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ABSTRACT One of the most widely used tests for spatial dependence is Moran’s (1950) I test. The

power of the test will depend on the extent to which the spatial-weights matrix employed in computing

the Moran I test statistic properly specifies existing interaction links between spatial units. Empirical

researchers are often unsure about the use of a particular spatial-weights matrix. In light of this Prucha

(2011) introduced the I2(q) test statistic. This test statistic combines quadratic forms based on several,

say q, spatial-weights matrices, while at the same time allows for a proper controlling of the size of the

test. In this paper, we first introduce a finite-sample standardized version of the I2(q) test. We then

perform a Monte Carlo study to explore the finite-sample performance of the I2(q) tests. For

comparison, the Monte Carlo study also reports on the finite-sample performance of Moran I tests as

well as on Moran I tests performed in sequence.

Des statistiques du test I2(q) pour la dépendance spatiale: harmonisation des

échantillons finis et propriétés

RÉSUMÉ un des tests les plus répandus de la dépendance spatiale est celui de Moran. La puissance de

ce test est tributaire de la mesure dans laquelle la matrice de pondération spatiale, employée pour calculer

correctement les statistiques du test, spécifie correctement les liens d’interaction existants entre unités

spatiales. Les chercheurs empiriques éprouvent souvent des incertitudes en ce qui concerne l’emploi d’une

certaine matrice de pondération spatiale. Pour cette raison, Prucha (2011) a introduit la statistique de

test I2(q), assurant la combinaison de formes quadratiques sur plusieurs matrices de pondération

spatiale, par exemple q. Dans la présente communication, nous introduisons une version harmonisée

aux éléments finis de ce test, et nous présentons un compte rendu sur une étude Monte Carlo

correspondante.
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Abstract

One of the most widely used tests for spatial dependence is Moran’s (1950) 

test. The power of the test will depend on the extent to which the spatial-weights

matrix employed in computing the Moran  test statistic properly specifies ex-

isting interaction links between spatial units. Empirical researchers are often

unsure about the use of a particular spatial-weights matrix. In light of this

Prucha (2011) introduced the 2() test statistic. This test statistic combines

quadratic forms based on several, say , spatial-weights matrices, while at the

same time allows for a proper controlling of the size of the test. In this paper, we

first introduce a finite-sample standardized version of the 2() test. We then

perform a Monte Carlo study to explore the finite-sample performance of the

2() tests. For comparison, the Monte Carlo study also reports on the finite-

sample performance of Moran  tests as well as on Moran  tests performed in

sequence.

Key Words: Moran  test, 2() test, spatial dependence, Cliff-Ord-type

spatial models

JEL Classification: C21, C31



1 Introduction 1

One of the most widely used tests for spatial dependence is Moran’s (1950) 

test.2 Moran’s  test statistic is formulated in terms of a normalized quadratic

form of the variables to be tested for spatial dependence, with the elements of a

spatial-weights matrix serving as the weights in the quadratic form. The power

of the test will depend on the extent to which the employed spatial-weights

matrix properly specifies existing interaction links between spatial units.

One problem with the use of the Moran  test statistic is that researchers

are often not sure about their specification of the spatial-weights matrix. For

example, a researcher may not be sure whether spatial interactions are best

modeled via a contiguity-type matrix or an inverse-distance matrix. Let 
and  denote, respectively, the Moran  test statistic corresponding to the

contiguity-type matrix and the inverse-distance matrix. Under the null hypoth-

esis 0 of zero spatial correlation  and  are both distributed asymptotically

normal (0 1), given some regularity conditions; see Kelejian and Prucha (2001)

for details. Now suppose the researcher uses  to decide whether or not to

accept 0. That is, if the desired significance level is 5 percent she/he would

accept 0 if | | ≤ 196. This test has the correct asymptotic size of 005 under
0. However the test may have low power under the alternative hypothesis 1,

if spatial interactions are better modeled by an inverse-distance matrix than

by a contiguity-type matrix. Consequently, the researcher may be unsure as to

whether she/he should accept 0 even if | | ≤ 196, and the researcher may
decide to perform a second test using the  test statistic, and only accept 0

if additionally | | ≤ 196. The outcome of such a sequential testing procedure
does not depend on the order in which the tests are preformed because 0 is

accepted if and only if | | ≤ 196 and | | ≤ 196. Alternatively stated, 0 is

rejected if and only if at least one of the two test statistics exceeds in absolute

value 196. We thus refer to this testing procedure as a union of rejections (UR)

test, consistent with terminology adopted by Harvey, Leybounre and Taylor

(2009).

The significance level of the UR testing procedure, which is given by 1 −
 [| | ≤ 196 | | ≤ 196], will in general exceed the desired level of 005 be-
cause3

 [| | ≤ 196 | | ≤ 196] ≤  [| | ≤ 196] =  [| | ≤ 196] = 095
Of course, the problem that a sequence of tests leads to an overall significance

level that exceeds the desired one is not specific to the Moran  test, and is a

1We would like to that Harry Kelejian, Gianfranco Piras, and two anonymous referees for

their helpful comments and suggestions. We would also like to thank the participants of the

5th World Conference of the Spatial Econometrics Association, Toulouse, 2011, for helpful

discussions.
2There is a large literature on the Moran  test, including Burridge (1980), Cliff and Ord

(1981), Anselin (1988), Anselin and Florax (1995), Pinkse (1999), and Kelejian and Prucha

(2001).
3Formally the statement  [| | ≤ 196] =  [| | ≤ 196] = 095 on the r.h.s. of the above

inequality should be understood as to hold asymptotically.
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well known problem in statistics; see, e.g. Lehmann and Romano (2010, Ch.

9).4

The above example illustrates the desirability of a test that checks for spatial

correlation based on several possible specifications of spatial-weights matrices,

but can be performed at the desired significance level. To this effect Prucha

(2011) introduced the 2() test statistic which combines quadratic forms based

on several, say , spatial-weights matrices.

In essence, the 2() test statistic is a quadratic form of  quadratic forms of

the variables to be tested for spatial dependence, normalized by the inverse of the

variance-covariance matrix. For  = 1 the 2() test statistic is just the square

of the Moran  test statistic. Prucha (2011) shows that the 2() can be viewed

as a Lagrange Multiplier test statistic corresponding to a spatial-autoregressive

or moving-average model of order , which generalizes a corresponding result

by Burridge (1980) for the Moran  test statistic.5

This paper offers two main contributions. First, we introduce a standardized

version of the 2() statistic, say 2(), which modifies each of the quadratic

forms such that under the null hypothesis they are standardized (0 1) in the case

where the variables under consideration are normally distributed. For  = 1 the

2() statistic is just the square of the standardized Moran  test statistic, say

 , as given in Cliff and Ord (1981), which seems to have performed well in small

samples. Furthermore, Prucha (2011) showed that under the null hypothesis of

zero spatial correlation the 2() statistic is asymptotically distributed 2().

As an additional part of the first contribution, we also show that the 2() and

2() test statistics have the same asymptotic distribution. The 
2() and 2()

tests with, say, an asymptotic nominal size of 5 percent will thus reject 0 if

their value exceeds the 95 fractile of the 2() distribution.

