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1. Introduction

The recent literature on spatial econometrics has been concerned
with model specification issues both in cross sectional as well as panel
data analysis. 2 In the present paper we will focus exclusively on cross
sectional models. Empirical work is often based on estimation strategies
which entails estimating initially a linear model (i.e., without spatial
dependencies), followed by testing for spatial dependences, and re-
estimation if spatial dependence cannot be rejected. It is well known
that, in general, pre-test strategies may potentially introduce bias for
both the parameter estimates and corresponding standard errors.3 Of
course, on the other hand, efficiency may be lost when the researcher
estimates a more general model than necessary. The purpose of this
paper is to explore the implications of some common pre-test strategies
used in the estimation of Cliff–Ord-type spatial models.
In estimating Cliff–Ord-type models two forms of spatial depen-

dences are usually considered in applied work, which correspond to
two different model specifications. The first form of spatial dependence
relates to the error term and specifies a spatial auto regressive process
for the disturbances. Correspondingly, the model that derives from it

is often referred to as a spatial error model (see, e.g., Anselin, 1988b).
The second form arises when the value of the dependent variable
corresponding to each cross-sectional unit is jointly determined with
the values at all other neighboring cross-sectional units. This is achieved
through the inclusion of a weighted average of the dependent variable
which is often described in the literature as a spatial lag. Consequently,
the model that derives from it is referred to as a spatial autoregressive
model or, simply, a spatial lag model (see, e.g., Anselin, 1988b).
Burridge (1980) and Anselin et al. (1996) propose simple LM

diagnostic tests, based on Ordinary Least Squares (OLS) residuals, for
spatial error autocorrelation or spatial lag dependence. More recently
Florax et al. (2003) suggest a simple selection criterion conditional
upon the results of these specification tests. It should be noted that
this testing strategy only leads to the estimation of either the spatial
lag or the spatial error models and never of a model that contains
both error and lag dependences, i.e., of the encompassing or full
model. A partial explanation for this may be that the parameters of
the full model are not identified if the model does not contain exoge-
nous variables. However, most empirical specifications include exoge-
nous variables, and in this situation the parameters of the full model
are identified under mild regularity conditions; see, e.g., Kelejian and
Prucha (1998). Thus in this situation the researcher can estimate the
parameters of the full model, and is not forced to select either the spatial
lag or error model. Since the data may have been generated by the full
model, which includes the spatial lag and error model as special cases,
this reduces the likelihood of model misspecification. Of course, if the
data have been generated by either the spatial lag or error model,
estimating the full model will lead to a loss of efficiency. On the other
hand, using a pre-testing strategy may yield biased estimates and may
result in a situation where the employed asymptotic distribution of
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Abstract

This paper explores the properties of pre-test strategies in estimating a lin-
ear Cliff-Ord-type spatial model when the researcher is unsure about the
nature of the spatial dependence. More specifically, the paper explores the
finite sample properties of the pre-test estimators introduced in Florax et al.
(2003), which are based on Lagrange Multiplier (LM) tests, within the con-
text of a Monte Carlo study. The performance of those estimators is com-
pared with that of the maximum likelihood (ML) estimator of the encom-
passing model. We find that, even in a very simple setting, the bias of the
estimates generated by pre-testing strategies can be very large and the em-
pirical size of tests can differ substantially from the nominal size. This is in
contrast to the ML estimator. However, if the true data generating process
corresponds to the spatial error or lag model the issues arising with the pre-
test estimators seem to be lessened.



1 Introduction1

The recent literature on spatial econometrics has been concerned with model
specification issues both in cross sectional as well as panel data analysis.2 In
the present paper we will focus exclusively on cross sectional models. Em-
pirical work is often based on estimation strategies which entails estimating
initially a linear model (i.e., without spatial dependencies), followed by test-
ing for spatial dependences, and re-estimation if spatial dependence cannot
be rejected. It is well known that, in general, pre-test strategies may po-
tentially introduce bias for both the parameter estimates and corresponding
standard errors.3 Of course, on the other hand, efficiency may be lost when
the researcher estimates a more general model than necessary. The purpose
of this paper is to explore the implications of some common pre-test strategies
used in the estimation of Cliff-Ord-type spatial models.

In estimating Cliff-Ord-type models two forms of spatial dependences
are usually considered in applied work, which correspond to two different
model specifications. The first form of spatial dependence relates to the
error term and specifies a spatial auto regressive process for the disturbances.
Correspondingly, the model that derives from it is often referred to as a
spatial error model (see, e.g., Anselin, 1988b). The second form arises when
the value of the dependent variable corresponding to each cross-sectional
unit is jointly determined with the values at all other neighboring cross-
sectional units. This is achieved through the inclusion of a weighted average
of the dependent variable which is often described in the literature as a
spatial lag. Consequently, the model that derives from it is referred to as a
spatial autoregressive model or, simply, a spatial lag model (see, e.g., Anselin,
1988b).

Burridge (1980) and Anselin et al. (1996) propose simple LM diagnostic
tests, based on Ordinary Least Squares (OLS) residuals, for spatial error au-
tocorrelation or spatial lag dependence. More recently Florax et al. (2003)
suggest a simple selection criterion conditional upon the results of these spec-
ification tests. It should be noted that this testing strategy only leads to the

1We would like to thank the editor, and two referees for very helpful comments.
2See e.g., Cliff & Ord (1972, 1973, 1981); Florax & Folmer (1992); Anselin et al. (1996);

Anselin (1988a); Florax et al. (2003); Baltagi et al. (2007, 2003); Baltagi & Liu (2008);
Baltagi et al. (2009, 2008); Burridge (1980); Debarsy & Ertur (2010), among many others.

3See, e.g., Leeb & Poetscher (2008) for recent fundamental results and Judge et al.
(1985, Ch. 3) for a classical text book presentation.
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estimation of either the spatial lag or the spatial error models and never of a
model that contains both error and lag dependences, i.e., of the encompass-
ing or full model. A partial explanation for this may be that the parameters
of the full model are not identified if the model does not contain exogenous
variables. However, most empirical specifications include exogenous vari-
ables, and in this situation the parameters of the full model are identified
under mild regularity conditions; see, e.g., Kelejian & Prucha (1998). Thus
in this situation the researcher can estimate the parameters of the full model,
and is not forced to select either the spatial lag or error model. Since the
data may have been generated by the full model, which includes the spatial
lag and error model as special cases, this reduces the likelihood of model mis-
specification. Of course, if the data have been generated by either the spatial
lag or error model, estimating the full model will lead to a loss of efficiency.
On the other hand, using a pre-testing strategy may yield biased estimates
and may result in a situation where the employed asymptotic distribution of
the estimator (derived without taking into account the pre-testing strategy)
provides a bad approximation to the actual small sample distribution of the
final stage estimator.

This paper explores the importance of the issues raised above for the
estimation of linear Cliff-Ord-type spatial models. We explore within the
context of a Monte Carlo study the small sample performance of the pre-test
estimators which are described in Florax et al. (2003) and which are based
on a series of LM tests. Florax et al. (2003) also report on a Monte Carlo
study. Different from Florax et al. (2003) we also compare the performance
of the pre-test estimators with that of the ML estimator of the encompassing
model, which allows for spatial spill-overs in the endogenous variables and
disturbances. Importantly, we also compare and report on the size of Wald-
type tests associated with the pre-test estimators and the ML estimator
of the encompassing model. Our results are cautionary, in that we find
that even in simple settings the bias of the estimates generated by a pre-
testing strategy can be very large and the empirical size of tests can differ
substantially from the nominal size. Quite expectedly, the results also show
that the ML estimator based on the full model is consistent, and the size
of hypothesis tests is reasonably close to the nominal size. However, if the
true data generating process corresponds to the spatial error or lag model
the issues arising with the pre-test estimators seem to be lessened.

Section 2 briefly describes the models considered for this study and presents
the corresponding likelihoods on which our estimators are based. Section 3
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introduces the LM tests while Section 4 gives the pre-test estimators based on
those LM tests. Section 5 describes the design of our Monte Carlo experiment
and discusses the main evidence. Section 6 concludes and give indication for
future work.

2 The models

As we mentioned in the introduction, much of the empirical spatial econo-
metrics literature has focused on the estimation of two alternative models
relating to different forms of spatial dependence. In one case, spatial depen-
dence is introduced via the disturbance process, where the disturbance term
corresponding to one location is assumed to be jointly determined with those
at other locations. In the other case, the dependent variable at one location
is assumed to be jointly determined by its values at other locations. From
an empirical perspective, each of these two forms of dependence translates
into a different Cliff-Ord-type spatial model. The model corresponding to
the first case is known in the literature as spatial error model; while the
model corresponding to the second case is known as the spatial lag model
(Cliff & Ord, 1973; Anselin, 1988b). In what follows, we will briefly review
these models and the corresponding likelihoods. Towards assessing the ef-
fects of pre-test strategies we will furthermore consider the encompassing
Cliff-Ord-type spatial model, which includes both forms of spatial effects.
As it is common in the literature, we refer to this model as a spatial auto-
regressive auto-regressive model (SARAR(1,1)); see e.g., Anselin (1988b). As
remarked, the parameters of the SARAR(1,1) model can be consistently esti-
mated under mild regularity conditions, provided the presence of exogenous
variables; see, e.g., Kelejian & Prucha (1999, 2010); Florax & Folmer (1992);
Anselin (1988b). Of course, if the true data generating process corresponds
to a spatial error or lag model, we expect some loss in efficiency when esti-
mating the encompassing SARAR(1,1) model. We will use the encompassing
model to explore the properties of the considered pre-test estimators based
on LM tests.

The approach frequently taken in empirical work is to start with the
classical linear regression model

y = Xβ + ε, (1)

where y is an n × 1 vector of observations on the dependent variable, X is
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an n× k matrix of observations on the non-stochastic explanatory variables,
β a k × 1 vector of corresponding parameters, and ε an n × 1 vector of
innovations whose elements are - for simplicity - assumed in the following to
be i.i.d. N(0, σ2).4 Under regularity conditions the OLS estimator is also
the ML estimator.

As an alternative to the linear regression model (1), the error term can
be specified as a spatial autoregressive process, leading to the spatial error
model

y =Xβ + u, (2)

u =ρWu+ ε,

where u is the n × 1 vector of disturbances, W is an n × n non-stochastic
weighting matrix,5 ρ is a scalar spatial autoregressive parameter with |ρ| < 1,
and all other variables are defined as above. For efficiency we can estimate
the model in (2) by ML (Ord, 1975), although OLS remains unbiased. The
expression for the log likelihood function of model (2) takes the form

L = −n
2

ln(2π)− n

2
ln(σ2) + ln |B| − 1

2σ2
(y −Xβ)′B′B(y −Xβ), (3)

where B = IN −ρW .6 As an alternative to the ML estimator, a feasible GLS
estimator, which utilizes a generalized method of moments estimator for ρ,
has been suggested by Kelejian & Prucha (1999). However, in this paper we
concentrate on the ML estimator.

A further alternative to the linear regression model (1) which is often
estimated in the empirical literature is the spatial autoregressive model

y = λWy +Xβ + ε, (4)

where λ is a scalar spatial autoregressive parameter with |λ| < 1, and all
other variables are defined as above. Because of the simultaneous nature of
the spatial lag variable, Wy is correlated with the disturbance term ε. Thus

4We note that even for this standard setup our Monte Carlo results will (depending on
the parameter constellations) detect sizable biases of the considered pre-test estimators.

