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ABSTRACT. In this paper, we specify a linear Cliff-and-Ord-type spatial model. The model allows
for spatial lags in the dependent variable, the exogenous variables, and disturbances. The innovations
in the disturbance process are assumed to be heteroskedastic with an unknown form. We formulate
multistep GMM/IV-type estimation procedures for the parameters of the model. We also give the
limiting distributions for our suggested estimators and consistent estimators for their asymptotic
variance-covariance matrices. We conduct a Monte Carlo study to show that the derived large-sample
distribution provides a good approximation to the actual small-sample distribution of our estimators.

1. INTRODUCTION

Kelejian and Prucha (1999) suggested a GMM procedure for estimating the autore-
gressive parameter in the disturbance process in a Cliff-Ord-type spatial model. Although
they demonstrated the consistency of their GMM estimator, they did not determine its
large-sample distribution and so tests relating to that autoregressive parameter could
not be carried out based on results of that paper. Also, Kelejian and Prucha (1998, 1999),
as well as subsequent contributions, assumed that the innovations of the disturbance
process were homoskedastic. This homoskedasticity assumption restricts the scope of ap-
plications of their procedure because cross-sectional spatial units often differ in size and
other characteristics which causes one to suspect that the innovations to the disturbance
process are heteroskedastic.1
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Kelejian and Prucha (2007b) extended the results in their earlier papers in a variety
of directions. Among other things, they considered a Cliff-Ord-type (Cliff and Ord, 1973,
1981) spatial autoregressive disturbance process with heteroskedastic innovations and
suggested a modified GMM estimator, say �̃ , for the autoregressive parameter, say � . That
GMM estimator was assumed to be based on estimated residuals that were formulated
in terms of an estimator, say �̂, of the regression parameters �. For clarity we write
�̃ = �̃ (�̂) to indicate the dependence of �̃ on �̂. Kelejian and Prucha (2007b) found that
the asymptotic distribution of �̃ (�̂) depends on the particular choice of �̂. Because of this,
Kelejian and Prucha (2007b) derive a basic theorem regarding the joint large-sample
distribution of their GMM estimator �̃ (�̂) and �̂ under general conditions that include
various combinations of �̃ (�̂) and �̂. As one example, �̃ could be the GMM estimator
of � based on residuals that are determined via an initial 2SLS regression parameter
estimator, and �̂ could be the generalized spatial 2SLS estimator. Results regarding the
joint distribution of �̃ (�̂) and �̂ should be useful to researchers who wish to test joint
hypotheses relating to � and �.

The results in Kelejian and Prucha (2007b) are reasonably general and so they do not
provide specific expressions for the large-sample distribution for the various combinations
of estimators �̃ and �̂. Given their level of generality, practitioners may find it challenging
and/or tedious to specialize the distributional results in Kelejian and Prucha (2007b)
for their particular estimators for � and �. Practitioners may also find it challenging
and/or tedious to verify that the general catalogue of assumptions in Kelejian and Prucha
(2007b) is satisfied for their particular estimator combination within the context of their
particular model.

The purpose of this paper is twofold. First, we specify a linear spatial Cliff-Ord model
that might be considered in practice and demonstrate that our suggested estimators of
its parameters satisfy the general assumptions in Kelejian and Prucha (2007b). This
model allows for spatial lags in the dependent variable, the exogenous variables, and
disturbances, and allows for heteroskedasticity of unknown form in the innovations. We
also specialize the general distributional results in Kelejian and Prucha (2007b) for vari-
ous combinations of estimators of its parameters, and provide explicit expressions for the
asymptotic variance covariance matrices of the parameter estimators. These results make
estimation of and inference about the parameters of this spatial model, and special cases
of it, straightforward. Second, we give Monte Carlo results that describe the small-sample
properties of our estimators, the estimators of their variances, as well as corresponding
Wald-type tests.

Our Monte Carlo results suggest that our estimators behave quite nicely in small
samples both under homoskedasticity and under heteroskedasticity of unknown form.
They also indicate that the maximum-likelihood estimator of the autoregressive param-
eters corresponding to spatial lags of the dependent variable and disturbances can be
substantially biased if the innovations are heteroskedastic. This result is consistent with
the theoretical result that the maximum-likelihood estimator in Cliff-Ord type models
with unknown forms of heteroskedasticity in the innovations entering the disturbance
process may not be consistent. This is in contrast to the estimators developed in this
paper.

market—see, respectively, Rey and Dev (2006), Vigil (1998), Baltagi, Egger, and Pfaffermayr (2007), and
Kelejian, Tavlas, and Hondroyiannis (2006). Because the above-named cross-sectional units differ in so
many ways, one would strongly suspect heteroskedasticity in such a model’s disturbance process.
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2. A SPATIAL CLIFF-ORD-TYPE MODEL

Specifications

In this section we specify a linear spatial model that allows for spatial lags in the
dependent variable, the exogenous variables, and disturbances. Consistent with the termi-
nology introduced by Anselin (1988), and used elsewhere in the literature, for example, in
(Kelejian and Prucha, 2007a), we refer to this model as a spatial ARAR(1,1) model, that is,
SARAR(1,1). The specification does not assume homoskedastic innovations, but instead
allows for heteroskedasticity of unknown form. Apart from allowing for heteroskedas-
ticity the assumptions are similar to those made in the existing literature. Since those
assumptions have been discussed in detail before, our discussion of them will be brief.2

Consider the following spatial model relating to n cross-sectional units:

yn = Xn� + �Wnyn + un

= Zn� + un,

(1)

and

un = �Mnun + �n,(2)

where Zn = [Xn, Wnyn], � = [�′, �]′, yn is the n × 1 vector of observations of the dependent
variable, Xn is the n × k matrix of observations on nonstochastic (exogenous) regressors,
Wn and Mn are n × n nonstochastic weights matrices, un is the n × 1 vector of regression
disturbances, �n is an n × 1 vector of innovations, � and � are scalar parameters, and �
is a k × 1 vector of parameters. The subscript n denotes dependence on the sample size
and so equations (1) and (2) allow for triangular arrays. Consequently, this specification
allows some or all of the exogenous variables to be spatial lags of exogenous variables.
Thus, the model is fairly general in that it allows for spatial spillovers in the endogenous
variables, exogenous variables, and disturbances.

Our discussions will also utilize the following spatial Cochrane-Orcutt transforma-
tion of equations (1) and (2):

yn∗(� ) = Zn∗(� )� + �n,(3)

where yn∗(� ) = yn − �Mnyn and Zn∗(� ) = Zn − �MnZn. The transformed model is readily
obtained by premultiplying equation (1) by In − �Mn.

The spatial weights matrices and the autoregressive parameters are assumed to
satisfy the following assumption.

ASSUMPTION 1: (a) All diagonal elements of Wn and Mn are zero. (b) � ∈
(−1, 1), � ∈ (−1, 1). (c) The matrices In − �̄Wn and In − �̄Mn are nonsingular for all
�̄ ∈ (−1, 1) and �̄ ∈ (−1, 1).

ASSUMPTION 2: The innovations {�i,n : 1 ≤ i ≤ n, n ≥ 1} satisfy E�i,n = 0, E(�2
i,n) = �2

i,n
with 0 < a� ≤ �2

i,n ≤ ā� < ∞, and sup1≤i≤n,n≥1 E|�i,n|4+� < ∞ for some � > 0. Furthermore,
for each n ≥ 1 the random variables �1,n, . . . , �n,n are totally independent.

ASSUMPTION 3: The row and column sums of the matrices Wn and Mn are bounded
uniformly in absolute value by, respectively, one and some finite constant, and the row and
column sums of the matrices (In − �Wn)−1 and (In − �Mn)−1 are bounded uniformly in
absolute value by some finite constant.

2Among other studies, see Kelejian and Prucha (1998, 2004, 2007a,b) for a more extensive discussion
of these assumptions.
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It is evident from (1) and (2) that, under typical specifications, Wnyn will be correlated
with the disturbances un, which motivates the use of the instrumental variable procedure.
The selection of instruments as an approximation to ideal instruments is discussed by
Kelejian and Prucha (1998, 2007a,b), and a review of that discussion is given below. At
this point let Hn be an n × p matrix of nonstochastic instruments where p ≥ k + 1, and
note that in practice Hn would depend on Xn. Our assumptions concerning Xn and Hn are
given below.

ASSUMPTION 4: The regressor matrices Xn have full column rank (for n large enough).
Furthermore, the elements of the matrices Xn are uniformly bounded in absolute value.

ASSUMPTION 5: The instrument matrices Hn have full column rank p ≥ k + 1 (for all
n large enough). Furthermore, the elements of the matrices Hn are uniformly bounded in
absolute value. Additionally, Hn is assumed to, at least, contain the linearly independent
columns of (Xn, MnXn).

ASSUMPTION 6: The instruments Hn satisfy furthermore:

(a) QHH = limn→∞ n−1 H′
nHn is finite and nonsingular.

(b) QHZ = plimn→∞ n−1H′
nZn and QHMZ = plimn→∞ n−1H′

nMnZn are finite and have full
column rank. Furthermore, QHZ∗(� ) = QHZ − �QHMZ has full column rank.

(c) QHΣH = limn→∞ n−1H′
nΣnHn is finite and nonsingular, where Σn = diagn

i=1(�2
i,n).

In treating Xn and Hn as nonstochastic our analysis should be viewed as conditional
on Xn and Hn.

A Brief Discussion of the Assumptions

Among other things, Assumption 1 implies that the model is complete in that the
dependent vector yn can be solved for in terms of Xn and the innovation �n. Specifically,

yn = (In − �Wn)−1[Xn� + un]
un = (In − �Mn)−1�n.

(4)

For a detailed discussion of the specification of the parameter space for the autore-
gressive parameters and normalizations of the spatial weights matrices, see Kelejian and
Prucha (2007b).

Assumption 2 allows the innovations to be heteroskedastic with uniformly bounded
variances.

Given (4), Assumption 2 implies that E(yn) = (In − �Wn)−1Xn�. Since under Assump-
tions 1 and 3 the roots of Wn are all less than one in absolute value,

E(yn) = [
In + �Wn + �2W2

n + · · · ]Xn�.(5)

We suggest a multistep estimation procedure below. In the first step instruments are
needed for Zn, and in a later step instruments are needed for MnZn. The ideal instruments
are

E(Zn) = [Xn, WnE(yn)],
E(MnZn) = [MnXn, MnWnE(yn)].