The purpose of deriving the asymptotic distribution of a test statistic is to

provide an approximation for the actual finite-sample distribution, while main-

taining general assumptions on the data-generating process. Therefore it is

important to explore the quality of the obtained approximation. The second

contribution of this paper is an analysis of the finite-sample properties of the

2() and 2() tests via a Monte Carlo study, and a comparison of those prop-

erties with those of the Moran  and  tests. Under 0, we explore the actual

finite-sample significance levels of these tests and we also explore the magnitude

of the size distortions when using a UR test, as described above.

4 In principle it is, of course, possible to adjust the significance levels of the respective tests

such that the overall test has a significance level of 005. However we are not aware of formal

results to this affect for the specific problem at hand.
5Martellosio (2010, 2012) provides interesting results on the power of Lagrange Multiplier

tests within the context of a linear regression model. In essence, he shows that for nearly

all spatial-weights matrices there exist regressors (on a space with positive measure) such

that, when holding the sample size fixed, the power of the test tends to zero as the spatial-

autoregressive parameter tends to a singular point. We note that this result should not be

interpreted as to establish the inconsistency of Lagrange Multiplier tests, where consistency is

as usual defined that for any(!) given parameter value that is admissible under the alternative

the power of the test goes to one as the sample size increases to infinity. In fact, Kelejian

and Prucha (2001) give results that establish the consistency of the Moran  test under fairly

general conditions.
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Under 1, we report on the power of the considered tests. More specifically,

under 1 our Monte Carlo study explores the case where spatial dependence is

generated from a spatial-autoregressive process of order 2, for short an SAR(2)

process.6 We consider various sets of values for the spatial-autoregressive para-

meters associated with two spatial-weights matrices.

When one of the spatial-autoregressive parameters is zero, the data are

generated by a spatial-autoregressive process of order 1, for short an SAR(1)

process. When the data are generated by a SAR(1) process, we expect the

Moran  test based on the correct spatial-weights matrix to outperform the

2(2) test that uses the correct spatial-weights matrix and some another spatial-

weights matrix. In contrast, when the data are generated by a SAR(1) process,

we expect a 2(2) test that uses the correct spatial-weights matrix and some

other spatial-weights matrix to outperform a Moran  test that does not use

the correct spatial-weights matrix. Of course, we would also expect the Moran

 test based on the true spatial-weights matrix to outperform a Moran  test

based on a misspecified spatial-weights matrix. Our study explores the extent

of these power gains/losses under the above describes scenarios.

We note that the Moran  test is a special 2() test with  = 1. Thus our

study also provides information on the performance of the class of 2() tests

when the weight matrices are misspecified.

Allowing for the researcher to be unsure about the proper choice of the

spatial-weights matrix is similar in spirit to the specification of the spatial HAC

estimator introduced in Kelejian and Prucha (2007). Of course, space does not

have to be geographic space, and thus the 2() and 2() test statistics have

wider applications in testing for cross-sectional dependencies arising from social

interactions and other types of cross-sectional interactions.

2 Model and Test Statistics

2.1 Model

Consider the model

 =  +  (1)

where  = [1     ]
0 is the × 1 vector of endogenous variables,  = () is

the × matrix of nonstochastic regressors,  is the ×1 vector of regression
parameters,  = [1     ]

0 is the  × 1 vector of disturbances. We assume
that the  are identically distributed with  = 0 and 2 = 2 and finite

2 +  moments for some   0. We want to test the hypothesis that the  are

6As pointed out by one of the referees, a clearer terminology would be to refer to the

process as a SAR(12) process rather than a SAR(2) process, where 1 and 2 denote

the underlying spatial-weights matrices. Our abbreviated terminology is consistent with that

developed by Anselin and Florax (1995). Since this terminology is already used widely we

also maintain this terminology in this paper
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uncorrelated, i.e., we want to test

0 :  [
0] = 2 (2)

We assume furthermore that the elements of  are uniformly bounded in ab-

solute value, that −1 0 → , where  is finite and positive definite. Addi-

tionally, let  be some ×  matrix whose row and column sums are bounded

in absolute value, then −1 0 →  , where  is finite. Now lete = ( 0)−1 0 denote the ordinary least squares (OLS) estimator, then it

is readily seen that under 0 we have 
12(e − )

→ (0 2−1).
Also in the following we denote with 1 = (1) and 2 = (2) two

 ×  nonstochastic spatial-weights matrices. Each spatial-weights matrix has

diagonal elements that are zero and has row and column sums of the absolute

elements that are uniformly bounded by some finite constant.

2.2 Test Statistics

Now consider the case where the researcher believes that 1 provides a proper

representation of potential links for spatial interdependencies between the . In

this case, the researcher could test 0 using the standard Moran  test statistic:

 =
e0 ee2 [ (( 0 + ) )]

12
(3)

based on  = 1, and where e =  − e denotes the OLS residuals ande2 = −1e0e is the corresponding estimator for 2. Under the above assump-
tions it follows from Kelejian and Prucha (2001) that 

→ (0 1), and thus

2
→ 2(1).7 Burridge (1980) established that 2 is identical to the Lagrange

Multiplier test statistic for testing  = 0 if the disturbance process is assumed

to be a first-order spatial-autoregressive or spatial-moving-average process, i.e.,

 = +  or  = + , based on a Gaussian likelihood.

Cliff and Ord (1981) introduced the following finite-sample standardized

version of the Moran  test statistic:

 =
e0 ee2 − 


12



(4)

with

 =
−

−
( ) (5)

 =
2

(−)(− + 2)
{ [ +

0]}

− 22

(−)2(− + 2)
[ ( )]

2

7We note that this result was obtained without assuming that the disturbances are normally

distributed.
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and where  = ( 0)−1 0 and  =  − . We note that  and 
represent the mean and variance of e0 ee2 under normality. Still, the 
test statistic remains well defined even if the disturbances are not normally

distributed, and the statistic was found to perform well also for non-normal

distributions.

Next consider the case where the researcher is not sure whether 1, 2 or

both properly model the spatial interdependencies between the . In this case

the researcher could test 0 using the 
2() test statistic with  = 2:

2(2) =

∙ e01ee2e02ee2
¸0
Φ−1

∙ e01ee2e02ee2
¸
 (6)

where Φ = () and for   = 1 2:

 =
1

2
 [( + 0

)( + 0
)] ,   = 1 2 (7)

Under the above assumptions, it follows from Prucha (2011) that 2(2)
→ 2(2)

under 0. That paper also establishes that 
2
(2) is identical to the Lagrange

Multiplier test statistic for testing 1 = 2 = 0 if the disturbance process is

assumed to be a second-order spatial-autoregressive or spatial-moving-average

process, i.e.,  = 11 + 22 +  or  =  + 11 + 22, based on a

Gaussian likelihood.

Towards developing a finite-sample standardized version of the Moran  test

statistic we prove the following theorem in the appendix.

