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equicontinuity concepts for 
random functions 
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Equicontinuity-type concepts for random functions, which are important for establishing conver- 
gence results for such functions, have increasingly been used in the econometrics literature. In this 
paper we define and discuss various equicontinuity-type concepts for random functions and employ 
those concepts to provide sufficient conditions for uniform convergence and, in particular, for 
uniform laws of large numbers. Furthermore, we clarify the differences and similarities between 
uniform laws of large numbers based on pointwise and local laws of large numbers given in the 
recent literature as they relate to differences m the employed equicontinuity-type concepts. 
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1. Introduction 

Equicontinuity-type concepts for random functions are basic notions that 
facilitate convergence results for such functions. Those concepts have been used 
widely in the statistics and probability literature [see, e.g., Pollard (1984, 1989) 
and Alexander (1987) for some recent references]. Equicontinuity-type concepts 
for random functions have recently also been utilized more widely in the 
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econometrics literature. In particular, and as will be explained in more detail 
below, all of the recent uniform convergence results for random functions in 
Andrews (1987, 1989c), Bierens (1981, 1989), Newey (1989), and Piitscher and 
Prucha (1986a, b, 1989a, b) can be viewed as having been obtained by verifying 
implicitly or explicitly some equicontinuity-type conditions for the underlying 
random functions. Furthermore, equicontinuity-type concepts for random func- 
tions have also been used in Andrews (1989a, b) and Potscher and Prucha 
(1991a,b). 

One goal of this paper is to clarify some aspects of these recent uniform 
convergence results as they relate to differences in the employed equicontinuity- 
type conditions, and to extend and consolidate these results. The uniform 
convergence results in Andrews (1987), Bierens (1981, 1989), and Potscher and 
Prucha (1986a, b, 1989a, b) were obtained from a verification of the so-called 
first-moment continuity condition, which is actually a first-moment equicon- 
tinuity-type condition, and from local laws of large numbers. (The term local 
laws of large numbers refers to laws of large numbers that hold for certain local 
bracketing functions.) Alternatively, Newey (1989) and Andrews (1989~) derived 
uniform convergence results from the verification of a ‘stochastic’ equicontinu- 
ity-type condition, which is actually a ‘stochastic’ un$irorm equicontinuity-type 
condition, and from pointwise laws of large numbers.’ These results essentially 
use a stochastic version of Ascoli-Arzela’s theorem. We show below that given 
a standard domination condition the first-moment equicontinuity-type condi- 
tion used by the approach based on local laws of large numbers and a suitably 
defined ‘stochastic’ equicontinuity-type condition are in fact equivalent. We 
show furthermore that, given a standard domination condition, a suitably 
defined first-moment unijiirm equicontinuity-type condition and the ‘stochastic’ 
uniform equicontinuity-type conditions used by the approach based on point- 
wise laws of large numbers are in fact again equivalent.2 Therefore it is the 
difference in the degree of the uniformity in the employed equicontinuity-type 
conditions that represents the essential difference between the two approaches3 

Except for Andrews (1989~) all uniform convergence results in the literature 
cited above use a compact parameter space. The latter paper shows that totally 
boundedness of the parameter space suffices. (For the approach based on local 
laws of large numbers the maintained assumptions have to be appropriately 

‘The term pointwise laws of large numbers refers here to laws of large numbers that hold at all 
points of the parameter space. 

2Actually, also the former approach requires some degree of uniformity (which however need not 
be postulated explicitly if the parameter space is compact). However, as discussed in more detail 
later, the degree of uniformity required by the former approach is much less than that required by 
the latter approach. 

3The uniform equicontinuity-type conditions used in Andrews (1989~) and Newey (1989) only 
differ in inessential details in regard to the derivation of uniform convergence results. 
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modified.) While a weakening of the compactness assumption may be useful 
from a practical point of view, we also show below that the uniform convergence 
result on a totally bounded parameter space in Andrews. (1989~) is only appar- 
ently more general as any uniform convergence result on a totally bounded 
parameter space can be deduced from a uniform convergence result on a com- 
pact parameter space by an extension argument. 

Equicontinuity-type concepts are not only of interest for establishing uniform 
convergence results. A simple but important application of equicontinuity-type 
concepts arises if we want to establish that the difference between the random 
functions evaluated at some estimator and at the probability limit of that 
estimator converges to zero. To illustrate this let Q,, denote some sequence of 
random functions which are indexed by some parameter 0 E 0, let 8, denote 
some estimator for & with Gn - & + 0 i.p. as n +co, and let P denote the 
probability law. (For simplicity assume for this illustration that 0 is a subset of 
Euclidean space.) Clearly for every E > 0 and 6 > 0 we have 

P(IQnCe,) - Qn(&)l > 6) 

I P(IQ,,(&) - Q,,(e,,l > dn - 6, < 6) 

+ P(IQ,@J - Q,(&,l > A& - e,l 2 4 

I P(supw,, SUP~,-,,~ <a I Q,(@ - Q,(U I > F) + P( I e, - e, I 2 6). 

Consequently, Q,(e^,) - Q,(&) + 0 i.p. as n + a, given Qn satisfies the 

equicontinuity-type condition lim,, a, P(sup,,,, su~,e-e,l<al Qn(4 - Q.Wl > ~1 
-+ 0 as 6 + 0 for every E > 0. If &, = e, the less stringent equicontinuity- 

type condition hm,, 3. P(su~,,_,,,,~(Q,,(@ - Qn(B’)I > E) -+ 0 as 6 + 0 for 
every E > 0 and 19’ = e suffices, as is easily seen. Clearly, if we are concerned 
with a.s. or L, convergence, then we need corresponding as. or L, 
equicontinuity-type concepts. 

The above discussion indicates that we are confronted with a manifold of 
equicontinuity-type concepts, which are useful in different contexts and which 
differ in their degree of uniformity and whether those concepts are defined as i.p., 
a.s., or L, statements. Given this manifold of different but related equicontinu- 
ity-type conditions, it seems of interest to explore their relationships and 
differences in more detail. Hence, another goal of this paper is to carefully define 
and distinguish between different equicontinuity-type concepts for random 
functions and to analyze the relationship between those concepts. 

Section 2 defines respective equicontinuity-type concepts for random func- 
tions and establishes various implications and certain equivalencies between 
these notions. In section 3 we give two theorems that provide basic conditions 
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under which pointwise and local convergence results can be transferred into 
uniform ones. One of those theorems is a stochastic version of Ascoli-Arzela’s 
Theorem. Section 4 applies the results of sections 2 and 3 to the derivation of 
uniform laws of large numbers, i.e., to the important special case of sample 
averages of random functions. In that section we also present several sets of 
sufficient conditions for the existence of uniform laws of large numbers and 
discuss their relationship to the results in Andrews (1987, 1989c), Newey (1989) 
and Pbtscher and Prucha (1986b, 1989a, b). Section 5 shows that any uniform 
convergence result on a totally bounded parameter space can always be reduced 
to a uniform convergence result on a compact parameter space. Section 6 
contains some illustrative counterexamples concerning uniform laws of large 
numbers and the relationship of the respective equicontinuity-type concepts. 
Proofs are given in the appendix. 

2. Equicontinuity concepts for random functions 

2.1. Dejnitions of and relationships between equicontinuity concepts 

Let (0, p) be a (nonempty) metric space, let (Sz, G?, P) be a probability space 
and let Q,,: Q x 0 + R be a sequence of functions that are measurable in their 
first argument. The dependence of Qn on u E n will frequently be suppressed in 
the notation below. All suprema and infima over subsets of 0 of random 
functions used below are assumed to be (P-a.s.) measurable.4 With B(8’, 6) we 
denote the open ball (0 E 0: ~(0, fl’) < S}. We now define various equicontinu- 
ity-type concepts for Q,,. Definition 2.1 presents equicontinuity-type concepts 
for a sequence of random functions at a given parameter value. As mentioned in 
the Introduction, uniform versions of equicontinuity-type concepts of a se- 
quence of random functions are needed to establish certain uniform convergence 
results. Definitions 2.2 and 2.3 present two alternative formulations of such 
uniform versions of equicontinuity-type concepts, which facilitate two alterna- 
tive approaches to uniform convergence results. 

Definition 2.1. Qn is asymptotically L, equicontinuous (AL,EC) at ti’~ 0 for 
p>Oiff 

lim E sup lQn(0) - Q,(#)I” --+ 0 as 6 + 0; 
n-m &B(B’, 6) 

(2.la) 

4For sufficient conditions see, e.g., Pollard (1984, app. C) and Pb;tscher and Prucha (1989b, lemma 
A2). We note that some of the results below can also be shown to hold without this measurability 
condition, given their proper formulation in terms of outer probabilities. 
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Q,, is asymptotically L, equicontinuous (AL,EC) at 8’ E 0 iff for every E > 0 

sup I Q,(e) - Q,,(P)] > E + 0 as 6 + 0; (2.lb) 
&B(O’. ~5) 

Q,, is as. asymptotically equicontinuous (a.s.AEC) at 8’ E 0 iff 

lim SUP I Q,(Q - Q,Wl + 0 a.s. as 6 + 0. (2.lc) 
n+ 00 &B(B’, 6) 

If (2.la) [(2.lb)] ((2.1~)) holds with lim,,, replaced by sup,,, then Q,, is said to 
be L, equicontinuous (L,EC) at 8 [L, equicontinuous (L,EC) at 6’1 {a.s. 
equicontinuous (a.s.EC) at (_I’}. If any of the above properties holds for all 0’~ 0 
(with a common exceptional null set for the as. case), then we say that this 
property holds on 0. 

Dejinition 2.2. Qn is uniformly asymptotically L, equicontinuous (UAL,EC) 
on 0 for p > 0 iff 

sup lim E sup I Q,(d) - Q,,(@)l” -+ 0 as 6 --f 0; 
B’S@ nF+m lkB(8’,b) 

(2.2a) 

Qn is uniformly asymptotically Lo equicontinuous (UAL,EC) on 0 iff for every 
&>O 

sup lim P 
-( 

sup IQ,,(e) - Q,,(e) > E -+ 0 as 6 -+ 0; (2.2b) 
e,Ee “-a eee(e’, 6) 

Q,, is as. uniformly asymptotically equicontinuous (a.s.UAEC) on 0 iff 

sup lim sup I Q,(e) - Q,(P) I -+ 0 a.s. as 6 + 0. (2.2c) 
e’E8 “+a e4(e’,d) 

If (2.2a) [(2.2b)] ((2.2~)) holds with lim,,, replaced by sup,,, then Q,, is said to 
be uniformly L, equicontinuous (UL,EC) on 0 [uniformly Lo equicontinuous 
(ULoEC) on O] (as. uniformly equicontinuous (a.s.UEC) on 0). 

Dejnition 2.3. Qn is asymptot’ 11 L ica y ,, uniformly equicontinuous (AL,UEC) 
on 0 for p > 0 iff 

lim E sup sup ) Q,(e) - Qn(B’)IP + 0 as 6 -+ 0; 
n+4 elEO eEB(e’, 6) 

(2.3a) 
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Qn is asymptotically Lo uniformly equicontinuous (AL,UEC) on 0 iff for every 
&>O 

-( 
lim P sup sup IQ,JG) - Q,(@)/ > E 

> 
+O as 6+0; (2.3b) 

n-oC O’S@ OEB(B’, 6) 

Qn is a.s. asymptotically uniformly equicontinuous (a.s.AUEC) on 0 iff 

lim sup sup 1 Q,,(B) - Q,(@)( --f 0 a.s. as 6 + 0. (2.3~) 
n-a B’tO BtB(H’.d) 

If (2.3a) [(2.3b)] ((2.3~) 1 holds with lim,, 3c replaced by sup,,, then Q,, is said to 
be L, uniformly equicontinuous (L,UEC) on 0 [L, uniformly equicontinuous 
(L,UEC) on O] (a.s. uniformly equicontinuous (a.s.UEC) on 0}.5 

In the literature some of the above distinct concepts have been referred to by 
one and the same name: for example, AL, EC is called stochastic equicontinuity 
in Andrews (1989a, b). Andrews (1989~) and Pollard (1989) on the other hand use 
stochastic equicontinuity to refer to AL,UEC, which ~ as shown below - is 
much stronger than ALoEC even for compact 0. For compact 0, a variant of 
ALOUEC was called uniform stochastic equicontinuity by Newey (1989). By 
introducing the above definitions for equicontinuity of random functions we 
hope to avoid this clash of terminology in the literature. Furthermore, by 
distinguishing between asymptotic and nonasymptotic equicontinuity concepts 
we achieve that the definitions adopted here are in case the functions are not 
random in accordance with standard definitions of equicontinuity and uniform 
equicontinuity. 

The above equicontinuity-type conditions essentially control the size of the 
modulus of continuity or uniform continuity. The ability to control the size of 
such moduli has proven to be essential for deriving convergence results for 
stochastic processes as it basically implies tightness of the sequence of stochastic 
processes; see, e.g., Billingsley (1968, ch. 2, 3) and Pollard (1984). 

The following remarks explore positive and negative results regarding the 
existence of implications between the respective equicontinuity concepts. The 
negative results are based on counterexamples collected in section 6. For 
nonrandom functions it is well-known that equicontinuity and uniform 
equicontinuity coincide if 0 is compact. The remarks explore, among other 
things, to what extent a generalization of this result is possible for random 
functions. 

‘Of course, if KG., , is replaced by sup,, then conditions (2.2~) and (2.3~) coincide 
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Remark 2.1. (i) The following implications among the equicontinuity con- 
cepts are obvious6 

AL,EC [L,EC] 3 AL,EC [L,EC] * a.s.AEC [a.s.EC], 

UAL,EC [UL,EC] =S UALoEC [ULoEC] + a.s.UAEC [a.s.UEC], 

AL,UEC [L,UEC] * AL,UEC [L,,UEC] C= a.s.AUEC [a.s.UEC]. 

(ii) If 0 is compact, we have furthermore: AL,EC [L,EC] on 

0 o UAL,EC [UL,EC], p 2 0, and a.s.AEC [a.s.EC] on 0 o a.s.UAEC 
[a.s.UEC] o a.s.AUEC [a.s.UEC]. If (0, p) is totally bounded, we only have: 
a.s.UAEC [a.s.UEC] o a.s.AUEC [a.s.UEC].7 For a proof of these results see 
Lemma A.2. 

