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Abstract

The paper introduces robust generalized Moran Z tests for network-generated cross-
sectional dependence in a panel data setting where unit-specific effects can be random
or fixed. Network dependence may originate from endogenous variables, exogenous
variables, and/or disturbances, and the network dependence is allowed to vary over
time. The formulation of the test statistics also aims at accommodating situations
where the researcher is unsure about the exact nature of the network. Unit-specific
effects are eliminated using the Helmert transformation, which is well known to yield
time-orthogonality for linear forms of transformed disturbances. Given the specifica-
tion of our test statistics, these orthogonality properties also extend to the quadratic
forms that underlie our test statistics. This greatly simplifies the expressions for the
asymptotic variances of our test statistics and their estimation. Monte Carlo simu-
lations suggest that the generalized Moran Z tests introduced in this paper have the
proper size and can provide substantial improvement in robustness when the researcher

faces uncertainty about the specification of the network topology.
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1 Introduction

The paper introduces new tests for network-generated cross-sectional dependence in a panel
data setting, where unit-specific effects can be random or fixed. The test statistics are
geared to allow for time-varying network dependence. This is important since in many
applications the network structure can change over time. An example in a macro setting
would be a growth model with spillovers among countries or regions related to, e.g., the
relative size of trade, which changes over time. An example in a micro setting would be
a situation where there are potential spillovers among friends, but friendships change over
time.

Tests for network-generated cross-sectional dependence generally assume knowledge of
the nature of the underlying network. However, in applied work, researchers are often
unsure about the exact nature of the network that generates spillovers. For example, for
a growth model as mentioned above, spillovers may be related to trade, but could also
be related to geographic proximity, language resemblance, similarity in industrial sector
composition, etc. Or in the friendship network example mentioned above, spillovers can
arise from various factors, including similarities in upbringing, educational background,
income, and more. Therefore another important feature of our new tests is that they are
robust, in the sense that they accommodate situations where the researcher is uncertain
about the exact nature of the underlying network. The new tests are not sequential and
properly sized.

Our test statistics involve both linear forms and quadratic forms. Towards formulating
our test statistic, unit-specific effects are eliminated using the Helmert transformation.
The Helmert transformation is well known to yield time-orthogonality for linear forms of
transformed disturbances. Upon our adopting appropriate specifications of the quadratic

forms that underlie our test statistics, these orthogonality properties are seen to also extend



to the quadratic forms. Thus an important advantage of our choice of transformation is
that it greatly simplifies the expressions for the asymptotic variances of our test statistics
and their estimation.

The foundational principles of the proposed tests draw inspiration from a test intro-
duced by Moran (1950) for spatial correlation of a single variable within a simple cross-
sectional setting, and its subsequent generalization to a test for cross-sectional correlation
in the disturbances of a linear regression model.! Burridge (1980) showed that the Moran
T test can be interpreted as a Lagrange Multiplier (LM) test if the disturbance process
under the alternative hypothesis is either a spatial autoregressive or spatial moving average
process of order one. King (1980; 1981) demonstrated that the Moran Z test is a locally
best invariant test, when the alternative is one-sided, and the errors come from an elliptical
distribution. A more detailed discussion of the optimality properties of the Moran 7 test
can be found in Hillier and Martellosio (2018), including a discussion of conditions under
which the Moran 7 test is a uniformly most powerful invariant test. We note that, while
designed for a general setting, our test statistics also have interpretations as LM tests for
specific alternatives. Kelejian and Prucha (2001) introduced a central limit theorem for
spatial and social networks and established that the Moran Z test statistic is asymptot-
ically distributed N(0,1). In line with this result, we establish that our test statistics,
which contain the squared Moran Z test statistic as a special case, are asymptotically x?
distributed.

In situations where a researcher is uncertain about the network structure, they could
apply multiple Moran Z tests corresponding to different potential network specifications,
using, e.g., Bonferroni-Holm adjustments of the individual Moran 7 tests. However, within

the context of cross-sectional data Liu and Prucha (2018) report on Monte Carlo sim-

'See Durbin and Watson (1950; 1951) for a corresponding test in a time series setting.



ulations that show that such an approach can lead to sizable distortions of the desired
overall significance level. Within their setting Liu and Prucha (2018) proposed to over-
come this problem by combining, loosely speaking, several Moran 7 test statistics into a
single test statistic. The resulting test statistics then have the structure of a quadratic
form in linear forms and quadratic forms; see also Robinson’s (2008) test for correlation
in the disturbances where the statistics are defined as quadratic forms of quadratic forms
(within the context of regression models where all regressors are exogenous). The test sta-
tistics introduced in this paper for panel data built on work by Liu and Prucha (2018) for
cross-sectional data. Monte Carlo simulations suggest that the generalized Moran 7 tests
introduced in this paper have the proper size and can provide substantial improvement in
robustness when the researcher faces uncertainty about the specification of the network
topology.

Our tests are applicable to detect potential cross-sectional dependence from both spatial
and social networks, where the network dependence may originate from the dependent
variable, exogenous variables, and/or disturbances. That is, using the terminology coined
in Manski (1993) for social networks, network dependence may stem from endogenous
peer effects, contextual effects, and/or correlated effects. We formulate different tests for
different potential sources of network effects. The tests should have wide applicability. In
particular, suppose an empirical researcher reports on estimation results obtained under
the assumption of the absence of network effects, based on their a priori beliefs, in one or
all of the channels mentioned above. We then envision the proposed tests as useful and
robust tools for checking this assumption, similar to the use of other tests a researcher may
report on in support of other assumptions underlying the empirical research. Furthermore,
some past empirical research may have overlooked network effects. The proposed tests

can also be used to check the validity of studies that do not account for network effects.



For example, Kelly (2019) analyzes 27 persistence studies published in leading economic
journals and suggests the use of Moran 7 test in a procedure that guards against spurious
regressions due to spatial dependence. Our tests can be particularly advantageous in this
situation, as researchers are often unsure about the exact form of the spatial weight matrix
that characterizes potential network spillovers to implement the Moran Z test. As is well
known, in general pre-testing may affect the actual distribution of post-model-selection
estimators, and consequently we caution against the use of our tests as pre-tests, except in
situations where the researcher has access to an independent sample for that purpose.?

There is increasing interest in the analysis of networks.®> The need to account for
potential network dependencies was recognized early in the regional science, urban eco-
nomics, and geography literature. An important class of network models was introduced
by Cliff and Ord (1973; 1981). The original focus of the authors was on spatial networks.
However, since the formulation of those models only depends on a measure of distance
and not on geographic location, those models can also be applied to other networks. In
particular, those models can be applied to classical social networks, where information on
the distance between units is collected in an adjacency matrix, recognizing that formally
an adjacency-type matrix can be seen as a special case of a spatial weight matrix em-
ployed in the formulation of Cliff-Ord network models. For recent contributions to the
social network literature see, e.g., Bramoullé, Djebbari and Fortin (2009), Lee, Liu and Lin
(2010), Blume, Brock, Durlauf and Jayaraman (2015), de Paula (2017) and Kuersteiner
and Prucha (2020).

?See, in particular, Leeb and Potscher (2003) and the subsequent related literature. In light of the
pretesting problem, it seems prudent to allow for general forms of network effects in empirical research, and
only impose their absence (or partial absence) if considered unlikely, accompanied by a test (such as the
test proposed in this paper) for their absence.

3E.g., Kolaczyk (2009) remarked that “... during the decade surrounding the turn of the 21st century
network-centric analysis ... has reached new levels of prevalence and sophistication.” Applications range
widely from physical and mathematical sciences to social sciences and humanities.

*We note that Cliff-Ord network models also cover simple group-average models as special cases; see,



Early contributions to the literature on testing for network dependence in panel data
include Baltagi, Song and Koh (2003), Baltagi, Song, Jung and Koh (2007), Baltagi and
Liu (2008), Baltagi, Song and Kwon (2009), and He and Lin (2015), who considered LM
tests for spatial error correlation and/or spatial lag dependence for random effects models.
Baltagi and Yang (2013) provided standardized LM tests for spatial error correlation in
both random effects and fixed effects panel data models.

For spatial dependence in fixed effects panel data models, Debarsy and Ertur (2010)
derived LM test statistics and their likelihood ratio (LR) counterparts. Tagpinar, Dogan
and Bera (2017) derived GMM gradient tests based on the GMM approach in Lee and
Yu (2014), focusing on spatial lag dependence in the endogenous variables only. Yang
(2021) proposed adjusted quasi score (AQS) tests based on his M-estimation method in
Yang (2018). We note that, in contrast to our paper, none of the above papers (except
for Tagpmar et al., 2017) considers higher-order spatial/network lags and none considers
time-varying network dependence. Additionally, different from our paper, all of the above
papers postulate very specific model structures under the alternative.

Our asymptotic results are derived under the assumption that the cross-sectional di-
mension n tends to infinity, while the time dimension T is fixed. For cases where T' also
tends to infinity, Pesaran (2004) developed a cross-section dependence (CD) test, exploiting
the additional information from the time dimension. Pesaran, Ullah and Yamagata (2008)
proposed a bias-adjusted LM test based on finite sample approximation in the context
of a heterogeneous panel data model. Baltagi, Feng and Kao (2012) suggested a simple
bias-corrected LM test based on the asymptotic bias of the scaled version of the LM test
in the context of a fixed effects homogeneous panel data model. Baltagi, Kao and Peng

(2016) further extended Baltagi et al. (2012) to allow for unknown forms of serial corre-

e.g., Lee (2007), Davezies, D’Haultfoeuille and Fougere (2009), and Carrell, Sacerdote and West (2013).



lation. Bera, Dogan, Tagpimar and Leiluo (2019) developed adjusted LM tests for spatial
lag dependence in the dependent variable in a maximum likelihood (ML) framework, as-
suming the absence of spatial lag dependence in the disturbances. In addition to requiring
T — oo, none of the above papers (except for Bera et al., 2019) considers time-varying
network dependence.

The paper is organized as follows: In Section 2, we define our new test statistics regard-
ing different types of network-generated dependence in a general panel data setting and
establish the limiting distribution of the proposed test statistics. In Section 3, we show
the connection of the proposed test statistics with LM test statistics. In Section 4, we
discuss the implementation of the tests with endogenous weight matrices. In Section 5, we
report on Monte Carlo simulation results regarding the small sample properties of our test
statistics. Concluding remarks are given in Section 6. All technical details are relegated
to the appendices and a supplementary online appendix. In the online appendix we also
report on additional Monte Carlo simulations.

For a square matrix A = (a;5), let A = (A+ A")/2, let vecp(A) denote the column
vector of the diagonal elements of A, and let A~ denote the Moore Penrose generalized
inverse. In abuse of conventional notation we also write A C B, if the columns of A are a
subset of the columns of B. Next let A be an n x n matrix with sup, 2?21 la;j| < oo and
supy, Y iy laij| < oo, then we say, abusing language slightly, that the row and column sums
of the matrix are uniformly bounded in absolute value. For n x m matrices By,--- , Br,
the corresponding Helmert transformed matrices are defined as B;r = Zle w4 B, for
t=1,.---,T—1, where my; are the weights of the Helmert transformation, given in Section

2.2.



2 Test Statistics for Network Dependence in Panel Data

In the following, we define our new test statistics regarding different types of network-
generated dependence (or spillovers) within a panel data setting. We differentiate between
testing for network dependence in the disturbances and in the dependent variable. Of
course, network dependence in the disturbances will generally lead to network dependence
in the dependent variable. However, even in the absence of spillovers in the disturbances,
network dependence in the dependent variable may also arise from spillovers in the endoge-
nous variable and/or exogenous variables. We refer to these tests as the Z2 and I; tests
respectively. These tests are related in spirit to tests introduced in Liu and Prucha (2018)

for a single cross-sectional dataset.

2.1 Motivation and Intuition

Suppose a set of panel data for n individuals and T" periods is generated by the following

linear panel data model (t =1,...,7)
Yt = Zio + us, (1)

where y; = (Y1t,---,Ynt)’ is an n x 1 vector of observations on the dependent variable,
Zy = [zit ;) is an n x Kz matrix of observations on Kz endogenous and/or nonstochastic
exogenous regressors, where we collect the latter in an n x Kx matrix X;, and where
up = (Ut - .-, upe) is an n x 1 vector of regression disturbances.

To accommodate network effects, we allow for all variables to depend on the sample size
n, i.e, to form triangular arrays, though we suppress the index n on respective variables for

simplicity of notation. Consequently, as a simple example, the above specification allows



for the data to be generated as

Yit = Y;:01,0 + Titd2,0 + Tit03,0 + Ui,

with y;; = Z?:l wijyje and Ty = Z?:l wi; % jt, where x;; denotes an exogenous regressor
and w; ¢ is a weight with w;; ¢ = 0. The weight w;; ; is typically thought to be determined by
a measure of geographical, economic, or social proximity between units ¢ and j, contingent
upon the context.” The weighted averages 7;;, and T;; are the conduits for network spillovers.
In the spatial literature, weighted averages of the above form would typically be called
spatial lags. For social interaction models, adopting the terminology of Manski (1993),
those averages would be said to represent the endogenous peer effect and the contextual

effect respectively. A simple example of a disturbance process with spillovers would be

Ui = Polit + M; + Eit,

with w;; = Z?Zl wijtuj, where p; denotes unit specific fixed effects and €;; an idiosyncratic
disturbance term. In the social interaction literature, the weighted average w; would
typically be said to represent the correlated effect.

In the following discussion, the weighted averages are expressed more compactly as
U= Uiy Tmt) = Wer, Tt = (Tag, - -, Tne) = Weay, and @y = (Ui, .- ., Une) = Wiy,
where W; = [wj;;] denotes the n x n weight matrix with zero diagonal elements.

As remarked in the Introduction, the foundational principles of the proposed tests
draw inspiration from a test introduced by Moran (1950) for cross-sectional data. This

test, and its generalization to test for cross-sectional dependence in the disturbances of a

>For example, in the social interaction literature, the weights are often chosen as w;j; = 1/n;¢ if j is a
“friend” of ¢ and zero otherwise, where n;; denotes the number of friends of i in period ¢. Let Z; denote
the index set of friends of ¢, then y,, = nz_,l Zjel'i yje and Ty = nz_tl Ejezi x;¢ represent arithmetic peer
averages of the endogenous and exogenous variables, respectively.

10



linear regression model, is typically referred to as the Moran Z test. The Moran Z test
statistic in essence assumes knowledge of the network structure, represented by the weight
matrix W;. The Moran 7 test statistics is then formed as an appropriately normalized
quadratic form of the disturbances u;, with W; in the middle of the quadratic form. Since
the diagonal elements of W; are zero, the expected value of the test statistic is zero if
the disturbances are cross-sectionally uncorrelated and generally nonzero otherwise. A
problem is that the power of the test will depend on whether or not the weight matrix W;
properly represents the network structure. Consequently, our generalized test statistic is
geared towards accommodating situations where the researcher is unsure about the network
structure. For example, as discussed in the Introduction, in a growth model spillovers
between countries or regions may be associated with different measures of proximity. Our
test statistics accommodate different potential network structures by combining quadratic
forms that correspond to different weight matrices. They contain the (squared) Moran Z
test statistic as a special case.

Since our panel data model allows for fixed effects, we first eliminate the fixed effects by
transforming the data using the Helmert transformation. Our test statistics are then formed
in terms of the Helmert-transformed variables. By using the Helmert transformation and
showing that this transformation leads to the orthogonality of both linear and quadratic
forms, we are able to obtain relatively simple expressions for the variance-covariance (VC)
matrix of linear and quadratic forms, which in turn simplifies the expressions for our test

statistics.

2.2 Model and Helmert Transformation

As discussed above, in general, the model in (1) allows for both endogenous and exogenous

regressors in Z;, as well as for spillovers in the form of network lags. Thus Z; could
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be composed of (a subset of) the columns of [Wyy,, Xy, Wi Xy, Y2, Wi Y,°], where X; is a
matrix of exogenous variables and Y,° is a matrix of “outside” endogenous variables. More
generally, Z; could also contain network lags corresponding to different weight matrices.

Under the assumption that there is no network-generated correlation in the disturbance

process we maintain that, for t =1,..., T,
U = U+ € (2)
where = (pq,...,1,)" is the vector of unit-specific effects and €; = (€1¢,...,€,¢) is the

vector of idiosyncratic disturbances.

We do not maintain any specific assumptions regarding the unit-specific effects, which
can be fixed or random, and eliminate them by transforming the observations. In general,
let 7 = (mp, -+, mr) be the tth row of a (T'— 1) x T transformation matrix IT with
Zzzl ¢ = 0, then the individual effects can be eliminated by a transformation of the

form
T T
+ _ _ _ +
u = g TirlUy = E Tir€r = € .
=1 =1

The transformations satisfying the above condition include the one-period forward-differencing,
the differencing from the sample average, and the Helmert transformation. In particular,

the Helmert transformation was introduced to the panel data literature by Arellano and

Bover (1995), and corresponds to mys = 0 for s < ¢, my = /(T —t)/(T —t+ 1), and

ms = =/ (T —t)/(T —t+1)/(T —t) for s > t.° In the following, we adopt the conven-
tion that II = [m4;] refers specifically to the Helmert transformation matrix and Helmert
transformed variables are denoted with a superscript “+”.

The Helmert transformation is a forward-differencing transformation, which is ortho-

6 A generalization of the Helmert transformation to accommodate time-varying individual effects was
introduced in Kuersteiner and Prucha (2020).

