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In this paper we consider a class of partially adaptive one-step M-estimators for the non-linear 
regression model with dependent observations. Those estimators adapt themselves with respect to 
a measure of the tailthickness of the disturbance distribution (as well as to a measure of the scale). 
The large-sample behavior of those estimators is examined theoretically for general disturbance 
distributions and numerically for various specific ones. The estimators considered are motivated 
by the Student-r maximum-likelihood estimator. Given appropriate specifications of the adapta- 
tion parameter the estimators are asymptotically efficient on the family of Student-t distributions 
including the normal distribution. 

1. Introduction 

For the standard regression model with normally distributed disturbances 
the least-squares estimator is the maximum-likelihood estimator and hence 
asymptotically efficient. If, however, the actual disturbance distribution differs 
from the normal distribution it is well known that this estimator may behave 
very poorly.’ For this reason econometricians and statisticians have, in recent 
years, become increasingly interested in alternative estimators that have good 
properties over a wide range of distributions. Since Huber (1964) a large body 
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in Pisa, 1983. The authors are grateful to Clopper Almon, Herman Bierens, Chris Clague, Manfred 
Deistler, Harry Kelejian, Samuel Katz, Paul Wonnacott and this journal’s editor and referees for 
helpful comments. All remaining errors are our responsibility. We would like to thank Nestor 
Dominguez for computational assistance. The financial support of the Fonds zur Foerderung der 
Wissenschaftlichen Forschung, Grant 4393, and the support of computer time through the 
facilities of the Computer Science Center of the University of Maryland is gratefully acknowl- 
edged. 

‘See, e.g., Huber (1981) and the references cited therein. 
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of literature on robust estimation procedures has emerged. Many robust 
estimators proposed in the literature belong to the class of M-estimators.2 

Besides robustness, another goal of any estimation procedure is efficiency. 
Fully adaptive estimators are, from a theoretical point of view, ideal in that 
respect. However, Bickel (1982, p. 664) states in his seminal work on adaptive 
estimation: 

‘The difficulty of nonparametric estimation of score functions suggests 
that a more practical goal is partial adaptation, the construction of 
estimates which are (i) always n-consistent, and (ii) efficient over a large 
parametric subfamily of 9 [the space of distributions]. Our results 
indicate that . . . this goal should be achievable by using a one-step Newton 
approximation to the maximum likelihood estimate for the parametric 
subfamily by starting with an estimate which is @-consistent for all 
of 3.’ 

Hogg and Lenth (1984) made a similar point in a recent paper that reviews 
adaptive statistical techniques.3 Of course, partially adaptive estimators should 
also be reasonably robust. 

The present paper considers a class of partially adaptive one-step M-estima- 
tors for the non-linear regression model with (possibly) stochastic time-depen- 
dent regressors. The members of this class of estimators can be viewed as 
being generated as one-step Gauss-Newton approximations to the normal 
equations of the (pseudo) maximum-likelihood estimator corresponding to the 
Student-t family. The score functions associated with our estimators are 
indexed by an adaptation parameter that depends not only on the scale but 
also on the tailthickness of the distribution and that is estimated from the 
data. The Student-t distribution has been characterized as an important 
dimension in the space of distributions. 4 It contains the Cauchy distribution 
as a special and the normal distribution as a limiting case. For suitably defined 
adaptation parameters (and given certain assumptions on the disturbance 
process and process of the exogenous variables) our estimators are asymptoti- 
cally optimal on the Student-t family including the normal distribution. 

2A recent econometric review of the literature on robust estimation is given in Koenker (1982). 
For recent econometric work on robust estimators and M-estimators in general (including pseudo 
maximum-likelihood estimators), see, e.g., Amemiya (1982), Bierens (1981,1982,1984a), Burguete, 
Gallant and Souza (1982), Domowitz and White (1982), Gallant and Holly (1980), Gilstein and 
Learner (1983), Goldfeld and Quandt (1981), Gourieroux, Monfort and Trognon (1984), Koenker 
and Bassett (1978), Powell (1983), Prucha and Kelejian (1984), White (1982) and White and 
Domowitz (1984) - to mention a few. 

3Basic concepts concerning adaptive estimation have been introduced by Stein (1956). For a 
recent econometric review and extension of the literature on adaptive estimation, see Manski 
(1984). 

4See, e.g., Hall and Joiner (1982). 
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While our estimators can be viewed as approximations, to the Student-t 
maximum-likelihood estimator it is not maintained that the actual disturbance 
distribution is Student-t. We note that our results suggest that our estimators 
are robust against deviations from the Student-r. Heuristically this seems to 
follow from the fact that the so-called $-functions (defined below) are bounded 
and redescending in all cases except when the adaptation parameter is zero; 
this latter case corresponds to the #-function of the least-squares estimator. 

Estimators of the above type have been considered previously by Prucha 
and Kelejian (1984). The analysis of that paper pertains, however, only to 
linear models with fixed exogenous variables. Therefore it does not generally 
apply to the non-linear model with dependent observations considered here. 
Also, due to a different focus, Prucha and Kelejian maintain much stronger 
assumptions on the disturbance distribution than those maintained in the 
present paper. For a robust interpretation of the estimators it seems essential 
to reduce the moment requirements. Furthermore it seems of interest to relax 
the assumption that the disturbances are symmetrically distributed. 

The plan of the paper is as follows: Section 2 contains some preliminaries. 
In section 3 we define our class of estimators for the non-linear regression 
model and investigate their asymptotic properties under weak conditions. We 
also give two specific definitions for the adaptation parameter, define corre- 
sponding estimators for the adaptation parameter and investigate the statisti- 
cal properties of the latter. Section 4 contains numerical comparisons of the 
asymptotic efficiency of our estimators with alternative estimators, including 
robust ones. Concluding remarks are given in section 5. All proofs are 
relegated to the appendices. 

2. Preliminaries 

Consider the stochastic data-generating process (y,, x,) with y, E R and 
x, E Iw L described by the non-linear regression model 

(2-l) 

where yt, x, and U, denote, respectively, the dependent variable, the vector of 
explanatory variables and the disturbance term; g is the response function 

and P = (Pi,. . . > l-&j’ E 0, is the parameter vector. Clearly any data-gener- 
ating process ( y,, x,) can be written in the form (2.1) if the class of disturbance 
processes is not restricted. A complete set of our assumptions on the data-gen- 
erating process and the model is given in section 3. 

Given observations ( yI, x,),, i,, _, T the classical non-linear least-squares 
problem is to estimate p by the minimizing value over 0, of cpi(_y, - 
g(x,, p))‘. The corresponding estimator will be referred to as the non-linear 
least-squares estimator (leaving questions of existence and uniqueness 
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aside). Generalizing a concept of Huber (1964) for the location problem, 
Relles (1968) and Huber (1973) introduced and investigated, in order to obtain 
more robust estimators, the class of so-called M-estimators for the linear 
regression model with fixed regressors and i.i.d. disturbances. Investigations 
in this vein for the non-linear regression model have been conducted by 
Grossmann (1976) for fixed regressors and Bierens (1981) for stochastic 
regressors. For a general analysis of M-estimators in non-linear models, see 
Burguete, Gallant and Souza (1982) and the references cited therein; recent 
references include Bierens (1982,1984a), Domowitz and White (1982), 
Gourieroux, Monfort and Trognon (1984), White (1982) and White and 
Domowitz (1984). 

We generally refer to an estimator for /3 that minimizes an objective 
function of the form 

i P[Y,-gbt~P)l (2.2) 

over 0, as an M-estimator of type I. If, for instance, p and g are smooth and 
8, is open, we can write the first-order condition for a minimum of (2.2) as 

i ~[r,-g(xt,p)l(a/~Pk)g(x,,p) =o, k=l,..., K, (2.3) 
t=1 , 

where # = p’. In the following, we shall refer to solutions of equations of the 
form (2.3) as M-estimators of type II. Clearly, in the linear case and 0, = W k 
minimizing (2.2) or solving (2.3) is equivalent for differentiable and, e.g., 
convex p. Suppose the disturbances are distributed i.i.d. with common distri- 
bution function F. Given F has a smooth density f (and given appropriate 
orthogonality conditions between regressors and disturbances), then the nor- 
mal equations of the corresponding maximum-likelihood (ML) estimator are 
of the form (2.3) with J, = -f’/f. Various functional forms of $ have been 
proposed in order to obtain robust estimators. Of particular importance is 
Huber’s (1964) q-function: @(z) = z if Iz( < c and 4’(z) = c - sign(z) if 
Jzl r c. This leads for c < co to estimators with certain minimax robustness 
properties over certain classes of distributions. The case c = cc corresponds to 
the non-linear least-squares estimator. 

Estimators obtained from (2.2) and (2.3) are typically not invariant against a 
multiplication of (2.1) by a constant factor. Invariance can be achieved by 
solving, instead of (2.3), 

5 ~[(~,-g(x,,8))/8](a/a~k)g(xf,~)=o, 
t=1 

(2.4) 

k=l,..., K, 
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where 6 is a scale-equivariant estimator of a measure of scale, say LT. Under 
certain general conditions M-estimators have been shown to be asymptotically 
normal. Furthermore, whether u is known or estimated J?;-consistently yields 
the same asymptotic distribution if essentially E{( a */au8 u)p( U/U)} is zero; 5 
see Huber (1967, 1973, 1981), Relles (1968), Marorma and Yohai (1981), 
Bierens (1981), Burguete, Gallant and Souza (1982) and Grossman (1982). 

