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ABSTRACT. Spatial models whose weighting matrices have blocks of equal elements
might be considered if units are viewed as equally distant within certain neighborhoods,
but unrelated between neighborhoods. We give exact small sample results for such models
that contain a spatially lagged-dependent variable. We consider cases in which the data
relate to one or more panels, for example, villages, schools, etc. Our results are consistent
with large sample results given in Kelejian and Prucha (2002) but indicate a variety of
issues they did not consider.

1. INTRODUCTION

Spatial models whose weighting matrices have blocks of equal elements
might be considered if units can reasonably be viewed as equally distant within
certain neighborhoods, but unrelated between neighborhoods.1 Examples of
this would be studies in which the data relate to schools, villages, etc.2 In an
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1Classic references on spatial models are Cliff and Ord (1973, 1981), Anselin (1988), and

Cressie (1993). Some recent applications of spatial modeling are Audretsch and Felmann (1996),
Bell and Bockstael (2000), Pinkse, Slade, and Brett (2002), Yuzefovich (2003), and Kapoor (2003).

2Among others, such a weighting matrix was considered by Splitstoser (2000) in a study of
spatial interdependence involving the ideology of legislators, by Case (1992) in a panel data study
of the adoption of new technologies by farmers, and by Lee (2002) in a study of the properties of
least squares estimators in linear spatial models.
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earlier study Kelejian and Prucha (2002) considered such models and demon-
strated that if the model contains a spatially lagged-dependent variable, both
the ordinary least squares (OLS) as well as two-stage least squares (2SLS) es-
timators are inconsistent if only one panel is available. They also demonstrate
that if two or more, but a finite number, of panels are available both the OLS
and the 2SLS estimators are not only consistent but both are also efficient
within the class of instrumental variable (IV) estimators. These results were
given for the case where no fixed effects are present.

In this paper we consider the model of Kelejian and Prucha (2002) but give
exact small sample results for the OLS and the 2SLS estimators relating to both
the single as well as multiple panel cases. Our results are consistent with the
large sample results in Kelejian and Prucha (2002). However, we demonstrate
that if fixed effects are considered in the multiple panel framework of Kelejian
and Prucha (2002), as they very well might be, both the OLS and the 2SLS
estimators are inconsistent. Our results suggest that for cases in which these
estimators are inconsistent, typical tests of significance will be based on test
statistics that are undefined in that they require division by zero. The implica-
tion is that results obtained in practice will, most likely, be determined entirely
by rounding errors. We also show that if the model contains a spatially lagged-
dependent variable and if the weighting matrix is not known and, therefore,
is parameterized and its parameters are estimated along with the regression
parameters by an IV procedure, the results will be inconsistent for a wide class
of parameterizations of the weighting matrix. As somewhat of a corollary, we
also indicate certain biases that result when the specification of a weighting
matrix is selected on the basis of a measure of fit.

We specify the single panel data model in Section 2, and give our main
results relating to that model in Section 3. Panel data extensions of that model
are given in Section 4, along with corresponding results. Conclusions are given
in Section 5.

2. MODEL SPECIFICATION

Consider the following Cliff–Ord type spatial model:

yN = eN� + XN� + �WNyN + εN

= ZN� + εN

ZN = (eN, XN, WNyN), � ′ = (�, �′, �)

(1)

where yN is the N × 1 vector of observations on the dependent variable, eN is
an N × 1 vector of unit elements, WN is an N × N weighting matrix which is
nonstochastic and observed, XN is a full column rank N × k regressor matrix
which is viewed as exogenous and which does not contain the intercept term, �
is the intercept parameter, � is the parameter vector corresponding to XN , � is
the spatial autoregressive parameter corresponding to the spatial lag WNyN ,
and εN is the N × 1 disturbance vector. Although evident from the specification,
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we note for future reference that the model under consideration contains both
an intercept and a spatial lag of the dependent variable.

Suppose the researcher assumes, as would often be the case, that
E(ε N) = 0 and E(ε Nε′

N) = �2IN . Then, given IN − �WN is nonsingular, we have
yN = (IN − �WN)−1[�eN + XN� + ε N], and so WNyN = WN (IN − �WN)−1 ×
[�eN + XN� + ε N]. Therefore

E(WNyNε′
N) = �2WN (IN − �WN)−1 �= 0(2)

that is, in general the spatial lag WNyN will be correlated with the disturbance
vector εN . Given this endogeneity of WNyN the researcher might attempt to
estimate model (1) by the 2SLS procedure.3

3. BASIC RESULTS

Suppose the model in (1) is indeed estimated by 2SLS in terms of the full
column rank N × (1 + k + r) matrix of instruments HN = (eN, XN, GN) where,
of course, GN is an N × r matrix and r ≥ 1. Given results in Kelejian and
Prucha (1998), GN could be taken to be the linearly independent columns of
(WNXN, W2

NXN, . . . , Wq
NXN), where typically q ≤ 2. Let PHN = HN (H′

NHN)−1H′
N

and ẐN = PHNZN. Then, assuming that ẐN has full column rank, the 2SLS
estimator of � in (1) is

�̂N = (�̂N, �̂′
N, �̂N)′ = (Ẑ′

NẐN)−1Ẑ′
NyN(3)

Our main result in this section is given in Theorem 1. Its implications are
given in the remarks that follow.

