Ur (δ)− (mr − 1)ϕΩ

U ′
r (δ)

J∗
mr
mr

Ur (δ)− ψΩ/mr

Z̈ ′
rUr (δ)

z̄r
mr
ι′mr

Ur (δ)

 (O.3)

with Ur (δ) = Yr − λWmrYr − Zrβ.

We haveR =
∑J

j=1Rj =
∑J

j=1

∑M
m=2Rm,j , where Rj denotes the number of groups in category

j , and Rm,j denotes the number of groups of size m in category j. We assume that as N → ∞ we

have Rj → ∞ for all j. Denote the index set of groups with size m in category j as Im,j . Observe

that

κ̈m,j = lim
N→∞

1

N

∑
r∈Im,j

Z̈ ′
rZ̈r = lim

N→∞

Rm,j

R
N
R

1

Rm,j

∑
r∈Im,j

Z̈ ′
rZ̈r =

ω∗
m,j

m∗ lim
N→∞

1

Rm,j

∑
r∈Im,j

Z̈ ′
rZ̈r
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and

κ̄m,j = limN→∞
1

N

∑
r∈Im,j

mz̄′rz̄r = lim
N→∞

Rm,j

R
N
R

1

Rm,j

∑
r∈Im,j

mz̄′rz̄r =
ω∗
m,j

m∗ lim
N→∞

1

Rm,j

∑
r∈Im,j

mz̄′rz̄r

with ω∗
m,j = limN→∞Rm,j/R and m∗ = limN→∞N/R. From this we see that

lim
N→∞

N−1
∑

r∈Im,j

Z̈ ′
rZ̈r = 0

and

lim
N→∞

N−1
∑

r∈Im,j

mz̄′rz̄r = 0

if ω∗
m,j = 0, as will be the case if Rm,j does not tend to in�nity.

2 Score Function for the General Model

In this section, we rewrite the score function of the QMLE in terms of moment functions. Note that

lnLN (δ) =
∑R

r=1 lnLr (δ) where

lnLr (δ) = −mr

2
ln(2π) + ln |I − λWmr | −

1

2
ln |Ωr(θ)|

− 1

2
(Yr − λWmrYr − Zrβ)

′Ωr(θ)
−1(Yr − λWmrYr − Zrβ).

Utilizing the special properties of matrices Ω(θ), W and I − λW discussed in the previous section,

the elements of the gradient of lnLr(δ) w.r.t. δ are

∂ lnLr(δ)

∂λ
= − tr[(Imr − λWmr)

−1Wmr ] + (Yr − λWmrYr − Zrβ)
′Ωr(θ)

−1WmrYr

= − tr[(ϕ−1
S ϕW )I∗mr

+ (ψ−1
S ψW )J∗

mr
] + Ur(δ)

′Ωr(θ)
−1Wmr [I − λWmr ]

−1[Zrβ + Ur(δ)]

= −[(mr − 1)ϕ−1
S ϕW + ψ−1

S ψW ] + Ur(δ)
′[(ϕ−1

Ω ϕWϕ
−1
S )I∗mr

+ (ψ−1
Ω ψWψ

−1
S )J∗

mr
](Zrβ + Ur(δ))

= (ϕ−1
Ω ϕWϕ

−1
S )

(
Ür(δ)

′Ür(δ)− (mr − 1)ϕΩ

)
+ ψ−1

Ω ψWψ
−1
S mr

(
ūr(δ)

2 − ψΩ/mr

)
+ (ϕ−1

Ω ϕWϕ
−1
S )β′Z̈ ′

rÜr(δ) + ψ−1
Ω ψWψ

−1
S mrβ

′z̄′rūr(δ),
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∂ lnLr(δ)

∂σ2α
= −1

2
tr
[
Ω−1
mr
mrJ

∗
mr

]
+

1

2
Ur (δ)

′Ω−1
r

(
mrJ

∗
mr

)
Ω−1
r Ur (δ)

= −1

2
tr[(ϕ−1

Ω I∗mr
+ ψ−1

Ω J∗
mr

)mrJ
∗
mr

]

+
1

2
Ur (δ)

′ (ϕ−1
Ω I∗mr

+ ψ−1
Ω J∗

mr
)
(
mrJ

∗
mr

)
(ϕ−1

Ω I∗mr
+ ψ−1

Ω J∗
mr

)Ur (δ)

= −1

2
tr[mrψ

−1
Ω J∗

mr
] +

1

2
Ur (δ)

′ (ψ−2
Ω mrJ

∗
mr

)Ur (δ)

