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1 Introduction

How severe are price rigidities in the U.S. economy? Have prices become more

responsive to shocks over time? Does price rigidity vary over the business cycle,

complicating the stabilization efforts of the Federal Reserve? These questions are

at the core of monetary economics. Rigidities in prices change how the economy

adjusts in response to any shock, be it a supply shock or a demand shock. They also

determine to what extent monetary policy can stabilize fluctuations in inflation and

real economic activity, and they determine the welfare costs of inflation. Consider

the question of a soft or a hard landing for the U.S. economy following the inflation

burst that began in 2021. The answer to that question depends in part on how

flexibly prices adjust – first to the inflationary shocks themselves, and second

to the interest rate increases undertaken by the Federal Reserve in its efforts to

lower inflation. Despite the large literature measuring and modeling price rigidity,

uncertainty and disagreement regarding the severity of price rigidities persist in the

literature, reflecting both the difficulty of extracting model-free empirical estimates

of price rigidity from the data, and the lack of clarity regarding what frictions are

most relevant for this rigidity.1

This paper provides a structurally estimated time series for the degree of nom-

inal price rigidity (NPR) in the United States between January 1978 and March

2023. The measure of NPR in each period is given by what the model predicts

the cumulative response of consumption would have been in reaction to a mone-

tary policy shock, given the pricing frictions we estimate for that period. To our

knowledge, this is the first such structurally estimated time series.

The estimation of the pricing frictions themselves uses a model of the aggregate

economy that is estimated on time series of the moments from the distribution of

price changes, in addition to time series on real economic activity and inflation.

The pricing moments are based on the micro data underlying the U.S. Consumer

Price Index (CPI).2 Incorporating the dynamics of the distribution of price changes

in the estimation itself is a novel use of the pricing micro data, much like the

1We discuss these challenges further in the literature review.
2We thank Daniel Villar for sharing the time series of key pricing moments with us. These

series are constructed by Nakamura, Steinsson, Sun & Villar (2018) and extended to 2023 by
Montag & Villar (2023).
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literature on heterogeneous agent models has increasingly used household income

and wealth distributional data to inform models of the aggregate economy (for

example, Bayer, Born & Luetticke, 2020; Bilbiie, Primiceri & Tambalotti, 2023,

in the growing HANK literature). The use of time variation in the distribution

of price changes enables us to characterize if and how price rigidities change over

time.

We model price frictions flexibly, allowing for the possibility of errors and rigid-

ity in both the timing of price changes and the repricing itself (the choice of what

price to set when adjusting). We give a cost-based micro-foundation to this in-

accuracy, modeling firms that face both information costs (modeled as in Sims,

2003; Woodford, 2009), and menu costs, and thus nesting the two main ways of

endogenizing nominal price rigidities.

In the model, firms choose how much attention to pay to market conditions

given the cost of obtaining more information and the cost of revising their current

price. Since changing prices is costly, firms first decide if they want to change their

price. They do so based on an imprecise awareness of the state of the economy, as

in Woodford (2009). How accurate their timing decisions are is a choice that firms

make state by state, weighing the marginal benefit vs/ the marginal cost in each

state. Second, if they do decide to change their price, firms then need to decide

what price to set. Unlike in prior pricing models, this repricing decision is also

based on an imprecise awareness of market conditions. The degree to which firms

tolerate errors in pricing interacts with their tolerance for errors in the timing of

price changes, and we provide a discussion of this interaction and show under what

conditions it can rationalize Calvo-like behavior.

Quantitatively, the model can span pricing behavior from fully flexible to fully

random in terms of both timing and price levels, and we let the estimation on

U.S. data pin down the degree of inaccuracy along each margin, which in turn pins

down monetary non-neutrality.

We estimate a sizable degree of non-neutrality: on average, a 25 bp shock to the

federal funds rate results in a cumulative change in consumption equal to 0.12%

of annual steady-state consumption. This represents approximately 80% of the

response the Calvo model would predict when calibrated to the same frequency

and size of price changes. Between 1978 and 2023, the degree of non-neutrality
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exhibits no clear trend. This is surprising since we might imagine that technology

has made both information gathering and repricing less costly. We interpret this

as suggestive of the complexity that goes hand in hand with technological progress

and data abundance: more is not always easier.

Despite no clear trend, we find substantial volatility in the degree of NPR

over time. We estimate above-average rigidity in the mid-1980s and mid-1990s.

Rigidity increased slightly during the Great Recession and continued to rise after

the recession, remaining elevated above average until 2016. In 2016, it began a

steady decline that continued until the end of our sample in 2023. We do not

find consistent patterns across other recessions, which casts some doubt on the

hypothesis of increased price flexibility during recessions. The increased price

flexibility that we estimate starting around 2016 is particularly interesting. In

hindsight, it suggests that we might have expected any inflationary shocks, should

they occur, to be met with a sharper inflation response, rather than a sharper

output response post-2016 versus pre-2016. This may explain why inflation surged

so rapidly in 2021, and it points to the value of using distributional pricing data

in real-time.