For linear models with fixed regressors and i.i.d. disturbances, Bickel (1975) 
considered the class of one-step M-estimators obtained as a first step in a 
Gauss-Newton approximation of (2.4) for given 8. He showed that under 
suitable conditions a one-step M-estimator initialized by a @-consistent 
estimator for fi is asymptotically normal even if the corresponding M-estima- 
tor is not and is asymptotically equivalent to the corresponding M-estimator 
when that estimator is asymptotically normal. Furthermore, he showed that 
the asymptotic distribution of the one-step M-estimator does not depend on 
the particular choice of the estimator 8 as long as that estimator is \/T-con- 
sistent. 

3. A class of partially adaptive estimators 

3. I. Dejinition of the estimators 

As remarked above the class of M-estimators considered in this paper is 
motivated by the maximum-likelihood estimator corresponding to Student-t 
distributed disturbances. Assume (for a moment) that the disturbances u, are 
distributed identically with zero mean and are independent of lagged dis- 
turbances, lagged dependent variables and all exogenous regressors. In case of 
Student-t distributed disturbances the log-likelihood function is then given by 

T 
= const.+ Tin H- ? f ln[l+ $(y,-g(x,,P))*], (3-I) 

t-l 

where H has the interpretation of a measure of the inverse scale of the 
distribution and the degrees of freedom parameter u has the interpretation of 
a measure of the tailthickness. Large values of u correspond to thin tails. For 
given parameters ZJ and H the normal equations for the ML estimator for j3 
are of the form (2.3) with +!J replaced by 

#,(z) = z/(1 + az*), Ola<oo, (3.2) 

‘For example, this will be the case if p and the disturbance distribution are symmetric. 
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and a = u-‘H. Following Prucha and Kelejian (1984) we can use those normal 
equations to define for general disturbance distributions the following class of 
M-estimators of type II as the solution p of 

Since for general disturbance distributions u-l and H loose their original 
meaning, they have been replaced by estimators b 2 0 and h 2 0. In principle 
we are free in the choice of those estimators. However, the cases where F and 
h are defined such that the corresponding theoretical quantities p 2 0 and 
h 2 0 can again be interpreted as measures of the tailthickness and the inverse 
scale of the disturbance distribution (or where j.i is set equal to some 
non-negative constant) s_eem of particular interest. Note that $&z) 7 
JIb( zW2)/W2 a s 1 ong as h > 0. Consequently, we can interpret the effect cf h 
as simply to standardize the data and the effect of p as to choose au 
appropriate #-function according to the tailthickness of the distribution. For 
ph = 0, eq. (3.3) gives the non-linear least-squares estimator. This is, of course, 
to be expected since the normal density can be obtained as a limiting case 
from the Student-t family for u + cc. Also the Cauchy ML estimator and 
Ohlsen’s robust estimator considered in Andrews et al. (1972) are members of 
the class of estimators defined by (3.3). The #-functions defined in (3.2) are 
bounded and redescending for Q > 0 and unbounded for a = 0. 

In case of a linear model, i.e., yI = x,P + a,, we can write (3.3) as 

(3 -4) 

with 

w, = (1 + i&f)_’ and iir =y, - x,6. 

The estimator p can then be interpreted as a weighted least-squares estimator, 
where for jlh > 0 the weights i?t have the effect of giving more (less) weight to 
observations with relatively small (large) residuals. 

Eq. (3.3) is non-linear and has to be solved iteratively. In the rest of the 
paper we concentrate on the one-step Gauss-Newton approximation. It will 
be shown below that the resulting estimator is not inferior to the root of (3.3). 
For a formal definition of the estimator we will maintain in the following 
always either Assumption 1 or 1’. 

Assumption I. There is an open neighborhood 0; of the parameter space 
0, c lRK such that g(x, /I), (a/Jp)g(x, /I) and (8 2/6’/%‘/3’)g(x, /I) are con- 
tinuous on R L X O* B. 
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Assumption I I. There is an open neighborhood O,* of the parameter space 
0, c R K such that g( x, /I), ( J/@)g( x, j3) and (6’ */@&!@‘)g(x, p) are con- 
tinuous on Og* for all x E 04’ and measurable in x for each j? E 0;. 

Given those assumptions we can now define a class of one-step M-estima- 
tors corresponding to (3.3). Note that j? and h enter those normal equations 
only in terms of their product. It hence proves convenient to define ii = p& 
and a = ph; furthermore 8 = (ii, p’)’ and t9 = (a, p’)‘. 

DeJinition I. Let BE R K be some initial estimator and let the estimator 
ii E [0, co). Define 

4-t@) = (W’) i At& ‘8, 
t=l 

and 

%(fi> = (l/T) i 4, @), 
t=1 

where 

%dxt, P) MX,? P> 
Ah 8) = -Kbt - dxt, P)) ap, ap 

and 

(3Sa) 

(3.5b) 

for 

B~[O,co)xOg* and +b(z)=(a/az)$,(z). 

Then the one-step M-estimator b corresponding to $a is defined as 

fi=/?- [A,(@-‘r,(8), 

if AT(#) is non-singular and B E 0;; otherwise fi = j?. 

(3.5c) 

Note that rT(e) and AT(B) correspond (up to a proportionality factor) to 
the first- and second-order derivatives of the (pseudo) Student-t log-likelihood 
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function. For the linear model, (3.5) simplifies to 

j = fi + 
[ 
(l/T) ; x;( ii: - 2@&;2ii+, _l(l/T) 5 x;G,C*, 

I 
(3.6) 

t=1 r=l 

where 

it,= (1 +j&;)-’ and ii,=y,-x,fi. 

The following remark only pertains. to the linear model: If B is scale- and 
shift-equivariant [i.e., b(uy + X6) = y&y) + S for y E W and 6 E W jr], if h is 
scale-equivariant and shift-invariant [i.e., i(yy + X8) = yP2&( y)], and if p is 
scale- and shift-invariant [i.e., p( yy + X6) = fl( y)], then it is readily seen that 
b is also scale- and shift-equivariant. 

3.2. Asymptotic properties 

In this subsection we derive the asymptotic properties of b assuming that fi 
converges to some 8” E 8, and ii converges to some a“ E [O,oo). In our 
analysis we consider the following three alternative assumptions concerning 
the stochastic nature of the data-generating process.6 

Assumption 2. The process (yt, x,) is of the form y, = ~$5~) and x, = ~~(5~) 
where r = [r,,, r,.]: Rs + RL+’ is a continuous function and 5, is a stochasti- 
tally stable process with respect to an a-mixing base. Furthermore, if At is the 
distribution function of Et, the (l/T)zT_,A t --, A properly.7 

Assumption 2’. The process (y,, x,) is strictly stationary and ergodic. 

We note that every strictly stationary process satisfying Assumption 2 is 
ergodic. The following condition is stronger than Assumption 2 and is used for 
a strong consistency result. 

Assumption 2”. The process ( yt, x,) is for some r 2 1 [r > l] and some S > 0 
+-mixing with +(m) = O(m-“) for X > r/(2r - 1) [cr-mixing with cx(m) = 
0( m-“) for X > r/(r - l)]. Furthermore, if At is the distribution function of 
(y,, x,), then (l/T)Cy_,A, -+ A properly. 

The coefficients a(m) and cp(m) are defined as follows. Let (2,) be a 
stochastic process, let SC”“, be the u-algebra generated by z,, z,_i, . . . , and 

6The index set of the data-generating process is either N or 2. 

‘We use the term proper convergence as defined in Feller (1971, p. 248). Let A, be the 
distribution function of z, = (y,, x,), then Assumption 2 implies that (l/7’)zT_1 A, -f A properly 
with A = A 0 7-l. Hence we have for any integral jf(T([))dA([) = /f(z)dA(z). 
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let Fkm be the u-algebra generated by zk, zk+i, . . . , then 

a(m) = supsup{ ]P(Fn G) -P(F)P(G)]: 
k 

and 

+(m) = supsup{ IP(G(F) - P(G)I: 
k 

FEELS, GEskyrn, P(F) >o}. 

The coefficients cu(m) and +(m) are measures for the memory of the process 
(2,). If +(m) [a(m)] goes to zero, then the process is called +mixing 
[a-mixing]. Clearly every +-mixing process is also a-mixing. Examples of 
@nixing processes are independent and m-dependent processes. Examples of 
a-mixing processes are strictly invertible Gaussian ARMA processes. For 
additional discussion of these concepts, see, e.g., White and Domowitz (1984). 
The concept of stochastically stable processes with respect to a base was 
introduced by Bierens (1981,1984a). Since every process is stochastically 
stable with respect to itself the class of stochastically stable processes with 
respect to an a-mixing base is even wider than the class of cy-mixing processes. 

The following assumption represents the usual orthogonality condition 
between regressors and disturbances U, =y, - g(x,, 8”). 

Assumption 3. The regressors x, and disturbances u, are stochastically inde- 
pendent for all t. 

Corresponding to, respectively, Assumptions 2, 2’ and 2” we will further- 
more employ one of the moment conditions listed below. Those conditions are 
based on the expressions 

where U( /3”) _C Si is some compact neighborhood of /3” on which the 
following conditions are assumed to hold. [Note that in the linear model 

G,(Y) = EIIx:x~II~, Q(Y) = 0 and F,(Y) = 0.1 
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Assumption 4. su~~~dl/~)~~$~(l+ 8) < * and su~r~~(l/~)~~&(l 
+ S) < cc for some 6 > 0; if a0 = 0, we require furthermore that 
s~p~~~(l/T)~~_&l+ 6) < 00 and ~up~.iElu,l~+~ < co. 