(iii) We emphasize that - in contrast to the a.s. case - the implications 
UAL,EC [UL,EC] =s. AL,UEC [L,UEC] (and hence the implications 
AL,EC [L,EC] on 0 + AL,UEC [L,UEC]), p 2 0, do not hold in general, 
euen f 0 is compact (and Q,, = Q); see Example 1 in section 6.8 

(iv) If 0 is not compact, then the implications AL,EC [L,EC] on 
0 - UAL,EC [UL,EC], p 2 0, as well as a.s.AEC [a.s.EC] on 

0 =+ a.s.UAEC [a.s.UEC] clearly do not hold in general. This is readily seen by 
choosing Q,, = Q nonrandom and observing that continuity and uniform conti- 
nuity do not necessarily coincide if 0 is not compact. 

6The implications in the first line of the diagram hold whether the equicontinuity properties in this 
line are all interpreted to hold at a given O’E@ or on 0. Note also that a.s.AEC at 0’ for all WE@ 
implies ALoEC on 0. Furthermore, to establish the implications indicated in the diagram by *. 

observe that lim,,, r P(lX,( > E) 5 P(lim._, IX,, > c/2) holds for any sequence of random vari- 
ables X,. 

‘A metric space (0, p) is totally bounded if for every 6 > 0 there exist finitely many Oi, 
1 5 i 5 M(6), such that the open balls B(Oi, 6) cover 8. Note that total boundedness is not 
a topological concept as it is possible to have two metrics p and o on 0 that induce the same 
topology, but where (B, p) is totally bounded while (0, u) is not. However, if 0 is compact, then 
(0, p) is totally bounded for any p generating the given topology. If 0 is a subset of Euclidean space 
and p is the Euclidean metric, then (0, p) is totally bounded iff 0 is bounded as a subset of Euclidean 
space. 

‘If (0, p) is totally bounded, L,UEC can be implied from ULeEC if we impose a rate of 
convergence on sup,~,,sup,P(sup,,,~~.,,, 1 Q,(B) - Q.(W) > c): More specifically, let. t‘(6) denote the 
smallest number of open balls B(&, 8) necessary to cover 0, i.e., 1 ‘(fi) is the covering number of 0. 
Then, if I ~“(S)SU~,~..SU~.P(SU~,,~,~..~~~~Q~(~) - Q,(@)( > E) + 0 as 6 + 0, it follows that Q. is 
L,UEC, since P(su~~,,.su~,,,,,,,,,l Q.UU - Q.W’)l > 4 s f’bax, s I s .~ca,su~,,Bl~:.~~,IQ.(H)- 
Q.(K)) > a/2) I .t (d)sup,,,, P(su~,,,,~,, 26, IQ.(O) - Q.(O’ I > e/2). Compare Billingsley (1968, 
theorem 8.3) for a result that is similar in spirit. 
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(v) If (0, p) is not totally bounded, then the implication a.s.UAEC 
* a.s.AUEC does not hold in general (even if Qn is nonrandom); see Example 

2 in section 6. 
(vi) In general, even on compact 0, also the following implications do not 

hold: AL,EC [L,EC] == a.s.AEC [a.s.EC], UAL,EC [UL,EC] * a.s.UAEC 
[a.s.UEC], AL,UEC[L,UEC] = a.s.AUEC [a.s.UEC]. In fact, even the im- 
plication L,UEC = a.s.AEC does not hold as shown in Example 3 in section 6. 

(vii) If Qn is nonrandom, the equicontinuity concepts in each row of the above 
diagram coincide, as can be readily seen. Therefore, it follows from (ii) that if 
Q,, is nonrandom and if furthermore 0 is compact, all asymptotic equicontinuity 
concepts coincide and also all nonasymptotic equicontinuity concepts coincide. 

Remark 2.2. (i) If Q,, = Q, the equicontinuity concepts given in Definitions 
2.1-2.3 reduce to corresponding continuity concepts. (The term ‘equicontinuity’ 
is then to be replaced with ‘continuity’ in the above definitions.) We note that 
Lo continuity at 8’ o a.s. continuity at 8’, and Lo uniform continuity 0 as. 

uniform continuity, since SUP~,~(~,,~) 1 Q(e) - Q(F)] and supefEe SUP~,~(~,,~) 
1 Q(0) - Q(0’) 1 are monotone in 6. However, Lo continuity on 0 does not imply 
a.s. continuity on 0; even uniform L,, continuity does not imply a.s. continuity 
on 0, as is readily seen from Example 1 in section 6, recalling that as. continuity 
on @ requires a common exceptional null set. 

(ii) It should be noted that Lo continuity is a stronger concept than continuity 
in probability, where the latter is defined as Q(0) -+ Q(e’) in probability as 
f3 + 8’, or equivalently, s~p,,,~~~,,,P(/Q(0) - Q(V)/ > E) -+ 0 as S + 0. 

We next discuss conditions, apart from the trivial case Q,, = Q, under which 
the respective asymptotic and nonasymptotic versions of Definitions 2.1-2.3 
coincide. 

Remark 2.3. (i) If each Qn is L, continuous at 8’ [on 01, p 2 0, then AL,EC at 
8’ [on O] o L, EC at 8’ [on 01. If each Q,, is L, uniformly continuous, p 2 0, 
then AL,UEC o L,UEC. However, if each Q,, is uniformly L, continuous (or 
even L, uniformly continuous), p 2 0, then UAL,EC does not in general imply 
UL,EC unless, e.g., 0 is compact; cp. Example 2 in section 6 and Remark 2.1(u). 

(ii) If each Q,, is a.s. continuous at 8’ [on 01, then a.s.AEC at 0’ [on 
O] o a.s.EC at 8’ [on 01. If each Q. is as. uniformly continuous, then 
a.s.AUEC o a.s.UEC. However, if each Qn is a.s. uniformly continuous, 
a.s.UAEC does not in general imply a.s.UEC unless, e.g., (0, p) is totally 
bounded; cp. Example 2 in section 6 and Lemma A.2. 

In Remark 2.1(i) we noted the obvious fact that the respective 
L, equicontinuity concepts imply the corresponding Lo equicontinuity con- 
cepts. We next show that also the reverse implication holds under the following 
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uniform integrability type conditions for p > 0: 

lim E(D;l(D, > M)) + 0 as M + co, (2.4a) 
n-tm 

sup E(D{l(D,, > M)) + 0 as M + 00, (2.4b) 
n 

where D, = supBEO 1 Q,(0) I. Note that (2.4a) and (2.4b) are equivalent if EDf: < m 
for all II 2 1. The following result is of importance as it will allow us to 
demonstrate the similarities in the different approaches taken in the literature to 
establish uniform convergence results. 

Theorem 2.1.9 (a) For 0 5 r 5 p: 

AL,EC[L,EC] at O’E@ * AL,EC[L,.EC] at ~‘EO, (2Sa) 

UAL,EC [UL,EC] =+ UAL,EC[UL,EC], (2Sb) 

AL,UEC [L,UEC] * AL,UEC [L,UEC]. (2.k) 

(b) Under (2.40) [(2.#h)] with p > 0 also the reverse implications in (23a)-(2.5c) 

hold for 0 < r 5 p. 

A simple sufficient condition for (2.4a) or (2.4b) is clearly given by lim.,, 
E(&) < cc or sup, E(D”,) < co, respectively, for some s > p. Theorem 2.1 is 
similar in spirit to Theorem 6.1 of PGtscher and Prucha (1991a). 

2.2. Some suficient conditions 

In the following we discuss several sufficient conditions for the respective 
equicontinuity-type conditions. A further discussion of such conditions for the 
important special case where Q, is an average is given in section 4. 

Simple sufficient conditions are provided by Lipshitz-type conditions [cp. 
Andrews (1987, 1989c)]. First consider the following global Lipshitz-type condi- 
tion: There exists an q > 0 and a null set N such that for all 0, @E@ with 
p(0,@) < q and all o~sZ - N we have 

IQn(@ - Q&J')1 5 W(p(~, @I), (2.6) 

‘For the reverse implication of (2.5a) and (2.5b) in part (b), we could replace D, with 
D.(B’) = SUP,,,,~,,,, 1 Q.(O)\ in (2.4); however for the reverse of (2.5b), we then have to modify (2.4) by 
also taking the supremum over @ in the expressions in (2.4). 



32 B.M. Pdtscher and I.R. Prucha, Equicontinuity concepts for random functions 

where B,: s2 + [O, co), h:-[0, co) -+ [O, co) with h(x) 1 0 as x 1 0, and where the 
Lipshitz bounds B, do not depend on 0 or 8’ and satisfy either” 

lim EB,” < co sup EBf: < cc 1 for some p > 0, or (2.7a) 
n-r, n 

sup P(B, > M) --f 0 as M --f co, or (2.7b) 

lim B, < so as. 
n-r, 

sup B, < cc a.s. 1 . (2.7~) 
n 

Then (2.6) and (2.7a) imply that the random functions Q,, are AL,UEC 
[L,UEC], (2.6) and (2.7b) imply that the Qn are L,UEC, and (2.6) and (2.7~) 
imply that the Q, are a.s.AUEC [a.s.UEC]. 

Next consider the following local rather than global Lipshitz-type condition: 
For each B’EO there exists an q = q(V) > 0 and a null set N(W) such that for all 
8 with p(8,8’) < y and all w~s2 - N(&) we have that 

I Qn(Q - Q,(OI I &WR 0’)) (2.8) 

holds, where now the Lipshitz bounds B, = B,,(P) are allowed to depend on 8’ 

and satisfy 

lim EB{(B’) < 01: sup EB;(@) < cc 
I 

for some p > 0, or (2.9a) 
n-4 n 

sup P(B,(@) > M) --t 0 as M ---f co, or 
n 

(2.9b) 

lim B,(P) < co a.s. sup B,(F) < CE a.s. 
n-30 n I 

(2.9~) 

Then (2.8) and (2.9a) imply that the random functions Qn are AL,EC [L,EC], 
(2.8) and (2.9b) imply that the Qn are LOEC; furthermore (2.8) and (2.9~) imply 
that the Q,, are a.s.AEC [a.s.EC] on 0 if the null set N(0’) and the exceptional 
null set in (2.9~) do not depend on 19’. 

“Note that sup.P(B, > M) + 0 as A4 + x8 is equivalent to G,,, P(B, > M) + 0 as M -+ m. 
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Finally, let 

sup lim EBz(H’) < x sup sup EB:(fI’) < CT, 1 for some p > 0, or (2.lOa) 
@‘SO n- = B’S0 n 

sup lim P(B,(@) > M) --f 0 sup sup P(B,(O’) > M) + 0 
I 

as M + x, or 
fl’E(3 n-Z @‘GO n 

(2.10b) 

sup lim B,(8’) < XI a.s sup sup I&(8’) < a a.s. . (2.1Oc) 
B’EO n-u 0’EQ n 

If ‘7 in the definition of the local Lipshitz-type condition (2.8) does not depend on 
8’, then (2.8) and (2.10a) imply that the random functions Q,, are UAL,EC 
[UL,EC], (2.8) and (2.10b) imply that the Q,, are UALoEC [ULoEC], and if 
additionally N(0’) does not depend on 8’, then (2.8) and (2.10~) imply that the 
Qn are a.s.UAEC [a.s.UEC]. 

The verification of any of the equicontinuity conditions L,,EC, UL,EC, or 
LOUEC or the asymptotic counter parts involves the establishing of a maximal 
inequality. The Lipshitz-type condition discussed above essentially allows one 
to imply this maximal inequality from bounds on P(B, > ~/h(p(H, 0’)) 2 
P( j Q(O) - Qn(B’)) > E). For further techniques for verifying L,EC, ULOEC, or 
LoUEC see, e.g., the Chaining Lemma in Pollard (1984). 

3. Approaches to uniform convergence and Ascoli-ArzelB’s theorem 

In this section we compare two basic approaches for the derivation of uniform 
convergence results. The first approach utilizes a stochastic variant of 
Ascoli-Arzelas Theorem and is based on asymptotic Lo uniform equicontinuity, 
i.e., AL,UEC, and pointwise convergence i.p. of Q,, [or a.s. asymptotic uniform 
equicontinuity, i.e., a.s.AUEC, and pointwise a.s. convergence of Q,,]. The 
second approach adopts Wald’s (1949) bracketing idea and is based on uniform 
asymptotic L, equicontinuity, i.e., UALIEC, of Qn and convergence i.p. [a.s. 
convergence] of certain local bracketing functions derived from Q,,. (If 0 is 
compact, only AL, EC of Q,, has to be verified for the second approach since in 
this case AL,EC and UAL,EC are equivalent.) We give two basic theorems that 
describe these two approaches. The first one of these results is a slightly 
generalized version of results in Andrews (1989~) and Newey (1989) and only 
requires pointwise convergence on a dense subset of 0. The second result 
essentially only reformulates the strategy used to prove ULLNs in, e.g., Andrews 
(1987) and Potscher and Prucha (1986a, b, 1989a, b). 
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We shall need the following asymptotic variant of Ascoli-Arzela’s Theorem:’ ’ 

Ascoli-Arzela’s Theorem. Let fn: 0 --f R and L: 0 ---f R be sequences of jiunc- 
tions and assume f, to be asymptotically untformly equicontinuous. 

(4 

(b) 

If (0, p) is totally bounded, iffn(tI) -f,(0) -+ 0 as n + 03 for all 8~0,,, 
where O0 is a dense subset of 0, and tffn is asymptotically untformly equi- 
continuous, then su_pBEo /f,(e) -x(0) 1 -+ 0 as n +co. 
If supeEo lfn(8) -fn(0)j --t 0 as n -+ co, then the sequence fn is asymp- 
totically uniformly equicontinuous andf,(8) -x(d) + 0 as n +co for all 
&O. 

Iff, -5 and if O0 = 0 orfis continuous, then for part (a) of the theorem 
the assumption that x is asymptotically uniformly equicontinuous (i.e., f: is 
uniformly continuous) can be dropped; in fact, uniform continuity off then 
follows as a conclusion of part (a). We now present the first basic uniform 
convergence result for random functions. The proof of the a.s. part crucially 
utilizes the feature that in part (a) of the above Ascoli-Arzela Theorem pointwise 
convergence is only required to hold on a dense subset of 0 and the fact that 
a totally bounded metric space is separable. The i.p. part of the following result 
with O0 z 0 has been given in Newey (1989, theorem 1) for compact 0 and 
Andrews (1989c, theorem 1) for totally bounded 0; also, the i.p. part is a special 
case of Theorem 10.2 in Pollard (1989). 

