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Abstract

The purpose of this paper is to describe prediction efficiencies of various suboptimal predictors relative
to the efficient (kriging) minimum mean square error predictor in spatial models containing spatial lags in
both the dependent variable and the error term. Suboptimal predictors have been suggested in the literature.
One reason is that they are suggested on an intuitive level; another is that they are computationally less
tedious. We describe these relative efficiencies theoretically, as well as empirically. Among other things our
results suggest that one of the intuitively suggestive suboptimal predictors is especially inefficient.
© 2006 Elsevier B.V. All rights reserved.
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1. Introduction

Linear spatial models have wide applications in economics, geography, and regional science,
among other areas of research.1 As with many research efforts, prediction is one of the applications
of this modeling. Although the determination of an efficient predictor is fairly straight forward, 2
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1 Classic references on spatial models are Cliff and Ord (1973, 1981), Anselin (1988), and Cressie (1993). For a variety
of recent studies which relate to spatial techniques see e.g., Cohen and Morrison Paul (2004), Rey and Boarnet (2004),
Yuzefovich (2003), Kapoor (2003), Pinske, Slade, and Brett (2003), Bell and Bockstael (2000), Kelejian and Robinson
(2000), Buettner (1999), LeSage (1999), Bollinger and Ihlanfeldt (1997), and Audretsch and Feldmann (1996), Bernat
(1996), and Besley and Case (1995).
2 An early study relating to best linear unbiased prediction (BLUP) in a GLS-type model is Goldberger (1962); see also

Cressie (1993, Chapter 3) who describes optimal prediction in a spatial framework.
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suboptimal predictors have been considered in the literature. One reason for this is that suboptimal
predictors are often suggested on an intuitive level; another is that they are typically
computationally simpler than efficient predictors.3

Essentially, the purpose of this paper is to give results which illustrate the extent of
inefficiencies of various predictors in a spatial model. Specifically, we consider prediction issues
in the context of a linear spatial model which contains exogenous variables, a spatially lagged
dependent variable, and a spatially lagged error term.4 In the context of this model, we consider
three nested information sets which a researcher would have access to and might be considered
for purposes of prediction. Corresponding to these information sets we consider three predictors
defined as conditional means based on these information sets. We refer to the predictor based on
the largest information set as the full information predictor, and to the other two predictors as
limited information predictors. For future reference we note that the smallest of these information
sets only contains the exogenous variables and the weighting matrix. As expected, predictors
corresponding to the larger information sets are more complex than those corresponding to
smaller sets, and so there are trade-offs between simplicity and prediction efficiency. We also
consider a “user-friendly and intuitive” predictor which is biased, namely, the right hand side of
the regression model. The bias arises because of the correlation between the spatially lagged
dependent variable and the error term.5 Finally, we consider an intuitive but biased predictor, as
well as the full information predictor in the context of a spatial error model as a special case of our
general model.

For each of our considered predictors we give an estimate of its predictive efficiency relative to
the full information predictor. All of our results specialize to models in which one, or both of these
spatial lags are absent. In addition, qualitative extensions to space-time models will become
evident.

As a preview, it turns out that in our general model the worst predictor, by far, is the conditional
mean which is based only on the exogenous variables and the weighting matrix. For example, in
the numerical experiments we considered, its predictive efficiency relative to that of the full
information predictor is, on average, only between 4% and 12.2%. Although the biased predictor
is a considerable improvement, it is still significantly worse than the full information predictor, as
well as the other conditional mean predictor considered which recognizes spatial lags in both the
dependent variable and in the error term. Interestingly, in the context of a spatial error model, the
intuitive but biased predictor performs reasonably well in that its prediction efficiency relative to
the full information predictor is, on average, between, roughly, 91.7% and 97.7%. Again, in this
model the predictor determined as the conditional mean on the exogenous variables and
weighting matrix is substantially worse than the other considered predictors.