12



normal in that m7, = 1 and mnl, = 0 for ¢ # s. As a consequence, the transformed
disturbances u;", and linear functions of u;", are uncorrelated over time. Our test statistics
involve quadratic forms of the transformed disturbances. Existing results on variances and
covariances of quadratic forms given in, e.g., Kelejian and Prucha (2010) and Kuersteiner
and Prucha (2020), imply that the orthogonality property of the Helmert transformation
also extends to quadratic forms, provided that the diagonal elements of the weight ma-
trices of the quadratic forms are zero. In more detail, let A and B be non-stochastic
symmetric zero-diagonal n x n matrices. Then, by Lemma A.1 in Appendix A, in gen-
eral Cov(u;" Au,ul'BuX) # 0 for t # s, where u,* represents the disturbances obtained
from a transformation that is not orthogonal. In contrast, for the Helmert transformation,
Cov(u)” Auf , uf’' Bu}) = QJ%tr(AB)(Zzzl TirTsr)? = 0 as Zle sy = 0 for t # 5. As
our test statistics are based on linear and quadratic forms of the transformed disturbances,
using the Helmert transformation greatly simplifies the expression of the test statistic.

Apply the Helmert transformation to (1) and (2) yields, for t =1,...,T — 1,
y =700 +u, and ul =€ (3)

Let H; denote an instrumental variable (IV) matrix.” With a little abuse of notation, define
yt =yt ), 2 =2 2 ) and HT = [H{,--- ,H}' |]'. Then o can be
estimated by the 2SLS estimator 6 = (ZT/Z 1)1 Z 'y with Z+ = HY(HYH)*H' Z*+,
and 02 can be estimated by 52 = [n(T — 1)]"' S a4 = [n(T — 1)]"'atat with

.+ +75 P S o 11
o =y —Z6and ut = [u] R T

"We defer the discussion on possible choices for H; to the following subsections.
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2.3 The Z?2(q) Test Statistic

Suppose the researcher wants to test for network-generated correlation in the model dis-
turbances, where the underlying structure of the network at period ¢ is represented by an
n x n zero-diagonal weight matrix W; = [w;;¢|. More specifically, the researcher wants to
test the null hypothesis that the VC matrix of u; is proportional to the identity matrix,
i.e.,

HY : VC(ug|p) = 021, fort=1,---,T, (4)

against the alternative that the disturbances are cross-sectionally correlated.® Since the
Helmert transformation is an orthogonal transformation, we have VC(u;") = 02I,, under
the null hypothesis, which implies E(u;”W;tu,") = odtr(W}) = 0 with W} = 23:1 2 W,
On the other hand, in general, E(u;”Wu;") # 0 under the alternative hypothesis. This
basic idea, which is in line with that underlying the Moran Z test for cross-sectional data,

motivates the following test statistic for H:
T=0,"Vp, (5)

where 17@ = S tarwrath and nfllle is a consistent estimator for the limiting VC
matrix of n~1/ 217@. For simplicity of presentation, we refer to the above test statistic as
the Moran 7 test statistic, while noting that it would be more appropriate to refer to it as
a Moran Z-type test statistic.

We emphasize that the weights w;;; are generally considered to be reflective of some
measure of proximity between units, but do not depend on explicit indexing of units by

location. By extending the notion of proximity from geographical proximity to economic

8The weight matrix W; is taken to be non-stochastic and suppressed from any information set for
simplicity.

9The motivation to use W instead of other linear combinations of W1,--- , Wr to construct the test
statistics will be given in Section 3.
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proximity, technological proximity, social proximity, etc., the Moran 7 test statistic becomes
useful for testing for dependence not only within the context of spatial networks, but for a
much wider class of networks, including social networks.

One practical problem with the Moran 7 test statistic defined in (5) is that empirical
researchers are often unsure about the specification of W;. Thus it is of interest to con-
sider a generalized Moran 7 test for situations where the researcher is not sure whether
Wi, Wia, -+, or W4, or some linear combination of those matrices properly model the

network topology. Towards introducing such a generalization, let

atwirat tr(WiWy) - te(WiWy)
‘7@ = , and EI\’Q =254 , (6)
at'wrat (W) - te(WEWE)

where W) = diagtT:jl{Wt’fr} is a block diagonal matrix with the tth diagonal block being

Wi, = ST AW, forr=1,--- ¢ and let
\/I}Q = ‘/I\)Q + EQ, (7)

where </I\>Q is defined in (6) and f)Q is a ¢ X ¢ matrix with the (r,s)th element being
A2 W (Z+ — A A A VA Z\+)’W;ﬂ+. Under the regularity conditions of The-
orem 1 below, nil\fo is seen as a consistent estimator for the limiting VC matrix of
n~Y 217Q. Suppose \/I\/Q is nonsingular. Then the proposed generalized Moran 7 statistic for
Hy is defined as

Ta(a) = V55 Ve (8)

The above statistic generalizes the (squared) Moran Z test statistic. It may be viewed

as combining ¢ Moran 7 test statistics in a way that controls the significance level of the

15



overall test. As such it represents an attractive alternative to g sequential Moran Z tests.
For ¢ = 1, the Z2(q) test statistic reduces to the square of the Moran Z test statistic defined
in (5).

To formally establish the asymptotic properties of the proposed test statistic, we assume

the following conditions hold under the null hypothesis.

Assumption 1 The innovations €; are i.i.d. with mean zero, variance 0(2), and finite

(4 + k)th moments for some k >0, fori =1,--- ,nand t=1,--- ,T.

Assumption 2 The zero-diagonal weight matrices Wy, are non-stochastic with row and

column sums uniformly bounded in absolute value, forr =1,--- ,gandt=1,--- ,T.

Assumption 3 Let A = diagl_'{ A;}, where A, is non-stochastic and the row and column
sums of A; are uniformly bounded in absolute value, then n=1ZtAZ* = O,(1) and
n~tZY Aet = nTIE(Z 1 Aet) + 0,(1), where n IE(Z 1 AeT) = O(1). In particular,

the assumption holds for A = W;" and A = I, (p_y).

Assumption 4 The instrument matrix H; includes the exogenous regressors X;. The ele-

ments of H; are non-stochastic and uniformly bounded fort = 1,--- ,T. plim,,_, . . n tH™'Z*

is finite with full column rank and lim,_. n ' HT' H* is finite and nonsingular.

The assumptions are generally in line with the spatial econometrics literature. If, in
contrast to what is assumed in Assumption 2, the weight matrices Wy, are endogenous and
stochastic, then the test statistic could be constructed based on a non-stochastic analog of
Wy, 10

Assumption 3 is kept general, to allow for spatial lags of the dependent variable and

“outside” endogenous variables in the regressor matrix Z; under the null hypothesis. More

10Such an analog could be obtained from a projection of W, on the exogenous variables in the process
that generates W .. See Section 4 and the Monte Carlo study in the online appendix for further discussion.
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specifically, let X, represent the matrix of system-wide exogenous variables, where the
ith row of X, only contains exogenous characteristics of unit ¢. Under H{, the regres-
sor matrix Z; could be composed of (a subset of) the linearly independent columns of
Wiaye, - s Wegye, Xe, Wi Xy, -+ s Wi o Xy, Y2, WiaYP2, - W Y], where X; C X, and
Y, is a matrix of “outside” endogenous variables. Given that Assumption 3 is high level
we provide additional discussions of this assumption, including a discussion of sufficient
conditions, in the online appendix.

Assumption 4 is standard for the IV matrix H;. To discuss possible choices for IVs, we

adopt the notation that [Aj]Tzl = [A1,--+,Ap] for any set of conformable matrices
Aq,---, Ay, Given this notational convention, the IV matrix H; may be composed of the
linearly independent columns of X, [Wt,jgt];?:l, vy W Wy - - Wt7jRXt]?1,j2,m,jR:1’

for some fixed constant R. See Drukker, Egger and Prucha (2023) for a more in-depth
discussion of instrument selection for systems with spatial or social network structures, in-
cluding their Appendix F, which discusses scenarios where identification and instruments
would be weak. The following theorem gives the asymptotic distribution of the Z2(q) test

statistic under H'.

Theorem 1. If the null hypothesis H§ and Assumptions 1-4 hold, then n‘l\TlQ = n_I\IJQ—i—
010(1),11 where n_llllQ 18 non-stochastic and converges to the limiting VC matrix ofn_1/2‘7@

under Hy. Furthermore, provided that the smallest eigenvalues of nfllllQ are bounded away

from zero, T2(q) = Vé@él‘/}g 4 xX*(q)-

The above theorem is derived by showing that the elements of n~/ 2YA/Q are asymp-
totically equivalent to linear-quadratic forms, rather than just quadratic forms, in the
innovations €. The linear part, in general, stems from the presence of cross-sectionally

correlated endogenous regressors. To establish the limiting distribution of n~%/ QVQ, the

" Explicit expressions for Ug are given in the proof.
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proof applies the CLT for vectors of linear-quadratic forms given in Kelejian and Prucha
(2001; 2010). We note that the proof of the CLT in Kelejian and Prucha (2001; 2010) is
based on rewriting the linear-quadratic forms as a sum of martingale differences, checking
the conditions of the CLT for martingale differences in Hall and Heyde (1981) are satisfied,
and deriving simplified expressions for the limiting VC matrix.

In the spirit of the outer product gradient approach of Born and Breitung (2011), an al-
ternative approach to prove the above theorem would be to rewrite the elements n =/ 2‘7Q
as martingale differences, and then verify that, under the maintained assumptions, the
conditions of the CLT for martingale differences in Hall and Heyde (1981) are satisfied.
However, formally checking those conditions of the CLT for martingale differences is in-
volved, and the advantage of using the CLT in Kelejian and Prucha (2001; 2010) is that
those conditions have been verified under a set of easy-to-check basic conditions. The esti-
mator for the VC matrix used in normalizing n~/ 2‘7Q is based on the normalized limit of
the sample variance of the martingale differences. Alternatively one could use the sample
variance of the martingale differences as an estimator. However, the latter estimator does

not set terms, which can be seen to go to zero in probability, to zero.

2.4 The 77(q) Test Statistic

Now, suppose the researcher wants to test for a more general form of network-generated
dependence. Such dependence could come from the dependence of an individual’s depen-
dent variable on the dependent variable, exogenous variables, and/or disturbances of other
individuals in the network. More specifically, suppose the researcher wants to test the null

hypothesis (t =1,---,T)

H - VC(ye| Ze, ) = 01, and  E(w|Zi, ) = Zio + p, (9)

18



where the ith row of the regressor matrix Z; only contains exogenous and endogenous
characteristics specific to the ith individual.'> That is, the researcher wants to test that,
conditional on individual characteristics Z; and individual effects p, (i) the dependent
variable is uncorrelated across individuals, and (ii) the expected value of the dependent
variable of an individual only depends on the characteristics specific to that individual,
and thus is not affected by the characteristics of other individuals.

In line with our motivation of the Z2(q) test statistic, suppose again that the empirical
researcher is not sure whether the weight matrices Wy 1, Wi o, -, or Wy, or some linear
combination of those matrices properly model the network structure at period ¢. Let
Htm = Wi, Hy, for r = 1,---,q, where the IV matrix H; contains linearly independent
columns of the matrix of system-wide exogenous variables X,. Then clearly the following
linear and quadratic moment conditions E(P_Iﬁuf ) = 0 and E(u/'Wi,uf") =0, for r =
1,---,q, hold under the null hypothesis but may not generally hold under the alternative.
This motivates the following Ig (q) test statistic. With a little abuse of notation, define

Hf = (A, By, ) Let

1,r

. % . d;, 0
V= and ¢ = R )
Q 0 @

where ‘7'@ and E[SQ are defined in (6),

7+ 5+ 7+ 5! gt ... 7+ 1! . g+
H'a H' ML My, H, H' ML My, H,
V= : , and @ =35> : : ,
r7+/5+ 7+ A7 gt ... [7+/ A g/ O+
HFa Hf'ML My, H, H' M, My, H,

2 The linear dependence of E(y:| Z¢, ) on Z; is only maintained for ease of exposition, and the assumption
could be extended to allow for E(y¢|Z:, 1) to depend nonlinearly on Z;.
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with My, = L,p_1) — ZH(ZYZH)1Z+. The qKy x 1 vector Vi, collects the linear
moments, with Ky denoting the number of columns in Hy, and the g x 1 vector TA/Q collects
the quadratic moments. Under the regularity conditions of Theorem 2 below, n1d is
seen as a consistent estimator for the limiting VC matrix of n~1/ 2\/. Then the proposed
generalized Moran 7 statistic for H{ is defined as
T2 (q) = V'& V. (11)
To formally establish the asymptotic properties of the test statistic, we maintain similar
assumptions as Theorem 1, with the following modifications. First, for the Z2(q) test, Z;
may include spatial lags of endogenous variables such as W,y and W, Y°, where Y° is a
matrix of “outside” endogenous variables, and thus E(Z1 Ae™) may not be zero even if
tr(A) = 0. Hence, in Assumption 3, we only assume n 'E(Z*' AeT) = O(1). In contrast,
since the Ig(q) test is designed to detect the presence of network-generated dependence in
the dependent variable, spatial lags of endogenous variables are not allowed as regressors

under H{. We modify Assumption 3 accordingly as follows.
Assumption 3’ Assumption 3 holds. Furthermore, E(Z' Ae™) = 0 when tr(4) = 0.

Second, as Ig(q) also uses linear moment conditions, we expand Assumption 4 as fol-

lows.

Assumption 4’ Assumption 4 holds. Furthermore, plim,_, n~'H'Z* is finite with full

column rank and lim,, .., n 1 H," H," is finite and nonsingular, for r =1, | q.

The following theorem gives the asymptotic distribution of the Ig(q) test statistic under
HY.
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Theorem 2. If the null hypothesis H{ and Assumptions 1, 2, 3" and 4’ hold, then nld =
n~l® + 0][,(1),13 where n~1® is non-stochastic and converges to the limiting VC matric
of nY2V under H{. Furthermore, provided that the smallest eigenvalues of n~l® are

bounded away from zero, T2 (q) = VoY 4 (K +1)q).

A discussion analogous to that given after Theorem 1 also applies here. For reasons of
generality, the formulation of Theorem 2 does not assume an explicit form of the underlying
data-generating process of Z;. However, in Lemma A.4 we establish that the parts of

Assumptions 3’ and 4’ relating to Z; hold if
Zy =X, ' +Z+ E, (12)

where X, is a matrix of fully observable exogenous regressors, = is a matrix of individual
effects, and E; is a matrix of i.i.d. innovations with zero mean and finite (4 + x)th moments
for some x > 0, and if plim,, . ,n 'HTX'T and lim, ,oon 'H'X'T, forr = 1,--- ,q,
are finite with full column rank, with X* = [X{,--- X ]

We note that if Z; is generated by (12) one could additionally exploit the moment con-
dition E(uj’Wthe;ft) =0, with ejft denoting the jth column of E;", to improve the power
of the test (see Liu and Prucha, 2018). However, the advantage of the Z7(q) test statistic

as defined in (11) is that it is easy to compute, less demanding on data requirements, and

robust to potential misspecification in (12).

3 Equivalence Relationships with LM Test Statistics

In this subsection, we show that, for important specific alternatives, our Moran Z test

statistics are equivalent to LM test statistics, with proofs relegated to the online appendix.

3 Explicit expressions for ® are given in the proof.
1 Gee the proof of Lemma A.4 of Appendix A.
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In showing this equivalence we hope to provide additional justification for the selection of
the moments employed in forming our generalized Moran 7 test statistics and also for the
manner in which the moments are aggregated into a single statistic. More specifically, we
first specify an elongated vector of moments that interacts the transformed disturbances
with time leads and lags of the exogenous variables and weight matrices. Corresponding
to the elongated moment vectors, we then derive the GMM LM test statistics (Newey and
West, 1987) when the data are generated by a Cliff-Ord type model with higher-order
spatial lags under the alternative hypothesis. Implicit in the formulation of the GMM
LM test statistics is the construction of a shortened moment vector based on an optimal
weighting of the original moments. We then establish the equivalence of the generalized
Moran Z test statistics with the GMM LM test statistics. We also show that the proposed
test statistics are identical to the ML LM (Rao’s score) test statistics when the underlying
network structure is invariant over time, i.e., W, = Wy, forr =1,--- ;,gandt =1,--- ,T.

For the following discussion, we focus on the case where under the null hypothesis the

data are generated by
ye = XeBo +ur, and u = pu+ €, fort=1,---,T, (13)

where X; is an n X Kx matrix of observations on Kx exogenous variables. In this sim-
ple case, the IV matrix is identical to the regressor matrix (i.e., H; = X;) and X+ =
HY(HYHY)"'HYX* = XT. Consequently, the 2SLS estimator used to estimate (3)
degenerates to the OLS estimator 8 = (X X*+)~1X*+y* with the estimation residuals
u =y — X;FB Clearly f]Q = 0 under this setup, and thus the \TIQ defined in (7) becomes
®(. Furthermore, since H;" becomes X = DEEE

r=1,---,q, and M, becomes Mx = I — X (X X*)"1 X" the matrices Vi, and @,

. ,X;:LLT]/, where Xtﬂ« = WtJaXt for
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defined in (10) turn into

Kt XPMeXF - XMy X7
Vi = and EI\>L:32 . (14)

Xrat SHMyX{ o XFMX)

3.1 Equivalence of 72(q) and LM Test Statistics

Suppose under the alternative hypothesis the data are generated by

q
yr = Xefg +ur, and wup = ZPTOWt,rUt + 1+ €, fort=1,---,T. (15)

r=1

Clearly under this setup the null hypothesis H{ defined in (4) can be formulated equiva-
lently as Hy : py = 0, where py = (p10," " Pgo)"-
Let Ri(p) = I, — > !4 p,Wi, and R, = Ry(py). Applying the Cochrane-Orcutt trans-

formation and then the Helmert transformation to (15) yields
(Reye)™ = (ReXe) By +¢f,  fort=1..- T-1. (16)

Under the maintained assumptions, E(X’e) = 0 and E(¢)' W €¢)) = o2tr(Ws,) = 0 for
r=1---,¢q,s=1,---,T,and t = 1,--- ;T — 1, which suggests the following empirical

moment function

ge(0) = [ X1, , X, W€ (0), -+ Wrae/ (0), -+, Wigel (0),- -, Wrge/ (0))'e/ (6),
(17)
with € (0) = [Re(p)(ye — X:8)]" and 0 = (¢, ')’ Let g(0) = [91(0)',--- , gr-1(0)")', then
E[g(0o)] = 0. The corresponding GMM LM test statistic (Newey and West, 1987) for

23



H§ : pg = 0 is given by
GMM-LM,, = ¢' ()0 'G(GQ1G)1G'01¢(0), (18)

where G and Q are respectively G = —E[a%—(omgo] and Q = E[g(00)g(0y)’] evaluated at
the restricted estimators 6 = (O,B/)’ and 2. When E(¢|p) = 0 and E(u) = 0, the
following proposition shows that the GMM LM test statistic defined in (18) is identical to
the generalized Moran T test statistic Z2(q). The proofs of the propositions in this section

are given in the online appendix.
Proposition 1. Under the maintained assumptions, GMM-LM,, = Z2(q).