5The assumptions made on the weights matrix are standard and we will not discuss
them in this paper.

6For details on the maximum likelihood estimation see Anselin (1988b), Ch 12.
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OLS is inconsistent, but the model can again be estimated efficiently by ML.
The log likelihood takes the following form (Ord, 1975)

L = −n
2

ln(2π)− n

2
ln(σ2) + ln |A| − 1

2σ2
(Ay −Xβ)′(Ay −Xβ), (5)

where A = I − λW. As an alternative to the ML estimator, the model could
also be estimated by instrumental variables/generalized method of moments
(Kelejian & Prucha, 1998), but again the present paper will focus on the ML
estimator.

Finally, we consider the encompassing model which allows for spatial lags
in the dependent variable, as well as in the disturbances, i.e.,

y =λWy +Xβ + u, (6)

u =ρWu+ ε.

The log likelihood for this model is given by

L = −n
2

ln(2π)− n

2
ln(σ2) +

n

2
ln |B|+ n

2
ln |A| (7)

− 1

2σ2
(Ay −Xβ)′B′B(Ay −Xβ).

We emphasize that our terminology of referring to model (6) as the encom-
passing model should only be understood to apply “locally” in the sense that
it encompasses models (1), (2) and (4). Of course, various further general-
izations of model (6) have been considered in the literature. We purposefully
focus our explorations on the above simple setup to avoid the contamination
of the results from other modeling issues, e.g., the specification of the weights
matrix.

3 LM tests

In this section we define the LM tests for the absence of spatial dependence
employed in the construction of our considered pre-test estimators. Burridge
(1980) derived the LM test statistic for the spatial error model. Anselin
(1988b) derived LM tests for the more general SARAR model. Requiring
only the estimation of the restricted specification, LM tests have been con-
sidered particularly appealing in a spatial setting because of the computa-
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tional difficulties related to the maximum likelihood estimation of the spatial
models.7

With the first of these tests we wish to evaluate the hypothesis that the
disturbances are independently normally distributed with constant variance
(i.e. ρ = 0) against the alternative that they are generated by the first order
spatial autoregression in (2). The LM-test statistics for this hypothesis is
given by

LMρ =
[e′We/(e′e/n)]2

tr[W ′W +WW ]
(8)

where e = y−Xβ̂OLS denotes the vector of OLS residuals, and tr is the trace
operator.

The second LM-test statistics, which evaluates the null hypothesis that
λ = 0 in (4) against the alternative of a spatial autoregressive process is
given by

LMλ = [e′Wy/(e′e/n)]2/D (9)

where e = y −Xβ̂OLS denotes, as before, the vector of OLS residuals, D =

[(WXβ̂OLS)′M(WXβ̂OLS)/σ̂2
OLS]+tr(W ′W+WW ), M = [I−X(X ′X)−1X ′],

and β̂OLS and σ̂2
OLS are the OLS estimates of β and σ2. Under the null hy-

pothesis that the true model is (1) both LMρ and LMλ are asymptotically
distributed as χ2(1).

The two test statistics presented above assume that the other form of
dependence is not present. In other word, LMρ is derived under the null
hypothesis that ρ = 0, but it assumes that also λ is zero. Using the gen-
eral principles of specification testing with locally misspecified alternatives
derived in Bera & Yoon (1993), Anselin et al. (1996) develop a set of di-
agnostics that are a robust version of (8) and (9). The expressions for the
robust versions of the tests become, respectively,

LM∗
ρ =
{e′We/(e′e/n)− [tr(WW +W ′W )/D] e′Wy/(e′e/n)}2

tr(WW +W ′W )[1− tr(WW +W ′W )/D]
(10)

and

LM∗
λ =

[e′Wy/(e′e/n)− e′We/(e′e/n)]2

[D − tr(WW +W ′W )]
(11)

7However, with the increase in power achieved by the modern computers, and the
various methods to approximate the Jacobian term (LeSage & Pace, 2009), this problem
has been somewhat mitigated.
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where D as well as the other symbols where defined before. Both the LM∗
ρ

and the LM∗
λ statistics are asymptotically distributed as χ2(1).

4 Pre-test estimators

The pre-tests estimators are based on the sequence of the LM-tests presented
in the previous section. We follow the algorithms illustrated in Florax et al.
(2003), which propose three different “approaches” toward specification tests,
each leading to a different pre-test estimator. Before reviewing these three
approaches, we need to introduce some additional notation.

Let β̂OLS be the OLS estimator based on model (1), ρ̂MLE and β̂MLE

the ML estimators corresponding to the model in (2) and, finally, λ̂MLL and

β̂MLL the ML estimators corresponding to the model in (4). Also, let λ̂ML,

ρ̂ML, and β̂ML denote the ML estimator for λ, ρ and β based on the full model
in (6). Correspondingly, we have the following estimators for θ = (λ, ρ, β′)′:

θ̂OLS = (0, 0, β̂
′
OLS)′,

θ̂MLE = (0, ρ̂MLE, β̂
′
MLE)′,

θ̂MLL = (λ̂MLL, 0, β̂
′
MLL)′,

θ̂ML = (λ̂ML, ρ̂ML, β̂
′
ML)′.

The first approach in Florax et al. (2003) is based on the test statistics
LMρ and LMλ and can be summarized as follows:

1. Estimate the non-spatial model by OLS to obtain β̂OLS and the vector

of OLS residuals e = y −Xβ̂OLS.

2. Test the hypothesis of no spatial dependence due to an omitted spatially
autoregressive error or to an omitted spatial lag using, respectively,
LMρ and LMλ.

3. If both tests statistics are not significant, then accept H0 : λ = ρ = 0,

and consequently the estimator for θ is given by θ̂OLS = (0, 0, β̂
′
OLS)′.

4. If LMρ is significant and LMλ is not significant then accept Hρ
1 : λ =

0; ρ 6= 0 and estimate model (2) by maximum likelihood to get θ̂MLE =

(0, ρ̂MLE, β̂
′
MLE)′.
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5. If LMλ is significant and LMρ is not significant then accept Hλ
1 : λ 6=

0; ρ = 0 and estimate model (4) by maximum likelihood to get θ̂MLL =

(λ̂MLL, 0, β̂
′
MLL)′.

6. Finally, if both LMλ and LMρ are significant, estimate the specification
corresponding to the more significant of the two tests.

Florax et al. (2003) refer to this approach as the “classic” approach
because it is based on the test statistics LMρ and LMλ.

Let θ̂PT1 denote the estimator for θ based on this approach, where “PT”
stands for “pre-test”. Then this estimator is formally given by8

θ̂PT1 = (λ̂PT1, ρ̂PT1, β̂
′
PT1)

′

= 1 (LMλ < χ.975, LMρ < χ.975) θ̂OLS

+1 (LMλ < χ.975, LMρ ≥ χ.975) θ̂MLE

+1 (LMλ ≥ χ.975, LMρ < χ.975) θ̂MLL

+1 (LMλ ≥ χ.975, LMρ ≥ χ.975)1 (LMλ < LMρ) θ̂MLE

+1 (LMλ ≥ χ.975, LMρ ≥ χ.975)1 (LMλ ≥ LMρ) θ̂MLL.

where 1(.) denotes the indicator function.
The second approach, that they refer to as the robust approach, is iden-

tical to the previous one with the exception that it is performed with the
robust versions of the LM tests. Let θ̂PT2 denote the estimator for θ based
on this approach, then it is formally given by

θ̂PT2 = (λ̂PT2, ρ̂PT2, β̂
′
PT2)

′

= 1
(
LM∗

λ < χ.975, LM
∗
ρ < χ.975

)
θ̂OLS

+1
(
LM∗

λ < χ.975, LM
∗
ρ ≥ χ.975

)
θ̂MLE

+1
(
LM∗

λ ≥ χ.975, LM
∗
ρ < χ.975

)
θ̂MLL

+1
(
LM∗

λ ≥ χ.975, LM
∗
ρ ≥ χ.975

)
1
(
LM∗

λ < LM∗
ρ

)
θ̂MLE

+1
(
LM∗

λ ≥ χ.975, LM
∗
ρ ≥ χ.975

)
1
(
LM∗

λ ≥ LM∗
ρ

)
θ̂MLL.

8Since the number of tests carried out is two, Florax et al. (2003) suggest that the
overall significance level of the strategy is the sum of the significance level of the two tests.
This explains why the definition of θ̂PT1 is in terms of a χ.975.
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Florax et al. (2003) consider a third approach which is a “hybrid” spec-
ification strategy in that it combines the use of both test statistics (classical
and robust). It is identical to the classical approach, except that step 6 is
modified as follows: If both LMρ and LMλ are significant, estimate the spec-
ification pointed by the more significant of the two robust statistics LM∗

ρ

and LM∗
λ . As pointed out by Florax et al. (2003) the performance of this

hybrid pre-test estimator is identical to the classical pre-test estimator. The
reason is that, analytically, LMλ ≥ LMρ if and only if LM∗

λ ≥ LM∗
ρ , as is

easily checked.9 We thus do not report separately on the performance of this
hybrid pre-test estimator.

From the above definitions of the pre-test estimators it is obvious that
they are highly nonlinear, and that they cannot generally be expected to be
unbiased or consistent. Furthermore, it is obvious that the asymptotic distri-
bution of those estimators will generally differ from those of θ̂OLS, θ̂MLL and
θ̂MLE. Of course, potential issues stemming from improper inference when
using pre-test estimators are well known; see, e.g., Leeb & Poetscher (2008).
The Monte Carlo study is intended to shed some light on the importance of
those issues in the estimation of spatial models.

5 Monte Carlo

In what follows, we report on a Monte Carlo study of the small sample
properties of the two pre-test estimators defined above. For comparison we
also give results for the small sample properties of the ML estimator defined
by the log-likelihood function of the comprehensive model (6). The design
of the Monte Carlo is, intentionally, very simple.

Monte Carlo Design

In all of the experiments, the data are generated from the following simple
model:

y = λWy + x1β1 + x2β2 + u, (12)

u = ρWu+ ε.

Obviously, for λ = 0 or ρ = 0 this model includes, respectively, the spatial
error or spatial lag model as special cases. The two regressors, x1 and x2, are

9Results on this are available from the authors.

9



normalized versions of income per capita and the proportion of housing units
that are rental in 1980, in 760 counties in U.S. mid-western states.10 We
normalized the data by subtracting from each observation the correspond-
ing sample average, and then dividing that result by the sample standard
deviation. The first n values of these normalized variables were used in our
Monte Carlo experiments. The regressors are treated as fixed and thus are
held constant over all of the Monte Carlo trials. The Monte Carlo study
assumes that units are located on a regular grid of dimension 23× 23, which
implies a sample size of n = 529. The spatial weighting matrix employed in
our Monte Carlo study is based on the queen criteria (i.e. common borders
and vertex). The values of β1 and β2 are set equal to 0.5. We consider the
same set of values for both ρ and λ, namely −0.8,−0.6,−0.4,−0.2, 0, 0.2, 0.4,
0.6, 0.8. Finally, we assume that the elements of the innovation vector are
i.i.d. N(0, 1).11 The results presented in the next section are based on 1,000
replications. All elaborations were performed using R statistical software
(R Development Core Team, 2010) with the library spdep (Bivand et al. ,
2010).12

Monte Carlo Results

The results of the Monte Carlo experiments are reported in Tables 1-6. Table
1 reports on the frequency with which the two considered pre-test procedures
select the classical linear regression model (1), the spatial error model (2)
and spatial lag model (4). This provides important background information
towards interpreting the small sample properties of the pre-test estimators.

