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Abstract

The paper introduces robust generalized Moran I tests for network-generated cross-

sectional dependence in a panel data setting where unit-specific effects can be random

or fixed. Network dependence may originate from endogenous variables, exogenous

variables, and/or disturbances, and the network dependence is allowed to vary over

time. The formulation of the test statistics also aims at accommodating situations

where the researcher is unsure about the exact nature of the network. Unit-specific

effects are eliminated using the Helmert transformation, which is well known to yield

time-orthogonality for linear forms of transformed disturbances. Given the specifica-

tion of our test statistics, these orthogonality properties also extend to the quadratic

forms that underlie our test statistics. This greatly simplifies the expressions for the

asymptotic variances of our test statistics and their estimation. Monte Carlo simu-

lations suggest that the generalized Moran I tests introduced in this paper have the

proper size and can provide substantial improvement in robustness when the researcher

faces uncertainty about the specification of the network topology.
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1 Introduction

The paper introduces new tests for network-generated cross-sectional dependence in a panel

data setting, where unit-specific effects can be random or fixed. The test statistics are

geared to allow for time-varying network dependence. This is important since in many

applications the network structure can change over time. An example in a macro setting

would be a growth model with spillovers among countries or regions related to, e.g., the

relative size of trade, which changes over time. An example in a micro setting would be

a situation where there are potential spillovers among friends, but friendships change over

time.

Tests for network-generated cross-sectional dependence generally assume knowledge of

the nature of the underlying network. However, in applied work, researchers are often

unsure about the exact nature of the network that generates spillovers. For example, for

a growth model as mentioned above, spillovers may be related to trade, but could also

be related to geographic proximity, language resemblance, similarity in industrial sector

composition, etc. Or in the friendship network example mentioned above, spillovers can

arise from various factors, including similarities in upbringing, educational background,

income, and more. Therefore another important feature of our new tests is that they are

robust, in the sense that they accommodate situations where the researcher is uncertain

about the exact nature of the underlying network. The new tests are not sequential and

properly sized.

Our test statistics involve both linear forms and quadratic forms. Towards formulating

our test statistic, unit-specific effects are eliminated using the Helmert transformation.

The Helmert transformation is well known to yield time-orthogonality for linear forms of

transformed disturbances. Upon our adopting appropriate specifications of the quadratic

forms that underlie our test statistics, these orthogonality properties are seen to also extend
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to the quadratic forms. Thus an important advantage of our choice of transformation is

that it greatly simplifies the expressions for the asymptotic variances of our test statistics

and their estimation.

The foundational principles of the proposed tests draw inspiration from a test intro-

duced by Moran (1950) for spatial correlation of a single variable within a simple cross-

sectional setting, and its subsequent generalization to a test for cross-sectional correlation

in the disturbances of a linear regression model.1 Burridge (1980) showed that the Moran

I test can be interpreted as a Lagrange Multiplier (LM) test if the disturbance process

under the alternative hypothesis is either a spatial autoregressive or spatial moving average

process of order one. King (1980; 1981) demonstrated that the Moran I test is a locally

best invariant test, when the alternative is one-sided, and the errors come from an elliptical

distribution. A more detailed discussion of the optimality properties of the Moran I test

can be found in Hillier and Martellosio (2018), including a discussion of conditions under

which the Moran I test is a uniformly most powerful invariant test. We note that, while

designed for a general setting, our test statistics also have interpretations as LM tests for

specific alternatives. Kelejian and Prucha (2001) introduced a central limit theorem for

spatial and social networks and established that the Moran I test statistic is asymptot-

ically distributed N(0, 1). In line with this result, we establish that our test statistics,

which contain the squared Moran I test statistic as a special case, are asymptotically χ2

distributed.

In situations where a researcher is uncertain about the network structure, they could

apply multiple Moran I tests corresponding to different potential network specifications,

using, e.g., Bonferroni-Holm adjustments of the individual Moran I tests. However, within

the context of cross-sectional data Liu and Prucha (2018) report on Monte Carlo sim-

1See Durbin and Watson (1950; 1951) for a corresponding test in a time series setting.
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ulations that show that such an approach can lead to sizable distortions of the desired

overall significance level. Within their setting Liu and Prucha (2018) proposed to over-

come this problem by combining, loosely speaking, several Moran I test statistics into a

single test statistic. The resulting test statistics then have the structure of a quadratic

form in linear forms and quadratic forms; see also Robinson’s (2008) test for correlation

in the disturbances where the statistics are defined as quadratic forms of quadratic forms

(within the context of regression models where all regressors are exogenous). The test sta-

tistics introduced in this paper for panel data built on work by Liu and Prucha (2018) for

cross-sectional data. Monte Carlo simulations suggest that the generalized Moran I tests

introduced in this paper have the proper size and can provide substantial improvement in

robustness when the researcher faces uncertainty about the specification of the network

topology.

Our tests are applicable to detect potential cross-sectional dependence from both spatial

and social networks, where the network dependence may originate from the dependent

variable, exogenous variables, and/or disturbances. That is, using the terminology coined

in Manski (1993) for social networks, network dependence may stem from endogenous

peer effects, contextual effects, and/or correlated effects. We formulate different tests for

different potential sources of network effects. The tests should have wide applicability. In

particular, suppose an empirical researcher reports on estimation results obtained under

the assumption of the absence of network effects, based on their a priori beliefs, in one or

all of the channels mentioned above. We then envision the proposed tests as useful and

robust tools for checking this assumption, similar to the use of other tests a researcher may

report on in support of other assumptions underlying the empirical research. Furthermore,

some past empirical research may have overlooked network effects. The proposed tests

can also be used to check the validity of studies that do not account for network effects.
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For example, Kelly (2019) analyzes 27 persistence studies published in leading economic

journals and suggests the use of Moran I test in a procedure that guards against spurious

regressions due to spatial dependence. Our tests can be particularly advantageous in this

situation, as researchers are often unsure about the exact form of the spatial weight matrix

that characterizes potential network spillovers to implement the Moran I test. As is well

known, in general pre-testing may affect the actual distribution of post-model-selection

estimators, and consequently we caution against the use of our tests as pre-tests, except in

situations where the researcher has access to an independent sample for that purpose.2

There is increasing interest in the analysis of networks.3 The need to account for

potential network dependencies was recognized early in the regional science, urban eco-

nomics, and geography literature. An important class of network models was introduced

by Cliff and Ord (1973; 1981). The original focus of the authors was on spatial networks.

However, since the formulation of those models only depends on a measure of distance

and not on geographic location, those models can also be applied to other networks. In

particular, those models can be applied to classical social networks, where information on

the distance between units is collected in an adjacency matrix, recognizing that formally

an adjacency-type matrix can be seen as a special case of a spatial weight matrix em-

ployed in the formulation of Cliff-Ord network models. For recent contributions to the

social network literature see, e.g., Bramoullé, Djebbari and Fortin (2009), Lee, Liu and Lin

(2010), Blume, Brock, Durlauf and Jayaraman (2015), de Paula (2017) and Kuersteiner

and Prucha (2020).4

2See, in particular, Leeb and Pötscher (2003) and the subsequent related literature. In light of the
pretesting problem, it seems prudent to allow for general forms of network effects in empirical research, and
only impose their absence (or partial absence) if considered unlikely, accompanied by a test (such as the
test proposed in this paper) for their absence.

3E.g., Kolaczyk (2009) remarked that “... during the decade surrounding the turn of the 21st century
network-centric analysis ... has reached new levels of prevalence and sophistication.”Applications range
widely from physical and mathematical sciences to social sciences and humanities.

4We note that Cliff-Ord network models also cover simple group-average models as special cases; see,
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Early contributions to the literature on testing for network dependence in panel data

include Baltagi, Song and Koh (2003), Baltagi, Song, Jung and Koh (2007), Baltagi and

Liu (2008), Baltagi, Song and Kwon (2009), and He and Lin (2015), who considered LM

tests for spatial error correlation and/or spatial lag dependence for random effects models.

Baltagi and Yang (2013) provided standardized LM tests for spatial error correlation in

both random effects and fixed effects panel data models.

For spatial dependence in fixed effects panel data models, Debarsy and Ertur (2010)

derived LM test statistics and their likelihood ratio (LR) counterparts. Taşpınar, Doğan

and Bera (2017) derived GMM gradient tests based on the GMM approach in Lee and

Yu (2014), focusing on spatial lag dependence in the endogenous variables only. Yang

(2021) proposed adjusted quasi score (AQS) tests based on his M-estimation method in

Yang (2018). We note that, in contrast to our paper, none of the above papers (except

for Taşpınar et al., 2017) considers higher-order spatial/network lags and none considers

time-varying network dependence. Additionally, different from our paper, all of the above

papers postulate very specific model structures under the alternative.

Our asymptotic results are derived under the assumption that the cross-sectional di-

mension n tends to infinity, while the time dimension T is fixed. For cases where T also

tends to infinity, Pesaran (2004) developed a cross-section dependence (CD) test, exploiting

the additional information from the time dimension. Pesaran, Ullah and Yamagata (2008)

proposed a bias-adjusted LM test based on finite sample approximation in the context

of a heterogeneous panel data model. Baltagi, Feng and Kao (2012) suggested a simple

bias-corrected LM test based on the asymptotic bias of the scaled version of the LM test

in the context of a fixed effects homogeneous panel data model. Baltagi, Kao and Peng

(2016) further extended Baltagi et al. (2012) to allow for unknown forms of serial corre-

e.g., Lee (2007), Davezies, D’Haultfoeuille and Fougère (2009), and Carrell, Sacerdote and West (2013).
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lation. Bera, Doğan, Taşpınar and Leiluo (2019) developed adjusted LM tests for spatial

lag dependence in the dependent variable in a maximum likelihood (ML) framework, as-

suming the absence of spatial lag dependence in the disturbances. In addition to requiring

T → ∞, none of the above papers (except for Bera et al., 2019) considers time-varying

network dependence.

The paper is organized as follows: In Section 2, we define our new test statistics regard-

ing different types of network-generated dependence in a general panel data setting and

establish the limiting distribution of the proposed test statistics. In Section 3, we show

the connection of the proposed test statistics with LM test statistics. In Section 4, we

discuss the implementation of the tests with endogenous weight matrices. In Section 5, we

report on Monte Carlo simulation results regarding the small sample properties of our test

statistics. Concluding remarks are given in Section 6. All technical details are relegated

to the appendices and a supplementary online appendix. In the online appendix we also

report on additional Monte Carlo simulations.

For a square matrix A = (aij), let Å = (A + A′)/2, let vecD(A) denote the column

vector of the diagonal elements of A, and let A− denote the Moore Penrose generalized

inverse. In abuse of conventional notation we also write A ⊂ B, if the columns of A are a

subset of the columns of B. Next let A be an n× n matrix with supn
∑n

j=1 |aij | <∞ and

supn
∑n

i=1 |aij | <∞, then we say, abusing language slightly, that the row and column sums

of the matrix are uniformly bounded in absolute value. For n ×m matrices B1, · · · , BT ,

the corresponding Helmert transformed matrices are defined as B+
t =

∑T
τ=1 πtτBτ , for

t = 1, · · · , T −1, where πtτ are the weights of the Helmert transformation, given in Section

2.2.
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2 Test Statistics for Network Dependence in Panel Data

In the following, we define our new test statistics regarding different types of network-

generated dependence (or spillovers) within a panel data setting. We differentiate between

testing for network dependence in the disturbances and in the dependent variable. Of

course, network dependence in the disturbances will generally lead to network dependence

in the dependent variable. However, even in the absence of spillovers in the disturbances,

network dependence in the dependent variable may also arise from spillovers in the endoge-

nous variable and/or exogenous variables. We refer to these tests as the I2
u and I2

y tests

respectively. These tests are related in spirit to tests introduced in Liu and Prucha (2018)

for a single cross-sectional dataset.

2.1 Motivation and Intuition

Suppose a set of panel data for n individuals and T periods is generated by the following

linear panel data model (t = 1, . . . , T )

yt = Ztδ0 + ut, (1)

where yt = (y1t, . . . , ynt)
′ is an n × 1 vector of observations on the dependent variable,

Zt = [zit,k] is an n ×KZ matrix of observations on KZ endogenous and/or nonstochastic

exogenous regressors, where we collect the latter in an n × KX matrix Xt, and where

ut = (u1t, . . . , unt)
′ is an n× 1 vector of regression disturbances.

To accommodate network effects, we allow for all variables to depend on the sample size

n, i.e, to form triangular arrays, though we suppress the index n on respective variables for

simplicity of notation. Consequently, as a simple example, the above specification allows
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for the data to be generated as

yit = yitδ1,0 + xitδ2,0 + xitδ3,0 + uit,

with yit =
∑n

i=1wij,tyjt and xit =
∑n

i=1wij,txjt, where xit denotes an exogenous regressor

and wij,t is a weight with wii,t = 0. The weight wij,t is typically thought to be determined by

a measure of geographical, economic, or social proximity between units i and j, contingent

upon the context.5 The weighted averages yit and xit are the conduits for network spillovers.

In the spatial literature, weighted averages of the above form would typically be called

spatial lags. For social interaction models, adopting the terminology of Manski (1993),

those averages would be said to represent the endogenous peer effect and the contextual

effect respectively. A simple example of a disturbance process with spillovers would be

uit = ρ0uit + µi + εit,

with uit =
∑n

i=1wijtujt, where µi denotes unit specific fixed effects and εit an idiosyncratic

disturbance term. In the social interaction literature, the weighted average uit would

typically be said to represent the correlated effect.

In the following discussion, the weighted averages are expressed more compactly as

yt = (y1t, . . . , ynt)
′ = Wtyt, xt = (x1t, . . . , xnt)

′ = Wtxt, and ut = (u1t, . . . , unt)
′ = Wtut,

where Wt = [wij,t] denotes the n× n weight matrix with zero diagonal elements.

As remarked in the Introduction, the foundational principles of the proposed tests

draw inspiration from a test introduced by Moran (1950) for cross-sectional data. This

test, and its generalization to test for cross-sectional dependence in the disturbances of a

5For example, in the social interaction literature, the weights are often chosen as wij,t = 1/ni,t if j is a
“friend” of i and zero otherwise, where ni,t denotes the number of friends of i in period t. Let Ii denote
the index set of friends of i, then yit = n−1i,t

∑
j∈Ii yjt and xit = n−1i,t

∑
j∈Ii xjt represent arithmetic peer

averages of the endogenous and exogenous variables, respectively.
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linear regression model, is typically referred to as the Moran I test. The Moran I test

statistic in essence assumes knowledge of the network structure, represented by the weight

matrix Wt. The Moran I test statistics is then formed as an appropriately normalized

quadratic form of the disturbances ut, with Wt in the middle of the quadratic form. Since

the diagonal elements of Wt are zero, the expected value of the test statistic is zero if

the disturbances are cross-sectionally uncorrelated and generally nonzero otherwise. A

problem is that the power of the test will depend on whether or not the weight matrix Wt

properly represents the network structure. Consequently, our generalized test statistic is

geared towards accommodating situations where the researcher is unsure about the network

structure. For example, as discussed in the Introduction, in a growth model spillovers

between countries or regions may be associated with different measures of proximity. Our

test statistics accommodate different potential network structures by combining quadratic

forms that correspond to different weight matrices. They contain the (squared) Moran I

test statistic as a special case.

Since our panel data model allows for fixed effects, we first eliminate the fixed effects by

transforming the data using the Helmert transformation. Our test statistics are then formed

in terms of the Helmert-transformed variables. By using the Helmert transformation and

showing that this transformation leads to the orthogonality of both linear and quadratic

forms, we are able to obtain relatively simple expressions for the variance-covariance (VC)

matrix of linear and quadratic forms, which in turn simplifies the expressions for our test

statistics.

2.2 Model and Helmert Transformation

As discussed above, in general, the model in (1) allows for both endogenous and exogenous

regressors in Zt, as well as for spillovers in the form of network lags. Thus Zt could
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be composed of (a subset of) the columns of [Wtyt, Xt,WtXt, Y
o
t ,WtY

o
t ], where Xt is a

matrix of exogenous variables and Y o
t is a matrix of “outside”endogenous variables. More

generally, Zt could also contain network lags corresponding to different weight matrices.

Under the assumption that there is no network-generated correlation in the disturbance

process we maintain that, for t = 1, . . . , T ,

ut = µ+ εt (2)

where µ = (µ1, . . . , µn)′ is the vector of unit-specific effects and εt = (ε1t, . . . , εnt)
′ is the

vector of idiosyncratic disturbances.

We do not maintain any specific assumptions regarding the unit-specific effects, which

can be fixed or random, and eliminate them by transforming the observations. In general,

let πt = (πt1, · · · , πtT ) be the tth row of a (T − 1) × T transformation matrix Π with∑T
τ=1 πtτ = 0, then the individual effects can be eliminated by a transformation of the

form

u+
t =

T∑
τ=1

πtτuτ =

T∑
τ=1

πtτ ετ = ε+t .

The transformations satisfying the above condition include the one-period forward-differencing,

the differencing from the sample average, and the Helmert transformation. In particular,

the Helmert transformation was introduced to the panel data literature by Arellano and

Bover (1995), and corresponds to πts = 0 for s < t, πtt =
√

(T − t)/(T − t+ 1), and

πts = −
√

(T − t)/(T − t+ 1)/(T − t) for s > t.6 In the following, we adopt the conven-

tion that Π = [πtτ ] refers specifically to the Helmert transformation matrix and Helmert

transformed variables are denoted with a superscript “+”.

The Helmert transformation is a forward-differencing transformation, which is ortho-

6A generalization of the Helmert transformation to accommodate time-varying individual effects was
introduced in Kuersteiner and Prucha (2020).
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normal in that πtπ′t = 1 and πtπ
′
s = 0 for t 6= s. As a consequence, the transformed

disturbances u+
t , and linear functions of u

+
t , are uncorrelated over time. Our test statistics

involve quadratic forms of the transformed disturbances. Existing results on variances and

covariances of quadratic forms given in, e.g., Kelejian and Prucha (2010) and Kuersteiner

and Prucha (2020), imply that the orthogonality property of the Helmert transformation

also extends to quadratic forms, provided that the diagonal elements of the weight ma-

trices of the quadratic forms are zero. In more detail, let A and B be non-stochastic

symmetric zero-diagonal n × n matrices. Then, by Lemma A.1 in Appendix A, in gen-

eral Cov(u×′t Au
×
t , u

×′
s Bu

×
s ) 6= 0 for t 6= s, where u×t represents the disturbances obtained

from a transformation that is not orthogonal. In contrast, for the Helmert transformation,

Cov(u+′
t Au

+
t , u

+′
s Bu

+
s ) = 2σ4

0tr(AB)(
∑T

τ=1 πtτπsτ )2 = 0 as
∑T

τ=1 πtτπsτ = 0 for t 6= s. As

our test statistics are based on linear and quadratic forms of the transformed disturbances,

using the Helmert transformation greatly simplifies the expression of the test statistic.

Apply the Helmert transformation to (1) and (2) yields, for t = 1, . . . , T − 1,

y+
t = Z+

t δ0 + u+
t , and u+

t = ε+t . (3)

Let Ht denote an instrumental variable (IV) matrix.7 With a little abuse of notation, define

y+ = [y+′
1 , · · · , y+′

T−1]′, Z+ = [Z+′
1 , · · · , Z+′

T−1]′ and H+ = [H+′
1 , · · · , H+′

T−1]′. Then δ0 can be

estimated by the 2SLS estimator δ̂ = (Ẑ+′Ẑ+)−1Ẑ+′y+ with Ẑ+ = H+(H+′H+)−1H+′Z+,

and σ2
0 can be estimated by σ̂

2 = [n(T − 1)]−1
∑T−1

t=1 û+′
t û

+
t = [n(T − 1)]−1û+′û+ with

û+
t = y+

t − Z+
t δ̂ and û

+ = [û+′
1 , · · · , û

+′
T−1]′.

7We defer the discussion on possible choices for Ht to the following subsections.
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2.3 The I2
u(q) Test Statistic

Suppose the researcher wants to test for network-generated correlation in the model dis-

turbances, where the underlying structure of the network at period t is represented by an

n× n zero-diagonal weight matrix Wt = [wij,t]. More specifically, the researcher wants to

test the null hypothesis that the VC matrix of ut is proportional to the identity matrix,

i.e.,

Hu
0 : VC(ut|µ) = σ2

0In, for t = 1, · · · , T , (4)

against the alternative that the disturbances are cross-sectionally correlated.8 Since the

Helmert transformation is an orthogonal transformation, we have VC(u+
t ) = σ2

0In under

the null hypothesis, which implies E(u+′
t W

∗
t u

+
t ) = σ2

0tr(W ∗t ) = 0 withW ∗t =
∑T

τ=1 π
2
tτWτ .9

On the other hand, in general, E(u+′
t W

∗
t u

+
t ) 6= 0 under the alternative hypothesis. This

basic idea, which is in line with that underlying the Moran I test for cross-sectional data,

motivates the following test statistic for Hu
0 :

I = Ψ̂
−1/2
Q V̂Q, (5)

where V̂Q =
∑T−1

t=1 û+′
t W

∗
t û

+
t and n−1Ψ̂Q is a consistent estimator for the limiting VC

matrix of n−1/2V̂Q. For simplicity of presentation, we refer to the above test statistic as

the Moran I test statistic, while noting that it would be more appropriate to refer to it as

a Moran I-type test statistic.

We emphasize that the weights wij,t are generally considered to be reflective of some

measure of proximity between units, but do not depend on explicit indexing of units by

location. By extending the notion of proximity from geographical proximity to economic
8The weight matrix Wt is taken to be non-stochastic and suppressed from any information set for

simplicity.
9The motivation to use W ∗t instead of other linear combinations of W1, · · · ,WT to construct the test

statistics will be given in Section 3.
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proximity, technological proximity, social proximity, etc., the Moran I test statistic becomes

useful for testing for dependence not only within the context of spatial networks, but for a

much wider class of networks, including social networks.

One practical problem with the Moran I test statistic defined in (5) is that empirical

researchers are often unsure about the specification of Wt. Thus it is of interest to con-

sider a generalized Moran I test for situations where the researcher is not sure whether

Wt,1,Wt,2, · · · , or Wt,q, or some linear combination of those matrices properly model the

network topology. Towards introducing such a generalization, let

V̂Q =


û+′W ∗1 û

+

...

û+′W ∗q û
+

 , and Φ̂Q = 2σ̂4


tr(W̊ ∗1 W̊

∗
1 ) · · · tr(W̊ ∗1 W̊

∗
q )

...
. . .

