
1 Overview
The programs made available on this web page are sample programs for the computation of estimators
introduced in Kelejian and Prucha (1999). In particular we provide sample programs for the estimation
of the following regression model, where the disturbances are generated from a (Cliff-Ord type) first order
spatial autoregressive model:

yn = Xnβ + un, (1)

un = ρWnun + εn, |ρ| < 1 (2)

where yn is the n×1 vector of observations on the dependent variable, Xn is the n×k matrix of observation
on k exogenous variables, Wn is an n× n spatial weighting matrix of known constants, β is the k× 1 vector
of regression parameters, ρ is the spatial autoregressive parameter, un is the n × 1 vector of regression
disturbances, εn is an n × 1 vector of innovations with mean zero and variance σ2ε. The variables Wnun is
typically referred to as the spatial lag of un.
A spatial Cochrane-Orcutt type transformation of the model yields

yn∗(ρ) = Xn∗(ρ)β + εn, (3)

with yn∗(ρ) = (In − ρWn)yn and Xn∗(ρ) = (In − ρWn)Xn.

Note: We provide two sets of sample programs, one for TSP and one for Stata. In the following we only
describe the use of the TSP programs. The use of the Stata programs is analogous.

Note: The consistency result for the generalized moments (GM) estimator for ρ given in the paper only
requires that the disturbances can be estimated n1/2-consistently, and thus the result also applies to situations
where yn is generated by a more general model than (1). The expression for the asymptotic variance
covariance matrix of the GM estimator introduced below is specific to the above model. It is essentially
obtained as a special case of a more general result for a wider class of models given in Kelejian and Prucha
(2004).

2 Data Files
The sample program involves two exogenous variables and an idealized spatial weighting matrix. This matrix
corresponds to the case where each unit has “one neighbor ahead and one neighbor behind” in a wrap around
world, and the row sums of the weighting matrix are normalized to one; for a more detailed description of
this idealized matrix see the Monte Carlo section of the paper. The sample size is taken to be 100. The
actual estimation programs assume that the data for the exogenous variables and spatial weighting matrix
are stored in files named VAR1.DAT and MMAT.DAT, respectively.

3 Estimation Programs
The main estimation program is contained in the file PROGRAM1.TSP. This program calls three “subrou-
tines” contained in the files GMPROC1.TSP, GLSPROC1.TSP and VGMPROC1.TSP. Those subroutines
compute the GM estimator for ρ, the feasible GLS estimator for β and its asymptotic variance covariance
matrix, and the asymptotic variance of the GM estimator for ρ, respectively.
The program PROGRAM1.TSP first reads in the data for the exogenous variables and spatial weighting

matrix from the files VAR1.DAT and MMAT.DAT. The actual estimation of the parameters of the model
(1)-(2) is then performed in four steps.
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Step 1: In the first step we estimate the regression model in (1) using ordinary least squares (OLS) to
obtain

bβOLS = (X 0
nXn)

−1X 0
nyn,bun = yn −Xn

bβOLS .
Step 2: In the second step the spatial autoregressive parameter ρ and σ2ε are estimated via the generalized
moments estimator introduced in Kelejian and Prucha (1999) utilizing the residuals obtained via the first
step. More specifically, the estimators of ρ and σ2ε, eρn and eσ2ε,n, are defined as the nonlinear least squares
estimators corresponding to the regression

gn = Gn

 ρ
ρ2

σ2ε

+∆n, (4)

where ∆n can be viewed as a vector of regression residuals,

Gn =
1

n


2bu0nbun −bu0nbun n

2bu0nbun −bu0nbun Tr(W 0
nWn)

bu0nbun + bu0nbun −bu0nbun 0

 , gn =
1

n


bu0nbun
bu0nbun
bu0nbun

 ,

and bun = Wnbun, and bun = W 2
nbun. The code for computing the GM estimators is contained in the file

GMPROC1.TSP.