Theorem 3.1.12 Let Q,,: 0 --) R be an asymptotically untformly equicontinuous 
sequence of nonrandom functions. 

(4 

04 

If (0, p) is totally bounded, ifQn(t3) - Q,(0) -+ 0 a.s. [i.p.] as n -+oD for all 
BeGo, where O0 is a dense subset of 0, and ifQ,, is a.s.AUEC [ALo UEC], 
then supeGo IQ,(e) - Q,(e)1 -+ 0 as. [i.p.] as n +co. 

LfsveEa IQ,@) - &WI + 0 a.s. [i.p.] as n -+ co, then the sequence Qn is 
a.s.AUEC [ALoUEC] and Q,(e) - Q,(e) -+ 0 a.s. [i.p.] as n + 00 for all 
OEO. 

Obviously, the above theorem also covers the case O0 = 0. Recall also that 
a.s.AUEC implies AL0 UEC, and hence the i.p. part of the theorem clearly also 

“Ascoli-Arzeli’s Theorem is typically stated for an equicontinuous sequence of functions on 
a compact space; see, e.g., Dunford and Schwartz (1957, theorem IV.6.7). Of course, for sequences of 
[uniformly] continuous functions the properties of asymptotic [uniform] equicontinuity and [uni- 
form] equicontinuity coincide; cp. Remark 2.3(ii). Furthermore, if @ is compact, [asymptotic] 
uniform equicontinuity and [asymptotic] equicontinuity coincide; cp. Remark 2.l(ii). 

“Of course, in Theorem 3.1 we could have absorbed 0. into Q,, without loss of generality. 
However, this is not the case in Theorem 3.2 given below. We have chosen the above formulation of 
Theorem 3.1 for reasons of comparability. 
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holds under the stronger a.s.AUEC assumption. Furthermore note that, in view 
of Lemma A.2, the assumptions that Q,, is a.s.AUEC and that Qn is AUEC in 
Theorem 3.1(a) could be replaced, respectively, by a.s.UAEC and UAEC (or 
even by a.s.AEC on 0 and AEC on 0 if 0 is compact). 

The second basic uniform convergence result for random functions is modeled 
on the method of proof used in Wald (1949), Andrews (1987), and Pdtscher and 
Prucha (1986a, b, 1989a, b), and represents the ‘first-moment equicontinuity’ 
approach. In the next theorem the expectations are assumed to be finite. 

Theorem 3.2. Let Q,, = EQn, let (0, p) be totally bounded, and assume that 

sup Q,,(O) - E sup Q,(0) -+ 0 as. [i.p.] as n -+cD, (3.la) 
BEB(tY,&) BtB(B’,&) 

inf Q,,(d) - E inf Q,(0) -+ 0 as. [i.p.] as n 403, (3.lb) 
BEB(fl’, dr) &8(8’,&) 

for all k 2 1 and all O’E@, where 6, is some sequence of positive numbers 
converging to zero. Let Q,, be UALl EC, then supBEO ( Q,(8) - Q,,(g) 1 + 0 a.s. 

[i.p.] as n -+co. 

Recall that if 0 is compact, UALl EC reduces to AL, EC. Furthermore, if 0 is 
compact, the sequence 6, in (3.1) can be allowed to depend on 8’, as can be seen 
from the proof of the theorem. 

Before discussing Theorems 3.1 and 3.2 in more detail, we give a result which 
shows that L, equicontinuity-type conditions on Q,, with p 2 1 already imply 
equicontinuity-type conditions for EQn. 

Theorem 3.3. Let Qn = EQ,,, which is assumed to bejnite, and let p 2 1. Zf Q,, is 

AL,EC [L,EC], then Q,, is AEC [EC]. If Q,, is UAL,EC [UL,EC], then & is 
UAEC [UEC]. If Q,, is AL,UEC [L,UEC], then Qn is AUEC [UEC]. 

Given the uniform integrability type condition (2.4a) [(2.4b)] holds, Theorem 
3.3 also applies [in view of Remark 2.1(i) and Theorem 2.11 if Qn satisfies 
asymptotic [nonasymptotic] a.s. or L,, r < 1, equicontinuity-type conditions. 

If in Theorem 3.1 Qn = EQn, then the condition that Qn is asymptotically 
uniformly equicontinuous is already implied by the assumption that Qn is 
a.s.AUEC [AL,UEC] in Theorem 3.1(a), given the uniform integrability-type 
condition (2.4a) with p 2 1 is satisfied; this follows from Theorem 2.1(b), which 
then implies that Qn is AL,UEC, and Theorem 3.3. Similarly, the assumption in 
Theorem 3.2 that Qn is UALIEC implies that Qn = EQn is UAEC in view of 
Theorem 3.3; in view of Lemma A.2, Qn = EQ,, is then even AUEC. 
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Sufficient conditions for the equicontinuity-type conditions employed in 
Theorems 3.1-3.3 have been given in section 2.2. For the special case of uniform 
laws of large numbers further sufficient conditions will be discussed in section 4. 

Comparing the approaches corresponding to Theorems 3.1 and 3.2 in the 
context of convergence in probability we see that the first approach, which 
transforms pointwise convergence into uniform convergence, requires more 
uniformity in the equicontinuity-type condition than the second approach, 
which transforms local convergence into uniform convergence and which only 
assumes UALrEC rather than the stronger ALrUEC condition. [Since a uni- 
form integrability-type condition like (2.4) will typically hold in a given applica- 
tion, the fact that Theorems 3.1 and 3.2 use L, and Lr equicontinuity concepts, 
respectively, seems rather immaterial since under (2.4) AL0 UEC is equivalent to 
AL1 UEC in view of Theorem 2.1.1 Comparing the approaches corresponding to 
Theorems 3.1 and 3.2 in the context of a.s. convergence we see again that the 
condition that Qn is a.s.AUEC maintained by Theorem 3.1 is ~ given a uniform 
integrability type condition - stronger and again requires more uniformity than 
the condition UALrEC maintained in Theorem 3.2. [Note that despite the 
equivalence of a.s.AUEC with a.s.UAEC for totally bounded (0, p) and its 
equivalence even with a.s.AEC on 0 for compact 0, a.s.AUEC still not only 
implies UAL,EC but even ALrUEC, given a uniform integrability type condi- 
tion!] Example 4 in section 6 shows that the equicontinuity-type condition 
UAL,EC maintained in Theorem 3.2 (and even UL,EC with arbitrarily large p) 
is in general not sufficient to allow the transformation of pointwise convergence 
into uniform convergence. 

For a compact parameter space, the condition in Theorem 3.2 that the 
sequence Q,, is UALiEC reduces even to ALrEC. The former condition repre- 
sents the appropriate assumption needed to cover the case of a totally bounded 
parameter space. In contrast, in the convergence i.p. part of Theorem 3.1 the 
condition that Qn is ALOUEC has to be assumed even if 0 is compact [and also 
represents the appropriate assumption for the case of totally bounded (0, p)]. 

In comparing the two approaches it is furthermore important to observe that, 
given the uniform integrability-type condition (2.4a) holds with p = 1, the 
assumptions of Theorem 3.2 deliver ~ via its conclusion and Theorem 3.1(b) - the 
assumptions maintained by Theorem 3.1 (a).’ 3 (In particular, the assumptions of 
the a.s. rip.1 convergence part of Theorem 3.2, which include the condition 
UALrEC, imply the even stronger equicontinuity condition a.s.AUEC 
[AL,UEC].) Conversely, given that (2.4a) holds with p = 1, the assumptions of 

r3This can be seen as follows: Since Q. is UALrEC, it follows from Theorem 3.3 that & is UAEC, 
and hence is AUEC in view of Lemma A.2. Since total boundedness is assumed in Theorem 3.2, the 
remaining conditions in Theorem 3.1(a) follow immediately from uniform convergence in view of 
Theorem 3.1(b). That Q. is even AL,UEC follows then from Theorem 2.1. Note that (2.4a) was 
actually only used in the last step to imply AL,UEC of Q.. 



B.M. PBtscher and I.R. Prucha, Equicontinuity concepts for random functions 31 

Theorem 3.1(a) (with Qn = EQ,, assumed finite for n 2 1) deliver- via its con- 
clusion and Lemma A.3 -the assumptions maintained by Theorem 3.2.14 Thus, 
given the uniform integrability-type condition (2.4a) holds with p = 1, the two 
approaches are equivalent in that they cover the same class of problems.” 

As discussed above, if we use Theorem 3.2, we only have to verify UAL, EC 
(or ALIEC for compact 0) rather than a.s.AUEC or AL,UEC. This may be 
advantageous especially in situations where verifying local convergence is easy 
(or at least not more difficult than verifying pointwise convergence). We also 
note that a potential advantage of Theorem 3.2 in an application may be that 
one only has to verify UALrEC for both a.s. and i.p. uniform convergence 
results. 

Andrews (1989~) defined a further stochastic equicontinuity-type concept 
which he labeled ‘strong stochastic equicontinuity’ to derive a strong uniform 
convergence result. In light of Theorem 2 in Andrews (1989~) and Theorem 3.1 
we see that a.s.AUEC and ‘strong stochastic equicontinuity’ are equivalent given 
(0, p) is totally bounded and Q,(e) + 0 a.s. as n + co for all 8~0. [As in 
Andrews (1989~) we assume here without loss of generality & = 0.]16 

4. Uniform laws of large numbers 

In this section we consider uniform convergence for the special case where 
Q,(e) = n-l C:= 1 qr(m, 19) and Q,(0) = EQ.(0), i.e., we consider uniform laws of 
large numbers (ULLNs), as an important application of equicontinuity-type 
concepts for random functions. We maintain throughout this section that the 
functions qr: R x 0 + R are measurable in their first argument and integrable 
for each 8~0 and t 2 1. Again, we shall frequently suppress the dependence of 
q1 on w in the notation. 

4.1. CesLiro equicontinuity-type concepts 

Of course, for the above choice for Q,, and (zn Theorems 3.1 and 3.2 represent 
ULLNs. However, in applications it is often more natural to imply the con- 
ditions on Q, from conditions on ql. This can be accomplished in different 

i4This can be seen as follows: The conditions a.s.AUEC [ALaUEC] clearly imply UALiEC in view 
of Remark 2.1(i) and Theorem 2.1. The local convergence conditions (3.1) follow from Lemma A.3. 

‘51mplicitly the discussion has also established the following partial converse to Theorem 3.2: If 
sup,,, I Q.(0) - Q-.(e) 1 -+ 0 a.s. [i.p.] as n 
(2.4a) with p = 1 holds, then Q. - Q” 

+ cc with Q_. = EQ, (assumed to be finite for n 2 1) and if 
is UAL,EC (and even AL,UEC) and the local convergence 

conditions (3.1) are satisfied. 

i61t is readily seen that in general a.s.AUEC implies strong stochastic equicontinuity, but not 
conversely. [Note that in order to be well-defined the definition of strong stochastic equicontinuity 
in Andrews (1989~) has to be amended by, in our notation, the condition sup. > ,,, Q.(e)1 < r* for all 
060 a.s.] 
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ways. One route of verifying the equicontinuity-type conditions employed in 
Theorems 3.1 and 3.2 that proves useful is to introduce intermediate equicon- 
tinuity-type concepts for qt which can be used to imply the equicontinuity-type 
conditions for Qn. Sufficient conditions for these intermediate equicontinuity- 
type concepts for qt will be discussed in more detail below. We now introduce 
such intermediate equicontinuity-type conditions for qt as analogs to Defini- 
tions 2.1-2.3. 

Dejinition 4.1. q, is asymptotically Cesaro L, equicontinuous (ACL,EC) at 
8’EO for p > 0 iff 

lim rr-i i E sup [q,(O) - q,(O’)lp --f 0 as 6 + 0; (4. la) 
n+‘x f=l tkB(8’,6) 

q1 is asymptotically Cesaro L, equicontinuous (ACLoEC) at B’EO iff for every 
&>O 

sup I q,(e) - q,(e)1 > s 
tkB(B’, 6) 

6 -+ 0; (4.lb) 

qt is a.s. asymptotically Cesaro equicontinuous (a.s.ACEC) at 8’oO iff 

lim ri-l i sup I m - de7 I + 0 a.s. as 6 -+ 0. (4.lc) 
n-m I = 1 OSB(B’,d) 

If(4.la) [(4.lb)] ((4.1~)) holds with lim,,, replaced by sup,,, then qr is said to be 
Cesaro L, equicontinuous (CL,EC) at 8’ [Cesaro Lo equicontinuous (CL,EC) 
at 0’1 {a.s. Cesdro equicontinuous (a.s.CEC) at e’}. If any of the above properties 
holds for all B’EO (with a common exceptional null set for the a.s. case), then we 
say that this property holds on 0. 

Dejinition 4.2. qt is uniformly asymptotically Cesdro L, equicontinuous 
(UACL,EC) on 0 for p > 0 iff 

sup lim n-l 2 E SUP km - 4rwiP + 0 as 6+0; (4.2a) 
ejEQ n-m t=1 ewe’. 6) 

qt is uniformly asymptotically Cesaro Lo equicontinuous (UACL,EC) on 0 iff 
for every E > 0 

sup lim n-l 
e’E@ n-m 

SUP /q,(O) - q&3’) 1 > E --t 0 as 6 + 0; (4.2b) 
ed(e’, 6) 



B.M. PL’tscher and I.R. Prucha, Equiconlinuity concepts for random functions 39 

qt is a.s. uniformly asymptotically Cesaro equicontinuous (a.s.UACEC) on 0 iff 

n 

sup lim n-i C sup 14,(O) - q,(W)] + 0 a.s. as 6 + 0. (4.2~) 
B’S@ n-rm f = 1 tkB(tJ’,d) 

If (4.2a) [(4.2b)] { (4.2~)) holds with lim,,, replaced by sup,, then qt is said to be 
uniformly Cesaro L, equicontinuous (UCL,EC) on 0 [uniformly Cesaro 
Lo equicontinuous (UCLoEC) on O] {a.s. uniformly Ceshro equicontinuous 
(a.s.UCEC) on O}. 