...

tr(W̊ ∗q W̊
∗
1 ) · · · tr(W̊ ∗q W̊

∗
q )

 , (6)

where W ∗r = diagT−1
t=1 {W ∗t,r} is a block diagonal matrix with the tth diagonal block being

W ∗t,r =
∑T

τ=1 π
2
tτWτ ,r for r = 1, · · · , q; and let

Ψ̂Q = Φ̂Q + Σ̂Q, (7)

where Φ̂Q is defined in (6) and Σ̂Q is a q × q matrix with the (r, s)th element being

4σ̂2û+′W̊ ∗r (Z+− Ẑ+)(Ẑ+′Ẑ+)−1(Z+− Ẑ+)′W̊ ∗s û
+. Under the regularity conditions of The-

orem 1 below, n−1Ψ̂Q is seen as a consistent estimator for the limiting VC matrix of

n−1/2V̂Q. Suppose Ψ̂Q is nonsingular. Then the proposed generalized Moran I statistic for

Hu
0 is defined as

I2
u(q) = V̂ ′QΨ̂−1

Q V̂Q. (8)

The above statistic generalizes the (squared) Moran I test statistic. It may be viewed

as combining q Moran I test statistics in a way that controls the significance level of the
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overall test. As such it represents an attractive alternative to q sequential Moran I tests.

For q = 1, the I2
u(q) test statistic reduces to the square of the Moran I test statistic defined

in (5).

To formally establish the asymptotic properties of the proposed test statistic, we assume

the following conditions hold under the null hypothesis.

Assumption 1 The innovations εit are i.i.d. with mean zero, variance σ2
0, and finite

(4 + κ)th moments for some κ > 0, for i = 1, · · · , n and t = 1, · · · , T .

Assumption 2 The zero-diagonal weight matrices Wt,r are non-stochastic with row and

column sums uniformly bounded in absolute value, for r = 1, · · · , q and t = 1, · · · , T .

Assumption 3 Let A = diagT−1
t=1 {At}, where At is non-stochastic and the row and column

sums of At are uniformly bounded in absolute value, then n−1Z+′AZ+ = Op(1) and

n−1Z+′Aε+ = n−1E(Z+′Aε+) + op(1), where n−1E(Z+′Aε+) = O(1). In particular,

the assumption holds for A = W̊ ∗r and A = In(T−1).

Assumption 4 The instrument matrix Ht includes the exogenous regressors Xt. The ele-

ments ofHt are non-stochastic and uniformly bounded for t = 1, · · · , T . plimn→∞n
−1H+′Z+

is finite with full column rank and limn→∞ n−1H+′H+ is finite and nonsingular.

The assumptions are generally in line with the spatial econometrics literature. If, in

contrast to what is assumed in Assumption 2, the weight matricesWt,r are endogenous and

stochastic, then the test statistic could be constructed based on a non-stochastic analog of

Wt,r.10

Assumption 3 is kept general, to allow for spatial lags of the dependent variable and

“outside”endogenous variables in the regressor matrix Zt under the null hypothesis. More

10Such an analog could be obtained from a projection of Wt,r on the exogenous variables in the process
that generates Wt,r. See Section 4 and the Monte Carlo study in the online appendix for further discussion.
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specifically, let Xt represent the matrix of system-wide exogenous variables, where the

ith row of Xt only contains exogenous characteristics of unit i. Under H
u
0 , the regres-

sor matrix Zt could be composed of (a subset of) the linearly independent columns of

[Wt,1yt, · · · ,Wt,qyt, Xt,Wt,1Xt, · · · ,Wt,qXt, Y
o
t ,Wt,1Y

o
t , · · · ,Wt,qY

o
t ], where Xt ⊂ Xt and

Y o
t is a matrix of “outside”endogenous variables. Given that Assumption 3 is high level

we provide additional discussions of this assumption, including a discussion of suffi cient

conditions, in the online appendix.

Assumption 4 is standard for the IV matrix Ht. To discuss possible choices for IVs, we

adopt the notation that [Aj ]
m
j=1 := [A1, · · · , Am] for any set of conformable matrices

A1, · · · , Am. Given this notational convention, the IV matrix Ht may be composed of the

linearly independent columns of Xt, [Wt,jXt]
q
j=1, · · · , [Wt,j1Wt,j2 · · ·Wt,jRXt]

q
j1,j2,··· ,jR=1,

for some fixed constant R. See Drukker, Egger and Prucha (2023) for a more in-depth

discussion of instrument selection for systems with spatial or social network structures, in-

cluding their Appendix F, which discusses scenarios where identification and instruments

would be weak. The following theorem gives the asymptotic distribution of the I2
u(q) test

statistic under Hu
0 .

Theorem 1. If the null hypothesis Hu
0 and Assumptions 1-4 hold, then n

−1Ψ̂Q = n−1ΨQ+

op(1),11 where n−1ΨQ is non-stochastic and converges to the limiting VC matrix of n−1/2V̂Q

under Hu
0 . Furthermore, provided that the smallest eigenvalues of n

−1ΨQ are bounded away

from zero, I2
u(q) = V̂ ′QΨ̂−1

Q V̂Q
d→ χ2(q).

The above theorem is derived by showing that the elements of n−1/2V̂Q are asymp-

totically equivalent to linear-quadratic forms, rather than just quadratic forms, in the

innovations ε. The linear part, in general, stems from the presence of cross-sectionally

correlated endogenous regressors. To establish the limiting distribution of n−1/2V̂Q, the

11Explicit expressions for ΨQ are given in the proof.

17



proof applies the CLT for vectors of linear-quadratic forms given in Kelejian and Prucha

(2001; 2010). We note that the proof of the CLT in Kelejian and Prucha (2001; 2010) is

based on rewriting the linear-quadratic forms as a sum of martingale differences, checking

the conditions of the CLT for martingale differences in Hall and Heyde (1981) are satisfied,

and deriving simplified expressions for the limiting VC matrix.

In the spirit of the outer product gradient approach of Born and Breitung (2011), an al-

ternative approach to prove the above theorem would be to rewrite the elements n−1/2V̂Q

as martingale differences, and then verify that, under the maintained assumptions, the

conditions of the CLT for martingale differences in Hall and Heyde (1981) are satisfied.

However, formally checking those conditions of the CLT for martingale differences is in-

volved, and the advantage of using the CLT in Kelejian and Prucha (2001; 2010) is that

those conditions have been verified under a set of easy-to-check basic conditions. The esti-

mator for the VC matrix used in normalizing n−1/2V̂Q is based on the normalized limit of

the sample variance of the martingale differences. Alternatively one could use the sample

variance of the martingale differences as an estimator. However, the latter estimator does

not set terms, which can be seen to go to zero in probability, to zero.

2.4 The I2
y (q) Test Statistic

Now, suppose the researcher wants to test for a more general form of network-generated

dependence. Such dependence could come from the dependence of an individual’s depen-

dent variable on the dependent variable, exogenous variables, and/or disturbances of other

individuals in the network. More specifically, suppose the researcher wants to test the null

hypothesis (t = 1, · · · , T )

Hy
0 : VC(yt|Zt, µ) = σ2

0In, and E(yt|Zt, µ) = Ztδ0 + µ, (9)
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where the ith row of the regressor matrix Zt only contains exogenous and endogenous

characteristics specific to the ith individual.12 That is, the researcher wants to test that,

conditional on individual characteristics Zt and individual effects µ, (i) the dependent

variable is uncorrelated across individuals, and (ii) the expected value of the dependent

variable of an individual only depends on the characteristics specific to that individual,

and thus is not affected by the characteristics of other individuals.

In line with our motivation of the I2
u(q) test statistic, suppose again that the empirical

researcher is not sure whether the weight matrices Wt,1,Wt,2, · · · , or Wt,q or some linear

combination of those matrices properly model the network structure at period t. Let

H̄t,r = Wt,rHt, for r = 1, · · · , q, where the IV matrix Ht contains linearly independent

columns of the matrix of system-wide exogenous variables Xt. Then clearly the following

linear and quadratic moment conditions E(H̄ ′+t,ru
+
t ) = 0 and E(u+′

t W
∗
t,ru

+′
t ) = 0, for r =

1, · · · , q, hold under the null hypothesis but may not generally hold under the alternative.

This motivates the following I2
y (q) test statistic. With a little abuse of notation, define

H̄+
r = [H̄+′

1,r, · · · , H̄
+′
T−1,r]

′. Let

V̂ =

 V̂L

V̂Q

 and Φ̂ =

 Φ̂L 0

0 Φ̂Q

 ,
where V̂Q and Φ̂Q are defined in (6),

V̂L =


H̄+′

1 û+

...

H̄+′
q û+

 , and Φ̂L = σ̂2


H̄+′

1 M ′
ẐZ
M
ẐZ
H̄+

1 · · · H̄+′
1 M ′

ẐZ
M
ẐZ
H̄+
q

...
. . .

...

H̄+′
q M ′

ẐZ
M
ẐZ
H̄+

1 · · · H̄+′
q M ′

ẐZ
M
ẐZ
H̄+
q

 ,
(10)

12The linear dependence of E(yt|Zt, µ) on Zt is only maintained for ease of exposition, and the assumption
could be extended to allow for E(yt|Zt, µ) to depend nonlinearly on Zt.
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with M
ẐZ

= In(T−1) − Ẑ+(Ẑ+′Ẑ+)−1Z+′. The qKH × 1 vector V̂L collects the linear

moments, with KH denoting the number of columns in Ht, and the q×1 vector V̂Q collects

the quadratic moments. Under the regularity conditions of Theorem 2 below, n−1Φ̂ is

seen as a consistent estimator for the limiting VC matrix of n−1/2V̂ . Then the proposed

generalized Moran I statistic for Hy
0 is defined as

I2
y (q) = V̂ ′Φ̂−1V̂ . (11)

To formally establish the asymptotic properties of the test statistic, we maintain similar

assumptions as Theorem 1, with the following modifications. First, for the I2
u(q) test, Zt

may include spatial lags of endogenous variables such as Wry and WrY
o, where Y o is a

matrix of “outside” endogenous variables, and thus E(Z+′Aε+) may not be zero even if

tr(A) = 0. Hence, in Assumption 3, we only assume n−1E(Z+′Aε+) = O(1). In contrast,

since the I2
y (q) test is designed to detect the presence of network-generated dependence in

the dependent variable, spatial lags of endogenous variables are not allowed as regressors

under Hy
0 . We modify Assumption 3 accordingly as follows.

Assumption 3’Assumption 3 holds. Furthermore, E(Z+′Aε+) = 0 when tr(A) = 0.

Second, as I2
y (q) also uses linear moment conditions, we expand Assumption 4 as fol-

lows.

Assumption 4’Assumption 4 holds. Furthermore, plimn→∞n
−1H̄+′

r Z+ is finite with full

column rank and limn→∞ n−1H̄+′
r H̄+

r is finite and nonsingular, for r = 1, · · · , q.

The following theorem gives the asymptotic distribution of the I2
y (q) test statistic under

Hy
0 .
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Theorem 2. If the null hypothesis Hy
0 and Assumptions 1, 2, 3’and 4’hold, then n

−1Φ̂ =

n−1Φ + op(1),13 where n−1Φ is non-stochastic and converges to the limiting VC matrix

of n−1/2V̂ under Hy
0 . Furthermore, provided that the smallest eigenvalues of n

−1Φ are

bounded away from zero, I2
y (q) = V̂ ′Φ̂−1V̂

d→ χ2((KH + 1)q).

A discussion analogous to that given after Theorem 1 also applies here. For reasons of

generality, the formulation of Theorem 2 does not assume an explicit form of the underlying

data-generating process of Zt. However, in Lemma A.4 we establish that the parts of

Assumptions 3’and 4’relating to Zt hold if

Zt = XtΓ + Ξ + Et, (12)

where Xt is a matrix of fully observable exogenous regressors, Ξ is a matrix of individual

effects, and Et is a matrix of i.i.d. innovations with zero mean and finite (4+κ)th moments

for some κ > 0, and if plimn→∞n
−1H+′X+Γ and limn→∞n−1H̄+′

r X+Γ, for r = 1, · · · , q,

are finite with full column rank, with X+ = [X+′
1 , · · · , X

+′
T−1]′.

We note that if Zt is generated by (12) one could additionally exploit the moment con-

dition E(u+′
t W

∗
t,re

+
j,t) = 0,14 with e+

j,t denoting the jth column of E
+
t , to improve the power

of the test (see Liu and Prucha, 2018). However, the advantage of the I2
y (q) test statistic

as defined in (11) is that it is easy to compute, less demanding on data requirements, and

robust to potential misspecification in (12).

3 Equivalence Relationships with LM Test Statistics

In this subsection, we show that, for important specific alternatives, our Moran I test

statistics are equivalent to LM test statistics, with proofs relegated to the online appendix.
13Explicit expressions for Φ are given in the proof.
14See the proof of Lemma A.4 of Appendix A.
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In showing this equivalence we hope to provide additional justification for the selection of

the moments employed in forming our generalized Moran I test statistics and also for the

manner in which the moments are aggregated into a single statistic. More specifically, we

first specify an elongated vector of moments that interacts the transformed disturbances

with time leads and lags of the exogenous variables and weight matrices. Corresponding

to the elongated moment vectors, we then derive the GMM LM test statistics (Newey and

West, 1987) when the data are generated by a Cliff-Ord type model with higher-order

spatial lags under the alternative hypothesis. Implicit in the formulation of the GMM

LM test statistics is the construction of a shortened moment vector based on an optimal

weighting of the original moments. We then establish the equivalence of the generalized

Moran I test statistics with the GMM LM test statistics. We also show that the proposed

test statistics are identical to the ML LM (Rao’s score) test statistics when the underlying

network structure is invariant over time, i.e.,Wt,r = W1,r for r = 1, · · · , q and t = 1, · · · , T .

For the following discussion, we focus on the case where under the null hypothesis the

data are generated by

yt = Xtβ0 + ut, and ut = µ+ εt, for t = 1, · · · , T, (13)

where Xt is an n × KX matrix of observations on KX exogenous variables. In this sim-

ple case, the IV matrix is identical to the regressor matrix (i.e., Ht = Xt) and X̂+ =

H+(H+′H+)−1H+′X+ = X+. Consequently, the 2SLS estimator used to estimate (3)

degenerates to the OLS estimator β̂ = (X+′X+)−1X+′y+ with the estimation residuals

û+
t = y+

t −X+
t β̂. Clearly Σ̂Q = 0 under this setup, and thus the Ψ̂Q defined in (7) becomes

Φ̂Q. Furthermore, since H̄+
r becomes X̄+

r = [X̄+′
1,r, · · · , X̄

+′
T−1,r]

′, where X̄t,r = Wt,rXt for

r = 1, · · · , q, and M
ẐZ

becomes MX = I − X+(X+′X+)−1X+′, the matrices V̂L and Φ̂L
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defined in (10) turn into

V̂L =


X̄+′

1 û+

...

X̄+′
q û

+

 and Φ̂L = σ̂2


X̄+′

1 MXX̄
+
1 · · · X̄+′

1 MXX̄
+
q

...
. . .

...

X̄+′
q MXX̄

+
1 · · · X̄+′

q MXX̄
+
q

 . (14)

3.1 Equivalence of I2
u(q) and LM Test Statistics

Suppose under the alternative hypothesis the data are generated by

yt = Xtβ0 + ut, and ut =

q∑
r=1

ρr0Wt,rut + µ+ εt, for t = 1, · · · , T. (15)

Clearly under this setup the null hypothesis Hu
0 defined in (4) can be formulated equiva-

lently as Hu
0 : ρ0 = 0, where ρ0 = (ρ10, · · · , ρq0)′.

Let Rt(ρ) = In −
∑q

r=1 ρrWt,r and Rt = Rt(ρ0). Applying the Cochrane-Orcutt trans-

formation and then the Helmert transformation to (15) yields

(Rtyt)
+ = (RtXt)

+β0 + ε+t , for t = 1, · · · , T − 1. (16)

Under the maintained assumptions, E(X ′sε
+
t ) = 0 and E(ε+′t Ws,rε

+
t ) = σ2tr(Ws,r) = 0 for

r = 1, · · · , q, s = 1, · · · , T , and t = 1, · · · , T − 1, which suggests the following empirical

moment function

gt(θ) = [X1, · · · , XT ,W1,1ε
+
t (θ), · · · ,WT,1ε

+
t (θ), · · · ,W1,qε

+
t (θ), · · · ,WT,qε

+
t (θ)]′ε+t (θ),

(17)

with ε+t (θ) = [Rt(ρ)(yt −Xtβ)]+ and θ = (ρ′, β′)′. Let g(θ) = [g1(θ)′, · · · , gT−1(θ)′]′, then

E[g(θ0)] = 0. The corresponding GMM LM test statistic (Newey and West, 1987) for
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Hu
0 : ρ0 = 0 is given by

GMM-LMu = g′(θ̂)Ω̂−1Ĝ(Ĝ′Ω̂−1Ĝ)−1Ĝ′Ω̂−1g(θ̂), (18)

where Ĝ and Ω̂ are respectively G = −E[∂g(θ)∂θ |θ0 ] and Ω = E[g(θ0)g(θ0)′] evaluated at

the restricted estimators θ̂ = (0, β̂
′
)′ and σ̂2.15 When E(εt|µ) = 0 and E(µ) = 0, the

following proposition shows that the GMM LM test statistic defined in (18) is identical to

the generalized Moran I test statistic I2
u(q). The proofs of the propositions in this section

are given in the online appendix.

Proposition 1. Under the maintained assumptions, GMM-LMu = I2
u(q).

In the special case where the underlying network structure is invariant over time, i.e.,

Wt,r = W1,r for r = 1, · · · , q and t = 1, · · · , T , the Helmert transformed model (16)

becomes

R1y
+
t = R1X

+
t β0 + ε+t , for t = 1, · · · , T − 1. (19)

Under the assumption that ε = [ε′1, · · · , ε′T ]′ ∼ N(0, σ2
0InT ), we have ε+ = [ε+′1 , · · · , ε

+′
T−1]′ ∼

N(0, σ2
0In(T−1)), and the log-likelihood function of the Helmert transformed model (19) is

lnL(θ, σ2) = −n(T − 1)

2
ln(2πσ2) + (T − 1) ln |R1(ρ)| − 1

2σ2

T−1∑
t=1

ε+t (θ)′ε+t (θ),

where ε+t (θ) = [R1(ρ)(yt − Xtβ)]+ = R1(ρ)(y+
t − X+

t β). The LM test statistic for Hu
0 :

15The explicit expressions for G and Ω are given in the proof of Proposition 1.

24



ρ0 = 0 is given by16

ML-LMu =

 ∂ lnL
∂θ′

∂ lnL
∂σ2


′

θ̂,σ̂2

−E

 ∂2 lnL
∂θ∂θ′

∂2 lnL
∂σ2∂θ′

∂2 lnL
∂θ∂σ2

∂2 lnL
(∂σ2)2

∣∣∣∣∣∣∣
θ0,σ20



−1

θ̂,σ̂2

 ∂ lnL
∂θ′

∂ lnL
∂σ2


θ̂,σ̂2

. (20)

The following proposition shows that the ML LM test statistic defined in (20) is identical

to the generalized Moran I test statistic I2
u(q) with time invariant weight matrices.

Proposition 2. Suppose Wt,r = W1,r for r = 1, · · · , q and t = 1, · · · , T . Under the

maintained assumptions, ML-LMu = I2
u(q).

3.2 Equivalence of I2
y (q) and LM Test Statistics

Now, suppose under the alternative hypothesis the data are generated by

yt =

q∑
r=1

λr0Wt,ryt+Xtβ0+

q∑
r=1

Wt,rXtγr0+ut, and ut =

q∑
r=1

ρr0Wt,rut+µ+εt, for t = 1, · · · , T.

(21)

Under this setup, the null hypothesis Hy
0 defined in (9) can be formulated equivalently as

Hy
0 : ρ0 = λ0 = 0 and γ10 = · · · = γq0 = 0, where λ0 = (λ10, · · · , λq0)′.

Let St(λ) = In −
∑q

r=1 λrWt,r and St = St(λ0). Applying the Cochrane-Orcutt trans-

formation and then the Helmert transformation to (21) yields

(RtStyt)
+ = (RtXt)

+β0 +

q∑
r=1

(RtWt,rXt)
+γr0 + ε+t , for t = 1, · · · , T − 1. (22)

Under the maintained assumptions, E(X ′sε
+
t ) = 0, E(X ′sW

′
s,rε

+
t ) = 0 and E(ε+′t Ws,rε

+
t ) =

σ2tr(Ws,r) = 0 for r = 1, · · · , q, s = 1, · · · , T , and t = 1, · · · , T − 1, which implies the

16The explicit expression for the LM test statistic is given in the proof of Proposition 2.
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following empirical moment function

gt(ϑ) = [H,W1,1ε
+
t (ϑ), · · · ,WT,1ε

+
t (ϑ), · · · ,W1,qε

+
t (ϑ), · · · ,WT,qε

+
t (ϑ)]′ε+t (ϑ) (23)

withH = [X1, · · · , XT ,W1,1X1, · · · ,WT,1XT , · · · ,W1,qX1, · · · ,WT,qXT ], ε+t (ϑ) = {Rt(ρ)[St(λ)yt−

Xtβ−
∑q

r=1Wt,rXtγr]}+ and ϑ = (λ′, ρ′, γ′1, · · · , γ′q, β′)′. Let g(ϑ) = [g1(ϑ)′, · · · , gT−1(ϑ)′]′,

then E[g(ϑ0)] = 0. The corresponding GMM LM test statistic (Newey and West, 1987) for

Hy
0 : ρ0 = λ0 = 0 and γ10 = · · · = γq0 = 0 is given by

GMM-LMy = g′(ϑ̂)Ω̂−1Ĝ(Ĝ′Ω̂−1Ĝ)−Ĝ′Ω̂−1g(ϑ̂), (24)

where Ĝ and Ω̂ are respectively G = −E[∂g(ϑ)
∂ϑ |ϑ0 ] and Ω = E[g(ϑ0)g(ϑ0)′] evaluated at

the restricted estimators ϑ̂ = (0, β̂
′
)′ and σ̂2.17 When E(εt|µ) = 0 and E(µ) = 0, the

following proposition shows that the GMM LM test statistic defined in (24) is identical to

the generalized Moran I test statistic I2
y (q).

Proposition 3. Under the maintained assumptions, GMM-LMy = I2
y (q).