In the special case where the underlying network structure is invariant over time, i.e.,
Wip = Wi, for r = 1,--- ;g and t = 1,---,T, the Helmert transformed model (16)
becomes

Riy = RiX; By + ¢, fort=1,---,T -1 (19)

Under the assumption that € = [€}, -+ , 5] ~ N(0,03L,r), we have e™ = [e]”, -+ et ] ~

N(0, a%[n(T_l)), and the log-likelihood function of the Helmert transformed model (19) is

n(T —1)

InL(,0?) = — In(270?) + (T — 1) In|R1(p)| — = €7 (0) e (0),

1
202

where € (0) = [Ri(p)(y: — XtB)]" = Ri(p)(y;” — X, 8). The LM test statistic for HY :

5The explicit expressions for G and € are given in the proof of Proposition 1.
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po = 0 is given by!®

dlnL 9?InL 0%2lnL dlnL

7 7 2907 7
Oln L 92InL 9%InL dln L

2 —~ 2 2)2 2 —~
oo 9,52 0000 (002) 00,03 552 0o .52

The following proposition shows that the ML LM test statistic defined in (20) is identical

to the generalized Moran T test statistic Z2(q) with time invariant weight matrices.

Proposition 2. Suppose Wy, = Wy, forr = 1,---,q and t = 1,---,T. Under the

maintained assumptions, ML-LM,, = Z2(q).

3.2 Equivalence of Ig(q) and LM Test Statistics

Now, suppose under the alternative hypothesis the data are generated by

q q q
Y = Z ATOWt,ryt+XtBO+Z Wir Xeyrotue, and uy = Z proWerutpte, fort=1,--- T
r=1 r=1 r=1
(21)
Under this setup, the null hypothesis H{ defined in (9) can be formulated equivalently as
Hf :py=Xo=0and y;g =+ =7, =0, where A\g = (A10, -, Ag0)
Let S¢(A\) = I, — > 7y Ay Wi, and Sy = Si(X\o). Applying the Cochrane-Orcutt trans-

formation and then the Helmert transformation to (21) yields
q
(RtStyt)+ = (RtXt)+BO + Z(RtWt,rXt)+'7r0 + EZF, for t = 1, e ,T — 1. (22)

r=1

Under the maintained assumptions, E(X/e) = 0, E(X/W/,.¢) = 0 and E(e/' Wy, €¢) =

o?tr(Ws,) = 0 forr = 1,--- ,¢, s = 1,--- , T, and t = 1,---,T — 1, which implies the

16The explicit expression for the LM test statistic is given in the proof of Proposition 2.
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following empirical moment function
9t(9) = [H, Wiae (9), -+, Wraef (9), -+, Wige (9),- -, Wrgel (9)]'e/ (9)  (23)

with H = [Xq,- -+, Xp, Wi X, Wra Xy, WigXa, -, WrgXrl, 6 (9) = {Re(p) [Se(N)ye—
Xtﬂ_zg:1 Wt77’thY7‘]}+ and ¥ = ()‘/7 p/a '7/17 e 77:]7 B/)/- Let g<19) = [91(19)/7 e 79T—1(19>I]/7
then E[g(Jp)] = 0. The corresponding GMM LM test statistic (Newey and West, 1987) for

Hé/;po:)\Ozoand’ho:"':’Yq(]:(]isgivenby
GMM-LM,, = ¢'(0)Q'G(G'Q'G)~G'Q '¢(V), (24)

where G and € are respectively G = —E[agasg)hgo] and Q = E[g(¥9)g(Y)’] evaluated at

: ; 39 ray, ~2 17
the restricted estimators ¥ = (0,4 )" and ¢°.'" When E(e¢|p) = 0 and E(u) = 0, the
following proposition shows that the GMM LM test statistic defined in (24) is identical to

the generalized Moran 7 test statistic 15 (q)-
Proposition 3. Under the maintained assumptions, GMM-LM, = Ig(q).

In the special case where the underlying network structure is invariant over time, i.e.,

Wip = Wiy for r = 1,--- ;g and t = 1,---,T, the Helmert transformed model (22)

becomes
q
RiSiyf = RiX[B+> RiWi, X[y, +¢, fort=1,.- T—1L (25)
r=1
Under the assumption that € = [€}, -+ , €} ~ N(0,03L,r), we have e™ = [e]", -+ et ] ~

"The explicit expressions for G and € are given in the proof of Proposition 3.
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N(0,081,,(r—1y), and the log-likelihood function of the Helmert transformed model (25) is

T-1
ur-1 1n(2m2)+(:r—1)1nle(p)\+(T—1)1nysl(A)y—$ S (0t ),
t=1

where ¢ (9) = {Ri(p)[S1(Nyr — Xu8 — Yotoy Wi X, 3 = Ru(p)[S1(V)y; — X768 —

>4 Wi X y,]. The LM test statistic for Hf : pg = Ao = 0 and y;g = -+ = 7,9 = 0 is
given by!®
, -1
dlnL 9%2InL 9%InlL dlnL
7 7 3097 7
dln L 9?lnL  9%InL dlnL
2 ~ 2 2)2 2 —~
oo 9,52 0%00 (002) 90,02 552 oo 952

The following proposition shows that the ML LM test statistic defined in (26) is identical

to the generalized Moran 7 test statistic Ig(q) with time invariant weight matrices.

Proposition 4. Suppose Wy, = Wy, forr = 1,---,q and t = 1,---,T. Under the

maintained assumptions, ML-LM, = Iy2 (q).

4 Implementation with Endogenous Weight Matrices

In the following we provide a brief discussion on how to implement the generalized Moran
7 test when the weight matrix W; is endogenous in the sense that its elements may be
correlated with the error term u; of the main regression.!® Suppose the (i, j)th element of
Wy is generated by

wijt = fije(CosMe), (27)

18The explicit expression for the LM test statistic is given in the proof of Proposition 4.
Y9For notational simplicity, we focus on the case with a single endogenous weight matrix W;. The same
argument can be easily extended to the case with multiple endogenous weight matrices Wy 1,--- , Wi q.
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where (i) ¢, is a matrix of exogenous and/or endogenous characteristics, in the sense that
they may be correlated with the individual effects p, but not with the idiosyncratic dis-
turbances €, and (ii) 7, is a matrix of potentially endogenous characteristics in the sense
that they may also be correlated with the idiosyncratic disturbances ¢;.

In light of the above it proves useful to distinguish between two cases of endogeneity
of the weight matrix. First, consider the case where the elements of W; only depend
on ;. Since the fixed effects are eliminated by the Helmert transformation, the weight
matrix Wy becomes exogenous in the transformed model, and the generalized Moran 7
test based on W; still has the proper size. Second, consider the case where the elements
of Wy also depend on 7,. In this case we may attempt to implement the generalized
Moran Z test with the endogenous weight matrix W; replaced by (in the transformed
model) exogenous auxiliary weight matrices, which are obtained from a projection of wj;
onto observed elements of ¢, (and/or other exogenous variables). For example, suppose
wjj¢ is determined by a homophily link formation model where individuals with similar
characteristics are more likely to form a link, and where the formation process may also
depend on endogenous components. Then, we could construct auxiliary exogenous weight
matrices based on the similarity between individuals in observed exogenous characteristics
(e.g., whether two individuals are of the same gender, race, etc.). As the auxiliary weight
matrices are exogenous, the generalized Moran Z test based on the auxiliary weight matrices
has the proper size. We conduct Monte Carlo simulations to investigate the performance
of the generalized Moran 7 test when the weight matrices are endogenous in the online

appendix.
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5 Monte Carlo Study

In this section, we report on results from a Monte Carlo study of the finite sample properties
of the Z2(q) and Ig (q) test statistics. Additional Monte Carlo results are reported in an
online appendix.

For our Monte Carlo experiments we utilize two sets of weight matrices, W; 1 and W o,
fort =1,...,T. To generate those weight matrices we partition n individuals into equal-
sized groups with m individuals in each group. Let &, (for 7 = 1,2) be two independent
n x 1 vectors of random variables generated as &, = ¢,&;_1, + v, with the initial
condition &5, ~ N(0, (1 — #?)~'1,) and error term vy, ~ N(0,1,). Let i (for r=1,2)
be the standardized &;,. given by £, = (1 — qb%)l/zgr. Let Dy, (for r =1,2) beann xn
zero-diagonal matrix of indicator variables with the (7, j)th element being one if and only
if individuals ¢ and j are in the same group and ‘ﬁim — §jt7r‘ < ¢, where ;. denotes
the ith element of ;. and c a cutoff distance. For an exemplary interpretation, &, , may
be thought of as representing some exogenous characteristics of the individuals and the
elements of Dy, as reflecting network links based on homophily. For our simulations we
set ¢; = 0 and ¢y = 0.5 so that D;; is independent over time and D;2 has a moderate
correlation over time. We set the group size to m = 50 and the cutoff distance to ¢ = 0.2,
which generates somewhat sparse networks. The weight matrix Wy, (for r = 1,2) is then
obtained by row-sum normalizing D;, so that each non-zero row of Wy, sums to one.

The proposed Z?2(q) tests utilize quadratic moment conditions with weighting matrices
Wi, = Zle 72 W, », where the 7, denote the Helmert coefficients. In Section 5.1, we
investigate the performance of the proposed Z2(q) tests relative to alternative tests, which
do not use the Helmert weighting.

In Section 5.2, we report on the size, power, and the trade-offs in power of Z?(2) tests

based on both W; 1 and W; 3, relative to the IQ(l) tests based on only Wi 1 or Wy2. We
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find all tests to be properly sized. We also find that the Z2(2) test based on both W;; and
W2 offers a substantial degree of robustness as compared to the Z2(1) test.

In providing Monte Carlo results on the performance of the Z7(q) and Z7(q) tests we
consider a number of different generating processes for the n x 1 vectors of disturbances u;

and endogenous variables y;. For all simulations, wu; is generated as
up = pr Wiaug + poWiouy + 1+ €.

As covariates in the generating processes for y; we consider spatial lags of y;, exogenous
variables collected in a n x 2 matrix X;, and an outside endogenous variable 3? generated
as

y?:Xt(S‘i‘f‘i‘et

with 6 = (1,1)’. The elements of the n x 2 matrix X; are drawn independently as
Uniform[0, 3], the individual effects p and £ are drawn independently from N (0, I,,) and the
random innovations ¢; and e; are generated as dependent N (0, I,,) with cov(e, e;) = 0.51,,.
Each Monte Carlo experiment is based on 50,000 repetitions.

In addition to the simulation results presented below, in the online appendix, we also
report on the performance of the Z7(q) and Z7(q) test statistics when ¢ is large. In particu-
lar, we compare the performance of the proposed Z2(g) and Zg (q) tests with the Holm test
(Holm, 1979). We find that the Holm test tends to under-reject the null hypothesis. Not
surprisingly, the downward size distortion of the Holm test tends to be more severe when
q is large and the correlation between W;, and W, is high. In the online appendix we
also report on the performance of the Z2(q) and Ig (q) tests when the weight matrices are
endogenous. In line with our discussion in the Section 4, we consider two forms of endo-

geneity. The first case arises when the weight matrix W; is correlated with the individual
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effects p, but not with the idiosyncratic disturbances e;. The results confirm that in this
case we can still use the weight matrix W; in forming our test statistics. The second case
arises when the weight matrix W; is also correlated with the idiosyncratic disturbances
€;. In this latter case we see that the use of the actual weight matrices W, can result
in substantial size distortions. However, replacing the actual weight matrices with “ap-
proximated /projected” weight matrices, which only depend on exogenous variables, yields
properly sized tests. The power of those tests will, of course, be application specific and

depend on the quality of the approximations.

5.1 Performance of 7%(q) Tests Relative to Non-Helmert Weighted Tests

In Tables 1-4 below we report on the performance of the Z2(q) and I;(q) tests relative
to alternative tests, which do not use the Helmert weighting. For the Z2(q) test, y; is
generated as

yr = X4 B + g,

and, for the Ig(q) test, y; is generated as
yr = MWy + Wi oy + Xy 8+ Wi 1 Xyyg + Wi o Xyyg + g,

with 8 = (1,1)’. We consider a number of scenarios corresponding to different values
for the spatial lag parameters as detailed in the tables. As described in Section 2, the
proposed Z2(q) and ZZ(q) tests utilize the quadratic moments composing ‘7@, where 17@ is
defined by (6). Observe that those quadratic moments are based on W} = diagtT:j1 {Wt’fr},
where W, = Zle 72 W, is a weighted average of the spatial weight matrices for periods
t=1,...,T, using the squared Helmert coefficients as weights.

As a first alternative test we consider a test where W, is replaced by a simple time
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average of the spatial weight matrices, i.e., W, = T~! Zthl Wt,r. Clearly, this test can also
be viewed as being obtained by replacing the matrices W,* by Ir_; ® W, and replacing
tr(WXW2) by (T — 1)tr(W, W) in @Q defined in (6). In the following we refer to this
alternative test as the “time-average weighted” Z? test.

As a second alternative test we consider a test where W', is replaced by the first period
spatial weight matrix W1 ,, thus ignoring the time variation of the spatial weight matrices.
Clearly, this test can also be viewed as being obtained by replacing the matrices W' by
Ir—; ® Wi, and replacing tr(WXW#) by (T — 1)tr(VT/1,TW1,S) in @Q defined in (6). In
the following we refer to this alternative test as the “initial-period weighted” Z2 test. Of
course, in settings where the spatial weight matrices do not vary over time, the proposed

Z2(q) and Z7(q) tests and the alternative tests are all identical.
[Insert Tables 1-4 here]

Tables 1-4 show that the ZZ(q) and Z7(q) tests as defined in Section 2, and locally
labeled in those tables as “Helmert weighted” Z2(g) and Ig(q) tests for clarity, have the
correct size and strictly higher power than the other two alternative tests. Henceforth, we

focus our attention on the performance of the Z2(¢) and Z7(q) tests as defined previously

. T 2
with Wi = > mi, Wo .

5.2 Relative Performance of 7%(1) and Z?(2) Tests

In the following we report on the performance of the Z2(2) tests based on both W;; and
Wi 2, relative the the performance of the 7- 2(1) tests based on only W 1 or W o for different

scenarios.
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For the Z2(q) test we consider four different data generating processes for y;:

y = Xif+w, (28)
ye = By +w, (29)
ye = Wiy + XoB + w, (30)
ye = Wiy + XeS + Wi Xey + we. (31)

Under the null hypothesis H{ we have u; = pi+¢;. In the first scenario where y; is generated
by (28), all covariates are exogenous. We set 8 = (1,1)’, and report the simulation results
on the Z2(q) test for this scenario in Table 5. The second scenario, where y; is generated
by (29), allows for an “outside” endogenous covariate 3. We set f = 1 and use X; as
instruments for 3?. The corresponding simulation results are reported in Table 6. In the
last two scenarios, we allow for endogenous covariates in the form of spatial lags of y; under
the null. For (30), we set A = 0.5 and 8 = (1,1)’, and use W; 1 X; as instruments for Wy 1y;.
For (31), we set A =0.5 and 8 =~ = (1,1)’, and use WtQ,lXt as additional instruments for

Wi.1ys. The corresponding simulation results are reported in Tables 7 and 8 respectively.
[Insert Tables 5-8 here]

Overall, we find that the actual sizes of the Z2(q) tests are close to the asymptotic
nominal size of 0.05 and that the power increases as the magnitudes of the spatial autore-
gressive parameters (cross sectional correlation) increases. We also find that the Z2(2) tests
based on both W1 and W; > can offer a substantial degree of robustness as compared to
the Z2(1) tests. Consider the case where p; # 0 and p, = 0. In this scenario, Wy 1 correctly
models the network topology, whereas W; 2 does not. We expect the Z2(1) test based on
Wi 1 to outperform other tests. Indeed, compared to the Z2(1) test based on Wi, we find

a substantial power loss for the Z2(1) test based on the “wrong” weight matrix W; 2, while
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there is only a modest power loss for the 15(2) test based both W; 1 and W; 2. The results
suggest that, unless a researcher is very sure which weight matrices properly model the
network topology, using an Z2(q) test that combines several candidate weight matrices can
be an attractive and robust approach.

To explore the performance of the 1'5 (q) test we consider two different data generating

processes for y;:

yr = MWiiye + Wiy + Xi B+ Wi 1 Xoyy + Wi Xevo + g, (32)

ye = MWy + XeWioye + ByY + 11 Weay? + 72 W 2yp + uy. (33)

We set 8 = (1,1) in (32) and 5 = 1 in (33). In the scenario where y; is generated by
(32), the null hypothesis H{ corresponds to y; = X8 + p + ¢; and in this scenario all
covariates are exogenous under the null. By contrast, in the scenario where y; is generated
by (33), the null hypothesis HY corresponds to y: = 8y + p + &; and in this scenario we
allow for an endogenous covariate yY under the null. The endogenous covariate 3? is an
“outside endogenous variable” in the sense of a “classical” simultaneous equation system.

