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Abstract

In this paper we consider a panel data model with error components that are both spatially and

time-wise correlated. The model blends specifications typically considered in the spatial literature

with those considered in the error components literature. We introduce generalizations of the

generalized moments estimators suggested in Kelejian and Prucha (1999. A generalized moments

estimator for the autoregressive parameter in a spatial model. International Economic Review 40,

509–533) for estimating the spatial autoregressive parameter and the variance components of the

disturbance process. We then use those estimators to define a feasible generalized least squares

procedure for the regression parameters. We give formal large sample results for the proposed

estimators. We emphasize that our estimators remain computationally feasible even in large samples.

r 2006 Elsevier B.V. All rights reserved.
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1. Introduction

This paper considers the estimation of spatial models from panel data. Spatial models
are important tools in economics, regional science and geography in analyzing a wide
range of empirical issues. Spatial interactions could be due to competition between cross
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sectional units, copy-cat policies, net work issues, spill-overs, externalities, regional issues,
etc. Applications in the recent literature include, for example, the determinants of various
forms of productivity, various categories of local public expenditures, vote seeking and tax
setting behavior, population and employment growth, contagion problems, and the
determinants of welfare expenditures.1 To facilitate the empirical analysis of spatial issues
the formal development of estimation methods for spatial models has received increasing
attention in recent years.2

In spatial models, interactions between cross sectional units are typically modelled
in terms of some measure of distance between them. By far the most widely used spatial
models are variants of the ones considered in Cliff and Ord (1973, 1981). One method
of estimation of these models is maximum likelihood (ML). However, even in its
simplest form, the ML estimation of Cliff–Ord-type models entails substantial computa-
tional problems if the number of cross sectional units is large. Against this background,
Kelejian and Prucha (1998) suggested an alternative instrumental variable estimation
procedure for these models, which is based on a generalized moments (GM) estimator of a
parameter in the spatial autoregressive process. This GM estimator was suggested by
Kelejian and Prucha (1999) in an earlier paper.3 The procedures suggested in Kelejian
and Prucha (1998, 1999) are computationally feasible even for large sample sizes.
Also, Kelejian and Prucha gave formal large sample results for their procedures.4 As in
most of the spatial literature, they consider the case where a single cross section of data is
available. Monte Carlo results in Das et al. (2003) suggest that both the GM and the
instrumental variable estimators are ‘‘virtually’’ as efficient as the corresponding ML
estimators in small samples.
The purpose of this paper is two-fold. First, we introduce generalizations of the GM

procedure in Kelejian and Prucha (1999) to panel data models involving a first order
spatially autoregressive disturbance term, whose innovations have an error component
structure. In particular, we introduce three GM estimators which correspond to alternative
weighting schemes for the moments. Our specifications are such that the model’s
disturbances are potentially both spatially and time-wise autocorrelated, as well as
heteroskedastic. These specifications merge those typically considered in the spatial
literature with those considered in the error component literature.
Second, we define a feasible generalized least squares (FGLS) estimator for our model’s

regression parameters. This FGLS estimator is based on a spatial counterpart to the
1Some applications along these lines are, e.g., Audretsch and Feldmann (1996), Bernat (1996), Besley and Case

(1995), Bollinger and Ihlanfeldt (1997), Buettner (1999), Case (1991), Case et al. (1993), Dowd and LeSage (1997),

Holtz-Eakin (1994), LeSage (1999), Kelejian and Robinson (1997, 2000), Pinkse and Slade (1998), Pinkse et al.

(2002), Shroder (1995), and Vigil (1998).
2Recent theoretical contributions include Baltagi and Li (2001a, b, 2004), Baltagi et al. (2003), Conley (1999),

Das et al. (2003), Kelejian and Prucha (1997, 1998, 1999, 2001, 2004), Lee (2001a, b, 2002, 2003, 2004), LeSage

(1997, 2000), Pace and Barry (1997), Pinkse and Slade (1998), Pinkse et al. (2002), and Rey and Boarnet (2004).

Classic references concerning spatial models are Anselin (1988), Cliff and Ord (1973, 1981), and Cressie (1993).
3Due to publication lags, Kelejian and Prucha (1999) was published at a later date than Kelejian and Prucha

(1998), even though it was written at an earlier point in time.
4The instrumental variable estimator suggested in Kelejian and Prucha (1998) is based on an approximation of

the ideal instruments. In recent paper, Lee (2003) and Kelejian et al. (2004) extend their approach towards the

ideal instruments.
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Cochrane–Orcutt transformation, as well as transformations utilized in the estimation of
classical error component models.5

We give formal results relating to our suggested procedures. Let T and N denote the
sample sizes in the time and cross sectional dimensions, respectively. Then our analysis
corresponds to the case where T is fixed and N !1 and thus is geared towards samples
where N is large relative to T, as is frequently the case. In more detail, we first demonstrate
that our generalizations of the GM approach lead to consistent estimators of the
parameters of the disturbance process. Second, we formally derive the large sample
distribution of our FGLS estimators. In doing this we demonstrate that the parameters of
the disturbance process are nuisance parameters. That is, we show that the true GLS and
FGLS estimators have the same large sample distribution.

The model is specified and discussed in Section 2. Results relating to the GM procedures
are given in Section 3, and those relating to the FGLS estimators are given in Section 4.
Monte Carlo results relating to our suggested GM estimators are given in Section 5. Section 6
contains suggestions for future research. Technical details are relegated to Appendix A.

2. The model

2.1. Notation

In this section we specify the panel data model and then interpret its assumptions. We
assume that the data are available for spatial units i ¼ 1; . . . ;N for time periods
t ¼ 1; . . . ;T . It proves helpful to introduce the following notation: Let AN ðtÞ be some
matrix; then we denote the ði; jÞth element of AN ðtÞ as aijt;N . Similarly, if bN ðtÞ is a vector,
then bit;N denotes the ith element of bN ðtÞ. If matrices or vectors do not depend on the
index t or N, then those indices are suppressed on the elements. If AN is a square matrix,
then A�1N denotes the inverse of AN . If AN is singular, then A�1N should be interpreted as the
generalized inverse of AN . Now let BN , NX1, be some sequence of kN � kN matrices with
k some fixed positive integer. We will then say that the row and column sums of the
(sequence of ) matrices BN are bounded uniformly in absolute value if there exists a
constant co1, that does not depend on N, such that

max
1pipkN

XkN

j¼1

jbij;N jpc and max
1pjpkN

XkN

i¼1

jbij;N jpc for all NX1.

As a point of interest, we note that the above condition is identical to the condition that the
sequences of the maximum column sum matrix norms and maximum row sum matrix
norms of BN are bounded; cp. Horn and Johnson (1985, pp. 294–295). Finally, we denote
the unit vector of dimension S � 1 as eS.

2.2. Model specification

As remarked, in this paper we consider a linear regression panel data model that allows
for the disturbances to be correlated over time and across spatial units. In particular, we
5See, e.g., Balestra and Nerlove (1966), Wallace and Hussain (1969), Amemiya (1971) and Nerlove (1971) for

seminal contributions to the literature on error components models. Early extensions to the systems case include

Baltagi (1980, 1981) and Prucha (1984, 1985). Baltagi (2001) and Hsiao (2003) provide excellent reviews.
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assume that in each time period t ¼ 1; . . . ;T the data are generated according to the
following model:

yN ðtÞ ¼ X NðtÞbþ uN ðtÞ, (1)

where yNðtÞ denotes the N � 1 vector of observation on the dependent variable in period t,
X N ðtÞ denotes the N � K matrix of observations on exogenous regressors in period t

(which may contain the constant term), b is the corresponding K � 1 vector of regression
parameters, and uN ðtÞ denotes the N � 1 vector of disturbance terms. We conditionalize
our model on the realized value of the regressors and so we will view X N ðtÞ, t ¼ 1; . . . ;T as
matrices of constants.
A widely used approach to model spatial dependence is that of Cliff and Ord (1973,

1981). We follow this approach in modelling the disturbance process in each period as the
following first order spatial autoregressive process:

uN ðtÞ ¼ rW NuN ðtÞ þ eN ðtÞ, (2)

where W N is an N �N weighting matrix of known constants which does not involve t, r is
a scalar autoregressive parameter, and eNðtÞ is an N � 1 vector of innovations in period t.
For reasons of generality, we permit the elements of yNðtÞ, X N ðtÞ, uN ðtÞ, eN ðtÞ and W N to
depend on N, that is, to form triangular arrays.
Stacking the observations in (1) and (2) we have

yN ¼ X Nbþ uN , (3)

and

uN ¼ rðIT �W NÞuN þ eN , (4)

where yN ¼ ½y
0
N ð1Þ; . . . ; y

0
NðTÞ�

0, X N ¼ ½X
0
Nð1Þ; . . . ;X

0
N ðTÞ�

0, uN ¼ ½u
0
N ð1Þ; . . . ; u

0
N ðTÞ�

0, and
eN ¼ ½e0Nð1Þ; . . . ; e

0
N ðTÞ�

0.
To allow for the innovations to be correlated over time we assume the following error

component structure for the innovation vector eN :

eN ¼ ðeT � INÞmN þ nN , (5)

where mN represents the vector of unit specific error components, and nN ¼

½n0N ð1Þ; . . . ; n
0
NðTÞ�

0 contains the error components that vary over both the cross-sectional
units and time periods. In scalar notation we have

eit;N ¼ mi;N þ nit;N . (6)

We note that the specification of eN corresponds to that of a classical one-way error
component model; see, e.g., Baltagi (2001, p. 10). However, in contrast to much of the
classical error component literature we group the data by time periods rather than units
because this grouping is more convenient for modelling spatial correlation via (2).
We maintain the following assumptions.

Assumption 1. Let T be a fixed positive integer. (a) For all 1ptpT and 1pipN; NX1 the
error components nit;N are identically distributed with zero mean and variance s2n ,
0os2nobno1, and finite fourth moments. In addition for each NX1 and 1ptpT ,
1pipN the error components nit;N are independently distributed. (b) For all 1pipN,
NX1 the unit specific error components mi;N are identically distributed with zero mean and
variance s2m, 0os2mobmo1, and finite fourth moments. In addition for each NX1 and
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1pipN the unit specific error components mi;N are independently distributed. (c) The
processes fnit;Ng and fmi;Ng are independent.

Assumption 2. (a) All diagonal elements of W N are zero. (b) jrjo1: (c) The matrix
IN � rW N is nonsingular.

2.3. Assumption implications

In light of (5) or (6) it is readily seen that Assumption 1 implies Eeit;N ¼ 0 and

Eðeit;Nejs;N Þ ¼

s2m þ s2n if i ¼ j; t ¼ s

s2m if i ¼ j; tas

0 otherwise

264
375.

The innovations eit;N are autocorrelated over time, but are not spatially correlated across
units. In matrix notation we have EðeNÞ ¼ 0 and the variance–covariance matrix of eN is

Oe;N ¼ EðeNe0NÞ ¼ s2mðJT � IN Þ þ s2nINT

¼ s2nQ0;N þ s21Q1;N , ð7Þ

where s21 ¼ s2n þ Ts2m and

Q0;N ¼ IT �
JT

T

� �
� IN ,

Q1;N ¼
JT

T
� IN , (8)

and where JT ¼ eT e0T is a T � T matrix of unit elements. The matrices Q0;N and Q1;N are
standard transformation matrices utilized in the error component literature, with the
appropriate adjustments implied by our adopted ordering of the data; compare, e.g.,
Baltagi (2001, p. 10). The matrices Q0;N and Q1;N are symmetric and idempotent, and
orthogonal to each other. Furthermore Q0;N þQ1;N ¼ INT , trðQ0;N Þ ¼ NðT � 1Þ, and
trðQ1;N Þ ¼ N. Also Q0;NðeT � INÞ ¼ 0 and Q1;N ðeT � IN Þ ¼ ðeT � IN Þ. Given these
properties it is readily seen that

O�1e;N ¼ s�2n Q0;N þ s�21 Q1;N , (9)

which is important in that it facilitates the computation of O�1e;N even for large sample sizes
N. As an illustration of the transformations implied by Q0;N and Q1;N consider the
transformed vectors Q0;NeN and Q1;NeN . It is readily seen that the ði; tÞth element of those
vectors is equal to eit;N � ei:;N and ei:;N , respectively, where ei:;N ¼ T�1

PT
t¼1eit;N denotes the

sample mean taken over time corresponding to the ith unit. This shows that the Q0;N

transformation subtracts unit specific sample means from the original variable. Clearly,
Q0;NeN ¼ Q0;NnN , i.e., the Q0;N transformation eliminates the unit specific error
components.