Definition 4.3. qt is asymptotically Cesdro L, uniformly equicontinuous 
(ACL,UEC) on 0 for p > 0 iff 

lim n-l f E SUP sup lq#) - M’)l” + 0 as 6 + 0; (4.3a) 
n-ao t=1 B’EQ &B(B’,b) 

qt is asymptotically Cesaro Lo uniformly equicontinuous (ACL,UEC) on 0 iff 
for every E > 0 

lim n-l 
n-m 

sup sup I s,(O) - q*(e’)l 
efEo esiqef, 6) 

q1 is a.s. asymptotically Cesaro uniformly equicontinuous (a.s.ACUEC) on 0 iff 

” 

lim n-l 1 sup sup I q,(e) - &VI + 0 as. as 6 + 0. (4.3~) 
“-rCC 1= 1 e’E@ fkB(f3’,6) 

If (4.3a) [(4.3b)] { (4.3~)) holds with lim,, m replaced by sup,,, then q, is said to be 
Cesaro L, uniformly equicontinuous (CL,UEC) on 0 [Cesaro Lo uniformly 
equicontinuous (CL,UEC) on O] { a.s. Cesaro uniformly equicontinuous (a.s. 
CUEC) on 0). 

The concept of ACL,UEC was introduced in Andrews (1989~) under the 
name of ‘termwise stochastic equicontinuity’. We note that most but not all of the 
implications discussed in Remarks 2.1 and 2.3 also hold for the corresponding 
Cesaro equicontinuity concepts.’ 7 Certain of these implications are collected in 
Lemmata A.2 and A.4. For later use we note that in particular ACL,UEC 
[CL,UEC] * UACL,EC [UCL,EC] for p 2 0. 

“E.g., a.s.UACEC does in general not imply a.s.ACUEC even for compact 0. 
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Similar as in section 2 we now give a theorem that shows that the various 
Cesaro L, equicontinuity concepts coincide for different values of p under the 
following uniform integrability-type condition: 

Gnmli E(@l(d,>M))+O as M--+co, 
n-cc t=1 

(4.4) 

where d, = supese )qt(w, %)I. Note that (4.4) implies that Ed! < cc for all t 2 1 
and hence (4.4) is equivalent to sup, n-l c:= 1 E(dpl(df > M)) + 0 as M -+ 00. 

Theorem 4.1. (a) For 0 < r I p: 

ACL,EC[CL,EC] at 6’~0 * ACL,EC [CL,EC] at %‘E@, (4Sa) 

UACL,EC [UCL,EC] * UACL,EC[UCL,EC], (4Sb) 

ACL,UEC[CL,UEC] = ACL, UEC[CL, UEC]. (4.k) 

(b) Under (4.4) with p > 0 also the reverse implications in (4Sa)-(4.k) hold for 
O<rlp. 

The next theorem relates Cesdro equicontinuity-type concepts for q1 to 
corresponding equicontinuity-type concepts for Q,, = n-‘C:= 1 qt. 

Theorem 4.2. (a) If qr is a.s.ACEC [a.s.CEC], then Q,, is a.s.AEC [a.s.EC]. If 
qr is a.s.UACEC [a.s.UCEC], then Qn is a.s.UAEC [a.s.UEC]. Zf qt is a.s.ACUEC 

[a.s.CUEC], then Qn is a.s.AUEC [a.s.UEC]. 
(b) Suppose that r 2 1, or suppose that (4.4) holds for some p 2 I and 

0 I r I p. If qt is ACL,EC [CL,EC], then Q,, is AL,EC [L,EC]. If qr is 
UACL,EC [UCL,EC], then Q, is UAL,EC [UL,EC]. If q1 is ACL,UEC 

[CL,. UEC], then Qn is AL, UEC [L, UEC]. 

4.2. ULLNs based on Cestiro equicontinuity-type conditions 

In this subsection we give, as corollaries to Theorems 3.1 and 3.2, two ULLNs 
that utilize the above-defined Cesaro equicontinuity-type concepts. We then 
give results concerning sufficient conditions for the assumptions of those corol- 
laries that are easier to verify in applications. 

The in probability part of the following ULLN with O,, 3 0 corresponds to 
Theorem 4 in Andrews (1989~). The a.s. part of the following ULLN differs from 
Theorem 6 in Andrews (1989~); in particular, the a.s. part of the following ULLN 
only requires strong pointwise laws of large numbers, whereas Andrews’ The- 
orem 6 assumes a strong law of large numbers for certain suprema. 



Corollary 4.3. Let (0, p) be totally bounded, let 

n-l ,il [qr(o, 8) - Eq,(o, 0)] ---f 0 a.~. [i.p.] as n -+a, (4.6) 

for all 0~0,,, where O0 is a dense subset of 0. Let q1 be a.s.ACUEC [ACLo UEC] 
and assume that (4.4) holds for some p 2 1. Then (a) supeto (n- ’ C:= 1 [ql(o, 0) 
- Eq,(w, Q)] 1 + 0 a.s. [i.p.] as n +r*=, and (b) n-l C:=, Eq, is asymptotically 

uniformly equicontinuous. 

The above ULLN is readily obtained from Theorem 3.1, utilizing the building 
blocks provided by Theorems 2.1, 3.3, 4.1, 4.2 and Lemma A.4. Since 
a.s.ACUEC implies ACL,,UEC by Lemma A.4, the i.p. part of the theorem 
clearly also holds under the a.s.ACUEC assumption. 

Assuming qt to be UACL, EC and combining Theorems 3.2, 3.3, and 4.2 
immediately yields a ULLN, but the convergence conditions (3.1) are then not in 
the form of a law of large numbers. It turns out, however, that the proof of 
Theorem 3.2 can be readily modified to yield the following ULLN, where now 
the convergence conditions take the form of laws of large numbers. In the 
following corollary the expectations are assumed to be finite. 

Corollary 4.4. Let (0, p) be totally bounded and assume that 

n -1 sup q,(w, 0) - E sup qJo,Q) -+ 0 a.s. [i.p.] 
fkB(B’. 6r) &B(O’. 6k) 

as n-+cD, 

(4.7a) 

inf q,(w,Q) - E inf q,(o,Q) + 0 as. [i.p.] 
fJ~B(@‘,dr) CkBCO’, 6r) 

(4.7b) 

US n-x, 

for all k 2 1 and all WE@, where fik is some sequence ofpositive numbers converging 
to zero. Let qr be UACLIEC, then (a) SUP~~~I~-’ JY:=, [ql(w,O) - Eq,(w,@] ( 
+ 0 a.s. [i.p.] as n -+a, and (b) n-l I:= r Eq, is asymptotically umformly 
equicontinuous. 

We note that, analogously to the comments after Theorem 3.2, for compact 
0 the condition UACLIEC reduces to ACLIEC; cp. Lemma A.2. Furthermore, 
for compact 0 the sequence 6, in (4.7) can be allowed to depend on 0’ as can be 
seen from the proof of the corollary. We emphasize that (4.7) does not represent 
a uniform convergence condition, but simply laws of large numbers for certain 
suprema and infima of q,. 
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The following remarks discuss modifications of Corollaries 4.3 and 4.4 and 
relate those corollaries to ULLNs introduced recently in the literature. 

Remark 4.1. (i) If in Corollary 4.3 the uniform integrability-type condition 
(4.4) is replaced by (2.4a), then the part based on a.s.ACUEC still holds. This is 
seen as follows: qt is a.s.ACUEC = Qn is a.s.AUEC =- Q,, is ALOUEC + Q,, is 
ALiUEC by (2.4a) and Theorem 2.1(b), and hence 0” = EQn is AUEC by 
Theorem 3.3, observing that E 1 qt 1 < CE for all t 2 1 is maintained throughout 
this section. Consequently Theorem 3.1 applies. 

(ii) If q1 is assumed to be ACLiUEC rather than ACL,,UEC in Corollary 4.3, 
then the i.p. part holds without condition (4.4), since it then follows immediately 
from Theorems 4.2 and 3.3 that Q,, is ALrUEC and & is AUEC, observing that 
Elq,) -c co. Consequently Theorem 3.1 applies. 

(iii) If in Corollary 4.3 the condition that qt is a.s.ACUEC [ACLoUEC] is 
strengthened to a.s.CUEC [CL,UEC], then in part (b) of the corollary 
n -i CT= i Eq, is even uniformly equicontinuous. A similar remark applies to the 
modifications of Corollary 4.3 discussed in (i) and (ii) [if in (i) also (2.4a) is 
strengthened to (2.4b)]. 

(iv) If in Corollary 4.4 the condition that qt is UACLiEC is strengthened to 
UCLiEC, then in part (b) of the corollary II-’ I:= I Eq, is even uniformly 
equicontinuous; cp. Theorem 3.3. 

Remark 4.2. (i) The ULLNs in Andrews (1987) and Potscher and Prucha 
(1986a, 1989a) have been derived by the approach outlined in Corollary 4.4. 
These ULLNs transform strong [weak] local laws of large numbers, i.e., (4.7) 
into strong [weak] ULLNs. The proofs in both papers proceed by verifying the 
so-called first-moment continuity condition, which is actually, as remarked 
earlier, a first-moment equicontinuity-type condition. In the present terminol- 
ogy this condition amounts to the property that the qt are CLrEC, which is 
equivalent to UCLiEC, as 0 is assumed to be compact in those papers. Since 
UCLiEC and not only UACLiEC is verified in those papers, equicontinuity 
(which coincides with uniform equicontinuity since 0 is compact) and not only 
asymptotic equicontinuity of IZ- t CT= i Eq, is obtained. 

(ii) By essentially following the approach outlined in Corollary 4.3, Newey 
(1989) as well as Andrews (1989) obtained versions of the ULLNs in Andrews 
(1987) and Potscher and Prucha (1989a); those versions transform weak point- 
wise laws of large numbers, i.e., the weak version of (4.6) into weak ULLNs. The 
proofs in Andrews (1989) and Newey (1989) proceed by verifying explicitly or 
implicitly that the qr are ACLoUEC. 

Comparing the approaches corresponding to Corollaries 4.3 and 4.4, we see 
that the first approach, which transforms pointwise laws of large numbers into 
ULLNs, requires more uniformity in the Cesaro equicontinuity-type condition 
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than the second approach, which transforms local laws of large numbers into 
ULLNs; cp. the corresponding discussion after Theorems 3.1 and 3.2. Example 
4 in section 6 shows that the Cesaro equicontinuity-type condition UACLiEC 
maintained in Corollary 4.4 (and even UCL,EC with arbitrarily large p) is in 
general not sufficient to allow the transformation of pointwise laws of large 
numbers into a ULLN. 

For a compact parameter space, the condition in Corollary 4.4 that the 
sequence qr is UACLiEC reduces even to ACLiEC. The former condition 
represents the appropriate assumption needed to cover the case of a totally 
bounded parameter space. In contrast, in the convergence i.p. part of Corollary 
4.3 the condition that qt is ACLeUEC has to be assumed even if 0 is compact 
[and this condition also represents the appropriate assumption for the case of 
totally bounded (O,p)]; cp. the corresponding discussion after Theorems 3.1 
and 3.2. 

The assumptions of Corollary 4.3 that qt is a.s.ACUEC or ACLoUEC imply 
that q1 is ACLi UEC [since (4.4) is assumed to hold]. A potential advantage of 
the approach given in Corollary 4.4 is that it only requires the weaker Cesaro 
equicontinuity-type condition UACLiEC (or ACL,EC for compact 0) for ql. 
While various sufficient conditions are available to imply UACLiEC or even 
ACLiUEC, sufficient conditions for a.s.ACUEC seem to be scarce as discussed 
in section 4.3 below. Hence, especially in order to derive strong ULLNs, it seems 
that the approach of Corollary 4.4 is more flexible than the approach of 
Corollary 4.3. 

The assumption of pointwise rather than local laws of large numbers might be 
considered an advantage of the approach of Corollary 4.3. However, mixing 
type conditions on qt, which are usually used to imply pointwise laws of large 
numbers, will typically carry over to mixing type conditions for the local 
bracketing functions supecsce,,s,qr and infe,B,e,,ajqt; cp., e.g., Andrews (1987) and 
Potscher and Prucha (1989a) for results regarding ergodic, a-mixing or &mixing 
processes, and Pbtscher and Prucha (1991a) for results regarding L,-approxi- 
mable processes and near-epoch-dependent processes. 

The above discussion of the different degrees of uniformity in the Cesdro 
equicontinuity-type conditions maintained by Corollaries 4.3 and 4.4 explains 
why Newey (1989) had to sharpen Andrews’ (1987) local Lipshitz-type condition 
to hold globally in order to obtain a ULLN which is based on pointwise laws of 
large numbers rather than local laws of large numbers. (Recall from section 2.2 
that local Lipshitz-type conditions are in general only sufficient to imply 
UALiEC but not ALiUEC for Q, = n-l I:= 1 ql; see also section 4.3 and the 
discussion in Example 4 in section 6 below.) 

The above discussion also helps to clarify the relationships of the ULLNs in 
Potscher and Prucha (1989a) and Newey (1989). Potscher and Prucha (1989a) 
verify from their catalogue of assumptions that q1 is UCLIEC which allows, in 
light of Corollary 4.4, the transformation of strong and weak local laws of large 
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numbers into strong and weak ULLNs. Newey (1989) showed that the same 
catalogue of assumptions also allows the transformation of pointwise weak laws 
of large numbers into weak ULLNs; cp. also Andrews (1989). The latter result is 
possible since the catalogue in Pijtscher and Prucha (1989a) happens to be such 
that it not only implies that the qt are UCLrEC but even CLiUEC, as can, e.g., 
be seen from a simple modification of the proof in Piitscher and Prucha (1989a); 
see also Theorem 4.5 below. Hence also the assumptions for the convergence in 
probability part of Corollary 4.3 can be implied from the catalogue in Potscher 
and Prucha (1989a). (It is less than obvious how one would imply the assump- 
tions of the a.s. part of Corollary 4.3 from that catalogue of assumptions.) The 
ULLN given in Pijtscher and Prucha (1989a) is essentially a special case of the 
ULLN in Potscher and Prucha (1989b). It is therefore interesting to note that 
Example 4 in section 6 shows that under the weakened assumptions of the latter 
ULLN the assumption of the existence of local laws of large numbers can now 
no longer be replaced by that of pointwise laws of large numbers. 

