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Abstract

In recent studies of humans estimating non-stationary probabilities, estimates appear
to be unbiased on average, across the full range of probability values to be estimated.
This finding is surprising given that experiments measuring probability estimation in
other contexts have often identified conservatism: individuals tend to overestimate
low probability events and underestimate high probability events. In other contexts,
repulsive biases have also been documented, with individuals producing judgments that
tend toward extreme values instead. Using extensive data from a probability estimation
task that produces unbiased performance on average, we find substantial biases at
the individual level; we document the coexistence of both conservative and repulsive
biases in the same experimental context. Individual biases persist despite extensive
experience with the task, and are also correlated with other behavioral differences,
such as individual variation in response speed and adjustment rates. We conclude that
the rich computational demands of our task give rise to a variety of behavioral patterns,
and that the apparent unbiasedness of the pooled data is an artifact of the aggregation
of heterogeneous biases.

∗Contact: melwin.khaw@duke.edu, stevens7@umd.edu, mw2230@columbia.edu.



1 Introduction

Decision-makers often report distorted probabilities, despite the ubiquitous day-to-day

experience with probability estimation. The type of distortion differs across tasks and con-

texts, but two commonly identified patterns are conservatism, where individuals report prob-

abilities that are less extreme than the true values (tending toward 50%), and repulsive biases

away from 50%, where extreme values are disproportionately reported. The tendencies of

probability estimates to be distorted either around the average value or towards the extremes

result in variants of S-shaped response functions.

These seemingly conflicting patterns of biased judgment reflect, at least in part, differ-

ences in the tasks analyzed. For example, the conversion of experienced frequencies into

reported probabilities tends to be associated with conservatism (Attneave, 1953), while the

conversion of numerical proportions into visual representations results in the opposite pat-

tern (Brooke & MacRae, 1977). In general, studies involving the estimation of an observed

frequency often find conservatism, such as in visual judgments of dots of different colors

(Varey, Mellers & Birnbaum, 1990; Stevens & Galanter, 1957), sequences of letters (Erlick,

1964), and ratios of auditory durations (Nakajima, Nishimura & Teranishi, 1988). Rever-

sals of this bias have also been documented, though they are less common (Shuford, 1961;

Hollands & Dyre, 2000; Brooke & MacRae, 1977). In the probability calibration literature,

overconfidence has been documented more frequently (for a review, see Keren, 1991). These

experiments involve asking subjects a question about a unique event (e.g., a general knowl-

edge question). Subjects are also asked to assign a probability that their answer is correct

(Brenner, Koehler, Liberman & Tversky, 1996). Overconfidence is indicated when confidence

ratings (e.g., how likely the subject thought their answer was correct) are greater than the

frequency of correct answers. Also in this domain, the modal bias can reverse, depending on

the difficulty level of questions (Lichtenstein & Fischhoff, 1977).

The inferred bias also depends on the statistical approach used: Both repulsive errors and

conservatism can be identified within the same data set, depending on the statistics used to

characterize bias (Erev, Wallsten & Budescu, 1994). In addition, judgments are subject to

internal noise, which can interfere with the identification of biases (Erev et al., 1994; Costello
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& Watts, 2014, 2018).

Further complicating matters, recent research on the estimation of non-stationary prob-

abilities has emphasized how nearly unbiased estimates are on average—while recognizing

that estimates on individual trials are noisy (Gallistel, Krishnan, Liu, Miller & Latham, 2014;

Ricci & Gallistel, 2017; Khaw, Stevens & Woodford, 2017a). In these studies, aggregating

probability estimates across subjects yields a median forecast that seems to closely track the

underlying true probability, over the full range of possible probability values.

In this paper, we probe the surprising finding of unbiased forecasting of non-stationary

probabilities by studying the subject-level data from Khaw et al. (2017a), who present results

from an estimation task similar to that of Gallistel et al. (2014). The experimental design

includes elements of probability estimation as well as sequential change detection (Brown

& Steyvers, 2009). Subjects observe many realizations of a Bernoulli random variable, in

the form of draws of red or green rings from a virtual box. They are asked to indicate

the probability of drawing a green ring on each draw. The true probability itself changes

from time to time in an unsignaled manner. Subjects achieve relatively unbiased average

performance relative to both the true probabilities and the Bayesian benchmarks Gallistel

et al. (2014); Khaw et al. (2017a); Ricci & Gallistel (2017). This is surprising given the added

computational complexity of the task compared to those used in prior studies, discussed

above.

The main questions studied in this paper are the following: Is probability estimation

unbiased when examined at the individual level? If this is not the case, what are the ways in

which individual estimates deviate from the unbiased forecast in this paradigm? The large

number of observations for each subject allows us to analyze these data at the subject level,

testing for a variety of individual biases. Additionally, we are able to test if differences are

stable within individuals, despite extensive experience with the task, and whether they are

correlated with other individual patterns of behavior. We also test whether observed biases

might be accounted for by alternative theories of probability estimation; we consider two

major classes of models, centered on either error-based updating or limited samples of prior

observations.

We characterize the data using a family of computational models of subjective proba-
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bility estimation, based on the probabilistic log odds model (Erev et al., 1994; Zhang &

Maloney, 2012). The models accommodate random noise in subjective estimates, as pro-

posed by a number of existing models in the literature (Costello & Watts, 2014; Offerman

& Sonnemans, 2004; Erev et al., 1994; Dougherty, Gettys & Ogden, 1999). Importantly,

we allow for a general form of conservatism or repulsion, a flexible cross-over point between

over-weighing and under-weighting (or “indifference point”, as defined by Attneave (1953)),

and for a wide range of heterogeneity across subjects. This flexibility allows us to identify

the most important dimensions along which subjects’ estimation performance deviates from

unbiased estimates. Our approach is based on work that has proposed non-linear probabil-

ity weighting functions to account for biases in the treatment of probability. These models

specify subjective decision weights as implied by choice behavior (Tversky & Kahneman,

1992; Gonzalez & Wu, 1999; Prelec, 1998), or describe how probability is estimated from

perceived frequencies.

We find that unbiasedness is an artifact of aggregating the behavior of a balanced sample

of individually biased subjects. The estimates of individual subjects are often far from

unbiased, but the biases of different subjects are quite different, in a way that can allow the

pooled data to look nearly unbiased. We conclude with an analysis that further links the

types of biases identified to other metrics of behavior in the task. Our results regarding the

coexistence of a range of biases across subjects completing the same task complement those

of Zhang, Ren & Maloney (2020), who find that the type of bias may change across tasks for

the same participant. Varying levels of individual accuracy have been reported in the same

kind of task by Forsgren, Juslin & Van Den Berg (2020) but not analyzed in detail in this

respect.

2 Methods

2.1 Data Description

We analyze the individual-level data from Khaw et al. (2017a) made publicly available

through the associated Data In Brief supplement. The task is a modified version of Gallistel
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et al. (2014)’s experimental design. Subjects were instructed to estimate the probability of

drawing a green ring out of a box with green and red rings. The Bernoulli parameter

governing this probability changed occasionally, in an unsignaled manner, over the course

of each session. After each ring draw, there was a fixed probability of 0.05 that a new

box would be created, with a new proportion of green rings. This non-stationarity required

subjects to consider what the evidence presented implied for both their current forecast and

for the possibility that they are drawing from an entirely different box. The subjects were

told about this rate of change, and that each time there was a change, new values for the

true probability would be drawn from the uniform distribution on the unit interval.