Assumption 2, part (a) is a normalization of the model. The nonzero elements of the
weighting matrix are typically specified to be those which correspond to units which are
related in a meaningful way. Such units are said to be neighbors. Therefore, part (a) of
Assumption 2 also implies that no unit is a neighbor to itself. Note that although the
elements of W N are assumed not to depend on t, we do allow them to form triangular
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arrays. Among other things, this is consistent with models in which the weighting matrix is
row normalized and the number of neighbors a given unit may have depends on the sample
size. Parts (b) and (c) of Assumption 2 ensure that the model is closed in that it can be
uniquely solved for the disturbance vector uN ðtÞ in terms of the innovation vector, eNðtÞ,
and therefore for the dependent vector, yN ðtÞ, in terms of the exogenous regressor matrix,
X N ðtÞ, and the innovation vector, eN ðtÞ. Specifically, we have in light of (1) and (2)

uN ðtÞ ¼ ðIN � rW N Þ
�1eN ðtÞ,

yN ðtÞ ¼ X NðtÞbþ ðIN � rW N Þ
�1eN ðtÞ,

or in stacked notation

uN ¼ ½IT � ðIN � rW NÞ
�1
�eN ,

yN ¼ X Nbþ ½IT � ðIN � rW NÞ
�1
�eN . (10)

It follows from (10) that the model disturbances are such that EðuN Þ ¼ 0 and EðuNu0N Þ ¼

Ou;N where

Ou;N ¼ ½IT � ðIN � rW NÞ
�1
�Oe;N ½IT � ðIN � rW 0

NÞ
�1
�. (11)

Clearly our assumptions imply that the model disturbances are, unless r ¼ 0, both
spatially and time-wise autocorrelated. In particular

E½uNðtÞu
0
N ðtÞ� ¼ ðs

2
m þ s2nÞðIN � rW NÞ

�1
ðIN � rW 0

NÞ
�1.

We also note that, in general, the elements of ðIN � rW NÞ
�1 will form triangular arrays in

that they will depend on the sample size, N. Consequently, the elements of uN and yN as
well as the elements of their variance covariance matrices will also form triangular arrays.
Finally, we note that the model disturbances will generally be heteroskedastic.
Anselin (1988, p. 153), and more recently Baltagi and Li (2004) and Baltagi et al. (2003),

have also considered error component specifications within the context of spatial models.6

We note that our specification differs somewhat from theirs in that we allow for spatial
interactions involving not only the error components vit;N , but also the unit specific error
components, mi. We note that for T ¼ 1 our specification reduces to the standard
Cliff–Ord first order spatial autoregressive model.

3. A Generalised Moments Procedure

In the following we define three GM estimators of r; s2n and s2m, or equivalently of r, s2n
and s21, since in our analysis T is fixed and N !1. These GM estimators are defined in
terms of six moment conditions. The first of these estimators provides initial estimates of r,
s2n and s21, and is only based on a subset of the moment conditions. The initial estimates for
s2n and s21 are then used in the formulation of the other two GM estimators. More
specifically, our second GM estimator is based on all six moment conditions with the
sample moments weighted by an approximation to the inverse of their variance covariance
6In contrast to this paper, which introduces generalizations of the GM estimation procedure for the spatial

autoregressive parameter and aims at establishing the asymptotic properties of the considered estimators, their

analysis had a different focus.
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matrix.7 The third GM estimator is based on a simplified weighting scheme. The reason for
considering the simplified weighting scheme is that the corresponding estimator is very
easy to compute even in large samples. The considered GM estimators generalize, in
essence, the GM estimators given in Kelejian and Prucha (1999) for the case of a single
cross section, which are based on three moment conditions, giving equal weight to each
sample moment. For notational convenience, let

uN ¼ ðIT �W N ÞuN ,

uN ¼ ðIT �W N ÞuN ,

eN ¼ ðIT �W NÞeN . (12)

3.1. Moment conditions

Given Assumptions 1 and 2 we demonstrate in Appendix A that, for (finite) TX2

E

1

NðT � 1Þ
e0NQ0;NeN

1

NðT � 1Þ
e0NQ0;NeN

1

NðT � 1Þ
e0NQ0;NeN

1

N
e0NQ1;NeN

1

N
e0NQ1;NeN

1

N
e0NQ1;NeN

2666666666666666666664

3777777777777777777775

¼

s2n

s2n
1

N
trðW 0

NW NÞ

0

s21

s21
1

N
trðW 0

NW NÞ

0

2666666666664

3777777777775
. (13)

Our three GM estimators of r, s2n , and s21 are based on these moment relationships. They
naturally generalize the moment relationships introduced in Kelejian and Prucha (1998,
1999) for a single cross section to the case of a panel of cross sections. If eN were observed,
then e0NQ0;NeN=ðNðT � 1ÞÞ and e0NQ1;NeN=N represent the (unbiased) analysis of variance
estimators of s2v and s21, respectively; compare, e.g., Amemiya (1971). In case of a single
cross section, i.e., T ¼ 1, the innovations eN are i.i.d. with variance s21 (where
s21 ¼ s2v þ s2m), and in this case it is intuitively clear that we would only be able to identify
s21 and not both s2v and s21. This is also reflected by the moment conditions (13) in that if
T ¼ 1 we have Q0;N ¼ 0 and the first three moment conditions become uninformative, and
the last three equations reduce to those considered in Kelejian and Prucha (1998, 1999). In
the following we maintain TX2.

Towards defining our GM estimators we note that in light of (4) and (12)

eN ¼ uN � ruN ,

eN ¼ uN � ruN . (14)
7Under normality the approximation is perfect.
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Substituting these expressions for eN and eN into (13) we obtain a system of six equations
involving the second moments of uN , uN and uN . This system involves r, s2n , and s21 and can
be expressed as

GN ½r; r2;s2n ;s
2
1�
0 � gN ¼ 0, (15)

where

GN ¼

g011;N g012;N g013;N 0

g021;N g022;N g023;N 0

g031;N g032;N g033;N 0

g111;N g112;N 0 g113;N
g121;N g122;N 0 g123;N
g131;N g132;N 0 g133;N

266666666664

377777777775
; gN ¼

g01;N
g02;N
g03;N
g11;N
g12;N
g13;N

266666666664

377777777775
,

and (i ¼ 0; 1)

gi
11;N ¼

2

NðT � 1Þ1�i
Eu0NQi;NuN ; gi

12;N ¼
�1

NðT � 1Þ1�i
Eu0NQi;NuN ;

gi
21;N ¼

2

NðT � 1Þ1�i
Eu
0

NQi;NuN ; gi
22;N ¼

�1

NðT � 1Þ1�i
Eu
0

NQi;NuN ;

gi
31;N ¼

1

NðT � 1Þ1�i
Eðu0NQi;NuN þ u0NQi;NuN Þ; gi

32;N ¼
�1

NðT � 1Þ1�i
Eu0NQi;NuN ;

gi
13;N ¼ 1; gi

1;N ¼
1

NðT � 1Þ1�i
Eu0NQi;NuN ;

gi
23;N ¼

1

N
trðW 0

NW NÞ; gi
2;N ¼

1

NðT � 1Þ1�i
Eu0NQi;NuN ;

gi
33;N ¼ 0; gi

3;N ¼
1

NðT � 1Þ1�i
Eu0NQi;NuN :

The equations underlying our GM procedures are the sample counterparts to the six
equations in (15) based on estimated disturbances. In particular, let ~bN be an estimator of
b, and let

euN ¼ yN � X N
~bN ,

euN ¼ ðIT �W NÞeuN ,

euN ¼ ðIT �W NÞeuN ¼ ðIT �W 2
N ÞeuN . (16)

Then a sample analogue to (15) in terms of euN , euN and euN is

GN ½r;r2;s2n ; s
2
1�
0 � gN ¼ xNðr;s

2
n ;s

2
1Þ, (17)
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where

GN ¼

g0
11;N g0

12;N g0
13;N 0

g0
21;N g0

22;N g0
23;N 0

g0
31;N g0

32;N g0
33;N 0

g1
11;N g1

12;N 0 g1
13;N

g1
21;N g1

22;N 0 g1
23;N

g1
31;N g1

32;N 0 g1
33;N

266666666664

377777777775
; gN ¼

g0
1;N

g0
2;N

g0
3;N

g1
1;N

g1
2;N

g1
3;N

266666666664

377777777775
,

gi
11;N ¼

2

NðT � 1Þ1�i
eu0NQi;N

euN ; gi
12;N ¼

�1

NðT � 1Þ1�i
eu0NQi;N

euN ;

gi
21;N ¼

2

NðT � 1Þ1�i
eu0NQi;N

euN ; gi
22;N ¼

�1

NðT � 1Þ1�i
eu0NQi;N

euN ;

gi
31;N ¼

1

NðT � 1Þ1�i
ðeu0NQi;N

euN þ eu0NQi;N
euN Þ; gi

32;N ¼
�1

NðT � 1Þ1�i
eu0NQi;N

euN ;

gi
13;N ¼ 1; gi

1;N ¼
1

NðT � 1Þ1�i
eu0NQi;NeuN ;

gi
23;N ¼

1

N
trðW 0

NW NÞ; gi
2;N ¼

1

NðT � 1Þ1�i
eu0NQi;N

euN ;

gi
33;N ¼ 0; gi

3;N ¼
1

NðT � 1Þ1�i
eu0NQi;N

euN ;

where xN ðr;s2n ;s
2
1Þ is a vector of residuals.

Towards defining our GM procedures it proves helpful to observe that the first three
equations in (15) do not involve s21, while the last three do not involve s2v . In particular, let
G0

N ¼ ðg
0
ij;N Þi; j¼1;2;3, and G1

N ¼ ðg
1
ij;N Þi; j¼1;2;3. Then (15) can be rewritten as

G0
N ½r;r

2; s2n �
0 � g0N ¼ 0,

G1
N ½r;r

2; s21�
0 � g1N ¼ 0. (18)

Analogously let G0
N ¼ ðg

0
ij;NÞi; j¼1;2;3, and G1

N ¼ ðg
1
ij;N Þi; j¼1;2;3. Then (17) can be rewritten as

G0
N ½r;r

2;s2n �
0 � g0

N ¼ x0N ðr; s
2
nÞ,

G1
N ½r;r

2;s21�
0 � g1

N ¼ x1N ðr; s
2
1Þ, (19)

where xN ðr;s2n ;s
2
1Þ ¼ ½x

0
N ðr;s

2
nÞ
0; x1Nðr;s

2
1Þ
0
�0.
3.2. Additional assumptions

We need the following additional assumptions.
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Assumption 3. The elements of X N are bounded uniformly in absolute value by kxo1.

Furthermore, for i ¼ 0; 1, the matrices

Mi
xx ¼ lim

N!1

1

NT
X �N ðrÞ

0Qi;NX �N ðrÞ
0, (20)

with X �NðrÞ ¼ ½IT � ðIN � rW NÞ�X N , are finite, and the matrices

lim
N!1

1

NT
X 0NX N ; lim

N!1

1

NT
X �NðrÞ

0X �N ðrÞ; lim
N!1

1

NT
X �NðrÞ

0O�1e;NX �NðrÞ (21)

are finite and nonsingular.

Assumption 4. The row and column sums of W N and PN ðrÞ ¼ ðIN � rW NÞ
�1are bounded

uniformly in absolute value by, respectively, kwo1 and kpo1 where kp may depend on r.

Assumption 5. The smallest eigenvalues of ðG0
NÞ
0
ðG0

N Þ and ðG
1
N Þ
0
ðG1

NÞ are bounded away
from zero, i.e., lmin½ðGi

NÞ
0
ðGi

N Þ�Xl�40 for i ¼ 1; 2, where l� may depend on r, s2n and s21.