We also find that the prediction inefficiencies involved for all of our considered predictors
relative to the corresponding full information predictor generally increase as the sparseness of the

3 Specific cases will be indicated below; at this point we note that Bannerjee, Carlin, and Gelfand (2003) have criticized
the way researchers often use spatial models in an ad hoc way to form predictions.
4 Anselin (1988, pp. 87–88) gave results which have been interpreted as suggesting that such models are not identified

if the weighting matrix relating to the spatial lag of the dependent variable is the same as that relating to the error term.
This may be one reason that such models are typically not considered in practice, see e.g., Dubin (2003, 2004). This is
unfortunate because such models are rich in patterns of spatial correlations and are, under reasonable conditions, clearly
identified — see, e.g., Kelejian and Prucha (1998, 1999) and Lee (2003).
5 Among others, such a predictor was considered by Dubin (2004); Kelejian and Yuzefovich (2004) considered the

conditional mean predictor based only on the exogenous variables and weighting matrix.
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weighting matrix increases. The suggestion, therefore, is to avoid simpler but inefficient
predictors when the weighting matrix is relatively sparse. Finally, the inefficiencies involved in
the simpler predictors increase dramatically at certain extreme values of the autoregressive
parameters.

In Section 2 we specify the model. Section 3 describes the predictors considered, and their
mean squared errors of prediction. The experimental design and corresponding numerical results
relating to the relative prediction efficiencies are given in Section 4. Concluding comments are
given in Section 5.

2. Model specification

Consider the model

y ¼ kWyþ Xbþ u;
u ¼ qWuþ e;

ð1Þ

where y is the n×1 vector of values of the dependent variable, W is an n×n nonstochastic
weighting matrix, X is an n×k nonstochastic matrix of observations on k exogenous variables
(i.e., our analysis is conditional on the exogenous variables), u is an n×1 vector of disturbances,
ε is an n×1 vector of innovations, λ and ρ are scalar autoregressive parameters, and β is a k×1
vector of parameters. The above model has been referred to as a SARAR(1,1) model in the
literature — see, e.g., Kelejian and Prucha (1998). It is a variant of the spatial model introduced
by Cliff and Ord (1973, 1981).6

Our discussion of prediction based on Eq. (1) considers the case in which the dependent vector
is observed except for its i-th (1≤ i≤n) element, and all elements of W and X are observed. We
refer to this case as the full information case.

We make the following assumptions.

Assumption 1. The diagonal elements of W are all zero.

Assumption 2. |λ|b1, |ρ|b1, and (I−αW) is non-singular for all |α|b1.

Assumption 3. ε~N(0, σε
2I).

Given W and X are matrices of known constants, Assumptions 2 and 3 imply

u ¼ ðI−qW Þ−1e;
y ¼ ðI−kW Þ−1Xbþ ðI−kW Þ−1ðI−qW Þ−1e; ð2Þ

6 We note that the model in Eq. (1) can also be thought of in a panel data framework. As one example, suppose there
are data on R cross sectional units for each of T time periods. In this case n=RT. In order to avoid notational confusion
with material below, let Y denote n×1 dependent in vector in Eq. (1). Then one would have

Y V¼ ðY1V; N ; YTVÞ

where Yt is the R×1 vector of observations on the dependent variable at time t=1 ,…,T. The matrix X and the vector u
would be defined in a similar fashion. Note, in this case, that time dynamics involving the dependent variable would
correspond to the case in which the RT×RT weighting matrix is a lower block diagonal matrix. Clearly this discussion
can be extended to the case in which the number of cross sectional units are not the same in all of the time periods.
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and so

ufN 0; r2e
Xu

� �
;

yfN ly; r
2
e

Xy
� �

;
ð3Þ

with

ly ¼ ðI−kW Þ−1Xb;Xu ¼ ðI−qW Þ−1ðI−qW VÞ−1;Xy ¼ ðI−kW Þ−1
XuðI−kW VÞ−1:

Let S− i be the n−1×n selector matrix which is identical to the n×n identity matrix I except
that the i-th row of I is deleted. Let y− i be the available n−1 observations on the dependent
variable. Then

y−i ¼ S−iy;

and, given Eq. (3)

y−ifNðS−ily; r2eS−i
Xy

S−iVÞ: ð4Þ

For future reference note that the distribution in Eq. (4) involves all of the model parameters.
Our exact theoretical results below relate to the limits of relative prediction efficiencies of the

considered predictors because those results are conditional on the parameters λ, ρ, and β. Of
course, in practice the model parameters will not be known and therefore must be estimated prior to
prediction. In such cases relative prediction efficiencies would clearly depend upon just how well
the model parameters are estimated; this, in turn, would depend upon a number of factors, such as
the particular exogenous variables considered, the sample size, etc.7 Given the model in Eq. (1),
Assumptions 1–3, data on X, W, and y− i, and further reasonable conditions these parameters can,
e.g., be consistently estimated by the maximum likelihood procedure based on Eq. (4), or by a
variant of the Kelejian and Prucha (1998) S2SLS procedure which requires less data.8