THEOREM 1: Assume the model in (1), and that ẐN has full column rank so
that �̂N can be calculated.4 Let ȳN = e′

NyN/N denote the sample mean of yN . If

WN = aN[eNe′
N − IN] =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

0 aN . . . aN aN

aN 0 . . . aN aN

...
...

. . .
...

...
aN aN . . . 0 aN

aN aN . . . aN 0

⎤⎥⎥⎥⎥⎥⎥⎥⎦
(4)

where aN is a constant whose value could depend upon the sample size, N, then

(a) �̂N = (�̂N, �̂′
N, �̂N)′ = (NȳN, 0, −1/aN),

(b) ε̂N = yN − ZN �̂N = 0.

3Concerning 2SLS estimation of spatial models see, for example, Das, Kelejian, and Prucha
(2003), Kelejian and Prucha (1998), Lee (2003), and Rey and Boarnet (2004).

4Note, no further assumptions concerning εN are needed for the results of Theorem 1.
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Proof of Theorem 1. First note that if WN is given by (4), then

WNyN = (NaNȳN)eN − aNyN(5)

which is linear in the variable being explained, namely yN . Given (5), the esti-
mated residual vector ε̂N = yN − ZN �̂N can be written as

ε̂N = yN − eN�̂N − XN�̂N − �̂NWNyN

= yN (1 + �̂NaN) − eN (�̂N + N �̂NaNȳN) − XN�̂N

Substituting the expressions for �̂N, �̂N, and �̂N given in part (a) of the theorem,
it is then readily seen that ε̂N = 0. The 2SLS objective function is given by

ε̂′
NHN (H′

NHN)−1H′
Nε̂N

Since HN (H′
NHN)−1H′

N is positive semidefinite ε̂′
NHN (H′

NHN)−1H′
N ε̂N ≥ 0. The

2SLS objective function is thus clearly minimized for ε̂N = 0. Since we have
just shown that ε̂N = 0 for �̂ ′

N = (NȳN, 0, −1/aN) it follows that �̂N is indeed the
vector of 2SLS estimators.

REMARK 1: Since the diagonal elements of WN are all zero, the nondiag-
onal elements are all equal, and the sample size is N, one would typically take
aN = 1

N− 1 in the above illustrative cases, for example, villages. We have speci-
fied WN in terms of aN for purposes of generality. Kelejian and Prucha (2002)
demonstrated that if aN = 1

N− 1 , then p limN→∞|�̂N| = ∞, and hence they noted
that the 2SLS estimator in this case is inconsistent.5 Their result is clearly
consistent with Theorem 1 since |�̂N| = 1/aN = N − 1.

Theorem 1 extends the consistency result in Kelejian and Prucha (2002)
by giving explicit finite sample results for the 2SLS estimators of the elements
of the parameter vector � = (�, �′, �)′. Given the model in (1) and the weighting
matrix in (4) it should be clear that any other estimators that are defined as
a minimizer of a positive semidefinite quadratic form of the disturbances, for
example, OLS, will be identical to the 2SLS estimators. Finally we note that the
results of the above theorem do not contradict the consistency results for the
2SLS estimator given in Kelejian and Prucha (1998) because their assumptions
rule out a weighting matrix such as the one considered in (4).

REMARK 2: Part (a) of Theorem 1 implies that the single panel data model
in (1) with WN specified as in (4)6 is not a “useful” one, and indeed, should be

5We note that our model specification treats all parameters as unrestricted. Correspondingly,
the 2SLS estimator defined in (3), and the one considered in Kelejian and Prucha (2002), do not
incorporate parameter restrictions.

6We stress that Theorem 1 relates to a single panel data model because Kelejian and Prucha
(2002) show that a panel data extension of the model with WN specified as in (4) can be consis-
tently estimated by 2SLS if fixed effects are not considered. See Section 4 of this paper for further
clarifications and results.
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avoided!7 This should also be clear from part (b), which implies that the usual
estimator for �2 is given by �̂2

N = N−1ε̂′
Nε̂N = 0, and so typical test statistics are

not defined because they require division by zero. The suggestion is that results
relating to them obtained in practice will, most likely, be based on rounding
errors. Finally, we note that part (b) implies that R2 = 1.