Conditions like those maintained in Assumption 3 are typical in large sample analysis,
see e.g., Kelejian and Prucha (1998, 1999). The large sample properties of the generalized
least squares (GLS) estimator of b considered below will involve the limit of
ðNT Þ�1X 0NO

�1
u;NX N . It follows from (11) that

O�1u;N ¼ ½IT � ðIN � rW 0
NÞ�O

�1
e;N ½IT � ðIN � rW NÞ�. (22)

Recalling the expression for O�1e;N in (9) and utilizing Assumption 3 it then follows that:

lim
N!1
ðNT Þ�1X 0NO

�1
u;NX N ¼ lim

N!1

1

NT
X �N ðrÞ

0O�1e;NX �N ðrÞ

¼ s�2n M0
xx þ s�21 M1

xx. ð23Þ

Assumption 4 has two parts. The first relates directly to the weighting matrix and
restricts the extent of neighborliness of the cross sectional units. In practice this part should
be satisfied if each unit has only a limited number of neighbors, and is itself a neighbor to a
limited number of other units—i.e., W N is sparse. It will also be satisfied if W N is not
sparse, but its elements decline with a distance measure that increases sufficiently rapidly as
the sample increases. The second component of Assumption 4 relates to ðIN � rW N Þ

�1.
From (11) and the subsequent discussion, the variance covariance matrix of the
disturbance vector uNðtÞ is seen to be proportional to ðIN � rW N Þ

�1
ðIN � rW 0

N Þ
�1. The

second component of Assumption 4 implies that row and column sums of this matrix are
bounded uniformly in absolute value, since this property is preserved under matrix
multiplication; see Remark A2 in Appendix A. Assumption 4 thus restricts the degree of
cross sectional correlation between the model disturbances. For perspective, we note that
in virtually all large sample theory it is necessary to restrict the degree of permissible
correlations, see e.g., Amemiya (1985, Chapters 3 and 4) or Pötscher and Prucha (1997,
Chapters 5 and 6).
Assumption 5 ensures identifiable uniqueness of the parameters r, s2n , and s21.

As demonstrated in Appendix A, it implies that also the smallest eigenvalue of G0NGN
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is bounded away from zero. A similar assumption was made in Kelejian and Prucha
(1998).8
3.3. The GM estimators

As remarked, we consider three GM estimators of r, s2n , and s21. The first set of GM
estimators will be denoted as ~rN , ~s

2
n;N , and ~s21;N . These estimators are intended as initial

estimators and will be referred to as such. They are based only on a subset of the moment
conditions in (15) or (18). In particular, the estimators ~rN and ~s2n;N use only the first three
sample moments to estimate r and s2n , giving equal weights to each of those moments.
They are defined as the unweighted nonlinear least squares estimators based on the first
three equations in (17) or (19):

ð ~rN ; ~s
2
n;N Þ ¼ arg minfx0N ðr; s

2
nÞ
0x0N ðr;s

2
nÞ; r 2 ½�a; a�; s2n 2 ½0; b�g, (24)

where aX1, bXbn. By assumption jrjo1. If the bound a defining the optimization space is
sufficiently large, then ~rN is essentially the unconstrained nonlinear least squares estimator
of r.9 The assumption of a compact optimization space is standard in the literature on
nonlinear estimation; see, e.g., Gallant and White (1988) and Pötscher and Prucha (1997).
Lee (2004) also maintains a compactness assumption in deriving the asymptotic properties
of the ML estimator for the spatial autoregressive parameter in a cross section framework.
We note that in contrast to the ML estimator, the objective function of the GM estimator
remains well defined for values r for which IN � rW N is singular.

For clarity we note that x0N ðr;s
2
nÞ ¼ G0

N ½r;r
2; s2n �

0 � g0
N . The elements of the G0

N and g0
N

are observed. The estimator in (24) can thus be computed from a nonlinear regression of

the ‘‘dependent’’ variable g0
N on the three ‘‘independent’’ variables composing G0

N , based

on three observations on those variables. The nonlinearity arises because of the restriction

between the first two elements of the parameter vector ðr;r2;s2nÞ. It follows that the

procedure described in (24) can be implemented in any software package which contains a
nonlinear least squares option. It should also be clear that an over-parameterized ordinary

least squares (OLS) estimator can be obtained as ½ðG0
N Þ
0
ðG0

NÞ�
�1ðG0

NÞ
0g0

N . In their study

dealing with only a single cross section, Kelejian and Prucha (1999) found that their over-
parameterized OLS estimator was less efficient than their nonlinear least squares estimator,
and so we will not further consider this estimator here.

Given ~rN and ~s2n;N we can estimate s21 from the fourth moment condition as

~s21;N ¼
1

N
ðeuN � ~rN

euN Þ
0Q1;NðeuN � ~rN

euNÞ

¼ g1
1;N � g1

11;N ~rN � g1
12;N ~r

2
N . ð25Þ

The fourth moment condition corresponds to the fourth equation in (17) or (19). We note
that the estimator ~s21;N has the interpretation of an analysis of variance estimator for s21
based on the estimated innovations ee ¼ euN � ~rN

euN .
8For a further discussion of the identifiable uniqueness assumption in nonlinear estimation see, e.g., Gallant

and White (1988) and Pötscher and Prucha (1997).
9We note that in small samples we may obtain estimates ~rN with j ~rN jX1. To force the estimator into the

interval ð�1; 1Þ one may consider the reparameterization r ¼ tan h ðKÞ and optimize w.r.t. k.
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Theorem 1 below establishes the consistency of the GM estimators ~rN , ~s
2
n;N , and ~s21;N

defined by (24) and (25). The proof of the theorem is given in Appendix A.

Theorem 1. Suppose Assumptions 1–5 hold. Then, if ~bN is a consistent estimator of b, the

GM estimators ~rN ; ~s
2
n;N ; ~s

2
1;N are consistent for r;s2n ;s

2
1 i.e.,

ð ~rN ; ~s
2
n;N ; ~s

2
1;NÞ!

P
ðr;s2n ;s

2
1Þ as N !1.

We show in Appendix A that Assumptions 1–4 imply that the OLS estimator of b
corresponding to (3) is consistent, and thus it can be used to calculate the estimated
disturbances employed in the GM procedure described by (24) and (25).
It is well known from the literature on generalized method of moments estimators that for

purposes of asymptotic efficiency it is optimal to use the inverse of the (properly normalized)
variance covariance matrix of the sample moments at the true parameter values as a
weighting matrix. In our case the sample moments at the true parameter value are given by
the first vector in (13) with the expectations operator suppressed. In Appendix A we derive
the following expression for the variance covariance matrix of those sample moments, after
multiplication by N:

XN ¼

1

T � 1
s4n 0

0 s41

264
375� TW , (26)

where

TW ¼

2 2 tr
W 0

NW N

N

� �
0

2 tr
W 0

NW N

N

� �
2 tr

W 0
NW NW 0

NW N

N

� �
tr

W 0
NW N ðW

0
N þW NÞ

N

� �

0 tr
W 0

NW N ðW
0
N þW NÞ

N

� �
tr

W NW N þW 0
NW N

N

� �

266666666664

377777777775
.

The above variance covariance matrix was derived under the assumption that the
innovations are normally distributed. Hence the use of this matrix will not be strictly
optimal in the absence of normality. However this matrix has the advantage of relative
simplicity. In the absence of normality the variance covariance matrix in (26) can be viewed
as an approximation to the more complex true variance covariance matrix. We note that
our consistency results below do not depend upon the normality assumption.
The variance covariance matrix XN depends on s2n and s21, and is hence unobserved. It

seems natural to define our estimator ~XN to be identical to XN except that s4n and s41 are
replaced by estimators. Clearly ~XN is a consistent estimator for XN , if the estimators for s2n
and s21 are consistent. Our second GM estimator is then defined as the nonlinear least
squares estimators based on (17) with the sample moments weighted by ~X

�1

N :

ðr̂N ; ŝ
2
n;N ; ŝ

2
1;NÞ ¼ arg minfxN ðr;s

2
n ;s

2
1Þ
0 ~X
�1

N xNðr;s
2
n ;s

2
1Þ,

r 2 ½�a; a�; s2n 2 ½0; b�; s
2
1 2 ½0; c�g, ð27Þ
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where aX1, bXbn, cXTbm þ bn. We refer to this estimator in the following as the weighted
GM estimator.

A discussion analogous to that after the definition of the initial GM estimator also
applies here. In particular, the weighted GM estimator defined in (27) can be computed by
running a weighted nonlinear regression of gN on GN with ~X

�1

N as the weights matrix. In
light of Theorem 1 above we can use, in particular, the initial GM estimators ~s2n;N and ~s21;N
to construct a consistent estimator ~XN for XN .

The next theorem establishes the consistency of the weighted GM estimator defined by
(27). The proof of the theorem is given in Appendix A.

Theorem 2. Suppose Assumptions 1–5 hold and the smallest and largest eigenvalues of the

matrices X�1N satisfy 0ol̄�plminðX�1N ÞplmaxðX�1N Þpl̄��o1. Suppose furthermore that ~bN

and ~XN are consistent estimators of b and XN , respectively. Then, the GM estimators

r̂N ; ŝ
2
n;N ; ŝ

2
1;N defined by (27) are consistent for r;s2n ; s

2
1, i.e.,

ðr̂N ; ŝ
2
n;N ; ŝ

2
1;NÞ!

P
ðr; s2n ; s

2
1Þ as N !1.

The assumptions relating to the eigenvalues of X�1N together with Assumption 5 ensure
the identifiably uniqueness of the parameters r; s2n ; s

2
1. They also ensure that the elements

of X�1N are Oð1Þ.
The third GM estimator considered here is motivated mostly by computational

considerations. To calculate the estimator ~XN considered above we have to compute the
elements of TW . While TW can be computed accurately even for large n, nevertheless it is
readily seen that the computation of, in particular, the ð2; 2Þ element of that matrix
involves a computational count of up to Oðn3Þ. Thus it seems of interest to also consider an
alternative estimator that is computationally simpler. Let

UN ¼

1

T � 1
s4n 0

0 s41

264
375� I3 (28)

and let ~UN be the corresponding estimator where s2n and s21 are replaced by estimators. That
is, UN and ~UN have the same form as XN and ~XN , except that TW is replaced by the identity
matrix I3. Our third GM estimator is then defined as the nonlinear least squares estimators
based on (17) where the sample moments are weighted by ~U �1N :

ð �rN ; �s
2
n;N ; �s

2
1;NÞ ¼ arg minfxNðr; s

2
n ;s

2
1Þ
0 ~U �1N xN ðr; s

2
n ; s

2
1Þ

r 2 ½�a; a�; s2n 2 ½0; b�; s
2
1 2 ½0; c�g, ð29Þ

where, again, aX1, bXbn, cXTbm þ bn. We refer to this estimator as the partially weighted
GM estimator. It places the same weight on each of the first three moment equations, and
the same weight on each of the last three moment equations, but the weight given to the
first three moment equations is different than that given to the last three moment
equations. This weighting scheme is motivated by the estimator considered in Kelejian and
Prucha (1998, 1999), which is based on three equally weighted moment equations. Those
studies report that the estimator exhibits a small sample behavior that is quite similar to
the ML estimator both for a set of idealized and real world weighting matrices W N . This
suggest that, at least for some matrices W N ; the weighting scheme implied by T�1W as
compared to the identity matrix is of lesser importance. The Monte Carlo results given
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below provide some support for this conjecture also in the present context of panel data. In
light of Theorem 1 above we can use again the initial GM estimators ~s2n;N and ~s21;N to
construct a consistent estimator ~UN for UN .
The next theorem establishes the consistency of the partially weighted GM estimator

defined by (29). The proof of the theorem is given in Appendix A.

Theorem 3. Suppose Assumptions 1–5 hold. Suppose furthermore that ~bN and ~U �1N are

consistent estimators of b and UN , respectively. Then, the GM estimators �rN ; �s
2
n;N ; �s

2
1;N

defined by (29) are consistent for r;s2n ;s
2
1, i.e.,

ð �rN ; �s
2
n;N ; �s

2
1;NÞ!

P
ðr;s2n ;s

2
1Þ as N !1.

A more extreme simplified weighting scheme would be to give equal weight to all six
moment equations. The corresponding GM estimator is also readily seen to be consistent.
However, preliminary Monte Carlo results suggest that the small sample behavior of this
estimator can be substantially worse than that of the other three estimators, and hence we
do not further consider this estimator in this study.