3. Predictors and their mean squared errors

3.1. Predictors

Given the structure of the model in Eq. (1), Assumptions 1–3, data on X,W, and y− i, and λ, β,
ρ the objective is to predict the i-th element of y say yi. In the following we discuss the efficient
predictor corresponding to this so-called full information set. We also discuss less efficient but
simpler predictors that are based on smaller information sets. The considered predictors and their
motivations are described below. At this point, for the convenience of the reader, we note that the

7 In a model such as Eq. (1) an analysis of prediction efficiencies in this case would clearly be numerical, e.g. via
Monte Carlo methods.
8 Further details relating to such an estimation can be obtained by writing to the authors.
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minimum mean squared error predictor based on a given information set is the conditional mean
corresponding to that information set.9

Given Eq. (1), yi is determined as

yi ¼ kwi: yþ xi:bþ ui;
ui ¼ qwi:uþ ei;

ð5Þ

where wi. and xi. are, respectively, the i-th rows of W and X, ui and εi are the i-th elements of u
and ε, and wi.y and wi.u denote the i-th elements of the spatial lags Wy and Wu. Note that wi. y
does not include yi in light of Assumption 1.

We consider three information sets, namely

K1 ¼ fX ;Wg;
K2 ¼ fX ;W ;wi:yg;
K3 ¼ fX ;W ; y−1g:

ð6Þ

Clearly Λ1 and Λ2 are subsets of the full information set Λ3, and Λ1 is a subset of Λ2. The
information set Λ3 includes all available n−1 observations on the dependent vector. In contrast
Λ2 only contains information on a linear combination of them, while no information on the
dependent vector is contained in Λ1. As will become evident below, the use of Λ1 corresponds to
predictions motivated by the reduced form in Eq. (2), and was considered in Kelejian and
Yuzefovich (2004); the use of Λ2 corresponds to predictions motivated by Eq. (5).

We consider five predictors of yi, which will be denoted as yi
(p), p=1,…,5. The first three are

the conditional means corresponding to the information sets Λp, p=1,2,3, in Eq. (6). By
construction these predictors are unbiased (conditional on the corresponding information set) and
given by:

yð1Þi ¼ EðyijK1Þ
¼ ðI−kW Þ−1i: Xb

ð7Þ

yð2Þi ¼ EðyijK2Þ
¼ kwi:yþ xi:bþ covðui;wi:yÞ

varðwi:yÞ ½wi:y−Eðwi:yÞ�; ð8Þ

yð3Þi ¼ EðyijK3Þ
¼ kwi:yþ xi:bþ covðui; y−iÞ½VCðy−1Þ�−1½y−i−Eðy−iÞ�;

ð9Þ

9 For the convenience of the reader, we note the following. Using evident notation, let (Z1, Z2)∼N(μ, V) where

lV¼ ðl1V; l2VÞ;V ¼ fVijg; i; j ¼ 1; 2:

Then the minimum mean squared error predictor of Z1 given Z2, and the corresponding predictor variance–covariance
matrix are

EðZ1jZ2 ¼ z2Þ ¼ l1 þ V12V −1
22 ðz2−l2Þ

VCðZ1jZ2 ¼ z2Þ ¼ V11−V12V−1
22 V21;

see, e.g. Greene (2003, p. 872).
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where

Eðwi:yÞ ¼ wi:ðI−kW Þ−1Xb;
varðwi:yÞ ¼ r2ewi:

Xy
wi:V;

covðui;wi:yÞ ¼ r2e r
u
i:ðI−kW VÞ−1wi:V;

Eð y−iÞ ¼ S−iðI−kW Þ−1Xb;
VCð y−iÞ ¼ r2eS−i

Xy
S−iV;

covðui; y−iÞ ¼ r2e r
u
i:ðI−kW VÞ−1S−iV :

ð10Þ

In the above expressions (I−λW)i.
−1 andσi.

u denote the i-th rows respectively, of (I−λW)−1 and∑u.
The fourth predictor we consider is given by

yð4Þi ¼ kwi:yþ xi:b: ð11Þ
The reason for including this predictor in our analysis is that, via Eq. (5), it has intuitive

appeal and has been considered in the literature, as was discussed in the introduction. It may
be viewed as a restricted version of the predictor yi