= −1

2
mrψ

−1
Ω +

1

2
ψ−2
Ω m2

rū
2
r(δ)

=
1

2
ψ−2
Ω m2

r

(
ū2r(δ)− ψΩ/mr

)
,

For Dr = j,

∂ lnLr(δ)

∂σ2ϵ,j
= −1

2
tr
[
Ω−1
r

]
+

1

2
Ur(δ)

′Ω−2
r Ur(δ)

= −1

2

(
ϕ−1
Ω tr

[
I∗mr

]
+ ψ−1

Ω tr
[
J∗
mr

])
+

1

2
Ur(δ)

′(ϕ−2
Ω I∗mr

+ ψ−2
Ω J∗

mr
)Ur (δ)

= −1

2

(
(mr − 1)ϕ−1

Ω + ψ−1
Ω

)
+

1

2
ϕ−2
Ω Ür(δ)

′Ür(δ) +
1

2
ψ−2
Ω mrū

2
r

=
1

2
ϕ−2
Ω

(
Ür(δ)

′Ür(δ)− (mr − 1)ϕΩ

)
+

1

2
ψ−2
Ω mr

(
ū2r(δ)− ψΩ/mr

)
,

For Dr ̸= j
∂ lnLr(δ)

∂σ2ϵ,j
= 0,

∂ lnLr(δ)

∂β
= Zr

′Ωr(θ)
−1(Yr − λWmrYr − Zrβ) = Zr

′Ωr(θ)
−1Ur(δ)

= Zr
′ (ϕ−1

Ω (θ)I∗mr
+ ψ−1

Ω J∗
mr

)
Ur(δ)

= ϕ−1
Ω Z̈ ′

rÜr(δ) + ψ−1
Ω mrz̄

′
rūr(δ).

As a result, ∂ lnLr(δ0)
∂δ = −φ(mr, Dr)χr(δ0), where
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φ(mr, Dr) =



1
(mr−1)ϕ

−1
S0ϕ

−1
Ω0 −mrψ

−1
S0ψ

−1
Ω0

1
(mr−1)ϕ

−1
S0ϕ

−1
Ω0β

′
0 −mrψ

−1
S0ψ

−1
Ω0β

′
0

0 −1
2m

2
rψ

−2
Ω0 0 0

−1
2ϕ

−2
Ω01(Dr = 1) −1

2mrψ
−2
Ω01(Dr = 1) 0 0

...
...

...
...

−1
2ϕ

−2
Ω01(Dr = J) −1

2mrψ
−2
Ω01(Dr = J) 0 0

0 0 −ϕ−1
Ω0IkZ −mrψ

−1
Ω0IkZ



=



1
(mr−1+λ0)σ2

ϵ0,Dr

− mr

(1−λ0)(σ2
ϵ0,Dr

+mrσ2
α0)

1
(mr−1+λ0)σ2

ϵ0,Dr

β′0 − mr

(1−λ0)(σ2
ϵ0,Dr

+mrσ2
α0)
β′0

0 − m2
r

2(σ2
ϵ0,Dr

+mrσ2
α0)

2 0 0

−1(Dr=1)
2σ4

ϵ0,Dr

− mr1(Dr=1)
2(σ2

ϵ0,Dr
+mrσ2

α0)
2 0 0

...
...

...
...

−1(Dr=1)
2σ4

ϵ0,Dr

− mr1(Dr=J)
2(σ2

ϵ0,Dr
+mrσ2

α0)
2 0 0

0 0 − 1
σ2
ϵ0,Dr

IkZ − mr

σ2
ϵ0,Dr

+mrσ2
α0
IkZ


.

(O.4)

To adjust the discussions to the model discussed in Section 2 of the main text, we just need to

drop the covariates Z and the moment functions related to Z.

3 Variance Covariance Matrix of Moment Vector χr(δ0)

In the following lemma we give explicit expressions for the elements of the variance covariance

matrix χr(δ0), which will be used in the derivation of the Variance-Covariance matrix of our QMLE

and the proof that Υ0 and Γ0 , the matrices composing the V-C matrix, are both positive de�nite.