In the special case where the underlying network structure is invariant over time, i.e.,

Wt,r = W1,r for r = 1, · · · , q and t = 1, · · · , T , the Helmert transformed model (22)

becomes

R1S1y
+
t = R1X

+
t β +

q∑
r=1

R1W1,rX
+
t γr + ε+t , for t = 1, · · · , T − 1. (25)

Under the assumption that ε = [ε′1, · · · , ε′T ]′ ∼ N(0, σ2
0InT ), we have ε+ = [ε+′1 , · · · , ε

+′
T−1]′ ∼

17The explicit expressions for G and Ω are given in the proof of Proposition 3.
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N(0, σ2
0In(T−1)), and the log-likelihood function of the Helmert transformed model (25) is

lnL(ϑ, σ2) = −n(T − 1)

2
ln(2πσ2)+(T−1) ln |R1(ρ)|+(T−1) ln |S1(λ)|− 1

2σ2

T−1∑
t=1

ε+t (ϑ)′ε+t (ϑ),

where ε+t (ϑ) = {R1(ρ)[S1(λ)yt − Xtβ −
∑q

r=1W1,rXtγr]}+ = R1(ρ)[S1(λ)y+
t − X+

t β −∑q
r=1W1,rX

+
t γr]. The LM test statistic for Hy

0 : ρ0 = λ0 = 0 and γ10 = · · · = γq0 = 0 is

given by18

ML-LMy =

 ∂ lnL
∂ϑ′

∂ lnL
∂σ2


′

ϑ̂,σ̂2

−E

 ∂2 lnL
∂ϑ∂ϑ′

∂2 lnL
∂σ2∂ϑ′

∂2 lnL
∂ϑ∂σ2

∂2 lnL
(∂σ2)2

∣∣∣∣∣∣∣
ϑ0,σ20



−1

ϑ̂,σ̂2

 ∂ lnL
∂ϑ′

∂ lnL
∂σ2


ϑ̂,σ̂2

. (26)

The following proposition shows that the ML LM test statistic defined in (26) is identical

to the generalized Moran I test statistic I2
y (q) with time invariant weight matrices.

Proposition 4. Suppose Wt,r = W1,r for r = 1, · · · , q and t = 1, · · · , T . Under the

maintained assumptions, ML-LMy = I2
y (q).

4 Implementation with Endogenous Weight Matrices

In the following we provide a brief discussion on how to implement the generalized Moran

I test when the weight matrix Wt is endogenous in the sense that its elements may be

correlated with the error term ut of the main regression.19 Suppose the (i, j)th element of

Wt is generated by

wij,t = fij,t(ζt, ηt), (27)

18The explicit expression for the LM test statistic is given in the proof of Proposition 4.
19For notational simplicity, we focus on the case with a single endogenous weight matrix Wt. The same

argument can be easily extended to the case with multiple endogenous weight matrices Wt,1, · · · ,Wt,q.
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where (i) ζt is a matrix of exogenous and/or endogenous characteristics, in the sense that

they may be correlated with the individual effects µ, but not with the idiosyncratic dis-

turbances εt, and (ii) ηt is a matrix of potentially endogenous characteristics in the sense

that they may also be correlated with the idiosyncratic disturbances εt.

In light of the above it proves useful to distinguish between two cases of endogeneity

of the weight matrix. First, consider the case where the elements of Wt only depend

on ζt. Since the fixed effects are eliminated by the Helmert transformation, the weight

matrix Wt becomes exogenous in the transformed model, and the generalized Moran I

test based on Wt still has the proper size. Second, consider the case where the elements

of Wt also depend on ηt. In this case we may attempt to implement the generalized

Moran I test with the endogenous weight matrix Wt replaced by (in the transformed

model) exogenous auxiliary weight matrices, which are obtained from a projection of wij,t

onto observed elements of ζt (and/or other exogenous variables). For example, suppose

wij,t is determined by a homophily link formation model where individuals with similar

characteristics are more likely to form a link, and where the formation process may also

depend on endogenous components. Then, we could construct auxiliary exogenous weight

matrices based on the similarity between individuals in observed exogenous characteristics

(e.g., whether two individuals are of the same gender, race, etc.). As the auxiliary weight

matrices are exogenous, the generalized Moran I test based on the auxiliary weight matrices

has the proper size. We conduct Monte Carlo simulations to investigate the performance

of the generalized Moran I test when the weight matrices are endogenous in the online

appendix.
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5 Monte Carlo Study

In this section, we report on results from a Monte Carlo study of the finite sample properties

of the I2
u(q) and I2

y (q) test statistics. Additional Monte Carlo results are reported in an

online appendix.

For our Monte Carlo experiments we utilize two sets of weight matrices, Wt,1 and Wt,2,

for t = 1, . . . , T . To generate those weight matrices we partition n individuals into equal-

sized groups with m individuals in each group. Let ξ∗t,r (for r = 1, 2) be two independent

n × 1 vectors of random variables generated as ξ∗t,r = φrξ
∗
t−1,r + vt,r, with the initial

condition ξ∗0,r ∼ N(0, (1 − φ2
r)
−1In) and error term vt,r ∼ N(0, In). Let ξt,r (for r = 1, 2)

be the standardized ξ∗t,r given by ξt,r = (1− φ2
r)

1/2ξ∗t,r. Let Dt,r (for r = 1, 2) be an n× n

zero-diagonal matrix of indicator variables with the (i, j)th element being one if and only

if individuals i and j are in the same group and
∣∣ξit,r − ξjt,r∣∣ ≤ c, where ξit,r denotes

the ith element of ξt,r and c a cutoff distance. For an exemplary interpretation, ξt,r may

be thought of as representing some exogenous characteristics of the individuals and the

elements of Dt,r as reflecting network links based on homophily. For our simulations we

set φ1 = 0 and φ2 = 0.5 so that Dt,1 is independent over time and Dt,2 has a moderate

correlation over time. We set the group size to m = 50 and the cutoff distance to c = 0.2,

which generates somewhat sparse networks. The weight matrix Wt,r (for r = 1, 2) is then

obtained by row-sum normalizing Dt,r so that each non-zero row of Wt,r sums to one.

The proposed I2(q) tests utilize quadratic moment conditions with weighting matrices

W ∗t,r =
∑T

τ=1 π
2
tτWτ ,r, where the πtτ denote the Helmert coeffi cients. In Section 5.1, we

investigate the performance of the proposed I2(q) tests relative to alternative tests, which

do not use the Helmert weighting.

In Section 5.2, we report on the size, power, and the trade-offs in power of I2(2) tests

based on both Wt,1 and Wt,2, relative to the I2(1) tests based on only Wt,1 or Wt,2. We
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find all tests to be properly sized. We also find that the I2
u(2) test based on both Wt,1 and

Wt,2 offers a substantial degree of robustness as compared to the I2
u(1) test.

In providing Monte Carlo results on the performance of the I2
u(q) and I2

y (q) tests we

consider a number of different generating processes for the n× 1 vectors of disturbances ut

and endogenous variables yt. For all simulations, ut is generated as

ut = ρ1Wt,1ut + ρ2Wt,2ut + µ+ εt.

As covariates in the generating processes for yt we consider spatial lags of yt, exogenous

variables collected in a n× 2 matrix Xt, and an outside endogenous variable y0
t generated

as

y0
t = Xtδ + ξ + et.

with δ = (1, 1)′. The elements of the n × 2 matrix Xt are drawn independently as

Uniform[0, 3], the individual effects µ and ξ are drawn independently from N(0, In) and the

random innovations εt and et are generated as dependent N(0, In) with cov(εt, et) = 0.5In.

Each Monte Carlo experiment is based on 50,000 repetitions.

In addition to the simulation results presented below, in the online appendix, we also

report on the performance of the I2
u(q) and I2

y (q) test statistics when q is large. In particu-

lar, we compare the performance of the proposed I2
u(q) and I2

y (q) tests with the Holm test

(Holm, 1979). We find that the Holm test tends to under-reject the null hypothesis. Not

surprisingly, the downward size distortion of the Holm test tends to be more severe when

q is large and the correlation between Wt,r and Wt,s is high. In the online appendix we

also report on the performance of the I2
u(q) and I2

y (q) tests when the weight matrices are

endogenous. In line with our discussion in the Section 4, we consider two forms of endo-

geneity. The first case arises when the weight matrix Wt is correlated with the individual
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effects µ, but not with the idiosyncratic disturbances εt. The results confirm that in this

case we can still use the weight matrix Wt in forming our test statistics. The second case

arises when the weight matrix Wt is also correlated with the idiosyncratic disturbances

εt. In this latter case we see that the use of the actual weight matrices Wt can result

in substantial size distortions. However, replacing the actual weight matrices with “ap-

proximated/projected”weight matrices, which only depend on exogenous variables, yields

properly sized tests. The power of those tests will, of course, be application specific and

depend on the quality of the approximations.

5.1 Performance of I2(q) Tests Relative to Non-Helmert Weighted Tests

In Tables 1-4 below we report on the performance of the I2
u(q) and I2

y (q) tests relative

to alternative tests, which do not use the Helmert weighting. For the I2
u(q) test, yt is

generated as

yt = Xtβ + ut,

and, for the I2
y (q) test, yt is generated as

yt = λ1Wt,1yt + λ2Wt,2yt +Xtβ +Wt,1Xtγ1 +Wt,2Xtγ2 + ut,

with β = (1, 1)′. We consider a number of scenarios corresponding to different values

for the spatial lag parameters as detailed in the tables. As described in Section 2, the

proposed I2
u(q) and I2

y (q) tests utilize the quadratic moments composing V̂Q, where V̂Q is

defined by (6). Observe that those quadratic moments are based onW ∗r = diagT−1
t=1

{
W ∗t,r

}
,

whereW ∗t,r =
∑T

τ=1 π
2
tτWτ ,r is a weighted average of the spatial weight matrices for periods

t = 1, . . . , T , using the squared Helmert coeffi cients as weights.

As a first alternative test we consider a test where W ∗t,r is replaced by a simple time

31



average of the spatial weight matrices, i.e.,W r = T−1
∑T

t=1 W̊t,r. Clearly, this test can also

be viewed as being obtained by replacing the matrices W ∗r by IT−1 ⊗W r and replacing

tr(W̊ ∗r W̊
∗
s ) by (T − 1)tr(W rW s) in Φ̂Q defined in (6). In the following we refer to this

alternative test as the “time-average weighted”I2 test.

As a second alternative test we consider a test whereW ∗t,r is replaced by the first period

spatial weight matrix W1,r, thus ignoring the time variation of the spatial weight matrices.

Clearly, this test can also be viewed as being obtained by replacing the matrices W ∗r by

IT−1 ⊗ W1,r and replacing tr(W̊ ∗r W̊
∗
s ) by (T − 1)tr(W̊1,rW̊1,s) in Φ̂Q defined in (6). In

the following we refer to this alternative test as the “initial-period weighted”I2 test. Of

course, in settings where the spatial weight matrices do not vary over time, the proposed

I2
u(q) and I2

y (q) tests and the alternative tests are all identical.

[Insert Tables 1-4 here]

Tables 1-4 show that the I2
u(q) and I2

y (q) tests as defined in Section 2, and locally

labeled in those tables as “Helmert weighted” I2
u(q) and I2

y (q) tests for clarity, have the

correct size and strictly higher power than the other two alternative tests. Henceforth, we

focus our attention on the performance of the I2
u(q) and I2

y (q) tests as defined previously

with W ∗t,r =
∑T

τ=1 π
2
tτWτ ,r.

5.2 Relative Performance of I2(1) and I2(2) Tests

In the following we report on the performance of the I2(2) tests based on both Wt,1 and

Wt,2, relative the the performance of the I2(1) tests based on onlyWt,1 orWt,2 for different

scenarios.
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For the I2
u(q) test we consider four different data generating processes for yt:

yt = Xtβ + ut, (28)

yt = βy0
t + ut, (29)

yt = λWt,1yt +Xtβ + ut, (30)

yt = λWt,1yt +Xtβ +Wt,1Xtγ + ut. (31)

Under the null hypothesisHu
0 we have ut = µ+εt. In the first scenario where yt is generated

by (28), all covariates are exogenous. We set β = (1, 1)′, and report the simulation results

on the I2
u(q) test for this scenario in Table 5. The second scenario, where yt is generated

by (29), allows for an “outside” endogenous covariate y0
t . We set β = 1 and use Xt as

instruments for y0
t . The corresponding simulation results are reported in Table 6. In the

last two scenarios, we allow for endogenous covariates in the form of spatial lags of yt under

the null. For (30), we set λ = 0.5 and β = (1, 1)′, and useWt,1Xt as instruments forWt,1yt.

For (31), we set λ = 0.5 and β = γ = (1, 1)′, and use W 2
t,1Xt as additional instruments for

Wt,1yt. The corresponding simulation results are reported in Tables 7 and 8 respectively.

[Insert Tables 5-8 here]

Overall, we find that the actual sizes of the I2
u(q) tests are close to the asymptotic

nominal size of 0.05 and that the power increases as the magnitudes of the spatial autore-

gressive parameters (cross sectional correlation) increases. We also find that the I2
u(2) tests

based on both Wt,1 and Wt,2 can offer a substantial degree of robustness as compared to

the I2
u(1) tests. Consider the case where ρ1 6= 0 and ρ2 = 0. In this scenario, Wt,1 correctly

models the network topology, whereas Wt,2 does not. We expect the I2
u(1) test based on

Wt,1 to outperform other tests. Indeed, compared to the I2
u(1) test based on Wt,1, we find

a substantial power loss for the I2
u(1) test based on the “wrong”weight matrix Wt,2, while
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there is only a modest power loss for the I2
u(2) test based both Wt,1 and Wt,2. The results

suggest that, unless a researcher is very sure which weight matrices properly model the

network topology, using an I2
u(q) test that combines several candidate weight matrices can

be an attractive and robust approach.

To explore the performance of the I2
y (q) test we consider two different data generating

processes for yt:

yt = λ1Wt,1yt + λ2Wt,2yt +Xtβ +Wt,1Xtγ1 +Wt,2Xtγ2 + ut, (32)

yt = λ1Wt,1yt + λ2Wt,2yt + βy0
t + γ1Wt,1y

0
t + γ2Wt,2y

0
t + ut. (33)

We set β = (1, 1)′ in (32) and β = 1 in (33). In the scenario where yt is generated by

(32), the null hypothesis Hy
0 corresponds to yt = Xtβ + µ + εt and in this scenario all

covariates are exogenous under the null. By contrast, in the scenario where yt is generated

by (33), the null hypothesis Hy
0 corresponds to yt = βy0

t + µ + εt and in this scenario we

allow for an endogenous covariate y0
t under the null. The endogenous covariate y

0
t is an

“outside endogenous variable”in the sense of a “classical”simultaneous equation system.

The simulation results for the two scenarios are reported in Tables 9 and 10 respectively.

[Insert Tables 9 and 10 here]

Similar to the simulation results for the I2
u(q) tests, we find that the actual sizes of

the I2
y (q) tests are close to the asymptotic nominal size of 0.05 and the power of the tests

increases as the amount of cross sectional dependence increases. Furthermore, when cross

sectional dependence is based on Wt,1 but not on Wt,2, the power loss of the I2
y (2) test

using both Wt,1 and Wt,2 is much less than that of the I2
u(1) test based on the “wrong”

weight matrixWt,2. This indicates that the I2
y (q) test combining multiple candidate weight

matrices can provide the empirical researcher some important level of robustness when they

34



are unsure about which weight matrices properly model the network topology.

6 Conclusion

In this paper, we introduce generalizations of the Moran I tests for network-generated

cross-sectional dependence in a panel data setting with unit-specific fixed or random effects

and time-varying network structures. The tests are applicable to both spatial and social

network structures. Our tests are intuitively motivated. They are geared towards situations

where researchers are uncertain as to how to choose among multiple potential spatial

weight matrices or adjacency matrices. While our tests are intuitive, they are also shown

to be equivalent to Lagrange Multiplier tests for specific, but widely considered, model

formulations under the alternative hypothesis. We establish the limiting distribution of

the test statistics and the rejection regions of the tests for a given significance level under

fairly general assumptions, which should make the test useful in a wide range of empirical

research. Our test statistics are relatively simple and easy to compute. This simplicity is,

in particular, due to adopting the Helmert transformation to eliminate unit-specific effects,

which may be random or fixed, and by selecting the quadratic moments such that the

diagonal elements of the weight matrices of the quadratic forms are zero.

We also conduct Monte Carlo experiments to investigate the finite sample performance

of the proposed tests. Overall, the results suggest that the proposed tests perform well

with proper size and reasonable power. The loss in power from using more weight matrices

than needed is mostly modest. This suggests that the tests can indeed provide robustness

against uncertainty about the proper choice of the spatial weight matrices or adjacency

matrices. We also discuss how the testing framework can be extended to the case where

network formation is endogenous.
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Appendices

A Moments of Functions of Transformed Disturbances

As before, let u+
t =

∑T
τ=1 πtτuτ denote the Helmert transformed disturbances. Recall

that
∑T

τ=1 πtτ = 0 and thus u+
t = ε+t , and that the transformation is orthonormal in that∑T

τ=1 π
2
tτ = 1, and

∑T
τ=1 πtτπsτ = 0 for t 6= s. Furthermore, let u×t =

∑T
τ=1$tτuτ denote

some generically transformed disturbances with
∑T

τ=1$tτ = 0. Observe that u×t = ε×t ,

but the transformation may not be orthonormal. The results given below are formulated

for transformations of εt, but since u+
t = ε+t and u

×
t = ε×t the same result also holds for

transformations of ut.

Assumption A.1. Let ε = (ε′1, · · · , ε′T )′ with εt = (ε1t, · · · , εnt)′ denoting vectors of in-

novations, where the elements {εit : i = 1, · · · , n, t = 1, · · ·T} are i.i.d. with E(εit) = 0,

E(ε2it) = σ2, E(ε3it) = µ3 and E(ε4it) = µ4 finite.

Lemma A.1. Suppose Assumption A.1 holds. Let A and B be non-stochastic n × n

matrices, and let a and b be non-stochastic n× 1 vectors. For t, s = 1, · · · , T − 1, let

V A
t = ε×′t Aε

×
t + a′ε×t , V B

s = ε×′s Bε
×
s + b′ε×s ,

then E(V A
t ) = σ2

∑T
τ=1$

2
tτ tr(A) and

Cov(V A
t , V

B
s ) = σ4[tr(AB +AB′)](

T∑
τ=1

$tτ$sτ )2 + σ2a′b
T∑
τ=1

$tτ$sτ (A.1)

+µ3[
T∑
τ=1

$tτ$
2
sτa
′vecD(B) +

T∑
τ=1

$sτ$
2
tτ b
′vecD(A)]

+(µ4 − 3σ4)
T∑
τ=1

$2
tτ$

2
sτvecD(A)′vecD(B).
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Furthermore, for ε×t = ε+t , that is for Helmert transformed disturbances, and if additionally

vecD(A) = vecD(B) = 0, we have E(V A
t ) = 0 and

Cov(V A
t , V

B
s ) =

 σ4tr(AB +AB′) + σ2a′b for t = s

0 for t 6= s.
. (A.2)

Remark: The results in (A.1) can be readily used to establish that E(ε+it) = 0, E(ε+it)
2 = σ2,

E(ε+it)
3 = µ3

∑T
τ=1 π

3
tτ , and E(ε+it)

4 = µ4

∑T
τ=1 π

4
tτ + 3σ4(1 −

∑T
τ=1 π

4
tτ ). Furthermore,

E(ε+itε
+
is) = 0 for t 6= s, and E(ε+itε

+
jt) = 0 for i 6= j since (εit)

T
t=1 and (εjt)

T
t=1 are independent

for i 6= j.

Proof of Lemma A.1. 20 Observe that

ε×′t Aε
×
t =

T∑
ς=1

T∑
τ=1

$tς$tτ ε
′
ςAετ = ε′Cε,

a′ε×t =
T∑
τ=1

a′$tτ ετ = c′ε,

where C = [Cςτ ]ς,τ=1,··· ,T and c = (c′1, · · · , c′T )′, with Cςτ = $tς$tτA and cτ = $tτa.

Similarly, ε×′s Bε
×
s = ε′Dε and b′ε×s = d′ε, where D = [Dςτ ]ς,τ=1,··· ,T with Dςτ = $sς$sτB

and d = (d′1, · · · , d′T )′ with dτ = $sτ b. Using Lemma A.1 in Kelejian and Prucha (2010),

it follows that

E(V A
t ) = E(ε′Cε+ c′ε) = σ2tr(C) = σ2

T∑
τ=1

$2
tτ tr(A), (A.3)

20 In proving the lemma we utilize results in Kelejian and Prucha (2010). Alternatively, the lemma could
be established by specializing results in Kuersteiner and Prucha (2020).
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which proves the first claim, and

Cov(V A
t , V

B
s ) = Cov[(ε′Cε+ c′ε)(ε′Dε+ d′ε)] (A.4)

= σ4[tr(CD) + tr(CD′)] + σ2c′d+ µ3[c′vecD(D) + d′vecD(C)] + (µ4 − 3σ4)vecD(C)′vecD(D).

Observe that

tr(CD) =
T∑
ς=1

T∑
τ=1

tr(CςτDτς) =
T∑
ς=1

T∑
τ=1

tr($tς$tτA$sς$sτB) =

[
T∑
τ=1

$tτ$sτ

]2

tr(AB),

and analogously tr(CD′) =
[∑T

τ=1$tτ$sτ

]2
tr(AB′). Additionally, observe that vecD(C) =

[$2
t1vecD(A)′, · · · , $2

tTvecD(A)′]′, vecD(D) = [$2
s1vecD(B)′, · · · , $2

sTvecD(B)′]′, c = [$t1a, · · · , $tTa],

and d = [$s1b, · · · , $sT b], and thus

c′d =

T∑
τ=1

$tτ$sτa
′b = a′b

T∑
τ=1

$tτ$sτ ,

c′vecD(D) =

T∑
τ=1

$tτ$
2
sτa
′vecD(B),

d′vecD(C) =

T∑
τ=1

$sτ$
2
tτ b
′vecD(A),

vecD(C)′vecD(D) =

T∑
τ=1

$2
tτ$

2
sτvecD(A)′vecD(B).

Substitution of these expressions into (A.4) completes the proof of the second claim. The

remaining claims follow immediately because of the orthonormality of the weights of the

Helmert transformation.