Tables 2-5 report on the biases and mean squared errors (MSEs) of the
two pre-test estimators and the ML estimator of, respectively, ρ, λ, β1, and
β2. In all tables, the first two columns contain the considered combinations
of the true values of ρ and λ employed in generating the data. We note again

10These data were taken from Kelejian & Robinson (1995) and where also used by Arraiz
et al. (2010).

11The target R2 for the simulation was set to 0.3.
12We also run a Monte Carlo simulations with a higher R2 = 0.6, and another simula-

tions with a larger sample size (i.e., n = 1, 024). The results are qualitatively similar to the
ones reported here. For the higher R2 we find for some parameter constellations somewhat
smaller biases for the pre-test estimators, but we still find substantial size distortions for
the corresponding tests. The additional Monte Carlo results are available from the authors
upon request.
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that if λ = 0 the data are generated from a spatial error model, and if ρ = 0
the data are generated from a spatial lag model. In columns three to five
we report the biases of the respective estimators, and in columns six to eight
the MSEs.

Finally, in Table 6 we report on the empirical size of tests of the null
hypothesis that the parameters are equal to the true value corresponding
to the pre-test procedures and the ML estimators, provided that the null
hypothesis is true. All underlying “t-ratios” defining those tests are based
on estimated standard errors, which are calculated from the negative inverse
Hessian of the log-likelihood function. For the pre-test estimators – consistent
with what seems to be the usual practice when such estimators are employed
in empirical work – these calculations are based on the log-likelihood function
corresponding to the model selected by the pre-test procedure. For the ML
estimator the calculations are based on the log-likelihood function of the
comprehensive model.

By definition the size of a test is the probability of falsely rejecting the
null hypothesis. In case of pre-test estimators, the size is not only the proba-
bility of rejecting the null hypothesis when the true model has been selected,
but the probability of selecting the wrong model should also be taken into
account. Details of our size estimates are provided in the Appendix.

First consider the results in Table 1. One interesting finding in the tables
is that for various parameter constellations where both ρ and λ are non-zero,
the pretest procedures seem to end up selecting either the spatial lag or the
spatial error model with very high frequency. For example, if ρ = −0.8 and
λ = −0.8 the spatial lag model is selected in 95 percent of the cases. On
the other hand, if ρ = 0.8 and λ = 0.4 the spatial error model is selected
97 percent of the cases. Recall again that the Monte Carlo study covers
situations where the true data generating process corresponds to the spatial
lag model or the spatial error model as special cases when ρ = 0 or λ = 0. An
inspection of Table 1 shows that if the data are generated by the spatial lag
model, i.e. ρ = 0, and λ = 0.2 or λ = −0.2 the frequency with which the pre-
test procedures correctly selects the spatial lag model ranges only between
0.22 and 0.74. As a result, among other things, the pre-test estimates for λ
will be seen to exhibit sizable bias for smaller values of λ. As the value of λ in
modulus increases the frequency of selecting the spatial lag model increases
towards one. Similarly, if the data are generated by the spatial error model,
i.e. λ = 0, and ρ = 0.2 or ρ = −0.2 the frequency with which the pre-test
procedures correctly selects the spatial error model ranges only between 0.13
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and 0.54. As a result, among other things, the pre-test estimators for ρ will
be seen to exhibit sizable biases for smaller values of ρ. As the value of ρ in
modulus increases the frequency of selecting the spatial error model increases
towards one.

In general, there seems to be a tendency of the two pre-test procedures
to favor the estimation of the spatial lag model for negative values of ρ. For
positive values of the error parameter the two pre-test procedures seem to
favor the estimation of the spatial error model.

Next consider the results in Table 2. Looking at the averages, we note
that the bias of ρ̂ML is considerably lower (0.0105) than that of the pre-test
estimators ρ̂PT1 and ρ̂PT2 (0.2260 and 0.2345). The highest bias corresponds
to situations where there is substantial spatial dependence both of the error
and of the lag type. As an example, consider the first row when both ρ and
λ are equal to −0.8. The bias for both pre-test estimators in this case equals
0.7254. This is because, as highlighted above, both pre-test procedures lead
to the estimation of the spatial lag model in almost 95 percent of the cases
for this combination of values. The bias is still very high when ρ = −0.8
and λ equals to −0.6, 0.6, and 0.8 because even in these cases the pre-test
procedure tend to suggest overwhelmingly the estimation of a spatial lag
model. The pre-test estimators also exhibit large biases for some of the cases
where ρ is positive, but on average to a somewhat lesser degree than when
ρ is negative. We note further that even if we focus on cases where the true
data generating corresponds to the spatial error model, i.e., λ = 0, the pre-
test estimators can still be, relative to the true parameter value, substantially
biased - although to a lesser degree - for some of the cases considered. For
example, for ρ = 0.2 and −0.2 the biases of the two pre-test estimators are
−0.07 and 0.09, and −0.13 and 0.16, respectively.

In looking at the MSEs reported in Table 2 we see that the MSEs of the
two pre-test estimators for ρ are very similar, while (on average) the MSE of
the ML estimator is considerably lower (0.1361 vs. 0.0160).

Table 3 displays the bias and MSE for the estimators of λ. Consider
first the results in terms of bias. Looking at the averages, the results for
the estimators of λ are in line with what was found for the estimators of
ρ. More specifically, the average bias for λ̂ML is considerably lower (0.0086)

than those of the pre-test estimators λ̂PT1 and λ̂PT2 (0.1735 and 0.1743).
An inspection of the table also shows that some of the biases exhibited by
the pre-test estimators are very high. For example for ρ = 0.8 and λ = −.8
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the bias is 0.8 for both pre-test estimator. We note further that even if we
focus on cases where the true data generating corresponds to the spatial lag
model, i.e., ρ = 0, the pre-test estimators can still be, relative to the true
parameter value, substantially biased - although to a lesser degree - for some
of the cases considered. For example, for λ = 0.2 and −0.2 the biases of the
two pre-test estimators are −0.04 and 0.08, and −0.09 and 0.11, respectively.

Results for the MSE in Tables 3 are also in line with the findings for the
estimators for ρ, with the MSE of λ̂ML being on average substantially lower
(0.0125) to those of either λ̂PT1 and λ̂PT2 (0.0900 and 0.0896).

The results in Tables 4 and 5 pertain to the bias and MSE of the estima-
tors of β1 and β2, respectively. Since the results for the two parameters are
very similar, we will just focus on the results for β1. On average, the bias of

both β̂1,PT1 and β̂1,PT2 is larger than that of β̂1,ML. For some parameter con-
stellations the bias of the pre-test procedures can be sizable. In particular,
for ρ = −0.8 and λ = 0.4 the bias of β̂1,PT1 and β̂1,PT2 are 0.1049 and 0.1096,

and that of β̂1,ML is 0.0001. However, when ρ or λ is equal zero β̂1,PT1 and

β̂1,PT2 exhibit only small biases and perform very similarly to the β̂1,ML.
We next discuss the results reported in Table 6. As discussed above, this

table display the results on the empirical size of a Wald test of the hypothesis
that a respective parameter is equal to the true parameter value, where the
intended size is 5%. Not surprisingly, in light of the sizable biases reported
in Tables 2-5 the tests corresponding to the pre-test estimators can exhibit
large distortions in size, depending on parameter constellations. On average
the size of the tests corresponding to the pre-test estimators for λ and ρ
exceeds 70%, and those corresponding to the pre-test estimators for β1 and
β2 exceed 12% and 7%. In contrast, the empirical size of the tests bases on
the ML estimator from the comprehensive model is found to be on average
much closer to the nominal size of the test of 5%. The size distortions of
the tests associated with the pre-test estimators can be large even for cases
where the true data generating process is either the spatial lag model or the
spatial error model; for example, see the results for ρ = 0 and λ = 0.2 or
−0.2, and the results for λ = 0 and ρ = 0.2 or ρ = −0.2. The tables reveal
cases where the size is too large as well as cases where the size is too small.

The results reported in Tables 2-6 suggest that, even for very simple spa-
tial data generating processes as those underlying our Monte Carlo analysis,
the bias of the pre-test estimators can be very large in many cases. Also
the size of the test for the pre-test estimators can be far away from the 5%
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nominal value. On the other hand, the ML estimators based on the full
model are consistent for all the parameter values. Furthermore, the size of
the tests associated with the ML estimator is only significantly different from
the nominal value for very large values of the spatial parameters.13 However,
if the true data generating process corresponds to the spatial error or lag
model the issues arising with the pre-test estimators seem to be lessened.

6 Conclusions

This paper examined the small sample properties of model selection and pre-
test procedures in spatial econometrics. In particular, we consider a cross-
sectional Cliff-Ord-type model, and examine the small sample properties of
pre-test estimators suggested in Florax et al. (2003). We also explore the
properties of corresponding Wald tests. For comparison we also report on the
small sample properties of the ML estimator for the comprehensive model,
and corresponding Wald tests.

Our Monte Carlo design is purposefully kept simple to avoid the contam-
ination of the results from other modeling issues. For the same reason we
draw the innovations from a Gaussian distribution, and we use the ML ap-
proach based on a Gaussian likelihood in the estimation of sub models and of
the comprehensive model. The tests employed in the pre-test are likelihood
ratio tests based on a Gaussian likelihood. Even within our simple setup we
find that the biases of the estimators generated by the pre-testing strategies
can be large and the size of hypothesis test may be quite different from the
envisioned nominal size. In contrast, and not surprising, the ML estimator
based on the comprehensive model is consistent, and the size of hypothesis
tests is reasonably close to the nominal values. We also find that the loss in
efficiency of estimating the full model, when the data are actually generated
by a sub model, is modest.

We understand that most empirical work involves a certain amount of
model selection and pre-testing. However, our results provide a caution in
that they suggest that for the estimation of a cross-sectional Cliff-Ord-type
model pre-test strategies may be associated with substantial pitfalls. The
parameters of the comprehensive model are at this point well understood
to be identified and consistently estimable under fairly general assumptions,

13However, this is simply a small sample problem. In fact, considering a larger sample
size (n = 1, 029) the results for the size came out much closer to 5%.
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given some of the regressors are exogenous.14 Our results pertaining to the
estimation of the comprehensive model are encouraging, and provide the em-
pirical researchers with a practical and robust option, which avoids problems
arising from the pre-test strategies. The results also suggest that the po-
tential efficiency losses from estimating the comprehensive model (when ρ
or λ are zero) can be modest. We also not that if the true data generating
process corresponds to the spatial error or lag model the issues arising with
the pre-test estimators seem to be lessened.