The simulation results for the two scenarios are reported in Tables 9 and 10 respectively.
[Insert Tables 9 and 10 here]

Similar to the simulation results for the Z2(q) tests, we find that the actual sizes of
the Ig(q) tests are close to the asymptotic nominal size of 0.05 and the power of the tests
increases as the amount of cross sectional dependence increases. Furthermore, when cross
sectional dependence is based on W; 1 but not on W; 2, the power loss of the Ig (2) test
using both W; 1 and W; 2 is much less than that of the Iﬁ(l) test based on the “wrong”
weight matrix W; . This indicates that the Ig(q) test combining multiple candidate weight

matrices can provide the empirical researcher some important level of robustness when they
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are unsure about which weight matrices properly model the network topology.

6 Conclusion

In this paper, we introduce generalizations of the Moran Z tests for network-generated
cross-sectional dependence in a panel data setting with unit-specific fixed or random effects
and time-varying network structures. The tests are applicable to both spatial and social
network structures. Our tests are intuitively motivated. They are geared towards situations
where researchers are uncertain as to how to choose among multiple potential spatial
weight matrices or adjacency matrices. While our tests are intuitive, they are also shown
to be equivalent to Lagrange Multiplier tests for specific, but widely considered, model
formulations under the alternative hypothesis. We establish the limiting distribution of
the test statistics and the rejection regions of the tests for a given significance level under
fairly general assumptions, which should make the test useful in a wide range of empirical
research. Our test statistics are relatively simple and easy to compute. This simplicity is,
in particular, due to adopting the Helmert transformation to eliminate unit-specific effects,
which may be random or fixed, and by selecting the quadratic moments such that the
diagonal elements of the weight matrices of the quadratic forms are zero.

We also conduct Monte Carlo experiments to investigate the finite sample performance
of the proposed tests. Overall, the results suggest that the proposed tests perform well
with proper size and reasonable power. The loss in power from using more weight matrices
than needed is mostly modest. This suggests that the tests can indeed provide robustness
against uncertainty about the proper choice of the spatial weight matrices or adjacency
matrices. We also discuss how the testing framework can be extended to the case where

network formation is endogenous.
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Appendices

A Moments of Functions of Transformed Disturbances

As before, let uj = 23:1 mirUr denote the Helmert transformed disturbances. Recall
that Zle 7 = 0 and thus u;” = ¢, and that the transformation is orthonormal in that
Z,‘Trzl 72 =1, and Zzzl Tirmsr = 0 for t # s. Furthermore, let u)* = 27:;1 wiru, denote
some generically transformed disturbances with Zzzl wir = 0. Observe that u; = €/,
but the transformation may not be orthonormal. The results given below are formulated
for transformations of €, but since u;” = ¢ and u; = ¢ the same result also holds for

transformations of wu;.

Assumption A.1. Let € = (€}, - ,€}) with ¢, = (e, ,€nt)’ denoting vectors of in-
novations, where the elements {€;; : 1 = 1,--- ,n,t = 1,---T} are i.i.d. with E(e;) = 0,

E(e) = 0%, E(e}) = pg and B(ej,) = py finite.

Lemma A.1. Suppose Assumption A.1 holds. Let A and B be non-stochastic n X n

matrices, and let a and b be non-stochastic n X 1 vectors. Fort,s=1,---,T —1, let

A X1 A X 1 % B / /
V& = Aef +d'e), VP =€’ Be + Ve,

then E(VA) = 02 Y1 w? tr(A) and

S

T T
Cov(VA,VE) = otr(AB + AB')](Z Wirwsr)? + 02a’bz WirWsr (A.1)
=1 =1

T T
+pz [Z w2 a'veep(B) + Z werwe b'veep(A)]

T=1 T=1

T
+(pg — 30h) Z w? w2 vecp(A)'vecp(B).

T=1
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Furthermore, for ¢ = ¢, that is for Helmert transformed disturbances, and if additionally

vecp(A) = vecp(B) = 0, we have E(V;A) = 0 and

oltr(AB+ AB') + 0%d'b for t=s

Cov(VA,VE) = .
0 for t#s.

; (A.2)
Remark: The results in (A.1) can be readily used to establish that E(};) = 0, E(¢})? = o2,
E(e})® = s 37 7 and Beh)t = juy X7, v + 3081 — X7, v). Furthermore,
E(ejief) =0fort # s, and E(e;eﬁ) = 0 for i # j since (€;¢)]_; and (e;¢)1_; are independent

for i # j.

Proof of Lemma A.1. ?° Observe that

T T
etX'AetX = g E wt<wt76'§AeT = € Ce,
¢=171=1
T
e = E ad'wirer = Cle,
=1
where C' = [Cirler=1,....,7 and ¢ = (¢}, -+ ,dp), with C;r = wywir A and ¢; = wyya.

Similarly, e'Be} = €' De and Ve = d'e, where D = [De;¢ r=1,... 7 with D¢y = wews, B
and d = (d},--- ,d})" with d, = ws,b. Using Lemma A.1 in Kelejian and Prucha (2010),
it follows that
T
E(VA) = B(€Ce + de) = o*tr(C) = o? Z w? tr(A), (A.3)
T=1

20Tn proving the lemma we utilize results in Kelejian and Prucha (2010). Alternatively, the lemma could
be established by specializing results in Kuersteiner and Prucha (2020).
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which proves the first claim, and

Cov(VA, VE) = Cov[(¢Ce + c'e) (¢ De + d'e)] (A4)

s

= o[tr(CD) + tr(CD")] + o d + pg|c’vecp(D) + d'vecp(C)] + (g — 30*)vecp(C)'vecp (D).

Observe that

2
tr(AB),

T

g WirWsrt

=1

T T T T
tr(CD) =Y > t1(CerDre) = > > tr(wiwir Awa wer B) =

¢=171=1 ¢=171=1

2
and analogously tr(CD’) = [Zle thwST] tr(AB’). Additionally, observe that vecp(C) =

2

[w?veep(A), - ,wivecp(A)], veep(D) = [w? vecp(B), - ,wpvecp(B)], ¢ = [wna, -+, wiral,

and d = [wgb, - ,wsrb|, and thus

T T
dd = g thWSTa/b:a/bE Wr Wer,
=1 =1

T
dvecp(D) = Zwtﬂ-ngalvecD(B),

T=1

T
d'vecp(C) = ZWSwaTblvecD(A),

=1

T
vecp(C)'vecp(D) = wangTvecD(A)’vecD(B).
=1

Substitution of these expressions into (A.4) completes the proof of the second claim. The
remaining claims follow immediately because of the orthonormality of the weights of the

Helmert transformation. O

Lemma A.2. Suppose Assumption A.1 holds. Let A = [Ag]st=1,... 7—1, B = [Bst]st=1,... 7—1,

a=(al, - ,ap_y), and b= (by,--- ,b_,), where Ay and By are non-stochastic n X n
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matrices, and a; and b; are non-stochastic n x 1 vectors. Now let
T—-1T7T-1 T-1T-1

> el Agel + Z ae; €' Bsre, + Z bie,

s=1 t=1 s=1 t=1

Then E(VA) = o%tr(A) and

Cov(VA,VE) = otr(AB+ AB') +o2d'b

+us(c'vecp (D) 4 d'vecp(C)) + (py — 30%)vecp(C)'vecp (D),

where C = [Ce;], D = D], ¢ = (¢, --,¢p) and d = (dy,---,d}), with Co; =

Z Zt 1 7Ts<7TtTAst; D¢ = Z Zt 1 7ng77t‘rBst; Cr = Zt 1 TtrQt and d; = Zt 1 7Tt7'bt
Clearly if vecp(A) = vecp(B) = 0, then vecp(C) = vecp(D) = 0, and in this case the

terms involving the third and fourth moments of the elements of € are zero.

Proof of Lemma A.2. Observe that

T-1T-1 T-1T7-1 T T T T

+/ + _ / — / =
E E €. Asie = g g E g TscTir€ Aster = E g €.Corer = €Ce
s=1 t=1 s=1 t=1

=1 ¢=171=1 s=171=1

and

t=

,_.
-
Il
—_
3
Il
—_
\]
,_.

and similarly Z Z? e’ By = € De and Zf ~!bjef = d'e. Then by Lemma A.1 in

Kelejian and Prucha (2010)

E(VA) =c%tr(C),  E(VP) =o%tr(D), (A.5)
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and

Cov(VA,VE) = o4[tr(CD) + tr(CD")] + o%dd (A.6)

+p5(c'vecp (D) + d'vecp(C)) + (ptg — 30*)vecp(C)'vecp (D).

ASZ 1775T7Tt7—0f0r575tand2 1’7Tt7_—1 we have

T T-1T-1 T-1T-1 T-1
tI‘(C) = Ztl‘ Z Z 7757—7[',57— st Z Z tI‘ Z?TSTTFtT st Z I‘(Att) = tI‘(A),
T=1 s=1 t=1 s=1 t=1 T=1 t=1
T T T-1T-1 T-17T-1
Ww)ZZZW%%FZZWZZ%%®ZZMW%)
¢s=171=1 ¢s=171=1 s=1 t=1 u=1 v=1
T-1T-1T-1T-1 T-17T-1
= Z Z Z Z tr[( Zﬂs<7rug Zmﬂrw AstBy] = Z Z tr(AgBys) = tr(AB),
s=1 t=1 u=1 v=1 =1 s=1 t=1
and
T T T-1T-1 T-1T-1 T-1
dd = Zc’TdT = Z TsrMirlg "by = Z Z 271'57—71',57— )a bt Z agbt =a'b.
T=1 =1 s=1 t=1 s=1 t=1 =1 =1

Similarly, tr(D) = tr(B) and tr(CD’) = tr(AB’). The claims of the lemma are now readily

verified upon substitution of the above expressions into (A.5) and (A.6). O

Assumption A.2. Letg = (é./b e a‘flG),: with gg = (5/1,97 e 7£Tg) and gt g (glt,ga e aént,g)l

denoting some vectors of basic innovations, where the elements {fitg ci=1,---,n,t =
L,---T,g = 1,---,G} are iid. with E(§;,) = 0, E(ﬁ?t’g) =1, E( ztg) = ,ug and

B(&h ) = 1§ finite.

Lemma A.3. Suppose Assumption A.2 holds. Let A = diagf:jl{At}, B = diag?:jl{Bt},
a=(ay, - ,ap_y), b= (b, - ,blp_,) where Ay and By be non-stochastic n x n matrices,

and a; and by are non-stochastic n x 1 vectors. Let P = [pgq| be a non-stochastic G x G
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matriz and py. denote the gth row of P. For g =1,--- ,G, let ¢ = (e’Lg, e ,ElT’g) with

€t,g = (elt,g, te ,€nt,g)/ be genemted as
Zpgng pg ® InT)é~

Observe that E(eg) = 0 and Cov(eg, €) = ogp Ly with og, = Zlepgqphq. Let g1, g2, g3, 4
be distinct elements of {1,--- ,G} and let
T—1

A 4+ +7 _
Ve o= (e Ae , T egna)= Z ftglAtEtg2 —l—etglat)
t=1

N
-

VP = (e//Be}, +¢€llb)

(et 93Bt6t g T & gsb )-

W
Il
—

Then

vA = 6;10692 + efqlc =&C.E + Ecy,

VP = ¢ Deg, +€,.d=¢D.E+Ed,,

where C = [Cerlc 7=1,... 7 with Cer = ZtT:_ll T Tir At, where D = [Derle r=1,... 7 with Doy =
ZtT;ll Tz By, where ¢ = (cy,--+ , ) with ¢; = ZtT:El Tirar, where d = (dy,--- ,dp)
with d, = Z;‘F:_ll Tirbe, and where Cy = Pl pgy. @ C, Dy = pl, . pg,. @ D, o = py,. @ ¢, and
dy = ply,. ® d. Furthermore E(V4) = 04,g,tr(A) and

A
COV(V 7VB) = 0919409293tr(AB) + 0919309294tr(AB/) + Uglgsa/b
—i—,ug [Dg.-VeCD (pgg,pg4.) ® c'vecp(D) + pr.vecD(piql_pgz.) ® d'vecp(C)]

+(u§ — 3)vecp(py, Pgs-) Ve D (Pyg Pys-) ® vecp(C)'vecp(D).
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Clearly if vecp(At) = vecp(B:) = 0, then vecp(C) = vecp(D) = 0, and in this case the

terms involving the third and fourth moments of the elements of & are zero.

Remark: Since the lemma does not restrict the elements of P, the setup allows for some

or all of the ¢, to be the same.

Proof of Lemma A.3. W.o.l.o.g. we consider g1 = 1,92 = 2,93 = 3 and g4 = 4. Then

€g = (pg- ® InT)€ and

T-1 T-1 T T T T
+7 + / . / o e
g et,lA,get2 = E E TicTir€c 1 Ater 2 = E E € 1C0crer2 = €1Ce2 = £ CLE,
t=1 t=1 ¢=171=1 ¢=171=1
T-1 T—1 T T T-1
+/ _ ! _ ! Y Y
€10t g Tir€r 10t = g €71 E TirQy = €1 = £ Cy,
t=1 t=1 =1 =1 t=1

where C, = (p}. ® I,7)C(p2. @ Inr) = pi.pe. @ C and ¢, = (p). ® Inr)c = p). ® c. Similarly,
tT;f e;féBte;;l = ¢'D.&, where D, = (ph @1,7)D(ps.®@1I,1) = phy.pa.®D, and ZtT:? ezébt =
¢'d, where d, = (ps. ® I,r)d = p. ®@d.
Using Lemma A.1 in Kelejian and Prucha (2010), it follows that

T
E(VY) = E(EC&+ ) =tr[C(pep). @ Inp)] = 012t2(C) = 012 Y _ tr(Crr)
T=1

T T—1 T-1 T T-1
= 012 Ztr(z 5 Ar) = o012 Z tr( Ay ZWET) =012 Z tr(A¢) = o12tr(A),
=1 t=1 t=1 =1 t=1

which proves the first claim, and

COV(VA, VB) = Cov(¢'Cié + &, ' D& + €'dy) = [tr(CyDy) + tr(CuDL)] + . dA.T)

—I—ug [civeep (D) + d.veep(Cy)] + (15 — 3)veen(Cy) veep (D).
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Observe that

tr(CyDy)

tr[(p}. ® Lir)C(p2. @ Int) (p3. @ Inr)D(ps. @ Inr))
T T
O'140'23tT(CD) — 01402923 Z Z tl“(CCTDTC)
¢=171=1
T—-17T-1

014023ZZU“ Z ZﬂtgﬂtﬂrsgﬂsTAt s)

¢=17=1 t=1 s=1

T-1T-1 T T
014023 Z Z tr(AtBs) Z TtsT s Z Ttr st
t=1 s=1 s=1 T=1
T—1
014023 Z tr(AtBt) = 014023tr(AB)
t=1

(A.8)

in light of the orthonormality of the weights of the Helmert transformation, and analogously

tr(CyD.,) = o13024tr(AB’). Next, observe that

/
C, s

T T T-1T-1
/ / /
C(pl-p3.®InT)d:UI3§ cdr =013 E TrTsraybs
=1 =1 t=1 s=1
T—17T-1
0135 E azbs E Wtrﬁsr—013g ayby = o13a’b
t=1 s=1

(A.9)

in light of the orthonormality of the weights of the Helmert transformation. Addition-

ally observe that vecp(Cy) = vecp(p).p2. ® C) = vecp(p).p2.) @ vecp(C) and similarly

vecp(Dy) = vecp(ph.pa.) ® vecp(D), and thus

cdvecp(Dy) = pr.vecp(ps.ps) ® c'vecp(D),
d.vecp(Cy) = ps.vecp(p).p2.) ® dvecp(C),
vecp(Cy)'veep(Dy) = vecp(pl.p2.) vecp(ps.ps) ® vecp(C) vecp(D).

(A.10)

Substitution of expressions (A.8)-(A.10) into (A.7) completes the proof of the second claim.
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O]

Lemma A.4. Consider the first-stage regression given by (12). Suppose plim,,_, .n 'H'X'T
and lim, oon *H'XTT, forr = 1,--- ,q, are finite with full column rank. Suppose the

elements €;; of ¢ and ey 4 of By are generated as

G G
it =Y pous and eig =Y Pl (A.11)
=1 =1

where the basic innovations ;. are defined in Assumption A.2. Let A = diagthjl{At},
where Ay is non-stochastic and the row and column sums of Ay are uniformly bounded in ab-
solute value. Then, (i) plim,_,..n YH™'Z* and plim,,_, . .0 *HY'Z*, forr=1,---,q, are
finite with full column rank, (ii) n=1ZTAZ* = O,(1) and (iii) n =1 Z Aet = n~1E(Z 1 Ae ™)+
0p(1), where nYE(Z Ae™) = O(1) and E(Z Ae™) = 0 when tr(A4) = 0.

Proof. Let p;. = [pj1,...,pjc), 7 =0,1,..., then in light of Assumption A.2 and (A.11) we

have

o2 = Var(eir) = po.pp.,
03 = Var(eiry) = pg.ry, 9=12,...

From Lemma A.3 and its proof it is readily seen that

e = le,....ép)] = (po. ® Lnr)E,

g = [ell,g7 R e/T,g]/ = (pg. @ Ir)§, g=1,2,...
From (12) it follows that the columns of Z;% can then be written as

2 =Xy + e (A.12)
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Hence, (i) follows directly from the assumption that plim,, . ,n ' HY X T and lim, ..on 'H}FX'T,
forr=1,---,q, are finite with full column rank.
To prove (ii), it suffices to show that n~ z:r]’Atztl = Op(1). From (A.12) we see that
Var(z;; j) Var(e;; ]) ]2 The claim now follows immediately from arguments analogous
to those of Remark A.1 in Kelejian and Prucha (2004).
To prove (iii), it suffices to prove the claims for an arbitrary column. Focusing on the

first column we have

T-1 T-1

-1 -1 1 +

n E z HAwe =n g aye; +n~ E e (A
t= t=1

with a} = 74 X/ A;. Observing that Z,‘tr:_ll z;“ 1 Ave; is an instance of the linear quadratic

forms considered by Lemma A.3, it follows immediately from that lemma that

n~t Z z 'Atet =001 Z n~ttr (Ayp).

