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AssTRACT  One of the most widely used tests for spatial dependence is Moran’s (1950) I test. The
power of the test will depend on the extent to which the spatial-weights matrix employed in computing
the Moran 1 test statistic properly specifies existing interaction links between spatial units. Empirical
researchers are often unsure about the use of a particular spatial-weights matrix. In light of this Prucha
(2011) introduced the F(q) test statistic. This test statistic combines quadratic forms based on several,
say q, spatial-weights matrices, while at the same time allows for a proper controlling of the size of the
test. In this paper, we first introduce a finite-sample standardized version of the F(q) test. We then
petform a Monte Carlo study to explore the finite-sample performance of the FP(q) tests. For
comparison, the Monte Carlo study also reports on the finite-sample performance of Moran I tests as
well as on Moran I tests performed in sequence.

Des statistiques du test I’(q) pour la dépendance spatiale: harmonisation des
échantillons finis et propriétés

RESUME  un des tests les plus repandus de la dépendance spatiale est celui de Moran. La puissance de
ce test est tributaire de la mesure dans laquelle la matrice de pondération spatiale, employée pour calculer
correctement les statistiques du test, spécifie correctement les liens d’interaction existants entre unités
spatiales. Les chercheurs empiriques éprouvent souvent des incertitudes en ce qui concerne I'emploi d’une
certaine matrice de pondération spatiale. Pour cette raison, Prucha (2011) a introduit la statistique de
test I(q), assurant la combinaison de formes quadratiques sur plusieurs matrices de pondération
spatiale, par exemple q. Dans la présente communication, nous introduisons une version harmonisée
aux éléments finis de ce test, et nous présentons un compte rendu sur une étude Monte Carlo
correspondante.
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Abstract

One of the most widely used tests for spatial dependence is Moran’s (1950) I
test. The power of the test will depend on the extent to which the spatial-weights
matrix employed in computing the Moran [ test statistic properly specifies ex-
isting interaction links between spatial units. Empirical researchers are often
unsure about the use of a particular spatial-weights matrix. In light of this
Prucha (2011) introduced the I?(q) test statistic. This test statistic combines
quadratic forms based on several, say ¢, spatial-weights matrices, while at the
same time allows for a proper controlling of the size of the test. In this paper, we
first introduce a finite-sample standardized version of the I%(q) test. We then
perform a Monte Carlo study to explore the finite-sample performance of the
I%(q) tests. For comparison, the Monte Carlo study also reports on the finite-
sample performance of Moran I tests as well as on Moran I tests performed in
sequence.

Key Words: Moran I test, I%(q) test, spatial dependence, Cliff-Ord-type
spatial models
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1 Introduction !

One of the most widely used tests for spatial dependence is Moran’s (1950) I
test.?2 Moran’s I test statistic is formulated in terms of a normalized quadratic
form of the variables to be tested for spatial dependence, with the elements of a
spatial-weights matrix serving as the weights in the quadratic form. The power
of the test will depend on the extent to which the employed spatial-weights
matrix properly specifies existing interaction links between spatial units.

One problem with the use of the Moran I test statistic is that researchers
are often not sure about their specification of the spatial-weights matrix. For
example, a researcher may not be sure whether spatial interactions are best
modeled via a contiguity-type matrix or an inverse-distance matrix. Let I¢
and I; denote, respectively, the Moran [ test statistic corresponding to the
contiguity-type matrix and the inverse-distance matrix. Under the null hypoth-
esis Hy of zero spatial correlation I and I are both distributed asymptotically
normal (0, 1), given some regularity conditions; see Kelejian and Prucha (2001)
for details. Now suppose the researcher uses Ic to decide whether or not to
accept Hy. That is, if the desired significance level is 5 percent she/he would
accept Hy if [Io] < 1.96. This test has the correct asymptotic size of 0.05 under
Hjy. However the test may have low power under the alternative hypothesis H,
if spatial interactions are better modeled by an inverse-distance matrix than
by a contiguity-type matrix. Consequently, the researcher may be unsure as to
whether she/he should accept Hy even if |Io] < 1.96, and the researcher may
decide to perform a second test using the I test statistic, and only accept Hy
if additionally |I7| < 1.96. The outcome of such a sequential testing procedure
does not depend on the order in which the tests are preformed because Hj is
accepted if and only if |Io| < 1.96 and |I;| < 1.96. Alternatively stated, Hy is
rejected if and only if at least one of the two test statistics exceeds in absolute
value 1.96. We thus refer to this testing procedure as a union of rejections (UR)
test, consistent with terminology adopted by Harvey, Leybounre and Taylor
(2009).

The significance level of the UR testing procedure, which is given by 1 —
P|Ic] <1.96,|Ir] <1.96], will in general exceed the desired level of 0.05 be-
cause?

PIc| < 1.96,|I;] < 1.96] < P[|Ic| < 1.96] = P[|I;] < 1.96] = 0.95.

Of course, the problem that a sequence of tests leads to an overall significance
level that exceeds the desired one is not specific to the Moran I test, and is a

1'We would like to that Harry Kelejian, Gianfranco Piras, and two anonymous referees for
their helpful comments and suggestions. We would also like to thank the participants of the
5th World Conference of the Spatial Econometrics Association, Toulouse, 2011, for helpful
discussions.

2There is a large literature on the Moran I test, including Burridge (1980), Cliff and Ord
(1981), Anselin (1988), Anselin and Florax (1995), Pinkse (1999), and Kelejian and Prucha
(2001).

3Formally the statement P [|Ic| < 1.96] = P [|I7| < 1.96] = 0.95 on the r.h.s. of the above
inequality should be understood as to hold asymptotically.



well known problem in statistics; see, e.g. Lehmann and Romano (2010, Ch.
9).4

The above example illustrates the desirability of a test that checks for spatial
correlation based on several possible specifications of spatial-weights matrices,
but can be performed at the desired significance level. To this effect Prucha
(2011) introduced the I?(q) test statistic which combines quadratic forms based
on several, say q, spatial-weights matrices.

In essence, the I?%(q) test statistic is a quadratic form of ¢ quadratic forms of
the variables to be tested for spatial dependence, normalized by the inverse of the
variance-covariance matrix. For ¢ = 1 the I?(q) test statistic is just the square
of the Moran I test statistic. Prucha (2011) shows that the I?(q) can be viewed
as a Lagrange Multiplier test statistic corresponding to a spatial-autoregressive
or moving-average model of order ¢, which generalizes a corresponding result
by Burridge (1980) for the Moran I test statistic.’

This paper offers two main contributions. First, we introduce a standardized
version of the I?(q) statistic, say I%(g), which modifies each of the quadratic
forms such that under the null hypothesis they are standardized (0, 1) in the case
where the variables under consideration are normally distributed. For ¢ = 1 the
IZ%(q) statistic is just the square of the standardized Moran I test statistic, say
I, as given in Cliff and Ord (1981), which seems to have performed well in small
samples. Furthermore, Prucha (2011) showed that under the null hypothesis of
zero spatial correlation the I%(q) statistic is asymptotically distributed x2(q).
As an additional part of the first contribution, we also show that the I%(q) and
IZ%(q) test statistics have the same asymptotic distribution. The I?(q) and I2(q)
tests with, say, an asymptotic nominal size of 5 percent will thus reject Hy if
their value exceeds the .95 fractile of the x?(g) distribution.