Theorem 1 Suppose the assumptions given in Section 2.1 above hold, suppose

furthermore that 0 is true and that additionally  ∼ (0 2). Then for

  = 1 2

 = (e0ee2) = −
−

 () (8)

 = (e0ee2 e0ee2)
=

2

(−)(− + 2)
{ [ +

0
]}

− 22

(−)2(− + 2)
[ ()] [ ()] 

Of course, defining Φ = (), this implies that for  ∼ (0 2) we

have

Φ
−12


∙ e01ee2 − 1e02ee2 − 2

¸
∼ (0 2)

In analogy to the finite-sample standardized version of the Moran  test statistic,

we now introduce the following finite-sample standardized test statistic:

2(2) =

∙ e01ee2 − 1e02ee2 − 2

¸0
Φ−1

∙ e01ee2 − 1e02ee2 − 2

¸
 (9)

5



In the appendix we prove the following theorem.

Theorem 2 Suppose the assumptions of Theorem 1 hold, and that lim→∞ −1Φ
is finite and nonsingular, then

2(2)− 2(2)
→ 0

The above theorem establishes that under the assumptions of Theorem 1 the

test statistics 2(2) and 
2
(2) are asymptotically equivalent, and consequently

2(2)
→ 2(2). The theorem was given for the case  = 2. However, the setup

and theorem readily extends to the case where the researcher considers  ≥ 2
spatial-weights matrices 1     in that the expressions for  and 
continue to hold for   = 1     .

Remark: Of course (1) implies that  and  have the same variance-covariance

(VC) matrix. Thus testing the hypothesis 0: 0 = 2 is equivalent to

testing for the absence of spatial correlation in , i.e., testing the hypothesis

0 :  () = 2. If  = 0, then  =  and we can use the Moran  and

2(2) test statistics with b =  to test 0 :  () = 2. If  only contains

an intercept, i.e.,  =  with  = [1     1]0, then (1) simplifies to

 =  + 

and b =  − , where  denotes the sample mean of the . Of course, in this

case  = −10 and  =  − −10.

3 Monte Carlo Model

We now describe the Monte Carlo design employed for our explorations of the

finite-sample properties of tests for spatial autocorrelation based on the , ,

2(2), and 
2
(2) test statistics, as well as for a UR test. We generated the data

for our Monte Carlo study from model (1) with = [1 2] and correspondingly

 = (1 2)
0, i.e., the Monte Carlo study is based on the model

 = 11 + 22 +  (10)

The disturbances are assumed to be generated by a second-order spatial-autoregressive

process of the form

 = 11+ 22+  (11)

The Monte Carlo design is an adaptation and extension of the design used in

Arraiz et al. (2010). The two ×1 regressors 1 and 2 are normalized versions
of income per-capita and the proportion of housing units which are rentals in

1980, in 760 counties in US mid-western states. These data were taken from

Kelejian and Robinson (1995). We normalized the 760 observations on these

6



variables by subtracting from each observation the corresponding sample aver-

age, and then dividing that result by the sample standard deviation. The first 

values of these normalized variables were used in our Monte Carlo experiments

for sample sizes  less than 760. The same set of observations on these variables

were used in all Monte Carlo repetitions.

Our spatial-weights matrices correspond to different patterns of locations in

space. In particular, in addition to considering situations where all units are

located on an equally spaced grid, we also consider situations where units which

are located in the northeast portion of that space are closer to each other,

and have more neighbors than the units corresponding to other quadrants of

that space. Abstractly, the design is motivated by the states located in the

northeastern portion of the US, as compared to western and southern states. To

define these various patters of locations underlying our Monte Carlo experiments

consider a square grid with both the  and  coordinates only taking on the

values 1 15 2 25  ̄. Let the units in the northeast quadrant of the grid

be at the indicated discrete coordinates:  + 1 ≤  ≤ ̄ and  + 1 ≤  ≤ ̄

with 0 ≤  ≤ ̄. Let the remaining units be located only at integer values of

the coordinates:  = 1 2  and  = 1 2 . The next figure illustrates

the implied location patters for  = 2 and ̄ = 4.

Figure 1: Example of a North-East Modified-Rook Matrix:  = 2 and  = 4

40 ∗ ∗ ∗ ∗ ∗
35 ∗ ∗ ∗
30 ∗ ∗ ∗ ∗ ∗
25

20 ∗ ∗ ∗ ∗
15

10 ∗ ∗ ∗ ∗
10 15 20 25 30 35 40

We note that for a given ̄, the number of units located in the northeast

quadrant is inversely related to . The case where all units are located on an

equally spaced grid with a minimum distance of one corresponds to  = . We

consider the following location patterns:

Table Location Patterns
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Location Pattern  ̄ Sample Size  Percent of Units in NE

1 2 7 105 77

2 5 15 486 74

3 6 9 97 26

4 14 20 485 25

5 10 10 100 0

6 22 22 484 0

On the space described above we define distance in terms of the Euclidean

distance. That is for any two units, 1 and 2, which have coordinates (1 1)

and (2 2), respectively, we define the distance between them as

(1 2) =
h
(1 − 2)

2 + (1 − 2)
2
i12

.

We now use this distance measure to define different spatial-weights matrices.

We note that all spatial-weights matrices employed in the Monte Carlo experi-

ments have been normalized by their spectral radius; see Kelejian and Prucha

(2010) for a further discussion of this normalization.8 For simplicity of pre-

sentation we will ignore the normalization in the subsequent definitions of the

spatial-weights matrices.

In conjunction with location patterns 1-4 we consider two spatial-weights

matrices. We will refer to those matrices, respectively, as an inverse-distance

matrix and a generalized-contiguity matrix, and denote them as and , re-

spectively. More specifically, the elements of are defined as  = 1( )
2,

i.e., the weights are assumed to decline proportionally to the square distance.

The elements of the  matrix are defined as

 =

½
1 if 0  ( ) ≤ 1
0 else



In the Monte Carlo experiments corresponding to location patterns 1-4 we take

1 = and 2 = .

In conjunction with location patterns 5-6 we consider a further set of two

spatial-weights matrices. We will refer to those matrices as a bishop and a rook

matrix, and denote them with  and , respectively. The elements of the

 matrix are defined as

 =

½
1 if ( ) =

√
2

0 else


the elements of the  matrix are defined as

 =

½
1 if ( ) = 1

0 else


8Let  be some × matrix, and let 1      denote the eigenvalues of . The spectral

radius of  is defined as max=1 ||.
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In Monte Carlo experiments corresponding to location patterns 5-6 we take

1 = and 2 =.

The scalar spatial autoregressive parameters 1 and 2 are taken to be

−9−5− 2 0 2 5 9. To ensure that the data generating process is well de-
fined we checked that −11−22 is nonsingular for all considered parame-

ter constellations.9 The values for the regression parameters are 1 = 2 = 1.

The elements of  = [1     ]
0 are generated as i.i.d. (0 2), where we take

w.o.l.o.g. 2 = 1.

Each Monte Carlo experiment is based on 10,000 repetitions.

4 Monte Carlo Results

The results of the Monte Carlo experiments are reported in tables 1—6. Each

table corresponds to one of the 6 location patterns described above. As an

overview, in columns 1—2 of each table we specify the values of 1 and 2. In

columns 3—8 we report on the rejection rates of the 6 considered tests, which

are described in more detail below. The last column reports on a measure of

the correlation induced by that data-generating process.

In more detail, the first and second test statistics we report are the Moran

 test statistic  and its finite-sample standardized version  based on 1,

where the test statistics are defined in (3) and (4), respectively. The third test

we report is the following UR test:

Step 1 Compute the Moran  test statistic  based on 1. Reject 0 if the

test statistic exceeds the critical value. Otherwise perform step 2.