Since the elements of A; are uniformly bounded, we have E(n =1 Zthll z HAe) = O(1) and

E(n~! ZtT:ll z HAwef) = 0if tr(A;) = 0. This proves the claims regarding n=1Z " Aet. O

50



B Proofs of Theorems

Proof of Theorem 1. Under H{ and Assumptions 1 and 4,

n'2(6 —6g) = (n'ZVZH) T2zt (B.1)

= (QuzQunQuz) ' QusQpy (P H"e") + 0,(1) = Op(1),

where Qpz = plim,, . 0 *HYZ" and Qpy = lim, .con ' HYHT. Asut = e+—Z+(g—

d0), we have

n V2t Wt = nm V2t Wit — 2(n 12 Wi n 2 (5 — &) (B.2)

+(5 — 80)' (n Z W ZH)n 2 (5 — 69).

Therefore, in light of (B.1), (B.2), and Assumption 3, for the rth element of ‘7@, X/}T,Q =

ut'Wraut, we have

n VW0 =0V, 0 + 0p(1), (B.3)
where
Vig = Wit +det = €Cre+ e,
with

ar = —2H Qi Quz(QuzQ 'y Quz) Hn " B(ZTW;re),

o

C, = (', WHII®1,), and ¢, = (I'®1,)a,. Clearly, the row and column sums of II® I,
are uniformly bounded in absolute value. By Assumption 2, the row and column sums of
WT* , and thus those of C., are uniformly bounded in absolute value. By Assumptions 3 and
4, the elements of H and n~'E(Z* Viffe*) are uniformly bounded in absolute value. This

in turn implies that the elements of a, and ¢, are uniformly bounded in absolute value.
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Together with Assumption 1 for the elements of €, this verifies that the linear quadratic
forms V. ¢ satisfy the conditions A.1-A.3 postulated by the CLT given as Theorem A.1 in
Kelejian and Prucha (2010).

Let Vo = V1,9, -+, Vg0)'- Then by Lemma A.2 we have E(Vp) = 0 and the (r, s)th

element of it’s VC matrix ¥q = E(VQV()) is given by

wTS»Q = E(V;UQV%Q) = ¢7‘s,Q + U%aia& (B.4)

where ¢, o = 203tr(W;W:). In light of the above discussion, n~'¢,, o = O(1) and
n~,.. o = O(1). Since by assumption the smallest eigenvalues of n~1¥¢ are bounded

away from zero, it follows from Theorem A.1 in Kelejian and Prucha (2010) that
v,V L N0, 1) (B.5)
The (7, s)th element of \TJQ is given by
Vre@ = braq + 070 0s, (B.6)

where @SQ = 25 (W W) and @, = —2ZH(Z V' ZH)"1(Z+ = Z+)W?aT. By Assumption

3,

(T-1)5% = n'atat =nletet —2(n 1 Zet) (5 — 60) + (6 — 60) (n 22 ZT) (5 — 60)

= ntetet +0,(1).

In light of the remark after Lemma A.1 and Tschebychev’s inequality, we have [n(T —
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D]~ 'etet = 02 4+ 0,(1) and 5 = 02 + 0,(1). Observing that
n ZPWIT = 0 2V Wit —n T 2V WEZY (6 — 80) = n T B(ZTW ) + 0,(1),

and

n ZPWrat = 0 2V Py Wiet — n T 2V Py W Z (6 — 6o) = op(1),

where Py+ = HY(HYHT)"'H™ it is now readily seen from (B.4) and (B.6) and the
above results that n_llAbrs,Q —n"'Y,, 0 = 0p(1). Furthermore, since n~'¥q = O(1) and

the smallest eigenvalue of nil\I/Q is bounded away from zero by assumption, it follows

/2 _

from Lemma F.1 in Poetscher and Prucha (1997) that nl/Q\TJé 121/2\1151/2 + op(1).

Consequently, in light of (B.3) and (B.5),
U, Vo = 05 Vg + 0,(1) = U *Vg + 0,(1) % N(0, 1,).

The claim now follows from the continuous mapping theorem. O

Proof of Theorem 2. Under H{ and Assumptions 1 and 4,

n'2(6—80) = (n1ZYZT) V27 et (B.7)

= (QuzQunQuz) ' QusQpy(n™ P H"e") + 0,(1) = Op(1),

where Qpz = plim,, . 0 *HYZ" and Qgy = lim, .con 1 HYH". Asut = e+—Z+(;5\—
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d0), we have

nV2EFGT = pTY2HM 0T VPEYZT(S - 6)), (B.8)
n71/2@+/W:a+ — n—1/26+/ﬁ/:6+ _ 2(n71Z+/W:6+)1n1/2(3— 50)

+(5 = 60) (n ZT'WrZ )2 (5 — 8).

Observing that tr(W) = 0, it follows by Assumption 3’ that n~*Zt'W*e™ = 0,(1). Let

Qp.z = plim,, . n 1HYZT. Then, in light of (B.7), (B.8), and Assumptions 3’ and 4’,

we have
nil/QlA/T’L = o YV2EMTT =07V, 1 4 0,(1), (B.9)
nil/QYZn’Q = o V2P Wrat =0V, 0 + 0,(1),
where
Ve = a.et =cle, (B.10)
Vig = €7Wret = Cpe,
with

ar = HY — HEQyQuz(QuzQiyQuz) ' Qg .

¢ = (II'®1y)a,, and C, = (I'®1, )W (II®1,). Clearly, the row and column sums of II® I,
are uniformly bounded in absolute value. By Assumption 2, the row and column sums of
W*

+n» and thus those of €, are uniformly bounded in absolute value. By Assumptions 2

and 4’ the elements of H,, and H,' are uniformly bounded in absolute value. This in turn

T

implies that the elements of a, and ¢, are uniformly bounded in absolute value. Together
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with Assumption 1 for the elements of €, this verifies that the linear quadratic forms V;. 1,
and V;. g satisfy the conditions A.1-A.3 postulated by the CLT given as Theorem A.1 in
Kelejian and Prucha (2010).

Let V. = [V[, V(] with Vi = [V{,--- V] and Vi = [V] g, -, V] o). Then by
Lemma A.2 we have E(V) = 0, and it’s VC matrix ® = E(V'V”) is given by

o= (B.11)

with the (r, s)th submatrix of ®;, given by
brar, = Cov(Vrr, Vo) = 050,05,
and the (r, s)th element of ®¢ given by
brs.q = Cov(Vig, Vi) = 200tr (W W)

In light of the above discussion, n™1¢,, ;, = O(1) and n~'¢,, o = O(1). Since by assump-
tion the smallest eigenvalues of n~1® are bounded away from zero, it follows from Theorem

A.1 in Kelejian and Prucha (2010) that
12y 4 N(0, I,). (B.12)

Let @, = My, H}, where My, = L,p_1) — ZH(ZYZ*F)1Z+. Then the (r,s)th
submatrix of @ is given by qAme = 5%0.ds, and the (r,s)th element of ;I\DQ is given by
@T&Q — 25*tr(W*W?*). By analogous arguments as in the proof of Theorem 1 it is readily

seen that n_lgm,L —nl¢, 1 = o0p(1) and n_lam’Q —n'¢,, o = 0p(1). Furthermore,
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since n1® = O(1) and the smallest eigenvalue of n~'® is bounded away from zero by
assumption, it follows from Lemma F.1 in Potscher and Prucha (1997) that n!/2¢-1/2 =

n!/2%=1/2 4 0,(1). Consequently, in light of (B.9) and (B.12),
12V = 712V 1 0,(1) = @YV 4 0p(1) 5 N(0, Iy 11)g)-

The claim now follows from the continuous mapping theorem. O
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Table 1. Rejection Rates for I2(2) Tests with W, and W, (Small T)

Helmert Time-average Initial-period
Pr P2 weighting weighting weighting
n=250,T=5
0 0 0.0507 0.0508 0.0493
2 0 0.9379 0.6577 0.2385
4 0 1.0000 0.9997 0.8232
0o 2 0.9391 0.6698 0.2560
0 4 1.0000 0.9999 0.8510
2 2 0.9998 0.9815 0.7358
4 4 1.0000 1.0000 1.0000
n=500T=5
0 0 0.0486 0.0507 0.0506
2 0 0.9989 0.9114 0.4284
4 0 1.0000 1.0000 0.9818
0o 2 0.9982 0.9121 0.4170
0 4 1.0000 1.0000 0.9815
2 2 1.0000 0.9999 0.9461
4 4 1.0000 1.0000 1.0000

Nominal size is 0.05

Table 2. Rejection Rates for I2(2) Tests with W, and W, (Large T)

Helmert Time-average Initial-period
Pr P2 weighting weighting weighting
n=250,T=10
0 0 0.0493 0.0493 0.0497
2 0 0.9999 0.8042 0.2574
4 0 1.0000 1.0000 0.8634
0o 2 0.9999 0.7995 0.2590
0 4 1.0000 1.0000 0.8873
2 2 1.0000 0.9991 0.8509
4 4 1.0000 1.0000 1.0000
n=250,T=20
0 0 0.0500 0.0517 0.0513
2 0 1.0000 0.9248 0.3332
4 0 1.0000 1.0000 0.9546
0o 2 1.0000 0.9283 0.3422
0 4 1.0000 1.0000 0.9589
2 2 1.0000 1.0000 0.9710
4 4 1.0000 1.0000 1.0000

Nominal size is 0.05
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Table 3. Rejection Rates for I§ (2) Tests with W, and W, (Small T)

Helmert Time-average Initial-period
LA PP T weighting weighting weighting
n=250T=5
0O 0 0 0 0 0 0.0506 0.0501 0.0497
1 0 0 0 0 O 0.7405 0.6580 0.5967
2 0 0 0 0 O 1.0000 0.9998 0.9995
0O .1 0 0 0 0 0.7302 0.6469 0.5827
0 2 0 0 0 0 1.0000 0.9997 0.9994
1 1 0 0 0 0 0.9910 0.9803 0.9638
2 2 0 0 0 O 1.0000 1.0000 1.0000
0O 0 2 0 0 0 0.8521 0.5141 0.1820
0O 0 4 0 0 0 1.0000 0.9984 0.7233
0O 0 0 2 0 0 0.8565 0.5246 0.1946
0O 0 0 4 0 0 1.0000 0.9992 0.7654
0O 0 2 2 0 0 0.9984 0.9521 0.6191
0 0 4 4 0 0 1.0000 1.0000 1.0000
1 1 2 2 0 0 1.0000 1.0000 0.9980
2 2 4 4 0 0 1.0000 1.0000 1.0000
0O 0 0 0 .1 0 0.4898 0.4900 0.4880
0O 0 0 0 2 0 0.9931 0.9934 0.9933
0 0 0 0 o0 .1 0.4748 0.4761 0.4748
0O 0 0 0 0 2 0.9917 0.9913 0.9916
0O 0 0 0 .1 .1 0.8606 0.8616 0.8611
0O 0 0 0 2 2 1.0000 1.0000 1.0000
n=>500T=5

0O 0 0 0 0 0 0.0503 0.0508 0.0509
1 0 0 0 0 0 0.9659 0.9295 0.8934
2 0 0 0 0 0 1.0000 1.0000 1.0000
0O .1 0 0 0 0 0.9712 0.9431 0.9123
0 2 0 0 0 0 1.0000 1.0000 1.0000
1l 1 0 0 0 0 1.0000 1.0000 0.9997
2 2 0 0 0 0 1.0000 1.0000 1.0000
0O 0 2 0 0 0 0.9937 0.8155 0.3125
0O 0 4 0 0 0 1.0000 1.0000 0.9532
0O 0 0 2 0 0 0.9898 0.8164 0.3208
0O 0 0 4 0 0 1.0000 1.0000 0.9627
0O 0 2 2 0 0 1.0000 0.9993 0.8934
0 0 4 4 0 0 1.0000 1.0000 1.0000
1 1 2 2 0 0 1.0000 1.0000 1.0000
2 2 4 4 0 0 1.0000 1.0000 1.0000
0O 0 0 0 .1 0 0.8335 0.8331 0.8346
0O 0 0 0 2 0 1.0000 1.0000 1.0000
0 0 0 0 o0 .1 0.8639 0.8627 0.8619
0O 0 0 0 0 2 1.0000 1.0000 1.0000
0O 0 0 0 .1 .1 0.9956 0.9957 0.9957
O 0 0 0 2 2 1.0000 1.0000 1.0000

Nominal size is 0.05
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Table 4. Rejection Rates for I7(2) Tests with W; and W, (Large T)

Helmert Time-average Initial-period
Ao pro P2 Ve weighting weighting weighting
n=250,T=10
O 0 O O 0 0 0.0488 0.0498 0.0498
1 0 0 O 0 o 0.9829 0.9349 0.9078
20 0 O 0 0 1.0000 1.0000 1.0000
O 1 0 0 0 0 0.9890 0.9581 0.9407
O 2 0 0 0 0 1.0000 1.0000 1.0000
1 1 0 o0 0 0 1.0000 1.0000 0.9998
2 2 0 0 0 0 1.0000 1.0000 1.0000
O 0 2 0 0 0 0.9990 0.6746 0.1930
O 0 4 0 0 0 1.0000 1.0000 0.7763
O 0 0 2 0 0 0.9989 0.6716 0.1933
O 0 0O 4 0 O 1.0000 1.0000 0.8031
O 0 2 2 0 0 1.0000 0.9968 0.7534
0O 0 4 4 0 0 1.0000 1.0000 1.0000
1 1 2 2 0 0 1.0000 1.0000 1.0000
2 2 4 4 0 0 1.0000 1.0000 1.0000
O 0 O 0 .1 0 0.8672 0.8674 0.8675
O 0 0O 0 2 0 1.0000 1.0000 1.0000
O 0 0 o0 0 1 0.8989 0.9000 0.8979
O 0 o0 0 0 2 1.0000 1.0000 1.0000
O 0 o0 o0 .1 1 0.9978 0.9981 0.9981
O 0 o0 o0 2 2 1.0000 1.0000 1.0000
n = 250,T =20

O 0 O o0 0 ©o 0.0501 0.0506 0.0522
1 0 0 0o 0 O 1.0000 1.0000 0.9999
2 0 0 0 0 0 1.0000 1.0000 1.0000
O 1 0 0 0 0 1.0000 1.0000 0.9999
O 2 0 0 0 0 1.0000 1.0000 1.0000
1 1 0 0 0 0 1.0000 1.0000 1.0000
2 2 0 0 0 0 1.0000 1.0000 1.0000
O 0 2 0 0 0 1.0000 0.8429 0.2427
O 0 4 0 0 0 1.0000 1.0000 0.9013
O 0 0 2 0 o0 1.0000 0.8482 0.2533
O 0 0O 4 0 0 1.0000 1.0000 0.9156
O 0 2 2 0 0 1.0000 1.0000 0.9300
O 0 4 4 0 0 1.0000 1.0000 1.0000
1 1 2 2 0 0 1.0000 1.0000 1.0000
2 2 4 4 0 0 1.0000 1.0000 1.0000
O 0 O 0 .1 0 0.9995 0.9996 0.9995
O 0 0O 0 2 0 1.0000 1.0000 1.0000
O o0 o 0 0 .1 0.9992 0.9991 0.9991
o o0 o0 0 0 2 1.0000 1.0000 1.0000
O 0 o0 o0 .1 1 1.0000 1.0000 1.0000
O 0 o0 0 2 2 1.0000 1.0000 1.0000

Nominal size is 0.05

59



Table 5. Rejection Rates for I2(g) Tests with only Exogenous Covariates

P1 P2 12(1) Test with W, 12(1) Test with W, 12(2) Test with Wy, W,
n=250,T=5
0 0 0.0488 0.0502 0.0507
2 0 0.9654 0.1036 0.9379
4 0 1.0000 0.3328 1.0000
0o 2 0.0995 0.9664 0.9391
0 4 0.2956 1.0000 1.0000
2 2 0.9940 0.9949 0.9998
4 4 1.0000 1.0000 1.0000
n =500,T =5
0 0 0.0487 0.0506 0.0486
2 0 0.9996 0.1444 0.9989
4 0 1.0000 0.5361 1.0000
0o 2 0.1344 0.9994 0.9982
0 4 0.4861 1.0000 1.0000
2 2 1.0000 0.9999 1.0000
4 4 1.0000 1.0000 1.0000
Nominal size is 0.05. The DGP is Defined by Equation (28).
Table 6. Rejection Rates for I2(q) Tests with an Endogenous Covariate y;
P P2 12(1) Test with W, 12(1) Test with W, 12(2) Test with W, W,
n=250T=5
0 0 0.0521 0.0515 0.0527
2 0 0.9659 0.1009 0.9397
4 0 1.0000 0.3094 1.0000
0o 2 0.0975 0.9659 0.9395
0 4 0.2871 1.0000 1.0000
2 2 0.9938 0.9944 0.9997
4 4 1.0000 1.0000 1.0000
n =500,T =5
0 0 0.0495 0.0502 0.0515
2 0 0.9994 0.1461 0.9984
4 0 1.0000 0.5573 1.0000
0o 2 0.1443 0.9996 0.9986
0 4 0.5468 1.0000 1.0000
2 2 1.0000 1.0000 1.0000
4 4 1.0000 1.0000 1.0000

Nominal size is 0.05. The DGP is Defined by Equation (29).
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Table 7. Rejection Rates for I (g) Tests with Spatial Lags of y,