(2), which implicitly assumes that cov(ui,
wi.y) =0. Of course, as seen from Eq. (10), in general cov(ui,wi.y)≠0 unless both ρ and λ are
zero. Thus, conditional on the information set Λ2 the predictor is biased, and the bias is
given by

biasi ¼ yð4Þi −yð2Þi ¼ −
covðui;wi:yÞ
varðwi:yÞ ½wi:y−Eðwi:yÞ�: ð12Þ

In passing we note, from Eqs. (7) and (11), that if λ=0, yi
(4) =yi

(1).
Our fifth, and biased predictor, yi

(5) relates to a special case of model Eq. (1), namely the spatial
error model. In this model λ=0 and so, via Eq. (5),

yi ¼ xi:bþ ui
ui ¼ qwi:uþ ei

ð13Þ

For this model, we take yi
(5) to be

yð5Þi ¼ xibþ qwi:u
uxibþ qwi:½ y−Xb�

ð14Þ

Given our scenario yi
(5) is a feasible predictor in that it does not involve yi because the i-th

element of wi. is zero. Clearly, yi
(5) would be suggested by arguments which are similar to those

suggesting yi
(4) in Eq. (11). At this point note that the bias arises because the covariance between

ρwi.u and εi is not zero.
For future reference we also note that if ρ=0 in the spatial error model, or if λ=ρ=0 in our

general model Eq. (5), then all five of our predictors are the same: yi
(1) =yi

(5), for i=1,2,3,4.

3.2. Mean squared errors

Let ei
( j) be the error in predicting yi when using the predictor yi

( j):

eð jÞi ¼ yi−y
ð jÞ
i ; j ¼ 1; N ; 5 ð15Þ
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Then, the forecast variances corresponding to the first three minimum mean squared error
predictors in Eqs. (7)–(9) are given, respectively, by:

varðeð1Þi jK1Þ ¼ varððI−kW Þ−1i: ujK1Þ
¼ r2e ðI−kW Þ−1i:

XuðI−kW Þ−1Vi: ;
ð16Þ

varðeð2Þi jK2Þ ¼ varðuijK2Þ
¼ r2e r

u
ii−½covðui;wi:yÞ�2½varðwi:yÞ�−1;

ð17Þ

varðeð3Þi jK3Þ ¼ varðuijK3Þ
¼ r2e r

u
ii−covðui; y−iÞ½VCð y−iÞ�−1covðui; y−iÞV;

ð18Þ

where σii
u is the i-th diagonal element of ∑u. As indicated, conditional on the corresponding

information set, the predictors yi
(1), yi

(2), and yi
(3) are unbiased and so the forecast variances in

Eqs. (16)–(18) are also mean squared errors. Because of this we will, at times, use the notation

varðeð pÞi jKpÞ ¼ MSEð yð pÞi Þ; p ¼ 1; 2; 3: ð19Þ

Now consider the biased predictor yi
(4). In light of Eq. (12) have yi

(4) =yi
(2) +biasi and thus the

mean squared error of yi
(4) conditional on Λ2 is given by

MSEð yð4Þi jK2Þ ¼ bias2i þMSEð yð2Þi Þ
z MSEð yð2Þi Þ ð20Þ

For future reference note from Eq. (12) that ( yi
(4)|Λ2) depends upon y− i via the bias term. Since

the first three mean squared error MSE( yi
(p)), p=1,2,3 do not depend upon y− i they can be

thought of as being averaged over the realizations of yi. In order to obtain a comparable measure
of predictive efficiency relating to yi

(4), we therefore average MSE( yi
(4)|Λ2) over y− i by taking the

expected value of MSE( yi
(4)|Λ2) conditional only upon Λ1 namely, via Eq. (20)

E MSEðyð4Þi jK2Þ
h i

jK1� ¼ MSEð yð4Þi Þ

¼ covðui;wi:yÞ
varðwi:yÞ

� �2

varðwi:yÞ þMSEð yð2Þi Þ
¼ r2e r

u
ii:

ð21Þ

The last line in Eq. (21) should be evident because, given λ and β, the prediction error is, via
Eq. (5), yi−λwi. y−xi.β=ui.

Finally, consider the spatial error model and the intuitive but biased predictor yi
(5) in Eq. (14).