(6)

In light of (5), all of the columns of E(Zn) and E(MnZn) are linear in

Xn, WnXn, W2
nXn, . . . , MnXn, MnWnXn, MnW2

nXn, . . .(7)

C© 2009, Wiley Periodicals, Inc.
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Let Hn be a subset of the columns in (7), say

Hn = (
Xn, WnXn, . . . , Wq

nXn, MnXn, MnWnXn, . . . , MnWq
nXn

)
,(8)

where, typically, q ≤ 2. Then the evident approximation to the ideal instruments for Zn

and MnZn is PnZn and PnMnZn, where Pn is the projection matrix: Pn = Hn(H′
nHn)−1Hn.

In passing note that, via Assumption 5, Hn is assumed to contain at least the linearly
independent columns of Xn and MnXn, and therefore

PnZn = (Xn, PnWnyn),
PnMnZn = (MnXn, PnMnWnyn).

(9)

Assumption 3 is a technical assumption, which is used in the large-sample derivation
of the regression parameter estimator. Among other things, this assumption limits the
extent of spatial autocorrelation.

Assumption 4 rules out multicollinearity problems, as well as unbounded exogenous
variables. Among other things, Assumption 5 implies that there are at least as many
instruments as there are regression parameters. Assumption 6 rules out redundant in-
struments and specifies conditions, which ensure the identifiability of the regression
parameter estimators.

3. ESTIMATORS

In this section we specify GMM and instrumental variable (IV) estimators for the
model parameters � and �. The suggested estimation procedure consists of two steps.
Each step consists of substeps involving the estimation of � and � by GMM and IV
methods. In step 1, estimates are computed from the original model (1). Those estimates
are used in step 2 to compute estimates from the transformed model (3), with � replaced
by an estimator.

Moment Conditions

Following Kelejian and Prucha (2007b) our estimators for � will be GMM estimators
corresponding to the following population moment conditions:

n−1E�̄′
n�̄n = n−1tr

{
Mn

[
diagn

i=1

(
E�2

i,n

)]
M′

n

}
,

n−1E�̄′
n�n = 0,

(10)

with �̄n = Mn�n. Let A1,n = M′
nMn − diagn

i=1(m′
.i,n m.i,n) and A2,n = Mn. It is readily seen

that these moment conditions can also be written as

n−1E�′
nA1,n�n = n−1E[un − � ūn]′A1,n[un − � ūn] = 0,

n−1E�′
nA2,n�n = n−1E[un − � ūn]′A2,n[un − � ūn] = 0,

(11)

with ūn = Mnun.
The first condition in equation (10) allows the innovations to be heteroskedastic of

unknown form. If the innovations are homoskedastic with finite variance �2, this condition
simplifies to

n−1E�̄′
n�̄n = �2n−1tr

{
MnM′

n

}
.

Under the null hypothesis of homoskedasticity, sample versions of the two conditions will
converge to the same quantity.

C© 2009, Wiley Periodicals, Inc.
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GMM/IV Estimators, Original Model

Step 1a: 2SLS estimator. In the first step, � is estimated by 2SLS applied to model (1)
using the instrument matrix Hn in Assumption 5. Let �̃n denote the 2SLS estimator, then

�̃n = (Z̃′
nZn)−1Z̃′

nyn,(12)

where Z̃n = PHZn = (Xn, ˜Wnyn), ˜Wnyn = PHWnyn, and where PH = Hn (H′
n × Hn)−1 H′

n.
An instrument matrix such as Hn was suggested originally in Kelejian and Prucha (1998).

Step 1b: Initial GMM estimator of � based on 2SLS residuals. In light of (1) and
(12), the 2SLS residuals are ũn = yn − Zñ�n. Let ˜̄un = Mnũn and ˜̄̄un = M2

nũn. Consider the
following sample moments corresponding to (11) based on estimated residuals:

m(� , �̃n) = n−1
[

(ũn − �˜̄un)′A1(ũn − �˜̄un)
(ũn − �˜̄un)′A2(ũn − �˜̄un)

]
= gn(̃�n) − Gn(̃�n)

[
�
�2

]
,

(13)

where the elements of the 2 × 1 vector gn and the 2 × 2 matrix Gn are defined in Appendix
B: Definition of G and g. Equation (13) implies that the elements of gn(̃�n) and Gn(̃�n) are
observable functions of ũn, ˜̄un, and ˜̄̄un. Our initial GMM estimator for � is defined as

�̌n = argmin
[�∈[−a� ,a� ]

[
m(� , �̃n)′m(� , �̃n)

]
,(14)

where a� ≥ 1. In light of the second expression in (13) the estimator can be viewed as an
unweighted nonlinear least squares estimator. Given further assumptions listed below, it
is consistent, but not efficient because of this lack of weighting.

Step 1c: Efficient GMM estimator of � based on 2SLS residuals. As might be
anticipated from the discussion above, our efficient GMM estimator of � is a weighted
nonlinear least squares estimator. Specifically, this estimator is �̃n where

�̃n = argmin
[�∈[−a� ,a� ]

[
m(� , �̃n)′Ψ̃

−1
n m(� , �̃n)

]
(15)

and where the weighting matrix is Ψ̃
−1
n . The matrix Ψ̃n = Ψ̃n(�̌n), defined in

Appendix B: Definition of Ψ̃ and Ω̃, is an estimator of the variance-covariance
matrix of the limiting distribution of the normalized sample moments n1/2m(� , �̃n).

GMM/IV Estimators, Transformed Model

Step 2a: GS2SLS estimator. Consider the spatial Cochrane-Orcutt transformed model
in (3). Analogous to Kelejian and Prucha (1998) we now define a generalized spatial two-
stage least squares (GS2SLS) estimator of � as the 2SLS estimator of the transformed
model in (3) after replacing the parameter � by �̃n computed in Step 1c. Specifically, the
GS2SLS estimator is defined as

�̂n(̃�n) = [Ẑn∗ (̃�n)′Zn∗ (̃�n)]−1Ẑn∗ (̃�n)′yn∗ (̃�n),(16)

where yn∗ (̃�n) = yn − �̃nMnyn, Zn∗ (̃�n) = Zn − �̃nMnZn, Ẑn∗ (̃�n) = PHZn∗ (̃�n), and where PH

= Hn(H′
n Hn)−1 H′

n.

Step 2b: Efficient GMM estimator of � using GS2SLS residuals. The GS2SLS resid-
uals are given by ûn = yn − Zn̂�n(̃�n). Let ̂̄un = Mnûn and ̂̄̄un = M2

nûn. Now consider the
sample moments m(� , �̂n) obtained by replacing the 2SLS residuals in (13) by the GS2SLS

C© 2009, Wiley Periodicals, Inc.
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residuals ûn, ̂̄un, and ̂̄̄un. The efficient GMM estimator for � based on GS2SLS residuals
is now given by

�̂n = argmin
[�∈[−a� ,a� ]

[
m(� , �̂n)′Ψ̂

−1
n m(� , �̂n)

]
,(17)

where the weighting matrix is Ψ̂
−1
n . The matrix Ψ̂n = Ψ̂n(̃�n), defined in Appendix B:

Definition of Ψ̂ and Ω̂, is an estimator of the variance-covariance matrix of the limiting
distribution of the normalized sample moments n1/2m(� , �̂n).3

4. LARGE SAMPLE DISTRIBUTION

In this section we give results on the joint limiting distribution of the initial 2SLS
estimator, �̃n, and the efficient GMM estimator of � based on 2SLS residuals, namely
�̃n. These estimators relate to the untransformed model. We also give the joint limiting
distribution of the GS2SLS estimator �̂n, and the efficient GMM estimator of � that is
based on GS2SLS residuals, namely �̂n. These estimators correspond to the transformed
model. Proofs are given in Appendix C.

GMM/IV Estimators, Original Model

In Appendix C we prove the following theorem concerning the joint limiting distri-
bution of �̃n and �̃n.

THEOREM 1: Suppose Assumptions 1–6 above and Assumptions A1 and A2 in Appendix
A hold. Then, �̃n is efficient among the class of GMM estimators based on 2SLS residuals,
and [

n1/2(̃�n − �)
n1/2(̃�n − � )

]
D→ N

[
0, plim

n→∞
Ω̃n(̃�n)

]
,(18)

where plimn→∞Ω̃n(̃�n) is a positive definite matrix. For applied purposes, an expression is
needed for Ω̃n(̃�n). This expression is given in Appendix B: Definition of Ψ̃ and Ω̃.

The result in (18) indicates that both �̃n and �̃n are consistent. It also suggests that
small-sample inferences concerning either � , �, or both can be based on the small-sample
approximation [

�̃n

�̃n

]
.∼ N

([
�
�

]
, n−1Ω̃n

)
.

GMM/IV Estimators, Transformed Model

In Appendix C we prove the following theorem concerning the joint limiting distri-
bution of �̂n and �̂n.

THEOREM 2: Suppose Assumptions 1–6 above and Assumptions A1 and A3 in the Ap-
pendix A hold. Then, �̂n is efficient among the class of GMM estimators based on GS2SLS
residuals, and [

n1/2(̂�n − �)
n1/2(̂�n − � )

]
D→ N

[
0, plim

n→∞
Ω̂n(̂�n)

]
,

3n1/2m(� , �̂n) and n1/2m(� , �̃n) have different limiting distributions.
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where plimn→∞Ω̂n(̂�n) is a positive definite matrix. For applied purposes, an expression is
needed for Ω̂n(̂�n). This expression is given in Appendix B: Definition of Ψ̂ and Ω̂.

Clearly, Theorem 2 implies that both �̂n and �̂n are consistent. It also suggests that
small-sample inferences can be based on the approximation[

�̂n

�̂n

]
.∼ N

([
�
�

]
, n−1Ω̂n

)
.

5. MONTE CARLO EXPERIMENTS

In this section we give Monte Carlo results which suggest that our estimators and
corresponding test statistics behave well in finite samples. Our Monte Carlo model is
a special case of the one specified in (1) and (2). Our experimental design is somewhat
similar to those used in the literature by Kelejian and Prucha (1999, 2007a) and by
Anselin and Florax (1995).