P P2 12(1) Test with W, 12(1) Test with W, 12(2) Test with W, W,
n=250,T=5
0 0 0.0501 0.0499 0.0498
2 0 0.8933 0.0972 0.8274
4 0 1.0000 0.2948 1.0000
0o 2 0.0796 0.9635 0.9343
0 4 0.1964 1.0000 1.0000
2 2 0.9673 0.9942 0.9990
4 4 1.0000 1.0000 1.0000
n=500,T=5
0 0 0.0493 0.0484 0.0497
2 0 0.9947 0.1470 0.9873
4 0 1.0000 0.5566 1.0000
0o 2 0.1145 0.9995 0.9985
0 4 0.4097 1.0000 1.0000
2 2 0.9996 1.0000 1.0000
4 4 1.0000 1.0000 1.0000
Nominal size is 0.05. The DGP is Defined by Equation (30).
Table 8. Rejection Rates for I (g) Tests with Spatial Lags of y, and X,
P P2 12(1) Test with W, 12(1) Test with W, 12(2) Test with W, W,
n=250,T=5
0 0 0.0495 0.0484 0.0487
2 0 0.3965 0.0838 0.2522
4 0 0.9592 0.2192 0.8594
0 2 0.0494 0.9473 0.9245
0 4 0.0529 1.0000 1.0000
) 0.4736 0.9880 0.9722
4 4 0.9169 0.9820 0.9951
n=500,T=5
0 0 0.0482 0.0483 0.0477
2 0 0.8198 0.1194 0.7063
4 0 1.0000 0.4299 0.9998
0o 2 0.0791 0.9993 0.9982
0 4 0.2452 1.0000 1.0000
2 2 0.9427 1.0000 1.0000
4 4 1.0000 1.0000 1.0000

Nominal size is 0.05. The DGP is Defined by Equation (31).
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Table 9. Rejection Rates for I§ (q) Tests with only Exogenous Covariates under the Null

M A pi P2 Vi V2 I5(1) Test w/ W, I5(1) Test w/ W, I5(2) Test w/ Wy, W,
n=250T=5
0O 0 0 0 0 0 0.0488 0.0512 0.0506
1 0 0 0 0 0 0.8383 0.0641 0.7405
2 0 0 0 0 0 1.0000 0.1044 1.0000
O 1 0 0 0 0 0.0614 0.8295 0.7302
0O 2 0 0 0 0 0.0988 1.0000 1.0000
1 1 0 0o 0 o0 0.9307 0.9323 0.9910
2 2 0 0 0 0 1.0000 1.0000 1.0000
O 0 2 0 0 o0 0.9148 0.0864 0.8521
O 0 4 0 0 O 1.0000 0.2538 1.0000
O 0 0O 2 0 0 0.0814 0.9182 0.8565
O 0 0O 4 0 0 0.2185 1.0000 1.0000
0O 0 2 2 0 0 0.9818 0.9832 0.9984
0O 0 4 4 0 0 1.0000 1.0000 1.0000
1 1 2 2 0 0 1.0000 1.0000 1.0000
2 2 4 4 0 0 1.0000 1.0000 1.0000
O 0 o0 o0 .1 o 0.6160 0.0530 0.4898
O 0 0 0 2 0 0.9981 0.0609 0.9931
O 0 o0 o0 0 1 0.0513 0.5989 0.4748
O 0 0 0 0 2 0.0582 0.9976 0.9917
O o0 o0 0 .1 .1 0.6890 0.6736 0.8606
O 0 o0 0 2 2 0.9995 0.9993 1.0000
n=500T=5
O 0 O O 0 o 0.0501 0.0486 0.0503
1 0 0 0 0 0 0.9874 0.0634 0.9659
2 0 0 0 0 0 1.0000 0.1109 1.0000
0O .1 0 0 0 0 0.0684 0.9898 0.9712
0O 2 0 0 0 0 0.1486 1.0000 1.0000
1 1 0 0o 0 o0 0.9975 0.9980 1.0000
2 2 0 0 0 O 1.0000 1.0000 1.0000
O 0 2 0 0 o0 0.9980 0.1075 0.9937
O 0 4 0 0 O 1.0000 0.4119 1.0000
O 0 0O 2 0 0 0.1007 0.9966 0.9898
O 0 0 4 0 O 0.3655 1.0000 1.0000
O 0 2 2 0 0 0.9999 0.9999 1.0000
0 0 4 4 0 0 1.0000 1.0000 1.0000
1 1 2 2 0 0 1.0000 1.0000 1.0000
2 2 4 4 0 0 1.0000 1.0000 1.0000
O 0 0 0 1 0 0.9116 0.0489 0.8335
O 0 0 0 2 0 1.0000 0.0506 1.0000
O o o 0 0 .1 0.0517 0.9322 0.8639
O 0 0 0 0 2 0.0580 1.0000 1.0000
O 0 o0 o0 .1 1 0.9313 0.9489 0.9956
o 0 o0 o0 2 2 1.0000 1.0000 1.0000

S

5.

—

Nominal size is 0. he DGP is Defined by Equation (32).
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Table 10. Rejection Rates for I3 (q) Tests with an Endogenous Covariate y? under the Null

M A p1 P2 i Ve L5 (1) Test w/ W,

I3(1) Test w/ W,

132, (2) Test w/ Wl' W2

n=250,T=5
0O 0 0 0 0 0 0.0515 0.0501 0.0507
1 0 0 0O 0 0 0.9490 0.0717 0.9008
2 0 0 0 0 0 1.0000 0.1533 1.0000
0O .1 0 0 0 0 0.0721 0.9208 0.8574
0O 2 0 0 0 0 0.1456 1.0000 1.0000
1 1 0 0 0 0 0.9838 0.9729 0.9988
2 2 0 0 0 0 1.0000 1.0000 1.0000
0O 0 2 0 0 0 0.9170 0.0857 0.8574
0O 0 4 0 0 0 1.0000 0.2449 1.0000
0O 0 0 2 0 0 0.0826 0.9150 0.8548
0O 0 0 4 0 O 0.2104 1.0000 1.0000
0O 0 2 2 0 0 0.9808 0.9821 0.9982
0O 0 4 4 0 0 1.0000 1.0000 1.0000
1 1 2 2 0 0 1.0000 1.0000 1.0000
2 2 4 4 0 0 1.0000 1.0000 1.0000
0O 0 0 0 .1 0 0.7306 0.0544 0.6146
0O 0 0 0 2 0 0.9998 0.0657 0.9988
O 0 0 0 0 .1 0.0572 0.6531 0.5338
0O 0 0 0 0 2 0.0670 0.9985 0.9952
0O 0 0 0 .1 .1 0.7846 0.7099 0.9119
0O 0 0 0 2 2 0.9999 0.9993 1.0000
n=500,T=5
0O 0 0 0 0 0 0.0503 0.0512 0.0495
1 0 0 0 0 0 0.9988 0.0803 0.9960
2 0 0 0 0 0 1.0000 0.2114 1.0000
0O .1 0 0 0 0 0.0785 0.9989 0.9955
0O 2 0 0 0 0 0.1896 1.0000 1.0000
1 1 0 0 0 0 0.9999 0.9999 1.0000
2 2 0 0 0 0 1.0000 1.0000 1.0000
0O 0 2 0 0 0 0.9971 0.1086 0.9920
0O 0 4 0 0 0 1.0000 0.4264 1.0000
0O 0 0 2 0 0 0.1080 0.9974 0.9913
0O 0 0 4 0 0 0.4197 1.0000 1.0000
0O 0 2 2 0 0 0.9999 1.0000 1.0000
0O 0 4 4 0 0 1.0000 1.0000 1.0000
1 1 2 2 0 0 1.0000 1.0000 1.0000
2 2 4 4 0 0 1.0000 1.0000 1.0000
0O 0 0 0 .1 0 0.9564 0.0554 0.9074
0O 0 0 0 2 0 1.0000 0.0687 1.0000
0O 0 0 0 0 .1 0.0538 0.9538 0.9044
o 0 0 0 0 2 0.0617 1.0000 1.0000
0O 0 0 0 .1 .1 0.9625 0.9667 0.9987
O 0 0 0 2 2 1.0000 1.0000 1.0000

Nominal size is 0.05. The DGP is Defined by Equation (33).
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Online Appendices to “On Testing for Spatial or Social Network
Dependence in Panel Data Allowing for Network Variability”

by Xiaodong Liu and Ingmar R. Prucha

C Proofs of Propositions

Proof of Proposition 1. Let Gy = —E[aggéa) lo,] and € = E[g:(00)g:(00)'], then under the

maintained assumptions, in particular, E(e;/|u) = 0 and E(u) = 0,

0 H'(RXpt
Q1 Qg
Gta 0 o3H'H 0
Gt = ) Qt = y \IIQ = . y
. . 0 \I/Q
Qg Qqq
Giq 0
where H = [X1, -+, X7], and
ZZ:l Tr%Ttr(Vi/17TW7—71R7T1) T 23:1 W%Ttr(‘/i/]-yTWT,qR;l)
G = 203 : : ,
i Zle ”tZTtr(WT,TWT,lR;l) o Zle W%Ttr(WT,rWT,qR;l)
tr(WLrWI,s) cee tr(WLTWT”g)
Qs = 20'3 I )
tr(VOVT,TWLs) cee tr(WT,rWT,s)




~/

for r,s =1,---,q. Evaluated at the restricted estimates 0= (0,5 and 2, the LM test

statistic is given by

GMM-LM, = §Q 'GGFQ'G)'1G'O G
1

T-1 T— —Lr
= 301G, GG DGy g,
t=1 t=1 t=1
with g = [H, Wi, , -, Wrady -, Wi g, -, Wr i 4/, and
0 H'X; R R
N Ly Q1 Mg
~ Gt71 0 ~ g H/H 0 ~
G = ) Q= R ) \PQ = )
0 Vo ~ ~
~ qu Qqq
Giq 0
where, recalling that Wy, = ST 7 Wy,
tr(Wl,rWtfl) o tr(WLTWt)tq)
G, = 257 : : :
tr(WTﬂ”WtTI) T tr(WT,rWtfq)
tr(Wl,rVOVLs) ce tr(VOVLrWT,s)
ﬁrs = 234 : : ’
tr(WT,rWLs> aE tr(WT,rWT,s)
for r,s =1,--+,q. Let 7t = [r3, - , 7%, then
tr (W, (0 Wi o) (Wi, Wy,
Qpe7t) = 264 : = 25!
tr (W (27, W) | tr(Wr, W)

2



~

In light of this, Gy, = 6 2[Q1, -+, gl (I, @ 7}) for r = 1,--- ¢, and

. 0 H'X;
Gt = R )
F oI, @7) 0
. 0 6 I, ®7T)
GOt = ,
o X, 'HH'H)™ ! 0

Let @ = (1,074) U (I,@7}). Observing that H(H'H)"'H'X;" = X;" and .1 X4 =

0, we have
P
o~ o~ ~ g (I)Qt 0
1—1 )
G, Gy = ) ,
0 o XtJr X;“
and
ST ot AT Te o s
Uy Wtylut Uy Wmut
T-1 T-1 T-1 ‘7
AN A ~ ~ Q
G;Qtltza2 =52 =52
t=1 t=1 uf Wil =1 | Wi 0
X,"H(H'H)"*H'u} 0




Observing that WtQTsﬂ't = 25Mr (Zle W?TWT,T)Wth = 2’0\4tr(WtfrWt’f8), it follows further

that
2tr (W W) 2tx( th1Wtfq) 0
-1 T—1 :
GG = . .
t=1 t=1 | 2tr(W7 W) 2t (Wi, Wi, 0
0 0 XX
_ Qg 0
0 2y XX
Therefore, GMM-LM, = V;,® 1VQ T2(q). O
Proof of Proposition 2. The first derivatives of the log-likelihood function are
(L 1TZ — X[ BY Wi Ba(p) (! = X;'B)
op r(Wy - Ra( 0_ - 110 t P),
T—1
OlnL 1
o5 - ;ZleRl(p),Rl(P)( - X8,
t=1
dlnL n(T=1) 1 = o o s
o2 952 + Gy 2 (v — X{"B) Ri(p) Ra(p) (v — X7 B),
and some second derivatives are
#InL . o1 = N N
oo dp. = T DuWirRa(e) " WasRa(p) )—02;( — X8 W Wi (yi — X;B),
0%InL 1 =
aw = 3 DX W Rip) + Ralp) Wil (v — X{B),
/ 2 t 1,r4t1(P 1P 1,r
0p, 003 0% —
02In L 1 —
9900 ~ ob (v — X B) W1, Ri(p) (v — X;B).



Evaluated at the true parameters, the expected values of the second derivatives are

0%In L _ _ _ _
(Wbo,ag) —(T = 1)[tr(Wy, Ry Wi sRTY) + tr(R] 1W1,,7~W1,8R1 D,
9?InL
(ap aﬁl|90,0’%) 07
0*InL 1 1
(W’@o,ag) = —;%(T = Dtr(Wi,Ry).

Evaluated at the restricted estimators under Hy,

T-1

OlnL 1
”‘A2 - 5 ﬂJr’Wl/ ﬁ*,

apr 0,0 0_2 = t ot

T—-1
OlnL 1
—a e = =D Xu =0,
aﬁl 0,0 6_\2

t=1

T—-1

oL (-1 RS
Oo? 0.0 262 254 p B ’

and
9?InL , o o
[ (78/) p 0025z = —(T = Dtr(Wi, W) + tr(W] Wi )] = =2(T = 1)tr(Wi, W),
T S
9?InL 1
[ (Wbo,ag)bﬁ? = —?(T — tr(Wy,) = 0.
T
Consequently,
, - 1-1
Jln L 92InL 9%InlL 8%2InL dln L
ap’ Opdp’ 0BOp’  Do20p’ ap’
ML-LM., = dlnL —-E 9%InL  9%InL O%InL dlnL
u Bl opo3  0poF  0a20p o5’
Oln L InL 9%InL 9%InL Oln L
o2 9,52 0pdo?  9BIc?  (902)? 00,02 552 do? 9,52
-1
OlnL 0%InL OlnL
- 5, (5 B
9 152 0P gy 02 ) |52 L O 1552



The latter equality is readily seen to hold observing that Wy, = Wy, for t = 1,.--,T
implies Wy, = 3>7_, 7%, Wi, = Wi, and @VWyat = 3300 @ Wi, 4, and tr(WyWy) =

(T — 1)tr(Wy, W) O

Proof of Proposition 3. Recalling X;, = W;,X;, under the maintained assumptions, in

particular, E(e|p) =0 and E(u) =0,

G} 0 H(RXi1)t - H(RX. )" H(RX)*H
0g+(9) Gt)\l Gfl 0 T 0 0
pr— —E pr— ’ ’
G el = ,
G, Gt 0 0 0
Q- Qq
, o3H'H 0
Q= Elgi(P0)g:()] = ; Vo =
0 Uy
qu Qqq

where H = [le... ,XT,Xl’l,"' ’XTJ’... 7X1,q7"' ’XTH]’

q q
Gy = |H[RWi S, (XiB+ > Xeoy ) H [R WS (XeB+ D Xy T

r=1 r=1

Zf:l F%Ttr<W1:TRTWT,15‘;1R;1) o Zq:—F:l WtZTtr(WLTRTWquS;lR;l)
Gi‘m = 20(2) : :

iy e (W ReWe i STIRSY) - T wd e (W R W oS RS

Ezzl W%’Ttr(ﬁ/lﬂ'WT;lR’:l) e Zle ﬂ%rtr(Wl,rWT,qu_l)

i 23:1 W%rtr(WT,rWT,lR;l) T 23:1 W%Ttr(WT7TWT7qR;1)




and, as in the proof of Proposition 1,

tr(Wl,rﬁ/l,s) s tr(Wl,rWT,s)
Qs = 20’% . ,
tr(WT,rWI,s) e tr(WT,rWT,s)
for r,s = 1,---,q. Evaluated at the restricted estimates 9 = (0, B,)’ and 52, the LM test

statistic is given by

GMM-LM, = gQ 'GGFQ'G)"G'0 g
T 1

—1 T— T-1
= 3.Q9.1G, GO "G Y GG,
t=1 t=1 t=1
with g = [H, W11, , -, Wrady -, Wi gy, -, Wy i 4/, and
Gy 0 H'X[S H'X! HX}
N G, G’ 0 0 0
G, = t,1 f&,l ’
Gy, Gryo 0 0 0
[, Qu ﬁlq
. oc‘H'H 0 N
Qt = R ) \IJQ = ;
0 \I/Q . N
- qu Qqq



where G} = [H’X+15, ,H’X{;B] and, recalling that Wy, = ZT L T2 W,

(W, Wiy) o (Wi, W)
ét)\,T = @ZT = 282 : T . : ,
tr(WT,rWtﬁ) T tr(WT,rWtfq)
tr(Wl,rWLs) s t1"(I/i/vl,rﬁ/T,s)
S/irs = 234 )
tr(WT,rWLs) co tr(VVT,TVVT,S)
for r,s =1,---,q. Let 7y = [n%, -+, 7%, and, as was shown in the proof of Proposition

1, Qo = 26 [te (W, W), . .., te(W, Wi)) and 71Qy ) = 2640 (W5, Wy,). In light of

this, @tr G 2[QT1, e ,ﬁrq](Iq ®7}) for r =1,--- ,q, and adopting the notation

X[E—[thv" X+]

Ix+ 3 1+ 1y +
& H'X (I, B) 0 H'Xy H'X; |
(I, 07 o oI, o) 0 0
(I, ® B )X+’H(H’H) (Ig ®7t)
o~ o 0 (Iq & ﬁ't)
GOt = 677
X[j]’H(H'H) 0
X,"H(H'H) ! 0

Let O, = (I,@7,)Uq(I,®7}). Observing that H(H'H) 'H'X,, = X;\,, HH'H) 'H'X;" =

t,ro



X;" and .15 XM0 = 0, we have

Do+ 51 @ B)X X[ 1, ©B) Sou (1,0 B)XJX) U, B)Xj X}
E10-1G, = 54 D0 D 0 0
G2XH X+ G2XH X+ ~2 4/ yr+
XX (1, @ B) 0 XX XX,
52 52 ~2
I X+'X+( ® B) 0 XX oo XX
and -
Vo + (Ig® B)
- Va
Z G, Q gt =0 N
VL
0
Observing that Zf;ll 1/13@7,5 = </I;Q and
XX XX T
T-1 L 1 T-1
My =) Xi'Xg= , My =) XX = XX XX
t=1 t=1
Y+ Y+ Y+ Y+
XX XX,
we have
O + (I, @ B) M (I, ® B) ®q ® B) M &2(I, ® B)' M,
T-1 £ 3
SRR P 0 0 0
GO Gy =5 ¢ ?
t=1 82M11(Iq (=) ﬁ) 0 2M11 62Mél
I 52 My (I, ® B) 0 52 My FXTXT