Step 2 Compute the Moran  test statistic  based on 2. Reject 0 if the

test statistic exceeds the critical value. Otherwise accept 1.

The fourth reported test applies the same logic as the third test, but using

 instead of . (Recall that for UR tests the order in which the individual

tests are performed does not matter.) The fifth and sixth tests are the 2(2)

test statistic and its finite-sample standardized version 2(2) based on1 and

2, where the test statistics are defined in (6) and (9).

In all cases, the critical values used in performing the tests were such that

the asymptotic nominal size of the test was 05 under the null hypothesis of zero

spatial correlation. For the UR tests, each of the Moran  tests was performed

with an a priori asymptotic nominal size of 005.

To provide some insight into the extent of correlation generated by the differ-

ent parameter constellations and weight matrices we also compute a correlation

measure. From (11) we have  = [ − 11 − 22]
−1

 and thus the variance-

covariance matrix of the  is given by

Σ = () = [ − 11 − 22]
−1
[ − 1

0
1 − 2

0
2]
−1

 (12)

9We note that the computation of the 2() and 2() does not involve the estimation of

1 and 2, and hence for this study we have not been concerned with defining a contiguous

parameter space for which  − 11 − 22 is non-singular.
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Let = () denote the corresponding correlation matrix, then  =  []
12
.

Our correlation measure, denoted in the tables with “Corr. Measure” is the av-

erage of the largest 5 absolute correlations above the main diagonal.

We next discuss some of the major findings of the Monte Carlo study dis-

cernible from tables 1-6. We start with a discussion of the results as they pertain

to the size (or the significance levels) of the respective tests. By definition the

size of the tests is the rejection rate under the null hypothesis of zero spatial

correlation, and thus the lines in the tables corresponding to 1 = 2 = 0 report

on the actual size of the tests. Ideally we would like to see the actual size of

the tests to be close to the asymptotic nominal size of 005. An inspection of

the tables shows that for both Moran  and both 2(2) tests the actual size is

indeed close to the nominal size. This is in contrast to the UR tests, which

exhibit in part quite serious size distortions, leading us to over-reject 0. In

particular for the experiments reported in tables 5-6 the actual size is typically

larger than 009.

We next discuss the results as they pertain to the power of the tests under

the alternative 1 : 1 6= 0 and/or 2 6= 0. Given that the UR tests were found
to be not correctly sized we focus our discussion on the Moran  and 2(2) tests.

Overall the power of the tests is seen to increase with the sample size, although

for some experiments, especially with |1| and |2| small, the increase is slow.
Furthermore, for the most part, the tables show that the statistics are consistent

with power going to 1 as the amount of spatial correlation increases.

We emphasize that the amount of correlation generated by the spatial au-

toregressive model (11) is complex, as is evident from the expression for Σ on

the r.h.s. of (12). Given the complexity and nonlinearity of the expression one

would not necessarily expect for the correlation to uniformly increase in |1| and
|2|. Indeed this seems confirmed by an inspection of the correlation measure
we report in our tables. In fact, it seems that combinations of negative 1 and

positive 2 can lead to relatively small values for our correlation measure, which

in turn then seems to be reflected in the power of the tests for those parameter

constellations.

We now consider the case where 2 = 0 and 1 6= 0 in more detail. In this
case we expect the Moran  tests, which are based on 1, to outperform the

2(2) tests given that by design the former incorporate the information that

2 = 0, while the latter do not. Indeed, we see some relative loss in power

from the 2(2) tests, but the results suggest that the loss is mostly modest.

For example, consider the results for location pattern 5 with sample size 100

reported in table 5 : For 1 = 02 the power of the Moran  and 2(2) test is

029 and 026, respectively. For 1 = 05 the power is 94 and 90, respectively,

and for 1 = 9 the power is 1 and 1, respectively. As the sample size increases

the power of the Moran  and 2(2) tests shifts toward one, which makes any

relative loss in power less consequential.

We next consider the case where 2 6= 0. In this case we expect the 2(2)

tests to outperform the Moran  tests in that the the 2(2) tests incorporate

information about2. Indeed, an inspection of the tables shows that the results
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are in essence consistent with this conjecture. Importantly, we note that for

certain parameter constellations and weight matrices the improvement in power

can be quite dramatic. For example, consider again results for location pattern

5 with sample size 100 reported in table 5 : When 1 = −5 and 2 = −9
the power increases from 38 to 99, and when 1 = 0 and 2 = 05 the power

increases from about 031 to about 88.

Recall that the Moran  test is a special case of a 2() test with  = 1.

In looking at the results when 1 = 0 and 2 6= 0 we can thus also obtain

some limited insights into the performance of 2() tests for situations where

the weight matrices are misspecified. (Note that our Moran  test is based on

1, while the data are in this case generated from  = 22+. ) The results

suggest that for the weight matrices considered the power still increases to one,

although there is loss of power relative to the 2(2) test which incorporates 2.

An inspection of the tables suggest furthermore that the finite-sample stan-

dardized tests perform somewhat better than the non-standardized counter-

parts.

5 Concluding Remarks

This paper offers two main contributions: The first contribution is the intro-

duction of a standardized version of the 2() test which modifies each of the

quadratic forms such that under the null hypothesis they are standardized (0 1)

in the case where the variables under consideration are normally distributed.

The second contribution is a Monte Carlo investigation of the finite-sample

performance of the 2() tests. The Monte Carlo study also reports on the

finite-sample performance of Moran  as well as UR tests. Overall, the results

suggest that the 2() tests perform well. The penalty for using more weight

matrices than needed seems modest. Thus, unless the researcher is very sure

which weights matrix is the relevant one, it may be prudent to apply a more

robust 2() test, which combines several weights matrices while preserving the

proper size, rather than the original Moran  test. We note that the 2() test

has the interpretation of being a Lagrange Multiplier test if the underlying data

generating process is a spatial AR(q) or MA(q) process.
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A Appendix

The following lemma is due to Pitman (1937) and Koopmans (1942); cp. Cliff

and Ord (1981), p. 43:

Lemma A.1 : Suppose 1      are distributed i.i.d. (0 1), then any scale

free function of them, (1     ) is distributed independently of

X
=1

2 .

Proof of Theorem 1: For  = 1 2 define

 = ee2 = e0ee2 = 
e0ee0e = 

(e)0(e)
(e)0(e) (A.1)

and observe that e =()

with

 =  − ,  = ( 0)−1 0

and where  ∼ (0 ). Hence in deriving the moment of  we can proceed

w.o.l.o.g. under the assumption that  ∼ (0 ).