4. Spatial GLS estimation

Consider again the regression model in (3)–(5). The true GLS estimator of b is given by

b̂GLS;N ¼ fX
0
N ½O

�1
u;N ðr;s

2
n ;s

2
1Þ�X Ng

�1X 0N ½O
�1
u;N ðr;s

2
n ;s

2
1Þ� yN

¼ fX �N ðrÞ
0
½O�1e;N ðs

2
n ;s

2
1Þ�X

�
NðrÞg

�1X �NðrÞ
0
½O�1e;Nðs

2
n ; s

2
1Þ� y

�
NðrÞ, ð30Þ

where

y�N ðrÞ ¼ ½IT � ðIN � rW N Þ� yN ,

X �NðrÞ ¼ ½IT � ðIN � rW NÞ�X N , (31)

and where we have denoted the explicit dependence of O�1u;N and O�1e;N on r and/or s2n and
s21. The second expression in (30) is obtained by utilizing the expression for Ou;N given in
(11). The variables y�NðrÞ and X �NðrÞ can be viewed as the result of a spatial
Cochrane–Orcutt type transformation of the original model. More specifically, pre-
multiplication of (3) and (4) with IT � ðIN � rW N Þ yields

10

y�N ðrÞ ¼ X �N ðrÞbþ eN . (32)

In light of (9) and the properties of Q0;N and Q1;N we have O�1e;N ¼ O�1=2e;N O�1=2e;N with

O�1=2e;N ¼ s�1n Q0;N þ s�11 Q1;N . (33)

Guided by the classical error component literature, we note that a convenient way of
computing the GLS estimator b̂GLS;N is to further transform the model in (32) by
premultiplying it by O�1=2e;N , or equivalently by

snO
�1=2
e;N ¼ INT � yQ1;N , (34)
10This is, of course, equivalent to premultiplying (1) and (2) in each period t by ðIN � rW N Þ and then stacking

the data.
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where y ¼ 1� sn=s1. The GLS estimator of b is then identical to the OLS estimator of b
computed from the resulting transformed model. We note that the transformation based
on (34) simply amounts to subtracting from each variable its sample mean over time
multiplied by y.

Let �rN ; �s
2
n;N ; �s

2
1;N be estimators of r;s2n;N ; s

2
1;N . The corresponding feasible GLS

estimator of b, say b̂FGLS;N , is then obtained by replacing r;s2n;N ;s
2
1;N by those estimators

in the expression for the GLS estimator, i.e.,

b̂FGLS;N ¼ fX
�
Nð �rN Þ

0
½O�1e;N ð �s

2
n;N ; �s

2
1;NÞ�X

�
N ð �rN Þg

�1

� X �N ð �rNÞ
0
½O�1e;Nð �s

2
n;N ; �s

2
1;N Þ� y

�
N ð �rNÞ. ð35Þ

This estimator can again be computed conveniently as the OLS estimator after
transforming the model in a way analogously to what was described for the GLS
estimator.

The next theorem establishes consistency and asymptotic normality of the true and
feasible GLS estimators. The proof of the theorem is given in Appendix A.

Theorem 4. Given Assumptions 1–4 hold:
(a)
 Then

ðNT Þ1=2½b̂GLS;N � b�!
D

Nf0;Cg as N !1,

with

C ¼ ½s�2n M0
xx þ s�21 M1

xx�
�1.
(b)
 If �rN ; �s
2
n;N ; �s

2
1;N are (any) consistent estimators of r, s2n , s

2
1, then

ðNT Þ1=2½b̂GLS;N � b̂FGLS;N �!
P
0 as N !1.
(c)
 Furthermore,

�CN �C!
P
0 as N !1,

where

�CN ¼
1

NT
X �N ð �rN Þ

0
½O�1e;N ð �s

2
n;N ; �s

2
1;N Þ�X

�
N ð �rNÞ

� ��1
.

Part (a) implies that the true GLS estimator, b̂GLS;N , is consistent and asymptotically
normal. Part (b) implies that if the feasible GLS estimator, b̂FGLS;N , is based on any
consistent estimators of r, s2n , s

2
1, then b̂GLS;N and b̂FGLS;N are asymptotically equivalent,

and hence b̂FGLS;N is also consistent and asymptotically normal with the same asymptotic
distribution as b̂GLS;N . Therefore, r, s

2
n , s

2
1 are ‘‘nuisance’’ parameters. Together with part

(c), these results suggest that small sample inferences can be based on the approximation

b̂FGLS;N �
:

Nðb; ðNT Þ�1 �CNÞ.
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In Theorems 2 and 3 we establish the consistency of the weighted and partially weighted
GM estimators for r, s2n , and s21, respectively. Therefore, these estimators can be used to
construct the feasible GLS estimator considered in Theorem 4.
5. A Monte Carlo investigation

In the following we report on a small Monte Carlo study of the small sample properties
of the estimators suggested in this paper. We consider the three suggested GM estimators
of the spatial autoregressive parameter r and variances s2m and s21, and corresponding
feasible GLS estimators for b. We also consider iterated versions of these estimators. For
purposes of comparison, we also consider the ML estimator of these parameters. A larger
Monte Carlo study relating to a wider set of experiments than those described below is left
for future research.
In all of our Monte Carlo experiments N ¼ 100 and T ¼ 5. The data are generated

according to (3)–(5) with the regressor matrix containing two regressors x1 and x2 with
corresponding parameters b1 and b2. In our illustrative experiments we take x1 to be the
constant term. The observations on x2 corresponds to per capita income (measured in
$1000) in 100 contiguous counties in Virginia over the periods 1996–2000. The parameters
b1 and b2 are taken to be equal to one. We assume that both of the error components, mN

and nN , are normally distributed. The generation of the disturbance vector uN requires
the specification of s2m, s

2
n , r, and the weighting matrix W N . In all of our Monte Carlo

experiments s2m ¼ s2n ¼ 1 and thus s21 ¼ 6.11 As in Kelejian and Prucha (1999), we consider
seven values of r, namely �0:9, �0:5, �0:25, 0, 0:25, 0:5, and 0:9. Also, as in the earlier
study we consider three weighting matrices which essentially differ in their degrees of
sparseness. The first matrix is such that its ith row, 1oioN, has nonzero elements in
positions i þ 1 and i � 1 so that the ith element of uN ðtÞ, 1oioN, is directly related to
the one immediately after it, and the one immediately before it. This matrix is defined
in a circular world so that the nonzero elements in rows 1 and N are, respectively, in
positions (1,2), ð1;NÞ and ðN ; 1Þ, ðN ;N � 1Þ. This matrix is row normalized so that all of
it’s nonzero elements are equal to 1

2
. As in Kelejian and Prucha (1999, p. 520) we refer to

this specification of the weighting matrix as ‘‘1 ahead and 1 behind.’’ The other two
weighting matrices we consider are defined in a corresponding way as 3 ahead and 3
behind, and 5 ahead and 5 behind. The nonzero elements in these matrices are,
respectively, 1

6
and 1

10
. In Tables 1–5, below we reference these three weighting matrices by

J ¼ 2; 6; 10, where J is the number of nonzero elements in a given row. To summarize, our
experimental design contains 21 cases, which result from 7 selections of r and 3
specifications of the weighting matrix. We have also calculated R2 values (obtained from a
simple least squares regression of y on the regressors). The median R2 values for respective
experiments ranges between 0.61–0.95, 0.77–0.95 and 0.83–0.95 for J ¼ 2, 6 and 10,
respectively.
Recall that ð ~r; ~s2n ; ~s

2
nÞ, ðr̂; ŝ

2
n ; ŝ

2
1Þ, and ð �r; �s

2
n ; �s

2
1Þ, defined in (24), (27), and (29) denote the

initial (unweighted), the weighted and the partially weighted GM estimators for ðr;s2n ;s
2
1Þ,
11We considered other values of the ratio s2m=s
2
n but the results were qualitatively similar to those reported

below for the case s2m ¼ s2n ¼ 1. Again, to conserve space these results are not reported, but are available upon

request.
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Table 1

RMSEs of the estimators of r

Parameter values RMSE

J r r̂ML ~r r̂ �r ~rð1Þ r̂ð1Þ �rð1Þ

2 �0.9 0.0111 0.0191 0.0149 0.0182 0.0150 0.0122 0.0133

2 �0.5 0.0344 0.0416 0.0354 0.0355 0.0409 0.0351 0.0353

2 �0.25 0.0420 0.0496 0.0422 0.0419 0.0493 0.0415 0.0421

2 0 0.0445 0.0522 0.0446 0.0437 0.0520 0.0450 0.0444

2 0.25 0.0420 0.0499 0.0431 0.0416 0.0502 0.0431 0.0420

2 0.5 0.0350 0.0420 0.0359 0.0354 0.0421 0.0363 0.0354

2 0.9 0.0111 0.0157 0.0131 0.0142 0.0158 0.0125 0.0132

6 �0.9 0.0857 0.1088 0.0872 0.0975 0.1080 0.0872 0.0979

6 �0.5 0.0902 0.1037 0.0861 0.0925 0.1051 0.0890 0.0938

6 �0.25 0.0846 0.0962 0.0825 0.0865 0.0989 0.0826 0.0873

6 0 0.0757 0.0869 0.0750 0.0769 0.0883 0.0748 0.0776

6 0.25 0.0653 0.0739 0.0648 0.0652 0.0745 0.0649 0.0657

6 0.5 0.0503 0.0572 0.0504 0.0498 0.0573 0.0511 0.0499

6 0.9 0.0160 0.0188 0.0175 0.0171 0.0188 0.0171 0.0166

10 �0.9 0.1336 0.1563 0.1431 0.1458 0.1718 0.1402 0.1530

10 �0.5 0.1265 0.1489 0.1302 0.1317 0.1564 0.1301 0.1355

10 �0.25 0.1184 0.1360 0.1187 0.1186 0.1410 0.1212 0.1213

10 0 0.1049 0.1197 0.1049 0.1032 0.1223 0.1068 0.1034

10 0.25 0.0879 0.1007 0.0844 0.0848 0.1005 0.0849 0.0857

10 0.5 0.0657 0.0753 0.0646 0.0637 0.0753 0.0641 0.0646

10 0.9 0.0207 0.0243 0.0206 0.0216 0.0241 0.0205 0.0211

Column averages 0.0641 0.0756 0.0647 0.0660 0.0766 0.0648 0.0666

r̂ML is the maximum likelihood estimator; ~r the initial (unweighted) GM estimator; r̂ the weighted GM estimator;

�r the partially weighted GM estimator; ~rð1Þ the initial (unweighted) GM estimator, iterated once; r̂ð1Þ the weighted
GM estimator, iterated once; and �rð1Þ the partially weighted GM estimator, iterated once.

N ¼ 100, T ¼ 5, and ðs2m;s
2
n ;s

2
1; b1;b2Þ ¼ ð1; 1; 6; 1; 1Þ.
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respectively.12 These estimators are computed from OLS residuals. Based on the respective

sets of GM estimators for ðr;s2n ; s
2
1Þ we compute feasible GLS estimators for b1 and b2 by

substituting into the formula for the feasible GLS estimator in (35) the respective sets of

GM estimators for ðr;s2n ;s
2
1Þ. We denote the corresponding feasible GLS estimators as

~bi;FGLS, b̂i;FGLS and
�bi;FGLS, i ¼ 1; 2, respectively. We also compute iterated version of these

estimators. Towards computing these iterated estimators we first compute feasible GLS

residuals corresponding to ~bi;FGLS, b̂i;FGLS and �bi;FGLS, i ¼ 1; 2, respectively. We then use

those residuals to compute new sets of the initial (unweighted), the weighted, and the

partially weighted GM estimators for ðr;s2n ;s
2
1Þ. These estimators will be denoted as

ð ~rð1Þ; ~s2ð1Þn ; ~s2ð1Þn Þ, ðr̂
ð1Þ; ŝ2ð1Þn ; ŝ2ð1Þ1 Þ, and ð �r

ð1Þ; �s2ð1Þn ; �s2ð1Þ1 Þ.
13 In computing the matrices ~XN and
12For simplicity of notation we drop the index corresponding to the sample size here and in the following.
13We have called the GM estimators ð ~r; ~s2n ; ~s

2
n Þ, which correspond to the first four unweighted moment

conditions, the initial (unweighted) GM estimators. In slight abuse of language, we call the GM estimators

ð ~rð1Þ; ~s2ð1Þn ; ~s2ð1Þn Þ, which correspond to the first four unweighted moment conditions based on feasible GLS

disturbances corresponding to ~bi;FGLS, the once iterated initial (unweighted) GM estimators.
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Table 2