Lemma O.1. Suppose the maintained assumptions hold, then

Ψr = Cov(χr(δ0)) =

[
Ψ11,r Ψ12,r

Ψ21,r Ψ22,r

]
(O.5)
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with

Ψ11,r =

[
2(mr − 1)σ4ε0,Dr

0

0 2(σ2α0 + σ2ε0,Dr

1
mr

)2 + (µ
(4)
α0 − 3σ4α0)

]

+(µ
(4)
ε0,Dr

− 3σ4ε0,Dr
)

[
(mr−1)2

mr

(mr−1)
m2

r
(mr−1)

m2
r

1
m3

r

]

Ψ21,r =

[
0 0

mr−1
mr

µ
(3)
ε0,Dr

z̄′r [µ
(3)
α0 + 1

m2
r
µ
(3)
ϵ0,Dr

]z̄′r

]
= Ψ′

12,r,

Ψ22,r =

[
σ2ε0,Dr

Z̈ ′
rZ̈r 0

0 (σ2α0 + σ2ε0,Dr

1
mr

)z̄′rz̄r

]
.

Proof. For notational simplicity, we drop the subscripts 0 and r in the proof such that, for example,

χ(δ) = χr(δ) and I
∗
m = I∗mr

. To prove the lemma, recall that

χ(δ) =


U ′I∗mU − (m− 1)σ2ϵ,D
U ′ J∗

m
m U − (σ2α + σ2ϵ,D/m)

Z̈ ′U
z̄
m ι

′U


U = αιm + ε = [ιm, Im]η,

where η = [α, ε′]′. Observe that

I∗m[ιm, Im] = [0, I∗m],

J∗
m[ιm, Im] = [ιm, J

∗
m],

[ιm, Im]′I∗m[ιm, Im] =

[
0 0

0 I∗m

]
,

[ιm, Im]′(m−1J∗
m)[ιm, Im] = m−1[ιm, J

∗
m]′[ιm, J

∗
m] =

[
1 m−1ι′m

m−1ιm m−1J∗
m

]
.

It follows that

U ′I∗mU = η′Aη, U ′(m−1J∗
m)U = η′Bη,

Z ′I∗mU = a′η, Z ′(m−1J∗
m)U = b′η,

with

A =

[
0 0

0 I∗m

]
, B =

[
1 m−1ι′m

m−1ιm m−1J∗
m

]
,

a′ = Z ′[0, I∗m], b′ = m−1Z ′[ιm, J
∗
m]

6



Now let

Ση = (ση,ij) =

[
σ2α 0

0 σ2ε,DIm

]
,

then

Var(η′Aη) = V AA = V AA
1 + V AA

2 ,

V AA
1 = 2 tr [AΣηAΣη] = 2σ4ε,D tr [I∗m] = 2(m− 1)σ4ε,D > 0,

V AA
2 =

m+1∑
i=1

a2ii(µ
(4)
η,i − 3σ2η,ii) =

(m− 1)2

m
(µ

(4)
ε,D − 3σ4ε,D),

Var(η′Bη) = V BB = V BB
1 + V BB

2 ,

V BB
1 = 2 tr [BΣηBΣη] = 2(σ2α + σ2ε,D/m)2 > 0,

V BB
2 =

m+1∑
i=1

b2ii(µ
(4)
η,i − 3σ2η,ii) = (µ(4)α − 3σ4α) +

1

m3
(µ

(4)
ε,D − 3σ4ε,D),

Var(a′η) = V aa = a′Σηa = σ2ε,DZ
′I∗mZ = σ2ε,DZ̈

′Z̈ > 0,

Var(b′η) = V bb = b′Σηb = (σ2α + σ2ε,D/m)Z ′(m−1J∗
m)Z = (σ2α + σ2ε,D/m)z̄′z̄ > 0

and

Cov(η′Aη, η′Bη) = V AB = V AB
1 + V AB

2 ,

V AB
1 = 2 tr [AΣηBΣη]

= 2 tr

[([
0 0

0 σ2ε,DI
∗
r

][
1 m−1ι′m

m−1ιm m−1J∗
r

]
Ση

)]
= 0,

V AB
2 =

m+1∑
i=1

aiibii(µ
(4)
η,i − 3σ2η,ii) =

(m− 1)

m2
(µ

(4)
ε,D − 3σ4ε,D)

Cov(a′η, b′η) = V ab = a′Σηb = m−1Z ′[0, σ2εI
∗
m]

[
ι′m

J∗
m

]
Z = 0,

7



Cov(a′η, η′Aη) = V aA = a′

[
µ
(3)
α 0

0 µ
(3)
ε,DIm

]
vecD(A)

= Z ′[0, I∗m]

[
µ
(3)
α 0

0 µ
(3)
ε,DIm

]
vecD(A) = Z ′[0, µ

(3)
ε,DI

∗
m]

[
0

m−1
m ιm

]
= 0;