Given the values of the model parameters β and ρ it should be clear that yi−yi(5) =εi and so an
argument similar to that explaining the last line of Eq. (21) implies that the mean square error of
yi
(5) average over the realizations of y− i is just

MSEðyð5Þi Þ ¼ r2e ð22Þ
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Our empirical results below relate to MSE( yi
(p)), p=1,…,5. On a theoretical level, since

Λ1⊂Λ2⊂Λ3 and given the results in Eqs. (18), (21) and (22), it follows that10

MSEðyð1Þi Þ z MSEðyð2Þi Þ z MSEðyð3Þi Þ;
MSEðyð4Þi Þ z MSEðyð2Þi Þ;
MSEðyð5Þi Þ z MSEðyð3Þi Þ;

If k ¼ 0 : MSEðyð4Þi Þ ¼ MSEðyð1Þi Þ:
If k ¼ q ¼ 0 : MSEðyð jÞi Þ ¼ MSEðyð1Þi Þ; j ¼ 2; N ; 5:

ð23Þ

Note if λ≠0, the relative magnitudes of MSE( yi
(4)) and MSE( yi

(1)) are not certain. The reason
for this is that although ( yi

(4)) is biased, it is based on a larger information set than that of ( yi
(1)).

Therefore, the reduction in the variance due to that larger information set could compensate for
the bias. For the case of the spatial error model (λ=0) the magnitude of MSE( yi

(5)) is greater than
MSE( yi

(3)) because ( yi
3) is the full information conditional mean predictor.11 On the other hand, in

general, the magnitude of MSE(yi
(5)) relative to those of MSE( yi

(1)), MSE( yi
(2)), and MSE( yi

(4)) is
not certain. Of course if λ=ρ=0 all five predictors are equivalent and so their mean square errors
are the same.

4. Comparisons of prediction efficiencies

4.1. Design of the experiments

In this section we give illustrative numerical results regarding the mean squared errors
described in (16)–(18), (21) and (22) in order to gain insights as to the quantitative importance of
available information and its proper use for prediction purposes in models such as Eq. (1). These
results are based on two weighting matrices which differ in their degree of sparseness. The first
matrix is such that each unit is directly related to the two units which are immediately after it and
immediately before it in the ordering. Specifically, nonzero elements in the i-th row of this matrix
for i=3,…, n−2 are wi,i+1 and wi,i+2 (two ahead) and wi,i− 1 and wi,i− 2 (two behind). This matrix
is defined in a circular world so that, e.g., in the first row the nonzero elements are w1,2 and w1,3

(two ahead) and w1,n and w1,n− 1 (two behind). Rows 2, n−1 and n are defined in a corresponding
circular fashion. The matrix is row normalized, and all of its nonzero elements are equal to 1/4.
Kelejian and Prucha (1999) describe a matrix of this sort as “two ahead and two behind”. The
second weighting matrix is identical in structure to the first except that it is “eight ahead and eight
behind” so that its nonzero elements are all 1/16. These matrices were considered because they
easily capture aspects of sparseness. Of course, as is typical of numerical prediction results in
spatial models, our numerical results below depend upon the use of these weighting matrices.12

In addition to the weighting matrix, the model parameters that enter into the mean squared
errors of the predictors are λ, ρ and σε

2. For each weighting matrix we give results relating to 25

10 The result in the first line of Eq. (23) follows as a straight forward application of the result in Mood, Graybill, and
Boes (1974, p.159).
11 Also note that Eqs. (9), (18) and (22) imply that

MSEð yð3Þi Þ ¼ varðeijy−iÞVvarðeiÞ ¼ MSEð yð5Þi Þ:
12 Clearly, it might be of interest to consider a larger numerical study of prediction efficiencies in which various other
characteristics of weighting matrices are considered.
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combinations of λ and ρ, specifically, for all combinations of λ,ρ=− .9, − .4, 0,.4,.9. For relative
comparisons of mean squared errors of the predictors, σε

2 cancels and so σε
2 is set arbitrarily equal

to one. Finally, all of our results are given for the case in which n=100.

4.2. Results

Numerical results relating to the prediction efficiencies based on the weighting matrix “two
ahead and two behind” are given in Table 1; results relating to the weighting matrix “eight ahead
and eight behind” are given in Table 2. Specifically, we report sample averages over i=1,…,n for
MSE(yi

( p)) for p=1,…,5. The results for the spatial error model correspond to the case in which
λ=0.