Let

AQ 28} 0 0 I,
‘//\:k = ‘7L ) i\)* = 0 32M11 EQMél ) F = Iq ®B
0 0 0°My o2XT'X+
Then,
T—1 S L FI‘/}* T—-1 St o FI(/I\)*F Fli*
Y Gy g =56 e GO Gy =574 R
t=1 Vi t=1 o.T" D,

GMM-LM, = V/®.'V,

1
|
<
1
|
—_

‘7@ (/I;Q 0 0 ‘7Q
= ‘7L 32M11 82M§1 ‘/}L
0 0 G2My O2XTXT 0
© G
VQ (IDQ 0 VQ
Vi 0 &2Myy — 2 M (XX T) 1My Vi
_ 2
Z,(q)

Proof of Proposition 4. Let ¢ (9) = Ri(p)[S1(Ny; — X; 8 — >0, Wi, X, 7,]. The first
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derivatives of the log-likelihood function are

dln L I R = N
. = T DS+ Y 6 O R
Oln L LS gy +_ oyt - +
o = (= VW () ) g 36 0) WS (0 — X8 = D WX
r t=1 r=1
T-1
OlnL 1
G = 2 2 KT W R) ()
r t=1
dIn L 1= o
7 T o2 > XM Ri(p)ef (9)
oL  n(T-1) 1 = 4,4
2 T e T e )

Evaluated at the true parameters, the expected values of the second-order derivatives are

d?InL

Grglined) = —(T = Di(WSTWST) = (T = (R Wy ST Ry (B W ST R

T—

1 B B

= Z (RaW1sS ED) (RaW S ),
1

0?InL _ 1 _
o . |90,02) —(T = 1)t (W1, s Wi, ST R — (T = Dte[(Ra W, ST Ry Wi s Ry Y,
82InL =

1 _
- Z XMW R{ R W1, ST E]

(a)\ 07 "19070'0)

92InL 1 _
E(a)\ 86 ‘790,0’0) 72 Z —HR/lRlWI,TSl 1Ft+7
9?InL 1 1
(0)\ 952 \190,0—0) = —E(T — Dtr(RyWi,.S7 Ry,
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( ?InL | )
dp,0p, 1O

—(T = Dtr(Wy, Ry "Wy oRTY) — (T — Dte[(Wy s R Wi, Ry,

0?InL 0?InL
Hopalnet) = oy glnet) =0
0?InL 1 _
(W|ﬁ0,ag) = @ = DWW Ry Y,

9?InL
E( / |’§(),O’2
OOy 7000

)

9?InL
(m’ﬁo,ag)

9?InL
W’ﬁo,ag)
9?InL
(60'28’)/,/,. ’190,0’%)

9%In L
(mbo,ag)

E(

where F,;+ = X;r Bo+ D1, W,th+ Y,0- Evaluated at the restricted estimators under HY,

Oln L ’
O

we have 552

_ ~—2 T—1 ~+1 +
=0 ") U Wiy

=1
9?InL
= E(Wbo,og
n(T —1)
204

) =0,

Oln L

N _ ~—2 T—1 ~+r1y171
op, 1952 =9 D1 Uy Wi,
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~—2 T—1 xr+1y171 ~+ OlnL| _ Oln L
g thl Xt le"'ut 5 Bﬁ’ |’L9,Z7\2 = 0,

82111.[/ ° ° 1 T_l/\/ +/ , +,\
By weetisr = —2T = Der(Way W) = = 375X W W, X,
T S =
9*InL 9*InL .
[ (m|ﬁo,og)]@,az = [E(mbo’gg)]@ﬁz = =2(T — )tr(W1, W1 4),
0?InL 1 =l R
Y A S o= —— Y XMW W, X8,
[ (a)\ra,y;wo,o’g)] ,0.2 82 tz:; " 1.sW1r X,
9?InL 1 ! N
E(——— 2) |5 ~ - X+/W X+B,
[ (8/\r8ﬁ’|‘90:%)]19,02 32; Lo
9?InL 1 =l
AT s o= —— Y XMW WX
[ (87587;|,§0703)]ﬁ’02 32 ; t 177» 1,8 t
9?InL 1 =
E —_— ~ — _ X+/Wl X+,
B 50y, 1700852 32; Lo
9?InL 1 =l
O . = s S XN
0pops 00,0 5 =
9?InL (T -1)
[ (W‘ﬁo,dg)]57a2 — —W7
2 2 5 )
and (B35 55 100.0)15.02 = B(ah 351 o0t ].2 = (B8 85 oo g 52 = B, 5510003l 2 =
2 2
[E(%yﬂo,ag)]@a? = [E((%zligibo,ag)]gﬁz = 0. Hence,

r /
dlnL 9?InL 9°InL dlnL
7 7 2 7 7
dln L 0%InL 9?InL dln L
2 ~ 2 2)2 2 ~
| 0o 9,52 09900 (002) 90,02 352 oo 9,52
- , -
81nL|A 3?InlL 0 8lnL|
— 09’ 19,82 _E 099’ 09’ 19,"2
92InL
O 0 (80’2)2 9 2 . O ¥ ~2
L 0,05 9,52 9,0




Let

OlnL 9%InL
20 |35 Jp0p 0 0 0
BlnL‘A 0 9%InL Il 9%*Inl
oy, 19,52 07,07} 97,07, OB,
‘/* _ 82 . : (I)* _ _6_\4 E . . .
81nL|A 0 92InL 82InL  82InL
Oy 9,52 07107, 0,07,  0BOv,
0 0 8%InL 8%InL 8%InL
L J 97,08 0v,08" 0B’
Since Wy, = Wy, for all ¢, we have
Q %9) 0 0
Vi= Vi, ) Q, = 0 32M11 32M£1 ’
0 0 62My o2XPXT
where
+1 o+ + v+
X X] X1 X,
. . . , -_— —
My = : . : : Moy = [XPXF, - XTX ]
CH Y ... YH YA+
X' Xy XX

omL 'V, o?InL
o0 et o | 990V’
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It follows by a similar argument as in the proof of Proposition 1 in Liu and Prucha (2018)

ML-LM, = V/®.'V.

- Qrr -1
Vo Do 0 0 Vo
= ‘7[, 0 /U\2M11 /U\zMél ‘7L
0 0 02My o2XTXT 0
N R o R -1r
Vo Do 0 Vo
Vi 0 &2Myy — 62 My (XX T) 1My Vi
= I;(q)
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D Assumptions: Additional Discussions

D.1 Sufficient Conditions for Assumption 3

Assumption 3 is a high level assumption. In the following we explore lower level sufficient
conditions. In preparation of this exploration we first collect some useful results in a
lemma. Parts (i) and (ii) of the lemma below restate results given, e.g., in Remark A.1 of
Kelejian and Prucha (2010) for the convenience of the reader. Parts (iii) and (iv) extend
parts of Remark A.1 to accommodate fixed effects. The reason is that while the Helmert
transformation removes fixed effects from u + €, it does not remove them from regressors
that are spatial lags of 1, if the weight matrices vary over time. Proofs for the lemmata

given in this subsection are given in a subsequent subsection.

Lemma D.1. Let A,, and B,, be nonstochastic n X n matrices whose row and column sums
of the absolute elements are bounded uniformly by finite constants K4 and Kpg, let a, and
b, be some nonstochastic n x 1 vectors whose elements are bounded uniformly in absolute

value by some finite constants K, and K. Then:

(i) The row and column sums of the absolute elements of Ap,B,, are bounded uniformly by

KaKp.

(ii) The elements of Anay are bounded uniformly in absolute value by the constant KK,

and n=tb, Ayay, is uniformly bounded in absolute value by K K,Ky.

Furthermore, let &, = sy + Sp&,, where the s, are nonstochastic n x 1 vectors whose
elements are bounded uniformly in absolute value by some finite constant K, the S, are
nonstochastic n X n matrices where the elements of ¥, = S,S), are uniformly bounded in

absolute value by some finite constant K,, and the &, are n x 1 random vectors whose
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elements are i.i.d. (0,1), and hence &,, ~ (S, Xn). Assume furthermore the elements of &,

have uniformly bounded finite 4 + § moments for some § > 0. Then:

(iii) n=talg, is Op(1), and furthermore if €, = o¢&l we have n~2al €,

is Op(1).

(iv) n1EL AL, is Oy(1), and furthermore for random vectors s, with E(s, | £,) = 0 and
E(Snsl, | €,) = 021, we have n™ ¢, Ansp, = 0p(1) and n '), Ancy, = n ™ E(c), Apsn) +
op(1) with n™'E(c), Apspn) = o2n~tr(A4,) = O(1).

As remarked in the text, the conditions on A postulated in Assumption 3 hold under
the assumptions maintained for the weight matrices W, for the leading application where
A = W;‘ , and of course the conditions also hold for A = I,(;_;). We next postulate
lower level assumptions on the regressors in Z;. We then give a lemma that shows that,
under those assumptions, the conditions of Assumption 3 that n='Zt/AZ+ = O,(1) and
n~1ZAet = nTIE(Z 1 AeT) + 0,(1), where n " E(Z7 Aet) = O(1), hold. We then show
that in particular the regressors of a higher order Cliff-Ord network model satisfy the

postulated lower level assumptions.

Assumption D.1. The columns of Z; are of the form

2tk = Ctkn + Ctk,n (Mn + 6t,n) (Dl)

where the ¢y, are nonstochastic n x 1 vectors whose elements are uniformly bounded in
absolute value by a finite constant, say, A., the Cy, are nonstochastic n X n matrices whose
row and column sums of the absolute elements are uniformly bounded by a finite constant,
say, Ac. Furthermore the fizved effects are of the form u, = vy, + an/2§,’§ where the v, are

nonstochastic n x 1 vectors whose elements are uniformly bounded in absolute value by a
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finite constant A, the V,, = VTL1/2V,11/2/ are monstochastic n X n matrices whose elements

are uniformly bounded in absolute value by a finite constant Ay, and the elements of the
n x 1 vectors & are i.i.d. (0,1) with uniformly bounded finite 4 + 6 moments for some

0 > 0. Furthermore E(ep | p,) = 0.

The assumption allows for fairly general forms of fixed effects p,,. Note that we only
assume that the elements of v,, and V,, are uniformly bounded in absolute value. We do

not impose bounds on the row and column sums of V,,.

Lemma D.2. Suppose the innovations satisfy Assumption 1, A, = diagg:ll{At,n} satisfies
the conditions postulated in Assumption 3, and the columns of Z; satisfy Assumption D.1.
Then the remainder of Assumption 8 holds, i.e., n 1 Z ' A, ZF = O,(1) andn™1Z;7 Apel =

nYE(Z} Anet) + 0,(1), where nTE(Z, Anel) = O(1).

We now apply the above lemma illustratively to verify that under H§ all regressors of
the higher-order spatial Cliff-Ord model (21) considered in the text satisfy the conditions

postulated in Assumption 4 regarding the regressors. Under H§ model (21) is given by

q q
Yt = Z ATOWt,ryt —|—Xt,30 + Z Wt,TXt7r0 +ug, and up = p+ €, fort=1,---,T, (D?)

r=1 r=1

and the regressor matrix is given by Z; = [Wi1yt, ..., Weque, Xe, Wen1 Xz, ..., Wy g X¢].2
Also assume, as common in the spatial literature, that Sy = I, — Zgzl AroWi,r is non-
singular and that the row and column sums of the absolute elements of .S, ! are uniformly
bounded by some finite constant, and that the fixed effects satisfy the conditions postu-

lated in Assumption D.1. We now verify that the regressors in Z; satisfy the conditions

'Under HY the regressors constitute a subset of those considered under HY, and thus the subsequent
discussion also covers H.
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postulated in Assumption D.1. Note that the elements of X; are uniformly bounded in
absolute value by Assumption 4. By Lemma D.1(ii) it follows further that the elements
of all spatial lags W, ;, X; are uniformly bounded in absolute value. Hence all columns of
X, Wi Xy, ..., Wi Xy are of the form 2y, = ¢, and satisfy Assumption D.1 with Cy, = 0.

Next consider the spatial lags of Wy .y in Z;. Observe that

q
ye = S;  XeBo+ Y S, WerXevpo + 57 it et),

r=1

and consequently

2 = Wiy = e + Cp (0 + &)

with ¢y, = Wt,kSt_lXt/BO + > WtkSt_th,rXt’yro and Cy, = Wt,kSt_l. Under the main-
tained assumption the row and column sums of W; S, L and Wi Sy 1Wt77~ are uniformly
bounded in absolute value by Lemma D.1(i), and thus Cj satisfies Assumption D.1. Fur-
thermore by Lemma D.1(ii) the elements of ¢y are uniformly bounded in absolute value,
and thus also the ¢, satisfy Assumption D.1. Having verified the assumptions of postu-
lated on z,, in Assumption D.1 it now follows from Lemma D.2 that n='Z" A, Z and

n~1Z1 A,ef satisfy the conditions postulated in Assumption 3.

D.2 Proofs of Lemmata

Proof of Lemma D.1. For parts (i) and (ii) see Remark A.1 in Kelejian and Prucha (2010).
To verify the first claim of part (iii) observe that E[(n"'a’¢,,)?] = n=2(al,s,)?+n"2a/,Xpa, <
K2K?+ K,K2. The claim now follows from Fuller (1976), Corollary 5.1.1.1. Analogously,

to verify the second claim of part (iii) observe that E[(n~/2a/

r€)Y = n_laga’nan < O'?Ki.

To verify the first claim of part (iv) we maintain w.o.l.o.g. that A,, is symmetric, given
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that &, A&, = &, [(An + AL)/2]¢,,. Observe that
n_léh;zAngn = n_IS:zAnsn +n A Snén + n_l‘g*lsl nSn + n_l‘g;kz,S;zAnSnfrz

It now follows immediately form part (ii) that n='s/ A,s, = O(1). Next observe that
E[n~ts) A,S,€5] = 0 and Var[n=1s! A, S,k = n2s) A, 5, Ansy. In light of part (i) we
have that the elements of A,,s,, are uniformly bounded by K 4 K, and thus n=2s/, A, %, A,s, <
K2K?K,. It now follows from Fuller (1976), Corollary 5.1.1.2, that n~'s/, A,,9,&}; and anal-
ogously n=1¢S! Aps, are Op(1). Next observe that n 'E[¢X S AS,&L] = nltr[A4,5,].
Let a; , and o0;, denote the i-th row and column of A, and ¥, respectively. Then
tr[AnYn] = D> 0 @in0.in. Observing that |a; noin| < Ko Z?:l laijn| < KsKa we have
In"YE[¢XS! ApnSn&l]| < K, K4 and thus n 1E[¢YS! A, S,£5] = O(1). Next observe that in

light of, say, Kelejian and Prucha (2001) we have
Var(n™1€¥S! A,8,£) = n=22tr(D, Dy,) +n 2 Z dz . ( n —3).

D,, = (dijn) = S; AnSyn. Recalling that ¥, = 5,,5], we have tr(D,, D) = tr(A,X,A,3,).
Consider the (k,l)th element of A,%,, given by aj_,,0 1, then by argumentation analogous
to above |ay n0n| < KgKa. This in turn implies that all elements of A,%,A,%, are
bounded in absolute value by nK2K?%. Hence ‘n*Qtr(DnDn)‘ < KZ2K?%. Next observe
that |oija| = [,
Note that the latter implies that swn < K, and thus [sjrn| /Ko

n n 2 2 : _ n n .
Zr:l ‘Sir,n’ < K, Zr:l Sirn < KO" ObserVIHg that dii,n - Zl:l Zk:l QklnSli,;nSkin, it

s and as a special that |0, = S0 82, < K,.

r=1%%rn —

1/2 < 1 and also that
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then follows that

n n n n n
Z dzz n S Z Z Z Z Z |ak;l,nauv,nski,nSli,nsui,nsvi,n|
=1 =1 k=1u=1v=1
n n n n n
3/2
< K/ |
I=1 k=1u=1v=1
n n n n n
2+3/2 243/2 2 2 1 -2+43/2 72
< KGRy DD law Ka” > > Ki=nKIPPKG,
k=1u=1[=1 v=1 k=1u=1
Since E¢}4 o is uniformly bounded, it follows that also n=2 Y ", d3 n( 5 — 3) is uniformly

bounded by a finite constant, and thus that Var(n=1¢¥S! A,,S,£5) = O(1). Using again
Corollary 5.1.1.2 of Fuller (1976) we have n=1¢S) A, S,&5 = O,(1), which completes the
proof of the first claim of part (iv).

To prove the second claim of part (iv) observe that n " 'E(£), A,s,) = 0 and Var(n™1¢, A,6,) =
n2Etr(&, Ansnsh Anéy)] = nT2tr[ALE(Ssh, | £,)Ang, &) = o2n2tr[A, A, 5,] by iterated
expectations. Under the maintained assumptions it follows from part(ii) off the lemma
that the elements of A,A,Y, are bounded uniformly in absolute value by KiKUand
Var(n™1¢, A,6,) < 02K3Ky/n — 0. The claim now follows from Chebyshev’s inequal-
ity.