The purpose of deriving the asymptotic distribution of a test statistic is to
provide an approximation for the actual finite-sample distribution, while main-
taining general assumptions on the data-generating process. Therefore it is
important to explore the quality of the obtained approximation. The second
contribution of this paper is an analysis of the finite-sample properties of the
I*(q) and I g(q) tests via a Monte Carlo study, and a comparison of those prop-
erties with those of the Moran I and Ig tests. Under Hy, we explore the actual
finite-sample significance levels of these tests and we also explore the magnitude
of the size distortions when using a UR test, as described above.

4In principle it is, of course, possible to adjust the significance levels of the respective tests
such that the overall test has a significance level of 0.05. However we are not aware of formal
results to this affect for the specific problem at hand.

5Martellosio (2010, 2012) provides interesting results on the power of Lagrange Multiplier
tests within the context of a linear regression model. In essence, he shows that for nearly
all spatial-weights matrices there exist regressors (on a space with positive measure) such
that, when holding the sample size fixed, the power of the test tends to zero as the spatial-
autoregressive parameter tends to a singular point. We note that this result should not be
interpreted as to establish the inconsistency of Lagrange Multiplier tests, where consistency is
as usual defined that for any(!) given parameter value that is admissible under the alternative
the power of the test goes to one as the sample size increases to infinity. In fact, Kelejian
and Prucha (2001) give results that establish the consistency of the Moran I test under fairly
general conditions.



Under Hq, we report on the power of the considered tests. More specifically,
under H; our Monte Carlo study explores the case where spatial dependence is
generated from a spatial-autoregressive process of order 2, for short an SAR(2)
process.® We consider various sets of values for the spatial-autoregressive para-
meters associated with two spatial-weights matrices.

When one of the spatial-autoregressive parameters is zero, the data are
generated by a spatial-autoregressive process of order 1, for short an SAR(1)
process. When the data are generated by a SAR(1) process, we expect the
Moran I test based on the correct spatial-weights matrix to outperform the
I?%(2) test that uses the correct spatial-weights matrix and some another spatial-
weights matrix. In contrast, when the data are generated by a SAR(1) process,
we expect a I%(2) test that uses the correct spatial-weights matrix and some
other spatial-weights matrix to outperform a Moran I test that does not use
the correct spatial-weights matrix. Of course, we would also expect the Moran
I test based on the true spatial-weights matrix to outperform a Moran I test
based on a misspecified spatial-weights matrix. Our study explores the extent
of these power gains/losses under the above describes scenarios.

We note that the Moran I test is a special I2(q) test with ¢ = 1. Thus our
study also provides information on the performance of the class of 1?(q) tests
when the weight matrices are misspecified.

Allowing for the researcher to be unsure about the proper choice of the
spatial-weights matrix is similar in spirit to the specification of the spatial HAC
estimator introduced in Kelejian and Prucha (2007). Of course, space does not
have to be geographic space, and thus the I*(q) and I%(q) test statistics have
wider applications in testing for cross-sectional dependencies arising from social
interactions and other types of cross-sectional interactions.

2 Model and Test Statistics
2.1 Model

Consider the model

y=XB+u, (1)
where y = [y1,...,yn]’ is the n x 1 vector of endogenous variables, X = (z;;) is
the n x K matrix of nonstochastic regressors, 3 is the K x 1 vector of regression
parameters, u = [uq,...,u,] is the n X 1 vector of disturbances. We assume

that the u; are identically distributed with Fu; = 0 and Euf = o2 and finite
2 + § moments for some § > 0. We want to test the hypothesis that the u; are

6 As pointed out by one of the referees, a clearer terminology would be to refer to the
process as a SAR(W7, Wa) process rather than a SAR(2) process, where W7 and Wa denote
the underlying spatial-weights matrices. Our abbreviated terminology is consistent with that
developed by Anselin and Florax (1995). Since this terminology is already used widely we
also maintain this terminology in this paper



uncorrelated, i.e., we want to test
Hy : E[u] = o%I,. (2)

We assume furthermore that the elements of X are uniformly bounded in ab-
solute value, that n='X’X — @, where Q is finite and positive definite. Addi-
tionally, let A be some n X n matrix whose row and column sums are bounded
in absolute value, then n ' X’AX — Mx ax, where Mxax is finite. Now let
B,, = (X'X)71X'y denote the ordinary least squares (OLS) estimator, then it
is readily seen that under Hy we have n'/2(3, — ) <, N(0,0%2Q71).

Also in the following we denote with W1 = (w1,;;) and Wa = (ws,;;) two
n X n nonstochastic spatial-weights matrices. Each spatial-weights matrix has
diagonal elements that are zero and has row and column sums of the absolute
elements that are uniformly bounded by some finite constant.

2.2 Test Statistics

Now consider the case where the researcher believes that W, provides a proper
representation of potential links for spatial interdependencies between the ;. In
this case, the researcher could test Hy using the standard Moran I test statistic:
uWu
Iy == 1/2 (3)
o [tr (W' + W)YW)]

based on W = Wy, and where u = y — XB denotes the OLS residuals and
52 = n~ %4 is the corresponding estimator for 2. Under the above assump-

tions it follows from Kelejian and Prucha (2001) that I, <, N(0,1), and thus

12 % 2(1)." Burridge (1980) established that I2 is identical to the Lagrange
Multiplier test statistic for testing p = 0 if the disturbance process is assumed
to be a first-order spatial-autoregressive or spatial-moving-average process, i.e.,
u = pWu+¢€ or u=c+ pWe, based on a Gaussian likelihood.

Cliff and Ord (1981) introduced the following finite-sample standardized
version of the Moran I test statistic:

UWu/s* —p
I =TT s (4)
bs
with
= —" (W) 5
ps = —r(PW), )
2
n
= M, W M, M WM, W'
9 = GoBm- Kt O MWMW A MWMW)
2
2n it (P, W)

" (n—K2(n—-K+2)

"We note that this result was obtained without assuming that the disturbances are normally
distributed.



and where P, = X(X'X) !X’ and M, = I — P,. We note that ug and ¢g
represent the mean and variance of @' Wwu/ 52 under normality. Still, the Ig,,
test statistic remains well defined even if the disturbances are not normally
distributed, and the statistic was found to perform well also for non-normal
distributions.

Next consider the case where the researcher is not sure whether Wy, W5 or
both properly model the spatial interdependencies between the u;. In this case
the researcher could test Hy using the I%(q) test statistic with ¢ = 2:

) awii/a? ] [ aWhia/a
e = | D, e [ BT, . ©)
uWou/o uWau/o

where ® = (¢,.,) and for r,s =1, 2:
1
¢rs = itr [(WT + W;)(WS + Wsl)] ’ s = 1; 2. (7)

Under the above assumptions, it follows from Prucha (2011) that 12(2) 4, x2(2)
under Hy. That paper also establishes that I2(2) is identical to the Lagrange
Multiplier test statistic for testing p; = py = 0 if the disturbance process is
assumed to be a second-order spatial-autoregressive or spatial-moving-average
process, i.e., u = p;Wiu + p,Wau + € or u = ¢ + pyWie + pyWae, based on a
Gaussian likelihood.

Towards developing a finite-sample standardized version of the Moran [ test
statistic we prove the following theorem in the appendix.