Recently, Debarsy & Ertur (2010) suggested an extension of the pre-test
estimators considered by Florax et al. (2003) to a panel framework. In future
research it may be of interest to explore the properties of those extensions to
a panel data setting.
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Table 1: Frequency of Selecting OLS, Spatial Error and Spatial Lag Model
with Pre-test Procedures

Prestest Estimator 1 Prestest Estimator 2

ρ λ OLS Error Model Lag Model OLS Error Model Lag Model

−0.8 −0.8 0.000 0.052 0.948 0.000 0.052 0.948
−0.8 −0.6 0.000 0.187 0.813 0.000 0.187 0.813
−0.8 −0.4 0.000 0.515 0.485 0.011 0.508 0.481
−0.8 −0.2 0.000 0.878 0.122 0.022 0.866 0.112
−0.8 0 0.000 0.992 0.008 0.022 0.975 0.003
−0.8 0.2 0.000 1.000 0.000 0.001 0.999 0.000
−0.8 0.4 0.334 0.585 0.081 0.001 0.807 0.192
−0.8 0.6 0.000 0.000 1.000 0.000 0.000 1.000
−0.8 0.8 0.000 0.000 1.000 0.000 0.000 1.000
−0.6 −0.8 0.000 0.024 0.976 0.003 0.023 0.974
−0.6 −0.6 0.000 0.096 0.904 0.005 0.094 0.901
−0.6 −0.4 0.000 0.345 0.655 0.074 0.297 0.629
−0.6 −0.2 0.000 0.751 0.249 0.216 0.619 0.165
−0.6 0 0.000 0.970 0.030 0.134 0.862 0.004
−0.6 0.2 0.038 0.962 0.000 0.047 0.953 0.000
−0.6 0.4 0.441 0.027 0.532 0.002 0.190 0.808
−0.6 0.6 0.000 0.000 1.000 0.000 0.000 1.000
−0.6 0.8 0.000 0.000 1.000 0.000 0.000 1.000
−0.4 −0.8 0.000 0.004 0.996 0.001 0.004 0.995
−0.4 −0.6 0.000 0.043 0.957 0.027 0.031 0.942
−0.4 −0.4 0.000 0.185 0.815 0.190 0.107 0.703
−0.4 −0.2 0.000 0.549 0.451 0.532 0.275 0.193
−0.4 0 0.014 0.905 0.081 0.496 0.500 0.004
−0.4 0.2 0.684 0.310 0.006 0.308 0.593 0.099
−0.4 0.4 0.049 0.000 0.951 0.009 0.002 0.989
−0.4 0.6 0.000 0.000 1.000 0.000 0.000 1.000
−0.4 0.8 0.000 0.000 1.000 0.000 0.000 1.000
−0.2 −0.8 0.000 0.001 0.999 0.000 0.001 0.999
−0.2 −0.6 0.000 0.014 0.986 0.027 0.003 0.970
−0.2 −0.4 0.000 0.095 0.905 0.255 0.030 0.715
−0.2 −0.2 0.001 0.374 0.625 0.727 0.070 0.203
−0.2 0 0.506 0.400 0.094 0.858 0.133 0.009
−0.2 0.2 0.779 0.003 0.218 0.610 0.040 0.350
−0.2 0.4 0.002 0.001 0.997 0.026 0.000 0.974
−0.2 0.6 0.000 0.001 0.999 0.000 0.001 0.999
−0.2 0.8 0.000 0.000 1.000 0.000 0.000 1.000

0 −0.8 0.000 0.000 1.000 0.001 0.000 0.999
0 −0.6 0.000 0.003 0.997 0.029 0.000 0.971
0 −0.4 0.001 0.027 0.972 0.248 0.001 0.751
0 −0.2 0.321 0.123 0.556 0.773 0.004 0.223
0 0 0.957 0.017 0.026 0.960 0.018 0.022
0 0.2 0.128 0.148 0.724 0.583 0.018 0.399
0 0.4 0.000 0.025 0.975 0.017 0.021 0.962
0 0.6 0.000 0.005 0.995 0.000 0.005 0.995
0 0.8 0.000 0.000 1.000 0.000 0.000 1.000

0.2 −0.8 0.000 0.000 1.000 0.000 0.000 1.000
0.2 −0.6 0.000 0.001 0.999 0.029 0.000 0.971
0.2 −0.4 0.169 0.007 0.824 0.258 0.002 0.740
0.2 −0.2 0.919 0.035 0.046 0.705 0.127 0.168
0.2 0 0.316 0.542 0.142 0.700 0.272 0.028
0.2 0.2 0.004 0.465 0.531 0.226 0.358 0.416
0.2 0.4 0.000 0.211 0.789 0.000 0.211 0.789
0.2 0.6 0.000 0.060 0.940 0.000 0.060 0.940
0.2 0.8 0.000 0.005 0.995 0.000 0.005 0.995
0.4 −0.8 0.000 0.000 1.000 0.000 0.000 1.000
0.4 −0.6 0.194 0.002 0.804 0.044 0.014 0.942
0.4 −0.4 0.798 0.134 0.068 0.203 0.447 0.350
0.4 −0.2 0.175 0.813 0.012 0.232 0.765 0.003
0.4 0 0.002 0.913 0.085 0.130 0.826 0.044
0.4 0.2 0.000 0.787 0.213 0.005 0.785 0.210
0.4 0.4 0.000 0.598 0.402 0.000 0.598 0.402
0.4 0.6 0.000 0.300 0.700 0.000 0.300 0.700
0.4 0.8 0.000 0.049 0.951 0.000 0.049 0.951
0.6 −0.8 0.376 0.062 0.562 0.009 0.163 0.828
0.6 −0.6 0.369 0.619 0.012 0.032 0.865 0.103
0.6 −0.4 0.021 0.977 0.002 0.024 0.973 0.003
0.6 −0.2 0.000 0.996 0.004 0.007 0.992 0.001
0.6 0 0.000 0.990 0.010 0.000 0.990 0.010
0.6 0.2 0.000 0.954 0.046 0.000 0.954 0.046
0.6 0.4 0.000 0.866 0.134 0.000 0.866 0.134
0.6 0.6 0.000 0.643 0.357 0.000 0.643 0.357
0.6 0.8 0.000 0.222 0.778 0.000 0.222 0.778
0.8 −0.8 0.007 0.992 0.001 0.001 0.998 0.001
0.8 −0.6 0.000 0.999 0.001 0.000 0.999 0.001
0.8 −0.4 0.000 1.000 0.000 0.000 1.000 0.000
0.8 −0.2 0.000 0.999 0.001 0.000 0.999 0.001
0.8 0 0.000 0.995 0.005 0.000 0.995 0.005
0.8 0.2 0.000 0.974 0.026 0.000 0.974 0.026
0.8 0.4 0.000 0.932 0.068 0.000 0.932 0.068
0.8 0.6 0.000 0.767 0.233 0.000 0.767 0.233
0.8 0.8 0.000 0.396 0.604 0.000 0.396 0.604



Table 2: Bias and MSE of ρ̂PT1, ρ̂PT2, and ρ̂ML.

BIAS MSE

ρ λ ρ̂PT1 ρ̂PT2 ρ̂ML ρ̂PT1 ρ̂PT2 ρ̂ML

−0.8 −0.8 0.7254 0.7254 0.0083 0.6278 0.6278 0.0263
−0.8 −0.6 0.5576 0.5576 0.0011 0.5673 0.5673 0.0231
−0.8 −0.4 0.2043 0.2111 -0.0006 0.3790 0.3832 0.0212
−0.8 −0.2 -0.0726 -0.0621 -0.0017 0.1169 0.1245 0.0186
−0.8 0 -0.0027 0.0095 -0.0026 0.0129 0.0235 0.0166
−0.8 0.2 0.2225 0.2230 0.0002 0.0583 0.0588 0.0139
−0.8 0.4 0.6128 0.5710 -0.0091 0.4037 0.3449 0.0142
−0.8 0.6 0.8000 0.8000 0.0064 0.6400 0.6400 0.0115
−0.8 0.8 0.8000 0.8000 -0.0054 0.6400 0.6400 0.0098
−0.6 −0.8 0.5682 0.5695 -0.0183 0.3640 0.3639 0.0271
−0.6 −0.6 0.4886 0.4909 -0.0127 0.3560 0.3561 0.0242
−0.6 −0.4 0.2574 0.3018 0.0029 0.2912 0.3032 0.0236
−0.6 −0.2 -0.0076 0.0908 0.0035 0.1282 0.1722 0.0205
−0.6 0 0.0039 0.0628 -0.0049 0.0191 0.0569 0.0193
−0.6 0.2 0.2335 0.2395 -0.0015 0.0670 0.0716 0.0171
−0.6 0.4 0.5931 0.5677 0.0045 0.3535 0.3272 0.0144
−0.6 0.6 0.6000 0.6000 -0.0011 0.3600 0.3600 0.0121
−0.6 0.8 0.6000 0.6000 -0.0001 0.3600 0.3600 0.0104
−0.4 −0.8 0.3953 0.3953 -0.0141 0.1618 0.1618 0.0242
−0.4 −0.6 0.3569 0.3682 -0.0107 0.1690 0.1673 0.0251
−0.4 −0.4 0.2467 0.3077 -0.0028 0.1659 0.1666 0.0237
−0.4 −0.2 0.0600 0.2199 0.0010 0.1030 0.1359 0.0209
−0.4 0 0.0225 0.1752 -0.0083 0.0227 0.0849 0.0213
−0.4 0.2 0.3162 0.2752 -0.0024 0.1164 0.0897 0.0176
−0.4 0.4 0.4000 0.3997 -0.0075 0.1600 0.1598 0.0163
−0.4 0.6 0.4000 0.4000 0.0028 0.1600 0.1600 0.0128
−0.4 0.8 0.4000 0.4000 -0.0034 0.1600 0.1600 0.0112
−0.2 −0.8 0.1991 0.1991 -0.0140 0.0405 0.0405 0.0242
−0.2 −0.6 0.1885 0.1976 -0.0171 0.0449 0.0410 0.0224
−0.2 −0.4 0.1396 0.1798 -0.0142 0.0548 0.0457 0.0227
−0.2 −0.2 0.0371 0.1650 -0.0113 0.0489 0.0439 0.0229
−0.2 0 0.0859 0.1605 -0.0119 0.0283 0.0367 0.0203
−0.2 0.2 0.1997 0.1947 0.0008 0.0401 0.0387 0.0185
−0.2 0.4 0.2002 0.2000 -0.0053 0.0401 0.0400 0.0171
−0.2 0.6 0.2006 0.2006 -0.0002 0.0406 0.0406 0.0144
−0.2 0.8 0.2000 0.2000 -0.0055 0.0400 0.0400 0.0114

0 −0.8 0.0000 0.0000 -0.0268 0.0000 0.0000 0.0218
0 −0.6 -0.0020 0.0000 -0.0176 0.0014 0.0000 0.0210
0 −0.4 -0.0118 -0.0005 -0.0130 0.0053 0.0003 0.0217
0 −0.2 -0.0358 -0.0013 -0.0137 0.0107 0.0004 0.0216
0 0 -0.0002 -0.0003 -0.0130 0.0009 0.0005 0.0206
0 0.2 0.0375 0.0058 -0.0083 0.0100 0.0019 0.0195
0 0.4 0.0113 0.0099 -0.0054 0.0053 0.0047 0.0170
0 0.6 0.0034 0.0034 0.0023 0.0024 0.0024 0.0148
0 0.8 0.0000 0.0000 -0.0042 0.0000 0.0000 0.0115