Lemma A.2. Suppose Assumption A.1 holds. Let A = [Ast]s,t=1,··· ,T−1, B = [Bst]s,t=1,··· ,T−1,

a = (a′1, · · · , a′T−1)′, and b = (b′1, · · · , b′T−1)′, where Ast and Bst are non-stochastic n × n
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matrices, and at and bt are non-stochastic n× 1 vectors. Now let

V A =

T−1∑
s=1

T−1∑
t=1

ε+′s Astε
+
t +

T−1∑
t=1

a′tε
+
t , V B =

T−1∑
s=1

T−1∑
t=1

ε+′s Bstε
+
t +

T−1∑
t=1

b′tε
+
t ,

Then E(V A) = σ2tr(A) and

Cov(V A, V B) = σ4tr(AB +AB′) + σ2a′b

+µ3(c′vecD(D) + d′vecD(C)) + (µ4 − 3σ4)vecD(C)′vecD(D),

where C = [Cςτ ], D = [Dςτ ], c = (c′1, · · · , c′T )′ and d = (d′1, · · · , d′T )′, with Cςτ =∑T−1
s=1

∑T−1
t=1 πsςπtτAst, Dςτ =

∑T−1
s=1

∑T−1
t=1 πsςπtτBst, cτ =

∑T−1
t=1 πtτat and dτ =

∑T−1
t=1 πtτ bt.

Clearly if vecD(A) = vecD(B) = 0, then vecD(C) = vecD(D) = 0, and in this case the

terms involving the third and fourth moments of the elements of ε are zero.

Proof of Lemma A.2. Observe that

T−1∑
s=1

T−1∑
t=1

ε+′s Astε
+
t =

T−1∑
s=1

T−1∑
t=1

T∑
ς=1

T∑
τ=1

πsςπtτ ε
′
ςAstετ =

T∑
ς=1

T∑
τ=1

ε′ςCςτ ετ = ε′Cε

and
T−1∑
t=1

a′tε
+
t =

T−1∑
t=1

T∑
τ=1

a′tπtτ ετ =
T∑
τ=1

c′τ ετ = c′ε,

and similarly
∑T−1

s=1

∑T−1
t=1 ε+′s Bstε

+
t = ε′Dε and

∑T−1
t=1 b′tε

+
t = d′ε. Then by Lemma A.1 in

Kelejian and Prucha (2010)

E(V A) = σ2tr(C), E(V B) = σ2tr(D), (A.5)
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and

Cov(V A, V B) = σ4[tr(CD) + tr(CD′)] + σ2c′d (A.6)

+µ3(c′vecD(D) + d′vecD(C)) + (µ4 − 3σ4)vecD(C)′vecD(D).

As
∑T

τ=1 πsτπtτ = 0 for s 6= t and
∑T

τ=1 π
2
tτ = 1, we have

tr(C) =
T∑
τ=1

tr(
T−1∑
s=1

T−1∑
t=1

πsτπtτAst) =
T−1∑
s=1

T−1∑
t=1

tr[(
T∑
τ=1

πsτπtτ )Ast] =
T−1∑
t=1

tr(Att) = tr(A),

tr(CD) =

T∑
ς=1

T∑
τ=1

tr(CςτDτς) =

T∑
ς=1

T∑
τ=1

tr(

T−1∑
s=1

T−1∑
t=1

πsςπtτAst

T−1∑
u=1

T−1∑
v=1

πuςπvτBvu)

=
T−1∑
s=1

T−1∑
t=1

T−1∑
u=1

T−1∑
v=1

tr[(
T∑
ς=1

πsςπuς)(
T∑
τ=1

πtτπvτ )AstBvu] =
T−1∑
s=1

T−1∑
t=1

tr(AstBts) = tr(AB),

and

c′d =
T∑
τ=1

c′τdτ =
T∑
τ=1

T−1∑
s=1

T−1∑
t=1

πsτπtτa
′
sbt =

T−1∑
s=1

T−1∑
t=1

(
T∑
τ=1

πsτπtτ )a′sbt =
T−1∑
t=1

a′tbt = a′b.

Similarly, tr(D) = tr(B) and tr(CD′) = tr(AB′). The claims of the lemma are now readily

verified upon substitution of the above expressions into (A.5) and (A.6).

Assumption A.2. Let ξ = (ξ′1, · · · , ξ′G)′, with ξg = (ξ′1,g, · · · , ξ′T,g)′ and ξt,g = (ξ1t,g, · · · , ξnt,g)′

denoting some vectors of basic innovations, where the elements {ξit,g : i = 1, · · · , n, t =

1, · · ·T, g = 1, · · · , G} are i.i.d. with E(ξit,g) = 0, E(ξ2
it,g) = 1, E(ξ3

it,g) = µξ3 and

E(ξ4
it,g) = µξ4 finite.

Lemma A.3. Suppose Assumption A.2 holds. Let A = diagT−1
t=1 {At}, B = diagT−1

t=1 {Bt},

a = (a′1, · · · , a′T−1)′, b = (b′1, · · · , b′T−1)′ where At and Bt be non-stochastic n×n matrices,

and at and bt are non-stochastic n × 1 vectors. Let P = [pgq] be a non-stochastic G × G
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matrix and pg· denote the gth row of P . For g = 1, · · · , G, let εg = (ε′1,g, · · · , ε′T,g) with

εt,g = (ε1t,g, · · · , εnt,g)′ be generated as

εg =

G∑
q=1

pgqξq = (pg· ⊗ InT )ξ.

Observe that E(εg) = 0 and Cov(εg, εh) = σghInT with σgh =
∑G

q=1 pgqphq. Let g1, g2, g3, g4

be distinct elements of {1, · · · , G} and let

V A = (ε+′g1Aε
+
g2 + ε+′g1a) =

T−1∑
t=1

(ε+′t,g1Atε
+
t,g2

+ ε+′t,g1at),

V B = (ε+′g3Bε
+
g4 + ε+′g3 b) =

T−1∑
t=1

(ε+′t,g3Btε
+
t,g4

+ ε+′t,g3bt).

Then

V A = ε′g1Cεg2 + ε′g1c = ξ′C∗ξ + ξ′c∗,

V B = ε′g3Dεg4 + ε′g3d = ξ′D∗ξ + ξ′d∗,

where C = [Cςτ ]ς,τ=1,··· ,T with Cςτ =
∑T−1

t=1 πtςπtτAt, where D = [Dςτ ]ς,τ=1,··· ,T with Dςτ =∑T−1
t=1 πtςπtτBt, where c = (c′1, · · · , c′T )′ with cτ =

∑T−1
t=1 πtτat, where d = (d′1, · · · , d′T )′

with dτ =
∑T−1

t=1 πtτ bt, and where C∗ = p′g1·pg2· ⊗ C, D∗ = p′g3·pg4· ⊗D, c∗ = p′g1· ⊗ c, and

d∗ = p′g3· ⊗ d. Furthermore E(V A) = σg1g2tr(A) and

Cov(V A, V B) = σg1g4σg2g3tr(AB) + σg1g3σg2g4tr(AB
′) + σg1g3a

′b

+µξ3[pg1·vecD(p′g3·pg4·)⊗ c
′vecD(D) + pg3·vecD(p′g1·pg2·)⊗ d

′vecD(C)]

+(µξ4 − 3)vecD(p′g1·pg2·)
′vecD(p′g3·pg4·)⊗ vecD(C)′vecD(D).
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Clearly if vecD(At) = vecD(Bt) = 0, then vecD(C) = vecD(D) = 0, and in this case the

terms involving the third and fourth moments of the elements of ξ are zero.

Remark: Since the lemma does not restrict the elements of P , the setup allows for some

or all of the εg to be the same.

Proof of Lemma A.3. W.o.l.o.g. we consider g1 = 1, g2 = 2, g3 = 3 and g4 = 4. Then

εg = (pg· ⊗ InT )ξ and

T−1∑
t=1

ε+′t,1Atε
+
t,2 =

T−1∑
t=1

T∑
ς=1

T∑
τ=1

πtςπtτ ε
′
ς,1Atετ ,2 =

T∑
ς=1

T∑
τ=1

ε′ς,1Cςτ ετ ,2 = ε′1Cε2 = ξ′C∗ξ,

T−1∑
t=1

ε+′t,1at =

T−1∑
t=1

T∑
τ=1

πtτ ε
′
τ ,1at =

T∑
τ=1

ε′τ ,1

T−1∑
t=1

πtτat = ε′1c = ξ′c∗,

where C∗ = (p′1·⊗ InT )C(p2·⊗ InT ) = p′1·p2·⊗C and c∗ = (p′1·⊗ InT )c = p′1·⊗ c. Similarly,∑T−1
t=1 ε+′t,3Btε

+
t,4 = ξ′D∗ξ, whereD∗ = (p′3·⊗InT )D(p4·⊗InT ) = p′3·p4·⊗D, and

∑T−1
t=1 ε+′t,3bt =

ξ′d∗ where d∗ = (p′3· ⊗ InT )d = p′3· ⊗ d.

Using Lemma A.1 in Kelejian and Prucha (2010), it follows that

E(V A) = E(ξ′C∗ξ + ξ′c∗) = tr[C(p2·p
′
1· ⊗ InT )] = σ12tr(C) = σ12

T∑
τ=1

tr(Cττ )

= σ12

T∑
τ=1

tr(
T−1∑
t=1

π2
tτAt) = σ12

T−1∑
t=1

tr(At

T∑
τ=1

π2
tτ ) = σ12

T−1∑
t=1

tr(At) = σ12tr(A),

which proves the first claim, and

Cov(V A, V B) = Cov(ξ′C∗ξ + ξ′c∗, ξ
′D∗ξ + ξ′d∗) = [tr(C∗D∗) + tr(C∗D

′
∗)] + c′∗d∗(A.7)

+µξ3[c′∗vecD(D∗) + d′∗vecD(C∗)] + (µξ4 − 3)vecD(C∗)
′vecD(D∗).
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Observe that

tr(C∗D∗) = tr[(p′1· ⊗ InT )C(p2· ⊗ InT )(p′3· ⊗ InT )D(p4· ⊗ InT )] (A.8)

= σ14σ23tr(CD) = σ14σ23

T∑
ς=1

T∑
τ=1

tr(CςτDτς)

= σ14σ23

T∑
ς=1

T∑
τ=1

tr(

T−1∑
t=1

T−1∑
s=1

πtςπtτπsςπsτAtBs)

= σ14σ23

T−1∑
t=1

T−1∑
s=1

tr(AtBs)

T∑
ς=1

πtςπsς

T∑
τ=1

πtτπsτ

= σ14σ23

T−1∑
t=1

tr(AtBt) = σ14σ23tr(AB)

in light of the orthonormality of the weights of the Helmert transformation, and analogously

tr(C∗D′∗) = σ13σ24tr(AB′). Next, observe that

c′∗d∗ = c′(p1·p
′
3· ⊗ InT )d = σ13

T∑
τ=1

c′τdτ = σ13

T∑
τ=1

T−1∑
t=1

T−1∑
s=1

πtτπsτa
′
tbs (A.9)

= σ13

T−1∑
t=1

T−1∑
s=1

a′tbs

T∑
τ=1

πtτπsτ = σ13

T−1∑
t=1

a′tbt = σ13a
′b

in light of the orthonormality of the weights of the Helmert transformation. Addition-

ally observe that vecD(C∗) = vecD(p′1·p2· ⊗ C) = vecD(p′1·p2·) ⊗ vecD(C) and similarly

vecD(D∗) = vecD(p′3·p4·)⊗ vecD(D), and thus

c′∗vecD(D∗) = p1·vecD(p′3·p4·)⊗ c′vecD(D), (A.10)

d′∗vecD(C∗) = p3·vecD(p′1·p2·)⊗ d′vecD(C),

vecD(C∗)
′vecD(D∗) = vecD(p′1·p2·)

′vecD(p′3·p4·)⊗ vecD(C)′vecD(D).

Substitution of expressions (A.8)-(A.10) into (A.7) completes the proof of the second claim.

48



Lemma A.4. Consider the first-stage regression given by (12). Suppose plimn→∞n
−1H+′X+Γ

and limn→∞n−1H̄+′
r X+Γ, for r = 1, · · · , q, are finite with full column rank. Suppose the

elements εit of εt and eit,g of Et are generated as

εit =
G∑
l=1

p0lξit,l and eit,g =
G∑
l=1

pglξit,l (A.11)

where the basic innovations ξit,l are defined in Assumption A.2. Let A = diagT−1
t=1 {At},

where At is non-stochastic and the row and column sums of At are uniformly bounded in ab-

solute value. Then, (i) plimn→∞n
−1H+′Z+ and plimn→∞n

−1H̄+′
r Z+, for r = 1, · · · , q, are

finite with full column rank, (ii) n−1Z+′AZ+ = Op(1) and (iii) n−1Z+′Aε+ = n−1E(Z+′Aε+)+

op(1), where n−1E(Z+′Aε+) = O(1) and E(Z+′Aε+) = 0 when tr(A) = 0.

Proof. Let pj. = [pj1, . . . , pjG], j = 0, 1, . . ., then in light of Assumption A.2 and (A.11) we

have

σ2
ε = Var(εit) = p0.p

′
0.,

σ2
g = Var(eit,g) = pg.p

′
g., g = 1, 2, . . .

From Lemma A.3 and its proof it is readily seen that

ε = [ε′1, . . . , ε
′
T ]′ = (p0. ⊗ InT )ξ,

eg = [e′1,g, . . . , e
′
T,g]
′ = (pg. ⊗ InT )ξ, g = 1, 2, . . .

From (12) it follows that the columns of Z+
t can then be written as

z+
t,j = X+

t γj + e+
t,j . (A.12)
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Hence, (i) follows directly from the assumption that plimn→∞n
−1H+′X+Γ and limn→∞n−1H̄+′

r X+Γ,

for r = 1, · · · , q, are finite with full column rank.

To prove (ii), it suffi ces to show that n−1z+′
t,jAtz

+′
t,l = Op(1). From (A.12) we see that

Var(z+
it,j) = Var(e+

it,j) = σ2
j . The claim now follows immediately from arguments analogous

to those of Remark A.1 in Kelejian and Prucha (2004).

To prove (iii), it suffi ces to prove the claims for an arbitrary column. Focusing on the

first column we have

n−1
T−1∑
t=1

z+′
t,1Atε

+
t = n−1

T−1∑
t=1

a′tε
+
t + n−1

T−1∑
t=1

e+
t,1Atε

+
t .

with a′t = γ′1X
+′
t At. Observing that

∑T−1
t=1 z+′

t,1Atε
+
t is an instance of the linear quadratic

forms considered by Lemma A.3, it follows immediately from that lemma that

E(n−1
T−1∑
t=1

z+′
t,1Atε

+
t ) = σ01

T−1∑
t=1

n−1tr(At).

Since the elements of At are uniformly bounded, we have E(n−1
∑T−1

t=1 z+′
t,1Atε

+
t ) = O(1) and

E(n−1
∑T−1

t=1 z+′
t,1Atε

+
t ) = 0 if tr(At) = 0. This proves the claims regarding n−1Z+′Aε+.
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B Proofs of Theorems

Proof of Theorem 1. Under Hu
0 and Assumptions 1 and 4,

n1/2(δ̂ − δ0) = (n−1Ẑ+′Ẑ+)−1n−1/2Ẑ+′ε+ (B.1)

= (Q′HZQ
−1
HHQHZ)−1Q′HZQ

−1
HH(n−1/2H+′ε+) + op(1) = Op(1),

where QHZ = plimn→∞n
−1H+′Z+ and QHH = limn→∞ n−1H+′H+. As û+ = ε+−Z+(δ̂−

δ0), we have

n−1/2û+′W ∗r û
+ = n−1/2ε+′W̊ ∗r ε

+ − 2(n−1Z+′W̊ ∗r ε
+)′n1/2(δ̂ − δ0) (B.2)

+(δ̂ − δ0)′(n−1Z+′W̊ ∗r Z
+)n1/2(δ̂ − δ0).

Therefore, in light of (B.1), (B.2), and Assumption 3, for the rth element of V̂Q, V̂r,Q ≡

û+′W ∗r û
+, we have

n−1/2V̂r,Q = n−1/2Vr,Q + op(1), (B.3)

where

Vr,Q = ε+′W̊ ∗r ε
+ + a′rε

+ = ε′Crε+ c′rε,

with

ar = −2H+Q−1
HHQHZ(Q′HZQ

−1
HHQHZ)−1[n−1E(Z+′W̊ ∗r ε

+)],

Cr = (Π′⊗In)W̊ ∗r (Π⊗In), and cr = (Π′⊗In)ar. Clearly, the row and column sums of Π⊗In

are uniformly bounded in absolute value. By Assumption 2, the row and column sums of

W̊ ∗r , and thus those of Cr, are uniformly bounded in absolute value. By Assumptions 3 and

4, the elements of H and n−1E(Z+′W̊ ∗r ε
+) are uniformly bounded in absolute value. This

in turn implies that the elements of ar and cr are uniformly bounded in absolute value.
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Together with Assumption 1 for the elements of ε, this verifies that the linear quadratic

forms Vr,Q satisfy the conditions A.1-A.3 postulated by the CLT given as Theorem A.1 in

Kelejian and Prucha (2010).

Let VQ = (V1,Q, · · · , Vq,Q)′. Then by Lemma A.2 we have E(VQ) = 0 and the (r, s)th

element of it’s VC matrix ΨQ = E(VQV
′
Q) is given by

ψrs,Q = E(Vr,QVs,Q) = φrs,Q + σ2
0a
′
ras, (B.4)

where φrs,Q = 2σ4
0tr(W̊ ∗r W̊

∗
s ). In light of the above discussion, n−1φrs,Q = O(1) and

n−1ψrs,Q = O(1). Since by assumption the smallest eigenvalues of n−1ΨQ are bounded

away from zero, it follows from Theorem A.1 in Kelejian and Prucha (2010) that

Ψ
−1/2
Q VQ

d→ N(0, Iq). (B.5)

The (r, s)th element of Ψ̂Q is given by

ψ̂rs,Q = φ̂rs,Q + σ̂2â′râs, (B.6)

where φ̂rs,Q = 2σ̂4tr(W̊ ∗r W̊
∗
s ) and âr = −2Ẑ+(Ẑ+′Ẑ+)−1(Z+−Ẑ+)′W̊ ∗s û

+. By Assumption

3,

(T − 1)σ̂2 = n−1û+′û+ = n−1ε+′ε+ − 2(n−1Z+′ε+)′(δ̂ − δ0) + (δ̂ − δ0)′(n−1Z+′Z+)(δ̂ − δ0)

= n−1ε+′ε+ + op(1).

In light of the remark after Lemma A.1 and Tschebychev’s inequality, we have [n(T −
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1)]−1ε+′ε+ = σ2
0 + op(1) and σ̂2 = σ2

0 + op(1). Observing that

n−1Z+′W̊ ∗r û
+ = n−1Z+′W̊ ∗r ε

+ − n−1Z+′W̊ ∗r Z
+′(δ̂ − δ0) = n−1E(Z+′W̊ ∗r ε

+) + op(1),

and

n−1Ẑ+′W̊ ∗r û
+ = n−1Z+′PH+W̊ ∗r ε

+ − n−1Z+′PH+W̊ ∗r Z
+′(δ̂ − δ0) = op(1),

where PH+ = H+(H+′H+)−1H+′, it is now readily seen from (B.4) and (B.6) and the

above results that n−1ψ̂rs,Q − n−1ψrs,Q = op(1). Furthermore, since n−1ΨQ = O(1) and

the smallest eigenvalue of n−1ΨQ is bounded away from zero by assumption, it follows

from Lemma F.1 in Poetscher and Prucha (1997) that n1/2Ψ̂
−1/2
Q = n1/2Ψ

−1/2
Q + op(1).

Consequently, in light of (B.3) and (B.5),

Ψ̂
−1/2
Q V̂Q = Ψ

−1/2
Q V̂Q + op(1) = Ψ

−1/2
Q VQ + op(1)

d→ N(0, Iq).

The claim now follows from the continuous mapping theorem.

Proof of Theorem 2. Under Hy
0 and Assumptions 1 and 4’,

n1/2(δ̂ − δ0) = (n−1Ẑ+′Ẑ+)−1n−1/2Ẑ+′ε+ (B.7)

= (Q′HZQ
−1
HHQHZ)−1Q′HZQ

−1
HH(n−1/2H+′ε+) + op(1) = Op(1),

where QHZ = plimn→∞n
−1H+′Z+ and QHH = limn→∞ n−1H+′H+. As û+ = ε+−Z+(δ̂−
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δ0), we have

n−1/2H̄+′
r û+ = n−1/2H̄+′

r ε+ − n−1/2H̄+′
r Z+(δ̂ − δ0), (B.8)

n−1/2û+′W ∗r û
+ = n−1/2ε+′W̊ ∗r ε

+ − 2(n−1Z+′W̊ ∗r ε
+)′n1/2(δ̂ − δ0)

+(δ̂ − δ0)′(n−1Z+′W̊ ∗r Z
+)n1/2(δ̂ − δ0).

Observing that tr(W̊ ∗r ) = 0, it follows by Assumption 3’that n−1Z+′W̊ ∗r ε
+ = op(1). Let

QH̄rZ = plimn→∞n
−1H̄+′

r Z+. Then, in light of (B.7), (B.8), and Assumptions 3’and 4’,

we have

n−1/2V̂r,L ≡ n−1/2H̄+′
r û+ = n−1/2Vr,L + op(1), (B.9)

n−1/2V̂r,Q ≡ n−1/2û+′W ∗r û
+ = n−1/2Vr,Q + op(1),

where

Vr,L = a′rε
+ = c′rε, (B.10)

Vr,Q = ε+′W̊ ∗r ε
+ = ε′Crε,

with

ar = H̄+
r −H+Q−1

HHQHZ(Q′HZQ
−1
HHQHZ)−1Q′H̄rZ ,

cr = (Π′⊗In)ar, and Cr = (Π′⊗In)W ∗r (Π⊗In). Clearly, the row and column sums of Π⊗In

are uniformly bounded in absolute value. By Assumption 2, the row and column sums of

W̊ ∗r,n, and thus those of Cr, are uniformly bounded in absolute value. By Assumptions 2

and 4’, the elements of Hn and H̄+
r,n are uniformly bounded in absolute value. This in turn

implies that the elements of ar and cr are uniformly bounded in absolute value. Together
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with Assumption 1 for the elements of ε, this verifies that the linear quadratic forms Vr,L

and Vr,Q satisfy the conditions A.1-A.3 postulated by the CLT given as Theorem A.1 in

Kelejian and Prucha (2010).

Let V = [V ′L, V
′
Q]′ with VL = [V ′1,L, · · · , V ′q,L]′ and VQ = [V ′1,Q, · · · , V ′q,Q]′. Then by

Lemma A.2 we have E(V ) = 0, and it’s VC matrix Φ = E(V V ′) is given by

Φ =

 ΦL 0

0 ΦQ

 (B.11)

with the (r, s)th submatrix of ΦL given by

φrs,L = Cov(Vr,L, Vs,L) = σ2
0a
′
ras,

and the (r, s)th element of ΦQ given by

φrs,Q = Cov(Vr,Q, Vs,Q) = 2σ4
0tr(W̊ ∗r W̊

∗
s ).