Theorem 1 Suppose the assumptions given in Section 2.1 above hold, suppose
furthermore that Hy is true and that additionally uw ~ N(0,0%1,). Then for
r,s=1,2

Hsp = E(W'W,u/5%) = n_—nKtr (P W) (8)
bss = cov(@W, /5", WW,i/5°)
~ - K)(ZQ_ K12 {tr [M W, M, W, + M, W, M, W[}
2n?

tr (PuWo)] [tr (PuWs)] .

(n—K)2(n—K +2) [tr (PeW3)] [tr (P Ws)]
Of course, defining ®g = (¢g,,;), this implies that for u ~ N(0,02I,) we

have )

_ WWiu/o® —

o /2| LT TS (0,1,

o U Wi /5? — U2 (0, 12)
In analogy to the finite-sample standardized version of the Moran I test statistic,
we now introduce the following finite-sample standardized test statistic:

WW1/5° gy | o [ AW/EE
B3,(2) = | ooty hen fegt | Dot T, T s ?
5n(2) { UWou /5 — Hs,2 $ | @Wau/5” - Hs,2 )



In the appendix we prove the following theorem.

Theorem 2 Suppose the assumptions of Theorem 1 hold, and that lim,,_.o n~'®
is finite and nonsingular, then

2(2) - 13,(2) Bo.

The above theorem establishes that under the assumptions of Theorem 1 the
test statistics I7(2) and I3, (2) are asymptotically equivalent, and consequently

1% ,.(2) 4, x%(2). The theorem was given for the case ¢ = 2. However, the setup
and theorem readily extends to the case where the researcher considers g > 2
spatial-weights matrices Wi, ..., W in that the expressions for ug, and ¢g .,
continue to hold for r,s =1,...,q.

Remark: Of course (1) implies that y and u have the same variance-covariance
(VC) matrix. Thus testing the hypothesis Hy: Fuu' = o2, is equivalent to
testing for the absence of spatial correlation in y, i.e., testing the hypothesis
Hy : VC(y) = 0%I,,. If 3 =0, then y = u and we can use the Moran I,, and
I2(2) test statistics with @ = y to test Hy : VC(y) = 02I,. If X only contains
an intercept, i.e., X = e with e = [1,...,1]’, then (1) simplifies to

yi = B+ u;

and u; = y; — Y, where 7 denotes the sample mean of the y;. Of course, in this
case P, =n~lee’ and M, =1 —n~tee.

3 Monte Carlo Model

We now describe the Monte Carlo design employed for our explorations of the
finite-sample properties of tests for spatial autocorrelation based on the I, Is 5,
I%(2), and 1%, (2) test statistics, as well as for a UR test. We generated the data
for our Monte Carlo study from model (1) with X = [21, 23] and correspondingly
B = (84,55), i.e., the Monte Carlo study is based on the model

y =131 + 2285 + u. (10)

The disturbances are assumed to be generated by a second-order spatial-autoregressive
process of the form
u=pWiu+ p,Wau + €. (11)

The Monte Carlo design is an adaptation and extension of the design used in
Arraiz et al. (2010). The two n x 1 regressors x1 and x5 are normalized versions
of income per-capita and the proportion of housing units which are rentals in
1980, in 760 counties in US mid-western states. These data were taken from
Kelejian and Robinson (1995). We normalized the 760 observations on these



variables by subtracting from each observation the corresponding sample aver-
age, and then dividing that result by the sample standard deviation. The first n
values of these normalized variables were used in our Monte Carlo experiments
for sample sizes n less than 760. The same set of observations on these variables
were used in all Monte Carlo repetitions.

Our spatial-weights matrices correspond to different patterns of locations in
space. In particular, in addition to considering situations where all units are
located on an equally spaced grid, we also consider situations where units which
are located in the northeast portion of that space are closer to each other,
and have more neighbors than the units corresponding to other quadrants of
that space. Abstractly, the design is motivated by the states located in the
northeastern portion of the US, as compared to western and southern states. To
define these various patters of locations underlying our Monte Carlo experiments
consider a square grid with both the z and y coordinates only taking on the
values 1, 1.5, 2, 2.5,...,m. Let the units in the northeast quadrant of the grid
be at the indicated discrete coordinates: m+1 <z <mand m+1<y <m
with 0 < m < m. Let the remaining units be located only at integer values of
the coordinates: © = 1,2,...,m and y = 1,2, ...,m. The next figure illustrates
the implied location patters for m = 2 and m = 4.

Figure 1: Example of a North-East Modified-Rook Matrix: m =2 and m = 4

4.0 | * *

3.5

3.0 | * * * * *

2.5
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We note that for a given m, the number of units located in the northeast
quadrant is inversely related to m. The case where all units are located on an
equally spaced grid with a minimum distance of one corresponds to m = m. We
consider the following location patterns:

Table Location Patterns



Location Pattern | m | m | Sample Size n | Percent of Units in NE
1 2 7 105 7
5 | 15 486 74
3 6 9 97 26
4 14 | 20 485 25
5 10 | 10 100 0
6 22 | 22 484 0

On the space described above we define distance in terms of the Euclidean
distance. That is for any two units, i; and i2, which have coordinates (z1,y1)
and (x2,y2), respectively, we define the distance between them as

d(ihig) = |:($1 - 252)2 + (y1 - y2)2 i

We now use this distance measure to define different spatial-weights matrices.
We note that all spatial-weights matrices employed in the Monte Carlo experi-
ments have been normalized by their spectral radius; see Kelejian and Prucha
(2010) for a further discussion of this normalization.® For simplicity of pre-
sentation we will ignore the normalization in the subsequent definitions of the
spatial-weights matrices.

In conjunction with location patterns 1-4 we consider two spatial-weights
matrices. We will refer to those matrices, respectively, as an inverse-distance
matrix and a generalized-contiguity matrix, and denote them as W; and W, re-
spectively. More specifically, the elements of Wy are defined as wy ;; = 1/d(i, j)?,
i.e., the weights are assumed to decline proportionally to the square distance.
The elements of the W matrix are defined as

1 i 0<di) <1
WCii =3 0 else

In the Monte Carlo experiments corresponding to location patterns 1-4 we take
W1:W] andVVg:Wc.

In conjunction with location patterns 5-6 we consider a further set of two
spatial-weights matrices. We will refer to those matrices as a bishop and a rook
matrix, and denote them with W and Wg, respectively. The elements of the
W matrix are defined as

Wi :{ 1 if d(i,j) =V2

0 else ’

the elements of the Wg matrix are defined as

o 1 if d(i,j) =1
WR.ij = { 0 else

8Let A be some n x n matrix, and let A1, ..., A, denote the eigenvalues of A. The spectral
radius of A is defined as max;—1,... p |Ai]-



In Monte Carlo experiments corresponding to location patterns 5-6 we take
W1 = WB and W2 = WR.

The scalar spatial autoregressive parameters p; and p, are taken to be
—.9,—-.5.—-2.,0,.2,.5,.9. To ensure that the data generating process is well de-
fined we checked that I,, —p; W1 — p, W5 is nonsingular for all considered parame-
ter constellations.” The values for the regression parameters are 3; = 8 = 1.
The elements of € = [e1,...,,]" are generated as i.i.d. N(0,0?), where we take
w.o.l.o.g. 02 = 1.

Each Monte Carlo experiment is based on 10,000 repetitions.