4.3. Su@icient conditions ,for Cesciro equicontinuity and ULLNs 

Various sets of sufficient conditions are available to imply that qt is 
UACL,EC or ACL,UEC; cp. Andrews (1987, 1989c), Newey (1989), Potscher 
and Prucha (1986a, 1989a, b). In light of Corollaries 4.3 and 4.4 those conditions 
then permit the derivation of weak and strong ULLNs based on local laws of 
large numbers or weak ULLNs based on pointwise laws of large numbers. In 
contrast, the only simple and useful sufficient condition implying that q, is 
a.s.ACUEC (or more directly that n- ’ C:= 1 qr is a.s.AUEC), which - in light of 
Corollary 4.3 (or Theorem 3.1) - then permit strong ULLNs based on strong 
pointwise laws of large numbers, seems to be a Lipshitz-type condition as will be 
discussed later in this section. 

In the following we now discuss several sets of sufficient conditions for the 
assumptions of Corollaries 4.3 and 4.4. We introduce the following assumption.‘8 

Assumption 4.1. Let (z,),,~ be a stochastic process on (Q, &,P) taking its 
values in Z, where (Z, 2) is a measurable space. 

(a) Let q,(Q) = C,“=, rkr(zt)sk,(z,, Q), where the rkt are real functions on 
Z which are 5?-measurable and satisfy sup,n-‘I:= 1 E 1 rkt(z,)) < co for all 
1 I k I K. The skt are real functions on Z x 0 which are F-measurable for each 

‘*As remarked above all suprema and infima as, e.g., ~up~~~,~,,~,,q,(w, 0) are assumed to be (P-as.) 
measurable functions on 52. If q,(o, U) is of the form s,(z,, O), it is often useful to know under which 
conditions such suprema and infima are Y-measurable functions of z, (or coincide with such 
functions a.s.), e.g., to know that SU~,,~~~~,,,, f s (z, 0) is Y-measurable. This is often helpful for the 
transfer of mixing properties of the process z1 to such suprema and infima, which then allows 
straightforward verification of local laws of large numbers. Cp., e.g., Potscher and Prucha (1989a, 
p, 676) and Lemma A2 and A5 in Piitscher and Prucha (1989b). 
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8~0, and for a sequence of sets (K,) with K,EJY the families {s&,.): ZEK,, 
t 2 11, 1 < k I K, satisfy the following uniform asymptotic equicontinuity-type 
condition: 

sup lim sup sup Iskt(z, 0) - skt(z, W)( -+ 0 as 6 + 0. 
e’E@ 1-m zeK, &B(0’,6) 

(4.8) 

(b) The sequence (K,) also satisfies 

lim lim n-l i P(z,$K,)]=O. 
In+30 i n+‘x 1=1 

(4.9) 

The following theorem is deduced from Corollaries 4.3 and 4.4 by showing 
that under its assumptions qt is ACL,UEC. As a result we obtain both weak and 
strong ULLNs from Corollary 4.4, but only a weak ULLN from Corollary 4.3. 

Theorem 4.5. Assume that (0,~) is totally bounded, that Assumption 4.1 holds, 
and that (4.4) is satisfied for some p 2 1. If the weak pointwise laws of large 
numbers defined in (4.6) or the weak local laws of large numbers defined in (4.7) 
hold [If the strong local laws of large numbers defined in (4.7) hold], thenI 

G-4 supBE I n-l C:= 1 Cql(w 0) - Eq,(w @I I + i.p. Las.1 as n -+ 00, 

(b) n-l C:= 1 Eq, is asymptotically uniformly equicontinuous. [If lim in (4.8) and 
(4.9) is replaced with sup, then n-l I:= i Eq, is uniformly equicontinuous.] 

Condition (4.8) has appeared in the literature in different guises: It is a gener- 
alization of condition (Ia) in Potscher and Prucha (1989b) for noncompact 0. 
A version of (4.8) is also verified in the proof of Pbtscher and Prucha’s (1989a) 
ULLN; cp. Lemma Al in that paper. In order to generalize Potscher and 
Prucha’s (1989a) ULLN to noncompact 0, Andrews (1989~) introduced a close 
relative of Assumption 4.1, which he labeled TSE-2. However, as shown in 
Example 6 in section 6 below, Andrew’s (1989~) condition TSE-2 is not sufficient 
to allow the derivation of a ULLN, and hence the parts of his Lemma 4 and 
Theorem 5 corresponding to TSE-2 are not valid. 

Given (0, p) is totally bounded it follows from Lemma A.1 that (4.8) is 
equivalent to the (formally stronger) condition 

lim sup sup sup Iskt(z, 0) - SJZ, @)I + 0 as 6 -+ 0. 
*+Zc zeK, B’EO B&(0’.@ 

(4.8’) 

19As in Corollary 4.3 the pointwise laws of large numbers only have to hold for 0 in a dense subset 
of 0. As in Corollary 4.4 the local laws of large numbers are assumed to hold for all O’E@ and 
a sequence ak as in that corollary. 
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If 0 is compact, Lemma A.1 implies further that (4.8) as well as (4.8’) are each 
equivalent to 

lim sup sup 1 skt(z, 0) - skt(z, 8’)) -+ 0 as 6 -+ 0, V&E@. (4.8”) 
f+ m zeK, &8(0’,6) 

The equivalence of (4.8) and (4.8’) for totally bounded (0, p) explains why it is 
possible to establish that q, is ACLiUEC and not only UACLiEC in the proof 
of Theorem 4.5. (This observation is closely related to the discussion in the last 
paragraph of section 4.2.) 

In the following remark we discuss several sufficient conditions for Assump- 
tion 4.1. 

Remark 4.3. (i) Assumption 4.1(b) can usually be implied by weak moment 
conditions on the marginal distributions of z, or asymptotic stationarity as- 
sumptions on z,; see Piitscher and Prucha (1989a, b) for details. If the sets K, can 
be chosen to be compact, then Assumption 4.1(b) becomes an asymptotic 
tightness condition for the average of the marginal distributions of z,. 

(ii) Let (0, p) be a totally bounded metric space and (2, V) a metric space. 
Define the distance between two points (z, 0) and (z’, 0’) in 2 x 0 by 
max{v(z, z’), ~(8, 0’)). (Of course, this metric induces the product topology on 

Z x 0.) Let sktlK, X o denote the restriction of Sk, to K, x 0. A sufficient condition 
for (4.8) is that the families {s~~,~,,,~~: t 2 l} are asymptotically uniformly 
equicontinuous on K, x 0. (Of course, this condition is in turn implied if the 
families {skt: t 2 1) are asymptotically uniformly equicontinuous on Z x 0. 
However, except for, e.g., compact Z, this latter condition is rather restrictive.) 
For the important case where the sets K, are compact, a sufficient condition for 
the families (skt, K, v o : t 2 1) to be asymptotically uniformly equicontinuous on 
K, x 0 (which coincides with uniformly asymptotically equicontinuous since 
K, x 0 is totally bounded w.r.t. the above metric) is that for all Z’EZ 

sup lim sup I&Z, 8) - S&Z', @)I -+ 0 as S + 0, 
B’E@ t-r, (z,B)EB((z',B'),@ 

where B((z’, 8’), 6) is the open ball with center (z’, 0’) and radius 6 in Z x 0; cp. 
Lemma A.5.” 

“‘Lemma A.5 actually shows that the sufficient condition can be slightly weakened to: for all 
ZIEK, 

sup iG sup 1 s& 0) - s&‘, @) ( + 0 as 6 + 0, 
WEB I-n? (Z.B,EB’(,i’.W,.d, 

where B*((z’, fl’), 6) is the open ball with center (z’, 8’) and radius 6 in K, x 0. 
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(iii) Let 0 be compact and let (Z, v) be a metric space. Then condition (4.8) 
reduces to condition (4.8”). Suppose further that the sets K, are compact: Then 
similar as in (ii) a sufficient condition for (4.8”) and hence for (4.8), is in view of 
Lemma A. 1 that the families {skrlK, X @: t 2 1) are asymptotically equicontinuous 
on K, x 0. This in turn is clearly implied by the condition that {skt: t 2 l} is 
asymptotically equicontinuous on Z x 0, i.e., for all (z’, B’)EZ x 0 

lim sup 1 skt (z, 6) - s&‘, 6’) 1 + 0 as 6 + 0. 

f-cc (r,O)~B((z’,0’),b) 

Piitscher and Prucha (1989a) used the slightly stronger condition that {skr: 
t 2 1) is equicontinuous on Z x 0 as a basic assumption of their ULLN. 

(iv) Clearly, if the averages of the marginal distributions of z, are tight and if 
(4.8) - or any of the sufficient conditions given in (ii) and (iii) - holds for any 
compact set K,, then Assumption 4.1 holds. 

A further sufficient condition for the basic condition in Corollary 4.3, namely 
that q1 is ACL,UEC, is Andrews’ (1989~) condition TSE-1. This condition may 
be useful for certain processes but only applies to processes with a limited degree 
of heterogeneity. To see this, consider the following example: Suppose the 
process z, satisfies P(z, = e,) 2 LX > 0 for all t 2 1, where e, is a sequence such 
that e, # e, for t # s. Then TSE-1 is violated as is easily seen by choosing 
A, = (e,, e,+ 1, . . . } in TSE-1.” This example also shows that TSE-1 cannot 
be inferred from simple moment conditions on z,. 

Next we discuss how Lipshitz-type conditions can be employed to establish 
ULLNs. This discussion draws on section 2.2, which shows how Lipshitz-type 
conditions can be used to imply equicontinuity-type conditions for random 
functions. 

Observe that, whenever qt satisfies a global or local Lipshitz-type condition 

with Lipshitz bound b,, then clearly Qn = n- ’ C:= 1 qt satisfies the global or 

local Lipshitz-type condition (2.6) or (2.8) respectively, with Lipshitz bound 
B, = n-lC:= 1 b,. The equicontinuity-type conditions on Qn in Theorem 3.1, i.e., 
a.s.AUEC or ALOUEC, then follows if qr satisfies a global Lipshitz-type condi- 

tion with Lipshitz bound b, and if J3, = n-r C:=, b, satisfies (2.7~) or (2.7b). 
A ULLN based on pointwise laws of large numbers can now be obtained 
directly from Theorem 3.1. [Alternatively, the Cesaro equicontinuity-type con- 
ditions on qr in Corollary 4.3, i.e., a.s.ACUEC or ACLo UEC, follow if qt satisfies 
a global Lipshitz-type condition with Lipshitz bound b, and B, = IZ- ’ C:= 1 b, 

‘IOf course, we assume that {e,}EZ. More generally TSE-1 is violated if z, is such that 
f?(z,~E,) 2 a: > 0 for all t 2 1 where E,E~? is a pairwise disjoint sequence; to see this put 

‘%I= U,,, E, in TSE-1. 
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satisfies (2.7~) or G,,, n-l C:=lP(b, > M) -+ 0 as M + CO. A ULLN based 
on pointwise laws of large numbers can then be obtained directly from Corol- 
lary 4.3.1 

Furthermore, the Cesdro equicontinuity-type condition on qr in Corollary 4.4, 
i.e., UACL,EC, follows if qr satisfies a local Lipshitz-type condition of the form 
(2.8) with Lipshitz bound b,, where v does not depend on 8’, and 
B,(&) = 11-r ‘JS:=, b,(&) satisfies (2.10a) with p = 1. [As noted in Lemma A.2, if 
0 is compact, UACLrEC reduces to ACLrEC, and then it suffices to verify 
a Lipshitz-type condition of the form (2.8) where r] may now depend on Q’, and 
the simpler condition (2.9a) for B,(B’) = rz-rC:=, b,(@).] A ULLN based on 
local laws of large numbers can then be obtained directly from Corollary 4.4. 

Global Lipshitz-type conditions have been used in Andrews (1989~) and 
Newey (1989) and local Lipshitz-type conditions have been used in Andrews 
(1987), respectively, to derive ULLNs. 

4.4. ULLNs based on a truncation approach 

Apart from Lipshitz-type conditions another sufficient condition for 
Q. = n- ’ C:= I qt to be a.s.AUEC would be Hoadley’s (1971) assumption that 
q1 is as. uniformly equicontinuous (which for compact 0 coincides with a.s. 
equicontinuity on 0). But, as discussed in Andrews (1987) and Piitscher and 
Prucha (1986b, 1989a), this condition is very restrictive for typical applications. 
(Observe that the condition that the sequence qt is a.s. uniformly equicontinuous 
is far more restrictive than the condition that q1 is a.s. Cesaro uniformly 
equicontinuous or that Q,, = n- ’ C:= 1 qr is as. uniformly equicontinuous.) 
However, this is not necessarily the case if the a.s. uniform equicontinuity 
assumption is made for suitably truncated versions of the qt. Pijtscher and 
Prucha (1986b, 1989b), motivated by this observation, introduced a general 
truncation device that gives conditions under which ULLNs for truncated 
versions of qt imply a ULLN for the functions qt themselves. We emphasize that 
the truncation device depends only on the existence of a ULLN for the truncated 
versions of the qt (and not on the particular catalogue of sufficient conditions from 
which it may have been derived); cp. Potscher and Prucha (1989b, lemma 1). 

The ULLN given as Theorem 2 in Potscher and Prucha (1989b) assumes that 
0 is compact and that the truncated versions of q1 are a.s. equicontinuous on 
@.** The proof of that ULLN proceeded by first verifying a ULLN for the 
truncated versions of q1 along the lines of Corollary 4.4 and then by applying the 
truncation device. The truncation device only assumes that 0 is a metric space 
and hence does not rely on the compactness of 0. Therefore we can use the 

“The following discussion relates to the version of that theorem which maintains Assumption 2’ 
of that paper. 



truncation device and Corollary 4.4 to obtain a version of Theorem 2 in 
Potscher and Prucha (1989b) for totally bounded 0, if we assume that the 
truncated versions of q1 are a.s. uniformly equicontinuous on 0. In the following 
we now develop variants of that theorem based on pointwise and local laws of 
large numbers using the truncation device and Corollaries 4.3 and 4.4. 