Subjects’ estimates of these probabilities and their response times were recorded for each

ring draw, and subjects were given monetary rewards for the accuracy of their estimates.

Notably, unlike other trial-by-trial experimental procedures, the task was self-paced: subjects

clicked a button (labeled ‘NEXT’) to request the next ring draw. The reported probabilities

were measured using each subject’s slider position at the time the ‘NEXT’ button was clicked;

response times denote the time elapsed between clicks requesting the next ring. We have

10,000 observations for each subject, which gives us enough data to conclude with some

confidence that any systematic patterns we identify are not the result of random noise. The

data set contains estimates reported by 11 subjects, each of whom completed 10 sessions of

1,000 draws each. Khaw, Stevens & Woodford (2017b) report additional details about the

experimental paradigm, including figures of the user interface.

Figure 1 shows the distributions of probability estimates for individual subjects. Indi-

viduals show a wide range of estimates over the course of the task. Some subjects, such as

subjects 5 and 9, tend to concentrate around 0.5, while others, such as subjects 4 or 10,

avoid 0.5. In contrast to these subjective distributions, the true probabilities of drawing a

green ring were drawn uniformly from the unit interval.

To visualize the overall level of accuracy achieved on the task, Figure 2A plots the median

reported probability against the true underlying probability. The proximity to the 45 degree

line supports the observation of Gallistel et al. (2014) that the mapping between true values

and perceived probability is approximately “the identity function over the full range of

probabilities.” However, plotting the median forecast at the participant level (aggregating
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Figure 1: The subject-level distributions of reported probabilities and the ‘true’
underlying probabilities in the data set of Khaw et al. (2017b).

across trials and sessions) gives rise to a wide range of biases in the form of varying S-shaped

distortions around the 45 degree line (Figure 2B). It is important to emphasize that the

individual mappings are constructed based on 10,000 trials for each subject, and thus do not

represent inherent noise across trials, which would wash out over such a large sample. These

differences foreshadow the more formal results of both conservatism and repulsive biases,

discussed in the next section.

2.2 The Forecasts of a Bayesian Observer

The participants cannot directly observe the true probability of drawing a green ring

on each trial. Instead, they are given information about the ring generating process and
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Figure 2: Pooled and individual-level probability estimates. (A) The median
estimate across the pooled sample tracks the true probability in each bin. The
error bars denote interquartile ranges. (B) The median response of each partic-
ipant, across trials and sessions, generates varying S-shaped response functions.
Participants are color-coded by their degree of conservatism, with darker colors
indicating more conservatism (as defined in the Computational Models section).

observe a sequence of random ring draws. The ring draws are noisy signals that generate a

degree of randomness relative to the true probability even for an ideal observer. Moreover,

the presence of this randomness may itself induce participants to optimally distort their

forecasts relative to the true probability, just as a Bayesian statistician puts a lower weight

on a noisier signal. We are interested in how well participants perform given what they

observe, how well they use the information available to them. Hence, we focus our analysis

not on how closely participants forecast the true probability, but rather on how close their

forecasts are to those of an ideal observer, who computes probabilities optimally using all

the available information.

We consider an ideal observer who is given exactly the same information as our partici-

pants, and who forms optimal Bayesian forecasts, based on (i) knowledge of the process that

generates the rings and (ii) the history of ring realizations observed. Relevant to these fore-

casts are both the fact that the true probability is drawn uniformly from the unit interval,

and the fact after each draw there is a 0.5% probability that the true probability is replaced

by an independent draw, also from the unit interval. The Bayesian forecast starts at 0.5 and

is updated after each ring realization. The solution to the Bayesian benchmark is derived in
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Figure 3: The Bayesian forecast and true probabilities. (A) The median
Bayesian estimate closely tracks the true underlying probability in each bin.
(B) The median Bayesian responses corresponding to the sessions completed by
each individual generate very small dispersion around the diagonal. (C) and (D)
Much of the deviation in the subjective probability forecasts from the true prob-
abilities reflect deviations from the Bayesian forecast.

Khaw et al. (2017a) and reproduced in the Appendix.

The randomness introduced by the ring realizations generates a slight dampening in the

Bayesian forecasts, as shown in the top panels of Figure 3. However, the deviations of the

Bayesian forecast from the true probability are much smaller than those of our participants.

As demonstrated by the lower panels of Figure 3, most of the divergence between subjective

forecasts and the true probability reflects deviations of the subjective forecasts from the

optimal forecast, not deviations of the optimal forecast from the true probability.
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Figure 4: The two types of estimation biases accommodated by the free param-
eters of the tested models. (A) The additive bias implied by non-zero values
of α. (B) The non-linear distortion toward or away from 0.5, implied by β
different from 1.

2.3 Computational Models

In order to formally test for and characterize potential biases in these data, we turn to

a model comparison exercise. We consider a family of computational models that describe

the subjective probability estimates reported by our subjects as a noisy function of the ideal

Bayesian observer’s estimate. Many authors have proposed that psychological probabilities

can be proxied by nonlinear transformations of the objective probability (Preston & Baratta,

1948; Tversky & Kahneman, 1992; Prelec, 1998; Gonzalez & Wu, 1999). We use the linear

log odds representation of probabilities, which is consistent with a wide range of data on

subjective probability estimates (Zhang & Maloney, 2012; Zhang et al., 2020).

Letting a subject’s reported probability be denoted by R, we estimate the model

log

(
R

1−R

)
= α + β × log

(
B

1−B

)
+ ε, (1)

where B is the Bayesian estimate, and the random noise in subjects’ estimates is assumed

to be normally distributed with zero mean and variance σ2 across trials, ε ∼ N (0, σ2).

We allow for two types of systematic distortions. First, the parameter α allows for

uniform over- or underestimation: non-zero values of α predict that a subject’s estimates will
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systematically be either higher or lower than the Bayesian response (Figure 4A). Second, the

parameter β governs the extent to which estimates favor the center of the scale, characteristic

of conservatism (β < 1), or extreme values, which would indicate a repulsive bias (β > 1;

Figure 4B). This specification is similar to that used by Offerman & Sonnemans (2004), who

analyze subjects’ estimates following observations of coin flip outcome sequences.

Individual subjects adjust their forecast infrequently, as documented by Khaw et al.

(2017a). The unconditional frequency of adjustment is 8.8 percent, despite the steady stream

of new ring realizations and the fact that the Bayesian forecasts adjust, however modestly,

in response to each new ring draw. Infrequent adjustment often arises in experiments that

feature long series of repeated trials (Ricci & Gallistel, 2017; Forsgren et al., 2020). While

not the focus of our study, it needs to be taken into account, to avoid mischaracterizing

subjective biases. We estimate equation (1) both unconditionally, on the full series, and

conditional on adjustment. The conditional estimation uses the subjective and Bayesian

forecasts recorded at the time of the subjective adjustment, and discards forecasts between

adjustments.

We consider variants of equation (1) that accommodate different combinations of biases

as well as different degrees of heterogeneity across the key parameters α, β, and σ.

Homogeneous Models We first estimate a set of models that impose common parameter

values across the entire participant sample. We begin with the unbiased specification, in

which we estimate σ 6= 0 but impose α = 0 and β = 1. Next, we allow one or both bias

parameters to deviate from their null values, and we estimate the values that best fit the

pooled data.