Assumption 4 I. G,(l) < cc and D,(l) < cc; if a0 = 0, we require furthermore 
that F,(l) < CYJ and Elu,l -C 03. 

The following assumption is again stronger than Assumption 4. 

Assumption 4”. supIalG,(r+ 6) -C cc and supIk,D,(r + 6) < cc for the same 
r as in Assumption 2” and some 6 > 0; if a0 = 0, we require furthermore that 
suptziF,(r+ 6) < co and ~up~>iElu,)‘+~ < cc. 

The above sets of assumptions cover a wide class of non-linear regression 
models with and without lagged dependent variables; fixed regressors are of 
course included as a special case. As a point of interest we note that under 
Assumption 1 the process (y,, x,) satisfies Assumptions 2 or 2” iff the same is 
true for the process (u,, x,). An analogous statement can be made with respect 
to Assumption 2’ given Assumption 1’ holds. Together with the above sets of 
assumptions either one of the following two conditions can be used to ensure 
the consistency of a (at least for the ‘slope’ parameters): 

Assumption A. The disturbances u, are distributed symmetrically around 
zero. 

Assumption B. (a) The disturbances U, and/or the regressors x, are distrib- 
uted identically over time. (b) The response function is of the form g(x, j3) = 

B, + g,(x, P,) with P = U-L 8;)‘. 

In the subsequent we will need the following asymptotic adogs of 
A,(O), BT( 0) = (l/T)CT=,r(t, O)r( t, 0)’ and ~~(0): 

+ iL(Y - dx, P)) 
a2dx? PI 

apap, 1 WY, xl, 

W) = j-[#,(y - g(x, P>)l 
* hdx, P> wx7 P> 

ap, ap dA(y, x)3 (3Jb) 

r(e) = j-#.(y - g(x, P)) 
&+> P) 

aP, dA(y, x>. (3.k) 
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The proof of the following theorem is given in appendix A. For ease of 
presentation we refer in the subsequent to Assumption 3 also as 3’ and 3” and 
to Assumption 1 also as 1”. 

Theorem I (Consistency). Let 8 = (&, p’)’ converge in probability [almost 
surely] to 8” = (a’, PO’)’ with a0 2 0 and /3” E 0,. Given Assumptions 1-4 or 
I’-4’ [Assumptions l ’-4’ or I “--,“I are satisfied, given the matrix A(0’) is 
non-singular and 

(a) Assumption A holds, then b converges in probability [almost surely] to p”, 

(b) Assumption B holds, then j?, converges in probability [almost surely] to /3:. 

Remark 1. In appendix A we actually derive, as a by-product to the proof of 
Theorem 1, a more general consistency result for a wider class of $-functions 
under somewhat weaker but more complex assumptions.8 In the context of 
Theorem 1, but without Assumptions A or B, the general expression for the 
limit of b is given by p“ - A(P)-‘r(fP). Clearly the asymptotic bias is zero iff 
/I” satisfies the asymptotic normal equations .corresponding to (3.3) i.e., 
r(P) = 0; under the assumption of the theorem this is the case if either 
E[#Ju,)J = 0 or E[( J/@)g(x,, p”)] = 0 for all t. Part (a) of the theorem 
follows now from the fact that the former condition is satisfied in the case of 
symmetrically distributed disturbances as postulated in Assumption A [since 
the G-function (3.2) is antisymmetric]. Part (b) of the theorem follows from the 
fact that under Assumption B the bias turns out to be a multiple of (l,O, . . . , 0)'. 

Remark 2. For a0 > 0, Theorem 1 does not require the existence of any 
moments of the disturbance process since in this case the #-function and its 
derivative are bounded. For a0 = 0, the function Jla(z) converges to #0(z) = z 
which is the #-function of the non-linear least-squares estimator. The condi- 
tion E]u,] < cc postulated in Assumption 4’ for stationary and ergodic processes 
is hence minimal. The somewhat higher moment requirements postulated in 
Assumptions 4 and 4” may be viewed as trade-offs to the more general 
provisions in terms of the heterogeneity and interdependence of the corre- 
sponding data-generating processes. 

Remark 3. Theorem 1 does not maintain an explicit identifiability condition. 
This point deserves some discussion. Note that if a data-generating process 
(y,, x,) can be written in the form y,= g,(x,) + u, where u, and x, are 

‘The convergence result in appendix A is such that it also allows for an interpretation of 
estimation under m&specification. 
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independent, then the response function g,(x,) is within these representations 
unique up to additive constants c, (almost surely). Furthermore, if it is 
assumed that the disturbances are distributed symmetrically around zero, then 
c, = 0; 9 if the disturbances are assumed to be identically distributed, then 
c, = c. Hence in the context of model (2.1) Assumptions 3 and A and a 
separating condition like 

/(g(x,p)-g(x,B”))*dA(x)=O iff P=P”, P-9) 

ensure the identifiability of j3”. Similarly, Assumptions 3 and B and the above 
separating condition ensure the identifiability of &. Theorem 1 can be 
formulated without such a separating condition since the assumptions that the 
starting estimator j? converges to j?” and that _4(e”) is non-singular are 
essentially substitutes for such a condition. 

To derive the asymptotic normality of fi we employ the following additional 
assumptions. Assumption 5 is a strengthening of Assumption 3. 

Assumption 5. The disturbances u, are stochastically independent of u,_i, 
u,_* ,..., x,, x,-i ,..., for all t. 

Similarly as before we will refer to Assumption 5, for ease of presentation, 
also as 5’ and 5”. The following assumptions extend Assumptions 4,4’ and 4”. 

Assumption 6. If a0 = 0, we require additionally that suptrl EIu,13+* < co for 
some 6 > 0 and s~pr~i(l/T)~~_~G,(2 + 6) -C cc. 

Assumption 6’. If a0 = 0, we require additionally that E(u,(~ < cc and G,(2) 
< 00. 

Assumption 6 *!. If a0 = 0, we require additionally for the same r as in 
Assumption 2” that ~up,~iE(~,l~~+* c 00 for some 8 > 0 and sup,.,G,(2r + 6) 
< co. 

The proof of the following theorem is given in appendix A. 

Theorem 2 (Asymptotic Normality). Let 8 = 8” + O,(T-‘I*), where 8 = 
(ii, fit)! and 8” = (u”, /I”‘)’ with a0 2 0 and /3” E 8,. Given either Assumptions 

‘This would also be true if the symmetry assumption is replaced by an assumption such as, e.g., 
E(u,)=O. 



1-6 
and 

(a) 
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or l’-6’ or l”-6” are satisfied, given the matrix A(P) is non-singular, 

Assumption A holds, then fi(a - /?“) is asymptotically normal with mean 
zero and variance-covariance matrix Q, = A(6°)-1B(60)A(~0)-1. 

Assumption B ho& and E[qoo( u,)] = 0, then J?;(& - pz) is asymptoti- 
cally normal with zero mean and variance-covariance matrix @* = 

t @*/~m@[ W*/Wl- 

Remark 4. In appendix A we derive again, as a by-product to the proof of 
Theorem 2, a more getieral asymptotic normality result for a wider class of 
$-functions under somewhat weaker but more complex assumptions. Given 
E[#,O(~,)] = 0, we show in the context of Theorem 2 that @(b - fi”) 
is asymptotically equivalent to a normally distributed random vector with 
zero mean and variance-covariance matrix CD plus a term of the form 
@(ii - aO)A(eO)-lp(eO), where 

p@“) = /[@/Ja)&(y - g(x, P”>)l [(VV’)g(x, P”)ldA(.% X> 

= lim(l/T) i E[(a/aa)lr/,~(u,)lE[(a/a~‘)g(x,,P”)l. 
r=l 

(3.10) 

The estimator ii has no effect on the joint asymptotic distribution of the 
elements of b if p(P) = 0.” Within the framework of pseudo ML estimation 
this corresponds to the familiar orthogonality condition E[ 8 ‘P/b’aL$3’] = 0, 
where 9 is the pseudo log-likelihood function. Part (a) of the theorem follows 
since for symmetrically distributed disturbances as postulated in Assumption 
A we have Q( a/Ja)$,.(u,)] = 0 and hence p(P) = 0. Part (b) of the theorem 
follows since under Assumption B the vector A(P-lp(P) turns out to be a 
multiple of (l,O,. . . ,O)‘. 

Remark 5. (i) For a0 > 0, Theorem 2 does not postulate the existence of any 
moments of the disturbance process. For a0 = 0, we have I!$( 8/b’a)#,0(u,)] = 
E(uj). Because of (3.10) it then follows that the condition EIz+13 -C cc pos- 
tulated in Assumption 6’ for stationary and ergodic processes is minimal. The 
somewhat higher moment requirements postulated in Assumption 6 and 6” 
may again be viewed as trade-offs to the more general provisions in terms of 
heterogeneity and interdependence of the corresponding data-generating pro- 

“This is, of course, also true if ii = a“. 



232 B. M. Pijtscher and I. R. Prucha, A class of M-estimators 

cess. (ii) As a referee pointed out, for symmetric disturbances it is possible to 
relax the assumption that ii is o-consistent to ii is consistent at the expense 
of higher moment requirements. 

Remu~k 6. _ The results in appendix A imply that 4 = [ AT( 8)]- ’ 
%-(wM~)l-l is, under the assumptions of Theorem 2, a consistent 
estimator for @. Given the disturbances are identically and symmetrically 
distributed the matrix @ reduces to {E(JI~~(u,))/[E(JI’,~(~~))]2)Q(~”)~’, 
where Q( j3”) = / [( J/@‘)g(x, p)][( J/@)g(x, p)] dA;i’ the estimator 5 sim- 
plifies analogously. 