Recall that is idempotent with rank −. Hence there exist an orthog-
onal matrix  such that


0 =

∙
− 0

0 0

¸
 (A.2)

Consider the partition

 =

∙
1
2

¸
where 1 is − ×  and 2 is  × . Observe that because of orthogonality

0 = 0 = . Thus∙
− 0

0 

¸
=

∙
1

0
1 1

0
2

2
0
1 2

0
2

¸
and, in particular, 1

0
1 = − and 2

0
1 = 0. Observe furthermore that in

light of (A.2) we have  = 011. Now define

 = e =  =

∙
1
2

¸
where

1 = 1 = 1
0
11 = 1 ∼ (0 −)

2 = 2 = 2
0
11 = 0.
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Next define

 =

∙
11 12

21 22

¸
= 0

then

 = 
e0ee0e = 

e00
0ee00e = 

01111
011



Since  is scale free,  and 011 are independent in light of Lemma A.1.
Thus since for   = 0 1







¡
011

¢+
= +

£
01111

¤ £
01111

¤
we have

 (



)

h¡
011

¢+i
= +

©£
01111

¤ £
01111

¤ª
which in turn implies that

 (



) = +


£
(e0e) (e0e)¤

h
(e0e)+i  (A.3)

Next observe that

 (e0e) =  [0]

= 
£
2



¤
=  [] = −

 (e0e) =  [0]

=  [] = 
£
2



¤
=  []

=  ()−  ()

= − () since () = 0

Hence

 = 
³ee2´ =  () = 

 (e0e)
 (e0e) = − ()

−
=
−

−
 () 

(A.4)

Next observe that e0e = 0 = 0 with

 = (12) [(
0
 +)]

Hence, utilizing the expressions for the variance and co-variances of quadratic

forms given, e.g., in Lemma A.1 in Kelejian and Prucha (2010) we have

 [(e0e) (e0e)] =  [(0) (
0)]

= (0 
0) + [(

0)] [(
0)]

= 2() + ()()
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where

() =
1

4
 [(

0
 +)(

0
 +)]

=
1

4
 [(

0
 +)(

0
 +)]

=
1

4
 [

0


0
 +

0
 +

0
 +]

=
1

2
 [ +

0
] 

() =
1

2
 [(

0
 +)] =

1

2
 [(

0
 +)] =  []

= −()

Further


h
(e0e)2i = 

h
(0)

2
i
= (0) + [(

0)]
2

= 2() + [()]
2

= [()] [2 + ()]

= (−)(− + 2)

and thus


¡
2
¢
= 2


h
(e0e)2i


h
(e0e)2i

=
2

(−)(− + 2)

n
 [ +

0
] + [ ()]

2
o


 () = 2
 [(e0e) (e0e)]


h
(e0e)2i

=
2

(−)(− + 2)
{ [ +

0
] + [ ()] [ ()]} 

From this it follows furthermore that

 = 
³ee2 ee2´ =  ()− ()() (A.5)

=
2

(−)(− + 2)
{ [ +

0
]}

− 22

(−)2(− + 2)
[ ()] [ ()] 

which completes the proof of the theorem. ¥
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Proof of Theorem 2: Observe that for   = 1 2

 () = 
£
(−1 0)−1−1 0

¤→ (−1)

() = 
£
(−1 0)−1−1 0

¤→ (−1)

() = 
£
(−1 0)−1−1 0(

−1 0)−1−1 0
¤

→ (−1
−1
)

where  = lim−1 0, and  = lim−1 0 for  = , .

Since −1 and  are finite by assumption it follows that

 () = (1)

 [] =  [( − )( − )]

=  []− ()− () + ()

=  [] +(1)

 [
0
] =  [

0
] +(1)

Hence by (A.4)

−12
hfe2 − (ee2)i = −12 ee2 + (1)

recalling that  = (ee2) = −
−  (), and by (A.5)

−1 = −1
³ee2 ee2´ = −1 [( + 0

)] + (1)

Recalling further that  =
1
2
 [( + 0

)( + 0
)] =  [( + 0

)]

we see that

−1Φ − −1Φ = (1) and
£
−1Φ

¤−1 − £−1Φ¤−1 = (1)

Observing furthermore that −12 e e2 = (1) it follows from the above that

2() =
he e2 − e e2i0 Φ−1 he e2 − e e2i0

= −12
he e2 − e e2i0 £−1Φ¤−1 −12 he e2 − e e2i

=
h
−12 e e2 + (1)

i0 n£
−1Φ

¤−1
+ (1)

oh
−12 e e2 + (1)

i
=

h
−12 e e2i0 £−1Φ¤−1 −12 e e2] + (1)

= 2() + (1)

It now follows from Theorem 1 that under 0 we have 
2
()

→ 2(2). ¥
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Table 1: Power and Size of Tests: Location Pattern 1,  = 105, 1 = ,

2 = , %NE= 77
1 2 Rejection Rate of Tests Corr.