The Model

The model underlying our Monte Carlo experiments is a special case of the model
specified in (1) and (2) with two exogenous regressors, that is, Xn = [xn,1, xn,2] and � =
(�1, �2)′, and with Mn = Wn.

We consider two cases for the innovation vector �n. In one of these cases the elements
of the innovation vector are i.i.d. N(0, c2), and so their standard deviation is c. In our
second case the elements of the innovation vector are heteroskedastic. In this case we
take the i-th element of the innovation vector �n as

�n,i = �n,i�n,i,

�n,i = c
dn,i

�n
j=1dn, j/n

,

(19)

where � n,i is, for each of our considered sample sizes, i.i.d. N(0, 1), and dn,i is the number
of neighbors the i-th unit has, which will be defined by the sample size, and weights
matrices described below. At this point note that the average of the standard deviations of
the elements of �n is c, and thus the average standard deviation is identical to that in the
homoskedastic case. Also note that these standard deviations are related to the number
of neighbors each unit has. One example in which units might have different numbers of
neighbors is the case in which the units differ in size. If neighbors are defined as units
falling within a certain distance, then each unit in a group of smaller units could have
many neighbors, while each unit in a group of larger units could have fewer neighbors.
This scenario could relate to the northeastern portion of the United States, as compared
to western states in the United States.

The parameters of the model that we will estimate are � = (�1, �2, �)′ and � . The
specifications we use to generate 2,000 repetitions for each Monte Carlo experiment are
described below.

The two n× 1 regressors xn,1 and xn,2 are normalized versions of income per capita and
the proportion of housing units that are rental in 1980, in 760 counties in U.S. mid-western
states. These data were taken from Kelejian and Robinson (1995). We normalized the 760
observations on these variables by subtracting from each observation the corresponding
sample average, and then dividing that result by the sample standard deviation. The
first n values of these normalized variables were used in our Monte Carlo experiments of
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sample size n. For sample sizes larger than 760 the observations were repeated. Finally,
the same set of observations on these variables were used in all Monte Carlo repetitions.

We considered five experimental values for � and for � , namely −0.8, −0.3,
0, 0.3., 0.8. In all of our experiments we took �1 = �2 = 1. We consider two values for
the (average) standard deviation c, namely 0.5 and 1. However, due to space limitations,
we only report results below for the case c = 1. Results for the case c = 0.5 are consistent
with those for the case c = 1, and are available on our website in a longer version of this
paper.

For each approximate sample size,4 we consider three weights matrices, but again
report results for only two of them that are described below. The description of the third
matrix and corresponding results are available on our website. The weights matrices we
report results for correspond to a “space” in which units located in the northeast portion
of that space are smaller, closer to each other, and have more neighbors than the units
corresponding to other quadrants of that space. Again, one might think of the states
located in the northeastern portion of the United States, as compared to western states.

To define these matrices we report results for a matrix in terms of a square grid
with both the x and y coordinates only taking on the values 1, 1.5, 2, 2.5, . . . , m̄. Let the
units in the northeast quadrant of this matrix be at the indicated discrete coordinates:
m ≤ x ≤ m̄and m ≤ y ≤ m̄. Let the remaining units be located only at integer values of the
coordinates: x = 1, 2, . . . , m − 1 and y = 1, 2, . . . , m − 1. In this setup it should be clear
that the number of units located in the northeast quadrant is inversely related to m.

For this matrix we define a distance measure between any two units, i1 and i2, that
have coordinates (x1, y1) and (x2, y2), respectively, as the Euclidean distance between
them, namely

d(i1, i2) = [
(x1 − x2)2 + (y1 − y2)2 ]1/2

.

Given this distance measure we define the (i, j)-th element of our row normalized weights
matrix W as

wi j = w∗
i j

/ n∑
j=1

w∗
i j,

w∗
i j =

{
1 if 0 < d(i1, i2) ≤ 1
0 else

.

For our experiments with a sample size of approximately 500, we considered two
cases of this matrix, namely (m = 5, m̄ = 15) and (m = 14, m̄ = 20). These values of m and
m̄ imply sample sizes of n = 486 and n = 485, respectively. These values of m and m̄ were
selected because they correspond to different proportions of units in the northeast quad-
rant, where each unit has more neighbors than units located in the other quadrants. As
indicated, the number of neighbors each unit has is important because it is a determinant
of the standard deviation of the innovation—see equation (19). In our first small-sample
case, namely (m = 5, m̄ = 15), approximately 75 percent of the units are located in the
northeast quadrant; in our second case, (m = 14, m̄ = 20), approximately 25 percent of the
units are located in the northeast quadrant.

For our experiments with a sample size of approximately 1,000, the two variations of
this matrix we considered are (m = 7, m̄ = 21) and (m = 20, m̄ = 28). The implied sample
sizes are n = 974 and n = 945, respectively. In these two cases, the proportion of units
located in the northeast quadrant are approximately 75 and 24 percent, respectively.

4Our discussion below will clarify this notion of “approximate” sample size.
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TABLE 1: North-East Modified Rook Matrices Changed %
Changes to Opposite

Matrix R1 Matrix R2 Matrix R3 Matrix R4

(m = 5, m̄ = 15) (m = 7, m̄ = 21) (m = 14, m̄ = 20) (m = 20, m̄ = 28)
n = 486 n = 974 n = 485 n = 945
%NE : 75% %NE : 75% %NE : 25% %NE : 24%

FIGURE 1: Example of a North-East Modified Rook Matrix: m = 2 and m̄ = 5.

Below we refer to all of these matrices as north-east modified-rook matrices. For future
reference we summarize the characteristics of these four “modified rook” matrices in
Table 1. We also illustrate a north-east modified rook matrix, with the units indicated by
the stars, in Figure 1 for the case in which m = 2 and m̄ = 5.

Monte Carlo Results

Our Monte Carlo results are given in Tables 2–6. These tables contain results for the
generalized spatial 2SLS estimator �̂(�̂ ) defined in equation (16), which is based on the
instrument matrix H = [X, WX, W2X], where �̃ is replaced by �̂ that is the efficient GM
estimator given in equation (17). Only results for the estimators of � and � , which are
denoted in the tables as �GS and �GS, are reported. For purposes of comparison, we also
report the quasi-maximum likelihood estimators of these two parameters, denoted in the
tables as �ML and �ML.

The results in Tables 2–5 correspond to the case of heteroskedastic innovations, while
the results in Table 6 correspond to homoskedastic innovations. The results in all five
tables are based on north-east modified rook matrices. For cases involving heteroskedas-
ticity, efficiency issues involving sample size comparisons can be based on comparisons of
Tables 2 and 3, and on comparisons of Tables 4 and 5. The results in Table 6 correspond
to those in Table 2, the difference being that the former reports on the homoskedasticity
case while the latter reports on the heteroskedasticity case.

The results in Tables 2–5 are consistent with our large-sample theory, namely that
�GS and �GS are consistent estimators and, in the presence of heteroskedastic innovations,
the quasi-maximum-likelihood estimators �ML and �ML are in general not consistent. For
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example, notice that in all of the tables the biases of �GS and �GS are so small that the
root mean square error is approximately equal to the standard deviation. Also note that
in all of the tables the rejection rates corresponding to �GS and to �GS are quite close to
the theoretical 0.05 level. Indeed, in each of the Tables 2–5 the average of these rejection
rates over all of the experiments considered relating to both �GS and �GS are quite close
to the theoretical 0.05 level. For future reference we note that these averages do not
mask outliers; the largest of these outliers, namely 0.1190, relates �GS in Table 4 and
corresponds to the experiment � = 0.8 and � = 0.3. In the tables there are no rejection
rate outliers that relate to the estimator �GS.

TABLE 2: Heteroskedasticity with c = 1, Modified Rook Matrix R1 (n = 486)

�GS �ML

Rho Lambda Median Std. Err Rej. Rate RMSE Median Std. Err Rej. Rate RMSE

−0.8 −0.8 −0.7870 0.1242 0.0425 0.1248 −0.6464 0.0634 0.3000 0.1661
−0.8 −0.3 −0.7899 0.1167 0.0420 0.1172 −0.5918 0.0659 0.7100 0.2184
−0.8 0 −0.7902 0.1117 0.0420 0.1121 −0.5847 0.0676 0.7625 0.2256
−0.8 0.3 −0.7923 0.1081 0.0430 0.1083 −0.5863 0.0675 0.7715 0.2241
−0.8 0.8 −0.7922 0.1025 0.0470 0.1028 −0.6036 0.0658 0.7200 0.2071
−0.3 −0.8 −0.2974 0.1285 0.0480 0.1285 −0.3047 0.0949 0.0190 0.0950
−0.3 −0.3 −0.2964 0.1344 0.0485 0.1345 −0.2473 0.0907 0.0410 0.1049
−0.3 0 −0.2960 0.1317 0.0500 0.1317 −0.2281 0.0913 0.0675 0.1162
−0.3 0.3 −0.2949 0.1279 0.0490 0.1280 −0.2185 0.0936 0.0915 0.1241
−0.3 0.8 −0.2944 0.1198 0.0535 0.1199 −0.2269 0.0916 0.0910 0.1172

0 −0.8 0.0013 0.1190 0.0510 0.1190 −0.0685 0.1023 0.0810 0.1232
0 −0.3 −0.0007 0.1262 0.0505 0.1262 −0.0276 0.0961 0.0335 0.1000
0 0 −0.0011 0.1267 0.0480 0.1267 −0.0072 0.0971 0.0265 0.0973
0 0.3 −0.0011 0.1254 0.0465 0.1254 0.0073 0.0977 0.0310 0.0980
0 0.8 0.0013 0.1177 0.0510 0.1177 0.0074 0.0986 0.0380 0.0989
0.3 −0.8 0.3019 0.1012 0.0510 0.1012 0.2013 0.1012 0.1805 0.1414
0.3 −0.3 0.2967 0.1092 0.0560 0.1092 0.2182 0.0974 0.1190 0.1272
0.3 0 0.2958 0.1116 0.0500 0.1117 0.2356 0.0972 0.0855 0.1166
0.3 0.3 0.2947 0.1122 0.0500 0.1123 0.2529 0.0978 0.0665 0.1085
0.3 0.8 0.2971 0.1076 0.0475 0.1077 0.2642 0.0980 0.0670 0.1044
0.8 −0.8 0.7992 0.0511 0.0535 0.0512 0.7364 0.0608 0.2960 0.0880
0.8 −0.3 0.7937 0.0572 0.0560 0.0575 0.7240 0.0659 0.2785 0.1005
0.8 0 0.7885 0.0615 0.0695 0.0625 0.7254 0.0691 0.2210 0.1017
0.8 0.3 0.7822 0.0685 0.0695 0.0708 0.7330 0.0733 0.1700 0.0993
0.8 0.8 0.7814 0.0692 0.0575 0.0717 0.7525 0.0819 0.1500 0.0947