Consider first the results in Table 1 and note that those results are consistent with the
theoretical notions in Eq. (23). Note also that, by far, the largest mean squared errors, and
therefore, the lowest efficiencies correspond to yi

(1), i.e., the predictor based on Λ1={X,W}. Note
also that the MSEs of this predictor are “extreme” when λ=ρ=.9. The only other predictor which
has more moderated but still “extreme” MSEs is the biased predictor yi

(4). The “extreme” MSE

Table 1
MSEs based on the weighting matrix two ahead and two behind

λ ρ MSEs

yi
(1) yi

(2) yi
(3) yi

(4) yi
(5)

− .9 − .9 4.35395 0.60998 0.38750 1.68204 N/R
− .9 − .4 2.31239 0.68523 0.58532 1.11021 N/R
− .9 0.0 1.68204 0.85038 0.83160 1.00000 N/R
− .9 0.4 1.40991 1.17256 1.15344 1.17308 N/R
− .9 0.9 3.16929 1.67722 1.45504 7.98954 N/R
− .4 − .9 2.31239 0.68523 0.58532 1.68204 N/R
− .4 − .4 1.37494 0.81520 0.78889 1.11021 N/R
− .4 0.0 1.11021 0.96250 0.96154 1.00000 N/R
− .4 0.4 1.09287 1.08780 1.08272 1.17308 N/R
− .4 0.9 4.60197 1.07524 1.07012 7.98954 N/R
0.0 − .9 1.68204 0.85038 0.83160 1.68204 1.0
0.0 − .4 1.11021 0.96250 0.96154 1.11021 1.0
0.0 0.0 1.00000 1.00000 1.00000 1.00000 1.0
0.0 0.4 1.17308 0.96273 0.96154 1.17308 1.0
0.0 0.9 7.98954 0.88041 0.83160 7.98954 1.0
0.4 − .9 1.40991 1.17256 1.15344 1.68204 N/R
0.4 − .4 1.09287 1.08780 1.08272 1.11021 N/R
0.4 0.0 1.17308 0.96273 0.96154 1.00000 N/R
0.4 0.4 1.77454 0.84597 0.81994 1.17308 N/R
0.4 0.9 19.7150 0.82555 0.65233 7.98954 N/R
0.9 − .9 3.16929 1.67722 1.45504 1.68204 N/R
0.9 − .4 4.60197 1.07524 1.07012 1.11021 N/R
0.9 0.0 7.98954 0.88041 0.83160 1.00000 N/R
0.9 0.4 19.71500 0.82555 0.65233 1.17308 N/R
0.9 0.9 469.81046 1.40530 0.49167 7.98954 N/R

Col. Ave. p=1,…, 5 22.673 1.001 0.906 2.591 1.0

Column Average3
Column Averagep

⁎100
4.0 90.5 100 35.0 91.7
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values of this predictor always correspond to cases in which ρ= .9. There are no extreme MSE
values associated with the use of either yi

(2) yi
(3) or yi

(5). Clearly the moral of the story is that the
full information predictor, yi

(3), should be the one used for predictions when the available
information set is Λ3={X,W,y− i}. Correspondingly, if Λ3 is available the worst predictor, by far,
would be the one based on the reduced form, namely yi

(1) in Eq. (7). One case in which an
information set such as Λ3 may be available relates to the price prediction of a housing unit in a
sampled neighborhood. In such a case the available data may relate to the values of the regressors,
the weighting matrix, and the prices of neighboring units.

Now consider the results in Table 1 which relate to the spatial error model, λ=0. Using evident
notation, the average of the mean square errors for the five predictors corresponding to the five
cases in Table 1 in which λ=0 are MS̄E(yi

(1))=MS̄E(yi
(4))=2.591; MS̄E(yi

(2))= .931; MS̄E(yi
(3))=

.917; and MS̄E(yi
(5))=1.0. Clearly, as expected yi

(3) is the best predictor, which is followed closely
by yi

(2). Both of these predictor are unbiased conditional mean predictors which utilize
information relating to y− i. The intuitively suggestive predictor, namely yi

(5) while substantially
better than yi

(1) and yi
(4), is still roughly 8% less efficient than the efficient predictor, yi

(3).
A glance at Table 2 suggests results which are again consistent with our theoretical notions in