The third claim of part (iv) follows immediately from Kelejian and Prucha (2001). O

Proof of Lemma D.2. Recall that Z} = [ZﬂL, 2 ln]’, ef = [ef'n, N 1)’ and
thus n=1Z" A, ZF :E 1 ’1Z+’Atn Land nTrZ T Ael = Zt 1 n’lZ'HAtnetn To
prove the lemma it thus suffices to show that n_lZ;r,’LAmZ;n = Op(1) and n lZ'H n A€, =

n~YE(Z{ Avnerl,) +0p(1), where n™ E(Z]) Ay nefl,) = O(1). For ease of notation we drop
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subscripts n in the following. The (k,[)th element of n=*Z;" A, Z;" is given by

n 2 Azt = nTte Al +n T e ACu(p + )] (it ) Ol T Avesh

+n7 (1 + €)' Cll P AlCup+ )] (D.3)

To prove the claim we consider each term on the r.h.s. separately. Observe that by Lemma

D.1(ii) that the elements of A;cy are uniformly bounded in absolute value by A4A., and

thus
T T
-1 _+ -+ _ —1 / —1 /
’n Cik Atctl = n § ﬂ-tTﬂ-tTCTk;AtCSl <n § TrTtr ’CTkAtcsl}
T,5=1 T,5=1

T
< Z 7I-1‘/7'71-1‘,7'A2AA < T2A3AA>
7,5=1
observing that |m-| < 1 and T is finite. This shows that n™1c}t/ Ay = O(1).

Next observe that

T T
nflc;'At[Ctl(,u +e)T = nt Z T TesCrp At Csipt + nt Z T TisCrp At Csr€t
T,5=1 T,5=1
By Lemma D.1(i) and (ii) the elements of all vectors ¢, A;Cy are uniformly bounded in
absolute value by A AcA 4. Observing that p satisfies the conditions postulated for & in
Lemma D.1 it follows immediately from the first part of Lemma D.1(iii) that all terms
n_lc;kAtCsm are Op(1). Observing that ¢ satisfies the conditions of { postulated for
the second part of Lemma D.1(iii) it follows further that all terms n_lc’TkAtCSlet are also
O,(1). Since |m-| <1 and T is finite this shows that n= ¢}/ A [Cyu(p + &))" = Op(1) and

analogously that n ™ [(1 + )'Cy, ] T Aic; = Op(1).
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Finally observe that

n (e + 1) Co) T Ad[C(er + p)]+

T
—1
= E TirTrs€y Ol AsCorer 4 207 § T mispt Crp AtCrer +n~ § TrTisit Crp At Cipt.
T,8=1 7,5=1 7,5=1

By Lemma D.1(i) the row and column sums of the absolute elements of the matrices
C!,A;Cq are uniformly bounded by A%A A. It now follows immediately from the first
part of Lemma D.1(iv) that the terms n™"€,C’, A;Cqe; and n~/C! T A Cqp are Op(1),
observing respectively that both € and p satisfy the conditions postulated for £ in the
lemma. The terms n =14/ C!, AiCqe; are seen to be 0,(1) from the second part of Lemma
D.1(iv) upon associating ¢ with px and ¢, with €. Since |mr| < 1 and T is finite. this
shows that n™1[(e; + ) Cl T Ai[Culer + pu)]T = Op(1). Having shown that each term on
the r.h.s. of (D.3) is at most Op(1) it follows that n='z}' Az, = O, (1), which completes
the proof of the first claim.

To prove the second claim, observe that the kth element of n*thJr 'Atef is given by
n 2t Al =nTtel Avel + 0T O T Avel + 0T [ O T Avel
To prove the claim we consider each term on the r.h.s. separately. Observe that

-1 +,At€t =n"t Z TtrTtsC kAth7
T,5=1
and thus clearly 7”L_1E(c;§€’14tet+ ) = 0. Recalling from the above discussion that the elements
of ¢/, A are uniformly bounded in absolute value it follows from Lemma D.1(iii) upon asso-
ciating £ with €5 that each of the terms n‘lc’TkAtes are 0p(1) and thus that n_chr’A,ge,;F =

0p(1). We have shown above n  E(y/C’, A;Cse;) = 0 and n=11/C, A;Csrer = 0,(1), and

23



thus E(n~1[/C, )T Are) = 0 and n=[1/CJ T Are = 0p(1) is seen to hold as a special

case, taking Cy = I,,. Next consider

T
n_l[etC' [T A =n~ Z TrTs€,Clp Agéss.
7,5=1
Let B; = [CL, A; + A;Cry], then in light of Lemma D.1(i) the row and column sums of B,
are uniformly bounded in absolute value. It now follows from the third claim of Lemma
D.1(iv) that n=1€,C”, Ajes = n~ E(€,C”, Ases) + 0p(1) with n™'E(€,C”, Ases) = O(1), and
thus

n gy A = T E( Avel) + 0p(1)
with

n- ztk/AtEt Z Tirmisn 'E (€,CL Ares) = O(1).

T,5=1
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E Additional Monte Carlo Simulations

In this appendix, we first provide Monte Carlo simulation results on the performance of the
proposed Z2(q) tests when g is large. For comparison we also report on the performance of
the Holm procedure. We then provide Monte Carlo simulation results for situations where

the weight matrices W; are endogenous.

E.1 Performance of Z?(q) Tests When ¢ is Large

To generate the weight matrices Wi, (for r = 1,--- , q) for these Monte Carlo simulations,
we partition n individuals into equal-sized groups with 10 individuals in each group. Let
&1 &4 be n X 1 random vectors generated from a multivariate normal distribution
with zero mean, unit variance and pairwise covariance (between ¢, . and &, ;) given by ¢.
Let Dy, (forr =1,---,q) be an observed n x n zero-diagonal matrix of indicator variables
with the (7, 7)th element being one if and only if individuals ¢ and j are in the same group
and ‘gim — Ejtﬂ“ <1, where §;; . denotes the ith element of &, .. The weight matrices W4,
(for r = 1,---,q) are then obtained by row-sum normalizing D;, so that each non-zero
row of Wy, sums to one.

For the Z2(q) tests, y; is generated as
yr = Xof + uy, (E.1)
and, for the Ig(q) tests, y; is generated as

yr = MWy + X B+ Wi Xoyq + wy, (E.2)
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where in both cases

up = pr Wiiue + po + €,

fort =1,---,T. The individual effects p; and innovations €;; are generated independently
from N (0, 1). The observations on the two exogenous variables in the n x 2 matrix X; are
generated independently from a Uniform|0,3]. We set 8 = (1,1)" in the data generating

process.
[Insert Tables E.1-E.4 here]

Simulation results for n = 500 and T' = 5 based on 50,000 repetitions are reported in
Tables E.1-E.4. We note that for the considered data generating processes, W; 1 correctly
models the network topology, whereas W; o, - -+, W; , are misspecified weight matrices. The
reported results indicate that the actual sizes of the Z2(q) and I;(q) tests are close to the
asymptotic nominal size of 0.05. We find the power of the Z2(g) and Iﬁ(q) tests decreases
as ¢ increases but the decrease is mostly modest. We also find that the Holm test tends to
under-reject the null hypothesis. The downward size distortion of the Holm test is more
severe as ¢ gets larger and the correlation between the weight matrices (captured by ¢)

increases.

E.2 Performance of 7?(q) Tests with Endogenous Weight Matrices

In the following we report on Monte Carlo simulations for scenarios where the weight
matrix is endogenous. In line with our discussion in the Section 4, we consider two forms
of endogeneity. The first case arises when the weight matrix is correlated with the individual
effects p, but not with the idiosyncratic disturbances €;. In this case we can still use the
weight matrix W; in forming our test statistics. The second case arises when the weight

matrix is also correlated with the idiosyncratic disturbances ¢;. In this latter case we
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consider test statistics obtained by replacing the actual weight matrix with “projected” or
“instrumented” weight matrices, which only depend on exogenous variables.

For the Z2(q) tests, y; is as generated as
yr = XuB + wy,
and, for the I;(q) tests, y; is generated as
yr = AWy + Xo 8+ Wi Xyy + wy,

where in both cases

up = pWiug + 1+ €,

fort =1,---,T. The individual effects p; and innovations €;; are generated independently
from N(0,1). The elements of the n x 2 matrix X; = [x;;1] are given by zj = 1t; + Tit ks
where Z;; , is drawn independently from Uniform[0,3]. That is, we allow for correlation
between the x;; ;, and the u;; through the individual effects. We set § = (1,1)" in the data
generating process.

To generate Wy, we partition n individuals into equal-sized groups with 10 individuals
in each group. Suppose that for each individual we observe two characteristics generated
as & = H; + Em, for r = 1,2, where Zm is drawn independently from N(0,1). Let
Dy, = [dijtr] be an n x n zero-diagonal matrix of indicator variables. When ¢ and j are
not in the same group, define d;;;, = 0. When ¢ and j are in the same group, define
dijir =11t § . and £, . are in the same quartile of their distribution.

Suppose links in W, are formed if ¢ and j are in the same group and

dijia + p; + p + eije >0, (E.3)
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where Jmt,l is the standardized d;j1. We consider two specifications of e;;;. In the first
specification, the e;;; are generated ii.d. N(0,1), independently from the idiosyncratic
disturbances €;;. In the second specification, e;;; = (e + €j¢)/ V2, thus allowing for de-
pendence between the e;;; and the idiosyncratic disturbances €;;. The weight matrix W;
is the row-sum normalized adjacency matrix of the resulting network. For an exemplary
interpretation, the design of the weight matrix W; is motivated by a friendship network
based on a simple homophily link formation model (E.3), where two individuals in the
same group are more likely to form a link if they share some specific characteristic given
by ;1. In that sense, Dy is a more informative proxy for the actual adjacency matrix
Wy compared to Dy 5. Although d;j¢ 2 does not show up in the link formation model (E.3),
D, 5 is not entirely uninformative because (i) it captures the group structure of the network

and (ii) &;;; and ;; o are correlated due to the individual effects p; in their definitions.
[Insert Tables E.5-E.8 here]

Simulation results for n € {250,500} and 7' = 5 based on 20,000 repetitions are reported
in Tables E.5-E.8. For Tables E.5 and E.6, the ¢;;; are generated independently from the
idiosyncratic disturbances ¢;, and W; is correlated with the error term wu; of the main
regression only via the individual effects p. As the Helmert transformation eliminates
the individual effects in the error term wu;, W; becomes uncorrelated with the Helmert
transformed error terms. Hence, and as confirmed by the simulations, in this case the
72(1) test based on W; has the proper size. In contrast, for Tables E.7 and E.8, €ijt =
(€t +€j1)/ V2, and W is correlated with the error term w; of the main regression via both
the individual effects p and the idiosyncratic disturbances ¢;. Hence, the weight matrix W;
remains endogenous after the Helmert transformation. As a result, in this case, the Z?(1)
tests based on W; exhibit severe upward size distortions. Observing that the matrices Dy 1

and/or Dy are uncorrelated with the Helmert transformed error term, they can be used as

28



exogenous “proxies” for Wy to construct Z2(q) test statistics. We find that the Z2(q) tests
based on Dy and/or Do are properly sized and the power increases as the amount of
cross sectional dependence increases. As expected, since D, ; enters explicitly into the link
formation process (E.3), the Z2(1) test with D;; outperforms that with D;s. The Z2(2)
test with both D; 1 and D;2 has less power than the IQ(l) test with Dy but the power
loss is modest. The results suggest that the Z%(2) test, incorporating both D;; and Dy 5,
offers researchers significant robustness when they are uncertain which of D; 1 or Dy s is a

better proxy for W;.
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Table E.1. Rejection Rates for I2(q) Tests with W, ~,Wg (n=500,T=5,¢ =0)

pP1 g=1 qg=2 g=5 g =10
0 0.0504 0.0507 0.0506 0.0503
2 0.8227 0.7459 0.6105 0.4823
4 0.9999 0.9998 0.9992 0.9961
6 1.0000 1.0000 1.0000 1.0000
8 1.0000 1.0000 1.0000 1.0000

Nominal size is 0.05. The DGP is Defined by Equation (E1).

Table E.2. Rejection Rates for I (q) Tests with W;, ..., W, (n = 500, T = 5,¢ = 0)

A pon g=1 q=2 q=5 g =10
0 0 0 0.0502 0.0499 0.0491 0.0506
1 0 0 0.9890 0.9714 0.9031 0.7921
2 0 0 1.0000 1.0000 1.0000 1.0000
0 2 0 0.9996 0.9988 0.9923 0.9714
0 4 0 1.0000 1.0000 1.0000 1.0000
1 2 0 1.0000 1.0000 1.0000 1.0000
2 4 0 1.0000 1.0000 1.0000 1.0000
0 0 1 0.8881 0.8026 0.6211 0.4589
0 0 2 1.0000 1.0000 0.9997 0.9978
Nominal size is 0.05. The DGP is Defined by Equation (E2).
Table E.3. Rejection Rates for I;;(q) Tests with W;, ..., W, (n = 500, T = 5,p; = 0)
g=1 q=2 q=5 q=10
d=0
12(q) Test 0.0504 0.0507 0.0506 0.0503
Holm Test 0.0504 0.0475 0.0406 0.0360
=09
12(q) Test 0.0504 0.0500 0.0505 0.0501
Holm Test 0.0504 0.0441 0.0309 0.0235
Nominal size is 0.05. The DGP is Defined by Equation (E1).
Table E 4. Rejection Rates for 17 (q) Tests with W;, ..., W, (n = 500, T = 5,4, = p; =y; = 0)
g=1 q=2 qg=>5 q =10
d=0
I}Z,(q) Test 0.0502 0.0499 0.0491 0.0506
Holm Test 0.0502 0.0495 0.0457 0.0455
=09
If,(q) Test 0.0502 0.0513 0.0507 0.0507
Holm Test 0.0502 0.0473 0.0385 0.0317

Nominal size is 0.05. The DGP is Defined by Equation (E2).
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Table E.5. Rejection Rates for I2(q) Tests when the Network Links are Correlated with y; but not €;,

p I2(1) Test with W I2(1) Test with D, I2(1) Test with D, I2(2) Test with Dy, D,
n=250,T=5
0 0.0532 0.0515 0.0502 0.0510
2 0.9829 0.8435 0.5693 0.7994
4 1.0000 1.0000 0.9984 1.0000
6 1.0000 1.0000 1.0000 1.0000
8 1.0000 1.0000 1.0000 1.0000
n=500T=5
0 0.0508 0.0510 0.0480 0.0493
2 0.9998 0.9834 0.8476 0.9740
4 1.0000 1.0000 1.0000 1.0000
6 1.0000 1.0000 1.0000 1.0000
8 1.0000 1.0000 1.0000 1.0000

Nominal size is 0.05

Table E.6. Rejection Rates for I3} (q) Tests when the Network Links are Correlated with y; but not €,

A op oy I5(1) Test with W I5(1) Test with D, I5(1) Testwith D,  I2(2) Test with Dy, D,
n=250T=5
0 0 o0 0.0517 0.0508 0.0495 0.0508
2 0 0 1.0000 0.8824 0.5060 0.8306
4 0 0 1.0000 1.0000 0.9971 1.0000
0 2 0 0.9785 0.7281 0.4345 0.6649
0 4 0 1.0000 1.0000 0.9948 1.0000
2 2 0 1.0000 0.9999 0.9691 0.9995
4 4 0 1.0000 1.0000 1.0000 1.0000
0 0 5 1.0000 0.8248 0.1923 0.7360
0 0 1 1.0000 0.9994 0.5785 0.9975
n=500T=5
0 0 0 0.0500 0.0512 0.0471 0.0477
2 0 0 1.0000 0.9971 0.8229 0.9930
4 0 0 1.0000 1.0000 1.0000 1.0000
0 2 0 1.0000 0.9545 0.7298 0.9296
0 4 0 1.0000 1.0000 1.0000 1.0000
2 2 0 1.0000 1.0000 1.0000 1.0000
4 4 0 1.0000 1.0000 1.0000 1.0000
0 0 5 1.0000 0.9998 0.4330 0.9987
0 0 1 1.0000 1.0000 0.9434 1.0000

Nominal size is 0.05
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Table E.7. Rejection Rates for I2(q) Tests when the Network Links are Correlated with both y; and €;;

p I2(1) Test with W I2(1) Test with D, I2(1) Test with D, I2(2) Test with Dy, D,
n=250,T=5
0 0.2829 0.0481 0.0474 0.0471
2 0.7634 0.6413 0.4221 0.5906
4 1.0000 0.9996 0.9908 0.9996
6 1.0000 1.0000 1.0000 1.0000
8 1.0000 1.0000 1.0000 1.0000
n=500T=5
0 0.4310 0.0479 0.0487 0.0467
2 0.9696 0.9013 0.6955 0.8758
4 1.0000 1.0000 1.0000 1.0000
6 1.0000 1.0000 1.0000 1.0000
8 1.0000 1.0000 1.0000 1.0000

Nominal size is 0.05

Table E.8. Rejection Rates for I3} (q) Tests when the Network Links are Correlated with both y; and €;;

A op oy I5(1) Test with W I5(1) Test with D, I5(1) Testwith D,  I2(2) Test with Dy, D,
n=250T=5
0 0 o0 0.6063 0.0498 0.0461 0.0470
2 0 0 1.0000 0.7390 0.4360 0.6840
4 0 0 1.0000 1.0000 0.9735 1.0000
0 2 0 0.9950 0.5101 0.3018 0.4508
0 4 0 1.0000 0.9981 0.9723 0.9971
2 2 0 1.0000 0.9932 0.9246 0.9899
4 4 0 1.0000 1.0000 1.0000 1.0000
0 0 5 1.0000 0.9442 0.3335 0.8961
0 0 1 1.0000 1.0000 0.8208 0.9998
n=500T=5
0 0 0 0.7301 0.0502 0.0500 0.0492
2 0 0 1.0000 0.9860 0.7250 0.9758
4 0 0 1.0000 1.0000 1.0000 1.0000
0 2 0 1.0000 0.8093 0.5485 0.7633
0 4 0 1.0000 1.0000 0.9998 1.0000
2 2 0 1.0000 1.0000 0.9980 1.0000
4 4 0 1.0000 1.0000 1.0000 1.0000
0 0 5 1.0000 1.0000 0.6439 1.0000
0 0 1 1.0000 1.0000 0.9940 1.0000

Nominal size is 0.05
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