Cov(b′η, η′Aη) = V bA = b′

[
µ
(3)
α 0

0 µ
(3)
ε,DIm

]
vecD(A)

= m−1Z ′[ιm, J
∗
m]

[
µ
(3)
α 0

0 µ
(3)
ε,DIm

]
vecD(A)

= m−1Z ′[µ(3)α ιm, µ
(3)
ε,DJ

∗
m]

[
0

m−1
m ιm

]
=
m− 1

m2
µ
(3)
ε,DZ

′ιm =
m− 1

m
µ
(3)
ε,Dz̄

′;

Cov(a′η, η′Bη) = V aB = a′

[
µ
(3)
α 0

0 µ
(3)
ε,DIm

]
vecD(B) = Z ′[0, I∗m]

[
µ
(3)
α 0

0 µ
(3)
ε,DIm

]
vecD(B)

= Z ′[0, µ
(3)
ε,DI

∗
m]

[
1

m−2ιm

]
= 0;

Cov(b′η, η′Bη) = V bB = b′

[
µ
(3)
α 0

0 µ
(3)
ε,DIm

]
vecD(B) = m−1Z ′[ιm, J

∗
m]

[
µ
(3)
α 0

0 µ
(3)
ε,DIm

]
vecD(B)

= m−1Z ′[µ(3)α ιm, µ
(3)
ε,DJ

∗
m]

[
1

m−2ιm

]
=

(
µ(3)α +

1

m2
µ
(3)
ϵ,D

)
z̄′

and thus

Ψ = Cov(χ) =

[
Ψ11 Ψ12

Ψ21 Ψ22

]
with

Ψ11 =

[
V AA V AB

V BA V BA

]
=

[
2(m− 1)σ4ε,D 0

0 2(σ2α + σ2ε,D/m)2 + (µ4α − 3σ4α)

]

+(µ
(4)
ε,D − 3σ4ε,D)

[
(m−1)2

m
(m−1)
m2

(m−1)
m2

1
m3

]

Ψ21 =

[
0 0

V bA V bB

]
=

[
0 0

m−1
m µ

(3)
ε,Dz̄

′ [µ
(3)
α + 1

m2µ
(3)
ϵ,D]z̄

′

]
= Ψ′

12,

Ψ22 =

[
V aa 0

0 V bb

]
=

[
σ2ε,DZ̈

′Z̈ 0

0 (σ2α + σ2ε,D/m)z̄′z̄

]
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4 Variance-Covariance Matrix of the QMLE

In this section, we provide details of the derivation of the Variance-Ccovariance matrix of the QMLE.

As we have shown in the Section 2 of this online appendix

∂ lnLr(δ0)

∂δ
= −φ(mr, Dr)χr(δ0),

where χr(δ0) and φ(mr, Dr) are de�ned in (O.3) and (O.4). Consequently,

E

[
∂ lnLr(δ0)

∂δ

∂ lnLr(δ0)

∂δ′

]
= φ(mr, Dr)E[χr(δ0)χr(δ0)

′]φ(mr, Dr)
′.

The limiting variance covariance matrix of the score is given by

Υ0 = lim
N→∞

1

N
E

[
∂ lnLN (δ0)

∂δ

∂ lnLN (δ0)

∂δ′

]

=
J∑

j=1

M̄∑
m=2

lim
N→∞

1

N

∑
r∈Im,j

E

[
∂ lnLr(δ0)

∂δ

∂ lnLr(δ0)

∂δ′

]

=

J∑
j=1

M̄∑
m=2

lim
N→∞

1

N

∑
r∈Im,j

φ(m, j)E[χr(δ0)χr(δ0)
′]φ(m, j)′

=
J∑

j=1

M̄∑
m=2

φ(m, j)Ψ̄(m, j)φ(m, j)′,

where φ(m, j) = φ(mr, Dr) |mr=m,Dr=j and

Ψ̄(m, j) = limN→∞
1
N

∑
r∈Im,j

Ψr = lim
N→∞

Rm,j

N
Ψ(m, j) (O.6)

with

Ψ(m, j) =
1

Rm,j

∑
r∈Im,j

Ψr(m, j),

and Ψr(m, j) = Ψr(mr, Dr) |mr=m,Dr=j where Ψr(.) is given in Lemma O.1. Recall that N =∑R
r=1mr =

∑J
j=1

∑M̄
m=2mRm,j and thus

lim
N→∞

Rm,j

N
= lim

N→∞

Rm,j,N

RN

N
RN

=
ω∗
m,j

m∗ .