RMSEs of the estimators of s2v

Parameter values RMSE

J r ŝ2;ML
v ~s2v ŝ2v �s2v ~s2ð1Þv ŝ2ð1Þv �s2ð1Þv

2 �0.9 0.0761 0.1238 0.1046 0.1231 0.0846 0.0772 0.0846

2 �0.5 0.0734 0.0749 0.0728 0.0735 0.0736 0.0732 0.0736

2 �0.25 0.0730 0.0739 0.0730 0.0735 0.0737 0.0738 0.0737

2 0 0.0725 0.0720 0.0724 0.0719 0.0725 0.0723 0.0725

2 0.25 0.0726 0.0748 0.0731 0.0749 0.0748 0.0731 0.0748

2 0.5 0.0742 0.0777 0.0753 0.0758 0.0776 0.0751 0.0776

2 0.9 0.0756 0.0876 0.0798 0.0836 0.0864 0.0790 0.0864

6 �0.9 0.0774 0.0767 0.0743 0.0738 0.0764 0.0756 0.0762

6 �0.5 0.0743 0.0735 0.0733 0.0734 0.0755 0.0743 0.0738

6 �0.25 0.0737 0.0730 0.0727 0.0734 0.0746 0.0731 0.0739

6 0 0.0732 0.0739 0.0741 0.0739 0.0732 0.0731 0.0731

6 0.25 0.0733 0.0730 0.0734 0.0731 0.0733 0.0733 0.0735

6 0.5 0.0727 0.0722 0.0729 0.0729 0.0724 0.0726 0.0730

6 0.9 0.0740 0.0743 0.0735 0.0746 0.0734 0.0727 0.0747

10 �0.9 0.0739 0.0751 0.0755 0.0745 0.0751 0.0740 0.0758

10 �0.5 0.0732 0.0725 0.0732 0.0721 0.0738 0.0736 0.0736

10 �0.25 0.0730 0.0730 0.0728 0.0723 0.0745 0.0736 0.0733

10 0 0.0732 0.0739 0.0737 0.0735 0.0737 0.0733 0.0733

10 0.25 0.0734 0.0731 0.0736 0.0735 0.0729 0.0735 0.0734

10 0.5 0.0723 0.0714 0.0720 0.0722 0.0713 0.0719 0.0722

10 0.9 0.0727 0.0720 0.0731 0.0725 0.0723 0.0727 0.0729

Column averages 0.0737 0.0768 0.0752 0.0763 0.0750 0.0739 0.0750

ŝ2;ML
v is the maximum likelihood estimator; ~s2v the initial (unweighted) GM estimator; ŝ2v the weighted GM

estimator; �s2v the partially weighted GM estimator; ~s2ð1Þv the initial (unweighted) GM estimator, iterated once; ŝ2ð1Þv

the weighted GM estimator, iterated once; and �s2ð1Þv the partially weighted GM estimator, iterated once.

N ¼ 100, T ¼ 5, and ðs2m;s
2
n ; s

2
1;b1;b2Þ ¼ ð1; 1; 6; 1; 1Þ.
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~UN that enter into the objective function for the weighted and the partially weighted GM

estimators we use ðŝ2n ; ŝ
2
1Þ, and ð �s

2
n ; �s

2
1Þ. Using the (once) iterated initial (unweighted), the

weighted, and the partially weighted GM estimators for ðr; s2n ;s
2
1Þ we compute the (once)

iterated feasible GLS estimators which we denote as ~bð1Þi;FGLS, b̂
ð1Þ
i;FGLS and �b

ð1Þ

i;FGLS, i ¼ 1; 2.

Table 1 contains results on a measure of dispersion relating to the small sample
distributions of the GM estimators ~r, r̂, �r, the corresponding iterated GM estimators, and
the ML estimator, r̂ML, for each of 21 cases. Our adopted measure of dispersion is closely
related to the standard measure of the root mean squared error (RMSE), but is based on
quantiles rather than moments, because, unlike moments, quantiles are assured to exit. For
ease of presentation, we also refer to our measure as the RMSE. It is defined as

RMSE ¼ bias2 þ
IQ

1:35

� �2" #1=2
,

where bias is the difference between the median and the true value of r, and IQ is the
interquantile range defined as c1 � c2, where c1 is the 0:75 quantile and c2 is the 0:25
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Table 3

RMSEs of the estimators of s21

Parameter values RMSE

J r ŝ2;ML
1

~s21 ŝ21 �s21 ~s2ð1Þ1 ŝ2ð1Þ1 �s2ð1Þ1

2 �0.9 0.8269 1.3474 1.2562 1.3364 0.8587 0.8217 0.8374

2 �0.5 0.8222 0.8340 0.8267 0.8269 0.8450 0.8168 0.8401

2 �0.25 0.8298 0.8445 0.8270 0.8431 0.8381 0.8307 0.8528

2 0 0.8357 0.8288 0.8298 0.8377 0.8267 0.8300 0.8454

2 0.25 0.8374 0.8336 0.8409 0.8494 0.8341 0.8353 0.8527

2 0.5 0.8411 0.8098 0.8322 0.8446 0.8312 0.8445 0.8679

2 0.9 0.8350 1.1895 1.1898 1.2240 0.8497 0.8320 0.8664

6 �0.9 0.8306 0.8455 0.8414 0.8501 0.8470 0.8265 0.8654

6 �0.5 0.8410 0.8457 0.8336 0.8344 0.8366 0.8413 0.8379

6 �0.25 0.8335 0.8406 0.8355 0.8175 0.8428 0.8353 0.8269

6 0 0.8268 0.8196 0.8183 0.8124 0.8199 0.8280 0.8221

6 0.25 0.8181 0.8073 0.8205 0.8070 0.8124 0.8193 0.8077

6 0.5 0.8265 0.8080 0.8244 0.8121 0.8096 0.8324 0.8192

6 0.9 0.8425 0.9532 0.9442 0.9475 0.8284 0.8368 0.8238

10 �0.9 0.8535 0.8522 0.8472 0.8536 0.8447 0.8493 0.8479

10 �0.5 0.8307 0.8301 0.8319 0.8269 0.8349 0.8426 0.8337

10 �0.25 0.8324 0.8243 0.8234 0.8189 0.8262 0.8305 0.8252

10 0 0.8202 0.8161 0.8241 0.8197 0.8267 0.8288 0.8221

10 0.25 0.8286 0.8169 0.8242 0.8254 0.8216 0.8288 0.8272

10 0.5 0.8305 0.8250 0.8312 0.8288 0.8339 0.8321 0.8297

10 0.9 0.8415 0.8854 0.8826 0.8771 0.8352 0.8348 0.8313

Column averages 0.8236 0.8788 0.8755 0.8806 0.8335 0.8323 0.8373

ŝ2;ML
1 is the maximum likelihood estimator; ~s21 the initial (unweighted) GM estimator; ŝ21 the weighted GM

estimator; �s21 the partially weighted GM estimator; ~s2ð1Þ1 the initial (unweighted) GM estimator, iterated once; ŝ2ð1Þ1

the weighted GM estimator, iterated once; and �s2ð1Þ1 the partially weighted GM estimator, iterated once.

N ¼ 100, T ¼ 5, and ðs2m;s
2
n ;s

2
1; b1;b2Þ ¼ ð1; 1; 6; 1; 1Þ.
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quantile. Clearly, if the distribution is normal the median is the mean and, aside from a
slight rounding error, IQ=1:35 is the standard deviation. In this case our measure reduces
to the standard RMSE measure. The figures in Table 1 are Monte Carlo estimates of
the RMSE based on a 1000 replications for each of the indicated 21 cases. The setup of
Tables 2–5 is analogous.

A glance at Table 1 suggests that, on average, the RMSEs of the ML, the weighted GM,
the partially weighted GM estimators, and of the iterated GM estimators are quite similar.
The RMSEs of the initial (unweighted) GM estimator are, on average, approximately 17%
and 14% larger, respectively, than those of the weighted and partially weighted GM
estimators. The results relating to the weighted and partially weighted GM estimators are
encouraging and suggest that the computational benefits associated with their use, which
are considerable in large samples, does not appear to have much cost in terms of efficiency.
For example, in terms of column averages, the RMSEs of the weighted and partially
weighted GM estimator are, approximately, only 1% and 4% larger than those of the ML
estimator. The RMSEs of the iterated GM estimators for r are on average very similar to
those of the noniterated GM estimators.
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Table 4

RMSEs of the feasible GLS estimators of b1

Parameter values RMSE

J r bbML

1
~b1 b̂1 �b1 ~bð1Þ1 b̂ð1Þ1 �b

ð1Þ

1

2 �0.9 0.2577 0.2600 0.2597 0.2600 0.2581 0.2577 0.2603

2 �0.5 0.2872 0.2885 0.2874 0.2875 0.2889 0.2873 0.2876

2 �0.25 0.3257 0.3248 0.3259 0.3255 0.3250 0.3249 0.3259

2 0 0.3546 0.3551 0.3559 0.3572 0.3542 0.3558 0.3569

2 0.25 0.3709 0.3715 0.3703 0.3731 0.3721 0.3709 0.3732

2 0.5 0.4262 0.4232 0.4234 0.4279 0.4243 0.4252 0.4252

2 0.9 1.1412 1.1330 1.1340 1.1365 1.1379 1.1412 1.1382

6 �0.9 0.2776 0.2729 0.2757 0.2596 0.2740 0.2764 0.2740

6 �0.5 0.3094 0.3104 0.3131 0.3101 0.3112 0.3114 0.3102

6 �0.25 0.3271 0.3321 0.3276 0.3278 0.3313 0.3268 0.3260

6 0 0.3545 0.3500 0.3559 0.3521 0.3534 0.3560 0.3522

6 0.25 0.3777 0.3822 0.3823 0.3811 0.3820 0.3820 0.3807

6 0.5 0.4339 0.4371 0.4363 0.4356 0.4371 0.4377 0.4359

6 0.9 1.1199 1.1176 1.1172 1.1241 1.1195 1.1179 1.1193

10 �0.9 0.2672 0.2730 0.2649 0.2689 0.2656 0.2679 0.2663

10 �0.5 0.3057 0.3084 0.3066 0.3090 0.3069 0.3065 0.3082

10 �0.25 0.3267 0.3287 0.3303 0.3278 0.3299 0.3291 0.3278

10 0 0.3611 0.3568 0.3561 0.3549 0.3600 0.3571 0.3584

10 0.25 0.3870 0.3825 0.3833 0.3847 0.3853 0.3837 0.3859

10 0.5 0.4276 0.4291 0.4287 0.4297 0.4293 0.4288 0.4292

10 0.9 1.1499 1.1475 1.1486 1.1490 1.1462 1.1465 1.1474

Column averages 0.4566 0.4564 0.4564 0.4566 0.4568 0.4567 0.4566

bbML

1 is the maximum likelihood estimator; ~b1 the feasible GLS estimator based on initial GM estimators; b̂1 the

feasible GLS estimator based on weighted GM estimators; �b1 the feasible GLS estimator based on partially

weighted GM estimators; ~bð1Þ1 the feasible GLS estimator based on initial GM estimators, iterated once; b̂ð1Þ1 the

feasible GLS estimator based on weighted GM estimators, iterated once; and �b
ð1Þ

1 the feasible GLS estimator

based on partially weighted GM estimators, iterated once.