 Test  Test Uniform Rej  Uniform Rej  2(2) Test 2(2) Test Measure

Tests based Tests based Tests based Tests based

on 1 only on 1 and 2 on 2 and 1 1 and 2

-.9 -.9 .844 .8461 .9789 .9785 .8926 .895 .2293

-.9 -.5 .5996 .6023 .8145 .8133 .5388 .5454 .194

-.9 -.2 .3923 .3947 .5237 .5242 .2697 .2768 .1653

-.9 0 .2495 .2504 .3197 .3199 .1867 .1909 .1445

-.9 .2 .164 .1652 .1907 .1916 .1805 .184 .1216

-.9 .5 .0677 .0694 .0898 .0952 .2296 .2347 .091

-.9 .9 .1178 .1312 .3679 .3913 .5326 .5418 .1452

-.5 -.9 .6329 .6356 .9282 .9279 .7844 .7856 .1941

-.5 -.5 .3275 .3296 .6096 .6084 .3512 .3561 .1447

-.5 -.2 .152 .1536 .2709 .2699 .1315 .1351 .1105

-.5 0 .0793 .0808 .1267 .1273 .0791 .0813 .0847

-.5 .2 .0418 .0431 .0625 .0649 .0838 .0858 .0561

-.5 .5 .0776 .0871 .1635 .1774 .2091 .2174 .0735

-.5 .9 .549 .5709 .7656 .78 .7503 .762 .1979

-.2 -.9 .4254 .4285 .8609 .8599 .6804 .6825 .1833

-.2 -.5 .1575 .16 .4344 .4332 .2451 .248 .1056

-.2 -.2 .0548 .0556 .1339 .1338 .0644 .0661 .0661

-.2 0 .0281 .0298 .0536 .0558 .0418 .0439 .0357

-.2 .2 .0558 .0615 .0853 .0943 .0807 .0878 .0284

-.2 .5 .3015 .3207 .4246 .4475 .3781 .3965 .1018

-.2 .9 .9073 .9153 .9635 .9667 .9489 .9535 .3686

0 -.9 .2977 .3013 .7929 .7917 .6104 .6114 .1765

0 -.5 .0845 .0856 .3199 .3194 .182 .1839 .0946

0 -.2 .028 .0302 .0818 .0834 .0481 .0496 .0373

0 0 .0408 .0465 .0614 .0687 .0516 .0559 0

0 .2 .1526 .1658 .196 .2111 .1566 .1695 .0449

0 .5 .5738 .5926 .6747 .6918 .6003 .6172 .1655

0 .9 .9915 .9921 .9963 .9965 .9949 .9953 .7828

.2 -.9 .1915 .1933 .7045 .7033 .5451 .5466 .1693

.2 -.5 .0377 .0383 .2195 .2183 .1384 .1396 .0869

.2 -.2 .0354 .0392 .0725 .0759 .0537 .0579 .0284

.2 0 .1168 .1292 .1427 .1556 .1052 .1161 .0419

.2 .2 .3587 .3799 .4151 .435 .3363 .3556 .1069

.2 .5 .8369 .848 .8833 .8914 .8389 .848 .3255

.2 .9 .9994 .9994 .9995 .9995 .9991 .9991 .8191

.5 -.9 .0806 .0819 .5423 .5402 .4364 .4384 .1573

.5 -.5 .0263 .0298 .1192 .122 .1069 .1106 .073

.5 -.2 .16 .1745 .1808 .1951 .1479 .1613 .0622

.5 0 .4326 .4517 .4611 .48 .3799 .402 .1403

.5 .2 .7773 .7919 .8084 .8208 .7451 .7593 .3016

.5 .5 .9995 .9995 .9996 .9996 .9993 .9993 .9992

.5 .9 .9997 .9997 .9997 .9997 .9997 .9997 .9014

.9 -.9 .0284 .0301 .3079 .3073 .3335 .338 .1377

.9 -.5 .2072 .2204 .2331 .2473 .2465 .2606 .0807

.9 -.2 .6834 .6989 .6949 .7095 .6419 .6579 .2763

.9 0 .9416 .9455 .9481 .9508 .9288 .9323 .7452

.9 .2 .985 .9863 .9885 .9893 .982 .9834 .7655

.9 .5 .9999 .9999 1 1 .9999 .9999 .9862

.9 .9 1 1 1 1 1 1 .9678
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Table 2: Power and Size of Tests: Location Pattern 2,  = 486, 1 = ,

2 = , %NE= 74
1 2 Rejection Rate of Tests Corr.

 Test  Test Uniform Rej  Uniform Rej  2(2) Test 2(2) Test Measure

Tests based Tests based Tests based Tests based

on 1 only on 1 and 2 on 2 and 1 1 and 2

-.9 -.9 1 1 1 1 1 1 .1932

-.9 -.5 .9999 .9999 1 1 .9996 .9996 .1571

-.9 -.2 .9747 .9738 .9882 .9873 .9451 .9434 .1271

-.9 0 .8343 .8309 .8614 .8581 .7022 .7006 .1049

-.9 .2 .4833 .4784 .4942 .4891 .4573 .4567 .0805

-.9 .5 .0682 .0687 .2291 .2376 .6049 .6053 .0634

-.9 .9 .6886 .7063 .992 .9926 .9964 .9965 .1414

-.5 -.9 1 1 1 1 1 1 .1736

-.5 -.5 .9862 .9857 .9985 .9985 .9928 .9928 .121

-.5 -.2 .7487 .7442 .8573 .8543 .6717 .6682 .0867

-.5 0 .3517 .3469 .4101 .4049 .245 .2428 .0609

-.5 .2 .073 .0723 .0962 .0963 .1544 .1548 .0324

-.5 .5 .2868 .3054 .6663 .6788 .6968 .7024 .0732

-.5 .9 .994 .9944 .9999 .9999 .9999 .9999 .2133

-.2 -.9 .9995 .9994 1 1 1 1 .1662

-.2 -.5 .9053 .9023 .9884 .9876 .9528 .9518 .0926

-.2 -.2 .3611 .3573 .5587 .5525 .3511 .3471 .0546

-.2 0 .0802 .0792 .1194 .1178 .0686 .0683 .0253

-.2 .2 .0898 .0978 .1817 .195 .1649 .1706 .0283

-.2 .5 .8139 .8264 .9507 .9542 .9253 .9303 .1007

-.2 .9 1 1 1 1 1 1 .3454

0 -.9 .9975 .9975 1 1 .9999 .9999 .1614

0 -.5 .7412 .7349 .9551 .9537 .8856 .8832 .0869

0 -.2 .1507 .1473 .3246 .3193 .1956 .1937 .0344

0 0 .0431 .0478 .0695 .073 .0467 .0495 0

0 .2 .3318 .3515 .4654 .4814 .3613 .3747 .0407

0 .5 .9737 .9756 .9949 .9956 .9893 .9899 .1433

0 .9 1 1 1 1 1 1 .6315

.2 -.9 .9868 .9859 1 1 .9998 .9998 .1563

.2 -.5 .482 .4765 .8725 .868 .7744 .771 .0815

.2 -.2 .0518 .0519 .1516 .1493 .1119 .1125 .0282

.2 0 .1738 .1883 .2036 .2179 .1481 .1598 .0284

.2 .2 .7101 .7268 .7928 .8044 .6983 .7127 .0806

.2 .5 .9986 .9988 .9999 .9999 .9995 .9995 .2336

.2 .9 1 1 1 1 1 1 .995

.5 -.9 .8953 .8928 .9993 .9992 .9981 .9981 .1482

.5 -.5 .1438 .1411 .6192 .6126 .591 .5888 .0723

.5 -.2 .1569 .1707 .1823 .1953 .2043 .2175 .0319

.5 0 .6959 .7116 .7215 .7358 .6324 .6493 .0857

.5 .2 .9822 .9834 .9885 .9895 .9767 .9787 .1816

.5 .5 1 1 1 1 1 1 .9969

.5 .9 1 1 1 1 1 1 .9849

.9 -.9 .4436 .4364 .9844 .9837 .986 .9857 .1358

.9 -.5 .1349 .143 .2919 .2977 .5339 .5446 .0592

.9 -.2 .8545 .863 .8578 .8662 .8354 .8454 .134

.9 0 .9974 .9977 .9979 .9982 .996 .9965 .452

.9 .2 1 1 1 1 1 1 .5403

.9 .5 1 1 1 1 1 1 .9988

.9 .9 1 1 1 1 1 1 .9117
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Table 3: Power and Size of Tests: Location Pattern 3,  = 97, 1 = ,

2 = , %NE= 26
1 2 Rejection Rate of Tests Corr.