Remark 7. (i) The assumption EIJ/,O(u,)] = 0 weakens the assumption that 
the disturbances are symmetrically distributed. This condition is together with 
Assumption 5 essentially the condition that the score of the pseudo log-likeli- 
hood function is a martingale difference. Such a condition is often used to 
prove the asymptotic normality of the pseudo ML estimator. The pseudo ML 
estimator satisfies in a trivial way the definitorial equation of the class of 
one-step M-estimators considered here. Given the pseudo ML estimator is 
fl-consistent, Theorem 2 implies that it has the same asymptotic properties 
as the one-step M-estimators b covered by the theorem. (ii) The assumption 
E[$J,~(u,)] = 0 can be dropped in part (b) of Theorem 2 in the case of a linear 
yodel with i.i.d. disturbances if the estimator B in (3.6) is modified to 

j3 = p + {[(l/T)C(ii; - 2ii~~ii~)][(l/T)Cx:x,l)-‘(l/T)Cx~it,ii, and the ma- 
trix @ is chansed to {E[#,O(~,) - E~,0(u,)]2/[EJ/~0(u,)12}Q(~“)-‘. Clearly 

the estimators fi and b have the same asymptotic distribution if E[ JIaO( uI)] = 0. 

Remark 8. M-estimators of type I that are based on non-convex p-functions 
need not be consistent for general disturbance distributions. See Freedman 
and Diaconis (1982); their example is formulated within the simple context of 
a location model, y, = p + a,. Given a non-convex symmetric p-function they 
show that for a certain class of symmetric distributions the ‘asymptotic’ 
criterion function up( y - /3)] has two absolute minima, and a local maximum 
at the true parameter value, yielding inconsistency of the M-estimator even 
though up’(u)] = 0. Contrarily, we note that one-step M-estimators, as con- 
sidered in this paper, remain consistent given they are started consistently. If 
we use an M-estimator of type I as a starting estimator, then the above remark 
suggests further that that estimator should be based on a convex p-function 
which will yield (under weak regularity conditions) consistency and asymptotic 
normality - see Burguete, Gallant and Souza (1982) and Grossman (1976). 

“The matrix A(&‘) reduces to I$I&(u,)]Q(B”). Given the non-singularity of Q(B”) the 
matrix A(fF’) is non-singular iff q$$( u,)] + 0. It follows from Bierens (1981, p. 75) that this is 
the case for all symmetric disturbance distributions with unimodal differentiable densities. 
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3.3. Specification and estimation of the adaptation parameter 

In the following we consider two alternative specifications for the estimator 
of the adaptation parameter. We consider in particular specifications of the 
form ii = fib where ,G and & are estimators of, respectively, measures of the 
tailthickness and the (inverse) spread of the disturbance distribution. The 
following analysis maintains that the disturbances are identically distributed 
with common distribution function F.‘* The approach taken here is to express 
the parameters of the Student-t distribution H and u in terms of estimable 
characteristics such as moments or quantiles of the disturbance distribution. 
We then use the obtained expressions for H and u-l to define functionals 
h(F) and 1_1( F) that measure the (inverse) scale and tailthickness for general 
distributions F. Suppose we have @-consistent estimators for those function- 
als. Since by construction h(F) and p(F) will coincide with H and up1 on 
the family of Student-t distributions, it then follows from the above analysis 
that the corresponding one-step M-estimator b is asymptotically efficient on 
the family of Student-t distributions and (as a limiting case) for the normal 
distribution. 

In the following we write a, = u,(F) = E(lu,l"). Consider for a moment the 
Student-t distribution that underlies (3.1). For u > 2 we have the following 
relationship between its moments: 

(J2 
-= 

2 
01 

For u > 1, we 

7T r[ WI2 
u-2 r[(U-1)/212 

=PAu)* (3.11) 

further have 

01 
&* m2lrKu - WI 

G = r[3/4]* . r[(20- 1)/4]* 
=P2bL 

H = r[3/414 u r[(2u- i)/4]4 
.-. 

VT2 G/2 r[ a4 

=q*bm,2). 

(3.12) 

(3.13) 

(3.14) 

The above formulas can be readily obtained from results given, e.g., in 
Johnson and Kotz (1970). In appendix B we prove the following lemma which 

“The estimators considered remain well defined even if that assumption is not satisfied. 
Degenerate distributions concentrated at one point are excluded from the subsequent discussion. 
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ensures that the subsequent definitions of functionals h(F) and p(F) are 
proper. 

Lemma I. The functions pl( v) and p2(v) are analytic and monotonically 
decreasing on, respectively, (2, ao) and (Loo) with pr(2 + ) = pZ(l + ) = cc and 
pl(oo) = r/2, p2(oo) = 6/T’(3/4)*. The functions ql( v, aI) and q2( v, ~5,~) 
are analytic, respectively, in an open neighborhood of [2,00) x (0, CQ) and 

[l, ~0) X (0, ~0) with q,(% 0,) = 2/(ao?), q2(w, a,,,) = 2r(3/4)4/(ro$2). 

We now use the relationship (3.11) to define, for general distributions F, the 
functional 

pr( F) = [ p;‘( uJu~)] -’ if u,/uz > n/2, 
(3.15) 

= 0 otherwise. 

That is, for distributions with ratios u,/u,’ bigger than the value s/2, 
corresponding to the normal distribution, we set pl( F) equal to the inverse of 
the - because of Lemma 1 - unique solution of (3.11); otherwise we set pl(F) 
equal to zero. Analogously we can use (3.13) to define the alternative func- 
tional 

P*(F) = [ E1( ~d4,~)] -’ if d4,, > J;;r(3/4)*, 
(3.16) 

= 0 otherwise. 

We adopt the convention u,/u$, = cc for cu = 1,2 if a, = cc, even if a,,* = co, 
since then in all cases of interest - as is shown in appendix B - also the 
corresponding ratios of moment estimators converge to infinity. Hence pl(F) 
and p*(F) are well defined for all distributions. Using (3.12) and (3.14) we 
define functionals 

h,(F) = dVdf’)d h,(F) = q&‘y,(F),o,,2). (3.17) 

Note from Lemma 1 that hi(F) is well defined also for pi(F) = 0, i = 1,2. 
Clearly, by design the functionals pi(F) and hi(F), i = 1,2, correspond to v-l 
and N on the Student-t family. 

Estimators of the above functionals are obtained by replacing in (3.15)-(3.17) 
the true moments a, by the estimators Z, = T-‘C~_Jii,l” with fi,=y, - 
g(x,, fl). We denote those estimators by pi and ii, i = 1,2. Note that due to 
the monotonicity of pi( -) it is not difficult to compute those estimators 
numerically. The following theorem shows under which conditions jZisi, 
i = 1,2, satisfy the requirements of, respectively, Theorem 1 and Theorem 2. 
The proof is given in appendix B. 
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Theorem 3. Given Assumptions_l, 2,4 or 1’) 2’, 4’ [Assumptions I ‘, 2’, 4’, or 
1 ‘I, 2”, 47 are satisfied, given p converges in probability [almost surely] to fi” 
and the disturbance process ( ut) is strictly stationary and ergodic. 

(a> If uv < co for some y > 0, then j&g1 and fi,6, are consistent [strongly 
consistent] for p1(F)h,(F) and p,(F)h,(F). (Note that’ the products 
pi( F)h;( F) are always well defined.) 

(b) Suppose_B = j3” + O,( T-l’*) and the disturbances ( ut) are i. i. d. If a, < 00, 
then jl,h, = pI(F + O,(T-‘I*); if u2 < 00, F has a density that is 
essentially bounded in a neighborhood of zero and 

where M is some$xed constant, then ji2i2 = p2(F)h2(F) + O,(T-I/*). 

From a practical point of view the estimators xi and hi, i = 1,2, are 
appealing because they are not difficult to compute. A more robust choice of 
functionals could be obtained by expressing the parameters h and v of the 
Student-t distribution in terms of quantiles instead of moments and then by 
proceeding as above. However, computationally this approach is more in- 
volved. Alternatively, we could define /I?1 as the minimizing values of an 
Tstimator of the asymptotic variance-covariance matrix of b (or respectively 
/3*) - however, this is left for future research.13 

4. Comparison in terms of asymptotic efficiency 

In the following we compare the asymptotic variance-covariance _matrix of 
b for the parametrizations $r = j&&r and jXh = b2x2, say &,, and BsC2), with 
that of the Huber M-estimator based on the #-function $‘, say jjHCcj, with that 
of the least-absolute-deviatio? (LAD) estimator, say PLAD, and with that of the 
least-squares estimator, say pLs. l4 The asymptotic distribution for the LAD 
estimator has, to the best of our knowledge, only been established for the 
linear regression model with fixed regressors and i.i.d. disturbances. For ease 
of presentation we maintain that assumption for all of the subsequent com- 
parisons. We maintain furthermore that the regressors are bounded and 
consider a variety of symmetric distributions F with density f. The asymptotic 
variance-covariance matrix is then for all estimators and distributions consid- 
ered proportional to the matrix Q- ‘. We can, hence, concentrate on the 

13For a related approach for a different class of M-estimators, see Yohai (1974) and Bierens 
(1981). In case o,f asymmetric distributions we may also consider to minimize the variance-covari- 
ante matrix of p. with respect to the intercept, which, under asymmetry, typically has no natural 
meaning. 