Underlying our estimated NPR series are several results that shed new light on

the sources and dynamics of nominal rigidity. These results depart meaningfully

from the conventional wisdom embedded in standard DSGE models with nominal

frictions. At the heart of these implications is the interaction between the timing

decision and the repricing choice.

First, we estimate substantial inaccuracy in the repricing decision. This is

at odds with standard models that assume perfect repricing conditional on ad-

justment. Our finding of a relatively high degree of errors in pricing breaks the

connection between adjustment and flexibility : Even if prices are not sticky, in the

sense that they are changing over time, they nevertheless only partially respond

to economic conditions. Underscoring this dichotomy, we estimate only a weak

correlation between the frequency of price changes and the estimated NPR.

Inaccuracy in pricing is consistent with a large body of evidence that eco-

nomic choices are based on dispersed beliefs and are imprecisely related to op-

tima in many contexts. Many studies have documented dispersion in actions and

forecasts conditional on adjustment, both in survey data and in incentivized con-
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trolled laboratory experiments, including Mankiw, Reis & Wolfers (2003); Carroll

(2003); Coibion & Gorodnichenko (2012); Magnani, Gorry & Oprea (2016); Cav-

allo, Cruces & Perez-Truglia (2017); Khaw, Stevens &Woodford (2017); Angeletos,

Huo & Sastry (2021), among many others.

Allowing for the possibility of mistakes in repricing also implies that Calvo is

also no longer an upper bound on the degree of nominal rigidity. Varying the

severity of information frictions regarding the timing of price adjustment spans

the degree of state dependence in price setting, with the menu cost model at one

end (when the information friction approaches zero) and Calvo (1983) at the other

end (when the information friction is strong enough that the firm acquires no

information to decide when to adjust its prices), as shown by Woodford (2009).

But this result applies to models featuring perfect repricing. Adding errors in the

repricing itself adds another layer of nominal rigidity. As a result, the model can

feature larger non-neutrality than a Calvo model parameterized to have the same

frequency of price adjustment.

Second, even though prices change infrequently (with an 11% monthly fre-

quency on average), most of the inaction reflects uncertainty about the right price

to set, rather than an unwillingness to pay the fixed menu cost to readjust. We

estimate a small menu cost that accounts for only a small fraction of both adjust-

ment costs and the total degree of price rigidity. In our model, firms understand

that they risk picking the wrong price, so they often choose to forgo price changes

altogether. This uncertainty provides a new micro-foundation for inaction that

is quantitatively important. In contrast, without errors in repricing, the model

would require larger menu costs or an exogenously low probability of adjustment

to generate sufficiently infrequent price changes.

Third, the timing of price increases is fairly accurate, as indicated by the small

estimated cost of accurately determining when price changes are warranted. This

yields a strongly state-dependent probability of adjustment. It seems that firms

are able to determine quite accurately when their prices have become obsolete, but

they have more difficulty determining the right price level to set. This finding is

consistent with recent work on selection in U.S. price data (Carvalho & Kryvtsov,

2021; Karadi, Schoenle & Wursten, 2022). At the same time, it is at odds with the

conventional wisdom, which posits that in order to get meaningful non-neutrality,
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as we see in the data, one needs weak state dependence in the timing of price

changes. For example, with perfect repricing, menu cost models need some aux-

iliary features to weaken the selection in terms of who adjusts in response to a

shock. But with mistakes in repricing, weak state-dependence in the timing of

price changes is no longer necessary for non-neutrality. In the terminology of Ca-

ballero & Engel (2007), repricing errors mute the selection on the intensive margin,

reducing the need to rely on weak selection on the extensive margin.

Fourth, in the time series estimation, we find that the dynamics of the CIR are

significantly impacted by large and variable repricing costs that were particularly

elevated in the 1990s and after the Great Recession, but have declined significantly

since 2016. By 2023, the cost of setting prices accurately reached its lowest level

over the entire sample period. The cost of accurately timing price changes was

low for most of the sample period, but that changed with the Great Recession:

inaccuracy in timing rose starting in the Great Recession, reaching Calvo-like levels

by 2012. It too has been declining since 2016 and in 2022 it returned to its

steady state value. Finally, the menu cost has been small, but it too exhibits some

variability: it rose in the 1980s and 1990s and has since fluctuated at a medium

frequency, but at at lower magnitudes of the two information costs.

In terms of magnitudes, we estimate that firms annually spend approximately

0.03% of revenues on the menu cost, which is an order of magnitude smaller than

estimates from models with perfect repricing. Information costs are both larger and

more volatile over time than menu costs. The estimation implies annual informa-

tion expenditures of about 2.5% of sales, of which one third is spent on determining

whether a price change is warranted and two thirds are spent determining the right

price to charge.