Step 3: In the third step we first apply a spatial Cochrane-Orcutt type transformation to the original
regression model (1) based on eρn. The transformed model is as given in (3), but with ρ replaced by eρn. We
then reestimate β from the transformed model using OLS. This yields the following feasible GLS estimator

bβFGLS = (X 0
n∗(eρn)Xn∗(eρn))−1X 0

n∗(eρn)yn∗(eρn), (5)

where Xn∗(eρn) = (In−eρnWn)Xn, and yn∗(eρn) = (In−eρnWn)yn. The variance covariance matrix of bβFGLS
is estimated as

σ̌2ε(X
0
n∗(eρn)Xn∗(eρn))−1

with

σ̌2ε = n−1ε̌0nε̌n,

ε̌n = yn∗(eρn)−Xn∗(eρn)bβFGLS = (In − eρnWn)ǔn,

ǔn = yn −Xn
bβFGLS .

This estimator bβFGLS and the estimator for it’s variance covariance matrix is computed in GLSPROC1.TSP.
Step 4: In the fourth step we compute an estimate of the variance of eρn. As discussed in more detail in the
appendix, based on results in Kelejian and Prucha (2004), it is seen that

eρn .∼ N(0, eΩρn/n)
with eΩρn = ( eJ 0n eJn)−1 eJ 0neΨn eJn( eJ 0n eJn)−1 = eJ 0neΨn eJn/( eJ 0n eJn)2
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and where

eJn
2×1

=
1

n

 2cn

·bu0nbun − anbu0nbun¸ −cn
·bu0bu− anbu0bu¸bu0nbun + bu0nbun) −bu0nbun

 · 1
2eρn

¸
,

cn =

·
1

1 + a2n

¸1/2
,

an = n−1Tr {W 0
nWn}

and eΨn
2×2

=
heψrs,ni

r,s=1,2

with

eψrs,n = σ̌4ε(2n)
−1tr

£¡
Ar,n +A0r,n

¢ ¡
As,n +A0s,n

¢¤
,

A1,n = cn [W
0
nWn − anIn] ,

A2,n = Wn.

We note that σ̌2ε can be replaced by any other consistent estimator such as eσ2ε. Also observe that in computingeψrs,n we can utilize that
tr
£¡
A1,n +A01,n

¢ ¡
A1,n +A01,n

¢¤
= 4c2n[tr(W

0
nWnW

0
nWn)− na2n],

tr
£¡
A1,n +A01,n

¢ ¡
A2,n +A02,n

¢¤
= tr

£¡
A2,n +A02,n

¢ ¡
A1,n +A01,n

¢¤
= 4cntr(W

0
nWnWn),

tr
£¡
A2,n +A02,n

¢ ¡
A2,n +A02,n

¢¤
= 2[tr(WnWn) + nan].

The code for the computation of the asymptotic variance eΩρn/n is contained in the file VGMPROC1.TSP.
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A Appendix: Asymptotic Distribution of eρn
In establishing the asymptotic distribution of the GM estimator eρn we first observe in the following that this
estimator can be defined equivalently as the nonlinear least squares estimator of a regression corresponding to
two moment conditions. As such, the estimator can then be seen to be a special case of a more general class
of estimators considered in Kelejian and Prucha (2004). Given this observation, the asymptotic distribution
of eρn can now be easily obtained as a special case of asymptotic normality results developed in this later
paper.

A.1 Original Form of Moment Conditions

The GM estimators for ρ and σ2ε in Kelejian and Prucha (1999) are based on the three moment conditions

E[
1

n
ε0nεn] = σ2ε, (A.1)

E[
1

n
ε0nεn] = σ2εTr {W 0

nWn} ,

E[
1

n
ε0nεn] = 0,

where εn = Wnεn. Let un = Wnun and un = W 2
nun, then upon substitution of εn = un − ρun and

εn = un − ρun into (A.1) we obtain

γn = Γn

 ρ
ρ2

σ2ε

 (A.2)

where

Γn =
1

n

 2E(u0nun) −E(u0nun) n

2E(u
0
nun) −E(u0nun) Tr(W 0

nWn)
E(u0nun + u0nun) −E(u0nun) 0

 ,
γn =

1

n

 E(u0nun)
E(u0nun)
E(u0nun)

 .
The GM estimators eρn and eσ2ε,n are defined as the nonlinear least squares estimators corresponding to the
regression (4).. We note that (4) represents the sample analogue of (A.2), and this ample analogue was

obtained by suppressing in (A.2) the expectations operator, and by replacing un, un, un by bun, bun, bun,
respectively.