14The Huber g-function q is defined in section 2. 
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respective proportionality factor. ” More specifically, @( j?d - /3”) converges 
for d = S(l), S(2), H(c), LAD and LS in distribution to a normal random 
vector with zero mean and variance-covariance matrix KJ-‘, where 

K~(i)=E(W~~~2)/(E(W~~))-‘E[Bi(F)hi(F)w~)U2])2~ 

W(i)= [l +pi(F)hi(F)u2]-1? i=1,2, 

(4.la) 

u2f(u)du+c2 l- [ Jlf’u’du])/[ Q’“’ dU12> 

(4.lb) 

KLAD = [2f(0)1 -2, KLS = ‘-3. (4.lc) 

In computing, respectively, K~(~) and ~~~~~ for a particular distribution F we 
first have to calculate the moments ul, u2 and u,,~, ul. Substituting the 
obtained moments into, respectively, (3.19, (3.17) and (3.16), (3.17), we obtain 
the corresponding values for pl(F), h,(F) and pa(F), h,(F). Given those 
values, we can then calculate the respective expectations in (4.la). 

Rather than to evaluate the integrals (expectations) appearing in the expres- 
sions of the above proportionality factors analytically, we calculated them by 
numerical integration techniques. The accuracy of the numerical procedure 
was checked for the Student-t distribution with u > 2 by comparing the 
obtained value for K~(~)/u~ with the analytically implied value (u - 2)( u - 3) 
/( u( u + 1)). It was found that the numerical results were accurate up to the 
first five decimal places. 

In table 1 we compare the asymptotic epciency of all of the above men- 
tioned estimators relative to the estimator psC2) in terms of the ratios of the 
corresponding proportionality factors, i.e., we report the ratios K~/K~(~) for 
d = S(l), H(c), LAD and LS. We consider a variety of disturbance distribu- 
tions- Let .&(+J,o~), fN(UIU1), fLAP(ulul) and ~L&+J~) denote, resP=- 

tively, the densities of the Student-t distribution with u degrees of freedom, the 
normal distribution, the Laplace distribution and the logistic distribution with 
zero mean and first absolute moment ul. We then consider in particular 
disturbance distributions F with densities of the form f(u) = (1 - ~)f*(ulu~) 
+ efN(ujqu,) where f* stands for any of the above densities, E is the per- 
centage of contamination in terms of a normal distribution, and q is the factor 

“The asymptotic distribution of the Huber M-estimator and the LAD estimator is given in 
Huber (1973) and Basset and Koenker (1978), respectively, for the linear model. 
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Table 1 

Aymptotic efficiency of respective estimators relative to the one-step M-estimator, &, 

Characteristics 
of the 

contalmnation 

F 4 

0 0 _ 

0 I 2 
0. I 4 
0 I 10 
0.3 2 

0 3 4 
0 3 I 0 

0 0 _ 

0 I 2 

0.1 4 
0 1 10 
0 3 2 
0.3 4 
0.3 10 

0.0 _ 

0.1 2 
0 1 4 
0 1 10 
0 3 2 
0 3 4 
0 3 10 

0.0 _ 

0.1 2 

01 4 
01 IO 
0 3 2 
0 3 4 
0;3 10 

?,I)/K\,li KI ,/)/~\,?I < = I.00: < = I scl: 1 = 2 06: 

Contammatcd normal dlstnbution 
/(u)=(l F)/\ ( lllOl 1 + FI, (UlC/O, ) 

1 00 1.57 1 16 1 07 1 03 

1 00 1 44 1 07 I 01 I .oo 
1 00 I37 1 02 I 01 1 (15 
0 Yl I 32 1 01 I 14 1.37 
1.00 1.33 1.02 1 (HI I .w 
I 05 1 1x Ill 131 1 5x 
1 44 1 47 145 4.03 5 72 

Contaminated Student-r distrihutwn uith (’ = 2.5 dsgrea of freedom” 
~(N)=(l~~)/\~14~1~=25.~,)~F/\(14~~/(rll 

1 ?? 1 04 1 14 1.75 
11x I 07 1 20 1 34 
1 21 1.19 1.42 1 67 
1 2x 1.56 2 ox 2 66 
1 ox I .0x 1 24 13’) 
1 0’) 1 51 2 03 2 52 
117 3 x2 6.23 x 74 

Contammatcd Student-r dl\trlhutmn alrh I‘ = 5 degrees of freedom 
/(u)=(l -f)/,(uIrr=5,o,) -F/\(Lllqu,) 

1 (xl 1 30 1 01 I 01 1 0’) 
1 00 I 26 1 .oo 1 02 1 .ou 
1 Oil 1.26 1.05 1 13 1 26 
0.99 1.30 1.21 1 4x 1 x2 
1 .Ol 1.1x 0 YY 1 05 1 13 
112 1.1x 1 29 1.55 1 xx 
161 1 32 2 YI 4.71 6 63 

Contammated Laplace distnhutmn 
/(U)=(l~E)/,~,‘(Ul”I)+F/\(Ulq’7,) 

1 32 0 x0 1.05 117 1 27 
1 06 0 7x 1.07 1 10 1 30 
1 ox 0 x0 1.21 I .47 161 
1 16 0.87 1 60 2.02 2 47 
1.07 0 74 1 06 1 IY 1 2’) 
1 22 0 72 I 43 1 x3 2 20 
1.x0 0 77 3 30 5 26 7 34 

Contaminated logi\tlc dlstnhutlon 

/(o)=(l ~f)/,O(,(lll~,)+FI\.(irlqo,) 

1.00 1 33 1.03 1.00 1 .Ol 
1.00 1 2x 1.01 1.01 I 04 
1.00 1.28 I .03 I 0’) I.IX 
0 97 1 2Y 1.15 1 37 I 65 
1 .Ol 121 O.YY 1 03 I 14 
1 OY 1.19 1.19 1.46 1.76 
1 54 1.34 2.72 4.41 6.23 

KI \/K\,L, 

I 00 

1 ox 
I x7 
7 17 
117 
2.70 

1492 

3.00 
2 x0 
4.29 

1495 
2 25 
4 65 

23.01 

1 25 
I 34 
133 
Y 67 
I 35 
1.17 

17.51 

1 5Y 
I 64 
2 Yl 

12.53 
I 53 
161 

lY27 

1.10 
1.20 
2 12 
x X6 
1 26 
2 Yh 

10.5’) 

“Since r/T-cona~stency of c, and h, 1s not implled by Theorem 3. I” case of a Student-r distnhutmn wth 
(3 = 2.5 degrca of freedom no correspondmg raulta for K,,,)/K,(~, arc reported 
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by which the first absolute moment of the contaminating normal distribution 
exceeds that of f*. We denote the first absolute moment of F as uf.16 

The results reported in table 1 are quite encouraging. Apart from the 
Laplace distribution (where the LAD estimator is the ML estimator) and 
~-contaminated versions of that distribution, we find in nearly all cases 
considered that the one-step M-estimator &) is asymptotically more efficient 
relative to all other $mators. The gain in efficiency associated with, in 
particular, the use of fisC2) can be quite substantial. Suppose we consider the 
case of a contaminated normal distribution. Then the results of table 1 show 
gains in relative efficiency of up to 47 percent as compared to the LAD 
estimator, of up to 145, 303 and. 472 percent as compared to the Huber 
M-estimator (depending on the choice of c) and of up to 1392 percent as 
compared to the LS estimator. It is interesting to note that the gain in 
efficiency typically increases with the degree of the contamination not only as 
compared to the LS estimator but also as compared to the LAD estimator and 
Huber’s M-estimators. This suggests that the one-step M-estimators consid- 
ered in this paper are not only adaptive on but also robust against deviations 
from the family of Student-r distributions including the normal distribution. 

5. Conclusion 

The present paper considers a class of one-step M-estimators for the 
non-linear regression model with dependent observations that are partially 
adaptive in that the shape of the $-function is influenced by the data. More 
specifically, let h and p be, respectively, measures of the (inverse) scale and 
the tailthickness of the di.$ibution. Then the q-function is indexed by 
estimators for h and CL, say h and p. We note that only th_e product of the two 
enters the #-function. Given appropriate choices for h and p the corre- 
sponding one-step M-estimators are asymptotically efficient on the family of 
Student-t distributions and the normal distribution. 

The paper proves, under alternative assumptions on the stochastic law of 
the data-generating process and under weak-moment requirement, strong 
(weak) consistency of the one-step M-estimators given pi converges strongly 
(weakly) to ph, and asymptotic normality given p& = ph + Op(T-1/2) with 
ph20. 

The paper considers furthermore two specific choices for & and ,%. We prove 
that those estimates are strongly (weakly) consistent and converge of 
0P(T-‘/2). The choices are such that the corresponding one-step M-estimators 

16The normal, Laplace and logistic distributions with zero mean are characterized by one 
parameter which can be expressed in terms of q. Hence, by specifying u1 the respective densities 
are completely characterized. Analogously, we can characterize the density of the Student-t 
distribution completely in terms of u and q. For a definition of the respective densities, see, e.g., 
Johnson and Kotz (1970). 
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are asymptotically efficient on the family of Student-t distributions and the 
normal distribution. 