Finally, we also want to highlight our estimation method, which contributes to

the literature that has sought to introduce heterogeneity in DSGE models. To our

knowledge, this is the first Bayesian estimation of a model with rationally inatten-

tive firms, and the first application of the sequence-space Jacobian (SSJ) method of

Auclert, Bardóczy, Rognlie & Straub (2021) to a model with heterogeneous infor-

mation. Moreover, since our estimation sample includes two periods in which the

effective lower bound (ELB) was binding on the federal funds rate, we also show

how to handle occasionally binding constraints with SSJ, by adapting the methods
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proposed by Guerrieri & Iacoviello (2015) and Kulish, Morley & Robinson (2017).

2 Additional Related Literature

Two important precursors to our work are the control cost pricing model of

Costain & Nakov (2019) and the inattentive forecasting model of Khaw et al.

(2017). Costain & Nakov (2019) model price-setting firms subject to control costs

in timing and repricing, and they use steady state moments of the distribution

of price changes to estimate the severity of control costs on average. Khaw et al.

(2017) model rationally inattentive adjustment in both the timing of adjustment

and the choice of a new forecast for individual decision-makers tracking the real-

izations of a slow-moving random variable.

More broadly, our results build on several strands of the literature. First, we

build on work that has sought to use moments from the micro pricing data to de-

velop micro-founded models of nominal rigidities. For example, while the frequency

of price adjustment is a sufficient statistic for the canonical Calvo (1983) model,

Alvarez, Le Bihan & Lippi (2016) prove that frequency relative to kurtosis pins

down non-neutrality in a wide class of menu cost models, Berger & Vavra (2018)

argue for the additional relevance of the standard deviation of price changes, and

Luo & Villar (2021) suggest also taking into account the skewness of price changes.

Empowered by detailed empirical analyses of micro pricing patterns starting with

the seminal work of Bils & Klenow (2004) and Nakamura & Steinsson (2008), a

wave of menu cost models (e.g., Golosov & Lucas Jr (2007); Nakamura & Steins-

son (2010); Midrigan (2011); Alvarez & Lippi (2014); Vavra (2013)) have studied

the contribution to non-neutrality of different moments of the price change distri-

bution. There is, nonetheless, an ongoing debate concerning the informativeness

of various pricing moments for the degree of non-neutrality as well as the degree

to which the degree of non-neutrality varies over time, and whether or not it is

procyclical. Our results underscore that steady-state pricing moments may not be

sufficient for pinning down non-neutrality, at least in models in which repricing

itself is frictional. They also emphasize that inferences regarding the degree of

aggregate price flexibility remain, at least for now, quite model-dependent.

Second, our framework nests models that generate non-neutrality via infre-
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quent price adjustment with those that generate non-neutrality via the incom-

plete response of individual prices to shocks. In the first category, our model

belongs to the class of generalized Ss models of infrequent adjustment such as

Dotsey, King & Wolman (1999), Caballero & Engel (2007), and Woodford (2009),

in which the probability of adjustment varies smoothly with the value of adjusting.

In the second category, our model belongs to the class of models with imprecise

price-setting (Woodford, 2003), in particular work that operationalizes the im-

precision using tools from information theory (Maćkowiak & Wiederholt, 2009;

Matějka, 2015; Turen, 2023; Afrouzi, 2020; Afrouzi & Yang, 2021). The first group

of models, which make a firm’s nominal price sticky over time, assume perfect

repricing: Once a firm has the opportunity to reprice, the newly chosen price is

a deterministic, full-information optimal choice. The models in the second group

remove the impediments to changing prices every period, but instead relax the

assumption of perfect repricing. We nest these two cases and allow the estimation

to speak to their relative importance in generating monetary non-neutrality.

Third, by allowing both information frictions and nominal adjustment fric-

tions to play potentially distinct roles in generating nominal rigidity in response

to shocks, our paper relates to work that bridges these two approaches to en-

dogenizing pricing frictions: Angeletos & La’O (2009) and Nimark (2008) study

the interaction between Calvo (1983) price-setting and dispersed information a

la Woodford (2003), while Klenow & Willis (2007) models a sticky-information

version of menu cost pricing. Melosi (2014) estimates that imperfect common

knowledge a la (Woodford, 2003) fits U.S. inflation and output time series better

than a model with Calvo frictions alone. Alvarez, Lippi & Paciello (2011) present

a theoretical analysis of price adjustment in the presence of menu costs and (fixed)

information costs a la Reis (2006), and they also emphasize the interaction between

the two sources of nominal rigidity, and also find support for state dependence in

the acquisition of information for price-setters.