More specifically, assume that (z,),,~ is a stochastic process on (Q,,B?, P) 
taking its values in Z, where (Z, Y) is a measurable space. Furthermore, let 
ql(0) = s,(z,, O), where each s, is a real function on Z x 0 which is Y-measurable 
for each 8~0. For a sequence of sets (Km),,,,% with K,E%~ let 

.G,,,,(G 0) = .s,(z, @lK,Jz), let d,., = supBE~/.&, e)l,,(z,)l, and let d,,,., 

=suPeeol&(& @lZ-K,(G)I. 

Assumption 4.2. For a sequence of sets (Km)meFb with K,EY let for each rnEN 

the sequence of random functions s,., (z,, Q) be a.s.UAEC. Furthermore let 

lim lim n-l i Ed,,,,, = 0, 
m-3, ,I-* 1=1 

(4.10) 

and let d,,,., satisfy a weak [strong] law of large numbers for each mcN. 

Theorem 4.6. Assume that (0, p) is totally bounded, that Assumption 4.2 holds, 
and that (4.4) is satisfied.for some p 2 1. Given that-for each rnEN the sequence 

s,,,(z~, 0) satisjes weak [strong] pointwise laws of large numbers or weak [strong] 

local laws of large numbers, then:23 

(a) supeGO / n-l I:‘= I [qt(m, 0) - Eq,(o, Q)] ( -+ 0 i.p. [a.s.] as n + ‘x), 

(b) n-l C:= I Eq, is asymptotically un$ormly equicontinuous. [If lim in (4.10) is 

replaced with sup, and if a.s.UAEC in Assumption 4.2 is replaced by a.s.CJEC, 

then n-l C:= I Eq, is uniformly equicontinuous.] 

Remark 4.4. (i) The part of Theorem 4.6 based on pointwise laws of large 
numbers also holds if condition (4.4) is replaced by (2.4a) and if Ed, < CE for 
all tEN is assumed. (This can be shown by using Theorem 3.1 rather than 
Corollary 4.3.) 

(ii) In view of Lemma A.2 the condition that st.,,(zt, 0) is a.s.UAEC clearly is 
equivalent to a.s.AUEC since (0, p) is assumed to be totally bounded. For 
compact 0 it is even equivalent to a.s.AEC on 0; cp. Assumption 2’ in Potscher 
and Prucha (1989b). If 0 is compact, the part of Theorem 4.6 based on local 

*%p. footnote 19. We also note that the dense subsets on which the pointwise laws of large 
numbers for s!,, are assumed to hold may depend on m. 
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laws of large numbers also holds if a.s.AEC on 0 is weakened to a.s.AEC at 0 
for all IYE@; cp. also Assumption 2 in Pijtscher and Prucha (1989b). 

(iii) Condition (4.8) applied to s,(z, 0) is sufficient for st,,(zt, 0) to be a.s.UAEC. 

(iv) If only asymptotic uniform equicontinuity of n- ‘C:= 1 Eq, has been 
deduced from Theorem 4.6, uniform equicontinuity can be obtained by showing 
that n-l Cr= i Eq, is continuous for each nEN; cp. Remark 2.3. (Of course, this 
continuity follows if n-lC:= 1 q1 is assumed to be continuous and a uniform 
integrability condition holds.) 

We note that Theorem 4.6 maintains the assumption that a law of large 
numbers holds for d,, ,,,<. That is, similarly as in Theorem 6 of Andrews (1989c), 
we need in the above theorem the assumption that a law of large numbers holds 
for certain suprema, even if the theorem is based on pointwise laws of large 
numbers. 

5. Compactness versus total boundedness 

Uniform convergence results formulated for totally bounded and not only for 
compact parameter spaces are clearly convenient, as in applications parameter 
spaces of interest may, e.g., not be closed (as subsets of Euclidean space). In this 
section we show, however, that from a mathematical point of view uniform 
convergence results on a totally bounded parameter space are not really more 
general than those on a compact parameter space. More precisely, recall from 
Theorem 3.1 that (given Q,, is AUEC) for totally bounded (0,~) a.s. [i.p.] 
pointwise convergence of Q-Q,, to zero on a dense subset of 0 plus a.s.AUEC 
[ALoUEC] of Q,, is equivalent to a.s. rip.1 uniform convergence of Qn - Qn to 
zero.24 In the following we show that for a totally bounded parameter space it is 
always possible to extend the given functions Q,, and Q” to a larger compact 
space in such a way that these equicontinuity-type conditions as well as the 
pointwise convergence property carry over to the extended functions on the 
larger and compact parameter space. That is, whereas the formulation of 
uniform convergence results in terms of a totally bounded parameter space is 
convenient, such results do not really cover a wider class of problems than 
uniform convergence results that assume a compact parameter space. 

Recall the following elementary facts about metric spaces [see, e.g., Royden 
(1968)]: Every metric space (0,~) can be isometrically embedded into a com- 
plete metric space (O*, p*) as a dense subspace. (O*, p*) is unique up to 
isometries and is called the completion of (0, p). If we identify 0 with i(O), 

24The assumption that f& is AUEC is no restriction of generality, as we can always replace Q. by 
Q. - 0” and set 0” equal to zero. 
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where i: 0 + O* is the isometric embedding, then we can view 0 as a subspace 
of O*. If (0, p) is totally bounded, then (O*,p*) is compact. 

Lemma 5.1.25 Let (0, p) be a totally bounded metric space and let Q,, be 

a.s.AUEC on 0 [AL,UEC on 0 for some p 2 01. Then there exists an extension 
Qz: nx O* + R which is a.s.AUEC on O* [AL,UEC on O*], and is sZ- 
measurable .for each 0 E 0 *. 

Clearly, it follows from the above lemma (as a nonstochastic special case) that 
if Qn is asymptotically uniformly equicontinuous on the totally bounded space 
(0, p), then there exists an extension 0:: O* + R which is asymptotically 
uniformly equicontinuous on O*. Also the convergence of Q.(0) - Q,,(e) -+ 0 
a.s. [i.p.] for 0 belonging to a dense subset O0 of 0 automatically implies that 
Q,*(0) - Q,*(d) + 0 a.s. [i.p.] on a dense subset of O*, since O,, is also dense in 
O*. Hence all assumptions maintained by Theorem 3.1(a) for Qn (and Qn) on 
0 also hold for the extended functions Qz (and Qz) on O*. Thus, whenever 

sul&, 1 Q,(0) - Q,(e) 1 + 0 as. [i.p.], then also sup,,,. 1 Q:(8) - Q:(0) 1 -+ 0 a.s. 
[i.p]. Hence uniform convergence on a totally bounded parameter space can in 
principle always be reduced to uniform convergence on a compact parameter 
space. 

Lemma 5.1 clearly is similar in spirit to the well-known fact that any uni- 
formly continuous function on a metric space can be extended to the completion 
of the metric space as a uniformly continuous function. 

6. Counter examples 

Example 1: Let 0 = 52 = [0, 11, let P be the Lebesgue measure, and 
let Q.(w, (3) = lrsi(w). Then Qn is UL,EC (for all p 2 0) as 
~up~,~~sup~Esup,,,~,,,~,1 Q,(O) - Q,,(O’)lP I 26. Although 0 is compact, Qn is 
not AL,UEC for any p 2 0 since we have s~p~~~~sup~~~~~~,~~~ Q,,(O) - Q,,(e) 

= 1. Furthermore note that Q,(0) + 0 as. for each BE@, since Q,,(e) = 0 a.s. for 

;;sBg@, but supe,olQ,(@l = 1, and hence no uniform convergence result 

Also the following a.s. continuous version of the above example is UL,EC but 
not AL,UEC: Let f(x) = 1 - Ix 1 for Ix I I 1 and f(x) = 0 else and choose 

Q&J, @ =A@ - 0). I 

Example 2: Choose 0 = [w with p as the usual metric, Q,, nonrandom, 
Qn(0) = nf(0 - n), where f is defined as in Example 1 above. Then Q,, is not 
a.s.AUEC (and hence not UL,EC since Q. is nonrandom), but Q. is a.s.UAEC 

*‘Q.* is an extension of Q. in the sense that Q.*(w, /3) = Q.(w, 0) holds for all (CO, O)~l2 x 0. 
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(which coincides here with UAL,EC since Q,, is nonrandom). Furthermore each 
Q,, is a.s. uniformly continuous (which coincides here with L, uniform continuity 
since Q,, is nonrandom). The fact that (0, p) is not totally bounded is essential in 
this example in view of Remark 2.l(ii). 1 

Example 3: Let 2, be bounded in probability and satisfy lim,,, Iu 12, I = co a.s. 
[e.g., Z, is i.i.d. N(0, l)], 0 = [a, b], Q,(0) = BZ,. Then Qn is not a.s.AEC at any 
19’, but Q,, is L,UEC on 0 (and even L,UEC if sup,El Z,Ip < co) since 

suPnP(suPeW suPeEB(W, 6) IQ,,(e) - Q,(@)i > E) I sup,P( IZ,I > c/d) --f 0 as 6 -+ 0 
in view of the assumed boundedness in probability. (Note that each Qn is of 
course continuous in e for all IX~.) 1 

E.xample 4: Let 0 = Z = Q = [0, 11, let P be the Lebesgue measure, put 
zt(o) = w, and qt(z,, e) = l~sj(w). Hence Q,(0) = K’C:=, qf(zrr 0) = lIoI(w). 
From Example 1 we know that Q,, is UL,EC for all p 2 0, but not AL,UEC. 
(Since qr is independent oft, it follows that qt is UCL,EC but not ACL,UEC.) 
As noted in Example 1, Q,(0) = n-‘C?, qt(z,, 0) + 0 a.s. as n -+ x for each 
8~0, i.e., the q, satisfy pointwise laws of large numbers since Eq,(z,, 17) = 0. 
However, as pointed out in Example 1, neither a weak nor a strong ULLN holds 

since SUP,M I Q,(@ - EQ,dB) I = supBEO I Q,(d) I = 1 for all WEG! 
The given example clearly satisfies Assumptions 1, 2, 3 and 4(b) in Potscher 

and Prucha (1989a) with K, = Z = [0, 11. Since no ULLN holds it follows from 
Theorem 2 in Potscher and Prucha (1989a) that the bracketing functions q? and 
q,* do not satisfy (weak or strong) laws of large numbers. This example hence 
shows that in Theorem 2 in Potscher and Prucha (1989a) the assumption of the 
existence of local laws of large numbers cannot be replaced by the assumption of 
the existence of pointwise laws of large numbers. The example also satisfies all 
assumptions of Andrews’ (1987) ULLN based on Lipshitz-type conditions 
[with, e.g., h(x) = xli2] except the local laws of large numbers. This shows that 
the Lipshitz-type conditions have to be assumed to hold globally in order to 
imply a ULLN from pointwise laws of large numbers. 

The example exploits the fact that Assumption 2’ (and even an asymptotic 
version of this assumption) but not Assumption 2 in Potscher and Prucha 
(1989a) is violated, i.e., the null sets, on which equicontinuity fails, depend on 
d.26 

The next example shows that it is possible that the assumptions for the i.p. 
part of Corollary 4.4 are satisfied (and hence that a weak ULLN holds), but that 

261f q,(z,, H) is defined as c~,l~,~(to) with u,EW, a, > 0, a, + 0, then Assumption 2’ of P6tscher and 
Prucha (1989a) still fails. However, in this case a strong ULLN holds, since Assumptions 1,2,3,4(a), 
4(b) in Piitscher and Prucha (1989a) are satisfied. Note that in this modified example an ‘asymptotic’ 
version of Assumption 2’ holds. 



no strong ULLN holds despite the existence of strong pointwise laws of large 
numbers. 

E.uamylr 5: Let 0 = R = [IO. l], let P be the Lebesgue measure, qt(o, 0) = 
a,(~)l~,~(to), where N, satisfy 0 I o, 5 1 and rz-‘C:= L(7, + 0 i.p. but not a.~.; 
clearly such a sequence exists. Since Ey,(ru, 0) = 0 and SUP,~~ 1 n- ’ C:=, q,(o), ti)\ 
= (n - ’ )-;; 1 uI(w))sup@,@ 1 ,#;((‘I) = tr- y:_ 1 a,(w) it follows immediately that in 

this example a weak but not a strong ULLN holds. Clearly q,(co, 8) satisfies 
a strong law of large numbers for each 8, as y,(w, 0) is a.s. equal to zero for each 
0. Furthermore y,(c~>. 0) satisfies weak local laws of large numbers since 

SUP&,@, _d.@’ + &4,(W 0) = 44 I,,. - 6.8’ +&) I q(w) and info,,,. _& s,+a,~t(~~~. 0) = 0. 
Clearly, q,(w.O) is also IJCL,EC for all p 2 0 and hence all ass‘umptions of the 
i.p. part of Corollary 4.4 are satisfied. 1 

The following example shows that Theorem 5 in Andrews (1989~) is incorrect; 
cp. the discussion after Theorem 4.5. 