REMARK 3: Theorem 1 also has implications concerning 2SLS estimation
of model (1) for situations where the weighting matrix is not observed, but in-
stead is parameterized in terms of observable variables and then its parameters
are estimated by a nonlinear 2SLS procedure along with the regression param-
eters. Unfortunately, for a wide variety of parameterizations the results of such
an estimation procedure would not be consistent. To see the issues involved,
suppose for the moment that the (i, j)th element of the weighting matrix is
specified as

wii,N (c) = 0; wij,N (c) = 1
1 + dc

ij,N
, i �= j(6)

where dij,N ≥ 0 is an observable distance measure between the (i)th and ( j)th
units, and c ≥ 0 is a parameter to be estimated.8 Let WN (c) be the N × N
weighting matrix for this case, and let ZN (c) = (eN, XN, WN (c)yN) be the re-
gressor matrix corresponding to this more general version of the model in (1).
Let ε̃N (c̃N) = yN − ZN (c̃N)�̃N where �̃ ′

N = (�̃N, �̃′
N, �̃N). Then the nonlinear 2SLS

estimator for this model would minimize

ε̃′
N(c̃N)HN(H′

NHN)−1H′
Nε̃N (c̃N)(7)

w.r.t. �̂N, �̃N, �̃N, and c̃N. Unfortunately, as should be clear from Theorem 1, the
results of the minimization will lead to

c̃N = 0, (�̂N, �̃′
N, �̃N) = (Nȳ, 0, −2)

since c = 0 implies uniform weights (in this case, aN = 1/2) and this, in turn,
implies via part (b) of Theorem 1 that the minimized value in (7) is zero. We note
that this negative result would not be altered for other specifications of w ij,N ,
as long as there are admissible parameter values such that all nondiagonal
weights are equal.

In a sense there is a corollary to Remark 3. Specifically, suppose in a model
such as (1) the weighting matrix is not known a priori and the researcher
considers various observable specifications of it in terms of, say, various dis-
tance measures, for example, trade shares, geographic distance, etc. Remark 3
suggests that if that researcher then selects the specification of the weighting

7As a point of interest we note that the maximum likelihood estimator also yields “peculiar”
results, even if the parameter space for � is restricted; for example, see Kelejian and Prucha (2002).

8Among other things, the proofs given in Kelejian and Prucha (1998, 1999) require the
elements of the weighting matrix to be uniformly bounded in absolute value. The specification in
(6) is not taken as w ij,N (c) = 1/dc

ij,N because of this condition.
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matrix on the basis of the standard R2 statistic, the results may be biased in the
direction of the matrix with the “most uniform weights.” Clearly, the sugges-
tion is that the R2 measure of fit should not be used to determine the weighting
matrix.

Of course, if additional “identifying” information is available, then it may
be possible to consistently estimate a model such as (1) with WN specified para-
metrically. Such information could, for example, be parameter restrictions, or
the availability of additional behavioral equations that contain some of the
parameters of (1), or those defining WN .

4. A PANEL DATA EXTENSION

Kelejian and Prucha (2002) considered a panel data extension of the model
in (1) and (4). Their extension did not consider fixed effects. Kelejian and Prucha
showed that, in this case, the 2SLS estimator is consistent. In the following we
demonstrate that this consistency result does not extend to panel data models
if the specification includes fixed effects. This is important to note because fixed
effects are often considered in panel data models.

In particular, consider the following balanced fixed effects panel data
model:

yt,N = eN�t + Xt,N� + �WNyt,N + εt,N, t = 1, . . . , T(8)

where yt,N is the N × 1 vector of observations on the dependent variable in
the (t)th “panel” (in village t, in school t, etc.), Xt,N is the N × k matrix of ob-
servations on the exogenous variables in the (t)th “panel,” ε t,N is the N × 1
vector of disturbance terms in the (t)th “panel,” WN is defined above in (4), �t,
t = 1, . . . , T, are a scalar “fixed effects” parameters which are defined with re-
spect to the panels,9 and �, �, and eN are defined as above. The model considered
in Kelejian and Prucha (2002) corresponds to (8) with �t = �, t = 1, . . . , T.

In the following we assume that T > 1, but is finite. In order to express (8)
in stacked form, let

yNT = [y′
1,N, . . . , y′

T,N]′

XNT = [X′
1,N, . . . , X′

T,N]′

εNT = [ε′
1,N, . . . , ε′

T,N]′

�′ = (�1, . . . , �T)

Given this notation, the model in (8) can be expressed as

yNT = (IT ⊗ eN)� + XNT� + �(IT ⊗ WN)yNT + �NT

= ZNT� + εN

ZNT = [IT ⊗ eN, XNT, (IT ⊗ WN)yNT], � ′ = (�′, �′, �)

(9)