The upper left block of Ψ̄(m, j) is Ψ̄11(m, j) =
ω∗
m,j

m∗ Ψ11(m, j), where Ψ11(m, j) =
1

Rm,j

∑
r∈Im,j

Ψ11,r

is obtained by settingmr = m and Dr = j in Ψ11,r of Equation (O.5). Using Lemma O.1 and noting

that by Assumption 5 in the main text, limN→∞
1
N

∑
r∈Im,j

Z̈ ′
rZ̈r = κ̈m,j , limN→∞

1
N

∑
r∈Im,j

mz̄′rz̄r =

κ̄m,j and limN→∞
1
N

∑
r∈Im,j

z̄r = z̄m,j we have

9



Ψ̄(m, j) =

[
Ψ̄11(m, j) Ψ̄12(m, j)

Ψ̄21(m, j) Ψ̄22(m, j)

]
, (O.7)

with

Ψ̄11(m, j) =
ω∗
m,j

m∗

[
2(m− 1)σ4ε0,j 0

0 2(σ2α0 + σ2ε0,j/m)2 + (µ
(4)
α0 − 3σ4α0)

]

+(µ
(4)
ε0,j − 3σ4ε0,j)

ω∗
m,j

m∗

[
(m−1)2

m
(m−1)
m2

(m−1)
m2

1
m3

]
,

Ψ̄21(m, j) =

[
0 0

m−1
m µ

(3)
ε0,j z̄

′
m,j

(
µ
(3)
α0 + 1

m2µ
(3)
ϵ0,j

)
z̄′m,j

]
= Ψ′

12(m, j),

Ψ̄22(m, j) =

[
σ2ε0,jκ̈m,j 0

0 (σ2α0 + σ2ε0,j/m)
κ̄m,j

m

]
.

In all, we have

Υ0 =
J∑

j=1

M̄∑
m=2

φ(m, j)Ψ̄(m, j)φ(m, j)′, (O.8)

where φ(m, j) and Ψ̄(m, j) are de�ned in (O.4) and (O.7) respectively.

The limiting Hessian matrix Γ0 can be derived by arguments analogous to those used in deriving

Υ0. The matrix Γ0 is seen to be a special case of the expression for Υ0, obtained by setting

µ
(4)
ϵ0,j − 3σ4ϵ0,j = µ

(4)
α0 − 3σ4α0 = µ

(3)
ϵ0,j = µ

(3)
α0 = 0. Of course, this ensures as expected that Γ0 = Υ0

when both ϵ and α follow Gaussian distributions. In particular,

Γ0 =
J∑

j=1

M̄∑
m=2

φ(m, j)Ψ̄G(m, j)φ(m, j)
′,

where

Ψ̄G(m, j) = diag{2(m−1)σ4ε0,j
ω∗
m,j

m∗ , 2(σ
2
α0+σ

2
ε0,j/m)2

ω∗
m,j

m∗ , σ
2
ε0,jκ̈m,j , (σ

2
α0+σ

2
ε0,j/m)

κ̄m,j

m
}, (O.9)

which is obtained by setting µ
(4)
ϵ0,j − 3σ4ϵ0,j = µ

(4)
α0 − 3σ4α0 = µ

(3)
ϵ0,j = µ

(3)
α0 = 0 in Ψ̄(m, j).

5 Proof of Lemma F.2

Let ℓ = (ℓ1, ℓ2, ℓ
′
3, ℓ

′
4)

′ be a (2 + 2kZ) dimensional vector, where ℓ1 and ℓ2 are scalars and ℓ3 and ℓ4

are both kZ dimensional vectors. Lemma F.2 in Appendix F states that ℓ′Ψ̄(m, j)ℓ = 0 if and only

if ℓ1 = ℓ2 = 0, ℓ3κ̈m,jℓ3 = 0 and ℓ4κ̄m,jℓ4 = 0. The following lemma proves the claim.

Note that by (O.6) Ψ̄(m, j) =
ω∗
m,j

m∗ limN→∞Ψ(m, j).
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Lemma O.2. Suppose the maintained assumptions hold and suppose that µ
(4)
ε0,j−σ4ε0,j > (µ

(3)
ϵ0,j)

2/σ2ε0,j
and ω∗

m,j > 0, then

(1) ℓ′Ψ(m, j)ℓ = 0 if and only if ℓ1 = ℓ2 = 0, 1
Rm,j

∑
r∈Im,j

ℓ′3Z̈
′
rZ̈rℓ3 = 0 and 1

Rm,j

∑
r∈Im,j

ℓ′4z̄
′
rz̄rℓ4 =

0.