 Test  Test Uniform Rej  Uniform Rej  2(2) Test 2(2) Test Measure

Tests based Tests based Tests based Tests based

on 1 only on 1 and 2 on 2 and 1 1 and 2

-.9 -.9 .7872 .7788 .9675 .9665 .9049 .9033 .2889

-.9 -.5 .4914 .4797 .746 .7416 .5366 .5347 .2511

-.9 -.2 .2871 .2766 .4394 .4316 .2521 .248 .2226

-.9 0 .1867 .1801 .262 .255 .1617 .1584 .2023

-.9 .2 .1154 .112 .1401 .1367 .1285 .1285 .1806

-.9 .5 .0595 .0569 .0887 .0895 .1831 .1856 .158

-.9 .9 .0907 .0926 .3084 .3233 .417 .43 .1819

-.5 -.9 .5672 .5549 .9183 .9163 .8099 .8088 .2456

-.5 -.5 .2563 .2491 .5697 .5645 .3653 .3635 .1838

-.5 -.2 .1182 .1135 .2474 .2425 .1305 .1296 .1473

-.5 0 .064 .0607 .1155 .1123 .0736 .0734 .1199

-.5 .2 .0386 .0373 .0606 .0596 .0715 .0729 .0895

-.5 .5 .0673 .0699 .1408 .1481 .1562 .1639 .0864

-.5 .9 .3518 .3581 .6046 .6195 .5714 .5871 .225

-.2 -.9 .3916 .3791 .8565 .8538 .7263 .7256 .2295

-.2 -.5 .1335 .1269 .4176 .4128 .2638 .2624 .1302

-.2 -.2 .046 .0436 .138 .1355 .0752 .0749 .0859

-.2 0 .0318 .0318 .0659 .0659 .0419 .0425 .0513

-.2 .2 .0514 .0526 .0791 .0833 .068 .0712 .0325

-.2 .5 .2222 .226 .3318 .343 .2733 .2829 .1212

-.2 .9 .7312 .7361 .8637 .8711 .8202 .8299 .481

0 -.9 .2847 .2748 .8049 .8024 .6675 .6668 .2188

0 -.5 .0774 .0736 .331 .3272 .2162 .2171 .1156

0 -.2 .029 .0282 .0962 .0946 .0625 .0634 .0454

0 0 .0455 .0463 .0745 .076 .053 .0543 0

0 .2 .1301 .1337 .1709 .1776 .1267 .1315 .0568

0 .5 .4465 .4526 .5476 .5582 .4761 .4866 .2268

0 .9 .9283 .9301 .9685 .9703 .9544 .9568 .891

.2 -.9 .1895 .1802 .7303 .7273 .6037 .6038 .2077

.2 -.5 .0405 .0385 .2472 .2439 .1714 .1721 .1041

.2 -.2 .0427 .0433 .0858 .0868 .0662 .0675 .0323

.2 0 .1171 .1208 .1422 .1473 .1107 .1132 .0638

.2 .2 .2848 .2885 .3339 .3402 .2658 .2728 .1579

.2 .5 .6819 .687 .7558 .7639 .6911 .6993 .4786

.2 .9 .9577 .959 .9825 .9833 .9737 .9751 .8903

.5 -.9 .0834 .0792 .6024 .5996 .5083 .5087 .1894

.5 -.5 .0382 .0392 .1664 .1652 .1455 .1473 .0842

.5 -.2 .1685 .1718 .1921 .1959 .169 .1719 .1072

.5 0 .3812 .3862 .4085 .4147 .3495 .3547 .2308

.5 .2 .6643 .6676 .697 .7018 .6398 .6455 .4749

.5 .5 .9969 .9969 .9978 .9979 .9968 .997 .9998

.5 .9 .956 .9576 .9859 .9867 .9745 .9764 .6875

.9 -.9 .0379 .0372 .4172 .4131 .4188 .4215 .1616

.9 -.5 .2263 .2307 .2735 .2773 .289 .2912 .1561

.9 -.2 .6176 .6221 .629 .6344 .5924 .5964 .465

.9 0 .8933 .895 .9008 .9032 .8791 .8811 .8869

.9 .2 .9363 .9374 .9466 .9479 .9271 .9289 .8934

.9 .5 .9185 .9211 .9494 .9519 .9197 .9228 .6292

.9 .9 .9985 .9985 .9995 .9996 .9991 .9993 .9794
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Table 4: Power and Size of Tests: Location Pattern 4,  = 485, 1 = ,

2 = , %NE= 25
1 2 Rejection Rate of Tests Corr.

 Test  Test Uniform Rej  Uniform Rej  2(2) Test 2(2) Test Measure

Tests based Tests based Tests based Tests based

on 1 only on 1 and 2 on 2 and 1 1 and 2

-.9 -.9 1 1 1 1 1 1 .2165

-.9 -.5 .9882 .9879 .9984 .9983 .9895 .9892 .1811

-.9 -.2 .8368 .8356 .9101 .9084 .7641 .7638 .1521

-.9 0 .5597 .5581 .6216 .6185 .4208 .4227 .1309

-.9 .2 .2632 .2623 .2776 .2766 .2681 .2704 .1076

-.9 .5 .0479 .0499 .2055 .2153 .455 .4573 .0751

-.9 .9 .3665 .3885 .9448 .9477 .9615 .9623 .1415

-.5 -.9 .9992 .9992 1 1 1 1 .186

-.5 -.5 .9047 .9047 .9837 .9831 .9475 .9468 .1363

-.5 -.2 .4841 .4832 .6638 .6613 .4504 .4503 .1022

-.5 0 .1953 .1949 .2596 .2581 .1458 .1464 .0765

-.5 .2 .0494 .0498 .0779 .0797 .1114 .1136 .048

-.5 .5 .1628 .1781 .5159 .5299 .5295 .5369 .0726

-.5 .9 .8862 .8944 .9967 .9973 .9948 .9954 .2

-.2 -.9 .9926 .9926 1 1 .9994 .9994 .1763

-.2 -.5 .7101 .709 .9371 .9353 .8519 .8503 .1008

-.2 -.2 .2134 .2126 .4098 .4062 .2402 .2402 .062

-.2 0 .0505 .0515 .0902 .0897 .0543 .055 .0321

-.2 .2 .072 .0802 .1474 .1561 .1242 .1285 .0281

-.2 .5 .5567 .5778 .8105 .8204 .7469 .7564 .1004

-.2 .9 .9947 .9952 1 1 .9999 .9999 .354

0 -.9 .9727 .9722 1 1 .9992 .9991 .1702

0 -.5 .5059 .5046 .8742 .8722 .7526 .7516 .0914

0 -.2 .0973 .0973 .2528 .2503 .1485 .1499 .0361

0 0 .0446 .0497 .0741 .0795 .0496 .0535 0

0 .2 .2169 .2353 .3255 .3417 .2381 .2503 .0431

0 .5 .8182 .8309 .9378 .9419 .9013 .9061 .156

0 .9 .9997 .9997 1 1 1 1 .7369

.2 -.9 .9182 .9175 .9996 .9995 .9978 .9978 .1637

.2 -.5 .3175 .3164 .7645 .7619 .6507 .6494 .0845

.2 -.2 .0473 .0497 .1556 .156 .1117 .114 .0281

.2 0 .1361 .147 .1668 .1776 .1186 .1284 .0371

.2 .2 .5068 .5265 .6054 .6196 .4893 .5062 .097

.2 .5 .965 .969 .9913 .9924 .9816 .983 .29

.2 .9 1 1 1 1 1 1 .8694

.5 -.9 .7477 .7471 .9953 .995 .989 .9889 .1531

.5 -.5 .1002 .1005 .5412 .5374 .4949 .4968 .0722

.5 -.2 .1511 .1623 .1856 .1961 .1863 .1978 .0516

.5 0 .528 .5462 .56 .5769 .4721 .4928 .1203

.5 .2 .8971 .9049 .9272 .9321 .8811 .8882 .2575

.5 .5 1 1 1 1 1 1 .9984

.5 .9 1 1 1 1 1 1 .9248

.9 -.9 .346 .3448 .9658 .9647 .9653 .9654 .1359

.9 -.5 .1549 .1632 .333 .3385 .4835 .4944 .0628

.9 -.2 .7341 .747 .7411 .7536 .714 .7291 .2259

.9 0 .9778 .9805 .981 .9832 .9687 .9712 .6718

.9 .2 .9981 .9984 .9992 .9994 .9977 .9981 .7048

.9 .5 1 1 1 1 1 1 .9613

.9 .9 1 1 1 1 1 1 .9268
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Table 5: Power and Size of Tests: Location Pattern 5,  = 100, 1 =,

2 =, %NE= 0
1 2 Rejection Rate of Tests Corr.