Eq. (23), as well as with the numerical “extreme” values given in Table 1 in somewhat more

Table 2
MSEs based on the weighting matrix eight ahead and eight behind

λ ρ MSEs

yi
(1) yi

(2) yi
(3) yi

(4) yi
(5)

− .9 − .9 1.29624 0.79928 0.69037 1.09708 N/R
− .9 − .4 1.16707 0.87272 0.83753 1.02295 N/R
− .9 0.0 1.09708 0.95545 0.95181 1.00000 N/R
− .9 0.4 1.06332 1.04432 1.04077 1.04906 N/R
− .9 0.9 1.64018 1.09616 1.08237 3.18349 N/R
− .4 − .9 1.16707 0.87272 0.83753 1.09708 N/R
− .4 − .4 1.06935 0.94011 0.93329 1.02295 N/R
− .4 0.0 1.02295 0.99027 0.99010 1.00000 N/R
− .4 0.4 1.02357 1.02014 1.01939 1.04906 N/R
− .4 0.9 2.12209 1.01097 1.00974 3.18349 N/R
0.0 − .9 1.09708 0.95545 0.95181 1.09708 1.0
0.0 − .4 1.02295 0.99027 0.99010 1.02295 1.0
0.0 0.0 1.00000 1.00000 1.00000 1.00000 1.0
0.0 0.4 1.04906 0.99033 0.99010 1.04906 1.0
0.0 0.9 3.18349 0.96447 0.95181 3.18349 1.0
0.4 − .9 1.06332 1.04432 1.04077 1.09708 N/R
0.4 − .4 1.02357 1.02014 1.01939 1.02295 N/R
0.4 0.0 1.04906 0.99033 0.99010 1.00000 N/R
0.4 0.4 1.22877 0.95749 0.95194 1.04906 N/R
0.4 0.9 6.86717 0.94325 0.89509 3.18349 N/R
0.9 − .9 1.64018 1.09616 1.08237 1.09708 N/R
0.9 − .4 2.12209 1.01097 1.00974 1.02295 N/R
0.9 0.0 3.18349 0.96447 0.95181 1.00000 N/R
0.9 0.4 6.86717 0.94325 0.89509 1.04906 N/R
0.9 0.9 150.65631 1.12765 0.82693 3.18349 N/R

Col. Ave., p=1, …5 7.829 0.984 0.958 1.471 1.0

Column Average3
Column Averagep

⁎100
12.2 98.4 100 65.1 97.7
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moderated form. For example, the extreme values of the MSEs relating to yi
(1) and yi

(4) are roughly
a third of their corresponding values in Table 1. We also note that the relative efficiencies of the
other four predictors are all significantly higher in Table 2 than their corresponding values in
Table 1. Thus, in our framework, as the extent of sparseness in the weighting matrix decreases, the
relative predictive efficiencies of the inefficient predictors increases.

Results relating to the spatial error model are also qualitatively similar to those in Table 1. For
instance, again using evident notation, the average of the mean square errors for the five
predictors corresponding to the five cases in Table 2 in which λ=0 are MS̄E(yi

(1))=MS̄E(yi
(4))=

1.471; MS̄E(yi
(2))= .980; MS̄E(yi

(3))= .977; MS̄E(yi
(5)).=1.0. Clearly, yi

(3) remains the best
predictor but in this case it is quite closely followed by yi

(2) as well as by the intuitive but
biased predictor yi

(5). Again, the predictors which do not utilize any information relating to y−1
namely yi

(1) and yi
(4), have a mean square error which is roughly 50% higher than those that do

utilize such information, even if in a biased manner!

5. Summary and conclusions

In this paper we considered the prediction of the dependent variable in a spatial model
containing spatial lags in both the dependent variable and disturbance term. A special case of this
model is the spatial error model. Five predictors were considered, one of which is the full
information predictor; the other four predictors are simpler and are either based on limited
information, or an assumption that a certain covariance is zero when in fact it, in general, is not.
Our empirical results are consistent with theoretical notions in that predictors based on “properly
used” larger information sets are indeed more efficient than those based on less information. Our
results also suggest that a predictor suggested in the literature is considerably less efficient than
other (biased) predictors that one might consider in such models. That predictor is the mean of the
dependent variable conditional only on the exogenous variables and the weighting matrix.
Finally, our results suggest that the relative inefficiencies of predictors increase as the sparseness
of the weighting matrix increases.
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