N ¼ 100, T ¼ 5, and (s2m;s
2
n ; s

2
1;b1;b2) ¼ (1,1,6,1,1).
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The similarity of the RMSEs of the weighted and partially weighted GM estimators
suggests that, at least for the weighting matrices considered in our experiments, the
covariance structure of the weighting variance covariance matrix in (26) is not ‘‘very
important’’ in determining the efficiency of the corresponding GM estimator. The variance
factors, however, are important. Results of experiments, which are not reported here,
reinforce this conjecture. For example, we also explored the small sample properties of an
unweighted GM estimator of r based on all six moments, and found that this estimator is
much less efficient than any of the other estimators, including the initial unweighted GM
estimator based only on the first three moments. Upon reflection the reason for this is
evident. The variance factors in the variance covariance weighting matrix in (26) are
s4n=ðT � 1Þ and s41, where s21 ¼ s2n þ Ts2m. For T ¼ 5, the values of s4n=ðT � 1Þ and s41
corresponding to ðs2m;s

2
nÞ ¼ ð1; 1Þ are, respectively, 0:25 and 36, implying a ratio of

0:25=36 ¼ 0:0069. The unweighted GM estimator based on six equations gives equal
weight to each of the six equations.
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Table 5

RMSEs of feasible GLS estimators of b2

Parameter values RMSE

J r bbML

2
~b2 b̂2 �b2 ~bð1Þ2 b̂ð1Þ2 �b

ð1Þ

2

2 �0.9 0.0112 0.0112 0.0112 0.0113 0.0112 0.0112 0.0111

2 �0.5 0.0129 0.0128 0.0128 0.0129 0.0128 0.0129 0.0129

2 �0.25 0.0137 0.0140 0.0137 0.0138 0.0139 0.0137 0.0138

2 0 0.0151 0.0151 0.0152 0.0152 0.0150 0.0152 0.0152

2 0.25 0.0162 0.0162 0.0162 0.0162 0.0162 0.0162 0.0161

2 0.5 0.0162 0.0163 0.0162 0.0161 0.0164 0.0164 0.0161

2 0.9 0.0154 0.0153 0.0153 0.0154 0.0154 0.0154 0.0154

6 �0.9 0.0122 0.0121 0.0122 0.0121 0.0122 0.0123 0.0122

6 �0.5 0.0133 0.0133 0.0133 0.0134 0.0134 0.0132 0.0132

6 �0.25 0.0142 0.0143 0.0143 0.0143 0.0143 0.0142 0.0142

6 0 0.0151 0.0151 0.0152 0.0153 0.0152 0.0152 0.0152

6 0.25 0.0156 0.0154 0.0156 0.0156 0.0154 0.0156 0.0156

6 0.5 0.0158 0.0161 0.0160 0.0159 0.0160 0.0160 0.0160

6 0.9 0.0163 0.0162 0.0163 0.0162 0.0162 0.0163 0.0162

10 �0.9 0.0121 0.0116 0.0120 0.0120 0.0120 0.0121 0.0121

10 �0.5 0.0132 0.0134 0.0133 0.0132 0.0133 0.0133 0.0134

10 �0.25 0.0142 0.0143 0.0142 0.0142 0.0143 0.0142 0.0141

10 0 0.0154 0.0152 0.0151 0.0153 0.0153 0.0153 0.0153

10 0.25 0.0161 0.0159 0.0159 0.0160 0.0160 0.0161 0.0161

10 0.5 0.0170 0.0168 0.0171 0.0170 0.0169 0.0171 0.0171

10 0.9 0.0171 0.0169 0.0171 0.0170 0.0169 0.0171 0.0170

Column averages 0.0147 0.0146 0.0147 0.0147 0.0147 0.0147 0.0147

bbML

2 is the maximum likelihood estimator; ~b2 the feasible GLS estimator based on initial GM estimators; b̂2 the

feasible GLS estimator based on weighted GM estimators; �b2 the feasible GLS estimator based on partially

weighted GM estimators; ~bð1Þ2 the feasible GLS estimator based on initial GM estimators, iterated once; b̂ð1Þ2 the

feasible GLS estimator based on weighted GM estimators, iterated once; and �b
ð1Þ

2 the feasible GLS estimator

based on partially weighted GM estimator, iterated once.

Based on N ¼ 100, T ¼ 5, and ðs2m;s
2
n ; s

2
1; b1;b2Þ ¼ ð1; 1; 6; 1; 1Þ.
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As remarked, our GM estimators for r are not confined to the interval ð�1; 1Þ. However,
in our Monte Carlo study we only observed such outliers in less that 1%. As described
above, our RMSE measure is based on quantiles, and hence it is not effected by those
infrequent outliers.

In Tables 2 and 3 we report RMSEs for the GM estimators ~s2n , ŝ
2
n , �s

2
n and �s

2
1, ~s

2
1, ŝ

2
1, the

corresponding iterated GM estimators, and the ML estimators, ŝ2;ML
v and ŝ2;ML

1 ,
respectively. The RMSEs for the initial GM estimators are again larger than those for
the weighted and partially weighted GM estimators. In contrast to the GM estimators for
r, the iterated GM estimators for s2n and s21 exhibit smaller RMSEs than their noniterated
counter parts. The RMSEs of the weighted GM estimators ŝ2nand ~s21 are on average 2%
and 6% higher than the RMSEs of the ML estimators. The difference between the average
RMSEs of the iterated weighted GM estimators and the RMSEs of the ML estimators is
less than 1%. The difference between the average RMSEs of the iterated partially weighted
GM estimators and the RMSEs of the ML estimators is less than 2%.



ARTICLE IN PRESS
M. Kapoor et al. / Journal of Econometrics 140 (2007) 97–130118
In Tables 4 and 5 we report RMSEs for the feasible GLS estimators ~bi;FGLS, b̂i;FGLS and
�bi;FGLS, i ¼ 1; 2, respectively, and iterated versions thereof. Those tables reveal that the
RMSEs of the various feasible GLS estimators and the ML estimators for the regression
parameters b1 and b2, respectively, are very similar. These results and those given for the
GM estimators of r, s2v and s21 are encouraging, given the computational simplicity of our
suggested estimators relative to the ML estimator.

6. Future research

Several suggestions for future research come to mind. First, on a theoretical level, it
would be of interest to also consider fixed effects specifications. Furthermore, it would be of
interest to extend the results of this paper to models containing spatially lagged dependent
variables, as well as to systems of equations. In doing this it would certainly be of interest to
consider higher order spatial lags. Another area of interest would be to extend our results to
nonlinear models. Secondly, a Monte Carlo study relating to a wider set of experiments, as
well as corresponding estimators, than those considered in this paper would be of interest.
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Appendix A
Remark A1. In the following we make repeated use of the properties of the matrices Q0;N

and Q1;N discussed after (8). In particular those matrices are symmetric, idempotent and
orthogonal, and

Q0;N þQ1;N ¼ INT ,

trðQ0;NÞ ¼ NðT � 1Þ; trðQ1;NÞ ¼ N,

Q0;NðeT � INÞ ¼ 0; Q1;N ðeT � IN Þ ¼ ðeT � IN Þ. (A.1)

Furthermore, let RN be any N �N matrix, then it is readily seen that

ðIT � RN ÞQ0;N ¼ Q0;NðIT � RN Þ; ðIT � RNÞQ1;N ¼ Q1;NðIT � RN Þ,

trðQ0;NðIT � RN ÞÞ ¼ ðT � 1Þ trðRN Þ; trðQ1;NðIT � RN ÞÞ ¼ trðRN Þ, (A.2)

observing that for any T � T matrix ST we have trðST � RN Þ ¼ trðST Þ trðRT Þ.

Remark A2. In the following we shall make repeated use of the following observations:14
(a)
14
Let RN be a (sequence of) N �N matrices whose row and column sums are bounded
uniformly in absolute value, and let S be some k � k matrix (with kX1 fixed). Then the
row and column sums of S � RN are bounded uniformly in absolute value.
The observations are readily verified. For some explicit proofs see Kelejian and Prucha (1999).
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(b)
 If AN and BN are (sequences of) kN � kN matrices (with kX1 fixed), whose row and
column sums are bounded uniformly in absolute value, then so are the row and column
sums of ANBN and AN þ BN . If ZN is a (sequence of) kN � p matrices whose elements
are uniformly bounded in absolute value, then so are the elements of ANZN and
ðkNÞ�1Z0NANZN .
Derivation of the moment conditions in (13): Given the error component specification (5)
for eN and utilizing the properties of Q0;N and Q1;N described in Remark A1 it follows that:

Q0;NeN ¼ Q0;NnN ,

Q0;NeN ¼ ðIT �W N ÞQ0;NnN ,

Q1;NeN ¼ ðeT � INÞmN þQ1;NnN ,

Q1;NeN ¼ ðeT �W N ÞmN þ ðIT �W N ÞQ1;NnN . (A.3)

Recall that by Assumption 1, EmNm
0
N ¼ s2mIN , EnNn0N ¼ s2nINT , and EmNn

0
N ¼ 0. Also recall

that for any random vector Z and conformable matrix A we have EðZ0AZÞ ¼ trðAEZZ0Þ.
Given this, Remark A1, and (A.3) we have

E½e0NQ0;NeN � ¼ E½n0NQ0;NnN �

¼ s2n trðQ0;NÞ ¼ s2nNðT � 1Þ,

E½e0NQ0;NeN � ¼ E½n0NQ0;N ðIT �W 0
NW NÞQ0;NnN �

¼ s2n tr½Q0;NðIT �W 0
NW N Þ� ¼ s2nðT � 1Þ trðW 0

NW N Þ,

E½e0NQ0;NeN � ¼ E½n0NQ0;NðIT �W 0
N ÞQ0;NnN �

¼ s2n tr½Q0;N ðIT �W 0
N Þ� ¼ s2nðT � 1Þ trðW 0

N Þ ¼ 0, ðA:4Þ

and

E½e0NQ1;NeN � ¼ E½m0Nðe
0
T eT � IN ÞmN � þ E½n0NQ1;NnN �

¼ s2m trðe0T eT � IN Þ þ s2n trðQ1;N Þ

¼ NTs2m þNs2n ¼ Ns21,

E½e0NQ1;NeN � ¼ E½m0Nðe
0
T eT �W 0

NW N ÞmN � þ E½n0NQ1;NðIT �W 0
NW N ÞQ1;NnN �

¼ s2m trðe0T eT �W 0
NW N Þ þ s2n tr½Q1;N ðIT �W 0

NW NÞ�

¼ Ts2m trðW 0
NW NÞ þ s2n trðW 0

NW N Þ ¼ s21 trðW 0
NW N Þ,

E½e0NQ1;NeN � ¼ E½m0N ðe
0
T eT �W 0

NÞmN � þ E½n0NQ1;NðIT �W 0
NÞQ1;NnN �

¼ s2m trðe0T eT �W 0
NÞ þ s2n tr½Q1;NðIT �W 0

NÞ�

¼ Ts2m trðW 0
N Þ þ s2n trðW 0

NÞ ¼ 0, ðA:5Þ

with s21 ¼ Ts2m þ s2n . The moment equations given in (13) now follow immediately from
(A.4) and (A.5).

We now give a sequence of lemmata which are needed for the proof of Theorems 1–3.
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Lemma A1. Let ST be some T � T matrix (with T fixed ), and let RN be some N �N matrix

whose row and column sums are bounded uniformly in absolute value. Let eN ¼ ðeT �

INÞmN þ nN where mN and nN satisfy Assumption 1. Consider the quadratic form

jN ¼ N�1e0N ðST � RN ÞeN .

Then EjN ¼ Oð1Þ and varðjNÞ ¼ oð1Þ, and as a consequence

jN � EjN!
P
0 as N !1.

Proof. Let xN ¼ ðx1;N ; . . . ; xðTþ1ÞN ;N Þ
0
¼ ðm0N ; n

0
NÞ
0 so that eN ¼ ½ðeT � INÞ; INT �xN and

jN ¼ N�1x0NCNxN with

CN ¼
e0T ST eT e0T ST

ST eT ST

" #
� RN . (A.6)

Since the first matrix of the Kronecker product in (A.6) does not depend on N it follows
immediately from the maintained assumption concerning RN and Remark A2 that the row
and column sums (and hence the elements) of CN are bounded uniformly in absolute value
by, say kco1. Next observe that in light of Assumption 1 the ðT þ 1ÞN � 1 vector xN has
mean zero, variance covariance matrix

Ox ¼ ExNx
0
N ¼

s2mIN 0

0 s2nINT

" #
,

and finite fourth moments. In the following let 1okZo1 denote an upper bound for the

variances and fourth moments of the elements of mN and nN , and thus of the elements of

xN . Then jEðjNÞj ¼ jN
�1 trðCNOxÞjpN�1ð

PðTþ1ÞN
i¼1 jcii;N jvarðxi;NÞpðT þ 1ÞkZkco1, and

thus EjN ¼ Oð1Þ. Using the expression for the variance of quadratic forms given, e.g., in
Kelejian and Prucha (2001), we have

varðjN Þ ¼
1

2N2
tr½ðCN þ C0NÞOxðCN þ C0NÞOx� þ

XðTþ1ÞN
i¼1

c2ii;N ½Ex
4
i;N � 3 var2ðxi;N Þ�

( )
.

