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In a recent article Epstein and Yatchew (1985) introduced a simplified procedure for the 
estimation of symmetric dynamic factor demand models. This procedure hinges on a 
reparametrization of the model, results in closed form analytic expressions for the firm’s factor 
demand, and can be carried out by standard econometric packages. The purpose of this note is to 
extend the procedure to the case of nonsymmetric dynamic factor demand models. 

1. Introduction 

In a recent article Epstein and Yatchew (1985) introduced a simplified 
procedure for the estimation of a class of linear dynamic factor demand 
systems. While the procedure is presented in terms of a dynamic factor 
demand model the procedure can also be applied towards the estimation of 
other linear rational expectations models which have a similar structure. 

The Epstein and Yatchew procedure is similar to that suggested by Hansen 
and Sargent (1980,198l) in that the solution to the firm’s (stochastic closed 
loop) optimal control problem is obtained by solving the stable roots back- 
wards and the unstable roots forwards, and it incorporates the transversality 
condition. The class of models considered by Epstein and Yatchew is less 
general than that considered by Hansen and Sargent in that adjustment costs 
only depend on first-order changes in the factor inputs and are specified as 
separable from the rest of the technology. 
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York University. 

0304-4076/89/$3.50 0 1989, Elsevier Science Publishers B.V. (North-Holland) 



216 D. B. Madan and I. R. Prucha, Estimation of nonsymmetric factor demand models 

Epstein and Yatchew assume that all new investment becomes immediately 
productive. This results in a symmetric second-order system of difference 
equations for the optimal factor inputs. The method suggested by Epstein and 
Yatchew hinges on a reparametrization of the model. Due to this 
reparametrization it is possible to obtain closed form analytic expressions for 

the firm’s factor demand. As a consequence, this procedure can be carried out 
by standard econometric packages and avoids during estimation the need for 
the repeated solution of the firm’s control problem by numerical methods. 

Prucha and Nadiri (1986) adopt (and trivially modify) the Epstein and 
Yatchew procedure to the case where all new investment becomes productive 
with a one-period lag. Linear rational expectations models that correspond to 
a symmetric second-order difference equation system have recently also been 
discussed by Kollintzas (1985). 

Many models of interest correspond to a set of nonsymmetric difference 
equations. For example, symmetry is lost if we allow inputs to become 
productive at different points in time. ’ In general symmetry is also lost if we 
allow for nonseparability between the adjustment costs and the levels of the 
inputs unless further restrictions [as, e.g., in Kollintzas (1985)] are imposed. 

The purpose of this note is to extend the Epstein and Yatchew procedure to 
the nonsymmetric case. This is achieved in two steps. In the first step we 
demonstrate that also in the nonsymmetric case both the backward- and the 
forward-looking portion of the optimal control solution can be expressed 
solely in terms of two matrices (apart from the forcing functions and the 
discount factor), where one of these matrices is the accelerator matrix. This 
demonstration is essential for the second step, in which we then extend the 
reparametrization method and derive closed form analytic expressions for the 
firm’s factor demand. 

In the symmetric case the demonstration that the optimal control solution 
can be expressed solely as a function of two matrices is readily achieved by 
diagonalizing the second-order difference equations, i.e., Euler equations, that 
characterize the optimal control solution; compare, e.g., Lucas (1967) and 
Kollintzas (1985). In the nonsymmetric case this approach is not applicable. 
Kollintzas (1986) derives an expression for the optimal control solution in the 
nonsymmetric case by rewriting the Euler equations as a first-order system and 
by employing the Jordan decomposition for this system. However, Kollintzas 
(1986) does not provide an expression for the optimal control solution in the 
above described form. In this note we develop an alternative solution method 
for the nonsymmetric case that results in an expression for the optimal control 
solution in the form needed for the reparametrization step. The solution 

‘We note that in empirical and theoretical studies capital is often assumed to only become 
productive with a lag, while labor is typically modeled as immediately productive; see, e.g., Bemdt 
and Morrison (1981), Kydland and Prescott (1982). 
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method is quite simple. As a byproduct we also obtain certain properties for 
the product of the two matrices that appear in the expression for the optimal 
control solution. These symmetry properties can be exploited during estima- 
tion. 