4 Monte Carlo Results

The results of the Monte Carlo experiments are reported in tables 1-6. Each
table corresponds to one of the 6 location patterns described above. As an
overview, in columns 1-2 of each table we specify the values of p; and p,. In
columns 3-8 we report on the rejection rates of the 6 considered tests, which
are described in more detail below. The last column reports on a measure of
the correlation induced by that data-generating process.

In more detail, the first and second test statistics we report are the Moran
I test statistic I,, and its finite-sample standardized version s, based on W7y,
where the test statistics are defined in (3) and (4), respectively. The third test
we report is the following UR test:

Step 1 Compute the Moran [ test statistic I,, based on W;. Reject Hy if the
test statistic exceeds the critical value. Otherwise perform step 2.

Step 2 Compute the Moran [ test statistic I,, based on Ws. Reject Hy if the
test statistic exceeds the critical value. Otherwise accept H;.

The fourth reported test applies the same logic as the third test, but using
Is,, instead of I,,. (Recall that for UR tests the order in which the individual
tests are performed does not matter.) The fifth and sixth tests are the I2(2)
test statistic and its finite-sample standardized version Ig,n(2) based on W7 and
Wa, where the test statistics are defined in (6) and (9).

In all cases, the critical values used in performing the tests were such that
the asymptotic nominal size of the test was .05 under the null hypothesis of zero
spatial correlation. For the UR tests, each of the Moran I tests was performed
with an a priori asymptotic nominal size of 0.05.

To provide some insight into the extent of correlation generated by the differ-
ent parameter constellations and weight matrices we also compute a correlation
measure. From (11) we have u = [I — p, Wi — p,Ws] ' € and thus the variance-
covariance matrix of the u is given by

1

Y= (Uz'j) = [l —p W1 — PQWQ]_l [l — PlW{ - PzWQIT . (12)

9We note that the computation of the I2(g) and IZ(g) does not involve the estimation of
p1 and py, and hence for this study we have not been concerned with defining a contiguous
parameter space for which I, — p; W1 — poWa is non-singular.



Let R = (r;) denote the corresponding correlation matrix, then r;; = o5/ [G'“'Ujj]l/ 2,

Our correlation measure, denoted in the tables with “Corr. Measure” is the av-
erage of the largest 5 absolute correlations above the main diagonal.

We next discuss some of the major findings of the Monte Carlo study dis-
cernible from tables 1-6. We start with a discussion of the results as they pertain
to the size (or the significance levels) of the respective tests. By definition the
size of the tests is the rejection rate under the null hypothesis of zero spatial
correlation, and thus the lines in the tables corresponding to p; = p, = 0 report
on the actual size of the tests. Ideally we would like to see the actual size of
the tests to be close to the asymptotic nominal size of 0.05. An inspection of
the tables shows that for both Moran I and both I?(2) tests the actual size is
indeed close to the nominal size. This is in contrast to the UR tests, which
exhibit in part quite serious size distortions, leading us to over-reject Hy. In
particular for the experiments reported in tables 5-6 the actual size is typically
larger than 0.09.

We next discuss the results as they pertain to the power of the tests under
the alternative H; : p; # 0 and/or py # 0. Given that the UR tests were found
to be not correctly sized we focus our discussion on the Moran I and I%(2) tests.
Overall the power of the tests is seen to increase with the sample size, although
for some experiments, especially with |p;| and |p,| small, the increase is slow.
Furthermore, for the most part, the tables show that the statistics are consistent
with power going to 1 as the amount of spatial correlation increases.

We emphasize that the amount of correlation generated by the spatial au-
toregressive model (11) is complex, as is evident from the expression for ¥ on
the r.h.s. of (12). Given the complexity and nonlinearity of the expression one
would not necessarily expect for the correlation to uniformly increase in |p;| and
|p2|. Indeed this seems confirmed by an inspection of the correlation measure
we report in our tables. In fact, it seems that combinations of negative p; and
positive p, can lead to relatively small values for our correlation measure, which
in turn then seems to be reflected in the power of the tests for those parameter
constellations.

We now consider the case where p, = 0 and p; # 0 in more detail. In this
case we expect the Moran I tests, which are based on W7, to outperform the
I%(2) tests given that by design the former incorporate the information that
ps = 0, while the latter do not. Indeed, we see some relative loss in power
from the I?(2) tests, but the results suggest that the loss is mostly modest.
For example, consider the results for location pattern 5 with sample size 100
reported in table 5 : For p; = 0.2 the power of the Moran s and I2(2) test is
0.29 and 0.26, respectively. For p; = 0.5 the power is .94 and .90, respectively,
and for p; = .9 the power is 1 and 1, respectively. As the sample size increases
the power of the Moran Is and I2(2) tests shifts toward one, which makes any
relative loss in power less consequential.

We next consider the case where p, # 0. In this case we expect the I%(2)
tests to outperform the Moran I tests in that the the I?(2) tests incorporate
information about W5. Indeed, an inspection of the tables shows that the results

10



are in essence consistent with this conjecture. Importantly, we note that for
certain parameter constellations and weight matrices the improvement in power
can be quite dramatic. For example, consider again results for location pattern
5 with sample size 100 reported in table 5 : When p; = —.5 and py = —.9
the power increases from .38 to .99, and when p; = 0 and p, = 0.5 the power
increases from about 0.31 to about .88.

Recall that the Moran I test is a special case of a I%(q) test with ¢ = 1.
In looking at the results when p; = 0 and p, # 0 we can thus also obtain
some limited insights into the performance of I%(q) tests for situations where
the weight matrices are misspecified. (Note that our Moran I test is based on
W1, while the data are in this case generated from u = p,Wou+e. ) The results
suggest that for the weight matrices considered the power still increases to one,
although there is loss of power relative to the I%(2) test which incorporates Ws.

An inspection of the tables suggest furthermore that the finite-sample stan-
dardized tests perform somewhat better than the non-standardized counter-
parts.

5 Concluding Remarks

This paper offers two main contributions: The first contribution is the intro-
duction of a standardized version of the I?(q) test which modifies each of the
quadratic forms such that under the null hypothesis they are standardized (0, 1)
in the case where the variables under consideration are normally distributed.

The second contribution is a Monte Carlo investigation of the finite-sample
performance of the I?(q) tests. The Monte Carlo study also reports on the
finite-sample performance of Moran I as well as UR tests. Overall, the results
suggest that the I2(q) tests perform well. The penalty for using more weight
matrices than needed seems modest. Thus, unless the researcher is very sure
which weights matrix is the relevant one, it may be prudent to apply a more
robust I2(q) test, which combines several weights matrices while preserving the
proper size, rather than the original Moran I test. We note that the I%(q) test
has the interpretation of being a Lagrange Multiplier test if the underlying data
generating process is a spatial AR(q) or MA(q) process.
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A Appendix

The following lemma is due to Pitman (1937) and Koopmans (1942); cp. Cliff

and Ord (1981), p. 43:

Lemma A.1 : Suppose 1y, ...,m, are distributed i.i.d. N(0,1), then any scale
P

free function of them, h(ny,...,n,) is distributed independently of Z nz.

i=1

Proof of Theorem 1: For r = 1,2 define

u ZTU _ 0 W,.u _ n(u/a) W, (a/o) (A1)

—V./52% =
@ =n 7w (@) /o)

and observe that
ufo = M,(u/o)

with
M,=1-P,, P, =X(X'X)"'X',

and where u/o ~ N(0,I). Hence in deriving the moment of @, we can proceed
w.o.l.o.g. under the assumption that u ~ N(0, I).