(2) ℓ′Ψ̄(m, j)ℓ = 0 if and only if ℓ1 = ℓ2 = 0 and ℓ′3κ̈m,jℓ3 = 0 and ℓ′4κ̈m,jℓ4 = 0.

Proof. We drop the subscript 0 indicating true parameter values in this proof for notational sim-

plicity. By Holder's inequality µ
(4)
α − σ4α≥ (µ

(3)
α )2/σ2α and µ

(4)
ε,j − σ4ε,j≥ (µ

(3)
ϵ,j )

2/σ2ε,j . The lemma

maintains that the last inequality holds strictly, and thus µ
(4)
ε,j − σ4ε,j= (µ

(3)
ϵ,j )

2/σ2ε,j + c for some

c > 0. then

(ℓ1, ℓ2)Ψ11(m, j)(ℓ1, ℓ2)
′ = ℓ212(m− 1)σ4ε,j + ℓ222(σ

2
α + σ2ε,j/m)2 + ℓ22(µ

(4)
α − 3σ4α)

+ (µ
(4)
ε,j − 3σ4ε,j)

(
ℓ21
(m− 1)2

m
+ 2ℓ1ℓ2

(m− 1)

m2
+ ℓ22

1

m3

)
≥ ℓ212(m− 1)σ4ε,j + ℓ222σ

4
α + ℓ222σ

4
ε,j

1

m2
+ 4ℓ22σ

2
ασ

2
ε,j

1

m

+ ℓ22

(
(µ

(3)
α )2

σ2α
− 2σ4α

)

+ c

(
ℓ21
(m− 1)2

m
+ 2ℓ1ℓ2

(m− 1)

m2
+ ℓ22

1

m3

)
+

(
(µ

(3)
ε,j )

2

σ2ϵ,j
− 2σ4ϵ,j

)(
ℓ21
(m− 1)2

m
+ 2ℓ1ℓ2

(m− 1)

m2
+ ℓ22

1

m3

)
= σ4ε,j

2(m− 1)

m

(
ℓ1 − ℓ2

1

m

)2

+ 4ℓ22σ
2
ασ

2
ε,j

1

m

+ ℓ22
(µ

(3)
α )2

σ2α
+

(
c+

(µ
(3)
ε,j )

2

σ2ϵ,j

)
1

m

(
ℓ1(m− 1) + ℓ2

1

m

)2

,

(ℓ′3, ℓ
′
4)Ψ21(m, j)(ℓ1, ℓ2)

′ =
m− 1

m
µ
(3)
ε,j

1

Rm,j

∑
r∈Im,j

ℓ′4z̄
′
rℓ1 + (µ(3)α +

µ
(3)
ϵ,j

m2
)

1

Rm,j

∑
r∈Im,j

ℓ′4z̄
′
rℓ2,

(ℓ′3, ℓ
′
4)Ψ22(m, j)(ℓ

′
3, ℓ

′
4)

′ = σ2ε,j
1

Rm,j

∑
r∈Im,j

ℓ′3Z̈
′
rZ̈rℓ3 + (σ2α +

σ2ε,j
m

)
1

Rm,j

∑
r∈Im,j

ℓ′4z̄
′
rz̄rℓ4.

Next observe that

ℓ22
(µ

(3)
α )2

σ2α
+ 2µ(3)α

1

Rm,j

∑
r∈Im,j

ℓ′4z̄
′
rℓ2 + σ2α

1

Rm,j

∑
r∈Im,j

ℓ′4z̄
′
rz̄rℓ4 = 1

σ2
α

1
Rm,j

∑
r∈Im,j

(ℓ2µ
(3)
α + σ2αz̄rℓ4)

2 ,
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and

(µ
(3)
ε,j )

2

σ2ϵ

1

m

(
ℓ1(m− 1) + ℓ2

1

m

)2

+ 2
m− 1

m
µ
(3)
ε,j

1

Rm,j

∑
r∈Im,j

ℓ′4z̄
′
rℓ1

+
2µ

(3)
ε

m2

1

Rm,j

∑
r∈Im,j

ℓ′4z̄
′
rℓ2 +

σ2ε
m

1

Rm,j

∑
r∈Im,j

ℓ′4z̄
′
rz̄rℓ4

=
1

σ2ϵ,j

{
(µ

(3)
ε,j )

2 1

m

(
ℓ1(m− 1) + ℓ2

1

m

)2

+
2µ

(3)
ε,j

m1/2

(
ℓ1(m− 1) +

1

m
ℓ2

)
σ2ε,j

m1/2

1

Rm,j

∑
r∈Im,j

(z̄rℓ4) +
σ4ε,j
m

1

Rm,j

∑
r∈Im,j

(z̄rℓ4)
2


=σ−2

ϵ

1

Rm,j

∑
r∈Im,j

(
µ
(3)
ε,j

1

m1/2

(
ℓ1(m− 1) +

1

m
ℓ2

)
+ σ2ε,j

1

m1/2
(z̄rℓ4)

)2

.