2. A generalization of a closed form estimation procedure 

Consider a firm that produces output y, from the k x 1 input vector 
x, = [n;, s/l’, where n, is the k, X 1 vector of immediately productive inputs 
and s, is the k, X 1 vector of inputs that only become productive with a 
one-period lag. The firm’s production set is defined by the following produc- 
tion function: 

y, = F(x,, x,-l> Ax,> 

with 

= a, + [n:, s:_,]a + i[n;, s;_#[n;, s;_,]’ 

+ :[An:, As;]B[An;, As;]'+ [n;, ~;_~]C[dn;, As;]‘, 

and where Ax, = x, - x,-r. We assume that the production function satisfies 
the following concavity properties: The matrix composed of A and B as 
diagonal blocks and C and C’ as off-diagonal blocks is symmetric and 
negative semidefinite and B is negative definite. Adjustment costs in terms of 
foregone output are reflected by Ax, = [An;, As;]’ as an argument in the 
production function. 

The firm is assumed to choose its inputs according to a stochastic closed 
loop feed back control policy in order to maximize the expected present value 

of future profits.2 More specifically, the firm sets the current input vector and 
chooses a contingency plan for setting its inputs in future periods according to 
the following optimization problem: 

maxE, f Y’-‘[E.(x,, x,-r, Ax,> - <Q,w,)‘x, 
7=1 

‘Since B is negative definite all inputs are taken to be quasi-fixed. Variable factors can be 
readily incorporated by specifying the firm’s technology in terms of the restricted profit function. 
We note that our discussion in terms of a profit maximization problem is only illustrative. The 
discussion also applies, with trivial modifications, to a cost minimization problem. 
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for given initial stocks x,_~ and y = (1 + r)-l, r > 0. Here E, denotes the 
expectations operator conditional on information available at time t. With IV, 
and qr we denote m, x 1 and m2 x 1 vectors of nonzero factor prices normal- 
ized by the output price where mi I k (i = 1,2). The elements of IV, may be 
thought of as representing short-run costs such as wages, the elements of the q, 

may be thought of as representing after tax acquisition prices. Since the 
dimension of w, and qt may be less than that of x, we have introduced selector 
matrices Q, and Q4. Those matrices are of dimension k X m, and k X m2, 
respectively, with rank[Q,, Q,] = k; they select the appropriate elements from 
the x, vector. The diagonal matrix of depreciation rates (some of which may 
be zero) is denoted by 6, the real discount rate is denoted by r. 

The prices qt and w, are known at time t and are exogenous to the firm. As 
in Epstein and Yatchew (1985) we assume that they are determined by an 
autoregressive process: 

[4:> w,‘]‘= ’ + 5 @,[q:-i, wrli]’ + ‘$1, 
i=l 

(3) 

where the tt’s are distributed i.i.d.. We assume that the price process is of 
mean exponential order less than (1 + r)1/2.3 

Furthermore we restrict the solution space to be the class of processes x, 
that are of mean exponential order less than (1 + r)l/‘. This ensures, in 
particular, the finiteness of the objective function for all processes in the 
solution space. 

The objective function in the above specified control problem is linear- 
quadratic. Certainty equivalence then implies that the optimal inputs in period 
t corresponding to the stochastic control problem (2) are identical to those 
obtained by solving the following nonstochastic control problem: 

max 2 Y’-‘[ F(x,, x,_~, Ax,) - (ErQ,d’~, 
T=* 

-(E,Qqd'b,- (-+LI)], (4) 

for given initial stocks x,_~. The input sequence optimizing (4) must satisfy 
the following set of deterministic Euler equation (7 = t, . . . , co): 

-B&+1 $5~~ - (1 + r)B’x,_l = - (1 + r)a + (1 + r)ar, - - 

3A vector process, say q,, is said to be of mean exponential order less than K if there exist 
constants XT and 0 < p -C K such that E,I(q,+,JJ 5 Kp’+’ for all t and j > 0. 
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where 

G = (I + 44” +c,,+c;J+(2+r)B,, (1+r)C,,-C,:,+(2+r)B,, 
- (l+r)C,‘,-C,,+(2+r)B,, 1 A,,-C,,-C,:+(2+r)B,, ’ 

B”, + c,l, B 
B= - B,, + CL5 - C,,, -A,, B,, :‘C,, ’ 1 

ar = J%Q,w7 + E,Q,s, - [(I- a)/(1 + r)lEtQqqr+l. 