Heterogeneous Models The next set of specifications allow parameters to differ across

subjects. We first allow the level of noise σ to vary across subjects, while imposing homo-

geneity in α and β. Next, we re-estimate the models allowing for bias heterogeneity across

different parameter sets. Finally, we estimate individual values {αi, βi, σi}, for each subject

i. Our goal in this analysis is to determine which dimension of heterogeneity matters most

in characterizing individual adjustment patterns.
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In addition, results are compared to the Random benchmark, showing the likelihood of the

observed responses, if responses were drawn randomly (thus imposing α = 0 and β = 0). The

estimated parameters maximize the log likelihood of observing the data given the functional

specification of each model. The models are ranked using the Bayes Information Criterion

(BIC), to penalize model complexity. Since we use a log odds transformation, we code all

reports of certainty to be either 0.99 or 0.01.

3 Results

3.1 Model Estimation Results

The models’ free and fixed parameters, along with the log-likelihoods and BIC values are

reported in Table I. For the heterogeneous parameters models, the table reports the average

value across subjects. The top panels of the table report unconditional results, while the

bottom panels report estimation results conditional on subjects adjusting their forecasts.

Subjective forecasts exhibit considerable stochasticity: responses to identical realizations

of the Bernoulli variable differ, even for the same subject. Because of this randomness in

forecasting, we omit reporting results for models that impose σ = 0. We highlight five key

findings.

First, the representation of subjective estimates as noisy and biased functions of the

optimal Bayesian forecast represents the data well in our sample. The subjective forecasts

track the Bayesian optimal estimate (albeit noisily), substantially outperforming the random

forecast benchmark. Moreover, the models that allow for both additive and nonlinear biases

yield a better fit, even with a model-complexity penalty, compared with the model that

imposes no systematic biases and only allows for random noise around the Bayesian forecast.

Second, we estimate substantial positive additive bias and repulsion, once we take into

account the infrequent adjustment of subjective estimates. The homogeneous model esti-

mates are α = 0.098 and β = 1.15 when estimated conditioning on adjustment, compared

with α = 0.03 and β = 0.98 for the unconditional sample. These differences reflect the

infrequent adjustment in these subjects’ forecasting decisions, which dampens the estimated
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Table I: Model Estimates

Model α β σ k −LL BIC

Unconditional Estimates

Homogeneous Models

Random benchmark 0 0 1.896 1 226024 452060

Estimated σ 0 1 0.947 1 149812 299635

Estimated α, σ 0.028 1 0.947 2 149762 299548

Estimated β, σ 0 0.987 0.947 2 149782 299588

Estimated α, β, σ 0.031 0.985 0.946 3 149723 299481

Heterogeneous Models

Estimated {αi}, β, σ 0.031 0.984 0.942 13 149192 298536

Estimated α, {βi}, σ 0.040 0.997 0.831 13 135496 271144

Estimated α, β, {σi} 0.053 0.949 0.897 13 137560 275271

Estimated {αi}, β, {σi} 0.038 0.947 0.893 23 137174 274616

Estimated α, {βi}, {σi} 0.055 0.996 0.798 23 126438 253143

Estimated {αi}, {βi}, {σi} 0.039 0.999 0.796 33 126192 252767

Conditional Estimates

Homogeneous Models

Random benchmark 0 0 1.597 1 18253 36515

Estimated σ 0 1 1.039 1 14091 28191

Estimated α, σ 0.092 1 1.035 2 14053 28125

Estimated β, σ 0 1.152 1.026 2 13973 27964

Estimated α, β, σ 0.098 1.155 1.021 3 13929 27885

Heterogeneous Models

Estimated {αi}, β, σ 0.078 1.162 1.018 13 13893 27906

Estimated α, {βi}, σ 0.128 1.019 0.912 13 12836 25792

Estimated α, β, {σi} 0.066 0.950 0.926 13 12797 25714

Estimated {αi}, β, {σi} 0.078 0.952 0.920 23 12772 25755

Estimated α, {βi}, {σi} 0.083 1.018 0.839 23 11773 23758

Estimated {αi}, {βi}, {σi} 0.090 1.026 0.832 33 11707 23718

Note: The parameter values fixed to null values are shown in gray. For estimations
that allow parameters to differ across subjects, the table reports the averages across
subjects, in bold. LL is the log-likelihood, k is the number of free parameters, and
BIC = −2LL + kln(N). The number of observations is N = 109, 780 for the
unconditional estimates and N = 9, 673 for estimates conditional on adjustment.
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sensitivity of the subjective forecast to the objective probability. We focus our estimation

on the sample of subjective probabilities conditional on adjustment, so as not to confound

infrequent adjustment with conservative adjustment.

Third, bias heterogeneity is a significant feature of these data. Models that allow for

individual-specific parameters outperform those that impose common values across subjects.

In fact, the model that allows for individual-specific values for all three parameters explains

the data best among those tested here, once again, even after penalizing for model complexity.

Cross-sectional variations in the non-linear bias parameter β and in the standard deviation

of noise σ generate the biggest improvements in model fit.

Fourth, there is an interaction between the parameters: imposing homogeneity in the

bias parameters results in higher estimates of the level of noise. Gallistel et al. (2014) also

implicitly point out the connection between non-linear bias and noise. As they note, the

more sensitive subjective estimates are to the data (which, in our framework, translates into

a higher value for β), the noisier will be the individual forecasts, especially in this binary

outcome setting.

Fifth, accounting for heterogeneity recovers the relatively unbiased average performance

in this sample: in the model with heterogeneity in all three model parameters, we estimate

only modest degrees of positive bias α = 0.09 and repulsion β = 1.026, on average. In

the next section, we document the degree of variability around these average values.

3.2 Comparison to Second-Best Specifications

We can furthermore consider the merit of full heterogeneity (across all three bias param-

eters) with a fourfold-cross validation exercise. The key comparison here involves the full

model and the second-best model – a variant that assumes homogeneity in the additive bias

parameter α.

We consider the in-sample fit of these models by selecting a subset comprising three

fourths of randomly chosen observations (the “calibration” dataset), and then finding the

parameter estimates that maximize the likelihood of these observations. We evaluate the

out-of-sample fit of these models by computing the likelihood of observing the data in the

remaining one fourths of each dataset (the “validation” dataset), using the fitted calibration

12



Table II: Goodness-of-fit Comparisons

Model BICcalibration BICvalidation Log K

Estimated {αi}, {βi}, {σi} 17749 6063 0

Estimated α, {βi}, {σi} 17857 6101 67

Estimated {βi}, {σi} 17877 6065 93

Estimated {αi}, β, {σi} 19358 6593 1064

Note: In-sample and out-of-sample measures of goodness-of-fit compared
for the fully heterogeneous model and close alternatives.

parameters.

In Table II, the columns titled BICcalibration and BICvalidation respectively report the

average BIC values obtained from the calibration datasets and the remaining validation

partitions. We follow Khaw, Li & Woodford (2020) in reporting a composite Bayes factor

K = K1 ·K2, taking into account observations of both calibration and validation datasets.

For any two models, M1 and M2,

logK1 = LLcalibration(M2)− LLcalibration(M1)− (k1 − k2) ln(N calibration), (2)

logK2 = LLV alidation(M1)− LLV alidation(M2). (3)

In this formulation, M1 is the model allowing for full heterogeneity, while M2 is the

alternative model considered on each line of Table II; values K > 1 indicate the degree to

which the data provide more support for the fully heterogeneous model than for the alterna-

tive. In equation (2), k1 and k2 are the numbers of free parameters in the respective models

and N calibration is the number of observations in each calibration data set (in effect, penalizing

for a greater number of free parameters following the BIC formula). The logarithm of the

composite Bayes factor K is reported in the final column of Table II, as an overall summary

of the degree to which the data provide support for each model.