E.umplr 6: Choose Z = (0) u { c1 j: igh) ” { -a-‘: iEN) and 0 = {co-‘: 
&NJ il ’ ~ ca ‘I: ;EN~ I, with u > 
;‘, is i.i.d.‘with P(<, = I) = P(C:, = 

2 and c’ = (n + 1)/(2(z). Let z, = a-‘<,, where 
- I) = l/2. Define y(;, 0) = sign(zl/( ::I - 0) 

for z f 0 and q(O,t?) = 0. Observe that the points in 0 are the midpoints of 
adjacent points in Z. Hence 0 and Z arc disjoint and y(z, 0) is well-defined on 
Z x @. Clearly, 0 (with the standard metric) is totally bounded. Furthcrmorc, 

Eq(z,. H) = 0 for all HE@ since 5, is symmetrically distributed and q(. ,8) is 
antisymmetric. Observe that for each 8 = & cli- ’ we have jl zrI - 111 z 
(a - 1)/(2n” ‘1 > 0 for all 1. Hence the variance of y(;,, U) is bounded in f for 
each HE@. Therefore q(zl, 0) satisfy strong pointwise laws of large numbers as 
the conditions of Kolmogorov’s strong law of large numbers are satisfied. Next 
observe that supflEti ly(:, 0)l = 2a”’ !(u - 1) if L’ = -f II j and sup,,,lq(O, U)I - 
=O. Therefore. lim,3,,, n- ‘I:= I Erl,l(d, > &I) = lim,, I, 11 ’ x:f.cn:‘2a’ ’ ‘;((J - I) 
=O, where L(M) is the smallest integer such that Lag 7 L(.W’+2/(~ - I) > :$I. This 
shows that the domination condition DM in Andrews (1989~) is satisfied. Next 
we show that also Assumption TSE-2 in Andrews (1989c) is satisfied: Put k’ = I, 
rkr = 1, sk, = q, and choose Ci = (0: v CO-‘: i <_j)- v : - Ci: i l.ji, which arc 
clearly compact, nondecreasing, and whose union is Z. By construction of Z and 
0 we have for each I = + (I-’ that inf,,, I/z/ - HI 2 ((I - 1)~(2a”‘) > 0. Hence 
q(-_, .) is uniformly continuous on 0 for any given z Z 0. [Of course r/(0, .) is also 
uniformly continuous on 0.1 Since Cj is finite, q(z? .) is continuous in 0 uniformly 
over 8~0 and -_EC~. Hcncc Assumption TSE-Z(a) is satisfied. Assumption 

TSIJ-2(b) holds trivially. Assumption TSE-2(c) is satisfied if we choose Fj = 2 
since Z is compact. Consequently, all assumptions in Theorem 5 in Andrews 
(1989~) are satisfied but a IJLLN does not hold as is seen from the following 
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argument: 

A, = sup n-r i [q(z,, 0) - Eq(z,, g)] = sup n-r i &/(a-’ - 0) 
BE0 1=1 I I OE@ r=1 

since for any n 2 1 the map x + n- ‘C:= 1 &/(a-’ - x) is continuous in a neigh- 
borhood of zero and since zero is a limiting point of 0. From a > 2 we have that 
d - C:r:a’ = ~“(a - 2)/(a - 1) + a/@ - 1) > 0. Hence A, 2 K1 lun - IC:Z:&u II 
~~-1~~“-~~~,‘u’~=n-1~u”(u-2)/(u- l)+u/(a- l)} +ooasn + co. 1 

Appendix 

Lemma A.I. Let (Y, d) be a metric space, let X be a set, let&: X x Y + R for 
j 2 1 be a sequence offinctions, and let B(y’, 6) = {ye Y: d(y, y’) < 6). Consider 
the following conditions: 

(1) limj,m supxox suPy,EY suPYsB(y’,G) Ifj(x, Y) -fj(x, Y’II + 0 as f3 + 0, 

P-1 suPy*~r limj+m suP,,x suPye~(y,, 6) lfjCx, Y) -fj(x, Y’ll + 0 as 6 + 0, 

(3) limj,m sup,,xsupyEB(y’,6) Ifj(x3 Y) -fj(x? Y’) I + o us 6 + Ofor u11 y’E y. 

We then have: 

(4 (4 = (2) * (3). 

(b) If ( Y, d) is totally bounded, then (1) o(2) * (3). 

(c) If Y is compact, then (I) o (2) o (3). 

(If lim is replaced by sup, then the analogous implications hold also, and (I) and (2) 
coincide trivially.) 

Proof The implications (1) =S (2) =S (3) are trivial. We first show (3) =S (1) 
for compact Y. From condition (3) we have that for every n > 0 and y’~ Y 

there exists a 6(r], y’) > 0 such that for 0 < 6 I 6(q, y’) we have limj,, 
sup,,x supyoB(y’,@ lfj(x, y) -fj(X, y’)I < 9. Hence there exists an index 
m(y’, 6(q, y’)) such that for each y’~ Y, m 2 m(y’, 6(n, y’)), and 0 < 6 I 6(q, y’) 

suP suP suP IfjCx2 Y) -fj(x9 Y’II < VI, (A.11 
jzm XEX ysB(y',d) 
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observing that the expression on the 1.h.s. is monotone in 6. By compactness of 
Y we can find finitely many open balls B(y:, 6(~, y9/2), 1 I i I K = K(q), 
covering Y. Define S(q) = min{6(?, yf): 1 I i I K). Then we have for all j~kJ 
and all XEX, y’~ Y: 

sup IV&% Y) - h(X> Y’) I 5 2 sup I&> Y) --fjk Y9L 
FB(y’.m/2) I I 

Y~B(Y,,~(v,Y~)) 

where i is an index for which d(y:, y’) < 6(~, y:)/2, observing that d(y, y’) < 
6(v])/2 and d(y’,, y’) < 6(~, y;)/2 imply d(y, y;) < a(~, y;). Hence for all jEN, 

sup sup sup I .m Y) - h(x, Y’) I 
Y’EY x6X YEB(Y’,WI)/~) 

I 2 sup max sup Ihk Y) -hcG Y2l. 
XEX 1 5 i 5 K ysB(y:,d(q,y;)) 

Now choose m 2 max{m(y;, 6(~, yi)): 1 I i I K(q)}. It then follows from (A.l) 
that 

lim sup sup sup I h(X> Y) - .m Y’) I 
j-cc Y’EY XEX ysB(y’,d(q)/2) 

5 2 sup sup max sup I fjk Y) -fj(% Y’i)l 5 h. 
j> m xcX 1 s is K ycB(y:,S(q,y))) 

This establishes condition (1) observing that the 1.h.s. of the last inequality does 
not increase if J(q)/2 in that expression is replaced by some 6 I 6(~)/2. This 
proves the claim for Y compact. That the implication (2) =z- (1) also holds for 
(Y, d) totally bounded can be shown analogously, observing that 6(~, y’) can 
now be chosen independently of y’ and hence a finite cover of balls B(y:, 6(~)/2) 
exists. The proof for the claim in the parenthesis is analogous. 1 

Lemma A.2. (a) Let (0, p) be a totally bounded metric space. Then Qn is 
a.s.UAEC on 0 o Q,, is a.s.AUEC on 0. 
(b) Let (0, p) be a compact metric space and p 2 0, then: 

(bl) Q,, is AL,EC [L,EC] on 0 o Qn is UAL,EC [ULpEC] on 0. 
(b2) Q. is a.s.AEC [a.s.EC] on 0 o Q, is a.s.VAEC [a.s.UEC] on 0 o Q,, is 

a.s.AUEC [a.s.UEC] on 0. 
(b3) q1 is ACL,EC [CL,EC] on 0 o q1 is UACL,EC [UCL,EC] on 0. 
(b4) q1 is a.s.ACEC [a.s.CEC] on 0 o qr is a.s.UACEC [a.s.UCEC] on 0. 

Proof: Parts (a) and (b2) follow easily from Lemma A.1 choosing X as a set 
containing exactly one element. To prove (bl) we first show that 
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AL,EC * UAL,EC for p > 0. Given Qn is AL,EC, then for every u > 0 and 
@E@ there exists a S(q, 0’) > 0 and an index m(B’,S(q, 0’)) such that for each 
WE@, m 2 m(B’, S(q, W)), and 0 < S < S(q, 0’) 

sup E sup I Q,W - Qn(@)V’ < YI, 64.2) 
n>m &8(8’,6) 

observing that the expression on the 1.h.s. is monotone in 6. By compactness of 
0 there are finitely many open balls B(&, S(q, &)/2), 1 I i I K = K(q), covering 
0. Define S(q) = min{S(q, 0:): 1 I i I K}. Then we have for all HEN and all 
ek 0: 

sup I Q,(e) - QJe’) lP < 2Pf l 
~EB(B’, 601)/2) 

,,,,,sU& e,,)) I Qm - QnW IP, 
I. .I 

where i is an index for which p(&, 0’) < S(r], &)/2. Hence for all nsN and iYE@, 

E 8EBt;uEV),2) I Qm - QnW lP 

5 2p+’ max E 
l<isK 

(A.3) 

which implies that for all 8’EO and all m 2 1, 

lim E 
n-m 

e.Bsusq,,,z, I QtIv4 - QnW) IP 

< 2p+1 max sup E ,,,,,suj~~ B!)) I Q.H - QnUU 1’. (A.4) 
lsisKn2m 2) 3, 

Now choose m 2 max{m(B:, S(q, 0:)): 1 I i I K(q)}. It then follows from (A.2) 

and (A.4) that SUP~.~~ lim,,, ESUPB~B(B*,~(~J/Z) 1 Q,(e) - Q.(@) 1’ I 2’+ +I. Since 

the latter inequality obviously holds also with S(q)/2 replaced by any smaller 
S we have established UAL,EC. The proof of the implication L,EC = UL,EC 
is identical except that (A.2) now holds for all m 2 1. The reverse implications 
UAL,EC * AL,EC and UL,EC = L,EC hold trivially. The case p = 0 as 
well as parts (b3) and (b4) can be shown analogously. 1 

Proof of Theorem 2.1. (a) Follows from Lyapunov’s and Markov’s inequality. 
(b) It suffices to give the proof for r = 0. Assume that Qn is AL,EC at 0’. Choose 

E > 0 and M such that lim,,, E(D;l(D, > M)) < 2-p- ‘c and define Z,(S) 

= SUPMW, 8) I Q,(e) - Q,d@) I ‘. Then lim,+ m ESUP~SB(W, 6) I CM@ - Q,d@) 1’ I 

lim,,,EZ,(S)l(Z,,(S) 5 F) + lim,,, EZ,(S) l(Z,(S) > E) I E + 2P+11im,,,ED,Px - 
l(Z,(S) > s,D,, > M) + 2p+‘lim,,,ED~1(Z,(S) > E,D,, I M) I2c + 2p+1Mpx 

lim n_m P(su~~,~(~,,~) I Q,(e) - Q,(&) 1 > E) < 3~ if S is small enough. Hence Q. is 
AL,EC at 0’. The proof for all other cases is analogous. 1 
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Proof of Ascoli-Arzeld’s Theorem. Without loss of generality we may put 
c = 0. (a) Choose E > 0. Then there exists a 8(~) > 0 such that for 0 < 6 5 6(s) 

we have lim,,, sup~.~0 sup~~i1(0,.6) If,(e) -.fn(H’)I < 8. Let &, 1 5 i I K = K(E), 
b_ such that the open balls B(f$, 6(c)/2) cover the totally bo_unded space 0. Find 
BisOo such that p(f$, fIi) < 8(~)/2. Then the open balls B(fIi, 6(c)) also cover 0. 
NOW for every 8~0 there exists a si such that for all neN: 

I f,(W I c suPfkB(B,.~(,)) I f,(@ -f,C&)l + I .LC&)l and _hence SUPW I ,L(@ I 
maxl L i 2 ~suPf~~~@,,d(~)j lf,(@ -.fn(ei)l + maxi s is Kl_L(ei)l 5 SUPB,~OSUPB~B(B,,~(~)) 
I.fJ@ -&(@)I + maxi s is K If,(gi)j. This proves 0 < lim,,, supRtO I fn(8)l < e 

sincef,(Bi) converges to zero by assumption. (b) Asymptotic uniform equicon- 
tinuity follows from supe,Ee ~~PH~B(H,,~) If,(@ -f,(Wl I 2 suck I f,(e) I, the rest 
is trivial. 1 

Proof‘ of Theorem 3.1. For the as. part of (a) observe that, since (0,~) is 
separable and metric, we can find a countable subset Or of O0 which is also 
dense in 0. Since 0, is countable we can, after exclusion of a common 
exceptional null set, assume that for each o outside this null set Qn(m, 0) - Q,(H) 
satisfies all the assumptions of AscolikArzela’s Theorem with Or in place of 00, 
and hence the result follows from that theorem. Also the a.s. result in (b) follows 
immediately from Ascoli-Arzela’s Theorem. The i.p. part can be proved sim- 
ilarly; cp. also Andrews (1989c, proof of theorem l), observing that 8j can be 
chosen to belong to OO. 1 

Proqfqf Theorem 3.2. The proof is similar to the argument given in Potscher 
and Prucha (1989a, p. 681) and Andrews (1987, pp. 1469-1470). Since Qn is 
UALr EC, for every Y) > 0 and O’E@ we can find a S(q) > 0 and an n(B’, V)E N 
such that EsuP~~~(~,.~, / Q,,(0) - Q.(H’) 1 < v for all 0 < 6 I 6(q) and n 2 n(19’, q). 
Choose 6, I 6(q) such that (3.1) holds. Since 0 is totally bounded there exist 
finitely many O:, 1 I i 5 K = K(q), such that the open balls B(&, 6,) cover 0. 
For each ~‘EO choose 0: such that H’EB(&, S,), then we have for all HEN: 

inf~EBce;.a,,QnW - Ei&Bt~;.~kj Qn(@ + Einfo,Bo~.a,~Q,(~) - FsupetB(~, a,,Qn(@ 
5 Qn(H’) - EQ,(@) I su~~~B,~,.~kjQn(@ ~ Esup M& s,,Q,(@ + Esu~,,,&rijQn(@ 
- EnkB,~;,~,,Q,(@). F or n < n,(q) = max{n(&, I;): 1 I i I K} and all 0’1~0 

it now follows: mm1 $ i $ K{infet~(~;.6r,Q,~(e) - EinfO..,,;.,,,Q,(@} - 2~ I Q,(@) 
- EQ,(e’) I max I < i < KC~~PBEB(H;,G~JQ~(O) - EsuP,,~(t~;,~~)Qn(fl)) + 2~. For 

n 2 no(q) we hence have supBEe I Q,(H) - EQ,,(B) I I A, + 2~, where A, = A,(q) 
converges to zero a.s. [i.p.] as PI + x as a consequence of (3.1). The claim now 
follows since Y) was arbitrary. 1 

Proof qf Theorem 3.3. Obvious. 1 

Lemma A.3. Let (2.4~) holdjbr some p 2 1 and let supBE I Q,,(e) - Q,,(e) I + 0 
as. [i.p.] as n -+ CC, where Q,, = EQn. Then ,for any nonempty subset B c 0 
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we have 

sup Q,(0) - Esup Q,,(e) -+ 0 a.s. [i.p.] as n + co, 
8SB BEB 

(ASa) 

inf Q,(e) - Einf Q,,(0) + 0 a.s. [i.p.] as n + 00. (A.5b) 
BGB OSB 

Proof: Note that in view of (2.4a) the expectations EsupBEBQn and EinfseBQn 
are finite and hence SUP~~BQ,, and infsee Q,, are as. finite, except possibly for finitely 

many n. Clearly, ~SUPO~BQ~ - SUPO,BQ~/ I SUPBEB~ Qn - !%I I sups IQ" - onI 
and I inb,,Q, - in&&, I I w&B I Qn - on I I supeEo I Q,, - o,, I. Consequently, 
I E WPO~B& - SUPO~B& I I E I SUPMQ~ - SUPO~B& I I E SUPm I Qn - &I and 
lEinfesBQn- infooBk I Eli&BQn-~&tB~nI i E supBEe Qn- onI. The 
conclusion of the lemma now follows from the above inequalities and the 
triangle inequality if we can show that E supBEe I Qn - Q,, I + 0 as n -+ co. Since 
sup,,, I Qn - Qn I -+ 0 a.s. [i.p.] as n + co, this is the case if we can establish that 

lim,,, EC,, l(C, > M) --+ 0 as M -+ co, where C, = supBE I Qn - Q,, 1. Now 

observe that (2.4a) implies lim,,, ED, < co. Also lim,,, EC,l(C, > M) 

I lim,,, E[(D.+ ED,)l(D,+ ED,> M)] I lim,,,E[(D.+ ED,)x 

l(Dn > M’)] for any M’ < M - lim,, co ED,,. Hence 0 I lim,,, EC,, x 

l(C, > M) < lim,,,ED, l(Dn > M’) + lim,,,ED,El(D, > M’) + 0 for 

M’ -+ cc because of (2.4a). 1 

Lemma A.4. (a) qt is a.s.ACEC [a.s.CEC] on 0 j qt is ACLoEC [CLoEC] on 
0, (b) q, is a.s.UACEC [a.s.UCEC] on 0 =S q1 is UACLoEC [UCLoEC] on 0, 
(c) qt is a.s.ACUEC [a.s.CUEC] on 0 =S qr is ACLo UEC [CL0 UEC] on 0. 