In light of the above discussion, n−1φrs,L = O(1) and n−1φrs,Q = O(1). Since by assump-

tion the smallest eigenvalues of n−1Φ are bounded away from zero, it follows from Theorem

A.1 in Kelejian and Prucha (2010) that

Φ−1/2V
d→ N(0, Iq). (B.12)

Let âr = M
ẐZ
H̄+
r , where MẐZ

= In(T−1) − Ẑ+(Ẑ+′Ẑ+)−1Z+′. Then the (r, s)th

submatrix of Φ̂L is given by φ̂rs,L = σ̂2â′râs, and the (r, s)th element of Φ̂Q is given by

φ̂rs,Q = 2σ̂4tr(W̊ ∗r W̊
∗
s ). By analogous arguments as in the proof of Theorem 1 it is readily

seen that n−1φ̂rs,L − n−1φrs,L = op(1) and n−1φ̂rs,Q − n−1φrs,Q = op(1). Furthermore,
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since n−1Φ = O(1) and the smallest eigenvalue of n−1Φ is bounded away from zero by

assumption, it follows from Lemma F.1 in Pötscher and Prucha (1997) that n1/2Φ̂−1/2 =

n1/2Φ−1/2 + op(1). Consequently, in light of (B.9) and (B.12),

Φ̂−1/2V̂ = Φ−1/2V̂ + op(1) = Φ−1/2V + op(1)
d→ N(0, I(KH+1)q).

The claim now follows from the continuous mapping theorem.
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Table 1. Rejection Rates for 𝐼𝐼𝑢𝑢2(2) Tests with 𝑊𝑊1 and 𝑊𝑊2 (Small T) 

𝜌𝜌1 𝜌𝜌2 Helmert  
weighting 

Time-average 
weighting 

Initial-period 
weighting 

  n = 250, T = 5 
0 0 0.0507 0.0508 0.0493 
.2 0 0.9379 0.6577 0.2385 
.4 0 1.0000 0.9997 0.8232 
0 .2 0.9391 0.6698 0.2560 
0 .4 1.0000 0.9999 0.8510 
.2 .2 0.9998 0.9815 0.7358 
.4 .4 1.0000 1.0000 1.0000 
  n = 500, T = 5 

0 0 0.0486 0.0507 0.0506 
.2 0 0.9989 0.9114 0.4284 
.4 0 1.0000 1.0000 0.9818 
0 .2 0.9982 0.9121 0.4170 
0 .4 1.0000 1.0000 0.9815 
.2 .2 1.0000 0.9999 0.9461 
.4 .4 1.0000 1.0000 1.0000 

Nominal size is 0.05 

 

Table 2. Rejection Rates for 𝐼𝐼𝑢𝑢2(2) Tests with 𝑊𝑊1 and 𝑊𝑊2 (Large T) 

𝜌𝜌1 𝜌𝜌2 Helmert  
weighting 

Time-average 
weighting 

Initial-period 
weighting 

  n = 250, T = 10 
0 0 0.0493 0.0493 0.0497 
.2 0 0.9999 0.8042 0.2574 
.4 0 1.0000 1.0000 0.8634 
0 .2 0.9999 0.7995 0.2590 
0 .4 1.0000 1.0000 0.8873 
.2 .2 1.0000 0.9991 0.8509 
.4 .4 1.0000 1.0000 1.0000 
  n = 250, T = 20 

0 0 0.0500 0.0517 0.0513 
.2 0 1.0000 0.9248 0.3332 
.4 0 1.0000 1.0000 0.9546 
0 .2 1.0000 0.9283 0.3422 
0 .4 1.0000 1.0000 0.9589 
.2 .2 1.0000 1.0000 0.9710 
.4 .4 1.0000 1.0000 1.0000 

Nominal size is 0.05 
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Table 3. Rejection Rates for 𝐼𝐼𝑦𝑦2(2) Tests with 𝑊𝑊1 and 𝑊𝑊2 (Small T) 

𝜆𝜆1 𝜆𝜆2 𝜌𝜌1 𝜌𝜌2 𝛾𝛾1 𝛾𝛾2 Helmert  
weighting 

Time-average 
weighting 

Initial-period 
weighting 

      n = 250, T = 5 
0 0 0 0 0 0 0.0506 0.0501 0.0497 
.1 0 0 0 0 0 0.7405 0.6580 0.5967 
.2 0 0 0 0 0 1.0000 0.9998 0.9995 
0 .1 0 0 0 0 0.7302 0.6469 0.5827 
0 .2 0 0 0 0 1.0000 0.9997 0.9994 
.1 .1 0 0 0 0 0.9910 0.9803 0.9638 
.2 .2 0 0 0 0 1.0000 1.0000 1.0000 
0 0 .2 0 0 0 0.8521 0.5141 0.1820 
0 0 .4 0 0 0 1.0000 0.9984 0.7233 
0 0 0 .2 0 0 0.8565 0.5246 0.1946 
0 0 0 .4 0 0 1.0000 0.9992 0.7654 
0 0 .2 .2 0 0 0.9984 0.9521 0.6191 
0 0 .4 .4 0 0 1.0000 1.0000 1.0000 
.1 .1 .2 .2 0 0 1.0000 1.0000 0.9980 
.2 .2 .4 .4 0 0 1.0000 1.0000 1.0000 
0 0 0 0 .1 0 0.4898 0.4900 0.4880 
0 0 0 0 .2 0 0.9931 0.9934 0.9933 
0 0 0 0 0 .1 0.4748 0.4761 0.4748 
0 0 0 0 0 .2 0.9917 0.9913 0.9916 
0 0 0 0 .1 .1 0.8606 0.8616 0.8611 
0 0 0 0 .2 .2 1.0000 1.0000 1.0000 
      n = 500, T = 5 
0 0 0 0 0 0 0.0503 0.0508 0.0509 
.1 0 0 0 0 0 0.9659 0.9295 0.8934 
.2 0 0 0 0 0 1.0000 1.0000 1.0000 
0 .1 0 0 0 0 0.9712 0.9431 0.9123 
0 .2 0 0 0 0 1.0000 1.0000 1.0000 
.1 .1 0 0 0 0 1.0000 1.0000 0.9997 
.2 .2 0 0 0 0 1.0000 1.0000 1.0000 
0 0 .2 0 0 0 0.9937 0.8155 0.3125 
0 0 .4 0 0 0 1.0000 1.0000 0.9532 
0 0 0 .2 0 0 0.9898 0.8164 0.3208 
0 0 0 .4 0 0 1.0000 1.0000 0.9627 
0 0 .2 .2 0 0 1.0000 0.9993 0.8934 
0 0 .4 .4 0 0 1.0000 1.0000 1.0000 
.1 .1 .2 .2 0 0 1.0000 1.0000 1.0000 
.2 .2 .4 .4 0 0 1.0000 1.0000 1.0000 
0 0 0 0 .1 0 0.8335 0.8331 0.8346 
0 0 0 0 .2 0 1.0000 1.0000 1.0000 
0 0 0 0 0 .1 0.8639 0.8627 0.8619 
0 0 0 0 0 .2 1.0000 1.0000 1.0000 
0 0 0 0 .1 .1 0.9956 0.9957 0.9957 
0 0 0 0 .2 .2 1.0000 1.0000 1.0000 

Nominal size is 0.05 
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Table 4. Rejection Rates for 𝐼𝐼𝑦𝑦2(2) Tests with 𝑊𝑊1 and 𝑊𝑊2 (Large T) 

𝜆𝜆1 𝜆𝜆2 𝜌𝜌1 𝜌𝜌2 𝛾𝛾1 𝛾𝛾2 Helmert  
weighting 

Time-average 
weighting 

Initial-period 
weighting 

      n = 250, T = 10 
0 0 0 0 0 0 0.0488 0.0498 0.0498 
.1 0 0 0 0 0 0.9829 0.9349 0.9078 
.2 0 0 0 0 0 1.0000 1.0000 1.0000 
0 .1 0 0 0 0 0.9890 0.9581 0.9407 
0 .2 0 0 0 0 1.0000 1.0000 1.0000 
.1 .1 0 0 0 0 1.0000 1.0000 0.9998 
.2 .2 0 0 0 0 1.0000 1.0000 1.0000 
0 0 .2 0 0 0 0.9990 0.6746 0.1930 
0 0 .4 0 0 0 1.0000 1.0000 0.7763 
0 0 0 .2 0 0 0.9989 0.6716 0.1933 
0 0 0 .4 0 0 1.0000 1.0000 0.8031 
0 0 .2 .2 0 0 1.0000 0.9968 0.7534 
0 0 .4 .4 0 0 1.0000 1.0000 1.0000 
.1 .1 .2 .2 0 0 1.0000 1.0000 1.0000 
.2 .2 .4 .4 0 0 1.0000 1.0000 1.0000 
0 0 0 0 .1 0 0.8672 0.8674 0.8675 
0 0 0 0 .2 0 1.0000 1.0000 1.0000 
0 0 0 0 0 .1 0.8989 0.9000 0.8979 
0 0 0 0 0 .2 1.0000 1.0000 1.0000 
0 0 0 0 .1 .1 0.9978 0.9981 0.9981 
0 0 0 0 .2 .2 1.0000 1.0000 1.0000 
      n = 250, T = 20 
0 0 0 0 0 0 0.0501 0.0506 0.0522 
.1 0 0 0 0 0 1.0000 1.0000 0.9999 
.2 0 0 0 0 0 1.0000 1.0000 1.0000 
0 .1 0 0 0 0 1.0000 1.0000 0.9999 
0 .2 0 0 0 0 1.0000 1.0000 1.0000 
.1 .1 0 0 0 0 1.0000 1.0000 1.0000 
.2 .2 0 0 0 0 1.0000 1.0000 1.0000 
0 0 .2 0 0 0 1.0000 0.8429 0.2427 
0 0 .4 0 0 0 1.0000 1.0000 0.9013 
0 0 0 .2 0 0 1.0000 0.8482 0.2533 
0 0 0 .4 0 0 1.0000 1.0000 0.9156 
0 0 .2 .2 0 0 1.0000 1.0000 0.9300 
0 0 .4 .4 0 0 1.0000 1.0000 1.0000 
.1 .1 .2 .2 0 0 1.0000 1.0000 1.0000 
.2 .2 .4 .4 0 0 1.0000 1.0000 1.0000 
0 0 0 0 .1 0 0.9995 0.9996 0.9995 
0 0 0 0 .2 0 1.0000 1.0000 1.0000 
0 0 0 0 0 .1 0.9992 0.9991 0.9991 
0 0 0 0 0 .2 1.0000 1.0000 1.0000 
0 0 0 0 .1 .1 1.0000 1.0000 1.0000 
0 0 0 0 .2 .2 1.0000 1.0000 1.0000 

Nominal size is 0.05 
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Table 5. Rejection Rates for 𝐼𝐼𝑢𝑢2(𝑞𝑞) Tests with only Exogenous Covariates 

𝜌𝜌1 𝜌𝜌2 𝐼𝐼𝑢𝑢2(1) Test with 𝑊𝑊1 𝐼𝐼𝑢𝑢2(1) Test with 𝑊𝑊2 𝐼𝐼𝑢𝑢2(2) Test with 𝑊𝑊1,𝑊𝑊2 
  n = 250, T = 5 

0 0 0.0488 0.0502 0.0507 
.2 0 0.9654 0.1036 0.9379 
.4 0 1.0000 0.3328 1.0000 
0 .2 0.0995 0.9664 0.9391 
0 .4 0.2956 1.0000 1.0000 
.2 .2 0.9940 0.9949 0.9998 
.4 .4 1.0000 1.0000 1.0000 
  n = 500, T = 5 

0 0 0.0487 0.0506 0.0486 
.2 0 0.9996 0.1444 0.9989 
.4 0 1.0000 0.5361 1.0000 
0 .2 0.1344 0.9994 0.9982 
0 .4 0.4861 1.0000 1.0000 
.2 .2 1.0000 0.9999 1.0000 
.4 .4 1.0000 1.0000 1.0000 

Nominal size is 0.05. The DGP is Defined by Equation (28). 

 

Table 6. Rejection Rates for 𝐼𝐼𝑢𝑢2(𝑞𝑞) Tests with an Endogenous Covariate 𝑦𝑦𝑡𝑡0 

𝜌𝜌1 𝜌𝜌2 𝐼𝐼𝑢𝑢2(1) Test with 𝑊𝑊1 𝐼𝐼𝑢𝑢2(1) Test with 𝑊𝑊2 𝐼𝐼𝑢𝑢2(2) Test with 𝑊𝑊1,𝑊𝑊2 
  n = 250, T = 5 

0 0 0.0521 0.0515 0.0527 
.2 0 0.9659 0.1009 0.9397 
.4 0 1.0000 0.3094 1.0000 
0 .2 0.0975 0.9659 0.9395 
0 .4 0.2871 1.0000 1.0000 
.2 .2 0.9938 0.9944 0.9997 
.4 .4 1.0000 1.0000 1.0000 
  n = 500, T = 5 

0 0 0.0495 0.0502 0.0515 
.2 0 0.9994 0.1461 0.9984 
.4 0 1.0000 0.5573 1.0000 
0 .2 0.1443 0.9996 0.9986 
0 .4 0.5468 1.0000 1.0000 
.2 .2 1.0000 1.0000 1.0000 
.4 .4 1.0000 1.0000 1.0000 

Nominal size is 0.05. The DGP is Defined by Equation (29). 
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Table 7. Rejection Rates for 𝐼𝐼𝑢𝑢2(𝑞𝑞) Tests with Spatial Lags of 𝑦𝑦𝑡𝑡 

𝜌𝜌1 𝜌𝜌2 𝐼𝐼𝑢𝑢2(1) Test with 𝑊𝑊1 𝐼𝐼𝑢𝑢2(1) Test with 𝑊𝑊2 𝐼𝐼𝑢𝑢2(2) Test with 𝑊𝑊1,𝑊𝑊2 
  n = 250, T = 5 

0 0 0.0501 0.0499 0.0498 
.2 0 0.8933 0.0972 0.8274 
.4 0 1.0000 0.2948 1.0000 
0 .2 0.0796 0.9635 0.9343 
0 .4 0.1964 1.0000 1.0000 
.2 .2 0.9673 0.9942 0.9990 
.4 .4 1.0000 1.0000 1.0000 
  n = 500, T = 5 

0 0 0.0493 0.0484 0.0497 
.2 0 0.9947 0.1470 0.9873 
.4 0 1.0000 0.5566 1.0000 
0 .2 0.1145 0.9995 0.9985 
0 .4 0.4097 1.0000 1.0000 
.2 .2 0.9996 1.0000 1.0000 
.4 .4 1.0000 1.0000 1.0000 

Nominal size is 0.05. The DGP is Defined by Equation (30). 

 

Table 8. Rejection Rates for 𝐼𝐼𝑢𝑢2(𝑞𝑞) Tests with Spatial Lags of 𝑦𝑦𝑡𝑡 and 𝑋𝑋𝑡𝑡 

𝜌𝜌1 𝜌𝜌2 𝐼𝐼𝑢𝑢2(1) Test with 𝑊𝑊1 𝐼𝐼𝑢𝑢2(1) Test with 𝑊𝑊2 𝐼𝐼𝑢𝑢2(2) Test with 𝑊𝑊1,𝑊𝑊2 
  n = 250, T = 5 

0 0 0.0495 0.0484 0.0487 
.2 0 0.3965 0.0838 0.2522 
.4 0 0.9592 0.2192 0.8594 
0 .2 0.0494 0.9473 0.9245 
0 .4 0.0529 1.0000 1.0000 
.2 .2 0.4736 0.9880 0.9722 
.4 .4 0.9169 0.9820 0.9951 
  n = 500, T = 5 

0 0 0.0482 0.0483 0.0477 
.2 0 0.8198 0.1194 0.7063 
.4 0 1.0000 0.4299 0.9998 
0 .2 0.0791 0.9993 0.9982 
0 .4 0.2452 1.0000 1.0000 
.2 .2 0.9427 1.0000 1.0000 
.4 .4 1.0000 1.0000 1.0000 

Nominal size is 0.05. The DGP is Defined by Equation (31). 

  



62 
 

Table 9. Rejection Rates for 𝐼𝐼𝑦𝑦2(𝑞𝑞) Tests with only Exogenous Covariates under the Null 

𝜆𝜆1 𝜆𝜆2 𝜌𝜌1 𝜌𝜌2 𝛾𝛾1 𝛾𝛾2 𝐼𝐼𝑦𝑦2(1) Test w/ 𝑊𝑊1 𝐼𝐼𝑦𝑦2(1) Test w/ 𝑊𝑊2 𝐼𝐼𝑦𝑦2(2) Test w/ 𝑊𝑊1,𝑊𝑊2 
      n = 250, T = 5 
0 0 0 0 0 0 0.0488 0.0512 0.0506 
.1 0 0 0 0 0 0.8383 0.0641 0.7405 
.2 0 0 0 0 0 1.0000 0.1044 1.0000 
0 .1 0 0 0 0 0.0614 0.8295 0.7302 
0 .2 0 0 0 0 0.0988 1.0000 1.0000 
.1 .1 0 0 0 0 0.9307 0.9323 0.9910 
.2 .2 0 0 0 0 1.0000 1.0000 1.0000 
0 0 .2 0 0 0 0.9148 0.0864 0.8521 
0 0 .4 0 0 0 1.0000 0.2538 1.0000 
0 0 0 .2 0 0 0.0814 0.9182 0.8565 
0 0 0 .4 0 0 0.2185 1.0000 1.0000 
0 0 .2 .2 0 0 0.9818 0.9832 0.9984 
0 0 .4 .4 0 0 1.0000 1.0000 1.0000 
.1 .1 .2 .2 0 0 1.0000 1.0000 1.0000 
.2 .2 .4 .4 0 0 1.0000 1.0000 1.0000 
0 0 0 0 .1 0 0.6160 0.0530 0.4898 
0 0 0 0 .2 0 0.9981 0.0609 0.9931 
0 0 0 0 0 .1 0.0513 0.5989 0.4748 
0 0 0 0 0 .2 0.0582 0.9976 0.9917 
0 0 0 0 .1 .1 0.6890 0.6736 0.8606 
0 0 0 0 .2 .2 0.9995 0.9993 1.0000 
      n = 500, T = 5 
0 0 0 0 0 0 0.0501 0.0486 0.0503 
.1 0 0 0 0 0 0.9874 0.0634 0.9659 
.2 0 0 0 0 0 1.0000 0.1109 1.0000 
0 .1 0 0 0 0 0.0684 0.9898 0.9712 
0 .2 0 0 0 0 0.1486 1.0000 1.0000 
.1 .1 0 0 0 0 0.9975 0.9980 1.0000 
.2 .2 0 0 0 0 1.0000 1.0000 1.0000 
0 0 .2 0 0 0 0.9980 0.1075 0.9937 
0 0 .4 0 0 0 1.0000 0.4119 1.0000 
0 0 0 .2 0 0 0.1007 0.9966 0.9898 
0 0 0 .4 0 0 0.3655 1.0000 1.0000 
0 0 .2 .2 0 0 0.9999 0.9999 1.0000 
0 0 .4 .4 0 0 1.0000 1.0000 1.0000 
.1 .1 .2 .2 0 0 1.0000 1.0000 1.0000 
.2 .2 .4 .4 0 0 1.0000 1.0000 1.0000 
0 0 0 0 .1 0 0.9116 0.0489 0.8335 
0 0 0 0 .2 0 1.0000 0.0506 1.0000 
0 0 0 0 0 .1 0.0517 0.9322 0.8639 
0 0 0 0 0 .2 0.0580 1.0000 1.0000 
0 0 0 0 .1 .1 0.9313 0.9489 0.9956 
0 0 0 0 .2 .2 1.0000 1.0000 1.0000 

Nominal size is 0.05. The DGP is Defined by Equation (32). 
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Table 10. Rejection Rates for 𝐼𝐼𝑦𝑦2(𝑞𝑞) Tests with an Endogenous Covariate 𝑦𝑦𝑡𝑡0 under the Null 

𝜆𝜆1 𝜆𝜆2 𝜌𝜌1 𝜌𝜌2 𝛾𝛾1 𝛾𝛾2 𝐼𝐼𝑦𝑦2(1) Test w/ 𝑊𝑊1 𝐼𝐼𝑦𝑦2(1) Test w/ 𝑊𝑊2 𝐼𝐼𝑦𝑦2(2) Test w/ 𝑊𝑊1,𝑊𝑊2 
      n = 250, T = 5 
0 0 0 0 0 0 0.0515 0.0501 0.0507 
.1 0 0 0 0 0 0.9490 0.0717 0.9008 
.2 0 0 0 0 0 1.0000 0.1533 1.0000 
0 .1 0 0 0 0 0.0721 0.9208 0.8574 
0 .2 0 0 0 0 0.1456 1.0000 1.0000 
.1 .1 0 0 0 0 0.9838 0.9729 0.9988 
.2 .2 0 0 0 0 1.0000 1.0000 1.0000 
0 0 .2 0 0 0 0.9170 0.0857 0.8574 
0 0 .4 0 0 0 1.0000 0.2449 1.0000 
0 0 0 .2 0 0 0.0826 0.9150 0.8548 
0 0 0 .4 0 0 0.2104 1.0000 1.0000 
0 0 .2 .2 0 0 0.9808 0.9821 0.9982 
0 0 .4 .4 0 0 1.0000 1.0000 1.0000 
.1 .1 .2 .2 0 0 1.0000 1.0000 1.0000 
.2 .2 .4 .4 0 0 1.0000 1.0000 1.0000 
0 0 0 0 .1 0 0.7306 0.0544 0.6146 
0 0 0 0 .2 0 0.9998 0.0657 0.9988 
0 0 0 0 0 .1 0.0572 0.6531 0.5338 
0 0 0 0 0 .2 0.0670 0.9985 0.9952 
0 0 0 0 .1 .1 0.7846 0.7099 0.9119 
0 0 0 0 .2 .2 0.9999 0.9993 1.0000 
      n = 500, T = 5 
0 0 0 0 0 0 0.0503 0.0512 0.0495 
.1 0 0 0 0 0 0.9988 0.0803 0.9960 
.2 0 0 0 0 0 1.0000 0.2114 1.0000 
0 .1 0 0 0 0 0.0785 0.9989 0.9955 
0 .2 0 0 0 0 0.1896 1.0000 1.0000 
.1 .1 0 0 0 0 0.9999 0.9999 1.0000 
.2 .2 0 0 0 0 1.0000 1.0000 1.0000 
0 0 .2 0 0 0 0.9971 0.1086 0.9920 
0 0 .4 0 0 0 1.0000 0.4264 1.0000 
0 0 0 .2 0 0 0.1080 0.9974 0.9913 
0 0 0 .4 0 0 0.4197 1.0000 1.0000 
0 0 .2 .2 0 0 0.9999 1.0000 1.0000 
0 0 .4 .4 0 0 1.0000 1.0000 1.0000 
.1 .1 .2 .2 0 0 1.0000 1.0000 1.0000 
.2 .2 .4 .4 0 0 1.0000 1.0000 1.0000 
0 0 0 0 .1 0 0.9564 0.0554 0.9074 
0 0 0 0 .2 0 1.0000 0.0687 1.0000 
0 0 0 0 0 .1 0.0538 0.9538 0.9044 
0 0 0 0 0 .2 0.0617 1.0000 1.0000 
0 0 0 0 .1 .1 0.9625 0.9667 0.9987 
0 0 0 0 .2 .2 1.0000 1.0000 1.0000 

Nominal size is 0.05. The DGP is Defined by Equation (33). 
 