Average 0.0000 0.1068 0.0509 0.1072 0.0207 0.0851 0.2167 0.1279
�GS �ML

Rho Lambda Median Std. Err Rej. Rate RMSE Median Std. Err Rej. Rate RMSE

−0.8 −0.8 −0.8093 0.0627 0.0525 0.0634 −0.7650 0.0384 0.0145 0.0520
−0.8 −0.3 −0.3050 0.0612 0.0495 0.0614 −0.3409 0.0494 0.0525 0.0642
−0.8 0 −0.0031 0.0505 0.0515 0.0506 −0.0510 0.0454 0.1070 0.0683
−0.8 0.3 0.2982 0.0373 0.0505 0.0373 0.2570 0.0357 0.1265 0.0559
−0.8 0.8 0.7996 0.0120 0.0495 0.0120 0.7899 0.0112 0.0710 0.0151
−0.3 −0.8 −0.8014 0.0433 0.0380 0.0434 −0.7307 0.0329 0.1220 0.0767
−0.3 −0.3 −0.3028 0.0574 0.0485 0.0575 −0.2957 0.0476 0.0075 0.0478
−0.3 0 −0.0019 0.0520 0.0490 0.0520 −0.0208 0.0455 0.0230 0.0500
−0.3 0.3 0.2994 0.0410 0.0480 0.0410 0.2722 0.0376 0.0450 0.0468
−0.3 0.8 0.7997 0.0140 0.0480 0.0140 0.7905 0.0130 0.0480 0.0161

Continued
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TABLE 2: Continued

�GS �ML

Rho Lambda Median Std. Err Rej. Rate RMSE Median Std. Err Rej. Rate RMSE

0 −0.8 −0.8005 0.0367 0.0380 0.0367 −0.7279 0.0300 0.1825 0.0781
0 −0.3 −0.2996 0.0552 0.0455 0.0552 −0.2734 0.0473 0.0190 0.0542
0 0 0.0004 0.0543 0.0475 0.0543 −0.0020 0.0481 0.0110 0.0482
0 0.3 0.3002 0.0455 0.0460 0.0455 0.2828 0.0419 0.0260 0.0453
0 0.8 0.8001 0.0167 0.0505 0.0167 0.7910 0.0154 0.0405 0.0178
0.3 −0.8 −0.7991 0.0327 0.0440 0.0327 −0.7307 0.0286 0.2295 0.0750
0.3 −0.3 −0.2972 0.0578 0.0455 0.0578 −0.2523 0.0497 0.0550 0.0689
0.3 0 0.0028 0.0587 0.0465 0.0588 0.0187 0.0530 0.0240 0.0562
0.3 0.3 0.3027 0.0530 0.0510 0.0531 0.2959 0.0487 0.0175 0.0489
0.3 0.8 0.8013 0.0216 0.0485 0.0216 0.7913 0.0204 0.0390 0.0222
0.8 −0.8 −0.7980 0.0288 0.0520 0.0288 −0.7421 0.0243 0.2160 0.0627
0.8 −0.3 −0.2877 0.0659 0.0735 0.0671 −0.2189 0.0570 0.1175 0.0992
0.8 0 0.0186 0.0791 0.1000 0.0813 0.0657 0.0678 0.0820 0.0944
0.8 0.3 0.3260 0.0858 0.1120 0.0897 0.3394 0.0740 0.0670 0.0838
0.8 0.8 0.8158 0.0474 0.0975 0.0500 0.7962 0.0535 0.0920 0.0536

Average 0.0024 0.0468 0.0553 0.0473 0.0136 0.0407 0.0734 0.0561

TABLE 3: Heteroskedasticity with c = 1, Modified Rook Matrix R2 (n = 974)

�GS �ML

Rho Lambda Median Std. Err Rej. Rate RMSE Median Std. Err Rej. Rate RMSE

−0.8 −0.8 −0.7963 0.0945 0.0495 0.0946 −0.6485 0.0471 0.6840 0.1587
−0.8 −0.3 −0.7977 0.0853 0.0400 0.0853 −0.5884 0.0494 0.9760 0.2173
−0.8 0 −0.7979 0.0819 0.0390 0.0820 −0.5796 0.0501 0.9855 0.2260
−0.8 0.3 −0.7980 0.0800 0.0415 0.0800 −0.5806 0.0504 0.9860 0.2251
−0.8 0.8 −0.7985 0.0762 0.0445 0.0763 −0.6005 0.0492 0.9770 0.2055
−0.3 −0.8 −0.3003 0.0983 0.0530 0.0983 −0.3132 0.0678 0.0245 0.0691
−0.3 −0.3 −0.3006 0.0991 0.0525 0.0991 −0.2463 0.0663 0.0600 0.0854
−0.3 0 −0.3001 0.0968 0.0480 0.0968 −0.2238 0.0671 0.1105 0.1015
−0.3 0.3 −0.3003 0.0935 0.0480 0.0935 −0.2126 0.0679 0.1575 0.1107
−0.3 0.8 −0.3003 0.0872 0.0470 0.0872 −0.2215 0.0670 0.1530 0.1032

0 −0.8 −0.0006 0.0914 0.0515 0.0914 −0.0790 0.0735 0.1630 0.1079
0 −0.3 −0.0016 0.0952 0.0540 0.0952 −0.0282 0.0705 0.0425 0.0760
0 0 −0.0021 0.0938 0.0510 0.0938 −0.0050 0.0711 0.0315 0.0713
0 0.3 −0.0018 0.0914 0.0510 0.0914 0.0128 0.0714 0.0360 0.0726
0 0.8 −0.0009 0.0838 0.0530 0.0838 0.0151 0.0697 0.0495 0.0714
0.3 −0.8 0.2981 0.0746 0.0540 0.0747 0.1914 0.0711 0.3455 0.1298
0.3 −0.3 0.2959 0.0814 0.0515 0.0815 0.2163 0.0702 0.2030 0.1093
0.3 0 0.2951 0.0856 0.0530 0.0858 0.2371 0.0709 0.1275 0.0948
0.3 0.3 0.2938 0.0858 0.0530 0.0860 0.2563 0.0715 0.0765 0.0838
0.3 0.8 0.2967 0.0777 0.0505 0.0778 0.2732 0.0704 0.0715 0.0753
0.8 −0.8 0.7994 0.0356 0.0540 0.0356 0.7321 0.0428 0.5045 0.0803
0.8 −0.3 0.7970 0.0393 0.0600 0.0394 0.7240 0.0471 0.4875 0.0894
0.8 0 0.7938 0.0435 0.0645 0.0439 0.7274 0.0507 0.3800 0.0886
0.8 0.3 0.7896 0.0496 0.0660 0.0507 0.7346 0.0547 0.2775 0.0853
0.8 0.8 0.7844 0.0588 0.0660 0.0608 0.7544 0.0625 0.1640 0.0774

Average −0.0021 0.0792 0.0518 0.0794 0.0219 0.0620 0.3230 0.1126
Continued
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TABLE 3: Continued

�GS �ML

Rho Lambda Median Std. Err Rej. Rate RMSE Median Std. Err Rej. Rate RMSE

−0.8 −0.8 −0.8025 0.0538 0.0460 0.0538 −0.7595 0.0303 0.0635 0.0506
−0.8 −0.3 −0.2994 0.0519 0.0505 0.0519 −0.3418 0.0388 0.1100 0.0570
−0.8 0 0.0009 0.0438 0.0475 0.0438 −0.0537 0.0367 0.2250 0.0651
−0.8 0.3 0.3005 0.0326 0.0485 0.0326 0.2530 0.0304 0.2855 0.0560
−0.8 0.8 0.8002 0.0111 0.0495 0.0111 0.7874 0.0106 0.1745 0.0164
−0.3 −0.8 −0.7992 0.0400 0.0490 0.0400 −0.7162 0.0283 0.5305 0.0885
−0.3 −0.3 −0.2984 0.0482 0.0450 0.0483 −0.2923 0.0383 0.0175 0.0391
−0.3 0 0.0016 0.0434 0.0440 0.0434 −0.0202 0.0379 0.0455 0.0429
−0.3 0.3 0.3008 0.0354 0.0465 0.0354 0.2703 0.0324 0.0955 0.0440
−0.3 0.8 0.8007 0.0135 0.0485 0.0136 0.7886 0.0127 0.1140 0.0170

0 −0.8 −0.7989 0.0352 0.0500 0.0352 −0.7103 0.0267 0.6985 0.0936
0 −0.3 −0.2974 0.0489 0.0515 0.0490 −0.2675 0.0395 0.0590 0.0512
0 0 0.0023 0.0471 0.0505 0.0472 0.0007 0.0406 0.0225 0.0406
0 0.3 0.3021 0.0391 0.0470 0.0391 0.2826 0.0361 0.0510 0.0400
0 0.8 0.8011 0.0159 0.0500 0.0159 0.7894 0.0152 0.0910 0.0185
0.3 −0.8 −0.7972 0.0317 0.0560 0.0318 −0.7115 0.0260 0.7645 0.0922
0.3 −0.3 −0.2956 0.0494 0.0560 0.0496 −0.2422 0.0420 0.1520 0.0714
0.3 0 0.0039 0.0517 0.0575 0.0518 0.0235 0.0442 0.0575 0.0500
0.3 0.3 0.3035 0.0451 0.0550 0.0452 0.2979 0.0411 0.0330 0.0412
0.3 0.8 0.8020 0.0206 0.0480 0.0207 0.7906 0.0197 0.0650 0.0218
0.8 −0.8 −0.7980 0.0277 0.0590 0.0278 −0.7279 0.0205 0.7180 0.0750
0.8 −0.3 −0.2909 0.0536 0.0730 0.0543 −0.2094 0.0455 0.3025 0.1013
0.8 0 0.0158 0.0645 0.0885 0.0664 0.0697 0.0545 0.1665 0.0885
0.8 0.3 0.3191 0.0688 0.1010 0.0714 0.3409 0.0584 0.0990 0.0713
0.8 0.8 0.8146 0.0430 0.1030 0.0454 0.7999 0.0442 0.1010 0.0442