Consequently

ℓ′Ψ(m, j)ℓ

= (ℓ1, ℓ2)Ψ11(m, j)(ℓ1, ℓ2)
′ + 2(ℓ′3, ℓ

′
4)Ψ21(m, j)(ℓ1, ℓ2)

′ + (ℓ′3, ℓ
′
4)Ψ22(m, j)(ℓ

′
3, ℓ

′
4)

′

≥ σ4ε,j
2(m− 1)

m

(
ℓ1 − ℓ2

1

m

)2

+ 4ℓ22σ
2
ασ

2
ε,j

1

m
+ σ2ε,j

1

Rm,j

∑
r∈Im,j

ℓ′3Z̈
′
rZ̈rℓ3

+ ℓ22
(µ

(3)
α )2

σ2α
+2µ(3)α

1

Rm,j

∑
r∈Im,j

ℓ′4z̄
′
rℓ2 + σ2α

1

Rm,j

∑
r∈Im,j

ℓ′4z̄
′
rz̄rℓ4

+

(
c+

(µ
(3)
ε,j )

2

σ2ϵ,j

)
1

m

(
ℓ1(m− 1) + ℓ2

1

m

)2

+
2

m2
µ
(3)
ϵ,j

1

Rm,j

∑
r∈Im,j

ℓ′4z̄
′
rℓ2

+ 2
m− 1

m
µ
(3)
ε,j

1

Rm,j

∑
r∈Im,j

ℓ′4z̄
′
rℓ1 + σ2ε,j

1

m

1

Rm,j

∑
r∈Im,j

ℓ′4z̄
′
rz̄rℓ4

= σ4ε,j
2(m− 1)

m

(
ℓ1 − ℓ2

1

m

)2

+ 4ℓ22σ
2
ασ

2
ε,j

1

m
+ σ2ε,j

1

Rm,j

∑
r∈Im,j

ℓ′3Z̈
′
rZ̈rℓ3

+ σ−2
α

1

Rm,j

∑
r∈Im,j

(ℓ2µ
(3)
α + σ2αz̄rℓ4)

2

+ c
1

m

(
ℓ1(m− 1) + ℓ2

1

m

)2

+ σ−2
ϵ,j

1

Rm,j

∑
r∈Im,j

(
µ
(3)
ε,j

1

m1/2

(
ℓ1(m− 1) +

1

m
ℓ2

)
+ σ2ε,j

1

m1/2
(z̄rℓ4)

)2

.

Observe that all terms on the r.h.s. of the last equality are non-negative. Also observe that if

σ2α = 0 we have µ
(3)
α = 0 and all terms involving moments of α drop out.
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Of course, ℓ′Ψ(m)ℓ = 0 if ℓ = 0. Since σ2ϵ,j > 0 and c > 0 it follows that ℓ′Ψ(m, j)ℓ > 0 unless

ℓ1 − ℓ2
1
m = 0 and ℓ1(m − 1) + ℓ2

1
m = 0. Consequently, ℓ′Ψ(m)ℓ > 0 unless ℓ1 = ℓ2 = 0. For

ℓ1 = 0, ℓ2 = 0, we have

ℓ′Ψ(m, j)ℓ = (ℓ′3, ℓ
′
4)Ψ22(m, j)(ℓ

′
3, ℓ

′
4)

′

= σ2ε,j
1

Rm,j

∑
r∈Im,j

ℓ′3Z̈
′
rZ̈rℓ3 + (σ2α +

σ2ε,j
m

)

 1

Rm,j

∑
r∈Im,j

ℓ′4z̄
′
rz̄rℓ4

 .
Since σ2ϵ,j and σ

2
α + σ2ε,j/m are bounded from below by a positive constant by Assumptions 1,2 and

4, part(1) of the Lemma follows in light of Assumption 5(c).

Secondly, since Ψ̄(m, j) =
ω∗
m,j

m∗ limN→∞Ψ(m, j), 1
Rm,j

∑
r∈Im,j

Z̈ ′
rZ̈r → κ̈m,j ,

1
Rm,j

∑
r∈Im,j

z̄′rz̄r →
κ̄m,j , part (2) of the Lemma follows similarly.