Given Remark A2, it is clear that the row and column sums of the absolute values of the

matrix ðCN þ C0N ÞOxðCN þ C0N ÞOx are bounded uniformly by 4k2
ck2

Z. Hence, using the

triangle inequality, we have

varðjN Þp
1

2N2
fðT þ 1ÞN4k2

ck2
Z þ ðT þ 1ÞN4k2

ck2
Zg ! 0 as N !1,

which shows that varðjN Þ ¼ oð1Þ. The last claim follows immediately from Chebyshev’s
inequality. &

Lemma A2. Let G�N and g�N be identical to GN and gN in (15) except that the expectations

operator is dropped. Suppose Assumptions 1, 2, and 4 hold. Then GN ¼ Oð1Þ, gN ¼ Oð1Þ
and

G�N � GN!
P
0 and g�N � gN!

P
0 as N !1. (A.7)
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Proof. Note from (4) that

uN ¼ ½IT � ðIN � rW N Þ
�1
�eN ¼ ½IT � PN �eN ,

uN ¼ ðIT �W N ÞuN ¼ ðIT �W NPN ÞeN ,

uN ¼ ðIT �W N ÞuN ¼ ðIT �W 2
NPN ÞeN . ðA:8Þ

Define

S0;T ¼
1

T � 1
IT �

JT

T

� �
,

S1;T ¼
JT

T
.

Then, recalling the definition of Q0;N and Q1;N in (8) it is not difficult to verify that the
respective quadratic forms in uN , uN , and uN involved in G�N and g�N are, apart from a
constant, expressible as

j1j;N ¼
1

NðT � 1Þ1�j
u0NQj;NuN ¼

1

N
u0N ðSj;T � IN ÞuN

¼
1

N
e0N ðSj;T � R1;NÞeN ; R1;N ¼ P0NPN ,

j2j;N ¼
1

NðT � 1Þ1�j
u0NQj;NuN ¼

1

N
u0N ðSj;T �W NÞuN

¼
1

N
e0N ðSj;T � R2;NÞeN ; R2;N ¼ P0NW NPN ,

j3j;N ¼
1

NðT � 1Þ1�j
u0NQj;NuN ¼

1

N
u0N ðSj;T �W 0

NW N ÞuN

¼
1

N
e0N ðSj;T � R3;NÞeN ; R3;N ¼ P0NW 0

NW NPN ,

j4j;N ¼
1

NðT � 1Þ1�j
u
0

NQj;NuN ¼
1

N
u0N ðSj;T � ðW

0
N Þ

2W N ÞuN

¼
1

N
e0N ðSj;T � R4;NÞeN ; R4;N ¼ P0NðW

0
NÞ

2W NPN ,

j5j;N ¼
1

NðT � 1Þ1�j
u
0

NQj;NuN ¼
1

N
u0N ðSj;T � ðW

0
N Þ

2W 2
N ÞuN

¼
1

N
e0N ðSj;T � R5;NÞeN ; R5;N ¼ P0NðW

0
NÞ

2W 2
NPN ,

j6j;N ¼
1

NðT � 1Þ1�j
u0NQj;NuN ¼

1

N
u0NðSj;T �W 2

N ÞuN

¼
1

N
e0NðSj;T � R6;N ÞeN ; R6;N ¼ P0NW 2

NPN , ðA:9Þ

with j ¼ 0; 1. In light of Assumptions 2 and 4 the row and column sums of W N and PN ,
and hence those of the matrices Ri;N (i ¼ 1; . . . ; 6), are bounded uniformly in absolute
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value; compare Remark A2. The lemma now follows by applying Lemma A1 to each of the
quadratic forms in (A.9) which compose G�N and g�N . &

Lemma A3. Let G�N and g�N be as defined in Lemma A2. Then, given Assumptions 1–4

GN � G�N!
P
0 and gN � g�N!

P
0 as N !1 (A.10)

provided ~bN!
P
b as N !1.

Proof. The quadratic forms composing the elements of G�N and g�N have been collected in
(A.9) and are seen to be of the form ði ¼ 1; . . . ; 6; j ¼ 1; 2Þ:

jij;N ¼ N�1u0NCij;NuN , (A.11)

where the Cij;N are nonstochastic NT �NT matrices. Since the row and column sums
of the elements of W N are uniformly bounded in absolute value it follows that also
the row and columns sums of the matrices Cij;N have that property; compare
Remark A2. The quadratic forms composing the elements of GN and gN defined in (17)
are given by

~jij;N ¼ N�1eu0NCij;NeuN . (A.12)

To proof the lemma we now show that ~jij;N � jij;N!
P
0 as N !1. ClearlyeuN ¼ yN � X N

~bN ¼ uN � X NDN , (A.13)

where DN ¼
~bN � b. Since ~bN is consistent, DN!

P
0: Substituting (A.13) into (A.12) yields

~jij;N � jij;N ¼ D0NðN
�1X 0NCij;NX NÞDN � 2D0N ðN

�1X 0NCij;NuNÞ. (A.14)

Consider the first term on the right-hand side of (A.14). Since the row and column sums
of Cij;N are bounded uniformly in absolute value and since the elements of X N are
uniformly bounded in absolute value it follows—see Remark A2—that all K2 elements of
N�1X 0NCij;NX N are Oð1Þ. Therefore, the first term on the right-hand side of (A.14)
converges to zero in probability since DN!

P
0.

Now consider the second term on the right-hand side of (A.14). In particular, consider
the vector zN ¼ N�1X 0NCij;NuN . Clearly, the mean of zN is zero and its variance covariance
matrix is given by

N�1ðN�1X 0NC0ij;NOu;NCij;NX NÞ, (A.15)

where Ou;N is given by (7) and (11). Given the maintained assumptions the row and
column sums of Ou;N are uniformly bounded in absolute value, and therefore so are
those of C0ij;NOu;NCij;N . Observing that the elements of X N are uniformly bounded
in absolute value, it follows again from the observations in Remark A2 that all K2

elements of N�1X 0NC0ij;NOu;NCij;NX N are Oð1Þ. This implies that the variance covariance
matrix of zN given in (A.15) converges to zero, and hence zN converges to zero in
probability. This establishes that also the second term on the right-hand side of (A.14)
converges to zero in probability. Thus ~jij;N � jij;N!

P
0 as N !1, which completes the

proof. &

Proof of Theorem 1. Observe that by combining Lemmata A2 and A3 we have

GN � GN!
P
0 and gN � gN!

P
0 as N !1. (A.16)
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We are now ready for the final step in the proof of Theorem 1. We first demonstrate the
consistency of ~rN and ~s2n;N defined in (24).15 The existence and measurability of ~rN and
~s2n;N are ensured by, for example, Lemma 2 in Jennrich (1969). To establish the consistency
of ~rN and ~s2n;N we show that the conditions of Lemma 3.1 in Pötscher and Prucha (1997)
are satisfied for the problem at hand. Let y ¼ ðr; s2nÞ and y ¼ ðr;s2nÞ. We first show that the
true parameter vector y is identifiably unique. The objective function of the nonlinear least
squares estimator and its corresponding nonstochastic counterpart are given by,
respectively,

R0
N ðyÞ ¼ ½G

0
N ½r; r

2; s2n �
0 � g0

N �
0½G0

N ½r;r
2;s2n �

0 � g0
N �,

R
0

N ðyÞ ¼ ½G
0
N ½r;r

2;s2n �
0 � g0N �

0½G0
N ½r;r

2;s2n �
0 � g0N �.

Observe that in light of (15) or (18) we have R
0

NðyÞ ¼ 0, i.e., R
0

NðyÞ is zero at y ¼ y. Then

R
0

NðyÞ � R
0

NðyÞ ¼ ½r�r;r
2 � r2;s2n � s2n �G

00
NG

0
N ½r�r;r

2 � r2;s2n � s2n �
0

XlminðG00
NG

0
NÞ½r�r;r

2 � r2;s2n � s2n �½r�r;r
2 � r2;s2n � s2n �

0

Xl�k y�yk2

in light of Assumption 5. Hence, for every �40 and any N,

inf
fy:k y�ykX�g

½R
0

N ðyÞ � R
0

NðyÞ�X inf
fy:k y�ykX�g

l�k y�yk2 ¼ l��240,

which proves that y is identifiably unique. Next, let F0
N ¼ ½G

0
N ;�g0

N � and F0
N ¼ ½G

0
N ;�g

0
N �,

then

R0
N ðyÞ ¼ ½r; r

2; s2n ; 1�F
00
NF 0

N ½r;r
2;s2n ; 1�,

R
0

N ðyÞ ¼ ½r; r
2; s2n ; 1�

0F00
NF

0
N ½r; r

2; s2n ; 1�.

Hence for r 2 ½�a; a� and s2n 2 ½0; b�

jR0
N ðyÞ � R

0

N ðyÞj ¼ j½r; r
2; s2n ; 1�½F

00
NF0

N � F00
NF

0
N �½r; r

2;s2n ; 1�j

pkF00
NF0

N � F00
NF

0
Nkk r; r

2; s2n ; 1k
2

pkF00
NF0

N � F00
NF

0
Nk½1þ a2 þ a4 þ b2

�.

Given (A.16) we have F 0
N � F0

N!
P
0. Observing that by Lemma A2 the elements of F0

N are

Oð1Þ it follows that kF00
NF0

N � F00
NF

0
Nk!

P
0, and consequently that R0

N ðyÞ � R
0

N ðyÞ
converges to zero uniformly over the (extended) parameter space, that is,

sup
r2½�a;a�;s2n2½0;b�

jR0
N ðyÞ � R

0

N ðyÞj

pkF 00
NF 0

N � F00
NF

0
Nk½1þ a2 þ a4 þ b2

�!
P
0

15This step is analogous to that taken by Kelejian and Prucha (1999) in their consistency proof. We adopt the

following notation: Let A be some vector or matrix, then kAk ¼ ½trðA0AÞ�1=2. We note that this norm is

submultiplicative, i.e., kABkpkAkkBk.
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as N !1: The consistency of ~rN and ~s2n;N now follows directly from Lemma 3.1 in

Pötscher and Prucha (1997).
Next consider ~s21;N defined by (25). In light of (15) we have

~s21;N � s21 ¼ g1
1;N � g11;N � ðg

1
11;N � g111;NÞ ~rN � ðg

1
12;N � g112;N Þ ~r

2
N

� g111;N ð ~rN � rÞ � g112;N ð ~r
2
N � r2Þ.

Observing again that F0
N � F0

N!
P
0 and that the elements of F0

N are Oð1Þ it follows from
the just established consistency of ~rN that ~s21;N � s21!

P
0 as N !1: &

Proof of Consistency of OLS. The least squares estimator of b based on (3) is
ðX 0NX NÞ

�1X 0NyN . Under the maintained Assumptions 1–4 the estimator is clearly unbiased
and its variance covariance matrix is given by

ðNTÞ�1½ðNTÞ�1X 0NX N �
�1ðNTÞ�1X 0NOu;NX N ½ðNT Þ�1X 0NX N �

�1. (A.17)

By Assumption 3, ðNTÞ�1X 0NX N converges to a finite positive definite matrix. As a special
case of the discussion surrounding (A.15) it is seen that the K2 elements of ðNTÞ�1X 0NOu;NX N

are Oð1Þ. Therefore, the variance covariance matrix in (A.17) converges to zero as N !1,
and the consistency of the least squares estimator follows from Chebyshev’s inequality.

Derivation of Variance Covariance Matrix in (26): Assume for the moment that
eN�Nð0;Oe;N Þ. The derivation of XN in (26) is straight forward by using the following
result (compare, e.g., Amemiya, 1973, Lemma): If AN and BN are nonnegative definite
symmetric matrices, then

covðe0NANeN ; e0NBNeNÞ ¼ 2 trðANOe;NBNOe;NÞ.

As an illustration we compute the (2,1)-element of XN . Recall that eN ¼ ðIT �W NÞeN and
Oe;N ¼ s2nQ0;N þ s21Q1;N . In light of Remark A1 it is not difficult to see that this element
can be computed as follows:

N cov
1

NðT � 1Þ
e0NQ0;NeN ;

1

NðT � 1Þ
e0NQ0;NeN

� �
¼

2

NðT � 1Þ2
tr½ðIT �W 0

NÞQ0;N ðIT �W N ÞOe;NQ0Oe;N �

¼
2

NðT � 1Þ2
tr½ðIT �W 0

NW N ÞQ0;NOe;NQ0Oe;N �

¼
2s4n

NðT � 1Þ2
tr½ðIT �W 0

NW N ÞQ0;N � ¼
2s4n
ðT � 1Þ

tr
W 0

NW N

N

� �
.