Average 0.0037 0.0406 0.0568 0.0410 0.0177 0.0340 0.2017 0.0551

TABLE 4: Heteroskedasticity with c = 1, Modified Rook Matrix R3 (n = 485)

�GS �ML

Rho Lambda Median Std. Err Rej. Rate RMSE Median Std. Err Rej. Rate RMSE

−0.8 −0.8 −0.7813 0.0853 0.0630 0.0873 −0.6909 0.0531 0.2560 0.1213
−0.8 −0.3 −0.7885 0.0668 0.0500 0.0678 −0.6307 0.0521 0.8755 0.1771
−0.8 0 −0.7918 0.0592 0.0485 0.0597 −0.6264 0.0524 0.9240 0.1814
−0.8 0.3 −0.7936 0.0556 0.0485 0.0559 −0.6328 0.0517 0.9240 0.1750
−0.8 0.8 −0.7935 0.0517 0.0510 0.0521 −0.6552 0.0468 0.8845 0.1522
−0.3 −0.8 −0.2858 0.1008 0.0560 0.1018 −0.3133 0.0788 0.0375 0.0799
−0.3 −0.3 −0.2907 0.1052 0.0590 0.1056 −0.2420 0.0696 0.0815 0.0906
−0.3 0 −0.2919 0.1026 0.0590 0.1029 −0.2163 0.0703 0.1300 0.1093
−0.3 0.3 −0.2912 0.0994 0.0580 0.0998 −0.2029 0.0730 0.1860 0.1215
−0.3 0.8 −0.2899 0.0921 0.0610 0.0926 −0.2138 0.0730 0.1810 0.1130

0 −0.8 0.0103 0.1026 0.0570 0.1031 −0.0789 0.0905 0.1490 0.1200
0 −0.3 0.0070 0.1073 0.0595 0.1075 −0.0350 0.0812 0.0610 0.0884
0 0 0.0059 0.1087 0.0620 0.1089 −0.0084 0.0815 0.0490 0.0820
0 0.3 0.0056 0.1070 0.0610 0.1072 0.0108 0.0824 0.0600 0.0831
0 0.8 0.0070 0.1005 0.0580 0.1007 0.0135 0.0829 0.0755 0.0840

Continued
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TABLE 4: Continued

�GS �ML

Rho Lambda Median Std. Err Rej. Rate RMSE Median Std. Err Rej. Rate RMSE

0.3 −0.8 0.3068 0.0960 0.0620 0.0962 0.1839 0.0969 0.3425 0.1512
0.3 −0.3 0.3025 0.0989 0.0600 0.0989 0.1976 0.0871 0.2550 0.1344
0.3 0 0.3025 0.1014 0.0595 0.1014 0.2182 0.0855 0.1625 0.1183
0.3 0.3 0.3016 0.1032 0.0595 0.1032 0.2398 0.0858 0.1085 0.1048
0.3 0.8 0.3027 0.0993 0.0580 0.0993 0.2563 0.0898 0.1165 0.0999
0.8 −0.8 0.7994 0.0541 0.0530 0.0541 0.7207 0.0610 0.5010 0.1001
0.8 −0.3 0.7949 0.0558 0.0595 0.0560 0.7061 0.0661 0.5225 0.1149
0.8 0 0.7887 0.0610 0.0700 0.0621 0.7063 0.0672 0.4675 0.1153
0.8 0.3 0.7828 0.0687 0.0700 0.0708 0.7130 0.0705 0.3630 0.1120
0.8 0.8 0.7794 0.0693 0.0720 0.0723 0.7330 0.0836 0.2655 0.1071

Average 0.0040 0.0861 0.0590 0.0867 0.0061 0.0733 0.3192 0.1175
�GS �ML

Rho Lambda Median Std. Err Rej. Rate RMSE Median Std. Err Rej. Rate RMSE

−0.8 −0.8 −0.8131 0.0593 0.0795 0.0607 −0.7748 0.0365 0.0140 0.0443
−0.8 −0.3 −0.3065 0.0710 0.0640 0.0713 −0.3591 0.0517 0.1480 0.0785
−0.8 0 −0.0024 0.0605 0.0535 0.0606 −0.0756 0.0510 0.2875 0.0912
−0.8 0.3 0.2994 0.0459 0.0535 0.0459 0.2350 0.0426 0.3420 0.0777
−0.8 0.8 0.8001 0.0153 0.0560 0.0153 0.7847 0.0139 0.1975 0.0207
−0.3 −0.8 −0.8019 0.0309 0.0455 0.0310 −0.7364 0.0291 0.2970 0.0699
−0.3 −0.3 −0.3024 0.0537 0.0510 0.0538 −0.2926 0.0416 0.0105 0.0422
−0.3 0 −0.0004 0.0538 0.0485 0.0538 −0.0282 0.0438 0.0490 0.0521
−0.3 0.3 0.3006 0.0452 0.0530 0.0452 0.2583 0.0405 0.1250 0.0581
−0.3 0.8 0.8005 0.0168 0.0535 0.0168 0.7847 0.0159 0.1565 0.0221

0 −0.8 −0.8003 0.0255 0.0430 0.0255 −0.7375 0.0255 0.4520 0.0675
0 −0.3 −0.2997 0.0477 0.0525 0.0477 −0.2655 0.0392 0.0395 0.0522
0 0 0.0001 0.0507 0.0535 0.0507 −0.0007 0.0426 0.0200 0.0426
0 0.3 0.3008 0.0454 0.0540 0.0454 0.2759 0.0399 0.0555 0.0466
0 0.8 0.8009 0.0191 0.0535 0.0192 0.7853 0.0181 0.1275 0.0233
0.3 −0.8 −0.7999 0.0228 0.0495 0.0228 −0.7424 0.0230 0.5150 0.0620
0.3 −0.3 −0.2970 0.0476 0.0540 0.0477 −0.2431 0.0411 0.1240 0.0701
0.3 0 0.0041 0.0535 0.0555 0.0536 0.0257 0.0454 0.0375 0.0521
0.3 0.3 0.3036 0.0498 0.0565 0.0499 0.2950 0.0449 0.0345 0.0451
0.3 0.8 0.8013 0.0235 0.0545 0.0235 0.7868 0.0230 0.0945 0.0265
0.8 −0.8 −0.7993 0.0228 0.0535 0.0229 −0.7542 0.0201 0.4745 0.0500
0.8 −0.3 −0.2925 0.0542 0.0730 0.0547 −0.2156 0.0484 0.2940 0.0973
0.8 0 0.0153 0.0711 0.0910 0.0728 0.0717 0.0590 0.1730 0.0928
0.8 0.3 0.3237 0.0816 0.1190 0.0850 0.3436 0.0660 0.1030 0.0791
0.8 0.8 0.8180 0.0476 0.1100 0.0509 0.7982 0.0547 0.1515 0.0547

Average 0.0021 0.0446 0.0612 0.0451 0.0088 0.0383 0.1729 0.0568

In contrast, the results for �ML and �ML in the heteroskedastic cases show that
the biases are typically large and, consequently, the rejection rates, especially for �ML,
deviate from the theoretical 0.05 level in many of the considered experiments. Indeed,
in Tables 3–5 the rejection rates corresponding to �ML exceed 0.9 in some experiments.
In most of these experiments, the value of � = −0.8. The rejection rates relating to �ML

are more moderate but still have outlier values, ranging up to 0.8876 in Table 5. In most
of these cases either � or � or both are negative. Interestingly, extreme rejection rates,
say over 0.8, for �ML and �ML do not always occur for the same set of parameter values—see,
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TABLE 5: Heteroskedasticity with c = 1, Modified Rook Matrix R4 (n = 945)

�GS �ML

Rho Lambda Median Std. Err Rej. Rate RMSE Median Std. Err Rej. Rate RMSE

−0.8 −0.8 −0.7895 0.0639 0.0525 0.0647 −0.6909 0.0393 0.5945 0.1160
−0.8 −0.3 −0.7982 0.0495 0.0400 0.0495 −0.6243 0.0390 0.9990 0.1799
−0.8 0 −0.7994 0.0442 0.0415 0.0442 −0.6187 0.0397 1.0000 0.1856
−0.8 0.3 −0.7993 0.0400 0.0425 0.0400 −0.6250 0.0380 1.0000 0.1791
−0.8 0.8 −0.7996 0.0376 0.0470 0.0376 −0.6488 0.0343 0.9975 0.1551
−0.3 −0.8 −0.2930 0.0778 0.0470 0.0781 −0.3106 0.0593 0.0330 0.0602
−0.3 −0.3 −0.2958 0.0770 0.0490 0.0771 −0.2370 0.0518 0.1320 0.0816
−0.3 0 −0.2972 0.0765 0.0520 0.0765 −0.2065 0.0522 0.2940 0.1071
−0.3 0.3 −0.2969 0.0743 0.0475 0.0744 −0.1899 0.0530 0.4330 0.1222
−0.3 0.8 −0.2967 0.0672 0.0505 0.0673 −0.2001 0.0541 0.4100 0.1136