Using those choices for 6 and p we compare the corresponding one-step 
M-estimators with the LAD estimator, Huber’s M-estimators and the LS 
estimator. The comparisons are made in terms of asymptotic covariances for a 
variety of disturbance distributions. The results are quite encouraging in that 
the estimators not only perform well in comparison to the LS estimator, but 
also in comparison to the robust LAD estimator and Huber’s M-estimators. 
This is especially the case for distributions with thick tails which suggests that 
the estimators are not only partially adaptive but also robust. This result is, of 
course, not surprising since for /.& > 0 our $-function is redescending and 
bounded. Concerning the LS estimator the results show once again that this 
estimator may be very unrobust. We report cases where the asymptotic 
covariances of the least squares estimator are several hundred times bigger 
than those of the one-step M-estimators considered in this paper. 

Cleaily further research of, in particular, the small sample properties of the 
present one-step M-estimators is needed. Also, an exploration of other choices 
for i and j& in particular those based on quantiles or on a minimization of the 
variance-covariance matrix, seems of interest. Furthermore, future research 
may consider a generalization of the present one-step M-estimators to non-lin- 
ear simultaneous-equations models. 

Appendix A: Proof of Theorems 1 and 2 

In this appendix we first derive results analogous to Theorems 1 and 2 for a 
more general class of $-functions. Theorems 1 and 2 follow as special cases. 
The following lemmata are needed:17 

Lemma A.l. Let (z,) be a stochastic process with values in a Euclidean space Z 
which is stochastically stable with respect to an a-mixing base. Let C be a 
compact subset of a Euclidean space, let f(z, c) be a continuous real function on 
Z x C and let H, be the distribution function of zt. If there exists a distribution 
function H such that 

(l/T) i H, + Hproperly, 
1=1 

(A.1) 

and if for some 6 > 0, 

SUP (l/T) i E;zp,lf’z,, c)t+*< 00, 
Tzl r=1 

64.2) 

“The index set for (2,) is either N or Z. 
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then /f (z, c) d H( z) is jinite and continuous on C and 

plim sup (l/T)if(z,,c)-j/(z,c)dH(z) =O. 
T-cc CCC t=1 

64.3) 

Proof. Bierens (1983, 1984a, b).18 

Lemma A.2. Let (z,) be a stochastic process with values in a Euclidean space 
Z. Let C be a compact subset of a Euclidean space, let f(z, c) be a real function 
on Z x C and let H, be the distribution function of z,. 

(a) If f is continuous on Z X C, if (l/T)Cy_,H, -+ H properly and 

supEsup]f(z,,c)]‘+“< co, (A.41 
121 CCC 

for some r 2 1 [r > l] and some S > 0 and if (z,) is +-mixing with 

cp(m) = O(m -“) for X > r/(2r - 1) [a-mixing with a(m) = O(m-‘) for 

A > r/(r - I)], 

(b) or if f (z, c) is Bore1 measurable on Z for all c E C and continuous on C for 
all z E Z, (z,) is strictly stationary and ergodic and 

EsupIf(z,,c)l< ao, 
CEC 

64.5) 

then /f (z, c)dH(z) is jnite and continuous on C and 

sup (l/T) i f(z,,c) - /f(z,c)dH(z) a:O. 
CEC t=l 

(A-6) 

Proof. (a) It follows from the assumptions that for every compact set A G C 
the processes sup, E A f (z,, c) and inf, E A f (z,, c) satisfy the strong law of large 
numbers given in McLeish (1975, Theorem 2.10). Now proceeding similar as in 
the proof of theorem 2.3.3 in Bierens (1981) the result follows. (b) Completely 
analogous, exploiting ergodicity instead of McLeish’s theorem. Q.E.D. 

Note that part (a) of the above lemma is closely related to theorem 2.3 in 
White and Domowitz (1984). A careful inspection of that theorem shows, 
however, that its assumptions do not generally cover the functional forms of 
f (z, c) and stochastic processes considered in the following. In particular, the 

‘sWe note that the assumption of measurability in the first argument and continuity in the 
second argument of f is too weak for the lemma to hold. Inspection of the proof in the above 
reference reveals that the lemma holds if we make the above assumption of continuity of f. 
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assumption of continuity of f(z,, c) on C uniformly in t almost surely is not 
always satisfied. 

In the following (except for the actual proofs of Theorems 1 and 2)$,(z), or 
equivalently $( z, a) denotes a more general J/-function than the one consid- 
ered in the main body of the paper. The nuisance parameter, a, now varies in 
a set 0, c R P. The one-step estimator b as well as A(t, 8), B(t, e), r(t, 8) 
A(e), B(0) and r(8) are defined as before with the general function 4, 
replacing the more special one. The conditions ii E [0, co) and 8 E [0, co) X Og* 
in Definition 1 are to be replaced by is E 0, and 8 E 0, x O,*, respectively. 

The following three assumptions will replace Assumptions 4,4’, 4”. A fur- 
ther assumption defining the feasible #-functions is also necessary. The 
following conditions are assumed to hold on some compact neighborhood 
u(eO)c 0, ~0;. 

Assumption A.4. sup,,,(l/T)C~,,E supBEUCB~J]A(t, 8)]]‘+’ < m and 
~up~~,(l/T)C~_,Esup~,~(~~~(l~(t, e)]]‘+” < 00 for some S > 0. 

Assumption A.4’. Esupe,clceo,llA(t,8)ll < cc and Esup~,U(tioj]]r(t, @]I < cc. 

Assumption A. 4’. For the same r as in Assumption 2” and for some 6 > 0, 
we have sup,slEsupe,cl(BO~IIA(t,e)llr+S< m and suptrl Esu~e,~(~,x 
I]+, e)llr+6 < 00. 

Assumption A.7. The function 4=(z) = J/(z, a) is defined on R X 0, G Iw J'+', 
where S, is the permissible parameter space for the nuisance parameter. The 
functions J, (z, a) and (J/at) rC, (z, a) are continuous on W X 0,. 

Lemma A.3. Let e” = (5, p’)’ converge in probability [almost surely] to 8’ = 
(u”, PO’)‘, where a0 E S, and /3” E O,, and let Assumption A.7 hold. Given 
Assumptions 1, 2, A.4 or 1 ‘, 2’, A. 4’ [Assumptions_ I ‘, 2’, A.4’, or I ‘I, 2”, 
A.4”] are satisfied and A(B”) is non-singular, then p + /I0 - A(t3°)-‘r(00) in 
probability [almost surely]. 

Proof. It is readily seen that under the above assumptions the functions 
AT(@) and r,(8) converge uniformly to A(8) and r(e) on U(8’) in probabil- 
ity [almost surely] as a consequence of Lemmata A.1 and A.2. Note that A(B) 
and r( 8) are continuous on U(r3’). Consequently the convergence of e” to 8’ 
in probability [almost surely] implies also A,(#) + A(@‘) and rr(fi) + r(e”) 
in probability [almost surely]. [Note that AT(#) and r,(6) are well defined 
whenever 6 E 0, X @,*.I Q.E.D. 

Lemma A.4. Given the assumptions of Lemma A.3 and Assumption 3 are 
satisfied. (a) Zf E[#,,( u,)] = 0 or F$( L?/ap’)g(x,, p”)] = 0 for all t 2 1, then 
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the bias A(@“)-‘r(B”) = 0. (b) If Assumption B is satisfied, then the bias 
A(&‘)-‘r(B”)=@,O,...,O)’ with X = [- /#,4y - g(x, 

By Assumptions 2 and 2” we have uniform integrability and hence 
Assumptions A.4 and A.4” imply that Fr + r(&‘) and & + A(F’), where 
Y,= (l/T)Cy_,E[r(t, do)] and &= (l/T)CT_,E[A(t, F’)] (in the stationary 
case this is trivially satisfied). To prove part (a) note that 7, = 
(l/T)C~_,E[~,,(u,)]~(a/aS’)g(x,, p”)] = 0 by assumption, which gives the 
result. Part (b) can be shown as follows: Consider first the case where U, is 
identically distributed. Then F,= E[IJJ,~(u,)](~/T)~T_~&( a/aa’)g(x,, /I“)] 
where both expectations clearly exist. [The case #,0(~,) = 0 is trivial.] By 
Assumption B the first element of (8/$3’)g(x,,?‘J is one and the first row 
and column of (6’*/@@?‘)g(x,, /.I”) is zero. Since A, is non-singular for large 
T, we must have QI&( u,)] # 0. But now &(A,O, . . ~ ,0)’ = Fr for X = 
- E[ J/,O(u,)]/Qll/bO(ur)l which implies the result. Next consider the case 
where the regressors are identically distributed. Similarly as above it follows 
that &(A,, 0, . . . , 0)' = i, where now X, = -(l/T)C~_,E[#,.(u,)]/ 

(l/T)CT_,EIJ/bO(u,)] and the denominator is non-zero for large T. It is 
readily seen that X, converges to X under the present assumptions. Q.E.D. 

Proof of Theorem 1. We first show that Assumptions 4,4’, 4” imply Assump- 
tions A.4, A.4’,A.4”. In the case a“ > 0 choose U(V) = [a“ - c, a“ + c] x 
U(/F') with c such that a0 - c > 0. Note from (3.2) that #,(z) and #L(z) are 
bounded for z E W and (a - a01 I c. Because of this it is readily seen that 
Assumptions 4,4’,4” imply A.4, A.4’, A.4” if a” > 0. In the case a0 = 0 
choose U(V) = [0, c] x U(j?') for some c > 0. Since #b(z) is still bounded on 
W x [0, c] by some constant M, since ]Jl,(z)] I (zl and G,,(z) = z, we have 

E SUP IIA(t,~)ll’+” 
BE U(P) 

I2’[ MG,(l + 6) + 2”{ F,(l + 6) + E]u,]~+‘D,(~ + S)}], 

and 

Esz;yo )Il~(t,ol ‘+,Y I 28[Elu,]‘+CSG,((1 + S)/2) + G,(l + a)]. 
0 

In the last step we have applied the mean value theorem to g(x,, p) - g(xt, p”). 
Note that U(jY’) can be assumed to be convex without loss of 
generality and that G,(y/2) I [G,(y)] ‘I*. Hence Assumption 4 implies As- 
sumption A.4. The remaining implications are proved analogously. Clearly 
Assumption A.7 is satisfied by the q-function (3.2). Consequently Lemma A.3 
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applies. Using Assumptions A and B and Assumption 3, the theorem follows 
now from Lemma A.4. Q.E.D. 