Proof: (a) Let R,(@, 6) = supeeBce,,a, I q,(O) - qr(B’) I and for E > 0 let &(x) = X/E 
for 0 I x i E and 4E(~) = 1 for E < x < co. Then 

-_ 
lim lim n-l 
6-O n+cc 

,$r P(R,(@, 6) > E) = lim hm n-l i El,,,,l(R,(@, 6)) 
6-O n-+co r=1 

_- 

lim lim n-l i R,(@, 6) , 

6-O n-30 t=1 

by Jensen’s inequality, since & is concave, and by dominated convergence 
observing that 4E is monotone, bounded, and continuous. The last expression in 
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the above inequality is zero since limddo lim,,, n-l C:= 1 R,(Q’, 6) = 0 a.s. in 
view of (4.1~) and since 4,(O) = 0. (b) and (c) are proved analogously. 1 

Note that Lemma A.4(a) also holds if q1 is only a.s.ACEC [a.s.CEC] at 8’ for 
all (YE@. 

Proof qf Theorem 4.1. Analogous to the proof of Theorem 2.1. 1 

Proof of Theorem 4.2. (a) Obvious from the triangle inequality. (b) If r 2 1, the 
claim follows from Jensen’s inequality. Otherwise, if q, is ACL,EC, it follows 
from Theorem 4.1(b) that q, is ACL,EC. Since p 2 1, it follows by the previous 
argument that Q,, is AL,EC and by Theorem 2.1(a) that it is AL,EC. The proof 
of the remaining claims is analogous. 1 

Proof of Corollary 4.3. q, is a.s.ACUEC 3 q, is ACLoUEC = qr is 
ACLiUEC * Qn is ALrUEC, where the implications follow from Lemma A.4, 
Theorem 4.1(b) and condition (4.4) and Theorem 4.2(b), respectively. Hence 
under both sets of assumptions on qt in the corollary, Qn = EQ,, is AUEC by 
Theorem 3.3. (Note that E(q,I < cc for all t 2 1 is maintained.) Furthermore, if 
q, is a.s.ACUEC, then Qn is a.s.AUEC by Theorem 4.2(a), and if q, is ACL,UEC, 
then Qn is AL,UEC by Theorem 2.1(a), as it is even ALiUEC as shown above. 
The corollary now follows from Theorem 3.1. 1 

Proof of Corollary 4.4. The proof of part (a) is similar to the argument in 
Pbtscher and Prucha (1989a, p. 681) and Andrews (1987, pp. 1469-1470) with 
modifications as in the proof of Theorem 3.2. To prove part (b) observe that Qn is 
UAL, EC in view of Theorem 4.2(b), and hence & is UAEC in view of Theorem 
3.3. Since (0, p) is totally bounded, it follows furthermore from Lemma A.2 that 
Qn is even AUEC. 1 

Proof of Theorem 4.5. We first verify that the qt are ACL,UEC, i.e., that for 
any E > 0 

sup sup lq,(O) - q,(Q’)( > E 
> 

--f 0 as 6 4 0. (A.6) 
B’EO BEB(8’.6) 

Clearly the expression in (A.6) is bounded by lim,+,A~,(6) + lim,,,,, A,?,,,(6), with 

n 

A:,(6) = n-1 
= ( p SUP sup I s,(@ - 4,(@)l1K,(Z,) > 42 3 

1=1 B’EO &B(B’,d) ) 

AQ6) = n-l n = i p sup sup I a(@ - qt@‘) I lze,_(z*) > 42 > 
1=1 lJ’E0 OSB(B’.d) 1 
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where we use the convention co.0 = 0. From Lemma A.1 it follows that (4.8) is 
equivalent to (4.8’), and hence we have that for each q > 0, for each m~fW, and all 
1 I k < K there is a &,(q, m) > 0 and a t,,(y, m) 2 1 such that for t r to, 
0 < 6 s 6,, mEN, and 1 I k I K, 

SUP sup sup I Sk, (z, Q) - Sk&, Q’) I < II. (A.7) 
zeK, B’EQ 8SB(0’,6) 

Now 

s k$l ,-* i p IrkttZd/ sup sup sup Is&, 0) - sk,(Z,@)j > a/2K . 

t=1 EK, B’eO &B(B’.G) > 

Now for 0<6<6, and n 2 to we have from (A.7) that 

A:,,,(6) _< IF= I [(to - l)n-’ + n-l c&,,P( jr,&,)\ q > &/2K)] which implies - 
that lim,,, A,!,(6) S q(2KI.z) c,“= 1 lim,,, ,-‘I:= 1 E I r&,)j. Since supnn-r x 
I:=, El Ykt(z,)I < co by Assumption 4.1(a) and y was arbitrary, we have hence - - 
shown for each rnEN that lim,,, lim,,, A,!,,(6) = 0. Next observe 
that A&,(6) 5 n- ’ ck P(z, $ K,) holds for all 6 > 0. By Assumption 4.1(b) we 

hence have lim,,, lim,,O lim,,, A&,(d) = 0. This establishes (A.6). Since (4.4) 
is assumed in Theorem 4.5, it follows furthermore from Theorem 4.1(b) that q1 is 
also ACL,UEC, and hence clearly UACLrEC. Theorem 4.5 now follows from 
Corollaries 4.3 and 4.4. The remaining claims follow analogously in light of 
Remark 4.l(iii). 1 

Lemma AS. Let (X, d,) and (Y, d,) be metric spaces, with X compact, and ff: 
X x Y + R. Let X x Y be endowed with the metric d = max(d,, dy). Iffor each 
X’EX 

sup lim sup I&, Y) -.W,y’)I + 0 as 6 + 0, 
Y’EY I+m (X.Y)EB(W.Y’).6) 

where B((x’, y’), 6) is the open ball with center (x’, y’) and radius 6 in X x Y, then 

{f;:t21}’ 1s uni orm y f 1 asymptotically equicontinuous on X x Y. Furthermore, if 
(Y, dy) is also totally bounded, then {A: t 2 l} is even asymptotically uniformly 
equicontinuous on X x Y. 

Proof: To prove the first claim observe that by assumption for every q > 0 and 
X’EX there exists a 6(g, x’) > 0 such that for all y’~ Y and all 0 < 6 I 6(~, x’) we 
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have lim,, m ~uP(,,~)~s((~,,~,),s) I ft(x, y) --f,(x’, y’)I < u. Hence there exists an in- 
dex 4x’, y’, 6(~, x’)) such that for each (x’, y’)eX x Y, all t r m(x’, y’, S(q, x’)), 
and 0 < 6 I a(~, x’), 

sup Ift(x, Y) -“6(x’, Y’)/ < % (A.8) 
kykB(W,y’LW 

observing that the expression on the 1.h.s. is monotone in 6. By compactness of 
X we can find finitely many open balls B(xj, S(q, x:)/2), 1 5 i I K = K(q), 
covering X. Define 6(q) = min{6(q, xi): 1 5 i I K}. Now for every (x’, y’) there 
exists an index i, 1 I i I K, such that d((x’, y’), (xi, y’)) I 6(~, x;)/2. Hence for 
all HEN and any y’~ Y: 

sup sup Iftk Y) --f,W,Y')l 
X'EX (X.Y)EB((X’,Y’).d(g)/Z) 

I2 max sup I&, Y) -fr(xI, Y’) I. 
1 5 is K (x,Y)EB((x;.Y’).~(~~,x;)) 

Observing that for all ~‘6 Y and all t 2 max{m(xj, y’, a(~, xi)): 1 I i I K(q)) the 
r.h.s. of the above inequality is, in view of (A.8) not larger than 2~, we have for all 
y’e y: 

lim sup sup I fr(X? Y) -,w, Y') I 5 a. 
f+ J X’EX (x, y)~B((x’. y’), b(q)/2) 

Hence clearly, 

sup sup lim sup If,k Y) -frw> Y')I 2 2% 
y,Er X’EX f-z (X.~)~~((~~,p’),6(1j12) 

Since rl was arbitrary and the 1.h.s. of the above inequality does not increase if 
d(q)/2 is replaced by some 6 I 6(~)/2, this establishes thatf, is UAEC on X x Y. 
The second claim follows now immediately from Lemma A.2. observing that 
(X x Y, d) is totally bounded. 1 

Lemma A.6. Let h,,(B) and h,,,(8) he real functions on the metric space (0, p) for 

m, nsN. If the family (h,,,: nE N } is asymptotically uniformly equicontinuous - 
[uniformly equicontinuous] for each mEN and lim,,, lim,,, supBEe I h,,,(H) - h,(e)1 
= 0 [lim,, 3(, sup,, supBE I h,,,,(8) - h,(B) / = 01, then {h,: PIE kJ} is asymptotically 

untformly equicontinuous [uniformly equicontinuous]. 

Proof. For q > 0 there exists an index m. = ma(q) such that 

lim,, oL SUP~.~ I h,,,,(B) - h,,(e)1 < q. Hence for some no = no(q, mo) we have 
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supe~olh,,,,(0) - h,(e)/ < q for n 2 no. Furthermore there exists a 

6 = 6(~, mo) > 0 such that ~(0, 0’) < 6 implies G,,, 1 h,,,,(B) - h,,,,(O’)1 < q. 
Therefore there exists an index n, = n,(q, 6, mo) such that for n 2 n, and 
~(8, 0’) < 6 we have I h,,,.(8) - km,,n(@)I < y. Let n2 = maxino, n, 1. Then if 

~(0, 0 < 6 and n 2 n, we get I k,(B) - k,(@)l I I k,(O) - kW,,(0)I + I k,,,,(B) - 
k,,,,(O’)1 + I k,,,,(O’) - k, (@)I < 377. This proves that {k,: nEN} is asymptotically 
uniformly equicontinuous. The proof for the second claim is analogous. 1 

Proof of Theorem 4.6. Observe that in light of Lemma A.2 the sequence s,,,(z,, 0) 
is a.s.AUEC since (0, p) is totally bounded. Since condition (4.4) implies that 
d, < cc a.s. for all %N, it follows that s&z,, (3) is a.s.ACUEC. If sf,,Jzf, 0) satisfies 
weak [strong] pointwise laws of large numbers, then it follows from Corollary 4.3 
that st,Jzf, d) satisfies for each rnEN a weak [strong] ULLN and 
n- ‘I:= I Es,,,(z,, 0) is AUEC. Ob serve that a.s.ACUEC implies ACLoUEC by 
Lemma A.4. Since (4.4) holds with p 2 1, Theorem 4.1(b) shows that S&Z,, (3) is 
ACLiUEC for all rnEN and hence is UACL,EC. If sl,,(zt, 0) satisfies weak [strong] 
local laws of large numbers, then it follows from Corollary 4.4 that s&zt, 0) satisfies 
for each rneN a weak [strong] ULLN and n- ‘I:= 1 Es,,,(z,, 0) is AUEC. Therefore 
all assumptions of Lemma l(a) in Piitscher and Prucha (1989b) are satisfied. (An 
inspection of the proof of that lemma shows that the lemma also holds if a.s. 
convergence is replaced by i.p. convergence.) This proves part (a) of the theorem. 

The claim in part (b) of the theorem that n-l CT= 1 Ey, is AUEC follows from 

Lemma A.6 observing lim,,, lim,,, sup,,, In- ‘I:= 1 CEs,,,(z,, 0) - EL&, @I I - 
5 lim,,, lim,,,n-‘I:=, Ed,,,,, = 0. The claim in parenthesis in part (b) follows 

in view of Remark 4.l(iii) and Lemma A.6. 1 

Proqf of Lemma 5.1. Since (0, p) is totally bounded, there exists a countable dense 
subset 0, of 0. Observe that O0 is also dense in O*. Choose a,, > OL S, + 0 as 
n + CO. For e_E@* - O-we define Q;(o, 0) = inf{Q,(w, 0: &O,, p*(& 8) < S,} if 
inf{Q,(w, 0): &O,, p*(H, e) < S,} > - co and Q;(o, 0) = 0 if the infimum equals 
- KX For f&O we put Q;(w, 0) = Q,,(o, 0) for all won. Let 6 > 0 be arbitrary. 

Then for n 2 n, = n,(6) we have 6, < S/3. Now, for any 8, B’E@* satisfying 
p*(@ 0’) < 6/3 we have from the very definition of the extension that 

IQ34 - QW)l I SUPG,~~SUPL~(B~,~) I QM) - Q,(@) I [where I?(@, 6) denotes 

the open ball in -0-J. Hence SUP~,~~* SU~~~~*(~~,~,~) I Q,*(d) - QZ(@)I I 
sup~~,,s~p~,,,~~.~~ I Q,(e) - Q,,(g)1 holds for n 2 n,(6) [where B*(8’, 6/3) denotes 
the open ball in O*]. Hence we have bounded the modulus of uniform continuity of 
Q,$ by that of Q,. This establishes the lemma. 1 
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