0 −0.8 0.0068 0.0769 0.0520 0.0772 −0.0779 0.0675 0.2420 0.1031
0 −0.3 0.0050 0.0824 0.0505 0.0825 −0.0318 0.0592 0.0625 0.0672
0 0 0.0026 0.0800 0.0545 0.0801 −0.0006 0.0581 0.0380 0.0581
0 0.3 0.0033 0.0802 0.0555 0.0803 0.0240 0.0593 0.0545 0.0640
0 0.8 0.0040 0.0747 0.0520 0.0748 0.0302 0.0621 0.0795 0.0690
0.3 −0.8 0.3064 0.0708 0.0485 0.0711 0.1836 0.0690 0.5340 0.1353
0.3 −0.3 0.3033 0.0758 0.0510 0.0759 0.1974 0.0638 0.4130 0.1208
0.3 0 0.3020 0.0788 0.0485 0.0789 0.2220 0.0620 0.2635 0.0996
0.3 0.3 0.3011 0.0789 0.0505 0.0789 0.2484 0.0620 0.1350 0.0807
0.3 0.8 0.3034 0.0736 0.0525 0.0737 0.2721 0.0656 0.0990 0.0713
0.8 −0.8 0.8019 0.0389 0.0460 0.0389 0.7198 0.0462 0.7115 0.0925
0.8 −0.3 0.7999 0.0402 0.0435 0.0402 0.7036 0.0493 0.7560 0.1083
0.8 0 0.7979 0.0423 0.0485 0.0423 0.7053 0.0500 0.6895 0.1071
0.8 0.3 0.7951 0.0469 0.0535 0.0472 0.7147 0.0509 0.5570 0.0994
0.8 0.8 0.7892 0.0548 0.0545 0.0559 0.7377 0.0612 0.2700 0.0873

Average 0.0023 0.0641 0.0492 0.0643 0.0119 0.0539 0.4319 0.1066

�GS �ML

Rho Lambda Median Std. Err Rej. Rate RMSE Median Std. Err Rej. Rate RMSE

−0.8 −0.8 −0.8104 0.0452 0.0740 0.0464 −0.7735 0.0279 0.0330 0.0385
−0.8 −0.3 −0.3040 0.0556 0.0535 0.0557 −0.3621 0.0387 0.2695 0.0732
−0.8 0 −0.0017 0.0488 0.0525 0.0488 −0.0825 0.0390 0.5250 0.0912
−0.8 0.3 0.2997 0.0372 0.0515 0.0372 0.2270 0.0332 0.6190 0.0802
−0.8 0.8 0.8004 0.0130 0.0515 0.0130 0.7812 0.0120 0.4055 0.0223
−0.3 −0.8 −0.8020 0.0221 0.0550 0.0222 −0.7334 0.0218 0.7245 0.0701
−0.3 −0.3 −0.3016 0.0405 0.0505 0.0405 −0.2898 0.0300 0.0155 0.0317
−0.3 0 −0.0016 0.0412 0.0465 0.0412 −0.0297 0.0319 0.0770 0.0436
−0.3 0.3 0.2994 0.0352 0.0495 0.0352 0.2517 0.0296 0.2605 0.0567
−0.3 0.8 0.8003 0.0141 0.0505 0.0141 0.7802 0.0137 0.3240 0.0241

0 −0.8 −0.8010 0.0184 0.0535 0.0185 −0.7350 0.0185 0.8600 0.0675
0 −0.3 −0.3009 0.0359 0.0505 0.0359 −0.2609 0.0288 0.0815 0.0485
0 0 −0.0004 0.0394 0.0495 0.0394 −0.0013 0.0314 0.0155 0.0314
0 0.3 0.2996 0.0357 0.0440 0.0357 0.2705 0.0303 0.0850 0.0423
0 0.8 0.8004 0.0161 0.0490 0.0161 0.7808 0.0157 0.2290 0.0247
0.3 −0.8 −0.8005 0.0172 0.0535 0.0172 −0.7406 0.0165 0.8870 0.0617
0.3 −0.3 −0.3006 0.0360 0.0590 0.0361 −0.2365 0.0298 0.3075 0.0701
0.3 0 0.0001 0.0394 0.0495 0.0394 0.0280 0.0331 0.0515 0.0434

Continued
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TABLE 5: Continued

�GS �ML

Rho Lambda Median Std. Err Rej. Rate RMSE Median Std. Err Rej. Rate RMSE

0.3 0.3 0.3005 0.0391 0.0480 0.0391 0.2930 0.0335 0.0205 0.0342
0.3 0.8 0.8008 0.0195 0.0470 0.0196 0.7828 0.0198 0.1350 0.0262
0.8 −0.8 −0.8009 0.0162 0.0555 0.0162 −0.7549 0.0150 0.8085 0.0476
0.8 −0.3 −0.2988 0.0389 0.0545 0.0389 −0.2119 0.0354 0.5825 0.0950
0.8 0 0.0051 0.0497 0.0625 0.0499 0.0746 0.0432 0.3110 0.0862
0.8 0.3 0.3101 0.0556 0.0760 0.0565 0.3446 0.0462 0.1120 0.0642
0.8 0.8 0.8093 0.0386 0.0790 0.0397 0.7956 0.0418 0.0945 0.0421

Average 0.0001 0.0339 0.0546 0.0341 0.0079 0.0287 0.3134 0.0527

TABLE 6: Homoskedasticity with c = 1, Modified Rook Matrix R1 (n = 486)

�GS �ML

Rho Lambda Median Std. Err Rej. Rate RMSE Median Std. Err Rej. Rate RMSE

−0.8 −0.8 −0.7724 0.1019 0.0895 0.1056 −0.7932 0.0855 0.0815 0.0858
−0.8 −0.3 −0.7939 0.0704 0.0555 0.0707 −0.7970 0.0588 0.0455 0.0589
−0.8 0 −0.7979 0.0642 0.0485 0.0643 −0.7966 0.0565 0.0545 0.0566
−0.8 0.3 −0.7994 0.0610 0.0480 0.0610 −0.7970 0.0532 0.0580 0.0533
−0.8 0.8 −0.8003 0.0576 0.0550 0.0576 −0.7978 0.0513 0.0590 0.0514
−0.3 −0.8 −0.2926 0.1124 0.0555 0.1127 −0.3038 0.1108 0.0450 0.1108
−0.3 −0.3 −0.2981 0.1052 0.0500 0.1052 −0.3022 0.1031 0.0475 0.1031
−0.3 0 −0.3010 0.1032 0.0505 0.1032 −0.3026 0.0989 0.0475 0.0990
−0.3 0.3 −0.3026 0.0975 0.0510 0.0975 −0.3026 0.0956 0.0520 0.0956
−0.3 0.8 −0.3033 0.0901 0.0545 0.0901 −0.3019 0.0890 0.0545 0.0890

0 −0.8 0.0015 0.1038 0.0490 0.1038 −0.0048 0.1023 0.0420 0.1024
0 −0.3 −0.0015 0.1069 0.0510 0.1069 −0.0041 0.1048 0.0465 0.1049
0 0 −0.0038 0.1054 0.0490 0.1055 −0.0037 0.1029 0.0485 0.1030
0 0.3 −0.0059 0.1036 0.0500 0.1037 −0.0041 0.1019 0.0480 0.1020
0 0.8 −0.0063 0.0935 0.0535 0.0937 −0.0035 0.0924 0.0515 0.0925
0.3 −0.8 0.2994 0.0885 0.0495 0.0885 0.2975 0.0871 0.0455 0.0872
0.3 −0.3 0.2960 0.0944 0.0545 0.0945 0.2980 0.0940 0.0530 0.0940
0.3 0 0.2938 0.0949 0.0550 0.0951 0.2958 0.0954 0.0465 0.0955
0.3 0.3 0.2924 0.0959 0.0495 0.0962 0.2950 0.0948 0.0460 0.0949
0.3 0.8 0.2933 0.0884 0.0485 0.0887 0.2967 0.0878 0.0470 0.0879
0.8 −0.8 0.7995 0.0427 0.0500 0.0427 0.7972 0.0399 0.0530 0.0400
0.8 −0.3 0.7956 0.0503 0.0580 0.0505 0.7960 0.0448 0.0500 0.0449
0.8 0 0.7906 0.0576 0.0635 0.0583 0.7955 0.0503 0.0525 0.0505
0.8 0.3 0.7841 0.0657 0.0720 0.0676 0.7939 0.0564 0.0560 0.0568
0.8 0.8 0.7791 0.0656 0.0660 0.0688 0.7962 0.0674 0.0900 0.0675

Average −0.0021 0.0848 0.0551 0.0853 −0.0021 0.0810 0.0528 0.0811
�GS �ML

Rho Lambda Median Std. Err Rej. Rate RMSE Median Std. Err Rej. Rate RMSE

−0.8 −0.8 −0.8282 0.0736 0.1220 0.0788 −0.8010 0.0689 0.0835 0.0689
−0.8 −0.3 −0.3105 0.0640 0.0655 0.0649 −0.3053 0.0584 0.0480 0.0587
−0.8 0 −0.0041 0.0510 0.0550 0.0511 −0.0041 0.0484 0.0425 0.0486
−0.8 0.3 0.2990 0.0373 0.0520 0.0373 0.2973 0.0358 0.0455 0.0359

Continued
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TABLE 6: Continued

�GS �ML

Rho Lambda Median Std. Err Rej. Rate RMSE Median Std. Err Rej. Rate RMSE

−0.8 0.8 0.8001 0.0119 0.0515 0.0119 0.7990 0.0112 0.0425 0.0112
−0.3 −0.8 −0.8081 0.0542 0.0600 0.0548 −0.7975 0.0497 0.0520 0.0498
−0.3 −0.3 −0.3051 0.0619 0.0550 0.0621 −0.3017 0.0618 0.0500 0.0618
−0.3 0 −0.0021 0.0537 0.0505 0.0537 −0.0026 0.0528 0.0465 0.0528
−0.3 0.3 0.2996 0.0417 0.0495 0.0417 0.2981 0.0400 0.0440 0.0400
−0.3 0.8 0.8000 0.0140 0.0495 0.0140 0.7990 0.0132 0.0445 0.0133

0 −0.8 −0.8040 0.0479 0.0545 0.0481 −0.7971 0.0424 0.0450 0.0425
0 −0.3 −0.3019 0.0638 0.0535 0.0639 −0.3011 0.0639 0.0480 0.0639
0 0 −0.0017 0.0587 0.0525 0.0587 −0.0018 0.0578 0.0495 0.0578
0 0.3 0.2997 0.0464 0.0510 0.0464 0.2980 0.0459 0.0460 0.0460
0 0.8 0.8002 0.0165 0.0480 0.0165 0.7984 0.0154 0.0430 0.0155
0.3 −0.8 −0.8019 0.0448 0.0515 0.0449 −0.7977 0.0387 0.0455 0.0388
0.3 −0.3 −0.2987 0.0676 0.0600 0.0676 −0.2988 0.0683 0.0475 0.0683
0.3 0 0.0018 0.0660 0.0575 0.0660 0.0003 0.0666 0.0500 0.0666
0.3 0.3 0.3020 0.0553 0.0595 0.0554 0.2983 0.0551 0.0510 0.0551
0.3 0.8 0.8006 0.0211 0.0485 0.0212 0.7980 0.0202 0.0460 0.0203
0.8 −0.8 −0.7994 0.0403 0.0555 0.0403 −0.7965 0.0321 0.0515 0.0323
0.8 −0.3 −0.2894 0.0820 0.0765 0.0827 −0.2946 0.0698 0.0550 0.0700
0.8 0 0.0188 0.0974 0.0940 0.0992 0.0055 0.0808 0.0575 0.0810
0.8 0.3 0.3276 0.0997 0.1055 0.1034 0.3039 0.0867 0.0695 0.0868
0.8 0.8 0.8176 0.0486 0.1045 0.0517 0.7991 0.0525 0.0915 0.0525

Average 0.0005 0.0528 0.0633 0.0534 −0.0002 0.0495 0.0518 0.0495

for example, Tables 3–5. Of course, when they do occur simultaneously either � or � is
negative, but typically not both.