A.2 Alternative Form 1 of Moment Conditions

Let

cn =

·
1

1 + a2n

¸1/2
,

an = n−1Tr {W 0
nWn} ,
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then substitution of the first moment condition in (A.1) into the second, and multiplication of the second
moment conditions by cn yields the following two moment conditions:

cnE[
1

n
ε0nεn] = cnanE[

1

n
ε0nεn], (A.3)

E[
1

n
ε0nεn] = 0.

Upon substitution of εn = un − ρun and εn = un − ρun into (A.3) we obtain

γ∗n = Γ∗n

·
ρ
ρ2

¸
(A.4)

where

Γ∗n =
1

n

"
2cn

h
E(u

0
nun)− anE(u

0
nun)

i
−cn

h
E(u

0
nun)− anE(u

0
nun)

i
E(u

0
nun + u0nun) −E(u0nun)

#
,

γ∗n =
1

n

·
cn [E(u

0
nun)− anE(u

0
nun)]

E(u0nun)

¸
.

Now consider the sample analogue of (A.4):

g∗n = G∗n

·
ρ
ρ2

¸
+∆∗n (A.5)

where

G∗n =
1

n

 2cn

·bu0nbun − anbu0nbun¸ −cn
·bu0bu− anbu0bu¸bu0nbun + bu0nbun) −bu0nbun

 ,
g∗n =

1

n

"
cn

hbu0nbun − anbu0nbunibu0nbun
#
.

and where the 2 × 1 vector ∆∗n can again be viewed as a vector of regression residuals. It is not difficult,
although a bit tedious, to check that the nonlinear least squares estimator corresponding to the regression
(A.5) is identical to the GM estimator eρn.
A.3 Alternative Form 2 of Moment Conditions

To connect the GM estimator eρn to the class of estimators considered in Kelejian and Prucha (2004) observe
that we can rewrite the moment conditions (A.3) as

n−1E
·
ε0nA1,nεn
ε0nA2,nεn

¸
= 0.

with

A1,n = cn [W
0
nWn − anIn] ,

A2,n = Wn.
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Correspondingly we can also rewrite the matrix Γ∗n and vector γ∗n in (A.4) as

Γ∗n =
1

n

·
2Eu0nW 0

nA1,nun −Eu0nW 0
nA1,nWnun

Eu0nW 0
n(A2,n +A02,n)un −Eu0nW 0

nA2,nWnun

¸
,

γ∗n =
1

n

·
Eu0nA1,nun
Eu0nA2,nun

¸
,

and G∗n and vector g∗n in (A.5) as

G∗n =
1

n

·
2bu0nW 0

nA1,nbun −bu0nW 0
nA1,nWnbunbu0nW 0

n(A2,n +A02,n)bun −bu0nW 0
nA2,nWnbun

¸
,

g∗n =
1

n

· bu0nA1,nbunbu0nA2,nbun
¸
.

A.4 Asymtotic Normality of eρn
We have shown above that eρn can also be viewed as the nonlinear least squares estimator corresponding
to (A.5). Using furthermore the alternative form of the moment conditions and expressions for Γ∗n, γ∗n,
and G∗n, g∗n given in the previous subsection we can now use Theorem 2 in Kelejian and Prucha (2004)
to establish the asymptotic distribution of eρn. In particular it follows from that Theorem 2 that under the
regularity conditions maintained by that theorem we have:

n1/2(eρn − ρ) = (J 0nJn)
−1J 0nΨ

1/2
n ξn + op(1)

where

Jn = Γ∗n

·
1
2ρ

¸
and ξn

d→ N(0, I2). Furthermore n1/2(eρn − ρ) = Op(1) and

Ωρn = (J
0
nJn)

−1J 0nΨnJn(J
0
nJn)

−1 ≥ const > 0.

The above result implies that the difference between the cumulative distribution functions of n1/2(eρn−ρ)
and N

£
0,Ωρn

¤
converges pointwise to zero, which justifies the use of the latter distribution as an approxi-

mation of the former.1

It follows furthermore from Theorem 3 in Kelejian and Prucha (2004) that eΩρn −Ωρn = op(1), and thuseρn .∼ N
h
0, eΩρn/ni. We can now test the hypothesis of zero spatial correlation, i.e., H0 : ρ = 0, by comparing

eρn
[eΩρn/n]1/2

with the fractiles of the standardized normal distribution.

1This follows from Corollary F4 in Pötscher and Prucha (1997). Compare also the discussion on pp. 86-87 in that reference.
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