Online Appendices to “On Testing for Spatial or Social Network

Dependence in Panel Data Allowing for Network Variability”

by Xiaodong Liu and Ingmar R. Prucha

C Proofs of Propositions

Proof of Proposition 1. Let Gt = −E[∂gt(θ)∂θ |θ0 ] and Ωt = E[gt(θ0)gt(θ0)′], then under the

maintained assumptions, in particular, E(εt|µ) = 0 and E(µ) = 0,

Gt =



0 H ′(RtXt)
+

Gt,1 0

...
...

Gt,q 0


, Ωt =

 σ2
0H
′H 0

0 ΨQ

 , ΨQ =


Ω11 · · · Ω1q

...
. . .

...

Ωq1 · · · Ωqq

 ,

where H = [X1, · · · , XT ], and

Gt,r = 2σ2
0


∑T

τ=1 π
2
tτ tr(W̊1,rWτ ,1R

−1
τ ) · · ·

∑T
τ=1 π

2
tτ tr(W̊1,rWτ ,qR

−1
τ )

...
. . .

...∑T
τ=1 π

2
tτ tr(W̊T,rWτ ,1R

−1
τ ) · · ·

∑T
τ=1 π

2
tτ tr(W̊T,rWτ ,qR

−1
τ )

 ,

Ωrs = 2σ4
0


tr(W̊1,rW̊1,s) · · · tr(W̊1,rW̊T,s)

...
. . .

...

tr(W̊T,rW̊1,s) · · · tr(W̊T,rW̊T,s)

 ,

1



for r, s = 1, · · · , q. Evaluated at the restricted estimates θ̂ = (0, β̂
′
)′ and σ̂2, the LM test

statistic is given by

GMM-LMu = ĝ′Ω̂−1Ĝ(Ĝ′Ω̂−1Ĝ)−1Ĝ′Ω̂−1ĝ

=

T−1∑
t=1

ĝ′tΩ̂
−1
t Ĝt

[
T−1∑
t=1

Ĝ′tΩ̂
−1
t Ĝt

]−1 T−1∑
t=1

Ĝ′tΩ̂
−1
t ĝt,

with ĝt = [H,W1,1û
+
t , · · · ,WT,1û

+
t , · · · ,W1,qû

+
t , · · · ,WT,qû

+
t ]′û+

t , and

Ĝt =



0 H ′X+
t

Ĝt,1 0

...
...

Ĝt,q 0


, Ω̂t =

 σ̂2H ′H 0

0 Ψ̂Q

 , Ψ̂Q =


Ω̂11 · · · Ω̂1q

...
. . .

...

Ω̂q1 · · · Ω̂qq

 ,

where, recalling that W ∗t,r =
∑T

τ=1 π
2
tτWτ ,r,

Ĝt,r = 2σ̂2


tr(W̊1,rW

∗
t,1) · · · tr(W̊1,rW

∗
t,q)

...
. . .

...

tr(W̊T,rW
∗
t,1) · · · tr(W̊T,rW

∗
t,q)

 ,

Ω̂rs = 2σ̂4


tr(W̊1,rW̊1,s) · · · tr(W̊1,rW̊T,s)

...
. . .

...

tr(W̊T,rW̊1,s) · · · tr(W̊T,rW̊T,s)

 ,

for r, s = 1, · · · , q. Let π̄t = [π2
t1, · · · , π2

tT ], then

Ω̂rsπ̄
′
t = 2σ̂4


tr
[
W̊1,r(

∑T
τ=1 W̊τ ,sπ

2
tτ )
]

...

tr
[
W̊T,r(

∑T
τ=1 W̊τ ,sπ

2
tτ )
]
 = 2σ̂4


tr(W̊1,rW

∗
t,s)

...

tr(W̊T,rW
∗
t,s)

 .

2



In light of this, Ĝt,r = σ̂−2[Ω̂r1, · · · , Ω̂rq](Iq ⊗ π̄′t) for r = 1, · · · , q, and

Ĝt =

 0 H ′X+
t

σ̂−2Ψ̂Q(Iq ⊗ π̄′t) 0

 ,
Ĝ′tΩ̂

−1
t =

 0 σ̂−2(Iq ⊗ π̄t)

σ̂−2X+′
t H(H ′H)−1 0

 .
Let Φ̂Q,t = (Iq⊗π̄t)Ψ̂Q(Iq⊗π̄′t). Observing thatH(H ′H)−1H ′X+

t = X+
t and

∑T−1
t=1 X+′

t û
+
t =

0, we have

Ĝ′tΩ̂
−1
t Ĝt =

 σ̂−4Φ̂Q,t 0

0 σ̂−2X+′
t X

+
t

 ,
and

T−1∑
t=1

Ĝ′tΩ̂
−1
t ĝt = σ̂−2

T−1∑
t=1



û+′
t W

∗
t,1û

+
t

...

û+′
t W

∗
t,qû

+
t

X+′
t H(H ′H)−1H ′û+

t


= σ̂−2

T−1∑
t=1



û+′
t W

∗
t,1û

+
t

...

û+′
t W

∗
t,qû

+
t

0


= σ̂−2

 V̂Q

0

 .

3



Observing that π̄tΩ̂rsπ̄
′
t = 2σ̂4tr

[
(
∑T

τ=1 π
2
tτW̊τ ,r)W

∗
t,s

]
= 2σ̂4tr(W ∗t,rW

∗
t,s), it follows further

that

T−1∑
t=1

Ĝ′tΩ̂
−1
t Ĝt =

T−1∑
t=1



2tr(W̊ ∗t,1W̊
∗
t,1) · · · 2tr(W̊ ∗t,1W̊

∗
t,q) 0

...
. . .

...
...

2tr(W̊ ∗t,qW̊
∗
t,1) · · · 2tr(W̊ ∗t,qW̊

∗
t,q) 0

0 · · · 0 σ̂−2X+′
t X

+
t


= σ̂−4

 Φ̂Q 0

0 σ̂2∑T−1
t=1 X+′

t X
+
t

 .
Therefore, GMM-LMu = V̂ ′QΦ̂−1

Q V̂Q = I2
u(q).

Proof of Proposition 2. The first derivatives of the log-likelihood function are

∂ lnL

∂ρr
= −(T − 1)tr(W1,rR1(ρ)−1) +

1

σ2

T−1∑
t=1

(y+
t −X+

t β)′W ′1,rR1(ρ)(y+
t −X+

t β),

∂ lnL

∂β′
=

1

σ2

T−1∑
t=1

X+′
t R1(ρ)′R1(ρ)(y+

t −X+
t β),

∂ lnL

∂σ2
= −n(T − 1)

2σ2
+

1

2σ4

T−1∑
t=1

(y+
t −X+

t β)′R1(ρ)′R1(ρ)(u+
t −X+

t β),

and some second derivatives are

∂2 lnL

∂ρr∂ρs
= −(T − 1)tr(W1,rR1(ρ)−1W1,sR1(ρ)−1)− 1

σ2

T−1∑
t=1

(y+
t −X+

t β)′W ′1,rW1,s(y
+
t −X+

t β),

∂2 lnL

∂ρr∂β
′ = − 1

σ2

T−1∑
t=1

X+′
t [W ′1,rR1(ρ) +R1(ρ)′W1,r](y

+
t −X+

t β),

∂2 lnL

∂ρr∂σ
2

= − 1

σ4

T−1∑
t=1

(y+
t −X+

t β)′W ′1,rR1(ρ)(y+
t −X+

t β).

4



Evaluated at the true parameters, the expected values of the second derivatives are

E(
∂2 lnL

∂ρr∂ρs
|θ0,σ20) = −(T − 1)[tr(W1,rR

−1
1 W1,sR

−1
1 ) + tr(R′−1

1 W ′1,rW1,sR
−1
1 )],

E(
∂2 lnL

∂ρr∂β
′ |θ0,σ20) = 0,

E(
∂2 lnL

∂ρr∂σ
2
|θ0,σ20) = − 1

σ2
0

(T − 1)tr(W1,rR
−1
1 ).

Evaluated at the restricted estimators under Hu
0 ,

∂ lnL

∂ρr
|
θ̂,σ̂2

=
1

σ̂2

T−1∑
t=1

û+′
t W

′
1,rû

+
t ,

∂ lnL

∂β′
|
θ̂,σ̂2

=
1

σ̂2

T−1∑
t=1

X+′
t û

+
t = 0,

∂ lnL

∂σ2
|
θ̂,σ̂2

= −n(T − 1)

2σ̂2 +
1

2σ̂4

T−1∑
t=1

û+′
t û

+
t = 0,

and

[E(
∂2 lnL

∂ρr∂ρs
|θ0,σ20)]θ̂,σ̂2 = −(T − 1)[tr(W1,rW1,s) + tr(W ′1,rW1,s)] = −2(T − 1)tr(W̊1,rW̊1,s),

[E(
∂2 lnL

∂ρr∂σ
2
|θ0,σ20)]θ̂,σ̂2 = − 1

σ̂2 (T − 1)tr(W1,r) = 0.

Consequently,

ML-LMu =


∂ lnL
∂ρ′

∂ lnL
∂β′

∂ lnL
∂σ2


′

θ̂,σ̂2

−E


∂2 lnL
∂ρ∂ρ′

∂2 lnL
∂β∂ρ′

∂2 lnL
∂σ2∂ρ′

∂2 lnL
∂ρ∂β′

∂2 lnL
∂β∂β′

∂2 lnL
∂σ2∂β′

∂2 lnL
∂ρ∂σ2

∂2 lnL
∂β∂σ2

∂2 lnL
(∂σ2)2

∣∣∣∣∣∣∣∣∣∣
θ0,σ20




−1

θ̂,σ̂2


∂ lnL
∂ρ′

∂ lnL
∂β′

∂ lnL
∂σ2


θ̂,σ̂2

=

[
∂ lnL

∂ρ

]
θ̂,σ̂2

[
−E

(
∂2 lnL

∂ρ∂ρ′

∣∣∣∣
θ0,σ20

)]−1

θ̂,σ̂2

[
∂ lnL

∂ρ′

]
θ̂,σ̂2

= I2
u(q).

5



The latter equality is readily seen to hold observing that Wt,r = W1,r for t = 1, · · · , T

implies W ∗t,r =
∑T

τ=t π
2
tτW1,r = W1,r and û+′W ∗r û

+ =
∑T−1

t=1 û+′
t W1,rû

+
t , and tr(W̊ ∗r W̊

∗
s ) =

(T − 1)tr(W̊1,rW̊1,s).

Proof of Proposition 3. Recalling X̄t,r = Wt,rXt, under the maintained assumptions, in

particular, E(εt|µ) = 0 and E(µ) = 0,

Gt = −E[
∂gt(ϑ)

∂ϑ
|ϑ0 ] =



Gλt 0 H ′(RtX̄t,1)+ · · · H ′(RtX̄t,q)
+ H ′(RtXt)

+

Gλt,1 Gρt,1 0 · · · 0 0

...
...

...
. . .

...
...

Gλt,q Gρt,q 0 · · · 0 0


,

Ωt = E[gt(ϑ0)gt(ϑ0)′] =

 σ2
0H
′H 0

0 ΨQ

 , ΨQ =


Ω11 · · · Ω1q

...
. . .

...

Ωq1 · · · Ωqq


where H = [X1, · · · , XT , X̄1,1, · · · , X̄T,1, · · · , X̄1,q, · · · , X̄T,q],

Gλt =

[
H ′[RtWt,1S

−1
t (Xtβ +

q∑
r=1

X̄t,rγr)]
+, · · · , H ′[RtWt,qS

−1
t (Xtβ +

q∑
r=1

X̄t,rγr)]
+

]
,

Gλt,r = 2σ2
0


∑T

τ=1 π
2
tτ tr(W̊1,rRτWτ ,1S

−1
τ R−1

τ ) · · ·
∑T

τ=1 π
2
tτ tr(W̊1,rRτWτ ,qS

−1
τ R−1

τ )

...
. . .

...∑T
τ=1 π

2
tτ tr(W̊T,rRτWτ ,1S

−1
τ R−1

τ ) · · ·
∑T

τ=1 π
2
tτ tr(W̊T,rRτWτ ,qS

−1
τ R−1

τ )

 ,

Gρt,r = 2σ2
0


∑T

τ=1 π
2
tτ tr(W̊1,rWτ ,1R

−1
τ ) · · ·

∑T
τ=1 π

2
tτ tr(W̊1,rWτ ,qR

−1
τ )

...
. . .

...∑T
τ=1 π

2
tτ tr(W̊T,rWτ ,1R

−1
τ ) · · ·

∑T
τ=1 π

2
tτ tr(W̊T,rWτ ,qR

−1
τ )

 ,

6



and, as in the proof of Proposition 1,

Ωrs = 2σ4
0


tr(W̊1,rW̊1,s) · · · tr(W̊1,rW̊T,s)

...
. . .

...

tr(W̊T,rW̊1,s) · · · tr(W̊T,rW̊T,s)

 ,

for r, s = 1, · · · , q. Evaluated at the restricted estimates ϑ̂ = (0, β̂
′
)′ and σ̂2, the LM test

statistic is given by

GMM-LMy = ĝ′Ω̂−1Ĝ(Ĝ′Ω̂−1Ĝ)−Ĝ′Ω̂−1ĝ

=

T−1∑
t=1

ĝ′tΩ̂
−1
t Ĝt

[
T−1∑
t=1

Ĝ′tΩ̂
−1
t Ĝt

]− T−1∑
t=1

Ĝ′tΩ̂
−1
t ĝt,

with ĝt = [H,W1,1û
+
t , · · · ,WT,1û

+
t , · · · ,W1,qû

+
t , · · · ,WT,qû

+
t ]′û+

t , and

Ĝt =



Ĝλt 0 H ′X̄+
t,1 · · · H ′X̄+

t,q H ′X+
t

Ĝλt,1 Ĝρt,1 0 · · · 0 0

...
...

...
. . .

...
...

Ĝλt,q Ĝρt,q 0 · · · 0 0


,

Ω̂t =

 σ̂2H ′H 0

0 Ψ̂Q

 , Ψ̂Q =


Ω̂11 · · · Ω̂1q

...
. . .

...

Ω̂q1 · · · Ω̂qq

 ,

7



where Ĝλt = [H ′X̄+
t,1β̂, · · · , H ′X̄

+
t,qβ̂] and, recalling that W ∗t,r =

∑T
τ=1 π

2
tτWτ ,r,

Ĝλt,r = Ĝρt,r = 2σ̂2


tr(W̊1,rW

∗
t,1) · · · tr(W̊1,rW

∗
t,q)

...
. . .

...

tr(W̊T,rW
∗
t,1) · · · tr(W̊T,rW

∗
t,q)

 ,

Ω̂rs = 2σ̂4


tr(W̊1,rW̊1,s) · · · tr(W̊1,rW̊T,s)

...
. . .

...

tr(W̊T,rW̊1,s) · · · tr(W̊T,rW̊T,s)

 ,

for r, s = 1, · · · , q. Let π̄t = [π2
t1, · · · , π2

tT ], and, as was shown in the proof of Proposition

1, Ω̂rsπ̄
′
t = 2σ̂4[tr(W̊1,rW

∗
t,s), . . . , tr(W̊T,rW

∗
t,s)]

′ and π̄tΩ̂rsπ̄
′
t = 2σ̂4tr(W ∗t,rW

∗
t,s). In light of

this, Ĝλt,r = Ĝρt,r = σ̂−2[Ω̂r1, · · · , Ω̂rq](Iq ⊗ π̄′t) for r = 1, · · · , q, and adopting the notation

X̄+
[t] = [X̄+

t,1, · · · , X̄
+
t,q]

Ĝt =

 H ′X̄+
[t](Iq ⊗ β̂) 0 H ′X̄+

[t] H ′X+
t

σ̂−2Ψ̂Q(Iq ⊗ π̄′t) σ̂−2Ψ̂Q(Iq ⊗ π̄′t) 0 0

 ,

Ĝ′tΩ̂
−1
t = σ̂−2



(Iq ⊗ β̂
′
)X̄+′

[t] H(H ′H)−1 (Iq ⊗ π̄t)

0 (Iq ⊗ π̄t)

X̄+′
[t] H(H ′H)−1 0

X+′
t H(H ′H)−1 0


.

Let Φ̂Q,t = (Iq⊗π̄t)Ψ̂Q(Iq⊗π̄′t). Observing thatH(H ′H)−1H ′X̄+
t,r = X̄+

t,r,H(H ′H)−1H ′X+
t =

8



X+
t and

∑T−1
t=1 X+′

t û
+
t = 0, we have

Ĝ′tΩ̂
−1
t Ĝt = σ̂−4



Φ̂Q,t + σ̂2(Iq ⊗ β̂
′
)X̄+′

[t] X̄
+′
[t] (Iq ⊗ β̂) Φ̂Q,t σ̂2(Iq ⊗ β̂

′
)X̄+′

[t] X̄
+
[t] σ̂2(Iq ⊗ β̂

′
)X̄+′

[t] X
+
t

Φ̂Q,t Φ̂Q,t 0 0

σ̂2X̄+′
[t] X̄

+
[t](Iq ⊗ β̂) 0 σ̂2X̄+′

[t] X̄
+
[t] σ̂2X̄+′

[t] X
+
t

σ̂2X+′
t X̄

+
[t](Iq ⊗ β̂) 0 σ̂2X+′

t X̄
+
[t] σ̂2X+′

t X
+
t


,

and

T−1∑
t=1

Ĝ′tΩ̂
−1
t ĝt = σ̂−2



V̂Q + (Iq ⊗ β̂)′V̂L

V̂Q

V̂L

0


.

Observing that
∑T−1

t=1 Φ̂Q,t = Φ̂Q and

M11 =
T−1∑
t=1

X̄+′
[t] X̄

+
[t] =


X̄+′

1 X̄+
1 · · · X̄+′

1 X̄+
q

...
. . .

...

X̄+′
q X̄

+
1 · · · X̄+′

q X̄
+
q

 , M21 =
T−1∑
t=1

X+′
t X̄

+
[t] =

[
X+′X̄+

1 , · · · , X+′X̄+
q

]
,

we have

T−1∑
t=1

Ĝ′tΩ̂
−1
t Ĝt = σ̂−4



Φ̂Q + σ̂2(Iq ⊗ β̂)′M11(Iq ⊗ β̂) Φ̂Q σ̂2(Iq ⊗ β̂)′M11 σ̂2(Iq ⊗ β̂)′M ′21

Φ̂Q Φ̂Q 0 0

σ̂2M11(Iq ⊗ β̂) 0 σ̂2M11 σ̂2M ′21

σ̂2M21(Iq ⊗ β̂) 0 σ̂2M21 σ̂2X+′X+


.

9



Let

V̂∗ =


V̂Q

V̂L

0

 , Φ̂∗ =


Φ̂Q 0 0

0 σ̂2M11 σ̂2M ′21

0 σ̂2M21 σ̂2X+′X+

 , Γ =


Iq

Iq ⊗ β̂

0

 .

Then,

T−1∑
t=1

Ĝ′tΩ̂
−1
t ĝt = σ̂−2

 Γ′V̂∗

V̂∗

 , T−1∑
t=1

Ĝ′tΩ̂
−1
t Ĝt = σ̂−4

 Γ′Φ̂∗Γ Γ′Φ̂∗

Φ̂∗Γ Φ̂∗

 .
It follows by a similar argument as in the proof of Proposition 1 in Liu and Prucha (2018)

GMM-LMy = V̂ ′∗Φ̂
−1
∗ V̂∗

=


V̂Q

V̂L

0


′ 

Φ̂Q 0 0

0 σ̂2M11 σ̂2M ′21

0 σ̂2M21 σ̂2X+′X+


−1 

V̂Q

V̂L

0



=

 V̂Q

V̂L


′  Φ̂Q 0

0 σ̂2M11 − σ̂2M ′21(X+′X+)−1M21


−1  V̂Q

V̂L


= I2

y (q).

Proof of Proposition 4. Let ε+t (ϑ) = R1(ρ)[S1(λ)y+
t −X+

t β −
∑q

r=1W1,rX
+
t γr]. The first

10



derivatives of the log-likelihood function are

∂ lnL

∂λr
= −(T − 1)tr(W1,rS1(λ)−1) +

1

σ2

T−1∑
t=1

ε+t (ϑ)′R1(ρ)W1,ry
+
t

∂ lnL

∂ρr
= −(T − 1)tr(W1,rR1(ρ)−1) +

1

σ2

T−1∑
t=1

ε+t (ϑ)′W1,r[S1(λ)y+
t −X+

t β −
q∑
r=1

W1,rX
+
t γr]

∂ lnL

∂γ′r
=

1

σ2

T−1∑
t=1

X+′
t W

′
1,rR1(ρ)′ε+t (ϑ)

∂ lnL

∂β′
=

1

σ2

T−1∑
t=1

X+′
t R1(ρ)′ε+t (ϑ)

∂ lnL

∂σ2
= −n(T − 1)

2σ2
+

1

2σ4

T−1∑
t=1

ε+t (ϑ)′ε+t (ϑ).