Intuitive explanations of the table results thus far discussed as they relate to the
values of � and � are not straightforward. As one example, the reduced form for yn from
the model (1) and (2) is

yn = (In − �Wn)−1Xn� + (In − �Wn)−1(In − �Wn)−1�n.(20)

If � is large in absolute value, say close to 1.0, the variances of the elements of error
vector in equation (20), namely (In − �Wn)−1(In − �Wn)−1�n, will, ceteris paribus, tend to
be large since � = 1.0 is a singular point of the inverse matrix. These larger variances will
obviously have a negative effect on estimation precision. On the other hand, increased
variation of the vector yn will, ceteris paribus, increase the variation in Wnyn, which is a
right-hand-side variable, and this should increase estimation precision. The net effect on
estimation precision of a large value of � will obviously be the result of these two effects,
and it is not clear which of these two effects would dominate in a particular case. Similar
concerns relate to the value of � since, on the negative side, it also enters the error term
in (20) in the same fashion as �; on the positive side � can be viewed as a regression
parameter in (2) and the larger the value of � the more Wnun varies and so the more
precision is increased. Of course, intuitive interpretations of our results are made still
more complex by the interactive effects of � and � as is evident in (20).

Returning to the tables, note from Tables 2–5 that, on average, the root mean
square errors relating to �GS and to �GS decrease as the sample size increases in every
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“comparable” case considered. As an example of “comparable” cases, Tables 2 and 3 both
relate to a north-east modified rook matrix in which the north-east quadrant contains 75
percent of the units. The main difference in the design underlying Tables 2 and 3 is the
sample size, namely n = 486 for Table 2 and n = 974 for Table 3. Other comparable tables
are Tables 4 and 5. The root mean square errors for �ML and �ML typically decrease in rel-
evant comparisons as the sample size increases. A glance at the tables suggests that the
reason for this is that the standard deviations, not the biases, decreases with the sample
size.

The “comparable” cases above focused attention on the effects of the sample size in the
modified rook matrix cases by holding constant the relative size of the north-east quadrant
of those matrices. We now focus attention on comparisons relating to the relative size of
the north-east quadrant of those modified rook matrices by holding constant the sample
size. For instance, consider the results in Tables 2 and 4. In these tables the sample sizes
are 486 and 485, respectively; the proportion of units located in the north-east quadrant
are 75 and 25 percent, respectively.

The root mean square errors for �GS and �GS are lower in Table 4 than they are in
Table 2, as are the averages of these root mean square errors. The same result holds for
the root mean square errors of �GS and �GS in Tables 3 and 5. Thus, the smaller the size
of the north-east quadrant, the more precise the estimation is.

Given the complexity of our model and our estimators, there does not seem to be a
simple explanation of these results. On an intuitive level, one suspects that the particular
values of the instrument matrix and the variances are at least part of the explanation.
For example, if � = 0 the only term in the large sample distribution of �̃n that would
involve the variances would be limn→∞ n−1H′

nΣnHn, which clearly involves the products
of the variances and the elements of Hn.

Table 6 contains results for the homoskedastic case in which the weights matrix is
a north-east modified rook matrix R1 and c = 1.0. Under homoskedasticity the quasi-
maximum-likelihood estimator is the maximum-likelihood estimator, and so it is consis-
tent and efficient. Of course, in this case both �GS and �GS are also consistent. Consistent
with this, note from Table 6 that the biases are small for all four of the indicated estima-
tors, and the rejection rates are reasonably close to the theoretical 0.05 level. Although
the root mean square errors are relatively small for both �GS and �GS, they are typically
larger than those of �ML and �ML. On average the root mean square errors of �GS and �GS

are 5 and 8 percent, respectively, larger than those of �ML and �ML in Table 6.

6. CONCLUSIONS

In this paper a general Cliff-Ord-type model is considered, which contains spatial
lags in both the dependent variable, the disturbance term, and possibly in some of the
exogenous variables. In the model the innovations to the disturbance process are assumed
to be heteroskedastic of an unknown form. Estimators of the regression parameters and
the autoregressive parameter in the disturbance process are suggested. User-friendly
expressions are given for asymptotic distributions and for small-sample approximations,
which are useful for testing joint hypotheses relating to the regression parameters and/or
the autoregressive parameter in the disturbance process. Monte Carlo results are given
which suggest that our estimators behave well in small samples; on the other hand,
the maximum-likelihood estimator based on the normality assumption may behave quite
poorly when the innovations are in fact heteroskedastic in that its biases can be large,
which in turn leads to type 1 rejection levels which are large relative to the nominal
levels.
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APPENDIX A: ADDITIONAL ASSUMPTIONS

In this appendix we state the additional assumptions needed to formally establish
the limiting distribution of the GMM/IV estimators.

ASSUMPTION A1: Let Γn = [�rs,n]r,s=1,2 and �n = [�1,n, �2,n]′, where dropping the sub-
script n temporarily for notational convenience,

�11 = 2n−1E
{

¯̄u′ū − Tr
[
M

[
diagn

i=1(ūiui)
]
M′]} = 2n−1Eu′M′A1u,

�12 = −n−1E
{

¯̄u′ ¯̄u + Tr
[
M

[
diagn

i=1

(
ū2

i

)]
M′]} = −n−1Eu′M′A1Mu,

�21 = n−1E(u′ ¯̄u + ū′ū) = n−1Eu′M′(A2 + A′
2)u,

�22 = −n−1Eū′ ¯̄u = −n−1Eu′M′A2Mu,

�1 = n−1E
{
ū′ū − Tr

[
M

[
diagn

i=1

(
u2

i

)]
M′]} = n−1Eu′A1u,

�2 = n−1Eu′ū = n−1Eu′A2u,

(A1)

with ū = Mu, and ¯̄u = Mū = M2u. Then Γn is nonsingular for all n sufficiently large and
limn→∞ Γn = Γ is finite and nonsingular.

ASSUMPTION A2: Let Ψn = (�rs,n) where for r, s = 1, 2

�rs,n = (2n)−1tr
[(

Ar,n + A′
r,n

)
Σn

(
As,n + A′

s,n

)
Σn

] + n−1a′
r,nΣnas,n(A2)

with ar,n = (In − �M′
n)−1HnP�r,n where

�r,n = −n−1E
[
Z′

n

(
In − �M′

n

)
(Ar,n + A′

r,n) (In − �Mn) un
]
,

P = Q−1
HHQHZ[Q′

HZQ−1
HHQHZ]−1,

(A3)
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and Σn = diag(�2
i,n), where �2

i,n = E�2
i,n. Furthermore, let

Ψ◦,n =
[

ΨΔΔ,n ΨΔ� ,n

Ψ′
Δ� ,n Ψn

]
(A4)

with

ΨΔΔ,n = n−1H′
n (In − �Mn)−1 Σn

(
In − �M′

n

)−1 Hn,

ΨΔ� ,n = n−1H′
n (In − �Mn)−1 Σn[a1,n, a2,n].

Then Ψn and Ψ◦,n are nonsingular for all n sufficiently large and limn→∞ Ψn = Ψ and
limn→∞ Ψ◦,n = Ψ◦ are finite and nonsingular.

ASSUMPTION A3: Let Ψn = (�rs,n) where for r, s = 1, 2

�rs,n = (2n)−1tr
[(

Ar,n + A′
r,n

)
Σn

(
As,n + A′

s,n

)
Σn

] + n−1a′
r,nΣnas,n(A5)

with

ar,n = HnP�r,n,

�r,n = −n−1E
[
Z′

n

(
In − �M′

n

)
(Ar,n + A′

r,n) (In − �Mn) un
]
,

P = Q−1
HHQHZ∗

[
Q′

HZ∗Q−1
HHQHZ∗

]−1
,

(A6)

and Σn = diag(�2
i,n), where �2

i,n = E�2
i,n. Furthermore, let

Ψ◦,n =
[

Ψ��,n Ψ�� ,n

Ψ′
�� ,n Ψn

]
,(A7)

with

Ψ��,n = n−1H′
nΣnHn,

Ψ�� ,n = n−1H′
nΣn

[
a1,n, a2,n

]
.

Then Ψn and Ψ◦,n are nonsingular for all n sufficiently large and limn→∞ Ψn = Ψ and
limn→∞ Ψ◦,n = Ψ◦ are finite and nonsingular.

APPENDIX B: ESTIMATORS FOR Ψ AND Ω

For simplicity of notation we drop subscript n in the following.

Definition of G and g

Let �̃ be some estimator for �, let ũ = y − Z�̃ be the corresponding estimated resid-
uals, and let ˜̄un = Mnũn,

˜̄̄un = M2
nũn. Then, G(̃�) = [grs (̃�)]r,s=1,2 and g(̃�) = [g1(̃�), g2(̃�)]′

are obtained from the expressions for the elements of Γ = [�rs]r,s=1,2 and � = [�1, �2]′ in
(A1) by suppressing the expectations operator, and replacing the disturbance vectors u, ū,
and ¯̄u by their predictors ũ, ˜̄u, and ˜̄̄u.