0.2 −0.8 -0.2000 -0.2000 -0.0143 0.0400 0.0400 0.0173
0.2 −0.6 -0.2005 -0.2000 -0.0186 0.0404 0.0400 0.0188
0.2 −0.4 -0.2022 -0.1998 -0.0164 0.0416 0.0399 0.0188
0.2 −0.2 -0.1941 -0.1831 -0.0133 0.0390 0.0357 0.0195
0.2 0 -0.0681 -0.1302 -0.0056 0.0207 0.0309 0.0190
0.2 0.2 -0.0170 -0.0527 -0.0067 0.0407 0.0428 0.0199
0.2 0.4 -0.0791 -0.0791 -0.0129 0.0615 0.0615 0.0174
0.2 0.6 -0.1547 -0.1547 0.0002 0.0561 0.0561 0.0153
0.2 0.8 -0.1955 -0.1955 -0.0016 0.0422 0.0422 0.0112
0.4 −0.8 -0.4000 -0.4000 -0.0227 0.1600 0.1600 0.0119
0.4 −0.6 -0.3996 -0.3984 -0.0170 0.1598 0.1589 0.0138
0.4 −0.4 -0.3713 -0.3338 -0.0155 0.1434 0.1181 0.0151
0.4 −0.2 -0.1864 -0.2022 -0.0152 0.0478 0.0562 0.0152
0.4 0 -0.0396 -0.0665 -0.0245 0.0179 0.0309 0.0180
0.4 0.2 0.0364 0.0356 -0.0157 0.0550 0.0553 0.0178
0.4 0.4 0.0176 0.0176 -0.0053 0.1186 0.1186 0.0161
0.4 0.6 -0.1517 -0.1517 -0.0025 0.1671 0.1671 0.0152
0.4 0.8 -0.3544 -0.3544 0.0056 0.1659 0.1659 0.0128
0.6 −0.8 -0.5872 -0.5737 -0.0137 0.3474 0.3330 0.0070
0.6 −0.6 -0.4465 -0.4134 -0.0145 0.2157 0.1806 0.0089
0.6 −0.4 -0.2706 -0.2728 -0.0271 0.0805 0.0825 0.0112
0.6 −0.2 -0.1286 -0.1299 -0.0184 0.0212 0.0224 0.0110
0.6 0 -0.0076 -0.0076 -0.0147 0.0065 0.0065 0.0123
0.6 0.2 0.0775 0.0775 -0.0188 0.0298 0.0298 0.0134
0.6 0.4 0.1041 0.1041 -0.0131 0.0884 0.0884 0.0140
0.6 0.6 -0.0224 -0.0224 -0.0035 0.1860 0.1860 0.0135
0.6 0.8 -0.3860 -0.3860 0.0108 0.3095 0.3095 0.0131
0.8 −0.8 -0.3991 -0.3983 -0.0127 0.1673 0.1661 0.0030
0.8 −0.6 -0.2760 -0.2760 -0.0128 0.0809 0.0809 0.0033
0.8 −0.4 -0.1702 -0.1702 -0.0095 0.0318 0.0318 0.0034
0.8 −0.2 -0.0848 -0.0848 -0.0194 0.0097 0.0097 0.0050
0.8 0 -0.0094 -0.0094 -0.0232 0.0044 0.0044 0.0065
0.8 0.2 0.0411 0.0411 -0.0246 0.0212 0.0212 0.0089
0.8 0.4 0.0556 0.0556 -0.0336 0.0568 0.0568 0.0110
0.8 0.6 -0.0626 -0.0626 -0.0293 0.1692 0.1692 0.0104
0.8 0.8 -0.4083 -0.4083 -0.0122 0.4007 0.4007 0.0088

average 0.2260 0.2345 0.0105 0.1361 0.1363 0.0160



Table 3: Bias and MSE of λ̂PT1, λ̂PT2, and λ̂ML.

BIAS MSE

ρ λ λ̂PT1 λ̂PT2 λ̂ML λ̂PT1 λ̂PT2 λ̂ML

−0.8 −0.8 -0.4214 -0.4214 -0.0061 0.2627 0.2627 0.0186
−0.8 −0.6 -0.3123 -0.3123 -0.0012 0.2923 0.2923 0.0162
−0.8 −0.4 -0.0612 -0.0577 -0.0048 0.2318 0.2315 0.0143
−0.8 −0.2 0.1081 0.1147 -0.0021 0.0731 0.0713 0.0107
−0.8 0 -0.0048 -0.0020 -0.0072 0.0029 0.0013 0.0080
−0.8 0.2 -0.2000 -0.2000 -0.0082 0.0400 0.0400 0.0054
−0.8 0.4 -0.3882 -0.3770 -0.0034 0.1523 0.1445 0.0035
−0.8 0.6 -0.2585 -0.2585 -0.0072 0.0695 0.0695 0.0019
−0.8 0.8 -0.1276 -0.1276 -0.0030 0.0172 0.0172 0.0005
−0.6 −0.8 -0.3442 -0.3420 0.0125 0.1544 0.1555 0.0182
−0.6 −0.6 -0.3034 -0.3005 0.0060 0.1827 0.1833 0.0164
−0.6 −0.4 -0.1351 -0.1159 -0.0076 0.1722 0.1733 0.0148
−0.6 −0.2 0.0442 0.0934 -0.0076 0.0763 0.0669 0.0121
−0.6 0 -0.0126 -0.0018 -0.0098 0.0054 0.0008 0.0095
−0.6 0.2 -0.2000 -0.2000 -0.0102 0.0400 0.0400 0.0065
−0.6 0.4 -0.3073 -0.2799 -0.0091 0.1027 0.0835 0.0038
−0.6 0.6 -0.1910 -0.1910 -0.0045 0.0386 0.0386 0.0018
−0.6 0.8 -0.0965 -0.0965 -0.0040 0.0101 0.0101 0.0005
−0.4 −0.8 -0.2517 -0.2507 0.0098 0.0723 0.0729 0.0164
−0.4 −0.6 -0.2339 -0.2225 0.0050 0.0909 0.0959 0.0169
−0.4 −0.4 -0.1577 -0.0875 -0.0067 0.0996 0.1113 0.0149
−0.4 −0.2 -0.0228 0.0977 -0.0075 0.0632 0.0541 0.0127
−0.4 0 -0.0252 -0.0015 -0.0062 0.0082 0.0006 0.0102
−0.4 0.2 -0.1992 -0.1911 -0.0052 0.0398 0.0373 0.0072
−0.4 0.4 -0.1868 -0.1831 -0.0052 0.0397 0.0371 0.0043
−0.4 0.6 -0.1311 -0.1311 -0.0076 0.0191 0.0191 0.0021
−0.4 0.8 -0.0653 -0.0653 -0.0025 0.0051 0.0051 0.0007
−0.2 −0.8 -0.1313 -0.1313 0.0105 0.0231 0.0231 0.0168
−0.2 −0.6 -0.1294 -0.1189 0.0103 0.0299 0.0355 0.0163
−0.2 −0.4 -0.0964 -0.0015 0.0034 0.0400 0.0678 0.0167
−0.2 −0.2 -0.0232 0.1206 -0.0017 0.0334 0.0403 0.0143
−0.2 0 -0.0212 -0.0016 0.0012 0.0050 0.0005 0.0107
−0.2 0.2 -0.1648 -0.1545 -0.0093 0.0317 0.0283 0.0081
−0.2 0.4 -0.0953 -0.1006 -0.0066 0.0123 0.0152 0.0058
−0.2 0.6 -0.0691 -0.0691 -0.0068 0.0069 0.0069 0.0026
−0.2 0.8 -0.0368 -0.0368 -0.0043 0.0020 0.0020 0.0008

0 −0.8 -0.0004 0.0003 0.0163 0.0059 0.0066 0.0160
0 −0.6 0.0005 0.0135 0.0084 0.0067 0.0157 0.0169
0 −0.4 0.0074 0.0868 0.0028 0.0097 0.0438 0.0165
0 −0.2 0.0626 0.1424 0.0011 0.0205 0.0327 0.0166
0 0 -0.0012 -0.0003 -0.0067 0.0008 0.0004 0.0138
0 0.2 -0.0433 -0.1075 -0.0037 0.0128 0.0253 0.0101
0 0.4 -0.0154 -0.0193 -0.0094 0.0068 0.0087 0.0068
0 0.6 -0.0076 -0.0076 -0.0101 0.0035 0.0035 0.0038
0 0.8 -0.0039 -0.0039 -0.0057 0.0006 0.0006 0.0012

0.2 −0.8 0.1551 0.1551 0.0072 0.0301 0.0301 0.0156
0.2 −0.6 0.1569 0.1672 0.0072 0.0311 0.0395 0.0174
0.2 −0.4 0.1753 0.2014 -0.0009 0.0444 0.0579 0.0188
0.2 −0.2 0.1907 0.1784 0.0014 0.0382 0.0345 0.0180
0.2 0 0.0272 0.0052 -0.0099 0.0054 0.0012 0.0163
0.2 0.2 -0.0259 -0.0574 -0.0089 0.0290 0.0328 0.0143
0.2 0.4 -0.0067 -0.0067 -0.0054 0.0430 0.0430 0.0095
0.2 0.6 0.0287 0.0287 -0.0102 0.0272 0.0272 0.0053
0.2 0.8 0.0307 0.0307 -0.0064 0.0049 0.0049 0.0015
0.4 −0.8 0.3467 0.3467 0.0158 0.1273 0.1273 0.0150
0.4 −0.6 0.3824 0.3655 0.0129 0.1607 0.1423 0.0185
0.4 −0.4 0.3857 0.3527 0.0010 0.1516 0.1293 0.0207
0.4 −0.2 0.2024 0.2001 -0.0005 0.0414 0.0401 0.0194
0.4 0 0.0259 0.0146 0.0049 0.0081 0.0049 0.0194
0.4 0.2 -0.1030 -0.1040 -0.0029 0.0459 0.0460 0.0171
0.4 0.4 -0.1563 -0.1563 -0.0148 0.1135 0.1135 0.0137
0.4 0.6 -0.0768 -0.0768 -0.0157 0.1239 0.1239 0.0095
0.4 0.8 0.0342 0.0342 -0.0182 0.0374 0.0374 0.0051
0.6 −0.8 0.6630 0.6277 0.0152 0.4561 0.4045 0.0145
0.6 −0.6 0.5976 0.5867 0.0092 0.3576 0.3459 0.0183
0.6 −0.4 0.4005 0.4001 0.0197 0.1606 0.1602 0.0208
0.6 −0.2 0.2012 0.2004 0.0091 0.0409 0.0403 0.0217
0.6 0 0.0047 0.0047 0.0015 0.0022 0.0022 0.0223
0.6 0.2 -0.1719 -0.1719 -0.0003 0.0460 0.0460 0.0206
0.6 0.4 -0.3035 -0.3035 -0.0126 0.1525 0.1525 0.0176
0.6 0.6 -0.3024 -0.3024 -0.0231 0.2512 0.2512 0.0136
0.6 0.8 -0.0775 -0.0775 -0.0300 0.1552 0.1552 0.0102
0.8 −0.8 0.8003 0.7998 0.0167 0.6405 0.6398 0.0126
0.8 −0.6 0.6003 0.6003 0.0163 0.3605 0.3605 0.0149
0.8 −0.4 0.4000 0.4000 0.0066 0.1600 0.1600 0.0165
0.8 −0.2 0.2006 0.2006 0.0205 0.0406 0.0406 0.0206
0.8 0 0.0034 0.0034 0.0221 0.0023 0.0023 0.0223
0.8 0.2 -0.1794 -0.1794 0.0175 0.0481 0.0481 0.0226
0.8 0.4 -0.3418 -0.3418 0.0180 0.1633 0.1633 0.0215
0.8 0.6 -0.3841 -0.3841 0.0078 0.3010 0.3010 0.0144
0.8 0.8 -0.2104 -0.2104 -0.0215 0.2722 0.2722 0.0100

average 0.1735 0.1743 0.0086 0.0900 0.0896 0.0125



Table 4: Bias and MSE of β̂1,PT1, β̂1,PT2, and β̂1,ML.