Evaluated at the true parameters, the expected values of the second-order derivatives are

E(
∂2 lnL

∂λr∂λs
|ϑ0,σ20) = −(T − 1)tr(W1,rS

−1
1 W1,sS

−1
1 )− (T − 1)tr[(R1W1,sS

−1
1 R−1

1 )′(R1W1,rS
−1
1 R−1

1 )]

− 1

σ2

T−1∑
t=1

(R1W1,sS
−1
1 F+

t )′(R1W1,rS
−1
1 F+

t ),

E(
∂2 lnL

∂λr∂ρs
|ϑ0,σ20) = −(T − 1)tr(W1,sW1,rS

−1
1 R−1

1 )− (T − 1)tr[(R1W1,rS
−1
1 R−1

1 )′W1,sR
−1
1 ],

E(
∂2 lnL

∂λr∂γ′s
|ϑ0,σ20) = − 1

σ2

T−1∑
t=1

X+′
t W

′
1,sR

′
1R1W1,rS

−1
1 F+

t ,

E(
∂2 lnL

∂λr∂β
′ |ϑ0,σ20) = − 1

σ2

T−1∑
t=1

X+′
t R

′
1R1W1,rS

−1
1 F+

t ,

E(
∂2 lnL

∂λr∂σ2
|ϑ0,σ20) = − 1

σ2
(T − 1)tr(R1W1,rS

−1
1 R−1

1 ),

11



E(
∂2 lnL

∂ρr∂ρs
|ϑ0,σ20) = −(T − 1)tr(W1,rR

−1
1 W1,sR

−1
1 )− (T − 1)tr[(W1,sR

−1
1 )′W1,rR

−1
1 ],

E(
∂2 lnL

∂ρr∂γ
′
s

|ϑ0,σ20) = E(
∂2 lnL

∂ρr∂β
′ |ϑ0,σ20) = 0,

E(
∂2 lnL

∂ρr∂σ
2
|ϑ0,σ20) = − 1

σ2
(T − 1)tr(W1,rR

−1
1 ),

E(
∂2 lnL

∂γs∂γ
′
r

|ϑ0,σ20) = − 1

σ2

T−1∑
t=1

X+′
t W

′
1,rR

′
1R1W1,sX

+
t ,

E(
∂2 lnL

∂β∂γ′r
|ϑ0,σ20) = − 1

σ2

T−1∑
t=1

X+′
t W

′
1,rR

′
1R1X

+
t ,

E(
∂2 lnL

∂β∂β′
|ϑ0,σ20) = − 1

σ2

T−1∑
t=1

X+′
t R

′
1R1X

+
t ,

E(
∂2 lnL

∂σ2∂γ′r
|ϑ0,σ20) = E(

∂2 lnL

∂σ2∂β′
|ϑ0,σ20) = 0,

E(
∂2 lnL

∂(σ2)2
|ϑ0,σ20) = −n(T − 1)

2σ4
,

where F+
t ≡ X+

t β0 +
∑q

r=1WrX
+
t γr0. Evaluated at the restricted estimators under H

y
0 ,

we have ∂ lnL
∂λr
|
ϑ̂,σ̂2

= σ̂−2∑T−1
t=1 û+′

t W1,ry
+
t ,

∂ lnL
∂ρr
|
ϑ̂,σ̂2

= σ̂−2∑T−1
t=1 û+′

t W
′
1,rû

+
t ,

∂ lnL
∂γ′r
|
ϑ̂,σ̂2

=

12



σ̂−2∑T−1
t=1 X+′

t W
′
1,rû

+
t ,

∂ lnL
∂β′
|
ϑ̂,σ̂2

= 0, ∂ lnL
∂σ2
|
ϑ̂,σ̂2

= 0,

[E(
∂2 lnL

∂λr∂λs
|ϑ0,σ20)]ϑ̂,σ̂2 = −2(T − 1)tr(W̊1,rW̊1,s)−

1

σ̂2

T−1∑
t=1

β̂
′
X+′
t W

′
1,sW1,rX

+
t β̂,

[E(
∂2 lnL

∂λr∂ρs
|ϑ0,σ20)]ϑ̂,σ̂2 = [E(

∂2 lnL

∂ρr∂ρs
|ϑ0,σ20)]ϑ̂,σ̂2 = −2(T − 1)tr(W̊1,rW̊1,s),

[E(
∂2 lnL

∂λr∂γ′s
|ϑ0,σ20)]ϑ̂,σ̂2 = − 1

σ̂2

T−1∑
t=1

X+′
t W

′
1,sW1,rX

+
t β̂,

[E(
∂2 lnL

∂λr∂β
′ |ϑ0,σ20)]ϑ̂,σ̂2 = − 1

σ̂2

T−1∑
t=1

X+′
t W1,rX

+
t β̂,

[E(
∂2 lnL

∂γs∂γ
′
r

|ϑ0,σ20)]ϑ̂,σ̂2 = − 1

σ̂2

T−1∑
t=1

X+′
t W

′
1,rW1,sX

+
t ,

[E(
∂2 lnL

∂β∂γ′r
|ϑ0,σ20)]ϑ̂,σ̂2 = − 1

σ̂2

T−1∑
t=1

X+′
t W

′
1,rX

+
t ,

[E(
∂2 lnL

∂β∂β′
|ϑ0,σ20)]ϑ̂,σ̂2 = − 1

σ̂2

T−1∑
t=1

X+′
t X

+
t ,

[E(
∂2 lnL

∂(σ2)2
|ϑ0,σ20)]ϑ̂,σ̂2 = −n(T − 1)

2(σ̂2)2
,

and [E( ∂
2 lnL

∂λr∂σ2
|ϑ0,σ20)]ϑ̂,σ̂2 = [E( ∂2 lnL

∂ρr∂γk,s
|ϑ0,σ20)]ϑ̂,σ̂2 = [E( ∂

2 lnL
∂ρr∂βk

|ϑ0,σ20)]ϑ̂,σ̂2 = [E( ∂
2 lnL

∂ρr∂σ
2 |ϑ0,σ20)]ϑ̂,σ̂2 =

[E( ∂2 lnL
∂σ2∂γk,r

|ϑ0,σ20)]ϑ̂,σ̂2 = [E( ∂
2 lnL

∂σ2∂βk
|ϑ0,σ20)]ϑ̂,σ̂2 = 0. Hence,

ML-LMy =

 ∂ lnL
∂ϑ′

∂ lnL
∂σ2


′

ϑ̂,σ̂2

−E

 ∂2 lnL
∂ϑ∂ϑ′

∂2 lnL
∂σ2∂ϑ′

∂2 lnL
∂ϑ∂σ2

∂2 lnL
(∂σ2)2

∣∣∣∣∣∣∣
ϑ0,σ20



−

ϑ̂,σ̂2

 ∂ lnL
∂ϑ′

∂ lnL
∂σ2


ϑ̂,σ̂2

=

 ∂ lnL
∂ϑ′
|
ϑ̂,σ̂2

0


′
−E

 ∂2 lnL
∂ϑ∂ϑ′

0

0 ∂2 lnL
(∂σ2)2

∣∣∣∣∣∣∣
ϑ0,σ20



−

ϑ̂,σ̂2

 ∂ lnL
∂ϑ′
|
ϑ̂,σ̂2

0


ϑ̂,σ̂2

=

[
∂ lnL

∂ϑ′
|
ϑ̂,σ̂2

]′ [
−E

(
∂2 lnL

∂ϑ∂ϑ′

∣∣∣∣
ϑ0,σ20

)]−
ϑ̂,σ̂2

[
∂ lnL

∂ϑ′
|
ϑ̂,σ̂2

]
.
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Let

V̂∗ = σ̂2



∂ lnL
∂ρ′ |ϑ̂,σ̂2
∂ lnL
∂γ′1
|
ϑ̂,σ̂2

...

∂ lnL
∂γ′q
|
ϑ̂,σ̂2

0


, Φ̂∗ = −σ̂4


E



∂2 lnL
∂ρ∂ρ′ 0 · · · 0 0

0 ∂2 lnL
∂γ1∂γ

′
1
· · · ∂2 lnL

∂γq∂γ
′
1

∂2 lnL
∂β∂γ′1

...
...

. . .
...

...

0 ∂2 lnL
∂γ1∂γ

′
q
· · · ∂2 lnL

∂γq∂γ
′
q

∂2 lnL
∂β∂γ′q

0 ∂2 lnL
∂γ1∂β

′ · · · ∂2 lnL
∂γq∂β

′
∂2 lnL
∂β∂β′

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
ϑ0,σ20




ϑ̂,σ̂2

.

Since Wt,r = W1,r for all t, we have

V̂∗ =


V̂Q

V̂L

0

 , Φ̂∗ =


Φ̂Q 0 0

0 σ̂2M11 σ̂2M ′21

0 σ̂2M21 σ̂2X+′X+

 ,

where

M11 =


X̄+′

1 X̄+
1 · · · X̄+′

1 X̄+
q

...
. . .

...

X̄+′
q X̄

+
1 · · · X̄+′

q X̄
+
q

 , M21 =
[
X+′X̄+

1 , · · · , X+′X̄+
q

]
.

Then, for Γ = [Iq, Iq ⊗ β̂
′
, 0]′, we have

∂ lnL

∂ϑ′
|
ϑ̂,σ̂2

=

 Γ′V̂∗

V̂∗

 , [
−E

(
∂2 lnL

∂ϑ∂ϑ′

∣∣∣∣
ϑ0,σ20

)]
ϑ̂,σ̂2

=

 Γ′Φ̂∗Γ Γ′Φ̂∗

Φ̂∗Γ Φ̂∗

 .
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It follows by a similar argument as in the proof of Proposition 1 in Liu and Prucha (2018)

ML-LMy = V̂ ′∗Φ̂
−1
∗ V̂∗

=


V̂Q

V̂L

0


′ 

Φ̂Q 0 0

0 σ̂2M11 σ̂2M ′21

0 σ̂2M21 σ̂2X+′X+


−1 

V̂Q

V̂L

0



=

 V̂Q

V̂L


′  Φ̂Q 0

0 σ̂2M11 − σ̂2M ′21(X+′X+)−1M21


−1  V̂Q

V̂L


= I2

y (q).
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D Assumptions: Additional Discussions

D.1 Suffi cient Conditions for Assumption 3

Assumption 3 is a high level assumption. In the following we explore lower level suffi cient

conditions. In preparation of this exploration we first collect some useful results in a

lemma. Parts (i) and (ii) of the lemma below restate results given, e.g., in Remark A.1 of

Kelejian and Prucha (2010) for the convenience of the reader. Parts (iii) and (iv) extend

parts of Remark A.1 to accommodate fixed effects. The reason is that while the Helmert

transformation removes fixed effects from µ+ εt, it does not remove them from regressors

that are spatial lags of yt, if the weight matrices vary over time. Proofs for the lemmata

given in this subsection are given in a subsequent subsection.

Lemma D.1. Let An and Bn be nonstochastic n×n matrices whose row and column sums

of the absolute elements are bounded uniformly by finite constants KA and KB, let an and

bn be some nonstochastic n× 1 vectors whose elements are bounded uniformly in absolute

value by some finite constants Ka and Kb. Then:

(i) The row and column sums of the absolute elements of AnBn are bounded uniformly by

KAKB.

(ii) The elements of Anan are bounded uniformly in absolute value by the constant KAKa

and n−1b′nAnan is uniformly bounded in absolute value by KAKaKb.

Furthermore, let ξn = sn + Snξ
∗
n where the sn are nonstochastic n × 1 vectors whose

elements are bounded uniformly in absolute value by some finite constant Ks, the Sn are

nonstochastic n × n matrices where the elements of Σn = SnS
′
n are uniformly bounded in

absolute value by some finite constant Kσ, and the ξ∗n are n × 1 random vectors whose
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elements are i.i.d. (0, 1), and hence ξn ∼ (sn,Σn). Assume furthermore the elements of ξ∗n

have uniformly bounded finite 4 + δ moments for some δ > 0. Then:

(iii) n−1a′nξn is Op(1), and furthermore if ξn = σξξ
∗
n we have n

−1/2a′nξn is Op(1).

(iv) n−1ξ′nAnξn is Op(1), and furthermore for random vectors ςn with E(ςn | ξn) = 0 and

E(ςnς
′
n | ξn) = σ2

ς In we have n
−1ξ′nAnςn = op(1) and n−1ς ′nAnςn = n−1E(ς ′nAnςn) +

op(1) with n−1E(ς ′nAnςn) = σ2
ςn
−1tr(An) = O(1).

As remarked in the text, the conditions on A postulated in Assumption 3 hold under

the assumptions maintained for the weight matrices Wr for the leading application where

A = W̊ ∗r , and of course the conditions also hold for A = In(T−1). We next postulate

lower level assumptions on the regressors in Zt. We then give a lemma that shows that,

under those assumptions, the conditions of Assumption 3 that n−1Z+′AZ+ = Op(1) and

n−1Z+′Aε+ = n−1E(Z+′Aε+) + op(1), where n−1E(Z+′Aε+) = O(1), hold. We then show

that in particular the regressors of a higher order Cliff-Ord network model satisfy the

postulated lower level assumptions.

Assumption D.1. The columns of Zt are of the form

ztk,n = ctk,n + Ctk,n(µn + εt,n) (D.1)

where the ctk,n are nonstochastic n × 1 vectors whose elements are uniformly bounded in

absolute value by a finite constant, say, ∆c, the Ctk are nonstochastic n×n matrices whose

row and column sums of the absolute elements are uniformly bounded by a finite constant,

say, ∆C . Furthermore the fixed effects are of the form µn = νn + V
1/2
n ξ∗n where the νn are

nonstochastic n × 1 vectors whose elements are uniformly bounded in absolute value by a

17



finite constant ∆v, the Vn = V
1/2
n V

1/2′
n are nonstochastic n × n matrices whose elements

are uniformly bounded in absolute value by a finite constant ∆V , and the elements of the

n × 1 vectors ξ∗n are i.i.d. (0, 1) with uniformly bounded finite 4 + δ moments for some

δ > 0. Furthermore E(εt,n | µn) = 0.

The assumption allows for fairly general forms of fixed effects µn. Note that we only

assume that the elements of νn and Vn are uniformly bounded in absolute value. We do

not impose bounds on the row and column sums of Vn.

Lemma D.2. Suppose the innovations satisfy Assumption 1, An = diagT−1
t=1 {At,n} satisfies

the conditions postulated in Assumption 3, and the columns of Zt satisfy Assumption D.1.

Then the remainder of Assumption 3 holds, i.e., n−1Z+′
n AnZ

+
n = Op(1) and n−1Z+′

n Anε
+
n =

n−1E(Z+′
n Anε

+
n ) + op(1), where n−1E(Z+′

n Anε
+
n ) = O(1).

We now apply the above lemma illustratively to verify that under Hu
0 all regressors of

the higher-order spatial Cliff-Ord model (21) considered in the text satisfy the conditions

postulated in Assumption 4 regarding the regressors. Under Hu
0 model (21) is given by

yt =

q∑
r=1

λr0Wt,ryt +Xtβ0 +

q∑
r=1

Wt,rXtγr0 +ut, and ut = µ+ εt, for t = 1, · · · , T, (D.2)

and the regressor matrix is given by Zt = [Wt,1yt, . . . ,Wt,qyt, Xt,Wt,1Xt, . . . ,Wt,qXt].21

Also assume, as common in the spatial literature, that St = In −
∑q

r=1 λr0Wt,r is non-

singular and that the row and column sums of the absolute elements of S−1
t are uniformly

bounded by some finite constant, and that the fixed effects satisfy the conditions postu-

lated in Assumption D.1. We now verify that the regressors in Zt satisfy the conditions

21Under Hy
0 the regressors constitute a subset of those considered under H

y
0 , and thus the subsequent

discussion also covers Hy
0 .
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postulated in Assumption D.1. Note that the elements of Xt are uniformly bounded in

absolute value by Assumption 4. By Lemma D.1(ii) it follows further that the elements

of all spatial lags Wt,kXt are uniformly bounded in absolute value. Hence all columns of

Xt,Wt,1Xt, . . . ,Wt,qXt are of the form ztk = ctk and satisfy Assumption D.1 with Ctk = 0.

Next consider the spatial lags of Wt,kyt in Zt. Observe that

yt = S−1
t Xtβ0 +

q∑
r=1

S−1
t Wt,rXtγr0 + S−1

t (µ+ εt),

and consequently

ztk = Wt,kyt = ctk + Ctk(µ+ εt)

with ctk = Wt,kS
−1
t Xtβ0 +

∑q
r=1Wt,kS

−1
t Wt,rXtγr0 and Ctk = Wt,kS

−1
t . Under the main-

tained assumption the row and column sums of Wt,kS
−1
t and Wt,kS

−1
t Wt,r are uniformly

bounded in absolute value by Lemma D.1(i), and thus Ctk satisfies Assumption D.1. Fur-

thermore by Lemma D.1(ii) the elements of ctk are uniformly bounded in absolute value,

and thus also the ctk satisfy Assumption D.1. Having verified the assumptions of postu-

lated on zztk in Assumption D.1 it now follows from Lemma D.2 that n−1Z+′
n AnZ

+
n and

n−1Z+′
n Anε

+
n satisfy the conditions postulated in Assumption 3.

D.2 Proofs of Lemmata

Proof of Lemma D.1. For parts (i) and (ii) see Remark A.1 in Kelejian and Prucha (2010).

To verify the first claim of part (iii) observe that E[(n−1a′nξn)2] = n−2(a′nsn)2+n−2a′nΣnan ≤

K2
aK

2
s +KσK

2
s . The claim now follows from Fuller (1976), Corollary 5.1.1.1. Analogously,

to verify the second claim of part (iii) observe that E[(n−1/2a′nξn)2] = n−1σ2
ξa
′
nan ≤ σ2

ξK
2
α.

To verify the first claim of part (iv) we maintain w.o.l.o.g. that An is symmetric, given
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that ξ′nAnξn = ξ′n[(An +A′n)/2]ξn. Observe that

n−1ξ′nAnξn = n−1s′nAnsn + n−1s′nAnSnξ
∗
n + n−1ξ∗′nS

′
nAnsn + n−1ξ∗′nS

′
nAnSnξ

∗
n.

It now follows immediately form part (ii) that n−1s′nAnsn = O(1). Next observe that

E[n−1s′nAnSnξ
∗
n] = 0 and Var[n−1s′nAnSnξ

∗
n] = n−2s′nAnΣnAnsn. In light of part (ii) we

have that the elements ofAnsn are uniformly bounded byKAKs, and thus n−2s′nAnΣnAnsn ≤

K2
AK

2
sKσ. It now follows from Fuller (1976), Corollary 5.1.1.2, that n−1s′nAnSnξ

∗
n and anal-

ogously n−1ξ∗′nS
′
nAnsn are Op(1). Next observe that n−1E[ξ∗′nS

′
nASnξ

∗
n] = n−1tr[AnΣn].

Let ai.,n and σ.i,n denote the i-th row and column of An and Σn, respectively. Then

tr[AnΣn] =
∑n

i=1 ai.,nσ.i,n. Observing that |ai.,nσ.i,n| ≤ Kσ
∑n

j=1 |aij,n| ≤ KσKA we have

|n−1E[ξ∗′nS
′
nAnSnξ

∗
n]| ≤ KσKA and thus n−1E[ξ∗′nS

′
nAnSnξ

∗
n] = O(1). Next observe that in

light of, say, Kelejian and Prucha (2001) we have

Var(n−1ξ∗′nS
′
nAnSnξ

∗
n) = n−22tr(DnDn) + n−2

n∑
i=1

d2
ii,n(Eξ∗4i,n − 3).

Dn = (dij,n) = S′nAnSn. Recalling that Σn = SnS
′
n we have tr(DnDn) = tr(AnΣnAnΣn).

Consider the (k, l)th element of AnΣn given by ak.,nσ.l,n, then by argumentation analogous

to above |ak.,nσ.l,n| ≤ KSKA. This in turn implies that all elements of AnΣnAnΣn are

bounded in absolute value by nK2
σK

2
A. Hence

∣∣n−2tr(DnDn)
∣∣ ≤ K2

σK
2
A. Next observe

that |σij,n| = |
∑n

r=1 sir,nsjr,n| ≤ Kσ, and as a special that |σii,n| =
∑n

r=1 s
2
ir,n ≤ Kσ.

Note that the latter implies that s2
ir,n ≤ Kσ and thus |sir,n| /K1/2

σ ≤ 1 and also that∑n
r=1 |sir,n| ≤ Kσ

∑n
r=1 s

2
ir,n ≤ K2

σ. Observing that dii,n =
∑n

l=1

∑n
k=1 akl,nsli,nski,n, it
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then follows that

n∑
i=1

d2
ii,n ≤

n∑
i=1

n∑
l=1

n∑
k=1

n∑
u=1

n∑
v=1

|akl,nauv,nski,nsli,nsui,nsvi,n|

≤ K3/2
σ

n∑
l=1

n∑
k=1

n∑
u=1

n∑
v=1

|akl,n| |auv,n|
n∑
i=1

|svi,n|

≤ K2+3/2
σ

n∑
k=1

n∑
u=1

n∑
l=1

|akl,n|
n∑
v=1

|auv,n| ≤ K2+3/2
σ

n∑
k=1

n∑
u=1

K2
A = n2K2+3/2

σ K2
A.

Since Eξ∗4i,n is uniformly bounded, it follows that also n
−2
∑n

i=1 d
2
ii,n(Eξ∗4i,n−3) is uniformly

bounded by a finite constant, and thus that Var(n−1ξ∗′nS
′
nAnSnξ

∗
n) = O(1). Using again

Corollary 5.1.1.2 of Fuller (1976) we have n−1ξ∗′nS
′
nAnSnξ

∗
n = Op(1), which completes the

proof of the first claim of part (iv).

To prove the second claim of part (iv) observe that n−1E(ξ′nAnςn) = 0 andVar(n−1ξ′nAnςn) =

n−2E[tr(ξ′nAnςnς
′
nAnξn)] = n−2tr[AnE(ςnς

′
n | ξn)Anξnξ

′
n] = σ2

ςn
−2tr[AnAnΣn] by iterated

expectations. Under the maintained assumptions it follows from part(ii) off the lemma

that the elements of AnAnΣn are bounded uniformly in absolute value by K2
AKσand

Var(n−1ξ′nAnςn) ≤ σ2
ςK

2
AKσ/n → 0. The claim now follows from Chebyshev’s inequal-

ity.

The third claim of part (iv) follows immediately from Kelejian and Prucha (2001).