Recall that M, is idempotent with rank n — K. Hence there exist an orthog-
onal matrix S such that

0 0

=[]

where Sy is n — K X n and S is K x n. Observe that because of orthogonality
S'S =55"=1,. Thus
In-.x 0 | | 51587 5159
0 Ix |~ | 52857 525

and, in particular, 5157 = I,_x and S357 = 0. Observe furthermore that in
light of (A.2) we have M, = S1.51. Now define

SM,S' = [ I 0 } . (A.2)

Consider the partition

w=Sﬂ=Squ=w;]

where

by = SiMyu=$SiSu = Syu~ N(O, I )
11’2 = SQM:(‘U = SQSiSﬂL =0.

12



Next define

Arn Arao /
A, = ’ ' = S'W,.S,
|: Ar,21 Ar,22 :|
then
0, = nﬂ’Wrﬂ _ nﬂ’SS’W}SS’TL _ nz/zllAT7111/11
" u'u W' SS" Y,

Since Q.. is scale free, @, and 1j9; are independent in light of Lemma A.1.
Thus since for p,q = 0,1

QQI (Wiwy)" " = n [y A ey]” Wi Asanen]”
we have
B(QIQNE [(¥iwn)"™] = B {6 Arantn]” [#5 A ]}
which in turn implies that

(B [@W, ) @w.a]

E(QPQI) = nP* (A.3)
E [(a/a)W]
Next observe that
E@u) = FE[uM,Mu
= tr [Maﬂ =tr[My]=n—-K
E@W,u) = E[uMW,.M,u
= tr[M,W,M,] = tr [MZW,] = tr [M,W,]
= tr(W,) —tr (PaW,)
—tr (P,W,.) since diag(W,.) = 0.
Hence
~ E (u'W,u) tr (P,W,.) -n
=F Y= FE = =_ = P .
s = B (V2/5) = B(Q)) = n—pehs = - =g = o= ptr (PW)
(A.4)

Next observe that o'W, = v M, W, M,u = v’ B,u with

Hence, utilizing the expressions for the variance and co-variances of quadratic
forms given, e.g., in Lemma A.1 in Kelejian and Prucha (2010) we have

E[(@W,u) @Wu)] = FE[(uByu) (W Bsu)]
= cov(u' Byu,u' Bsu) + [E(u B,u)] [E(u Bsu)]
2tr(B, B,) + tr(B,)tr(Bs),
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where

1
tr(ByBs) = Ztr [M, (W, + W, )M, M, (W, + Ws)M,]

1
= Ztr [M, (W] 4+ W, )M, (W, + Wy)]

1
= 0 [MaWIMW 4 MoWIM W+ MW, MW, MW, M, W]

= %tr (M, W, MyW, + MW, M, W],

tr(B,) = %tr M, (W + W,)M,] = %tr (ML (W + W,)] = tr [My W]
= —tr(P,W,).
Further
E[(m)ﬂ - E[@’Mwuﬂ:mr(u'Mzu)HE(u/Mzu)]?

= 2tr(MyM,) + [tr(M,)]*
= [tr(M,)][2 + tr(M,)]
= (n—K)(n—-K+2),

and thus
o (@ w, )]
K (Qr) - E [(H’ﬂ)ﬂ
= o K){:_ T3y L VWM W, 4 MW MW+ i (PP
E(Q.Qs) = n2 L [(ﬁ'E‘in(?;)ﬂ;}VVsﬂ)]

S K-kt {tr My W, MW, + MW, MW, + [tr (PoW,)] [tr (PoW)]}

From this it follows furthermore that

Gsrs = cCOU (‘77«/52’ ‘75/52) =FE(Q,Q;s) — (FQ,)(EQ;) (A.5)
n? )
= e Rm K WM ML
2n° tr (P, [tr (P, W,
_(TL*K)2(TL*K+2) [ ’I“( x T’)][r( T S)]a
which completes the proof of the theorem. [T
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Proof of Theorem 2: Observe that for r,s = 1,2

tr(P,W,) = tr[(n ' X'X)"'n T XWX = tr(Myx Mxw, x),
tr(PW, W) = tr[(n ' X'X) "0 X'W W, X] — tr(Myx Mxw,w.x)
tr(P,W, P,Ws) = tr[(n ' X'X) "' ' X'W, X (n ' X'X) I XWX

- tr(MxxMxw,x Mxx Mxw,x)

where Mxx =limn 'X'X, and Mxsx = limn 'X'AX for A = W,, W, W,.
Since M )Eﬁ( and Mx ax are finite by assumption it follows that

tr (P,W,) = O(l)
tT[MxWTMmWS] = [( )WT(I P)W. ]
= tr W, W] — tr(PaW, W) — tr(W, Py W) + tr( Py W, Py W)
= [ r S] O(D
tr MW, M, W] = tr[W,W/]+O0(1).
Hence by (A.4)
n~1/2 [V/a — BE(V,/5 )} =n 1205 + o(1)

recalling that pg, = EV,/5%) = tr (P,W,), and by (A.5)
Tfld)&m =n"teov (‘Z/&Q, ‘75/52) =n"tr [W(Ws + W)+ o(1).

Recalling further that ¢, = 1tr (W, + W) (W, + W))] = tr [W, (W, + W))]
we see that

n1®g —n1® = o(1) and [nflfbg]_l - [nilqﬂ_l =o(1).

Observing furthermore that n=2/2V /5% = 0,(1) it follows from the above that

B = [V/5 -V a5 [V/5 - BV /5]
= 0275 - BV /5] [nes] 2 [V)5 - BV /5
- :n*1/217/52 + 0(1)}/ { nte] '+ 0(1)} [n*Wf//&Q + 0(1)]
- 'n—1/217/52}/ [n19] " 02T/ + 0,(1)
= I(g) +0,(1).
It now follows from Theorem 1 that under Hy we have I2(¢) % x2(2).  HE
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Table 1: Power and Size of Tests: Location Pattern 1, n = 105, Wy = W7y,
Wy = We, %NE= 77

p1 | p2 Rejection Rate of Tests Corr.
I Test [ Ig Test | Uniform Rej I | Uniform Rej Ig | I7(2) Test | 1Z(2) Test | Measure
Tests based Tests based Tests based Tests based
on Wi only on W1 and Wa on Ws and W1 W1 and Wa