For the asymptotic normality result the following assumptions will replace 
Assumptions 6,6’,6”. Let p(t, 8) = (J/@‘)g(xt, &(a/aa)#(v, - g(xt, b>, a) 

and p(6) = jGVW’)g(x, PXJ/Ja)W - g(xt 81, a)Wy, x). 

Assumption A.6. ~upr~r(l/T)C~=~E s~p,,.~~~,llp(t, 8)11’+” < cc and 
s~p~,~(l/T)C~_,Ellr(t, B0)112+* < cc for some 6 > 0. 

Assumption A.6’. E~up,,.~,~,llp(t, fl)ll < 00 and Ellr(t, 0“)112 < cc. 

Assumption A.6”. su~,~rE supBE LI~B~~II PV, W”” < 00 and 
~uPT,~(~/T>C;~_~EII~(~, ‘W12+6 < co for the same r as in Assumption 2” 
and some S > 0. 

The following assumption is stronger than Assumption A.7. 

Assumption A.8 The function #(z, a) is defined on an open neighborhood of 
R X S, C WJ’+‘. The set S, is convex. The functions #(I, a), (c?/c?z)$(z, a) 
and (~?/au)$(z, a) are continuous on W X 0,. 

Lemma A.5 Let #= 8” + 0,(T-1/2) where # = (ii, j?)‘, B” = (u”, j3”)’ with 
u0 E @, and 8“ E 8, and let Assumptions 5 and A.8 be satisfied. If Assump- 
tions 1, 2, A.4, A.6 or 1’) 2’, A.4’, A.6’ or I”, 2”, A.4”, A.6” hold, then given 
QJ/(u,, a’)] = 0 und A(@‘) is non-singular, 

T112(b- p”) = -A(eO)-’ 
i 
T-l12 2 r(t, do) 

t=1 I 

-A(e”)-‘p(e”)T”2(ii- uO) + o,(l), 

where the jirst term is asymptotically normal, N(0, @) with @ = 
A(eo)-9qeoy(eo)-? 

Proof. From the mean-value theorem we have 

T112( j - a“) = T”‘( b - /?“) - T112AT( 8)-‘r,( 8) 

= [I- A,(B)-HA,] T~/Z(P - po) 

-A,(#)-’ T-li2 fj r(t, e”) 
t=1 I 

-A,(e)-‘p,(@T’/‘(d - d), 
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with 

Pm = T-l i PO, Q, 
1=1 

and where (in abuse of notation) AT(g) and pr(#) are the respective 
quantities ev_aluated row-wise at appropriate mean values. [Note that for large 
T we have 0 E U(P) on o-sets of measure tending to one.] Given the above 
assumptions we have [I - A,(f?-‘A,(8)] + 0 and A,(B”)-‘p,(a) + 
A(P)‘p(P) in probability. l9 Because of Assumption 5 and E[rC/( u,, a“)] = 0 
it follows that r(t, 6“) is a martingale difference w.r.t. the u-algebra generated 
by past U,‘S and current and past x,‘s. In the stationary case the result follows 
now from the Lindeberg-Levy CLT for martingale differences [see Billingsley 
(1968, theorem 23.1)], in the other cases from Brown’s CLT [see Bierens 
(1984a, lemma 4), which holds also if in his lemma a2 = 01, using the 
Cramer-Wold device. Note that the third condition of Lemma 4 in Bierens 
(1984a) is satisfied because of Lemmata A.1 and A.2 and uniform integra- 
bility. Q.E.D. 

The proof of the following lemma is similar to the proof of Lemma A.4. 

Lemma A.6, Given the assumptions of Lemma A.5 are satisjied. (a) I! 

furthermore E[( a/da) # ( u,,a’)]=O for all t>l, then T’/2(~-p0)* 

N(0, @). (b) If Assumption B holds, then T112( fi, - /3“*) i$ N(0, @J with 

Q* = [ awvm swam. 

Note that under the assumptions of Lemma A.5 clearly AT(J) + A( 0’). 
If one adds the conditions sup,,,(l/T)CT,,Esupe,u(e~~l(r(t, e)(]2+6 < 00 

[Ew+,u~gO~llr(t, 012 < 00, sup,.,Esup,,~(eo,llr_(t, f4112r+6 < 4 to ps- 
sumption A.6 [A.6’,A.6”], one gets also BT(e) + B(fI“). Hence @ = 
A,(B)-‘B,(#)A,(@‘consistently estimates @. Note that in the context of 
Theorem 2 these additional conditions are automatically implied by the other 
conditions. 

Proof of Theorem 2. Note that Assumption A.8 is satisfied. Assumptions 
A.6,A.6’,A.6” are implied by Assumptions 6,6’,6”. This is clear for a0 > 0 

“Precisely speaking the mean values neeg not be measurable, but [I - AT(8)~1A,(6’)]T’/2 
.(b - 8”) - Ar(8)~‘pT(#)T’/*(c? - a”) . IS measurable by construction; hence the above argu- 
ment can be made precise by standard argumentation. 
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and follows for a0 = 0 from 

EB=‘$Pk @)Il’+‘S 2’[E]~,l~+~~G~((l + 6)/2) + G,(2 + 26)], 

E]lr(t, 0°)]]2+6 I E]u,]‘+“G,(l + a/2), 

and the analogous relations for the other cases. The theorem then follows from 
Lemmata A.5 and A.6 making use of Assumptions A and B. [Note that 

(J/Ja)$( 3 1. z a IS an antisymmetric function of z.] Q.E.D. 

Appendix B: Proof of Lemma 1 and Theorem 3 

Proof of Lemma 1 

Analyticity of pi, p2, ql, q2 is obvious. The first derivatives of pt and p2 are 
respectively p;(u) = pl( u)[ -(u - 2))’ + $4 v/2) - $( u/2 - i)] and p;(u) = 
p2( u)[$#4 u/2) + $+( u/2 - $) - $4 u/2 - :)I, where +(x) = P(x)/r(x). Now 

P;(u) = PI(U)] - (u - 2)-r + 2&u - l)] = pl(o)[ - 2J,“x((u - 2)2 + x*)-r 
(shlrx)-‘dx] < 0, using formulas 8.370 and 3.522.2 in Gradshteyn and Ryzhik 
(1965) [where also p(x) is defined] and observing that the integrand is positive. 
From their formula 8.363.8 we see that G”(X) < 0; hence $I is concave which 
implies p;(u) -C 0. This shows the monotonicity of p1 and p2 on their 
respective intervals of definition. p1(2 + ) = cc is obvious,p,(l + ) = cc since 
r(O) = cc. pl(oo), p*(m), qt (00, a,) and q2(oo, a& are easily calculated 
using formula 8.328.2 in Gradshteyn and Ryzhik (1965). Q.E.D. 

Recall that we set u,/u:,, = cc whenever a, = cc and that degenerate 
distributions are excluded from the discussion. Define S, = TPIC]ulla. For the 
proof of Theorem 3 we need the following two lemmata. 

Lemma B.1. Assume fi + j3” in probability [almost surely] and Assumptions 1, 
2, 4 or 1’) 2’, 4’ [l ‘, 2’, 4’ or I ‘I, 2”, 4”] hold. Let (u,) be strictly stationary 
and ergodic. (a) Then s”i,* + a,,,, S, -+ u1 in probability [almost surely]. If 
additionally au -C 00 for some y > 0, then 5,/S:,, + u,/u$, and S,/Z; + u,/uf 
in probability [almost surely]. (b) Assume fl= j?” + O,,(T-‘I*) and (ur) to be 

i.i.d. If a, < co, we have 5,/$ = uduf + O,(T-‘/*); if u2 < 00 we have 
5, = ui + O,(T-‘I*). If u2 < co, F has a density that is (essentially) bounded in 
a neighborhood of zero and for some constant M we have sup{ I]( a/ajI)g(x,, j3)]1: 
t E N,, j3 E U(j3”)) I M as., then s”1/S&2 = u,/u&, + O,(T-l/*) and gl,* = 
a,,, + Or< T-l’*). 
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Proof. (a) We prove the strong convergence part only. The convergence in 
probability part follows from a standard subsequence argument. For large 
T and 0 < (r I 1, we have from the mean-value theorem Is”, - s,I I_ T-’ x 

CJfit - u,ILL = T-‘&?dW - g(x,vP)la 5 T,’ ~IlWWMx,, Pt)II” x 
ll/? - Poll“ I T-‘&up gEU(~O~II(~/~P)g(~t,P)II~llP - PIT -+ 0 since P + PO, 
and the sum converges to some finite value by Lemma A.2 and Assumptions 
l’, 2’, 4’ or l”, 2”, 4” since a( r + 6)/2 < (r + 6). Since the u,‘s are ergodic it 
follows that s, + a,, regardless if a, is finite or not, as is easily seen by a 
truncation argument. Hence s’, + a, almost surely. As long as 01/z < co this 
implies also that S/s”&, converges to u/u:,,. Now if u,,~ = co, we obtain 
from Ljapunov’s inequality [see, e.g., Lo&e (1963, p. 172); note that S, is the 
&h moment of a discrete distribution] $pZy I S:/2::/2PY (without loss of 
generality y < f) which implies s”1;* I S:/2(P1/S~,2)1/2PY. Now Z1,* tends to 
infinity and 3, to au < cc as just shown, hence S,/S:,, tends to infinity. 