Proof of Lemma D.2. Recall that Z+
n = [Z+′

1,n, · · · , Z
+′
T−1,n]′, ε+n = [ε+′1,n, · · · , ε

+′
T−1,n]′, and

thus n−1Z+′
n AnZ

+
n =

∑T−1
t=1 n−1Z+′

t,nAt,nZ
+
t,n and n

−1Z+′
n Anε

+
n =

∑T−1
t=1 n−1Z+′

t,nAt,nε
+
t,n. To

prove the lemma it thus suffi ces to show that n−1Z+′
t,nAt,nZ

+
t,n = Op(1) and n−1Z+′

t,nAt,nε
+
t,n =

n−1E(Z+′
t,nAt,nε

+
t,n) + op(1), where n−1E(Z+′

t,nAt,nε
+
t,n) = O(1). For ease of notation we drop
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subscripts n in the following. The (k, l)th element of n−1Z+′
t AtZ

+
t is given by

n−1z+′
tkAtz

+
tl = n−1c+′

tkAtc
+
tl + n−1c+′

tkAt[Ctl(µ+ εt)]
+ + n−1[(µ+ εt)

′C ′tk]
+Atc

+
tl

+n−1[(µ+ εt)
′C ′tk]

+At[Ctl(µ+ εt)]
+. (D.3)

To prove the claim we consider each term on the r.h.s. separately. Observe that by Lemma

D.1(ii) that the elements of Atcsl are uniformly bounded in absolute value by ∆A∆c, and

thus

∣∣n−1c+′
tkAtc

+
tl

∣∣ = n−1

∣∣∣∣∣∣
T∑

τ ,s=1

πtτπtτ c
′
τkAtcsl

∣∣∣∣∣∣ ≤ n−1
T∑

τ ,s=1

πtτπtτ
∣∣c′τkAtcsl∣∣

≤
T∑

τ ,s=1

πtτπtτ∆2
c∆A ≤ T 2∆2

c∆A,

observing that |πtτ | ≤ 1 and T is finite. This shows that n−1c+′
tkAtc

+
tl = O(1).

Next observe that

n−1c+′
tkAt[Ctl(µ+ εt)]

+ = n−1
T∑

τ ,s=1

πtτπtsc
′
τkAtCslµ+ n−1

T∑
τ ,s=1

πtτπtsc
′
τkAtCslεt.

By Lemma D.1(i) and (ii) the elements of all vectors c′τkAtCsl are uniformly bounded in

absolute value by ∆c∆C∆A. Observing that µ satisfies the conditions postulated for ξ in

Lemma D.1 it follows immediately from the first part of Lemma D.1(iii) that all terms

n−1c′τkAtCslµ are Op(1). Observing that εt satisfies the conditions of ξ postulated for

the second part of Lemma D.1(iii) it follows further that all terms n−1c′τkAtCslεt are also

Op(1). Since |πtτ | ≤ 1 and T is finite this shows that n−1c+′
tkAt[Ctl(µ+ εt)]

+ = Op(1) and

analogously that n−1[(µ+ εt)
′C ′tk]

+Atc
+
tl = Op(1).
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Finally observe that

n−1[(εt + µ)′C ′tk]
+At[Ctl(εt + µ)]+

= n−1
T∑

τ ,s=1

πtτπtsε
′
tC
′
τkAtCslεt + 2n−1

T∑
τ ,s=1

πtτπtsµ
′C ′τkAtCslεt + n−1

T∑
τ ,s=1

πtτπtsµ
′C ′τkAtCslµ.

By Lemma D.1(i) the row and column sums of the absolute elements of the matrices

C ′τkAtCsl are uniformly bounded by ∆2
C∆A. It now follows immediately from the first

part of Lemma D.1(iv) that the terms n−1ε′tC
′
τkAtCslεt and n

−1µ′C ′τkAtCslµ are Op(1),

observing respectively that both εt and µ satisfy the conditions postulated for ξ in the

lemma. The terms n−1µ′C ′τkAtCslεt are seen to be op(1) from the second part of Lemma

D.1(iv) upon associating ξ with µ and ςn with εt. Since |πtτ | ≤ 1 and T is finite. this

shows that n−1[(εt + µ)′C ′tk]
+At[Ctl(εt + µ)]+ = Op(1). Having shown that each term on

the r.h.s. of (D.3) is at most Op(1) it follows that n−1z+′
tkAtz

+
tl = Op(1), which completes

the proof of the first claim.

To prove the second claim, observe that the kth element of n−1Z+′
t Atε

+
t is given by

n−1z+′
tkAtε

+
t = n−1c+′

tkAtε
+
t + n−1[µ′C ′tk]

+Atε
+
t + n−1[ε′tC

′
tk]

+Atε
+
t .

To prove the claim we consider each term on the r.h.s. separately. Observe that

n−1c+′
tkAtε

+
t = n−1

T∑
τ ,s=1

πtτπtsc
′
τkAtεs,

and thus clearly n−1E(c+′
tkAtε

+
t ) = 0. Recalling from the above discussion that the elements

of c′τkAt are uniformly bounded in absolute value it follows from Lemma D.1(iii) upon asso-

ciating ξ with εs that each of the terms n−1c′τkAtεs are op(1) and thus that n−1c+′
tkAtε

+
t =

op(1). We have shown above n−1E(µ′C ′τkAtCslεt) = 0 and n−1µ′C ′τkAtCslεt = op(1), and
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thus E(n−1[µ′C ′tk]
+Atε

+
t ) = 0 and n−1[µ′C ′tk]

+Atε
+
t = op(1) is seen to hold as a special

case, taking Csl = In. Next consider

n−1[ε′tC
′
tk]

+Atε
+
t = n−1

T∑
τ ,s=1

πtτπtsε
′
tC
′
τkAtεs.

Let Bt = [C ′τkAt + AtCτk], then in light of Lemma D.1(i) the row and column sums of Bt

are uniformly bounded in absolute value. It now follows from the third claim of Lemma

D.1(iv) that n−1ε′tC
′
τkAtεs = n−1E(ε′tC

′
τkAtεs) + op(1) with n−1E(ε′tC

′
τkAtεs) = O(1), and

thus

n−1z+′
tkAtε

+
t = n−1E(z+′

tkAtε
+
t ) + op(1)

with

n−1E(z+′
tkAtε

+
t ) =

T∑
τ ,s=1

πtτπtsn
−1E(ε′tC

′
τkAtεs) = O(1).
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E Additional Monte Carlo Simulations

In this appendix, we first provide Monte Carlo simulation results on the performance of the

proposed I2(q) tests when q is large. For comparison we also report on the performance of

the Holm procedure. We then provide Monte Carlo simulation results for situations where

the weight matrices Wt are endogenous.

E.1 Performance of I2(q) Tests When q is Large

To generate the weight matrices Wt,r (for r = 1, · · · , q) for these Monte Carlo simulations,

we partition n individuals into equal-sized groups with 10 individuals in each group. Let

ξt,1, · · · , ξt,q be n × 1 random vectors generated from a multivariate normal distribution

with zero mean, unit variance and pairwise covariance (between ξt,r and ξt,s) given by φ.

Let Dt,r (for r = 1, · · · , q) be an observed n×n zero-diagonal matrix of indicator variables

with the (i, j)th element being one if and only if individuals i and j are in the same group

and
∣∣ξit,r − ξjt,r∣∣ ≤ 1, where ξit,r denotes the ith element of ξt,r. The weight matrices Wt,r

(for r = 1, · · · , q) are then obtained by row-sum normalizing Dt,r so that each non-zero

row of Wt,r sums to one.

For the I2
u(q) tests, yt is generated as

yt = Xtβ + ut, (E.1)

and, for the I2
y (q) tests, yt is generated as

yt = λ1Wt,1yt +Xtβ +Wt,1Xtγ1 + ut, (E.2)
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where in both cases

ut = ρ1Wt,1ut + µ+ εt,

for t = 1, · · · , T . The individual effects µi and innovations εit are generated independently

from N(0, 1). The observations on the two exogenous variables in the n× 2 matrix Xt are

generated independently from a Uniform[0, 3]. We set β = (1, 1)′ in the data generating

process.

[Insert Tables E.1-E.4 here]

Simulation results for n = 500 and T = 5 based on 50,000 repetitions are reported in

Tables E.1-E.4. We note that for the considered data generating processes, Wt,1 correctly

models the network topology, whereasWt,2, · · · ,Wt,q are misspecified weight matrices. The

reported results indicate that the actual sizes of the I2
u(q) and I2

y (q) tests are close to the

asymptotic nominal size of 0.05. We find the power of the I2
u(q) and I2

y (q) tests decreases

as q increases but the decrease is mostly modest. We also find that the Holm test tends to

under-reject the null hypothesis. The downward size distortion of the Holm test is more

severe as q gets larger and the correlation between the weight matrices (captured by φ)

increases.

E.2 Performance of I2(q) Tests with Endogenous Weight Matrices

In the following we report on Monte Carlo simulations for scenarios where the weight

matrix is endogenous. In line with our discussion in the Section 4, we consider two forms

of endogeneity. The first case arises when the weight matrix is correlated with the individual

effects µ, but not with the idiosyncratic disturbances εt. In this case we can still use the

weight matrix Wt in forming our test statistics. The second case arises when the weight

matrix is also correlated with the idiosyncratic disturbances εt. In this latter case we
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consider test statistics obtained by replacing the actual weight matrix with “projected”or

“instrumented”weight matrices, which only depend on exogenous variables.

For the I2
u(q) tests, yt is as generated as

yt = Xtβ + ut,

and, for the I2
y (q) tests, yt is generated as

yt = λWtyt +Xtβ +WtXtγ + ut,

where in both cases

ut = ρWtut + µ+ εt,

for t = 1, · · · , T . The individual effects µi and innovations εit are generated independently

from N(0, 1). The elements of the n× 2 matrix Xt = [xit,k] are given by xit,k = µi + x̃it,k,

where x̃it,k is drawn independently from Uniform[0, 3]. That is, we allow for correlation

between the xit,k and the uit through the individual effects. We set β = (1, 1)′ in the data

generating process.

To generate Wt, we partition n individuals into equal-sized groups with 10 individuals

in each group. Suppose that for each individual we observe two characteristics generated

as ξit,r = µi + ξ̃it,r, for r = 1, 2, where ξ̃it,r is drawn independently from N(0, 1). Let

Dt,r = [dij,t,r] be an n × n zero-diagonal matrix of indicator variables. When i and j are

not in the same group, define dij,t,r = 0. When i and j are in the same group, define

dij,t,r = 1 if ξit,r and ξjt,r are in the same quartile of their distribution.

Suppose links in Wt are formed if i and j are in the same group and

d̄ij,t,1 + µi + µj + eij,t > 0, (E.3)
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where d̄ij,t,1 is the standardized dij,t,1. We consider two specifications of eij,t. In the first

specification, the eij,t are generated i.i.d. N(0, 1), independently from the idiosyncratic

disturbances εit. In the second specification, eij,t = (εit + εjt)/
√

2, thus allowing for de-

pendence between the eij,t and the idiosyncratic disturbances εit. The weight matrix Wt

is the row-sum normalized adjacency matrix of the resulting network. For an exemplary

interpretation, the design of the weight matrix Wt is motivated by a friendship network

based on a simple homophily link formation model (E.3), where two individuals in the

same group are more likely to form a link if they share some specific characteristic given

by ξit,1. In that sense, Dt,1 is a more informative proxy for the actual adjacency matrix

Wt compared to Dt,2. Although dij,t,2 does not show up in the link formation model (E.3),

Dt,2 is not entirely uninformative because (i) it captures the group structure of the network

and (ii) ξit,1 and ξit,2 are correlated due to the individual effects µi in their definitions.

[Insert Tables E.5-E.8 here]

Simulation results for n ∈ {250, 500} and T = 5 based on 20,000 repetitions are reported

in Tables E.5-E.8. For Tables E.5 and E.6, the eij,t are generated independently from the

idiosyncratic disturbances εt, and Wt is correlated with the error term ut of the main

regression only via the individual effects µ. As the Helmert transformation eliminates

the individual effects in the error term ut, Wt becomes uncorrelated with the Helmert

transformed error terms. Hence, and as confirmed by the simulations, in this case the

I2(1) test based on Wt has the proper size. In contrast, for Tables E.7 and E.8, eij,t =

(εit + εjt)/
√

2, and Wt is correlated with the error term ut of the main regression via both

the individual effects µ and the idiosyncratic disturbances εt. Hence, the weight matrix Wt

remains endogenous after the Helmert transformation. As a result, in this case, the I2(1)

tests based on Wt exhibit severe upward size distortions. Observing that the matrices Dt,1

and/or Dt,2 are uncorrelated with the Helmert transformed error term, they can be used as
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exogenous “proxies”for Wt to construct I2(q) test statistics. We find that the I2(q) tests

based on Dt,1 and/or Dt,2 are properly sized and the power increases as the amount of

cross sectional dependence increases. As expected, since Dt,1 enters explicitly into the link

formation process (E.3), the I2(1) test with Dt,1 outperforms that with Dt,2. The I2(2)

test with both Dt,1 and Dt,2 has less power than the I2(1) test with Dt,1 but the power

loss is modest. The results suggest that the I2(2) test, incorporating both Dt,1 and Dt,2,

offers researchers significant robustness when they are uncertain which of Dt,1 or Dt,2 is a

better proxy for Wt.
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Table E.1. Rejection Rates for 𝐼𝐼𝑢𝑢2(𝑞𝑞) Tests with 𝑊𝑊1, … ,𝑊𝑊𝑞𝑞 (n = 500, T = 5,ϕ = 0) 
𝜌𝜌1 𝑞𝑞 = 1 𝑞𝑞 = 2 𝑞𝑞 = 5 𝑞𝑞 = 10 
0 0.0504 0.0507 0.0506 0.0503 
.2 0.8227 0.7459 0.6105 0.4823 
.4 0.9999 0.9998 0.9992 0.9961 
.6 1.0000 1.0000 1.0000 1.0000 
.8 1.0000 1.0000 1.0000 1.0000 

Nominal size is 0.05. The DGP is Defined by Equation (E1). 
 

Table E.2. Rejection Rates for 𝐼𝐼𝑦𝑦2(𝑞𝑞) Tests with 𝑊𝑊1, … ,𝑊𝑊𝑞𝑞 (n = 500, T = 5,ϕ = 0) 
𝜆𝜆1 𝜌𝜌1 𝛾𝛾1 𝑞𝑞 = 1 𝑞𝑞 = 2 𝑞𝑞 = 5 𝑞𝑞 = 10 
0 0 0 0.0502 0.0499 0.0491 0.0506 
.1 0 0 0.9890 0.9714 0.9031 0.7921 
.2 0 0 1.0000 1.0000 1.0000 1.0000 
0 .2 0 0.9996 0.9988 0.9923 0.9714 
0 .4 0 1.0000 1.0000 1.0000 1.0000 
.1 .2 0 1.0000 1.0000 1.0000 1.0000 
.2 .4 0 1.0000 1.0000 1.0000 1.0000 
0 0 .1 0.8881 0.8026 0.6211 0.4589 
0 0 .2 1.0000 1.0000 0.9997 0.9978 

Nominal size is 0.05. The DGP is Defined by Equation (E2). 
 

Table E.3. Rejection Rates for 𝐼𝐼𝑢𝑢2(𝑞𝑞) Tests with 𝑊𝑊1, … ,𝑊𝑊𝑞𝑞 (n = 500, T = 5,𝜌𝜌1 = 0) 
 𝑞𝑞 = 1 𝑞𝑞 = 2 𝑞𝑞 = 5 𝑞𝑞 = 10 
 ϕ = 0 

𝐼𝐼u2(𝑞𝑞) Test 0.0504 0.0507 0.0506 0.0503 
Holm Test 0.0504 0.0475 0.0406 0.0360 

 ϕ = 0.9 
𝐼𝐼𝑢𝑢2(𝑞𝑞) Test 0.0504 0.0500 0.0505 0.0501 
Holm Test 0.0504 0.0441 0.0309 0.0235 

Nominal size is 0.05. The DGP is Defined by Equation (E1). 
 

Table E.4. Rejection Rates for 𝐼𝐼𝑦𝑦2(𝑞𝑞) Tests with 𝑊𝑊1, … ,𝑊𝑊𝑞𝑞 (n = 500, T = 5, 𝜆𝜆1 = 𝜌𝜌1 = 𝛾𝛾1 = 0) 
 𝑞𝑞 = 1 𝑞𝑞 = 2 𝑞𝑞 = 5 𝑞𝑞 = 10 
 ϕ = 0 

𝐼𝐼𝑦𝑦2(𝑞𝑞) Test 0.0502 0.0499 0.0491 0.0506 

Holm Test 0.0502 0.0495 0.0457 0.0455 

 ϕ = 0.9 
𝐼𝐼𝑦𝑦2(𝑞𝑞) Test 0.0502 0.0513 0.0507 0.0507 

Holm Test 0.0502 0.0473 0.0385 0.0317 

Nominal size is 0.05. The DGP is Defined by Equation (E2). 
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Table E.5. Rejection Rates for 𝐼𝐼𝑢𝑢2(𝑞𝑞) Tests when the Network Links are Correlated with 𝜇𝜇𝑖𝑖 but not 𝜖𝜖𝑖𝑖𝑖𝑖 

𝜌𝜌 𝐼𝐼𝑢𝑢2(1) Test with W 𝐼𝐼𝑢𝑢2(1) Test with 𝐷𝐷1 𝐼𝐼𝑢𝑢2(1) Test with 𝐷𝐷2 𝐼𝐼𝑢𝑢2(2) Test with 𝐷𝐷1,𝐷𝐷2 
 n = 250, T = 5 

0 0.0532 0.0515 0.0502 0.0510 
.2 0.9829 0.8435 0.5693 0.7994 
.4 1.0000 1.0000 0.9984 1.0000 
.6 1.0000 1.0000 1.0000 1.0000 
.8 1.0000 1.0000 1.0000 1.0000 
 n = 500, T = 5 

0 0.0508 0.0510 0.0480 0.0493 
.2 0.9998 0.9834 0.8476 0.9740 
.4 1.0000 1.0000 1.0000 1.0000 
.6 1.0000 1.0000 1.0000 1.0000 
.8 1.0000 1.0000 1.0000 1.0000 

Nominal size is 0.05 

 

Table E.6. Rejection Rates for 𝐼𝐼𝑦𝑦2(𝑞𝑞) Tests when the Network Links are Correlated with 𝜇𝜇𝑖𝑖 but not 𝜖𝜖𝑖𝑖𝑖𝑖 

λ 𝜌𝜌 𝛾𝛾 𝐼𝐼𝑦𝑦2(1) Test with W 𝐼𝐼𝑦𝑦2(1) Test with 𝐷𝐷1 𝐼𝐼𝑦𝑦2(1) Test with 𝐷𝐷2 𝐼𝐼𝑦𝑦2(2) Test with 𝐷𝐷1,𝐷𝐷2 
   n = 250, T = 5 
0 0 0 0.0517 0.0508 0.0495 0.0508 
.2 0 0 1.0000 0.8824 0.5060 0.8306 
.4 0 0 1.0000 1.0000 0.9971 1.0000 
0 .2 0 0.9785 0.7281 0.4345 0.6649 
0 .4 0 1.0000 1.0000 0.9948 1.0000 
.2 .2 0 1.0000 0.9999 0.9691 0.9995 
.4 .4 0 1.0000 1.0000 1.0000 1.0000 
0 0 .5 1.0000 0.8248 0.1923 0.7360 
0 0 1 1.0000 0.9994 0.5785 0.9975 
   n = 500, T = 5 
0 0 0 0.0500 0.0512 0.0471 0.0477 
.2 0 0 1.0000 0.9971 0.8229 0.9930 
.4 0 0 1.0000 1.0000 1.0000 1.0000 
0 .2 0 1.0000 0.9545 0.7298 0.9296 
0 .4 0 1.0000 1.0000 1.0000 1.0000 
.2 .2 0 1.0000 1.0000 1.0000 1.0000 
.4 .4 0 1.0000 1.0000 1.0000 1.0000 
0 0 .5 1.0000 0.9998 0.4330 0.9987 
0 0 1 1.0000 1.0000 0.9434 1.0000 

Nominal size is 0.05 
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Table E.7. Rejection Rates for 𝐼𝐼𝑢𝑢2(𝑞𝑞) Tests when the Network Links are Correlated with both 𝜇𝜇𝑖𝑖 and 𝜖𝜖𝑖𝑖𝑖𝑖 

𝜌𝜌 𝐼𝐼𝑢𝑢2(1) Test with W 𝐼𝐼𝑢𝑢2(1) Test with 𝐷𝐷1 𝐼𝐼𝑢𝑢2(1) Test with 𝐷𝐷2 𝐼𝐼𝑢𝑢2(2) Test with 𝐷𝐷1,𝐷𝐷2 
 n = 250, T = 5 

0 0.2829 0.0481 0.0474 0.0471 
.2 0.7634 0.6413 0.4221 0.5906 
.4 1.0000 0.9996 0.9908 0.9996 
.6 1.0000 1.0000 1.0000 1.0000 
.8 1.0000 1.0000 1.0000 1.0000 
 n = 500, T = 5 

0 0.4310 0.0479 0.0487 0.0467 
.2 0.9696 0.9013 0.6955 0.8758 
.4 1.0000 1.0000 1.0000 1.0000 
.6 1.0000 1.0000 1.0000 1.0000 
.8 1.0000 1.0000 1.0000 1.0000 

Nominal size is 0.05 

 

Table E.8. Rejection Rates for 𝐼𝐼𝑦𝑦2(𝑞𝑞) Tests when the Network Links are Correlated with both 𝜇𝜇𝑖𝑖 and 𝜖𝜖𝑖𝑖𝑖𝑖 

λ 𝜌𝜌 𝛾𝛾 𝐼𝐼𝑦𝑦2(1) Test with W 𝐼𝐼𝑦𝑦2(1) Test with 𝐷𝐷1 𝐼𝐼𝑦𝑦2(1) Test with 𝐷𝐷2 𝐼𝐼𝑦𝑦2(2) Test with 𝐷𝐷1,𝐷𝐷2 
   n = 250, T = 5 
0 0 0 0.6063 0.0498 0.0461 0.0470 
.2 0 0 1.0000 0.7390 0.4360 0.6840 
.4 0 0 1.0000 1.0000 0.9735 1.0000 
0 .2 0 0.9950 0.5101 0.3018 0.4508 
0 .4 0 1.0000 0.9981 0.9723 0.9971 
.2 .2 0 1.0000 0.9932 0.9246 0.9899 
.4 .4 0 1.0000 1.0000 1.0000 1.0000 
0 0 .5 1.0000 0.9442 0.3335 0.8961 
0 0 1 1.0000 1.0000 0.8208 0.9998 
   n = 500, T = 5 
0 0 0 0.7301 0.0502 0.0500 0.0492 
.2 0 0 1.0000 0.9860 0.7250 0.9758 
.4 0 0 1.0000 1.0000 1.0000 1.0000 
0 .2 0 1.0000 0.8093 0.5485 0.7633 
0 .4 0 1.0000 1.0000 0.9998 1.0000 
.2 .2 0 1.0000 1.0000 0.9980 1.0000 
.4 .4 0 1.0000 1.0000 1.0000 1.0000 
0 0 .5 1.0000 1.0000 0.6439 1.0000 
0 0 1 1.0000 1.0000 0.9940 1.0000 

Nominal size is 0.05 