Definition of Ψ̃ and Ω̃

Let ũ = y − Z�̃ denote the 2SLS residuals and let �̄ be some estimator for � . Then
Ψ̃ = [�̃rs]r,s=1,2 with

�̃rs = (2n)−1tr
[(

Ar + A′
r

)
Σ̃

(
As + A′

s

)
Σ̃

] + n−1ã′
rΣ̃ãs,(B1)
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where

Σ̃ = diagi=1,...,n
(̃
�2

i

)
�̃ = (I − �̄M) ũ

ãr = (I − �̄M′)−1 HP̃�̃r �̃r = −n−1
[
Z′ (I − �̄M′)

(
Ar + A′

r

)
(I − �̄M) ũ

]
and

P̃ = (n−1H′H)−1(n−1H′Z)
[
(n−1Z′H)(n−1H′H)−1(n−1H′Z)

]−1
.

Let Γ̃ = G(̃�), where G (.) is defined in Appendix B: Definition of G and g, and let J̃ =
Γ̃[1, 2�̄ ]′, then the estimator Ω̃ is given by

Ω̃ =
[

P̃′ 0

0 (J̃′Ψ̃
−1J̃)−1J̃′Ψ̃

−1

]
Ψ̃◦

[
P̃ 0

0 Ψ̃
−1J̃(J̃′Ψ̃

−1J̃)−1

]
,

Ψ̃◦ =
[

Ψ̃�� Ψ̃��

Ψ̃
′
�� Ψ̃

]
, Ψ̃�� = n−1H′ (I − �̄M) Σ̃ (I − �̄M′) H,

Ψ̃�� = n−1H′ (I − �̄M) Σ̃ [̃a1, ã2] .

(B2)

We will also write Ψ̃(�̄ ), Ω̃(�̄ ), and Ψ̃◦(�̄ ) for Ψ̃, Ω̃, and Ψ̃◦ to explicitly denote the
dependence on �̄ .

Definition of Ψ̂ and Ω̂

Let û = y − Z�̂ denote the GS2SLS residuals and let �̄ be some estimator for � . Then
Ψ̂ = [�̂rs]r,s=1,2 with

�̂rs = (2n)−1tr
[(

Ar + A′
r

)
Σ̂

(
As + A′

s

)
Σ̂

] + n−1â′
rΣ̂âs,

where

Σ̂ = diagi=1,...,n
(̂
�2

i

)
�̂ = (I − �̄M) û

âr = HP̂�̂r �̂r = −n−1
[
Z′ (I − �̄M′)

(
Ar + A′

r

)
(I − �̄M) û

]
and

P̂ = (n−1H′H)−1(n−1H′Z∗(�̄ ))
[
(n−1Z′

∗(�̄ )H)(n−1H′H)−1(n−1H′Z∗(�̄ ))
]−1

,

and Z∗(�̄ ) = Z − �̄MZ. Let Γ̂ = G(̂�), where G (.) is defined in Appendix B: Definition of G
and g, then the estimator Ω̂ is given by

Ω̂ =
[

P̂′ 0
0 (Ĵ′Ψ̂

−1Ĵ)−1Ĵ′Ψ̂
−1

]
Ψ̂◦

[
P̂ 0

0 Ψ̂
−1Ĵ(Ĵ′Ψ̂

−1Ĵ)−1

]
,

Ψ̂◦ =
[

Ψ̂�� Ψ̂��

Ψ̂
′
�� Ψ̂

]
, Ψ̂�� = n−1H′Σ̂H, Ψ̂�� = n−1H′Σ̂ [̂a1, â2] .

We will also write Ψ̂(�̄ ), Ω̂(�̄ ), and Ψ̂◦(�̄ ) for Ψ̂, Ω̂, and Ψ̂◦ to explicitly denote the
dependence on �̄ .

APPENDIX C: PROOFS

Proof of Theorem 1: Consider the 2SLS residuals ũn = yn − Zñ�n. Then clearly ũn − un =
DnΔn with Dn = −Zn and Δn = �̃n − �. Next observe that under our Assumptions 1–3
and 4–6, Assumptions 1–3 and 8–10 in Kelejian and Prucha (2007b) clearly hold. Since
� does not vary with n it now follows directly from Lemma 3 in Kelejian and Prucha
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(2007b) that the fourth moments of the elements of Dn = −Zn are uniformly bounded, that
Assumption 6 in Kelejian and Prucha (2007b) holds, and

(a) [n1/2(̃�n − �) = n−1/2T′
n�n + op(1) with Tn = FnP and where

P = Q−1
HHQHZ

[
Q′

HZQ−1
HHQHZ

]−1
,

Fn = (
In − �M′

n

)−1 Hn.

(b) n−1/2T′
n�n = Op(1).

(c) P = Op(1) and P̃n − P = op(1) for

P̃n = (n−1H′
nHn)−1(n−1H′

nZn)
[(

n−1Z′
nHn

)(
n−1H′

nHn
)−1(

n−1H′
nZn

)]−1
.

From this we see that also Assumptions 4 and 7 in Kelejian and Prucha (2007b) are
satisfied.

By Assumption A1 we have Γn is nonsingular for all n sufficiently large and
limn→∞ Γn = Γ is finite and nonsingular. Consequently, the �min(Γ′

nΓn) ≥ const > 0 for
n sufficiently large and thus also Assumption 5(a) in Kelejian and Prucha (2007b) holds.
Furthermore, observe that for ϒ̃n = ϒn = I2 also Assumptions 5(b),(c) in Kelejian and
Prucha (2007b) are trivially satisfied.

By Assumption A2 Ψn and Ψ◦,n are nonsingular for all n sufficiently large and
limn→∞ Ψn = Ψ and limn→∞ Ψ◦,n = Ψ◦ are finite and nonsingular, and thus the smallest
[largest] eigenvalues of Ψn, Ψ−1

n , Ψ◦,n, and Ψ−1
◦,n are bounded away from zero [bounded

from above] for sufficiently large n.
It now follows immediately from Theorems 1–3 in Kelejian and Prucha (2007b) that

the initial GMM estimator for � , �̌n, is n1/2-consistent and that plimn→∞Ψ̃n(�̌n) = Ψ and
plimn→∞Ψ̃

−1
n (�̌n) = Ψ−1.

The estimator �̃n is a special case of the GMM estimators for � defined in equation
(9) in Kelejian and Prucha (2007b) with ϒ̃n = Ψ̃

−1
n (̃�n) and ϒn = Ψ−1

n . Recalling that the
smallest [largest] eigenvalues of Ψ−1

n bounded away from zero [bounded from above]
for sufficiently large n we see from Theorem 3 in Kelejian and Prucha (2007b) that
also in this case Assumption 5(b),(c) in that paper are satisfied. All other assumptions
maintained by Theorems 1–3 in Kelejian and Prucha (2007b) have already been verified,
which establishes n1/2-consistency of �̃n and its asymptotic efficiency.

The joint limiting distribution of n1/2(̃�n − �) and n1/2(̃�n − � ) given by the theorem
now follows immediately from Theorem 4 in Kelejian and Prucha (2007b).

Proof of Theorem 2: Consider the GS2SLS residuals ûn = yn − Zn̂�n. Then clearly ûn −
un = DnΔn with Dn = −Zn and Δn = �̂n − �. As in the proof of Theorem 1, observe that
under our Assumptions 1–3 and 4–6, Assumptions 1–3 and 8–10 in Kelejian and Prucha
(2007b) clearly hold. Also, recall that in the proof of Theorem 1 we have established
that the fourth moments of the elements of Dn = −Zn are uniformly bounded, and that
Assumption 6 in Kelejian and Prucha (2007b) holds. It now follows from Lemma 4 in
Kelejian and Prucha (2007b) that5

(a) n1/2(̂�n(̃�n) − �) = n−1/2T′
n�n + op(1) with Tn = FnP and where

P = Q−1
HHQHZ∗ (� )

[
Q′

HZ∗ (� )Q−1
HHQHZ∗ (� )

]−1
,

Fn = Hn.

5The argument, and hence the Theorem, also holds if �̃n is replaced by any other n1/2-consistent
estimator for � .
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(b) n−1/2T′
n�n = Op(1).

(c) P = Op(1) and P̃n − P = op(1) for

P̃n = (n−1H′
nHn)−1

(
n−1H′

nZ∗
n(̃�n)

)
× [(

n−1Z∗
n(̃�n)′Hn

)(
n−1H′

nHn
)−1(

n−1H′
nZn(̃�n)

)]−1
.

From this we see that Assumptions 4 and 7 in Kelejian and Prucha (2007b) are also
satisfied.

By Assumption A1 we have Γn is nonsingular for all n sufficiently large and
limn→∞ Γn = Γ is finite and nonsingular. Consequently, the �min(Γ′

nΓn) ≥ const > 0 for
n sufficiently large and thus Assumption 5(a) in Kelejian and Prucha (2007b) also holds.

By Assumption A3 Ψn and Ψ◦,n are nonsingular for all n sufficiently large and
limn→∞ Ψn = Ψ and limn→∞ Ψ◦,n = Ψ◦ are finite and nonsingular, and thus the smallest
[largest] eigenvalues of Ψn, Ψ−1

n , Ψ◦,n, and Ψ−1
◦,n are bounded away from zero [bounded

from above] for sufficiently large n.
The estimator �̂n is a special case of the GMM estimators for � defined in equation (9)

in Kelejian and Prucha (2007b) with ϒ̃n = Ψ̂
−1
n (̃�n) and ϒn = Ψ−1

n . As remarked above, the
smallest [largest] eigenvalues of Ψ−1

n bounded away from zero [bounded from above] for
sufficiently large n, and thus we see from Theorem 3 in Kelejian and Prucha (2007b) that
in this case Assumption 5(b),(c) in that paper are also satisfied. All other assumptions
maintained by Theorems 1–3 in Kelejian and Prucha (2007b) have already been verified,
which establishes n1/2-consistency of �̂n and its asymptotic efficiency.

The joint limiting distribution of n1/2(̂�n − �) and n1/2(̂�n − � ) given by the theorem
now follows immediately from Theorem 4 in Kelejian and Prucha (2007b).
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