BIAS MSE

ρ λ β̂1,PT1 β̂1,PT2 β̂1,ML β̂1,PT1 β̂1,PT2 β̂1,ML

−0.8 −0.8 -0.0015 -0.0015 -0.0021 0.0033 0.0033 0.0018
−0.8 −0.6 -0.0083 -0.0083 -0.0009 0.0051 0.0051 0.0018
−0.8 −0.4 -0.0331 -0.0329 -0.0019 0.0069 0.0068 0.0019
−0.8 −0.2 -0.0405 -0.0404 -0.0022 0.0043 0.0043 0.0019
−0.8 0 0.0007 0.0010 0.0008 0.0014 0.0014 0.0019
−0.8 0.2 0.0642 0.0643 0.0038 0.0059 0.0059 0.0020
−0.8 0.4 0.1049 0.1096 0.0001 0.0142 0.0151 0.0022
−0.8 0.6 0.0780 0.0780 0.0023 0.0085 0.0085 0.0020
−0.8 0.8 0.0765 0.0765 0.0044 0.0088 0.0088 0.0022
−0.6 −0.8 0.0023 0.0023 -0.0013 0.0024 0.0024 0.0018
−0.6 −0.6 0.0000 -0.0001 -0.0028 0.0033 0.0033 0.0018
−0.6 −0.4 -0.0132 -0.0119 -0.0004 0.0048 0.0045 0.0019
−0.6 −0.2 -0.0246 -0.0231 0.0004 0.0037 0.0034 0.0021
−0.6 0 0.0014 0.0027 0.0005 0.0018 0.0018 0.0022
−0.6 0.2 0.0517 0.0520 0.0025 0.0044 0.0044 0.0020
−0.6 0.4 0.0633 0.0614 0.0034 0.0066 0.0065 0.0023
−0.6 0.6 0.0583 0.0583 0.0012 0.0058 0.0058 0.0022
−0.6 0.8 0.0607 0.0607 0.0065 0.0062 0.0062 0.0021
−0.4 −0.8 0.0015 0.0014 -0.0032 0.0019 0.0019 0.0018
−0.4 −0.6 0.0038 0.0038 -0.0016 0.0024 0.0023 0.0019
−0.4 −0.4 0.0005 -0.0008 0.0003 0.0031 0.0029 0.0020
−0.4 −0.2 -0.0113 -0.0141 -0.0018 0.0028 0.0025 0.0019
−0.4 0 0.0017 0.0023 -0.0022 0.0018 0.0018 0.0021
−0.4 0.2 0.0336 0.0364 0.0004 0.0033 0.0035 0.0022
−0.4 0.4 0.0367 0.0361 0.0003 0.0034 0.0034 0.0021
−0.4 0.6 0.0379 0.0379 0.0005 0.0037 0.0037 0.0022
−0.4 0.8 0.0375 0.0375 0.0008 0.0039 0.0039 0.0023
−0.2 −0.8 0.0038 0.0038 0.0004 0.0019 0.0019 0.0019
−0.2 −0.6 0.0031 0.0031 -0.0020 0.0021 0.0021 0.0020
−0.2 −0.4 0.0016 -0.0031 -0.0018 0.0024 0.0025 0.0020
−0.2 −0.2 -0.0020 -0.0093 0.0003 0.0024 0.0023 0.0021
−0.2 0 0.0028 0.0011 -0.0014 0.0020 0.0020 0.0022
−0.2 0.2 0.0215 0.0202 -0.0011 0.0027 0.0026 0.0022
−0.2 0.4 0.0164 0.0172 -0.0018 0.0025 0.0026 0.0024
−0.2 0.6 0.0217 0.0217 0.0023 0.0026 0.0026 0.0023
−0.2 0.8 0.0180 0.0180 -0.0011 0.0025 0.0025 0.0022

0 −0.8 -0.0016 -0.0016 -0.0028 0.0021 0.0021 0.0021
0 −0.6 -0.0009 -0.0016 -0.0018 0.0021 0.0021 0.0021
0 −0.4 0.0005 -0.0044 0.0004 0.0021 0.0022 0.0020
0 −0.2 -0.0043 -0.0100 0.0001 0.0021 0.0021 0.0021
0 0 -0.0001 0.0000 -0.0016 0.0020 0.0020 0.0021
0 0.2 0.0052 0.0151 -0.0002 0.0023 0.0026 0.0023
0 0.4 -0.0001 0.0005 -0.0012 0.0021 0.0021 0.0022
0 0.6 -0.0006 -0.0006 0.0000 0.0024 0.0024 0.0026
0 0.8 0.0013 0.0013 0.0016 0.0022 0.0022 0.0023

0.2 −0.8 -0.0041 -0.0041 -0.0024 0.0022 0.0022 0.0022
0.2 −0.6 -0.0058 -0.0063 -0.0014 0.0022 0.0022 0.0021
0.2 −0.4 -0.0105 -0.0123 -0.0019 0.0022 0.0023 0.0021
0.2 −0.2 -0.0116 -0.0101 0.0003 0.0022 0.0022 0.0021
0.2 0 -0.0044 -0.0010 -0.0036 0.0021 0.0021 0.0022
0.2 0.2 -0.0048 0.0011 -0.0011 0.0023 0.0024 0.0022
0.2 0.4 -0.0166 -0.0166 -0.0045 0.0025 0.0025 0.0022
0.2 0.6 -0.0194 -0.0194 0.0007 0.0026 0.0026 0.0024
0.2 0.8 -0.0215 -0.0215 0.0006 0.0026 0.0026 0.0022
0.4 −0.8 -0.0028 -0.0028 0.0030 0.0024 0.0024 0.0023
0.4 −0.6 -0.0116 -0.0111 0.0007 0.0024 0.0024 0.0022
0.4 −0.4 -0.0154 -0.0099 0.0009 0.0026 0.0025 0.0024
0.4 −0.2 -0.0027 -0.0019 -0.0008 0.0024 0.0023 0.0023
0.4 0 -0.0018 0.0006 -0.0023 0.0021 0.0021 0.0021
0.4 0.2 -0.0091 -0.0089 -0.0021 0.0024 0.0024 0.0023
0.4 0.4 -0.0239 -0.0239 -0.0026 0.0030 0.0030 0.0024
0.4 0.6 -0.0386 -0.0386 -0.0023 0.0038 0.0038 0.0025
0.4 0.8 -0.0475 -0.0475 -0.0011 0.0044 0.0044 0.0023
0.6 −0.8 -0.0084 -0.0055 -0.0009 0.0030 0.0030 0.0025
0.6 −0.6 0.0019 0.0066 -0.0013 0.0030 0.0029 0.0025
0.6 −0.4 0.0118 0.0122 0.0009 0.0027 0.0027 0.0024
0.6 −0.2 0.0070 0.0071 -0.0022 0.0024 0.0024 0.0024
0.6 0 0.0001 0.0001 -0.0013 0.0024 0.0024 0.0024
0.6 0.2 -0.0113 -0.0113 0.0001 0.0023 0.0023 0.0022
0.6 0.4 -0.0258 -0.0258 0.0010 0.0027 0.0027 0.0022
0.6 0.6 -0.0461 -0.0461 -0.0016 0.0042 0.0042 0.0022
0.6 0.8 -0.0667 -0.0667 0.0001 0.0066 0.0066 0.0022
0.8 −0.8 0.0601 0.0603 0.0018 0.0066 0.0066 0.0024
0.8 −0.6 0.0485 0.0485 -0.0001 0.0052 0.0052 0.0024
0.8 −0.4 0.0354 0.0354 0.0007 0.0037 0.0037 0.0023
0.8 −0.2 0.0190 0.0190 0.0027 0.0027 0.0027 0.0024
0.8 0 0.0000 0.0000 0.0010 0.0022 0.0022 0.0024
0.8 0.2 -0.0179 -0.0179 0.0001 0.0025 0.0025 0.0024
0.8 0.4 -0.0351 -0.0351 -0.0003 0.0033 0.0033 0.0024
0.8 0.6 -0.0562 -0.0562 -0.0020 0.0055 0.0055 0.0024
0.8 0.8 -0.0822 -0.0822 -0.0020 0.0094 0.0094 0.0021

average 0.0215 0.0217 0.0015 0.0035 0.0035 0.0022



Table 5: Bias and MSE of β̂2,PT1, β̂2,PT2, and β̂2,ML.

BIAS MSE

ρ λ β̂2,PT1 β̂2,PT2 β̂2,ML β̂2,PT1 β̂2,PT2 β̂2,ML

−0.8 −0.8 -0.0222 -0.0222 -0.0007 0.0027 0.0027 0.0016
−0.8 −0.6 -0.0231 -0.0231 -0.0001 0.0036 0.0036 0.0020
−0.8 −0.4 -0.0309 -0.0305 -0.0004 0.0039 0.0039 0.0021
−0.8 −0.2 -0.0255 -0.0250 0.0012 0.0024 0.0024 0.0020
−0.8 0 -0.0004 0.0001 -0.0004 0.0017 0.0017 0.0019
−0.8 0.2 0.0309 0.0309 -0.0008 0.0030 0.0030 0.0019
−0.8 0.4 0.0434 0.0468 -0.0001 0.0043 0.0046 0.0019
−0.8 0.6 0.0311 0.0311 0.0033 0.0035 0.0035 0.0020
−0.8 0.8 0.0292 0.0292 0.0035 0.0034 0.0034 0.0020
−0.6 −0.8 -0.0169 -0.0167 -0.0028 0.0024 0.0024 0.0019
−0.6 −0.6 -0.0182 -0.0180 -0.0048 0.0026 0.0026 0.0018
−0.6 −0.4 -0.0186 -0.0163 -0.0007 0.0028 0.0027 0.0018
−0.6 −0.2 -0.0162 -0.0123 0.0017 0.0024 0.0024 0.0021
−0.6 0 0.0033 0.0046 0.0030 0.0018 0.0019 0.0020
−0.6 0.2 0.0214 0.0217 -0.0015 0.0024 0.0024 0.0019
−0.6 0.4 0.0207 0.0210 0.0001 0.0027 0.0028 0.0020
−0.6 0.6 0.0197 0.0197 -0.0001 0.0026 0.0026 0.0020
−0.6 0.8 0.0190 0.0190 -0.0004 0.0027 0.0027 0.0020
−0.4 −0.8 -0.0101 -0.0101 -0.0011 0.0021 0.0021 0.0019
−0.4 −0.6 -0.0102 -0.0095 -0.0033 0.0021 0.0021 0.0018
−0.4 −0.4 -0.0107 -0.0078 -0.0022 0.0024 0.0023 0.0020
−0.4 −0.2 -0.0106 -0.0056 -0.0022 0.0021 0.0021 0.0019
−0.4 0 0.0015 0.0029 -0.0002 0.0020 0.0021 0.0021
−0.4 0.2 0.0112 0.0132 -0.0006 0.0023 0.0023 0.0021
−0.4 0.4 0.0118 0.0116 -0.0001 0.0024 0.0024 0.0022
−0.4 0.6 0.0158 0.0158 0.0020 0.0025 0.0025 0.0021
−0.4 0.8 0.0105 0.0105 -0.0025 0.0025 0.0025 0.0022
−0.2 −0.8 -0.0053 -0.0053 -0.0010 0.0021 0.0021 0.0021
−0.2 −0.6 -0.0040 -0.0036 -0.0009 0.0023 0.0023 0.0023
−0.2 −0.4 -0.0019 -0.0003 0.0007 0.0020 0.0020 0.0019
−0.2 −0.2 -0.0055 -0.0034 -0.0030 0.0021 0.0021 0.0021
−0.2 0 -0.0005 -0.0001 -0.0023 0.0021 0.0021 0.0021
−0.2 0.2 0.0076 0.0073 0.0007 0.0021 0.0022 0.0020
−0.2 0.4 0.0055 0.0057 -0.0009 0.0020 0.0020 0.0020
−0.2 0.6 0.0097 0.0097 0.0024 0.0023 0.0023 0.0021
−0.2 0.8 0.0101 0.0101 0.0030 0.0022 0.0022 0.0021