-9 1 -9 .844 .8461 .9789 .9785 .8926 .895 .2293
-9 1] -5 .5996 .6023 .8145 .8133 .5388 .b454 194
-9 ] -2 .3923 .3947 5237 .5242 .2697 2768 .1653
-9 0 .2495 .2504 3197 .3199 1867 .1909 .1445
-9 .2 .164 .1652 .1907 1916 .1805 184 1216
-9 1 .5 0677 .0694 .0898 .0952 .2296 .2347 .091
-9 1 .9 1178 1312 .3679 .3913 .5326 .5418 1452
-5 (-9 .6329 .6356 .9282 .9279 7844 7856 1941
-5 ] -5 .3275 .3296 .6096 .6084 .3512 .3561 1447
-5 | -2 152 .1536 .2709 .2699 1315 1351 .1105
-5 0 .0793 .0808 1267 1273 .0791 .0813 .0847
-5 .2 .0418 .0431 .0625 .0649 .0838 .0858 .0561
-5 1] .5 .0776 .0871 .1635 1774 .2091 2174 .0735
-5 1.9 .549 .5709 7656 .78 7503 762 .1979
-2 1-9 4254 .4285 .8609 .8599 .6804 .6825 .1833
-2 ] -5 1575 .16 4344 4332 2451 .248 .1056
-2 ] -2 .0548 .0556 .1339 .1338 .0644 .0661 .0661
-2 0 .0281 .0298 .0536 .0558 .0418 .0439 .0357
-2 .2 .0558 .0615 .0853 .0943 .0807 .0878 .0284
-2 1 .5 .3015 .3207 .4246 .4475 .3781 .3965 1018
-2 1.9 9073 9153 19635 .9667 .9489 .9535 .3686
0 -9 2977 .3013 7929 7917 .6104 6114 1765
0 -5 .0845 .0856 .3199 .3194 182 .1839 .0946
0 -2 .028 .0302 .0818 .0834 .0481 .0496 .0373
0 0 .0408 .0465 .0614 .0687 .0516 .0559 0

0 2 .1526 .1658 .196 2111 .1566 .1695 .0449
0 .5 5738 .5926 6747 .6918 .6003 6172 .1655
0 .9 9915 9921 .9963 .9965 .9949 .9953 7828
21 -9 1915 .1933 7045 .7033 5451 .5466 .1693
2 1 -5 .0377 .0383 2195 .2183 1384 1396 .0869
2 ] -2 .0354 .0392 .0725 .0759 .0537 .0579 .0284
2 0 1168 1292 1427 .1556 .1052 1161 .0419
2 2 .3587 .3799 4151 435 .3363 .3556 .1069
2 .5 .8369 .848 .8833 .8914 .8389 .848 .3255
2 .9 .9994 .9994 .9995 .9995 19991 9991 .8191
b -9 .0806 .0819 .5423 .5402 .4364 .4384 1573
b -5 .0263 .0298 1192 122 .1069 .1106 .073
b -2 .16 1745 .1808 1951 .1479 .1613 .0622
.5 0 4326 4517 4611 .48 .3799 402 .1403
.5 2 7773 7919 .8084 .8208 7451 7593 .3016
.5 .5 19995 .9995 .9996 .9996 .9993 .9993 .9992
.5 .9 19997 .9997 19997 .9997 19997 .9997 19014
9 1-9 .0284 .0301 .3079 .3073 .3335 .338 1377
9 | -5 2072 .2204 2331 .2473 .2465 .2606 .0807
9 | -2 .6834 .6989 .6949 .7095 .6419 .6579 2763
.9 0 .9416 .9455 .9481 .9508 .9288 .9323 7452
.9 2 .985 .9863 .9885 .9893 .982 .9834 7655
.9 .5 19999 .9999 1 1 .9999 .9999 .9862
.9 .9 1 1 1 1 1 1 9678
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Table 2: Power and Size of Tests: Location Pattern 2, n = 486, W, = W7y,
Wy = We, %NE= 74

p1 | p2 Rejection Rate of Tests Corr.
I Test [ Ig Test | Uniform Rej I | Uniform Rej Ig | I7(2) Test | 1Z(2) Test | Measure
Tests based Tests based Tests based Tests based
on Wi only on W1 and Wa on Ws and W1 W1 and Wa

-9 | -9 1 1 1 1 1 1 .1932
-9 1] -5 19999 .9999 1 1 .9996 .9996 1571
-9 ] -2 9747 9738 .9882 9873 9451 .9434 1271
-9 0 .8343 .8309 .8614 .8581 7022 .7006 .1049
-9 .2 4833 4784 .4942 4891 4573 4567 .0805
-9 1 .5 .0682 .0687 2291 .2376 .6049 .6053 .0634
-9 1 .9 .6886 .7063 .992 .9926 .9964 .9965 1414
-5 1 -9 1 1 1 1 1 1 1736
-5 [ -5 19862 9857 .9985 .9985 .9928 .9928 121
-5 ] -2 7487 7442 .8573 .8543 6717 .6682 .0867
-.5 0 3517 .3469 4101 .4049 .245 .2428 .0609
-5 .2 .073 .0723 .0962 .0963 1544 1548 .0324
-5 1] .5 .2868 .3054 .6663 .6788 .6968 7024 .0732
-5 1.9 .994 .9944 19999 .9999 .9999 .9999 2133
-2 1-9 19995 .9994 1 1 1 1 .1662
-2 ] -5 19053 .9023 .9884 .9876 .9528 9518 .0926
-2 ] -2 3611 .3573 5587 .5525 3511 .3471 .0546
-2 0 .0802 .0792 1194 1178 .0686 .0683 .0253
-2 .2 .0898 .0978 1817 195 .1649 1706 .0283
-2 1 .5 .8139 .8264 .9507 .9542 19253 .9303 .1007
-2 9 1 1 1 1 1 1 .3454
0 -9 19975 .9975 1 1 .9999 .9999 .1614
0 -5 7412 7349 9551 9537 .8856 .8832 .0869
0 -2 1507 1473 .3246 .3193 .1956 1937 .0344
0 0 .0431 .0478 .0695 .073 .0467 .0495 0

0 2 3318 .3515 4654 4814 .3613 3747 .0407
0 .5 9737 9756 .9949 .9956 .9893 .9899 .1433
0 .9 1 1 1 1 1 1 .6315
21 -9 .9868 .9859 1 1 .9998 .9998 .1563
2 1 -5 .482 4765 .8725 .868 7744 171 .0815
2 -2 L0518 .0519 1516 .1493 1119 1125 .0282
2 0 1738 1883 .2036 2179 1481 .1598 .0284
2 2 7101 7268 7928 .8044 .6983 1127 .0806
2 .5 .9986 .9988 19999 .9999 .9995 .9995 .2336
2 .9 1 1 1 1 1 1 .995
b -9 .8953 .8928 19993 .9992 .9981 .9981 .1482
b -5 .1438 1411 .6192 6126 591 .b888 .0723
b -2 .1569 1707 .1823 .1953 .2043 2175 .0319
.5 0 .6959 7116 7215 7358 .6324 .6493 .0857
.5 2 9822 .9834 .9885 .9895 9767 L9787 1816
.5 .5 1 1 1 1 1 1 .9969
.5 9 1 1 1 1 1 1 19849
9 1-9 .4436 .4364 9844 .9837 .986 9857 .1358
9 | -5 1349 143 2919 2977 .5339 .5446 .0592
9 | -2 .8545 .863 .8578 .8662 .8354 .8454 134
.9 0 9974 9977 .9979 .9982 .996 .9965 .452
.9 2 1 1 1 1 1 1 .5403
.9 .5 1 1 1 1 1 1 .9988
.9 .9 1 1 1 1 1 1 9117
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Table 3: Power and Size of Tests: Location Pattern 3, n = 97, W7 = Wy,
Wy = We, %WNE= 26

p1 | p2 Rejection Rate of Tests Corr.
I Test [ Ig Test | Uniform Rej I | Uniform Rej Ig | I7(2) Test | 1Z(2) Test | Measure
Tests based Tests based Tests based Tests based
on Wi only on W1 and Wa on Ws and W1 W1 and Wa