We find that for both in and out-of-sample fits, the fully heterogeneous model outperforms
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competitive variants that do not allow for heterogeneity in the additive bias parameter. The

Bayes factor K thus also offers a relative likelihood that summarily supports the full model.

3.3 Individual Biases in Probability Judgments

We now turn to individual biases, focusing on results estimated conditional on adjust-

ment. Figure 5A plots the distribution of parameter values for the best-fitting model.

Consistent with a large body of work that has documented dispersion and stochasticity

in decision-making, we find considerable noise in subjects’ individual estimates relative to

the Bayesian model. The standard deviation of errors ranges between 0.44 and 1.21. More

importantly, we identify systematic biases that do not seem to reflect random noise in the

execution of the experimental task. We estimate nonzero values for the intercept bias α

ranging from 0.02 to 0.27 in absolute value. For all but two participants, α = 0 lies outside

the 95% confidence interval. One participant has a statistically significant negative additive

bias, while the remainder tend to report forecasts that are systematically higher than the

Bayesian forecast.

The non-linear distortion parameter β ranges from 0.41 to 1.82 across participants, de-

spite extensive experience with the task, over the course of 10,000 trials. For one participant,

the no-bias value (β = 1) lies inside the 95% confidence interval, while the remaining partici-

pants are evenly split between statistically significant conservatism and repulsion. Figure 5B

plots the distribution of individual responses against the Bayesian estimates, for each tercile

of the distribution of β values. The conservative values in our sample are comparable to the

values of 0.56, 0.61 and 0.71 reported by Gonzalez & Wu (1999) in prior experiments, while

the repulsive values suggest an excessive sensitivity to ring realizations over the course of

the trials.

The strong biases at the individual level end up canceling out in the group average.

However, this group average is based on a relatively small number of participants. While

we have strong statistical evidence in support of biases at the individual level, given the

large number of trials per subject, we cannot say with any certainty that the canceling out

of biases across participants would survive in another sample of participants. The fact that

biases are so correlated across trials for each participant substantially reduces the number
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Figure 5: Bias parameter distributions and subjects’ response densities. (A)
Dot plots showing the distributions of best-fitting parameters (α, β, σ) across
subjects. (B) The density of responses corresponding to members between
terciles of β values. Bold colored lines indicate the output produced by the
model in equation (1) using the median model parameters from each tercile.

of independent observations that can be claimed when making statements about the group

averages.

We report subject-level parameter estimates in Table III. The table also reports boot-

strapped confidence intervals around each subject’s bias parameters. The parameters were

re-estimated for 1, 000 iterations, using data that were sampled with replacement from each

subject’s original data set. The relevance of individual biases does not diminish by either

(i) estimating confidence intervals by averaging over session-wise data (reported in the last

columns of the table) or (ii) computing credible regions that are within 2 log likelihood

points from the best-fitting set of parameters. In terms of individual model fits, all subjects

are best fit by the model that allows for full heterogeneity – the Appendix reports model fit

statistics and second-best models at the subject level.

In light of the large biases estimated at the individual level, it is all the more surprising

that the average sample behavior is unbiased. Our results are consistent with the theory
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Table III: Individual Parameter Estimates

Subject Parameter M.L. Estimate 95% C.I. Mean Estimate S.E.

α 0.091 [0.031, 0.152] 0.193 0.087

1 β 1.059 [0.994, 1.131] 1.154 0.120

σ 0.790 [0.707, 0.876] 0.691 0.062

α -0.130 [-0.286, -0.011] 0.057 0.166

2 β 0.407 [0.275, 0.542] 0.758 0.314

σ 1.208 [1.131, 1.276] 1.037 0.128

α 0.044 [0.011, 0.074] 0.053 0.029

3 β 0.905 [0.875, 0.933] 0.904 0.029

σ 0.443 [0.414, 0.471] 0.398 0.022

α 0.198 [0.135, 0.267] 0.065 0.118

4 β 1.124 [1.032, 1.221] 1.389 0.156

σ 1.088 [1.006, 1.163] 1.014 0.047

α 0.159 [0.090, 0.218] 0.107 0.074

5 β 0.814 [0.724, 0.907] 0.897 0.067

σ 0.548 [0.469, 0.632] 0.454 0.055

α 0.196 [0.069, 0.325] 0.223 0.084

6 β 1.203 [1.099, 1.307] 1.288 0.137

σ 1.161 [1.042, 1.280] 1.081 0.098

α 0.050 [0.025, 0.075] 0.158 0.060

7 β 0.810 [0.775, 0.842] 0.776 0.086

σ 0.576 [0.549, 0.601] 0.477 0.029

α 0.267 [0.221, 0.314] 0.342 0.158

8 β 1.823 [1.771, 1.880] 2.026 0.199

σ 1.167 [1.131, 1.200] 0.966 0.076

α 0.018 [-0.023, 0.060] -0.047 0.150

9 β 0.498 [0.445, 0.550] 0.366 0.068

σ 0.517 [0.459, 0.566] 0.363 0.055

α -0.059 [-0.130, 0.017] 0.135 0.191

10 β 1.460 [1.392, 1.520] 1.456 0.154

σ 0.930 [0.869, 0.989] 0.854 0.041

α 0.161 [0.092, 0.227] 0.189 0.070

11 β 1.186 [1.132, 1.245] 1.193 0.146

σ 0.727 [0.643, 0.806] 0.602 0.058

Note: Individual estimates and bootstrapped 95 percent confidence intervals. Means
and standard errors are computed from session-wide maximum likelihood estimates.
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of rational expectations proposed by Muth (1961), according to which aggregated estimates

are close to the normative Bayesian benchmark, with individual biases being distributed in

a way that “washes out” in the pooled analyses. We confirm this using the Wilcoxon Signed

Rank Test, a non-parametric difference test between fitted parameter values against their

null benchmark values. Inspecting the distributions of individual-specific parameters implied

by responses unconditional on adjustment (as seen in Gallistel et al. (2014)’s aggregation

and our replication in Figure 2A), the average value of α does not differ significantly from

zero (Z = 53, p = 0.083), and likewise, the average value of β does not differ significantly

from the benchmark value of β = 1 (Z = 34, p = 0.97).

3.4 Bias Stability Across Sessions

We next address the issue of how stable biases are across sessions completed by the same

individual. We begin by testing if the session-level best-fitting parameters are as variable

within subjects as they are across subjects. If that were the case, then the heterogeneity

captured at the subject-level would reflect random variation at the session level rather than

systematic patterns of (subject-level) behavior. To investigate this, we exploit the large

quantity of data available at the subject level. Each subject performed 10 sessions of the

task and submitted 1,000 forecasts for each session. We fit the full model to each individual

session of data to yield 110 parameter triplets.

Testing whether average levels of within-subject variability were greater than between-

subject variability, we find no significant difference for values associated with the additive

bias parameter (t(19) = 0.17, p = 0.57). We find partial support for within-subject variabil-

ity being smaller for the β parameter (t(19) = -1.53, p = 0.07), noting the non-statistically

significant p-value. This difference is significant for the variance associated with the noise

parameter σ (t(19) = -3.55, p < 0.01). The average between-subject variance for these two

parameters were approximately twice as large as the within-subject variance (Figure 6A).

Bootstrap tests – sampling parameters with replacement from both within and between-

subject partitions of each distribution of parameters – corroborate the observed differences

in variability (Figure 6B shows distributions of variance ratios from 10, 000 bootstrap it-

erations). Mirroring the previous results of observed differences, bootstrapped ratios of
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Table IV: ANOVA results on median split parameter estimates across
sessions.