Furthermore, this optimizing input sequence must belong to the restricted 
solution space described above. We assume that B is nonsingular. Eq. (5) 
differs from the corresponding equation in Epstein and Yatchew (1985) in that 
the matrix B is (possibly) nonsymmetric. We henceforth refer to situations 
with B= B’and G= G’ as the symmetric case and to situations with BZ B’ 

and C!?= C? as the%oGymmetric case. 
- - 

It % well-known and simple to show that the characteristic roots of the 
homogeneous difference equation system corresponding to eq. (5) come in 
pairs multiplying to (1 + r). We assume that these roots are distinct. It then 
follows that exactly k of the roots are less than (1 + r)l12 in modulus. Let A 
be the k X k diagonal matrix of these roots and let V be the k X k matrix of 
solution vectors corresponding to these roots. We assume, as in Kollintzas 
(1986) that V is nonsingular, and define M = Z - VAV-‘. In the appendix we 
prove the following theorem: 

Theorem. 4 The optimal factor inputs at time t corresponding to control problem 
(3) and (because of the certainty equivalence principle) to control problem (2), 

are uniquely given by the following accelerator model: 

x,=MF,+ (z-M)xt_l, ?,=A_‘(+a), (6) 

J,= D f (I+ D)-(‘--I+‘)L+ D=(l+r)(Z-M-‘-Z, 
7=1 

A_= (I- M’)-‘(rZ+ M’)B_M/(l + r) = DB_M/(l + r). 

4As discussed in the introduction Kollintzas (1986) provides an alternative expression for the 
optimal control solution involving V and an analogous matrix associated with the roots exceeding 

(1 + r) l/2 in modulus. The theorem here establishes also the symmetry of S. 
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The accelerator matrix M satisJies 

-B(I-M)*+G(I-M)-(l+r)E=O. (7) 

Furthermore, S = B(I - M) is symmetric. - 

The structure of the above solution for x, resembles closely that given in 
Epstein and Yatchew (1985) for the symmetric case.5 However, there are 
subtle differences. Firstly, note that in the symmetric case BM = [BM]‘; in the 
nonsymmetric case B(I - M) = [B(I - M)]’ but in generalBM #TBM]‘. Sec- 
ondly, note that in &e symmetriccase A = A’; however, in the nonsymmetric 
case we find that generally A# A’ = BM(M> rI)(I - M)-‘/(l + r).6 Conse- 
quently, it is generally incorrect to- use the latter formula for A in the 
nonsymmetric case. The latter formula corresponds to formula (9) inEpstein 
and Yatchew (1985). Hence, while this formula is appropriate in the symmetric 
case only its transpose is appropriate in the nonsymmetric case. 

Given the structure of the above solution for x, we can now extend the 
methodology introduced by Epstein and Yatchew to the nonsymmetric case. A 
basic difficulty in estimating the dynamic factor demand model (6) stems from 
the fact that in general (7) cannot be solved explicitly for M in terms of the 
original model parameters. However, upon making use of the expressions for B 
and G given in (5), an inspection of (7) reveals that it is possible to solve this 
equation for A in terms of B, C, and M, or alternatively, in terms of B, C, 
and S: 

+ ( B,‘,, + C,,) S”%,, + ~,‘,S”“~,,] } /( 1 + r ) , 

A,,=S,,+C,,~+C,:-(2+r)B,,+(1+r)[(B,’,-C,’,)SS”(B,,-C,,) 

+ B;,S”‘( B,, - C,,) + (B,‘, - C,l,)SsnBns + B;,S""B,,] , 

A,, = A;, = B,, - &,, + C,,‘$ - C,,, (8) 

51n somewhat more detail, the case considered by Epstein and Yatchew corresponds to the 
following special case of the model considered here: x, = n, = [$,n:]‘, a = an, A = A,,, B = B,, 

diagonal, C= 0, Qq = [1,,0,_,,,]‘, Q, = [Okxkmhr 4_*]‘, where k, h, and k - h correspond to 
the dimensions of the vectors n,, Fi,, and cr. Their analysis generalizes trivially to the general 
symmetric case. 

6That in the nonsymmetric case it is generally no longer true that 4 = L was checked in terms 
of a specific counterexample. 
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with 

3,” = - [ B;,P + (Bs’, - q$Y”] -l 

x {s,, - (1 + r)c,ls + c,, - (2 + r)B,, + (1 + ?-) 

x P,‘,S”“(B”, + CA) + (B,‘, - G)SVL + GJI > 

A1 + 4 
and where Si, and S’j denote the (i, j)th block of, respectively, S and S-l 
(i, j = n, 3). 

We expect that in most empirical applications the dimensions of the 
matrices in (8) will be small. Consequently, for typical applications, explicit 
expressions for the elements of A can be readily obtained from the above 
formulas. We note further that the above formulas simplify considerably if 
adjustment costs are taken to be separable, i.e., C = 0, and the adjustment cost 
matrix B is diagonal. 