-9 1 -9 7872 7788 L9675 .9665 .9049 .9033 .2889
-9 | -5 14914 4797 746 7416 .5366 5347 2511
-9 ] -2 2871 2766 .4394 4316 2521 .248 .2226
-9 0 1867 .1801 .262 .255 1617 .1584 .2023
-9 .2 1154 112 .1401 1367 .1285 .1285 .1806
-9 1 .5 .0595 .0569 .0887 .0895 .1831 .1856 .158
-9 1 .9 .0907 .0926 .3084 .3233 A17 43 .1819
-5 1] -9 5672 .5549 .9183 9163 .8099 .8088 .2456
-5 ] -5 2563 .2491 .5697 .5645 .3653 .3635 .1838
-5 | -2 1182 1135 2474 .2425 .1305 .1296 1473
-5 0 .064 .0607 1155 1123 .0736 .0734 1199
-5 .2 .0386 .0373 .0606 .0596 .0715 .0729 .0895
-5 1] .5 .0673 .0699 .1408 .1481 .1562 .1639 .0864
-5 1.9 .3518 .3581 .6046 .6195 5714 5871 .225
-2 1-9 .3916 3791 .8565 .8538 7263 7256 .2295
-2 ] -5 .1335 .1269 4176 4128 .2638 .2624 .1302
-2 ] -2 .046 .0436 .138 .1355 .0752 .0749 .0859
-2 0 .0318 .0318 .0659 .0659 .0419 .0425 .0513
-2 .2 .0514 .0526 .0791 .0833 .068 0712 .0325
-2 .5 2222 226 .3318 .343 2733 .2829 1212
-2 9 L7312 7361 .8637 8711 .8202 .8299 481
0 -9 2847 2748 .8049 .8024 .6675 .6668 .2188
0 -5 0774 .0736 .331 .3272 2162 2171 1156
0 -2 .029 .0282 .0962 .0946 .0625 .0634 .0454
0 0 .0455 .0463 .0745 .076 .053 .0543 0

0 2 .1301 1337 .1709 1776 1267 1315 .0568
0 .5 .4465 4526 .5476 .5582 4761 .4866 .2268
0 .9 19283 19301 .9685 .9703 .9544 .9568 .891
21 -9 .1895 .1802 7303 7273 .6037 .6038 2077
2 -.5 .0405 .0385 .2472 .2439 1714 1721 .1041
2 ] -2 .0427 .0433 .0858 .0868 .0662 .0675 .0323
2 0 1171 .1208 1422 1473 1107 1132 .0638
2 2 .2848 .2885 .3339 .3402 .2658 2728 1579
2 .5 .6819 .687 7558 .7639 6911 .6993 4786
2 .9 9577 .959 .9825 .9833 9737 9751 .8903
b -9 .0834 .0792 .6024 .5996 .5083 .5087 .1894
b -5 .0382 .0392 .1664 .1652 .1455 1473 .0842
b -2 .1685 1718 1921 .1959 .169 1719 1072
.5 0 .3812 .3862 .4085 4147 .3495 .3547 .2308
.5 2 .6643 .6676 .697 7018 .6398 .6455 4749
.5 .5 19969 .9969 9978 19979 .9968 997 .9998
.5 .9 .956 9576 .9859 9867 .9745 9764 .6875
9 -9 .0379 .0372 4172 4131 4188 4215 .1616
9 | -5 2263 .2307 2735 2773 .289 2912 .1561
9 | -2 6176 6221 .629 .6344 .5924 .5964 .465
.9 0 .8933 .895 .9008 .9032 .8791 .8811 .8869
.9 2 9363 .9374 .9466 .9479 9271 .9289 .8934
.9 .5 9185 9211 .9494 9519 9197 .9228 .6292
.9 .9 19985 .9985 .9995 .9996 19991 .9993 .9794
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Table 4: Power and Size of Tests: Location Pattern 4, n = 485, Wy = W7y,
Wy = We, %NE= 25

p1 | p2 Rejection Rate of Tests Corr.
I Test [ Ig Test | Uniform Rej I | Uniform Rej Ig | I7(2) Test | 1Z(2) Test | Measure
Tests based Tests based Tests based Tests based
on Wi only on W1 and Wa on Ws and W1 W1 and Wa

-9 | -9 1 1 1 1 1 1 .2165
-9 1] -5 9882 .9879 19984 .9983 .9895 .9892 1811
-9 ] -2 .8368 .8356 9101 .9084 7641 7638 1521
-9 0 5597 .5581 .6216 .6185 .4208 4227 .1309
-9 .2 .2632 .2623 2776 .2766 .2681 .2704 .1076
-9 1 .5 .0479 .0499 .2055 2153 .455 4573 .0751
-9 1 .9 .3665 .3885 .9448 9477 9615 .9623 1415
-5 1] -9 19992 .9992 1 1 1 1 .186
-5 ] -5 .9047 .9047 .9837 .9831 .9475 .9468 .1363
-5 | -2 4841 4832 6638 .6613 .4504 14503 .1022
-5 0 1953 .1949 .2596 .2581 1458 .1464 .0765
-.5 2 .0494 .0498 0779 0797 1114 1136 .048
-5 1] .5 .1628 1781 .5159 .5299 .5295 .5369 .0726
-5 1.9 .8862 .8944 19967 .9973 .9948 .9954 2

-2 1-9 19926 .9926 1 1 .9994 .9994 1763
-2 ] -5 7101 709 9371 .9353 .8519 .8503 .1008
-2 ] -2 2134 2126 .4098 .4062 .2402 .2402 .062
-2 0 .0505 .0515 .0902 .0897 .0543 .055 .0321
-2 2 072 .0802 1474 1561 1242 1285 .0281
-2 1 .5 5567 .bT778 .8105 .8204 .7469 7564 .1004
-2 1.9 .9947 .9952 1 1 .9999 .9999 .354
0 -9 9727 9722 1 1 .9992 9991 1702
0 -5 .5059 .5046 8742 .8722 7526 7516 .0914
0 -2 .0973 .0973 .2528 .2503 .1485 .1499 .0361
0 0 .0446 .0497 0741 .0795 .0496 .0535 0

0 2 2169 .2353 .3255 3417 .2381 .2503 .0431
0 .5 .8182 .8309 .9378 .9419 .9013 9061 .156
0 .9 19997 .9997 1 1 1 1 .7369
21 -9 19182 9175 .9996 .9995 .9978 9978 1637
2 1 -5 3175 .3164 7645 7619 .6507 .6494 .0845
2 -2 .0473 .0497 .1556 .156 A117 114 .0281
2 0 1361 147 .1668 1776 1186 1284 0371
2 2 5068 .5265 .6054 .6196 .4893 .5062 .097
2 .5 .965 .969 19913 .9924 .9816 .983 .29