Median Split Type DF F-stat p-value

Low α F(9,50) 0.831 0.591

High α F(9,40) 1.146 0.355

Low β F(9,50) 1.234 0.296

High β F(9,40) 0.900 0.534

Low σ F(9,50) 1.464 0.187
High σ F(9,40) 0.534 0.841

within to between-subject variability were not significantly different for the α parameter

(Fboot = 1.05, 95% CI = [0.55, 1.98]); we find a difference that was close to significance for

β (Fboot = 0.59, 95% CI = [0.31, 1.05]) and a significant difference for σ (Fboot = 0.38, 95%

CI = [0.22, 0.64]). Taken together, we find evidence for a smaller degree of within-subject

variability for the noise parameter, with a similar difference close to statistical significance

for β.

Second, we look deeper for type stability at the subject-level across sessions. To do

so, we divide the subjects into groups above and below the median for each of the model

parameters, based on the subject-level parameter estimates reported in Table III. We first

confirm that the distributions of parameter estimates are not significantly different across

sessions within each group. A series of one-way ANOVAs performed across the grouped

parameters formally test for differences. We do not find significant differences within each

half’s distribution of session-wise parameter estimates across sessions (Table IV). Moreover,

the difference between sub-populations appears to be stable across sessions, as shown in

Figure 7, which plots the parameter values over time for each of half of the identified median

split.

Finally, we ask whether mean parameter values estimated during the first half of sessions

are predictive of those on the second half. The presence of positive correlations between

early and late parameters (of each subject) would further support the hypothesis that bias

levels remain relatively constant throughout the task. We find that this is indeed the case

again for β (r(8) = 0.59, p < 0.05) and for σ (r(8) = 0.86, p < 0.01), the two sets of
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Figure 6: Within and between-subject variability in session-wise parameter
estimates. (A) Average between-subject variance is greater than within-subject
variance by a factor of around two for parameters β and σ, with the latter
difference being statistically significant. (B) Non-parametric bootstrap tests
mirror the observed differences in variance ratios from the null benchmark.

parameters that maintained the earlier differences across time from their median splits. We

find no significant association between early and late parameter estimates of α (r(8) = -0.29,

p = 0.81).

On the specific characterization of the within-subject parameter variability, the Appendix
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Figure 7: Bias parameter magnitudes across sessions. (A) Each of the three
average parameter values belonging to each sub-group do not differ significantly
across the 10 experiment sessions. (B) Subjects’ parameters β and σ estimated
from early and late sessions (comprising the first and second halves of the study)
are positively correlated.

describes several post-hoc tests on the shape of each subject’s parameter distributions. The

resultssuggest that bias parameters β estimated for each subject can be described as nor-

mally distributed with a subject-specific mean and variance. Parameter distributions and

accompanying (theoretical) normal distributions are plotted in a supplemental figure in the

Appendix. Despite the inherent variability of recovered parameters from individual sessions,

bias magnitudes nonetheless contain a central tendency unique to each subject.

These findings confirm a key result regarding the consistency of these biases across time.

The most significant dimension of probability distortion—and also of heterogeneity across

individuals—is that of repulsion versus conservatism. Individuals who are relatively high

20



and low within these ranges maintain this relative difference throughout the course of the

10-session study. The correlation between early and late bias parameters furthermore dis-

credits the hypothesis that there is a learning effect that diminishes these distortions across

time. A set of control analyses in the Appendix rule out attributes of the sampled set of

true probabilities (e.g., number of switches in the underlying probabilities), as well as early

experiences with the task, as determinants of these subject-specific biases. The results of

these linear regression analyses are presented at the level of individual sessions and subjects.

3.5 Response Times and Adjustment Frequencies

To further support the claim of systematic behavioral biases, we document how the group

biases correlate with other individual-specific behavioral measures within this task. Given

the extensive variation on the conservatism-repulsion dimension, we test the following three

post-hoc predictions: (i) Does variation in the distortion parameter predict the level of noise

inherent in subjects’ estimates (Moore & Healy, 2008)? (ii) Are extreme responses – as in

the case of repulsive biases – associated with lower response times? (iii) Similarly, are these

extreme estimators adjusting their response sliders more frequently?

We begin with the examination of associations between bias magnitudes exhibited by

each subject. We test for correlations between each subjects’ nonlinear bias parameter β

and their respective overestimation (α) and randomness (σ) parameters. We find a significant

correlation between β and α (r(9) = 0.60, p < .05); however, average β values do not

correlate with the subjects’ associated values of σ (r(9) = 0.40, p = 0.11).

We next confirm that individual degrees of the conservative-repulsion bias (using the

M.L. estimates of β reported in Table I) to be negatively and significantly correlated with

average response times (r(9) = − 0.64, p < .05). Similarly, the repulsion parameter values

are negatively associated (at a statistically non-significant level) with the wait time between

adjustments (r(9) = −0.43, p = 0.09), where the wait time is the average number of rings

drawn between the subject’s revisions of estimates (Figure 8). Hence, subjects who make

more conservative predictions also deliberate longer between ring draws. These subjects

might also adjust their reports less frequently, waiting for more ring draws to be realized

before adjusting their estimates. As an internal replication of both findings, we test for
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Figure 8: Timing-related behaviors and individual biases. (A) Increasing levels
of the repulsion parameter are negatively associated with average response times
(in requesting for the next ring sample). A similar negative correlation holds
for the average adjustment lag (number of rings before an adjustment to the
slider is made) exhibited by each subject. (B) An internal replication of both
relations. Negative correlations are also observed using session-wise parameter
estimates and averages.

correlations between the same variables at the session level, using βsession values introduced

earlier and the response times and adjustment latencies, now averaged within sessions. We

find the same negative associations (Figure 8B) for response times (r(108) = −0.54, p <

0.001) as well as adjustment latencies (r(108) = −0.21, p = 0.01).
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4 Alternative Forecasting Models

In this section, we compare the performance of the benchmark distorted Bayesian forecast

to that of three different types of forecasting models that feature prominently in the literature

on probability estimation and reporting: a quasi-Bayesian model (QB), a delta rule model,

and a probability theory plus noise (PTN) model. While the QB model can be seen as

providing a source for how biases might arise in the benchmark model, the latter two models

capture forecasting algorithms that are entirely different from the Bayesian probability theory

framework. The goal of this section is to determine if any of these models provide either

insight into the sources of bias estimated in the benchmark model, or a better characterization

of the subjective forecasts in our data, relative to the benchmark model.

4.1 Incorrect Weighting of Information as a Source of Bias

The distorted Bayesian forecast can be given a deeper foundation, as approximating

boundedly rational probability estimation. To show this connection, we consider a quasi-

Bayesian forecasting rule that has been argued to capture behavioral limitations in proba-

bility forecasting (Massey & Wu, 2005; Ambuehl & Li, 2018; Henckel, Menzies, Moffatt &

Zizzo, 2018): an incorrect weight on the likelihood ratio in the application of Bayes rule.

This specification represents a specific mechanism through which subjective forecasts devi-

ate from the Bayesian optimum, in terms of how probabilities are updated internally. This

incorrect weighting of the likelihood governs how close the Quasi-Bayesian posterior remains

to the prior, versus responding to new information.