9As an illustration, if t relates to villages, then the fixed effects are village effects.
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By arguments analogous to those put forth above for the case of a single panel
(IT ⊗ WN)yNT in (9) would typically be viewed as correlated with the inno-
vations �NT, and thus (IT ⊗ WN)yNT would be treated as endogenous. Given
this the researcher might attempt to estimate model (9) by 2SLS based on
some matrix of instruments, say, HNT = [IT ⊗ eN, XN, GNT], where GNT is an
NT × r matrix, r ≥ 1, and HNT has full column rank.10 Let ẐNT = PNTZNT where
PNT = HNT(H′

NTHNT)−1H′
NT. Then, assuming that ẐNT has full column rank,

the 2SLS estimator of � in (9) is

�̂N = (�̂1,N, . . . , �̂T,N, �̂′
N, �̂N)′ = (Ẑ′

NTẐNT)−1ẐNTyNT(10)

Our main result in this section is given in Theorem 2. Its implications are
discussed in the remarks that follow.

THEOREM 2: Assume the model in (8) and its stacked form in(9), and that ẐNT
has full column rank so that �̂N in (10) can be calculated. Let ȳt,N = e′

Nyt,N/N
denote the sample mean of yt,N in the (t)th panel. If the weighting matrix is of
the form given in (4) then

(a) �̂N = (�̂1,N, . . . , �̂T,N, �̂′
N, �̂N)′ = (Nȳ1,N, . . . , NȳT,N, 0, −1/aN)′

(b) ε̂NT = yNT − ZNT�̂N = 0.

Proof of Theorem 2. Analogous as in the proof of Theorem 1, it suffices to
show that ε̂NT = yNT − ZNT�̂N = 0 for �̂N = (Nȳ1,N, . . . , NȳT,N, 0, −1/aN)′, since
this also implies that �̂N is indeed the vector of 2SLS estimators. Clearly ε̂NT =
[ε̂1,N , . . . , ε̂T,N]′, where

ε̂t,N = yt,N − eN�̂t,N − Xt,N�̂N − �̂NWNyt,N

denotes the residuals corresponding to the tth panel. Substitution of expression
(4) for WN yields

ε̂t,N = yt,N (1 + �̂NaN) − eN (�̂t,N + N �̂NaNȳt,N) − Xt,N�̂N

Upon substitution of the expressions for �̂t,N = Nȳt,N, �̂N = 0, and �̂N = −1/aN
it is readily seen that indeed ε̂t,N = 0, and thus ε̂NT = 0.

REMARK 4: As in the single panel case, it should be clear that part (a) of
Theorem 2 implies that the model in (8) and (9) with WN specified as in (4) is
not a “useful” one, and therefore should be avoided.

REMARK 5: Theorem 2 assumes that the panel is balanced. The results
of Theorem 2 will not hold in the unbalanced panel case, for example, for the
case in which the model in (8) is generalized to

yt,Nt = �teNt + Xt,Nt � + �Wt,Nt yt,Nt + εt,Nt ; t = 1, . . . , T

10One possible selection of GNT would be the linearly independent columns of ((IT ⊗ WN) ×
XNT , (IT ⊗ W2

N)XNT , . . . , (IT ⊗ Wq
N)XNT) where typically q ≤ 2.
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where yt,Nt is the Nt × 1 vector of observations on the dependent variable in
the (t)th panel, Xt,Nt is the Nt × k matrix of observations on the exogenous
variables in the (t)th panel, eNt is an Nt × 1 vector of unit elements, εt,Nt is the
corresponding disturbance vector, and

Wt,N = aNt [eNt e
′
Nt

− INt ]

where aNt is a scalar whose value would, in our setting, typically be 1
Nt − 1 . The

reason for this is as follows. Let �̂t,N, �̃N, and �̃N be estimators for �t, �, and �.
Then the corresponding estimated disturbances in the (t)th panel are given by

ε̃t,N = yt,N (1 + �̃NaNt ) − eN (�̃t,N + N�̃NaNt ȳt,N) − Xt,N�̃N

Since �̃N does not depend on t it is readily seen that it will not be possible to
choose values for �̃N and �̃t,N such that 1 + �̃NaNt = 0 and �̃t,N + N �̃NaNt ȳt,N = 0
for all t if aNt varies with t. Because of this it will generally not be possible to
find estimators such that the estimated disturbances are all zero.

5. CONCLUSION

We have shown that estimation problems exist in spatial models contain-
ing a spatially lagged-dependent variable if the weighting matrix has uniform
weights and if an intercept is present. One implication of this result is that se-
rious estimation problems may arise in cases in which the weighting matrix is
parameterized and its parameters are estimated along with the regression pa-
rameters by an IV technique. In contrast to the results in Kelejian and Prucha
(2002), these problems exist even in the multiple panel case if fixed effects that
relate to the panels are considered, and if there are the same number of ob-
servations in all of the panels, as they might be if the panels relate to time
observations on a given unit—such as a village.
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