 Test  Test Uniform Rej  Uniform Rej  2(2) Test 2(2) Test Measure

Tests based Tests based Tests based Tests based

on 1 only on 1 and 2 on 2 and 1 1 and 2

-.9 -.9 1 1 1 1 1 1 .779

-.9 -.5 1 1 1 1 1 1 .8167

-.9 -.2 1 1 1 1 1 1 .8283

-.9 0 1 1 1 1 1 1 .8304

-.9 .2 1 1 1 1 1 1 .8283

-.9 .5 1 1 1 1 1 1 .8167

-.9 .9 1 1 1 1 1 1 .779

-.5 -.9 .3788 .382 .9995 .9994 .9992 .9993 .3767

-.5 -.5 .8382 .8397 .9564 .9562 .9495 .951 .2636

-.5 -.2 .9172 .9184 .9244 .9251 .8801 .8815 .3004

-.5 0 .9367 .9371 .9375 .938 .8837 .8867 .3069

-.5 .2 .924 .9256 .9309 .9338 .8905 .8952 .3004

-.5 .5 .8425 .844 .9571 .9637 .9535 .9586 .2636

-.5 .9 .3979 .4006 .9997 .9998 .9998 .9998 .3767

-.2 -.9 .6679 .6792 .9997 .9997 .9996 .9996 .4715

-.2 -.5 .1107 .1136 .8494 .8486 .7609 .763 .2341

-.2 -.2 .2325 .2355 .3582 .359 .2391 .2435 .0995

-.2 0 .2757 .2793 .2907 .2956 .1732 .1779 .1106

-.2 .2 .2392 .2408 .353 .3697 .2415 .2565 .0995

-.2 .5 .1145 .117 .8491 .865 .7662 .7867 .2341

-.2 .9 .6508 .6634 1 1 1 1 .4715

0 -.9 .9955 .9958 1 1 1 1 .7743

0 -.5 .3208 .3344 .9459 .945 .8935 .8933 .2914

0 -.2 .0614 .0666 .3108 .3094 .214 .2151 .106

0 0 .0481 .051 .0906 .096 .044 .0482 0

0 .2 .0611 .0663 .2913 .3149 .1992 .218 .106

0 .5 .3047 .3162 .935 .9427 .8781 .8911 .2914

0 .9 .9936 .9938 1 1 1 1 .7743

.2 -.9 1 1 1 1 1 1 .9794

.2 -.5 .8744 .8814 .9941 .9944 .99 .9898 .4397

.2 -.2 .3915 .4055 .6106 .6157 .5532 .5568 .1515

.2 0 .272 .2876 .3251 .3411 .2463 .2605 .1106

.2 .2 .3692 .3853 .5797 .6027 .5292 .5529 .1515

.2 .5 .861 .8673 .9907 .9925 .9865 .9883 .4397

.2 .9 1 1 1 1 1 1 .9794

.5 -.9 1 1 1 1 1 1 .9999

.5 -.5 1 1 1 1 1 1 1

.5 -.2 .9711 .9732 .9811 .9824 .9742 .9747 .3867

.5 0 .9335 .9401 .9392 .9457 .9017 .9085 .3069

.5 .2 .9688 .9723 .9792 .982 .9707 .9754 .3867

.5 .5 1 1 1 1 1 1 1

.5 .9 1 1 1 1 1 1 .9999

.9 -.9 1 1 1 1 1 1 .9595

.9 -.5 1 1 1 1 1 1 .9541

.9 -.2 1 1 1 1 1 1 .975

.9 0 1 1 1 1 1 1 .8304

.9 .2 1 1 1 1 1 1 .975

.9 .5 1 1 1 1 1 1 .9541

.9 .9 1 1 1 1 1 1 .9595
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Table 6: Power and Size of Tests: Location Pattern 6,  = 484, 1 =,

2 =, %NE= 0
1 2 Rejection Rate of Tests Corr.

 Test  Test Uniform Rej  Uniform Rej  2(2) Test 2(2) Test Measure

Tests based Tests based Tests based Tests based

on 1 only on 1 and 2 on 2 and 1 1 and 2

-.9 -.9 1 1 1 1 1 1 .679

-.9 -.5 1 1 1 1 1 1 .7193

-.9 -.2 1 1 1 1 1 1 .7317

-.9 0 1 1 1 1 1 1 .734

-.9 .2 1 1 1 1 1 1 .7317

-.9 .5 1 1 1 1 1 1 .7193

-.9 .9 1 1 1 1 1 1 .679

-.5 -.9 .8414 .8407 1 1 1 1 .3688

-.5 -.5 1 1 1 1 1 1 .2405

-.5 -.2 1 1 1 1 1 1 .2769

-.5 0 1 1 1 1 1 1 .2833

-.5 .2 1 1 1 1 1 1 .2769

-.5 .5 .9999 .9999 1 1 1 1 .2405

-.5 .9 .8458 .8443 1 1 1 1 .3688

-.2 -.9 .9966 .9968 1 1 1 1 .4564

-.2 -.5 .188 .1863 1 1 1 1 .2281

-.2 -.2 .7668 .7646 .9545 .9538 .9488 .9469 .0929

-.2 0 .8567 .855 .8607 .859 .7653 .7636 .1035

-.2 .2 .773 .771 .9506 .9525 .9416 .9425 .0929

-.2 .5 .201 .1992 1 1 1 1 .2281

-.2 .9 .9958 .9958 1 1 1 1 .4564

0 -.9 1 1 1 1 1 1 .7167

0 -.5 .8364 .8403 1 1 1 1 .2801

0 -.2 .0864 .0885 .8766 .8747 .7921 .7887 .1025

0 0 .0504 .0514 .0939 .0952 .0474 .0476 0

0 .2 .0806 .0837 .863 .8693 .7763 .7853 .1025

0 .5 .8232 .8266 1 1 1 1 .2801

0 .9 1 1 1 1 1 1 .7167

.2 -.9 1 1 1 1 1 1 .9933

.2 -.5 1 1 1 1 1 1 .4088

.2 -.2 .9508 .9531 .9943 .9944 .9931 .9931 .143

.2 0 .8574 .8608 .8692 .8722 .7939 .7998 .1035

.2 .2 .9439 .9457 .9934 .9936 .9915 .9921 .143

.2 .5 1 1 1 1 1 1 .4088

.2 .9 1 1 1 1 1 1 .9933

.5 -.9 1 1 1 1 1 1 .9948

.5 -.5 1 1 1 1 1 1 1

.5 -.2 1 1 1 1 1 1 .3483

.5 0 1 1 1 1 1 1 .2833

.5 .2 1 1 1 1 1 1 .3483

.5 .5 1 1 1 1 1 1 1

.5 .9 1 1 1 1 1 1 .9948

.9 -.9 1 1 1 1 1 1 .9741

.9 -.5 1 1 1 1 1 1 .973

.9 -.2 1 1 1 1 1 1 1

.9 0 1 1 1 1 1 1 .734

.9 .2 1 1 1 1 1 1 1

.9 .5 1 1 1 1 1 1 .973

.9 .9 1 1 1 1 1 1 .9741
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