To implement this model, we modify the construction of the Bayesian forecast by intro-

ducing a parameter q that governs the weight put on the likelihood in the updating of the

posterior distribution. The Bayesian forecast features q = 1; a posterior distribution that is

overly sensitive to new data features q > 1, while one that puts too much weight on the prior

relative to the likelihood features q ∈ (0, 1). The specification also allows for incorrect use of

data: estimating q < 0 implies that the posterior moves in the opposite direction compared

with the optimal revision, given the data received.
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For each participant, we estimate q jointly with the forecasting noise in the linear log-odds

specification,

log

(
Rt

1−Rt

)
= log

(
Qt

1−Qt

)
+ εQt, (4)

where Qt is the quasi-Bayesian forecast and the noise is independently and identically dis-

tributed across each subject’s trials, εQt ∼ N (0, σ2
Q).

4.2 Experience-Based Forecasting Alternatives

A challenge of the Bayesian and quasi-Bayesian models of probability estimation is their

significant computational complexity and relatedly, their biological intractability. One possi-

bility is that probability-encoding neurons act as if they were part of a system that produced

distorted or quasi-Bayesian forecasts, so that even though these models may not be appro-

priate for describing circuit- or systems-level computations, they can nevertheless be used to

understand and predict human forecasts reasonably well. Alternatively, the probability esti-

mates we observe might be generated by an entirely different class of learning algorithms and

such models might offer alternative mechanisms behind the apparent biases that resemble

distortions to the Bayesian forecast.

To shed some light on how much support our data offers for each of these possibilities, we

compare the Bayesian and quasi-Bayesian models to two non-Bayesian models of probability

estimation: the delta rule and the probability theory plus noise (PTN) model (Costello &

Watts, 2018). A fundamental difference between these learning models and the models

based on Bayesian probability theory is that they produce a point estimate only, rather

than a posterior distribution (whether correctly calculated or distorted), and they do not

use Bayes’ rule or any a priori knowledge of the ring generating process, instead relying

exclusively on the experienced ring draws to form forecasts. An advantage of these models is

their reduced computational burden, which makes them potential candidates for describing

how the brain actually updates probabilities over the course of a task.

We first consider the basic formulation of a delta rule model, a model that is widely

used in the literature, including specifically in the literature on change-point estimation

(Forsgren et al., 2020; Wilson, Nassar & Gold, 2013). Error-based updating also represent a
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computation characteristic of midbrain dopaminergic circuits (Schultz, Dayan & Montague,

1997; O’Doherty, Dayan, Friston, Critchley & Dolan, 2003); incremental updating based

on unexpected error signals are ubiquitous in descriptions of action values learned through

reinforcement (Niv, 2009). According to this model, forecasts are adjusted as a function of

the discrepancy between the existing forecast and new information. Formally,

Dt = Dt−1 + δ (st −Dt−1) , (5)

where Dt is the forecast of the delta rule after seeing the ring realization of trial t, st is equal

to 1 for a green ring and 0 otherwise, and δ is the learning parameter that governs the rate

at which information decays (in this case, exponentially).

Alternatively, the PTN model employs a frequentist approach: it bases forecasts on a

count of the green rings observed in a sample of ring draws a given length. This account

involves the averaging of the recent past – the impact of individual past samples recently

implicate episodic memory systems in the construction of learned values (Bornstein, Khaw,

Shohamy & Daw, 2017; Gershman & Daw, 2017). The forecasts produced by this model also

do not incorporate prior knowledge about the ring generating process. The count is subject

to some probability d of recording each ring realization incorrectly. Let n denote the size

of the sample of ring draws that the subject bases their forecast on, and let d denote the

probability that a ring realization will be flipped when computing the running fraction of

green rings. The expected forecast on each trial is

Ft = (1− 2d)× (kt/n) + d, (6)

where Ft is the PTN forecast after seeing the ring realization of trial t, and kt is the number

of green rings the participant recorded in the n draws ending with the draw on trial t.

We construct both forecasts for each participant, and, as in the Bayesian specifications,

we allow for Gaussian noise in the log-odds of the forecast, to account for stochasticity at the

trial level. We estimate the best-fitting parameters (δ, σD) and (d, n, σF ), where the noise in

each case is normally distributed with mean zero and variance σ2
D and σ2

F , respectively.
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Table V: Parameter Values in Alternative Forecasting Models

Subject β q δ n d

1 1.06 1.14 0.08 13 0.08

2 0.41 0.58 0.06 3 0.31

3 0.91 0.92 0.07 14 0.08

4 1.12 1.09 0.12 11 0.10

5 0.81 0.77 0.06 11 0.13

6 1.20 1.24 0.17 4 0.10

7 0.81 1.18 0.09 16 0.11

8 1.82 1.18 0.11 4 0.10

9 0.50 0.04 0.03 23 0.23

10 1.46 1.11 0.13 6 0.06

11 1.19 1.01 0.09 15 0.04

Corr(·, β) 1.0 0.7 0.7 -0.4 -0.7

Note: The parameters correspond to the distorted Bayes baseline
model with full parameter heterogeneity (β), the Quasi-Bayesian
model (q), the delta rule (δ), and the Costello and Watts (2018)
PTN model (n and d).

4.3 Model Comparisons

Table V reports the estimated parameter values at the participant level. Starting with

the QB models, as predicted by the theory, all the subjects estimated to have a repulsion bias

(β > 1) also have an exponent on the likelihood function estimated above 1, and for all but

one conservative subject, we estimate q ∈ (0, 1). Overall, the estimates of q are positively

correlated with the non-linear bias β in the baseline model, despite the small number of

participants.

For the alternative models, we find relationships across the three types of parameters that

are consistent with their respective theories (subject to the limitations of a small number of

participants). As shown in Table V, the learning rate of the delta rule is positively correlated

with the non-linear bias in the benchmark model, while for the PTN model, the error rate
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Figure 9: Comparisons between alternative models of probability encoding and
reporting. (A) The difference in BIC values across the three different types of
models, relative to the distorted Bayesian benchmark. The smallest differences
are for subject 6, for whom the QB BIC is 1 point higher, the delta rule BIC
is 11 points higher, and the PTN BIC is 18 points lower than the benchmark.
Estimation results are based on the data conditional on adjustment for all
models. The BIC levels vary across subjects depending on how frequently each
subject adjusted their forecast. (B) The difference in the standard deviation
of the noise associated with each model, relative to the distorted Bayesian
benchmark.

and the sample size over which to estimate the frequency of rings are positively associated

with more conservatism (namely, a smaller nonlinear bias).

Figure 9 compares the models in terms of BIC and magnitude of the noise associated

with each forecast. The BIC values of the QB model are larger than those of the distorted

Bayesian model for all participants, with the difference ranging from one point to over

1,000 points. The differences are modest for approximately half of the participant pool,

suggesting that the QB specification has roughly comparable explanatory power for this

group of participants. Nevertheless, the baseline distorted Bayesian model remains the best

performing specification. Through its flexible inclusion of nonlinear biases, it appears to

capture biases in probability forecasting beyond the incorrect weighting of information.

We also find no systematic evidence that either the delta rule or the PTN model outper-

form the distorted Bayesian benchmark: BIC values are larger for all participants for the

delta rule and for all but two participants for the PTN model. The QB model is outperformed

by the delta rule for two participants, and by the PTN model for two other participants,
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although the differences in the BIC value are quite modest. Moreover, the level of noise that

each model needs to incorporate to account for the randomness in the subjective forecasts

is also larger than the benchmark for all participants in the case of the delta rule and for

all but three participants in the case of the PTN model. Our takeaway from this analysis is

that despite their computational advantage, the experience-based models do not appear to

present a compelling alternative to the distorted Bayesian benchmark model. The subjective

forecasts, although nonlinearly distorted, appear to track the Bayesian estimate better than

models that directly incorporate known and relevant cognitive mechanisms.