Next consider Z2/S:. If ul = co, we get using Ljapunov’s inequality Z{ I 
s,(s2/3:)‘-y which shows that S,/s”: goes to infinity since S, does and 
s, + au as shown above. For u1 < oc, we have to show that 3, --, u2. 
If also u2 < co, we have_ IS, - $21 5 (VT)I&(g(x,, I% :g(+ PVI + 

WT)~II(V%Vg(x,, ~)l1211P-Poll2 5 2IIT-‘&(~/%%=(xt~ @IIIIP - Poll + 
o(1) I (T-‘&;)“2(T-1&up pEU(/3+vv>g(~,~ P>11*Y’*11P - PII + 00) 
by similar arguments as before. Now T-‘&f + u2 < 00; hence the r.h.s. is 
o(1) almost surely. Next if u2 = co, we have ?I = T-‘&f - (2/T) X 

cu,(g(x,,p)-g(x,,P'))+ T-'C(g(x,,p)-g(x,,p'))*. From the mean- 
value theorem and the assumptions it follows that the last sum is 
bounded (actually it goes to zero). The absolute value of the second sum on 
the r.h.s. is bounded by (T-‘Cu:)“2(T-1C(g(xt, p) - g(x,, p”))2)‘/2 and 
T-‘&f + u2 = 00, which again follows from ergodicity (after truncation). 
Hence 3i+u,= co. 

(b) T”*& - ull I T”*lS, - sll + T”*ls, - ull I T1’*@. - ,d”II 
x T-‘CsupS E ,,tSO,II( J/@)g(x,, @)[I + O,(l) = O,(l) since s1 - ul satisfie_s a 
CLT because u2 < OD. These inequalities hold at least on w-sets where /? E 
U( /?“) and whose probabilities tend to one. Similarly under a, < cc we have 
T”*(S, - u2( I T 1/21S2 - s21 + T’/*Is2 - u2( = O,(l). This proves Z2/S: = 
u,/u: + O,(T- ‘I*). Finally consider T1/2)S1,2 - u,,,I. By assumption 
T1’21~1,2 - a,,,1 = O,(l) since it satisfies a CLT; hence we concentrate on 
T”‘*l3, 2 - sl,* I. This can be decomposed into T-‘/*Cllii 11/* - u ‘I2 
+ T-‘XClli(,,‘/* - I~t11’21Lv(l~,0 = A,+ B,, where v f: [O f~~~-l/“(~! 

(f(T)-‘, 00) and f(T) is to be defined below. Now for every i > 0 theri exists 
a K(6) > 0 such that the event E = { MT”2jlfi - /?‘I[ 2 K(S) or fi 4 U(p”)} 
has P(E) -c 8 for all large T, the constant M is defined above. Choosing 
f(T) = T”*/2K(6) we obtain the relations: P( B, > N) I P(E) + P( E’ and 
B,> N). Now on the event E’ we have that lu,l>f(T)-’ implies (ii,1 > 
(u,I -f(T)-’ > 0. By expanding (iilll/* we obtain lii,ll/* = Iu,]~‘~ + ~U;“*(lfi,l 
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-lu,l) where U, lies between Iii,1 and 1~~1; this implies (lii,11’2 - Iu,I~/~I 
5 ‘u-‘44llfi - poll using the mean-value theorem. Hence on the above event 
Br’is’dominated by (M/2)T-‘/211fi - j3”@i;‘/21W(l~,l) and clearly UC > Iu,I 
-f(T)-‘, and this last expression can again be bounded by iK(S)T-‘c(lu,l 
-f(T)-‘)-“21,(lu,l). Putting this together we obtain P(B, > N) I 
6 + P($K(S)T-‘c (Iu,~ -f(T)-‘)-“21,(lu,l) > N) I 6 + $Y(G)E[(lu,l - 
f(T)-‘)-“21W(Iu,l)1/N, h’ h w lc can be made arbitrarily small by choosing N 
large, since the expectation remains bounded when F has a density that is 
essentially bounded in a neighborhood of zero [note that f(T))’ -+ 01. 

Secondly, A,< (f14T”~1]fi - ~“~~)1’2T-3’4~lv(Iu,() on {BE U(p“)} by 
arguments already used at the beginning of this proof. Since p = /?” + 
0,(T-1’2) it suffices to show that P(T~3/4C1V(I~tj)>N) can be made 
arbitrarily small. This probability is bounded by N-‘T’/4P(lu,] <f(T))‘) I 
Np1T”42Cf(T)-‘, where C is a bound for the density of F in a neighbor- 
hood of zero, hence by using the definition of f(T) we obtain as a final bound 
4CK(S)N-1T-“4. This proves that 31,2 = a,,, + 0p(Tp1/2). The result for 
S,/s’~,, follows immediately. Q.E.D. 

Lemma B.2. The functions defined by (3.15) and (3.16) are diflerentiable 
everywhere except in one point and have left- and right-hand derivatives which are 

bounded in every compact interval. The functions 9,(1/x, y) and q2(1/x, y) 
have partial derivatives with respect to x and y everywhere on (0, 4) X (0, co) and 

(0,l) X (0, co). Furthermore lim. _ 0( aq,/ax)(l/x, y) is bounded uniformly 

whenever y varies in a compact interval, i = 1,2. 

Proof. Denote the function given by (3.15) by pl = g(b,) where b, = 

u,/uf for ease of notation. Now if b, < 7r/2 we have g’(b,) = 0 and for 
b, > 7r/2 clearly g’(b,) exists, is continuous and is given by g’( b,) = 
-u~[p;(p;‘(bl))]-‘= -_c~T(p;(p;‘))-‘. 0bvious1y1im,,~,,,g’(6,)=0 and 

hl;m,2g’h) = ~ftc[ -Ir:(p;(p;l))-‘] = lim [ -(v2p;(v))-*] 
L n I’- cc 

= - lim (p,(v))-l 1’ 
(‘4 cc 

~,ff”,v-2[-(v-2)~~+2P(v-l)]-1 

using results already established and Lemma 2. The last expression now equals 
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(l/a)[ _/,“x(shax)-’ dx]-’ by dominated convergence [e.g., 4x(shlrx)-’ is a 
dominating function]. Using formula 3521.1 of Gradshteyn and Ryzhik (1965) 
we obtain limb1 1 +g’(bJ = 2/ r. Using the mean-value theorem we see that 
the right-hand derivative at b, = 7r/2 exists and equals 2/7r. The left-hand 
derivative is obviously zero. Summarizing we see that on every compact 
interval the left- and right-hand derivatives of g are bounded. Defining 
similarly ~1~ =f( b2) as the function given by (3.16), where now b, = q/u&, 
we proceed completely analogous [for short we set c = ~ln/I’(q)~]: 

;iy,f’(b) 
2 ( 

= -lim(p,(o))-‘1.m 
I” cc 

~,lm~~‘[:~(u/2)+:0(u/2-:)-~(u/2-:)]-1 

E [(a/2-:+k))1-(u/2+k)-1] 
k=O 

-~o[(u,2-i +k)-1-(u/2- a +kl-y j1 
= -_c -’ lim (-u2/16) z (u/2-i+k)-’ 

D + 00 k=O 

using formula 8.363.3. Calling the expression in brackets A(u) we obtain 

I (-u2/16) E (u/2- ‘i +k)-3~A(u) 
k=O 

I(-u2/16) : (~/2+k)-~ 
k=O 

2 (-u2/16)jm(u/2+x)-3dx, 
0 
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which shows after an easy calculation that lim,,,A( u) = - i. Putting this 
together, we obtain limb2 L ,f’( b,) = 8c-‘. Calculating (aq,/ax)(l/x, Y), we 
obtain, setting z = x-l, the expression 

-1 r(z/2- :)’ 

-7z r(z/2)* TY 
{z+z’[4+/2- :> -+/2)]}. 

Now for z + cc the first factor of the product remains bounded by virtue of 
formula 8.328.2. Now using formula 8.363.3, we obtain 

Therefore we obtain 

-2 
-i1+-;)-+(+-~, 

(z-l)* z-1 

by estimating the sum by integrals in an obvious way. But this shows that 
second factor in the above product is also bounded. The result for q2 is 
obtained in a completely analogous way. Q.E.D. 

Proof of Theorem 3 

(a) Is an immediate consequence of Lemma B.l and the continuity of the 
mappings defining pi(F) and hi(F) which follows easily from Lemma 1. 

(b) If a, < cc, then clearly U./U, < cc. The mapping (3.15) attaching p,(F) 
to CI,/U: is differentiable everywhere except at u,/u: = a/2 and has bounded 
left- and right-hand derivatives in every compact interval as follows from 
Lemma B.2. Then by a simple argument using the mean value theorem and 
Lemma B.l, we obtain ,Gi = p.,(F) + O,(T-‘/*). Applying the mean-value 
theorem to h, and using Lemmata B.1 and B.2 we see that &I = h,(F) + 
O,( T- “*). 

Now if u, < cc clearly u,/u$, < oc and by the same arguments as above we 
obtain the desired results for b2 and g2. Q.E.D. 
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