In constructing J, we assume that expectations on q, and w, are formed 
rationally from the autoregressive process (3). Consequently, 

p-1 
J, = a + c P;[&,, w,‘,l’. 

i=o 
(9) 

Rather than express the vector (Y and the matrices /3, in terms of the vector Y 
and the matrices Oj, it is easier to express the latter in terms of the former. By, 
e.g., analogous argumentation as in Epstein and Yatchew (1985) it follows that 

v= RDa, R= {P,-D[(Z-S)Q,/(l+r).O]}-’ 

o,=R{(I+D)p,-D[Q,,Q,]-P,}, 

@,=R{(I+D)Pi-I-P,}, i=2 ,..‘, P, (10) 

where /3, = 0, D = B’S_‘/(l + r) - Z and the null matrix in the expression for 
R is of dimension-k X m2. The above equations closely resemble analogous 
equations given in Epstein and Yatchew (1985).7 

Based on (7)-(10) we can now reparametrize the production function (1) 
the system of factor demand equations (6) and the price process (3) in terms 

‘The model considered in Epstein and Yatchew corresponds to a model where Qq = [I, 01’ and 
Q, = [0, I]‘; compare footnote 5. We note that completely analogous to Epstein and Yatchew it is 
readily possible to also incorporate deterministic time trends into the above analysis. 
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of a, B, C, S (or M), (Y, and &, . . . , fip_l.” Since the reparametrized model is 
described by closed form analytic expressions, it can be readily estimated by 
standard econometric packages such as TSP. Also, estimation of the model in 
its reparametrized form seems computationally advantageous: Firstly, it avoids 
repeated numerical solutions of the firm’s optimization problem for different 
sets of trial parameter values; secondly, derivatives of the statistical objective 
function can be taken analytically rather than numerically. 

Clearly, the estimation approach considered in this note is not restricted to 
the above specific dynamic factor demand model. The approach is, however, 
restricted to rational expectations models that result in a second-order differ- 
ence equation.’ 

Appendix: Proof of the theorem 

It follows directly from the definition on A and V that 

-BVA2+ GVA-(1+ r)B'V=O. (A.11 - - - 

Observe that by definition M = I - VAV1. Eq. (7) then follows from (A.l) 
upon postmultiplication with Vi. Next we demonstrate that S is symmetric. 
Define D = V'BV, and let oij and Xi denote, respectively, the (i, j)th element 
of D and theTth diagonal element of A. Premultiplication of (A.l) with V’ 
and post-multiplication with A-i yields 

L?A + (1+ +‘A-’ = V’GV. (A-2) - 

Since G is symmetric it follows that also the matrix on the RHS of the above 
equation is symmetric. The (i, j)th and (j, i)th elements of that matrix are 
given by, respectively, wijX, + (1 + r)w,,/X, and ojiXj + (1 + r)wij/h,. Equat- 
ing the two elements yields w,jhj = wjiX,. Hence s2A and consequently S 
= B(Z - M) = V’-‘S2AV-’ is symmetric. 

E remains to be shown that (6) represents the optimal control solution. We 
define g, implicitly from the following equation (7 = t, . . . , co): 

x,= (I-M)x,_,+g,. (A.31 

‘For econometric estimation we need to add stochastic disturbance terms to (1) and (6). 
Following Epstein and Yatchew (1985), we may interpret those disturbance terms as measurement 
and random optimization errors. The latter may also be interpreted as random shocks to the 
technology that are observed by the firm but not by the researcher; compare Hansen and Sargent 
(1981). 

‘For example, the approach still applies if the production function (1) is generalized by adding 
the following adjustment cost term: $x:,[An:_,, d~;_,]B~[dn;~, As;_,]‘. Note that the resulting 
Euler equation is still of second order since all cross-products in the objective function involve at 
most a time difference of one period. 
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Clearly then x,+~ = (I- M)2~,_, + (I - M)g, + g,,,. Substitution of those 

expressions for x, and x,+~ into (5) and making use of (7) yields 

Bg7+1 - (1 +r)B’(Z-M)-‘g,= -(l +r)h,, (A.4) 

h,= -~+a~. - 

We note that the roots of this first-order difference equation are given by 
(1 + r)A-’ and are hence explosive. The backward solution for g, that 
satisfies the condition that x, is of mean exponential order less than (1 + r)l12 
is unique and is easily seen to be given by 

g, = (1 + r)B-’ f [$Z - &1@~‘/(1 + r)](“+‘)hT. (A-5) 

Observethat(Z+D)-‘=B(Z-M)B’-‘/(l+r)=(Z-M’)/(l+r).Theso- 
lution given in (6) is then-readily obtained upon substitution of (A.5) into 
(A.3). 
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