5 Discussion

We find significant heterogeneity and persistent biases across subjects estimating non-

stationary probabilities. Both conservative and repulsive biases are observed in different

subjects, while some subjects are also approximately Bayesian (with noise). In our exper-

imental sample, the conservative subjects roughly balance out the subjects with repulsive

biases, so that median performance resembles unbiasedness. Our analyses replicate the ag-

gregate characterization originally reported by Gallistel et al. (2014), while also supporting

the ubiquity of biased performance found in other experiments of probability and propor-

tion estimation. Our results call for additional studies in order to confirm the prevalence

of subject types seen here (e.g., with a large sample study). In addition, our study offers

an additional instance of individual-level phenomena being occluded by analyses of pooled

data (Chen, Regenwetter & Davis-Stober, 2020). Furthermore, markers of each ‘style’ of es-

timation appear to be stable even following extensive experience (10 sessions featuring 1,000

trials per session). We document negative correlations between the primary distortion pa-

rameter and two forms of timing behaviors: response times and delays between adjustments.

Finally, fitted parameter values of error and sampling-based computational models provide

a potential explanation for the directionality of observed distortions (Table 5); nonetheless,

characterizations of estimates based on Bayesian forecasts offer the best explanatory power

across all model types.

These individual differences may reflect variation in how much emphasis individuals place
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on different aspects of the computational demands of this task. In the model of Costello

& Watts (2018), unbiasedness occurs as a result of a balance between two different sources

of bias, associated with (i) probability estimation in a given state and (ii) inference about

whether the state has changed. In the case of many of our subjects, such unbiasedness is

not observed at the individual level; but we might nonetheless suppose that the two sources

of bias are relevant for each of our subjects, with the balance between the strength of the

two biases different for different subjects. The “step-hold” pattern of slider adjustment in

our experiment (as opposed to adjustment following every ring observation) can then be

interpreted as resulting from subjects being engaged serially with these different cognitive

tasks.

The links between individual subjects’ bias and secondary measures such as response

time also suggests that differing biases may reflect differing approaches to decision making.

Repulsive biases in this task appear to be associated with an inaccurate, high-frequency ad-

justment strategy (and vice versa with conservatism). In terms of general performance, both

repulsive and conservative subjects attain lower overall payoffs compared to their unbiased

peers. Nonetheless, adjustment and response speeds can be interpreted as reflecting subjects’

general approach to the task. Rather than adjusting the slider position modestly with each

new piece of evidence, subjects report a new estimate only periodically. Infrequent adjust-

ments in this paradigm might then be interpreted as reflecting implicit integration of new

observations, updating internal estimates without overt adjustment (Forsgren et al., 2020).

In this view, subjects who produce repulsive estimates appear to have lower thresholds for

updating their declared estimates of the hidden state (analogous to the definition of over-

confidence by Moore & Healy (2008)). The negative association between response time and

repulsion further indicates that these adjustment decisions are made relatively quickly —

potentially economizing on attention or cognitive resources. Thus, these individuals are more

inclined to revise their current slider setting quickly and often. Interestingly, conservative

subjects exhibit the longest response times, suggesting that their errors do not stem from

time pressure. Rather, they may reflect an aversion to declaring extreme responses, even

when responses are chosen quite deliberately. The persistence of estimation styles across

sessions is also a promising indicator that these reflect reliable estimation techniques, as dis-
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cussed in the context of other forms of probability estimation (Wallsten & Budescu, 1983).

A growing body of experiments on economic decision-making has highlighted how individ-

ual differences in process measures (such as gaze time and looking preferences) correspond

to apparent preferences over payoff outcomes (Reeck, Wall & Johnson, 2017; Khaw, Li &

Woodford, 2018; Amasino, Sullivan, Kranton & Huettel, 2019). In line with such findings,

individual differences in this task might correspond to variation across more general psy-

chological constructs (e.g., patience), and could also be related to differences in apparent

preferences (e.g., time and risk preferences).

At present, it is difficult to distinguish between the biases in our subjects’ behavior that

result from probability estimation as opposed to the detection of change points. Future ex-

perimental designs should seek to isolate one factor from the other. Indeed, in a simpler task

involving the observation of short sequences of coin flips, Offerman & Sonnemans (2004) find

a more consistent pattern of overreaction (that they interpret as evidence of the ‘hot-hand’

effect). Conservatism is instead more consistently observed in other settings; for example, it

has been associated with the influence of moderate prior expectations (Petzschner, Glasauer

& Stephan, 2015) – similar to biases that arise when incoming evidence is associated with

high uncertainty (Landy, Guay & Marghetis, 2018) or low perceptual discriminability (Wei

& Stocker, 2017). Similarly, overly extreme responses could stem from the over-weighing of

recent observations (Murdock Jr, 1962), not unlike other general sequence effects found in

perceptual judgments (Cross, 1973).

Another direction for future work would explore the extent to which it is possible to

modify subjects’ estimation biases by changing the context in which they encounter a given

decision problem. For example, experimenters might implement different payoff structures or

underlying distributions of true background probabilities than those recently tested (Khaw

et al., 2017a; Gallistel et al., 2014; Ricci & Gallistel, 2017), in order to incentivize differ-

ent estimation strategies. As an example, repulsive-type subjects might learn to produce

conservative estimates if intermediate probabilities were indeed more likely to occur within

the study. Experimental variation in visual reference points (e.g., tick marks on a response

scale) has also been implicated in changing and reversing the modal bias seen in proportion

estimation (Hollands & Dyre, 2000). While we do not observe improvements in performance
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over time (Figure 7) within our particular environment, further experiments are necessary to

deduce whether individual differences persist in different settings. In particular, the misesti-

mation of frequencies might relate to performance in other learning paradigms. Individuals

are adept at learning the payoffs associated with multiple reward streams that vary over time

(e.g., Gläscher, Daw, Dayan & O’Doherty (2010)), and aligning rates of behavior to match

associated rates of reinforcement (e.g., Herrnstein (1970); Baum (1974)). Overall, future

work should aim to causally identify the factors that promote subject-level heterogeneity

in distorted estimates, e.g., by manipulating details of the experiment, or by investigating

further subject demographics. The origins of such biased treatment of probabilities might

then be related to other mental representations, such as those of learned reward frequencies

or perceived risk.

It is intriguing that participants’ estimates are on average unbiased, despite the degree of

differences in individual response patterns. In this respect, our results are in line with other

observations indicating “the wisdom of the crowd” (e.g., Galton (1907); Surowiecki (2005);

Herzog & Hertwig (2014)). It is possible that people have evolved to explore different fore-

casting strategies in a way that makes the group collectively approximate optimal Bayesian

inference, even though individuals deviate substantially from it, as in the model of Wojtow-

icz (2020). Our sample is not large enough to allow us to confirm or reject any hypothesis

of this kind (about how ecological contexts shape individual or population tendencies), but

this would be a reasonable topic for further research.
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Supporting Information: Individual differences
in the perception of probability

A Optimal Bayesian and Quasi-Bayesian Inference

Given a sample of T observations, the Bayesian forecaster determines the posterior dis-

tribution over (n, p), where p is the most recent probability of drawing a green ring and n

is the number of periods for which the current regime has lasted so far. The agent’s prior

is that the probability of drawing a green ring is drawn from the distribution f(p) and that

there is a probability δ of a new independent draw of this probability from one trial to the

next.