The derivation of the remaining elements of XN is analogous. &

Proof of Theorem 2. The existence and measurability of the weighted GM estimators r̂N ,
ŝ2n;N , and ŝ21;N defined by (27) are again ensured by Lemma 2 in Jennrich (1969). Let
y ¼ ½r;s2n ;s

2
1� and let y ¼ ½r;s2n ;s

2
1�. The objective function of the weighted GM estimator

and its corresponding nonstochastic counterpart are then given by, respectively,

RN ðyÞ ¼ ½GN ½r;r2;s2n ;s
2
1�
0 � gN �

0 ~X�1N ½GN ½r;r2; s2n ; s
2
1�
0 � gN �,

RN ðyÞ ¼ ½GN ½r;r2;s2n ; s
2
1�
0 � gN �

0X�1N ½GN ½r;r2;s2n ;s
2
1�
0 � gN �.
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We now establish two preliminary results implied by the assumptions. First we show
that lminðG0NX

�1
N GN ÞXl� for some l�40: To see this let A ¼ ðaijÞ ¼ ðG0

N Þ
0
ðG0

NÞ and
B ¼ ðbijÞ ¼ ðG1

NÞ
0
ðG1

N Þ. Then in light of (15)

G0NGN ¼

a11 a12 a13 0

a21 a22 a23 0

a31 a32 a33 0

0 0 0 0

26664
37775þ

b11 b12 0 b13

b21 b22 0 b23

0 0 0 0

b31 b32 0 b33

26664
37775.

Hence, utilizing Assumption 5,

x0G0NGNx ¼ ½x1;x2;x3�A½x1; x2;x3�
0 þ ½x1;x2;x4�B½x1;x2;x4�

0

XlminðAÞ½x1;x2; x3�½x1; x2; x3�
0 þ lminðBÞ½x1; x2; x4�½x1;x2;x4�

0

Xl�x0x

for any x ¼ ½x1;x2;x3;x4�
0. Thus in light of, e.g., Rao (1973, p. 62)

lminðG0NGN Þ ¼ inf
x

x0G0NGNx

x0x
Xl�40.

Next observe that

lminðG0NX
�1
N GNÞ ¼ inf

x

x0G0NX
�1
N GNx

x0x
XlminðX�1N Þ infx

x0G0NGNx

x0x

¼ lminðX�1N ÞlminðG0NGNÞXl�40,

with l� ¼ l̄�l�, since lminðX�1N ÞXl̄�40 by assumption.
Second, we show that X�1N ¼ Oð1Þ. For notational convenience let SN ¼ X�1N . To verify

the claim we need to show that sij;N

�� ��pko1 for some constant k that does not depend on
N. Again in light of, e.g., Rao (1973, p. 62),

lminðSNÞ ¼ inf
x

x0SNx

x0x
; lmaxðSN Þ ¼ max

x

x0SNx

x0x
.

Hence it follows from the maintained assumptions concerning the smallest and largest
eigenvalues of SN ¼ X�1N that

0ol̄�p
x0SNx

x0x
pl̄��o1.

Taking x to be the vector that has a one in the ith and jth positions and zeros elsewhere
we have

0psii;Npl̄��o1; i ¼ j;

0pðsii;N þ sjj;N þ 2sij;N Þ=2pl̄��o1; iaj:

From this it is readily seen that jsij;N jpl̄�� for all i; j, which proves the claim.
Analogous as in the proof of Theorem 1 observe that RN ðyÞ is zero at y ¼ y, and hence

RNðyÞ � RNðyÞ

¼ ½r�r;r2 � r2;s2n � s2n ; s
2
1 � s21�G

0
NX
�1
N GN ½r�r;r2 � r2;s2n � s2n ; s

2
1 � s21�

0.
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Next, let FN ¼ ½GN ;�gN � and FN ¼ ½GN ;�gN �, then

RN ðyÞ ¼ ½r; r2;s2n ;s
2
1; 1�F

0
N
~X�1N F N ½r;r2;s2n ;s

2
1; 1�,

RN ðyÞ ¼ ½r; r2;s2n ;s
2
1; 1�

0F0NX
�1
N FN ½r; r2; s2n ;s

2
1; 1�.

The remainder of the proof of Theorem 2 is now analogous to that of Theorem 1. &

Proof of Theorem 3. Let l̄� ¼ minfðT � 1Þs�4n ;s�41 g and l̄�� ¼ maxfðT � 1Þs�4n ;s�41 g. Then
0ol̄�plminðU �1N ÞplmaxðU �1N Þpl̄��o1. The proof of Theorem 3 is now analogous to that
of Theorem 2 with XN and ~XN replaced by UN and ~UN , respectively. &

Proof of Theorem 4. Part (a): We prove this part by verifying the conditions of the central
limit theorem given in Pötscher and Prucha (2001) as Theorem 30.16 First observe that
(30)–(32) imply

ðNTÞ1=2½bbGLS;N � b�

¼ ½ðNTÞ�1X 0NO
�1
u;NX N �

�1ðNTÞ�1=2X 0NO
�1
u;NuN

¼ ½ðNTÞ�1X �NðrÞ
0O�1e;NX �NðrÞ�

�1ðNTÞ�1=2X �N ðrÞ
0O�1e;NeN . ðA:18Þ

Consider the first factor in the last expression in (A.18). Recalling that O�1e;N ¼ s�2n Q0;N þ

s�21 Q1;N it follows from Assumption 3 and the discussion thereafter that

lim
N!1
ðNT Þ�1X �NðrÞ

0O�1e;NX �NðrÞ ¼ s�2n M0
xx þ s�21 M1

xx, (A.19)

which is a finite nonsingular matrix. Now consider the second factor in the last expression
in (A.18). The results in (A.3) imply

ðNTÞ�1=2X �N ðrÞ
0O�1e;NeN

¼ ðNTÞ�1=2X �N ðrÞ
0
½s�2n Q0;N þ s�21 Q1;N �eN

¼ ðNTÞ�1=2Z01;NmN þ ðNTÞ�1=2Z02;NnN , ðA:20Þ

where

Z01;N ¼ X �NðrÞ
0
ðs�21 ðeT � IN ÞÞ and Z02;N ¼ X �N ðrÞ

0
ðs�2n Q0;N þ s�21 Q1;NÞ.

Given Assumptions 3 and 4 it follows from the observations in Remark A2 that the
elements of Z1;N and Z2;N are uniformly bounded in absolute value, and furthermore

lim
N!1
ðNT Þ�1Z01;NZ1;N ¼ lim

N!1
ðNTÞ�1Ts�41 X �NðrÞ

0Q1;NX �N ðrÞ

¼ Ts�41 M1
xx,

lim
N!1
ðNT Þ�1Z02;NZ2;N ¼ lim

N!1
ðNTÞ�1½X �NðrÞ

0
ðs�4n Q0;N þ s�41 Q1;N ÞX

�
NðrÞ�

¼ s�4n M0
xx þ s�41 M1

xx. ðA:21Þ
16An inspection of the proof of that theorem shows that the theorem also holds if the innovations are allowed to

form a triangular array and the sample index n is replaced by rn.
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The matrices on the right-hand side of (A.21) are finite. Given Assumption 1 it now follows
from Theorem 30 in Pötscher and Prucha (2001) that

ðNT Þ�1=2Z01;NmN!
D

Nf0;Ts2ms
�4
1 M1

xxg,

ðNT Þ�1=2Z02;NnN!
D

Nf0;s2n ½s
�4
n M0

xx þ s�41 M1
xx�g. ðA:22Þ

Since s21 ¼ s2n þ Ts2m and, by Assumption 1, the two processes {mi;Ng and {nit;Ng are
independent, it follows furthermore from (A.20) and (A.22) that

ðNT Þ�1=2X �NðrÞ
0O�1e;NeN!

D
Nð0; s�2n M0

xx þ s�21 M1
xxÞ (A.23)

as N !1. Part (a) of Theorem 4 follows from the results in (A.18), (A.19) and (A.23).
Part (b): To prove this part it suffices to show that17

D1;N ¼ ðNTÞ�1X �N ð �rN Þ
0 �O
�1

e;NX �Nð �rN Þ � ðNTÞ�1X �NðrÞ
0O�1e;NX �NðrÞ!

P
0, (A.24)

and

D2;N ¼ ðNTÞ�1=2X �N ð �rNÞ
0 �O
�1

e;Nu�Nð �rN Þ � ðNTÞ�1=2X �NðrÞ
0O�1e;Nu�NðrÞ!

P
0, (A.25)

where �O
�1

e;N ¼ O�1e;Nð �s
2
n;N ; �s

2
1;N Þ and u�N ð �rNÞ ¼ ðIN � �rNW NÞuN .

We first demonstrate (A.24). To this effect first substitute the expression for X �Nð �rN Þ

given in (31) into (A.24). Then, observing that in light of (9) and Remark A1

O�1e;N ½IT � ðIN � rW NÞ� ¼ ½IT � ðIN � rW NÞ�O�1e;N ,

�O
�1

e;N ½IT � ðIN � �rNW N Þ� ¼ ½IT � ðIN � �rNW NÞ� �O
�1

e;N , ðA:26Þ

it is readily seen that

D1;N ¼ ½ �rN � r� �s�2n;N ðNT Þ�1X 0NA1;NX N þ ½ �rN � r� �s�21;NðNTÞ�1X 0NA2;NX N

þ ½ �r2N � r2� �s�2n;N ðNT Þ�1X 0NA3;NX N þ ½ �r2N � r2� �s�21;N ðNT Þ�1X 0NA4:NX N

þ ½ �s�2n;N � s�2n �ðNTÞ�1X 0NA5;NX N þ ½ �s�21;N � s�21 �ðNTÞ�1X 0NA6;NX N , ðA:27Þ

where

A1;N ¼ ½IT � ðW
0
N þW NÞ�Q0;N ,

A2;N ¼ ½IT � ðW
0
N þW NÞ�Q1;N ,

A3;N ¼ ½IT � ðW
0
NW N Þ�Q0;N �,

A4;N ¼ ½IT � ðW
0
NW N Þ�Q1;N ,

A5;N ¼ ½IT � ðIN � rW 0
N ÞðIN � rW NÞ�Q0;N ,

A6;N ¼ ½IT � ðIN � rW 0
N ÞðIN � rW NÞ�Q1;N . ðA:28Þ

In light of Remark A2 and Assumptions 3 and 4, the elements of the six K � K matrices
ðNTÞ�1X 0NAi;NX N , i ¼ 1; . . . ; 6, are seen to be uniformly bounded in absolute value. Since
�rN ; �s

2
n;N , and �s21;N are consistent estimators it follows that D1;N!

P
0 as N !1.
17See, e.g., Schmidt (1976, p. 71).
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We next demonstrate (A.25). Using similar manipulations we have

D2;N ¼ ½ �rN � r� �s�2n;NðNTÞ�1=2X 0NA1;NuN þ ½ �rN � r� �s�21;N ðNTÞ�1=2X 0NA2;NuN

þ ½ �r2N � r2� �s�2n;NðNTÞ�1=2X 0NA3;NuN þ ½ �r2N � r2� �s�21;NðNTÞ�1=2X 0NA4:NuN

þ ½ �s�2n;N � s�2n �ðNTÞ�1=2X 0NA5;NuN þ ½ �s�21;N � s�21 �ðNTÞ�1=2X 0NA6;NuN . ðA:29Þ

Since X N and Ai;N are nonstochastic matrices the expected values of the K � 1 vectors
ðNT Þ�1=2X 0NAi;NuN are zero and their variance covariance matrices are given by
(i ¼ 1; . . . ; 6)

ðNTÞ�1X 0NAi;NOu;NA0i;NX N ,

where Ou;N is defined via (7) and (11). Given Assumptions 3 and 4 and Remarks A1 and A2
the row and column sums of Ou;N , and furthermore those of Ai;NOu;NA0i;N , are uniformly
bounded in absolute value. Hence, the elements of the K � K matrices ðNT Þ�1X 0N
Ai;NOu;NA0i;NX N are uniformly bounded in absolute value. Therefore ðNT Þ�1=2X 0NAi;NuN ¼

OPð1Þ and thus D2;N!
P
0 as N !1, since �rN , �s

2
n;N , and �s21;N are consistent estimators.

Part (c): This part follows immediately from (A.19) and (A.24). &
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