6 Proof of Lemma F.3

Note that φ(m, j) =

(
Am,j Bm,j

0 Cm,j

)
, where

Am,j =



1
(m−1+λ0)σ2

ϵ0,j
− m

(1−λ0)(σ2
ϵ0,j+mσ2

α0)

0 − m2

2(σ2
ϵ0,j+mσ2

α0)
2

−1(j=1)
2σ4

ϵ0,j
− m1(j=1)

2(σ2
ϵ0,j+mσ2

α0)
2

...
...

−1(j=J)
2σ4

ϵ0,j
− m1(j=J)

2(σ2
ϵ0,j+mσ2

α0)
2


,

is an (2 + J)× 2 matrix , Bm,j is the upper right block, Cm,j = [− 1
σ2
ϵ0,j
IkZ ,− m

σ2
ϵ0,j+mσ2

α0
IkZ ].

For all Am,j in
(
Am1,j1 , ..., AmP̄ ,jP̄

)
, we subtract the product of

mσ2
ϵ0,j

(σ2
ϵ0,j+mσ2

α0)
2 with the entry in

the �rst column from the second column and noting that

− m

(1− λ0)(σ2ϵ0,j +mσ2α0)
− 1

(m− 1 + λ0)σ2ϵ0,j
×

mσ2ϵ0,j
(σ2ϵ0,j +mσ2α0)

2

=−
m[(m− 1 + λ0)(σ

2
ϵ0,j +mσ2α0) + (1− λ0)σ

2
ϵ0,j ]

(1− λ0)(m− 1 + λ0)(σ2ϵ0,j +mσ2α0)
2

=−
m2[(m− 1 + λ0)σ

2
α0 + σ2ϵ0,j ]

(1− λ0)(m− 1 + λ0)(σ2ϵ0,j +mσ2α0)
2

=− m2

(σ2ϵ0,j +mσ2α0)
2

(
σ2α0

1− λ0
+

σ2ϵ0,j
(1− λ0)(m− 1 + λ0)

)
,
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then Am,j becomes

1
(m−1+λ0)σ2

ϵ0,j
− m2

(σ2
ϵ0,j+mσ2

α0)
2

(
σ2
α0

1−λ0
+

σ2
ϵ0,j

(1−λ0)(m−1+λ0)

)
0 − m2

2(σ2
ϵ0,j+mσ2

α0)
2

−1(j=1)
2σ4

ϵ0,j
0

...
...

−1(j=J)
2σ4

ϵ0,j
0


=

(
am,j dm,j

em,j 0

)
,

where am,j = ( 1
(m−1+λ0)σ2

ϵ0,j
, 0)′, em,j = [1(j = 1), ..., 1(j = J)]′ is a unit vector with the j − th

element being 1 and others being 0, and dm,j = − m2

(σ2
ϵ0,j+mσ2

α0)
2 (

σ2
α0

1−λ0
+

σ2
ϵ0,j

(1−λ0)(m−1+λ0)
, 12)

′. Conse-

quently,

rank
(
Am1,j1 , ..., AmP̄ ,jP̄

)
= rank

(
am1,j1 dm1,j1 · · · amP̄ ,jP̄ dmP̄ ,jP̄

em1,j1 0 · · · emP̄ ,jP̄ 0

)

= rank

(
am1,j1 · · · amP̄ ,jP̄ dm1,j1 · · · dmP̄ ,jP̄

em1,j1 · · · emP̄ ,jP̄ 0 · · · 0

)
.

First note that (em1,j1 , ..., emP̄ ,jP̄ ) has full row rank J , because the categories j are mutually exclusive

and exhaustive. Under Assumption 6,
σ2
ϵ0,jp

(mp−1+λ0)
̸=

σ2
ϵ0,jp′

(mp′−1+λ0)
for some p ̸= p′. This implies that the

�rst row of d =(dm1,j1 , ..., dmP̄ ,jP̄ ) has entries that are not all the same, while the second row of d is

made up of entries that are all the same. Then d has full row rank 2. In all, Φ =
(
Am1,j1 , ..., AmP̄ ,jP̄

)
has full row rank.

14


	Online Appendix_2023_03_05_final.pdf
	Preliminaries
	Score Function for the General Model
	Variance Covariance Matrix of Moment Vector r(0)
	Variance-Covariance Matrix of the QMLE
	Proof of Lemma F.2
	Proof of Lemma F.3