2 .9 1 1 1 1 1 1 .8694
b -9 7477 7471 19953 1995 .989 .9889 1531
b -5 .1002 .1005 5412 5374 .4949 4968 .0722
b -2 1511 1623 .1856 .1961 .1863 .1978 .0516
.5 0 528 .5462 .56 .5769 4721 .4928 .1203
.5 2 8971 .9049 9272 9321 .8811 .8882 2575
.5 .5 1 1 1 1 1 1 .9984
.5 9 1 1 1 1 1 1 19248
9 1-9 .346 .3448 19658 .9647 .9653 .9654 .1359
9 | -5 1549 1632 .333 .3385 .4835 .4944 .0628
9 | -2 7341 747 7411 7536 714 7291 .2259
.9 0 9778 .9805 .981 .9832 9687 9712 6718
.9 2 19981 .9984 .9992 .9994 9977 .9981 .7048
.9 .5 1 1 1 1 1 1 .9613
.9 .9 1 1 1 1 1 1 .9268
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Table 5: Power and Size of Tests: Location Pattern 5, n = 100, W; = Wp,
Wy = Wg, %NE=0

p1 | p2 Rejection Rate of Tests Corr.
I Test [ Ig Test | Uniform Rej I | Uniform Rej Ig | I7(2) Test | 1Z(2) Test | Measure
Tests based Tests based Tests based Tests based
on Wi only on W1 and Wa on Ws and W1 W1 and Wa

-9 | -9 1 1 1 1 1 1 779
-9 | -5 1 1 1 1 1 1 8167
-9 ] -2 1 1 1 1 1 1 .8283
-9 0 1 1 1 1 1 1 .8304
-9 .2 1 1 1 1 1 1 .8283
-9 1 .5 1 1 1 1 1 1 .8167
-9 1 .9 1 1 1 1 1 1 779
-5 (-9 3788 .382 .9995 .9994 .9992 .9993 3767
-5 [ -5 .8382 .8397 .9564 .9562 .9495 951 .2636
-5 | -2 9172 9184 19244 19251 .8801 .8815 .3004
-5 0 19367 9371 .9375 .938 .8837 .8867 .3069
-5 .2 924 .9256 9309 .9338 .8905 .8952 .3004
-5 1] .5 .8425 .844 9571 .9637 .9535 .9586 .2636
-5 1.9 .3979 .4006 19997 .9998 .9998 .9998 3767
-2 1-9 6679 .6792 19997 .9997 .9996 .9996 4715
-2 ] -5 1107 1136 .8494 .8486 .7609 763 2341
-2 ] -2 .2325 .2355 .3582 .359 2391 .2435 .0995
-2 0 2757 2793 .2907 .2956 1732 1779 .1106
-2 .2 .2392 .2408 .353 .3697 2415 .2565 .0995
-2 1 .5 1145 117 .8491 .865 7662 7867 2341
-2 1.9 .6508 .6634 1 1 1 1 4715
0 -9 19955 .9958 1 1 1 1 7743
0 -5 .3208 .3344 .9459 .945 .8935 .8933 2914
0 -2 .0614 .0666 .3108 .3094 214 2151 .106
0 0 .0481 .051 .0906 .096 .044 .0482 0

0 2 .0611 .0663 2913 .3149 .1992 218 .106
0 .5 .3047 .3162 .935 .9427 .8781 .8911 2914
0 .9 .9936 .9938 1 1 1 1 7743
2 -9 1 1 1 1 1 1 9794
2 1 -5 8744 .8814 19941 .9944 .99 .9898 4397
2 ] -2 .3915 .4055 .6106 6157 .5532 .5568 1515
2 0 272 2876 3251 3411 .2463 .2605 .1106
2 2 .3692 .3853 5797 .6027 .5292 .5529 1515
2 .5 .861 .8673 19907 .9925 .9865 .9883 4397
2 .9 1 1 1 1 1 1 .9794
b -9 1 1 1 1 1 1 .9999
b -5 1 1 1 1 1 1 1

b -2 9711 9732 9811 .9824 .9742 9747 .3867
.5 0 19335 .9401 .9392 .9457 9017 .9085 .3069
.5 2 .9688 9723 9792 .982 .9707 9754 .3867
.5 .5 1 1 1 1 1 1 1

.5 9 1 1 1 1 1 1 .9999
9 -9 1 1 1 1 1 1 .9595
9 | -5 1 1 1 1 1 1 .9541
9 | -2 1 1 1 1 1 1 .975
.9 0 1 1 1 1 1 1 .8304
.9 2 1 1 1 1 1 1 975
.9 .5 1 1 1 1 1 1 .9541
.9 .9 1 1 1 1 1 1 .9595
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Table 6: Power and Size of Tests: Location Pattern 6, n = 484, W, = Wp,
Wy = Wg, %NE=0

p1 | p2 Rejection Rate of Tests Corr.
I Test [ Ig Test | Uniform Rej I | Uniform Rej Ig | I7(2) Test | 1Z(2) Test | Measure
Tests based Tests based Tests based Tests based
on Wi only on W1 and Wa on Ws and W1 W1 and Wa

-9 | -9 1 1 1 1 1 1 .679
-9 | -5 1 1 1 1 1 1 7193
-9 ] -2 1 1 1 1 1 1 7317
-.9 0 1 1 1 1 1 1 734
-9 .2 1 1 1 1 1 1 7317
-9 1 .5 1 1 1 1 1 1 7193
-9 1 .9 1 1 1 1 1 1 679
-5 1] -9 .8414 .8407 1 1 1 1 .3688
-5 | -5 1 1 1 1 1 1 .2405
-5 | -2 1 1 1 1 1 1 2769
-.5 0 1 1 1 1 1 1 2833
-.5 2 1 1 1 1 1 1 2769
-5 1] .5 19999 .9999 1 1 1 1 .2405
-5 1.9 .8458 .8443 1 1 1 1 .3688
-2 1-9 .9966 .9968 1 1 1 1 4564
-2 ] -5 .188 .1863 1 1 1 1 .2281
-2 ] -2 7668 .7646 .9545 9538 9488 .9469 .0929
-2 0 .8567 .855 8607 .859 7653 .7636 .1035
-2 .2 773 771 .9506 9525 9416 .9425 .0929
-2 .5 201 .1992 1 1 1 1 12281
-2 1.9 19958 .9958 1 1 1 1 .4564
0 -9 1 1 1 1 1 1 7167
0 -5 .8364 .8403 1 1 1 1 .2801
0 -2 .0864 .0885 8766 8747 7921 7887 .1025
0 0 .0504 .0514 .0939 .0952 0474 0476 0

0 2 .0806 .0837 .863 8693 7763 7853 .1025
0 .5 .8232 .8266 1 1 1 1 .2801
0 .9 1 1 1 1 1 1 7167
2 | -9 1 1 1 1 1 1 .9933
2 -.5 1 1 1 1 1 1 .4088
2 ] -2 19508 9531 19943 .9944 9931 9931 143
2 0 8574 .8608 .8692 .8722 7939 7998 .1035
2 2 19439 .9457 9934 9936 9915 9921 143
2 .5 1 1 1 1 1 1 4088
2 .9 1 1 1 1 1 1 .9933
b -9 1 1 1 1 1 1 .9948
b -5 1 1 1 1 1 1 1

b -2 1 1 1 1 1 1 .3483
.5 0 1 1 1 1 1 1 2833
.5 2 1 1 1 1 1 1 .3483
.5 .5 1 1 1 1 1 1 1

.5 9 1 1 1 1 1 1 19948
9 -9 1 1 1 1 1 1 9741
9 | -5 1 1 1 1 1 1 .973
9 | -2 1 1 1 1 1 1 1

.9 0 1 1 1 1 1 1 734
.9 2 1 1 1 1 1 1 1

.9 .5 1 1 1 1 1 1 973
.9 .9 1 1 1 1 1 1 9741
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