0 −0.8 -0.0009 -0.0009 -0.0010 0.0021 0.0021 0.0021
0 −0.6 0.0011 0.0012 0.0004 0.0024 0.0024 0.0024
0 −0.4 -0.0006 -0.0004 -0.0011 0.0023 0.0023 0.0023
0 −0.2 -0.0025 -0.0021 -0.0022 0.0021 0.0021 0.0021
0 0 -0.0006 -0.0006 -0.0015 0.0020 0.0020 0.0021
0 0.2 -0.0002 0.0026 -0.0015 0.0021 0.0022 0.0021
0 0.4 0.0030 0.0032 0.0025 0.0021 0.0021 0.0021
0 0.6 0.0008 0.0008 0.0009 0.0022 0.0022 0.0022
0 0.8 0.0021 0.0021 0.0021 0.0021 0.0021 0.0021

0.2 −0.8 0.0051 0.0051 -0.0005 0.0021 0.0021 0.0022
0.2 −0.6 0.0016 0.0016 -0.0023 0.0021 0.0021 0.0021
0.2 −0.4 -0.0029 -0.0031 -0.0052 0.0022 0.0022 0.0022
0.2 −0.2 -0.0004 0.0001 -0.0006 0.0021 0.0021 0.0021
0.2 0 -0.0005 0.0009 -0.0015 0.0021 0.0022 0.0021
0.2 0.2 -0.0034 -0.0012 -0.0007 0.0023 0.0023 0.0023
0.2 0.4 -0.0085 -0.0085 -0.0020 0.0021 0.0021 0.0020
0.2 0.6 -0.0114 -0.0114 -0.0030 0.0022 0.0022 0.0021
0.2 0.8 -0.0090 -0.0090 -0.0013 0.0023 0.0023 0.0022
0.4 −0.8 0.0127 0.0127 0.0003 0.0025 0.0025 0.0022
0.4 −0.6 0.0086 0.0083 0.0007 0.0022 0.0022 0.0021
0.4 −0.4 0.0030 0.0049 -0.0038 0.0022 0.0022 0.0022
0.4 −0.2 0.0055 0.0060 -0.0014 0.0025 0.0025 0.0024
0.4 0 -0.0004 0.0006 -0.0015 0.0021 0.0021 0.0021
0.4 0.2 -0.0094 -0.0093 -0.0017 0.0023 0.0023 0.0023
0.4 0.4 -0.0161 -0.0161 -0.0003 0.0024 0.0024 0.0023
0.4 0.6 -0.0189 -0.0189 0.0007 0.0025 0.0025 0.0022
0.4 0.8 -0.0198 -0.0198 -0.0018 0.0024 0.0024 0.0020
0.6 −0.8 0.0258 0.0261 0.0008 0.0033 0.0034 0.0022
0.6 −0.6 0.0274 0.0300 -0.0002 0.0032 0.0033 0.0022
0.6 −0.4 0.0227 0.0228 -0.0001 0.0028 0.0028 0.0023
0.6 −0.2 0.0146 0.0146 0.0015 0.0024 0.0024 0.0023
0.6 0 0.0007 0.0007 -0.0003 0.0022 0.0022 0.0023
0.6 0.2 -0.0138 -0.0138 -0.0012 0.0022 0.0022 0.0021
0.6 0.4 -0.0272 -0.0272 -0.0027 0.0027 0.0027 0.0021
0.6 0.6 -0.0332 -0.0332 -0.0005 0.0031 0.0031 0.0021
0.6 0.8 -0.0309 -0.0309 -0.0004 0.0030 0.0030 0.0019
0.8 −0.8 0.0780 0.0781 0.0043 0.0091 0.0091 0.0025
0.8 −0.6 0.0572 0.0572 0.0020 0.0058 0.0058 0.0022
0.8 −0.4 0.0362 0.0362 -0.0007 0.0036 0.0036 0.0022
0.8 −0.2 0.0173 0.0173 0.0006 0.0024 0.0024 0.0022
0.8 0 0.0028 0.0028 0.0041 0.0021 0.0021 0.0023
0.8 0.2 -0.0154 -0.0154 0.0015 0.0021 0.0021 0.0021
0.8 0.4 -0.0327 -0.0327 -0.0015 0.0029 0.0029 0.0021
0.8 0.6 -0.0414 -0.0414 -0.0008 0.0035 0.0035 0.0020
0.8 0.8 -0.0445 -0.0445 -0.0038 0.0042 0.0042 0.0021

average 0.0149 0.0148 0.0015 0.0026 0.0026 0.0021



Table 6: Size of Tests Associated with Pre-test and ML Estimators of the
Hypothesis that a Respective Parameter is Equal to the True Parameter.

ρ λ λ̂PT1 ρ̂PT1 β̂1,PT1 β̂2,PT1 λ̂PT2 ρ̂PT2 β̂1,PT2 β̂2,PT2 λ̂ML λ̂ML β̂1,ML β̂2,ML

−0.8 −0.8 1.0000 1.0000 0.0920 0.1050 1.0000 1.0000 0.0920 0.1050 0.0740 0.0710 0.0650 0.0320
−0.8 −0.6 1.0000 1.0000 0.2340 0.1710 1.0000 1.0000 0.2340 0.1710 0.0540 0.0620 0.0520 0.0610
−0.8 −0.4 1.0000 0.9950 0.4980 0.2310 1.0000 0.9980 0.4910 0.2290 0.0570 0.0650 0.0460 0.0580
−0.8 −0.2 1.0000 0.6930 0.3410 0.1140 1.0000 0.7050 0.3340 0.1140 0.0480 0.0550 0.0490 0.0570
−0.8 0 0.0080 0.0660 0.0570 0.0490 0.0030 0.0800 0.0560 0.0480 0.0510 0.0610 0.0500 0.0490
−0.8 0.2 1.0000 0.6820 0.3610 0.1000 1.0000 0.6820 0.3610 0.1000 0.0380 0.0440 0.0450 0.0470
−0.8 0.4 1.0000 0.9990 0.6130 0.1530 1.0000 0.9990 0.6560 0.1700 0.0470 0.0710 0.0560 0.0510
−0.8 0.6 1.0000 1.0000 0.3380 0.0870 1.0000 1.0000 0.3380 0.0870 0.0620 0.0500 0.0400 0.0500
−0.8 0.8 0.9950 1.0000 0.3060 0.0890 0.9950 1.0000 0.3060 0.0890 0.0510 0.0540 0.0580 0.0590
−0.6 −0.8 1.0000 1.0000 0.0680 0.0620 1.0000 1.0000 0.0680 0.0610 0.0720 0.0790 0.0610 0.0490
−0.6 −0.6 1.0000 1.0000 0.1410 0.1000 1.0000 1.0000 0.1420 0.0980 0.0550 0.0480 0.0460 0.0360
−0.6 −0.4 1.0000 0.9980 0.3140 0.1150 1.0000 1.0000 0.2850 0.1020 0.0580 0.0560 0.0520 0.0460
−0.6 −0.2 1.0000 0.7410 0.2460 0.0910 1.0000 0.8270 0.2090 0.0820 0.0620 0.0490 0.0430 0.0560
−0.6 0 0.0300 0.0890 0.0790 0.0460 0.0040 0.1890 0.0700 0.0430 0.0600 0.0660 0.0590 0.0470
−0.6 0.2 1.0000 0.7070 0.2410 0.0670 1.0000 0.7110 0.2410 0.0670 0.0510 0.0630 0.0440 0.0530
−0.6 0.4 1.0000 1.0000 0.2720 0.0610 1.0000 1.0000 0.2690 0.0640 0.0420 0.0510 0.0560 0.0480
−0.6 0.6 0.9920 1.0000 0.2140 0.0610 0.9920 1.0000 0.2140 0.0610 0.0490 0.0540 0.0500 0.0500
−0.6 0.8 0.9450 1.0000 0.2280 0.0700 0.9450 1.0000 0.2280 0.0700 0.0460 0.0460 0.0490 0.0550
−0.4 −0.8 0.9490 1.0000 0.0500 0.0480 0.9490 1.0000 0.0500 0.0480 0.0480 0.0510 0.0530 0.0460
−0.4 −0.6 0.9530 1.0000 0.0850 0.0540 0.9590 1.0000 0.0800 0.0480 0.0630 0.0580 0.0520 0.0310
−0.4 −0.4 0.9780 0.9990 0.1510 0.0770 0.9900 1.0000 0.1120 0.0650 0.0580 0.0620 0.0450 0.0490
−0.4 −0.2 0.9870 0.8210 0.1400 0.0610 0.9990 0.9520 0.0950 0.0500 0.0580 0.0510 0.0450 0.0460
−0.4 0 0.0810 0.1460 0.0610 0.0490 0.0040 0.5360 0.0520 0.0500 0.0540 0.0690 0.0490 0.0510
−0.4 0.2 0.9940 0.7450 0.1310 0.0590 0.9300 0.7670 0.1550 0.0600 0.0520 0.0520 0.0580 0.0550
−0.4 0.4 0.8960 1.0000 0.1220 0.0610 0.8960 1.0000 0.1170 0.0610 0.0500 0.0690 0.0500 0.0570
−0.4 0.6 0.8460 1.0000 0.1160 0.0720 0.8460 1.0000 0.1160 0.0720 0.0470 0.0370 0.0510 0.0510
−0.4 0.8 0.6410 1.0000 0.1270 0.0670 0.6410 1.0000 0.1270 0.0670 0.0540 0.0550 0.0560 0.0670
−0.2 −0.8 0.4460 1.0000 0.0440 0.0490 0.4460 1.0000 0.0440 0.0490 0.0590 0.0730 0.0470 0.0520
−0.2 −0.6 0.4750 1.0000 0.0620 0.0680 0.4890 1.0000 0.0560 0.0650 0.0590 0.0620 0.0570 0.0710
−0.2 −0.4 0.5340 1.0000 0.0840 0.0480 0.6850 1.0000 0.0800 0.0430 0.0680 0.0620 0.0550 0.0460
−0.2 −0.2 0.7250 0.8860 0.0800 0.0600 0.9480 0.9960 0.0610 0.0490 0.0540 0.0630 0.0560 0.0600
−0.2 0 0.0940 0.6320 0.0430 0.0590 0.0060 0.8890 0.0400 0.0570 0.0470 0.0580 0.0390 0.0580
−0.2 0.2 0.7820 0.9980 0.0920 0.0560 0.6760 0.9600 0.0910 0.0570 0.0490 0.0470 0.0510 0.0520
−0.2 0.4 0.3870 1.0000 0.0680 0.0460 0.3920 1.0000 0.0710 0.0460 0.0510 0.0510 0.0580 0.0500
−0.2 0.6 0.3340 1.0000 0.0690 0.0640 0.3340 1.0000 0.0690 0.0640 0.0430 0.0500 0.0550 0.0540
−0.2 0.8 0.2360 1.0000 0.0670 0.0520 0.2360 1.0000 0.0670 0.0520 0.0500 0.0490 0.0500 0.0450