A model of the data is specified by a probability p and a partition π = {ni} of the sample

into successive regimes, where ni is the length of regime i. Let τi denote the last observation

of regime i. The likelihood of the most recent n observations if the regime has been p over

that time is

L(n, p) = pkn(1− p)n−kn , (S.1)

where kn is the number of successes in the n most recent observations. Let

L(n) ≡
∫
L(n, p)f(p)dp (S.2)

and let Lτ (n) denote the average likelihood computed using the n observations ending with

observation τ . The ex-ante joint probability of the model (π, p) being correct and the data

being a particular observed sequence is given by

µ(π)

N(π)−1∏
i=1

Lτi(ni)f(p)L(n, p),

where N(π) is the number of regimes under partition π and µπ is the ex-ante probability of

partition π occurring in a sample of length T ,

µ(π) = (1− δ)T−N(π)(δ)N(π)−1. (S.3)
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Summing over the set Π(n) of all possible partitions for which the final regime is of length

n, we define

Q(n) ≡
∑

π∈Π(n)

µ(π)

N(π)−1∏
i=1

Lτi(ni). (S.4)

The posterior probability of (n, p) is

P (n, p) =
Q(n)f(p)L(n, p)

Σn≥1Q(n)L(n)
. (S.5)

The expected value of p sums over all n and integrates over p using the measure P (n, p).

The Bayesian estimate for the probability of drawing a 1 on the next observation takes

into account the fact that the regime might change on the next draw, which occurs with

probability δ, and in which case, the estimate of the probability is 0.5:

B = (1− δ)
∫ ∑

n≥1

pP (n, p)dp+
δ

2
. (S.6)

To compute the quasi-Bayesian forecasts, which potentially incorrectly weight new infor-

mation when updating posterior beliefs, we replace the likelihood L(n, p) with [L(n, p)]q, for

some exponent q. The Bayesian optimum is nested under q = 1.

We implement the model recursively, by keeping track of kt(n), the number of green rings

realized in the n observations ending with observation t, and Qt(n), the probability that the

regime ending with observation t is of length n. We initialize the ring count with

kt(1) =

0 if red ring

1 if green ring

and, for 1 < n ≤ t, update it recursively according to

kt(n) =

kt−1 (n− 1) if red ring

kt−1 (n− 1) + 1 if green ring
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Qt(n) is initialized at Q1 (1) = 1 and then updated recursively according to

Qt(n) =


δ
t−1∑
n=1

Qt−1(n)L (n) for t > 1, n = 1 [new regime]

(1− δ)Qt−1 (n) for t > 1, 1 < n ≤ t [no regime change]

Using the values of {kt(n)} we compute L(n, p) and L(n), which, together with the values

of {Qt(n)} yield the posterior P (n, p).

B Individual BICs : Goodness of Fit Comparisons

Table S.1: Individual BIC values for the fully heterogenous model and the
second-best variant for each subject.

Subject BIC S.E.
Second-best model

∆BIC Model Class Free parameters

1 1592.37 70.93 77.13 Homogenous σ

2 794.73 15.18 33.52 Random n/a

3 873.81 45.93 80.42 Heterogenous α, β, σi

4 3249.82 80.55 16.48 Homogenous α, σ

5 469.65 43.45 83.84 Heterogenous α, β, σi

6 932.70 33.56 14.51 Homogenous α, β, σ

7 3646.84 95.55 159.83 Heterogenous α βi, σi

8 8420.31 79.02 221.90 Heterogenous α βi, σi

9 830.89 58.71 134.12 Heterogenous α βi, σi

10 1734.70 42.83 90.92 Heterogenous α, σ, βi

11 1083.98 54.93 92.10 Homogenous α, β, σ

Note: Model classes and parameters follow the nomenclature from Ta-
ble 1. Standard errors were computed from a bootstrap procedure (5,000
iterations) – each bootstrap sample comprised an equal number of obser-
vations from the original dataset, sampled with replacement.
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C Sampled Probabilities and Early Task Experiences

We ran control analyses to examine whether individual differences were systematically

linked to either (i) specific properties of the sampled probabilities, or (ii) early experiences

with the experimental setup. To do so, we compute three attributes associated with the

sampled (true) probabilities encountered by each subject: the average squared distance

between true probabilities and Bayesian estimates (Dist), the variance of the sample of

true probabilities (V ar), and the number of switches in the true probabilities (V ol). Dist

comprises errors in estimation that arise even for an ideal observer, while V ar and V ol

provide measures of variability and volatility in the series of true probabilities. We first test

for effects at the level of individual sessions with the following linear regression equation:

βsession = θ0 + θ1Distsession + θ2V arsession + θ3V olsession + ε (S.7)

Separately, we test whether variation in the β parameters were significantly associated with

the corresponding attributes of each subject’s first experimental session:

βsubject = θ0 + θ1Distfirst + θ2V arfirst + θ3V olfirst + ε (S.8)

We find that none of these variables significantly accounted for the variation in β parameters

found at either the across-session or across-subject level (Table S.2).

D Distributions of the Bias Parameters

Here we present post-hoc analyses that describe the extent to which subjects’ distribution

of bias parameters β can be characterized as normally distributed with individual-specific

mean and variance values.

For each subject, we compute the log likelihood that each session’s estimated β value

was drawn from a discretized normal distribution with the means and standard deviation

of their respective session parameters. We compare these likelihoods to the likelihood that

subjects’ parameters were drawn from a normal distribution featuring the pooled average
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Table S.2: Effects of attributes of sampled true probabilities on bias pa-
rameters.

Session-wise bias (βsession) Individual subject bias (βsubject)

Estimate SE t-stat p-value Estimate SE t-stat p-value

Distance -13.29 28.84 -0.46 0.65 -40.84 97.26 -0.42 0.69

Variance -0.90 1.57 -0.57 0.57 2.53 7.60 0.33 0.75

Volatility -0.0096 0.044 -0.22 0.83 0.029 0.14 0.20 0.84

Constant 1.35 0.25 5.39 < 0.001 0.96 0.73 1.32 0.23

Obs: 110; RMSE : 0.63; R2: 0.01 Obs: 11; RMSE : 0.48; R2: 0.03

F-stat: 0.38; p-val: 0.77 F-stat: 0.08; p-val: 0.97

(1.12) and standard deviation (0.63), representing the case for a non-specific pool of possible

bias values.

We observe a higher relative likelihood for the subject-specific normal distribution for all

subjects (∆LL in Table S.3). We also present probability values from a Kolmogorov-Smirnov

Goodness-of-Fit test, supporting the null hypothesis of normality in Table S.2 (with the

caveat that each test was performed with a small sample of ten observations). The empirical

distribution functions for each subject are plotted in Figure S.1.
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Table S.3: Fit results characterizing subjects’ distributions of β values as
normally distributed.

Subject Mean Std. Dev. ∆LL P-value (K-S Test)

1 1.15 0.38 2.18 0.937

2 0.76 0.99 3.77 0.225

3 0.90 0.09 15.35 0.742

4 1.39 0.49 1.68 0.699

5 0.90 0.21 7.41 0.981

6 1.29 0.43 1.77 0.506

7 0.78 0.27 6.20 0.508

8 2.03 0.63 10.73 0.474

9 0.37 0.22 13.71 0.997

10 1.46 0.49 1.22 0.436

11 1.19 0.46 1.07 0.435
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Figure S.1: The subject-specific distributions of β parameters estimated from
individual sessions. A normal distribution’s cumulative density function us-
ing the equivalent mean and standard deviation of each subject is plotted for
comparison.
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