0 −0.8 0.0630 0.0000 0.0650 0.0560 0.0640 0.0000 0.0650 0.0560 0.0560 0.0590 0.0650 0.0540
0 −0.6 0.0490 0.0030 0.0530 0.0650 0.0710 0.0000 0.0540 0.0630 0.0720 0.0580 0.0560 0.0670
0 −0.4 0.0760 0.0270 0.0570 0.0610 0.2830 0.0010 0.0600 0.0590 0.0500 0.0580 0.0510 0.0630
0 −0.2 0.4740 0.1230 0.0650 0.0520 0.7960 0.0040 0.0590 0.0510 0.0620 0.0610 0.0500 0.0540
0 0 0.0260 0.0170 0.0440 0.0390 0.0080 0.0070 0.0450 0.0400 0.0580 0.0570 0.0460 0.0410
0 0.2 0.2990 0.1480 0.0580 0.0450 0.6220 0.0180 0.0820 0.0460 0.0640 0.0560 0.0520 0.0420
0 0.4 0.0840 0.0250 0.0470 0.0500 0.0930 0.0210 0.0480 0.0520 0.0500 0.0610 0.0540 0.0530
0 0.6 0.0600 0.0050 0.0620 0.0440 0.0600 0.0050 0.0620 0.0440 0.0520 0.0430 0.0650 0.0510
0 0.8 0.0560 0.0000 0.0530 0.0470 0.0560 0.0000 0.0530 0.0470 0.0490 0.0560 0.0490 0.0470

0.2 −0.8 0.5280 1.0000 0.0610 0.0650 0.5280 1.0000 0.0610 0.0650 0.0590 0.0590 0.0540 0.0600
0.2 −0.6 0.5240 1.0000 0.0570 0.0390 0.5260 1.0000 0.0600 0.0390 0.0570 0.0710 0.0440 0.0380
0.2 −0.4 0.5220 1.0000 0.0660 0.0590 0.5710 0.9980 0.0680 0.0570 0.0620 0.0730 0.0520 0.0540
0.2 −0.2 0.9540 0.9670 0.0530 0.0460 0.8420 0.8730 0.0530 0.0460 0.0670 0.0700 0.0500 0.0500
0.2 0 0.1420 0.4880 0.0430 0.0470 0.0250 0.7560 0.0420 0.0470 0.0640 0.0700 0.0460 0.0450
0.2 0.2 0.8040 0.9140 0.0670 0.0590 0.8970 0.9690 0.0710 0.0620 0.0690 0.0720 0.0600 0.0550
0.2 0.4 0.6740 1.0000 0.0670 0.0490 0.6740 1.0000 0.0670 0.0490 0.0640 0.0600 0.0580 0.0490
0.2 0.6 0.5630 1.0000 0.0760 0.0600 0.5630 1.0000 0.0760 0.0600 0.0610 0.0660 0.0590 0.0500
0.2 0.8 0.4290 1.0000 0.0660 0.0650 0.4290 1.0000 0.0660 0.0650 0.0360 0.0430 0.0470 0.0540
0.4 −0.8 0.9890 1.0000 0.0600 0.0770 0.9890 1.0000 0.0600 0.0770 0.0540 0.0430 0.0490 0.0490
0.4 −0.6 0.9980 1.0000 0.0620 0.0520 0.9980 1.0000 0.0600 0.0520 0.0700 0.0600 0.0430 0.0400
0.4 −0.4 0.9910 0.9830 0.0740 0.0470 0.9910 0.9830 0.0630 0.0480 0.0780 0.0710 0.0530 0.0510
0.4 −0.2 1.0000 0.5930 0.0650 0.0630 0.9980 0.6090 0.0660 0.0630 0.0650 0.0690 0.0540 0.0580
0.4 0 0.0850 0.1370 0.0440 0.0500 0.0440 0.2100 0.0490 0.0530 0.0790 0.0780 0.0450 0.0500
0.4 0.2 0.9990 0.8380 0.0490 0.0670 1.0000 0.8400 0.0500 0.0670 0.0870 0.0770 0.0430 0.0590
0.4 0.4 0.9970 1.0000 0.0940 0.0770 0.9970 1.0000 0.0940 0.0770 0.0660 0.0640 0.0510 0.0570
0.4 0.6 0.9930 1.0000 0.1470 0.0720 0.9930 1.0000 0.1470 0.0720 0.0650 0.0640 0.0560 0.0590
0.4 0.8 0.9580 1.0000 0.1770 0.0580 0.9580 1.0000 0.1770 0.0580 0.0470 0.0530 0.0490 0.0390
0.6 −0.8 1.0000 1.0000 0.0840 0.0900 1.0000 1.0000 0.0840 0.0890 0.0390 0.0510 0.0610 0.0510
0.6 −0.6 1.0000 1.0000 0.0770 0.0840 1.0000 1.0000 0.0740 0.0860 0.0700 0.0720 0.0660 0.0420
0.6 −0.4 1.0000 0.9830 0.0600 0.0790 1.0000 0.9830 0.0600 0.0790 0.0650 0.0580 0.0460 0.0530
0.6 −0.2 1.0000 0.5310 0.0620 0.0580 1.0000 0.5310 0.0630 0.0580 0.0690 0.0600 0.0510 0.0440
0.6 0 0.0100 0.0740 0.0640 0.0510 0.0100 0.0740 0.0640 0.0510 0.0860 0.0810 0.0600 0.0600
0.6 0.2 1.0000 0.7510 0.0580 0.0590 1.0000 0.7510 0.0580 0.0590 0.0900 0.0810 0.0460 0.0450
0.6 0.4 1.0000 1.0000 0.0810 0.0960 1.0000 1.0000 0.0810 0.0960 0.1020 0.1080 0.0540 0.0500
0.6 0.6 1.0000 1.0000 0.1670 0.1240 1.0000 1.0000 0.1670 0.1240 0.1000 0.0940 0.0500 0.0510
0.6 0.8 1.0000 1.0000 0.2940 0.0930 1.0000 1.0000 0.2940 0.0930 0.0980 0.0910 0.0420 0.0370
0.8 −0.8 1.0000 1.0000 0.2160 0.3260 1.0000 1.0000 0.2170 0.3270 0.0400 0.0540 0.0340 0.0620
0.8 −0.6 1.0000 1.0000 0.1620 0.2150 1.0000 1.0000 0.1620 0.2150 0.0500 0.0490 0.0510 0.0570
0.8 −0.4 1.0000 0.9590 0.1110 0.1150 1.0000 0.9590 0.1110 0.1150 0.0430 0.0430 0.0400 0.0570
0.8 −0.2 1.0000 0.4970 0.0640 0.0560 1.0000 0.4970 0.0640 0.0560 0.0640 0.0600 0.0400 0.0430
0.8 0 0.0050 0.0510 0.0510 0.0540 0.0050 0.0510 0.0510 0.0540 0.0650 0.0640 0.0490 0.0570
0.8 0.2 1.0000 0.6840 0.0680 0.0550 1.0000 0.6840 0.0680 0.0550 0.0800 0.0850 0.0500 0.0450
0.8 0.4 1.0000 0.9990 0.1080 0.1160 1.0000 0.9990 0.1080 0.1160 0.1290 0.1170 0.0510 0.0490
0.8 0.6 1.0000 1.0000 0.2200 0.1320 1.0000 1.0000 0.2200 0.1320 0.1400 0.1150 0.0550 0.0390
0.8 0.8 1.0000 1.0000 0.3570 0.1510 1.0000 1.0000 0.3570 0.1510 0.1650 0.1710 0.0360 0.0470

average 0.7119 0.7654 0.1280 0.0776 0.7217 0.7792 0.1264 0.0770 0.0630 0.0641 0.0510 0.0509



Appendix: Mont Carlo Estimates of Size of

Tests

In the following we provide more details on computation of the size of the tests
under the null hypothesis, where the null hypothesis is that the parameters
are equal to their true values. We discuss this exemplarily for testing the
null hypothesis that λ = λ0.

In the following let σ̂λ̂MLE
, σ̂λ̂MLL

and σ̂λ̂ML
denote the estimate for the

standard deviation of the ML estimator calculated from the negative inverse
Hessian of the log-likelihood function of the spatial error model (3), the lag
model (5) and the encompassing model (7), respectively. Also, let m be the
index for the Monte Carlo experiment, and let M be the total number of
Monte Carlo experiments.

First consider the pre-test estimators in the case where λ0 6= 0. In this
case the researcher would typically rejectH0 : λ = λ0 if the pre-test procedure
selects the spatial lag model and the t-test statistic exceeds the .95 fractile
of its asymptotic standardized normal distribution. However, implicitly the
researcher also rejects H0 : λ = λ0 if the pre-test procedure selects the OLS
model, or the spatial error model. Thus we estimate the size of the test
associated with the pre-test procedure as

1

M

M∑
m=1

1
[
λ̂
(m)

PT = λ̂
(m)

MLL

]
1

∣∣∣∣∣∣ λ̂
(m)

PT − λ0
σ̂
(m)

λ̂MLL

∣∣∣∣∣∣ > 1.96

+ 1
[
λ̂
(m)

PT = λ̂
(m)

OLS

]
+ 1

[
λ̂
(m)

PT = λ̂
(m)

MLE

] .

Next consider the case λ0 = 0. Since H0 : λ = 0 is compatible with the
OLS and spatial error model, we would reject H0 : λ = 0 only if the pre-test
procedure selects the spatial lag model and the t-test statistic exceeds the
.95 fractile of the standardized normal. Thus the size of the test can be
estimated as

1

M

M∑
m=1

1
[
λ̂
(m)

PT = λ̂
(m)

MLL

]
1

∣∣∣∣∣∣ λ̂
(m)

PT − λ0
σ̂
(m)

λ̂MLL

∣∣∣∣∣∣ > 1.96

 .

Next consider the ML estimator of the encompassing model. In this case
the size of the test is estimated as usual by

1

M

M∑
m=1

1

∣∣∣∣∣∣ λ̂
(m)

ML − λ0
σ̂
(m)

λ̂ML

∣∣∣∣∣∣ > 1.96

 .
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For testing H0 : ρ = ρ0 the size of the test is computed in an analogous
fashion.
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