Fourth, we contribute to the strand of literature that has studied how NPR

varies with inflation. Empirical work has shown that once inflation exceeds high

single digits, price rigidity starts to decline with inflation, rapidly reaching near-

flexibility (Alvarez, Beraja, Gonzalez-Rozada & Neumeyer, 2019; Gagnon, 2009)

and our model generates this state-dependence through the endogenous adjustment
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of information acquisition.

Fifth, our paper also relates to work that seeks to estimate the severity of

information frictions over time more generally, such as Coibion & Gorodnichenko

(2015). Our work is also complementary to Carvalho, Dam & Lee (2020), who

study the degree of real rigidities and heterogeneity in price stickiness. Our results

also add to the literature on parameter stability in DSGE models, e.g., Fernández-

Villaverde, Rubio-Ramı́rez, Cogley & Schorfheide (2007).

3 Model

This section presents an economy with errors in both the timing of price adjust-

ment and the repricing decision. Information costs are the source of these errors

and, together with menu costs, generate noisy, infrequently updated prices. We

place the information and adjustment frictions on monopolistically competitive re-

tailers while retaining the assumption of full information, flexible adjustment for

other agents in the economy. In addition to the retailers, the economy consists of

competitive goods producers, a representative household, and fiscal and monetary

authorities.

3.1 Final Goods

A homogeneous final good is used for consumption Ct, government spending

Gt, and to pay for the costs associated with pricing frictions Ft,

Yt = Ct +Gt + Ft. (1)

This good is an aggregator of differentiated varieties j,

Yt =

[∫
y

ε−1
ε

jt dj

] ε
ε−1

. (2)

where ε > 1 is the elasticity of substitution. Demand for each variety is

yjt = p−ε
jt Yt, (3)
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with pjt = Pjt/Pt denoting the good’s relative price, and

(∫
p1−ε
jt dj

) 1
1−ε

= 1. (4)

3.2 Monopolistically Competitive Retailers

The differentiated varieties are sold by a continuum of retailers who are mo-

nopolistically competitive price-setters in their product market and price-takers in

the market for their production input. They optimize subject to both information

costs and menu costs.

Operating Profits The retailers’ production function is

yjt = eajtxjt, (5)

where ajt is an AR(1) process for idiosyncratic productivity and xjt is the homo-

geneous input. Given its price, the retailer purchases whatever quantity of the

intermediate good is needed to satisfy demand at that price.

A retailer’s real operating profit per period is

πr
jt = pjtyjt − pxt xjt =

[
p1−ε
jt − p−ε

jt

(
pxt
eajt

)]
Yt, (6)

where pxt = P x
t /Pt is the intermediate input’s relative price.

Information Costs Firms are rationally inattentive (RI) to market conditions

(Sims, 2003). They are rational, in that they optimize based on a complete under-

standing of the structure of their environment (payoff functions, shock processes,

markets), but they must expend resources to learn the realizations of stochastic

variables in real time.

Information acquisition is modeled as a choice that can be quantified and op-

timized using tools from information theory (Shannon, 1948, 1959). However, we

assume that rather than being endowed with a fixed information capacity (like the

communication channels that are modeled in the information theory literature),
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firms can choose how much information to obtain, subject to a variable cost, as in

Woodford (2009).

In our context, given the fixed menu cost of price adjustment, in each period

firms must decide whether or not to update their price, and if so, what price to

set. As is common in the RI literature, we assume that the costs of making the

adjustment and pricing decisions contingent on the realized states are linear in the

information acquired in order to make each decision,

Ca
jt = θa Ia

jt, (7)

Cp
jt = θp Ip

jt, (8)

where θa is the unit cost of making a more informed decision about whether or not

to change prices, θp is the unit cost of making a more informed price choice when

adjusting prices, and Ia
jt and Ip

jt measure how much information is acquired for

each decision (which we discuss further below). We allow for potentially different

unit costs, since they may reflect different managerial marginal costs of attention.

If θa and θp are zero, the firm’s problem collapses to a full information menu cost

model.

Value of the Firm Firms acquire information and make pricing decisions to

solve

max

{
Ej0

∞∑
t=0

M0,t

[
πr
jt − Ca

jt − δjt
(
κ+ Cp

jt

)]}
, (9)

subject to (6),(7),(8), where M0,t is the stochastic discount factor used to discount

real profit streams from date t to date 0, δjt is an indicator equal to 1 if the firm

picks a new price in period t and 0 otherwise, and κ is the fixed cost of repricing.

If the firm does not change its price in the period, it continues with its existing

nominal price (there is no price indexation).

Acquiring Information A firm’s choice of how much information to obtain

amounts to choosing how much its decisions condition on each realized state, rel-

ative to the best decisions the firm could make based on beliefs it has for free.

For each decision, the amount of information acquired is measured by Shannon’s
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mutual information. For the adjustment decision, this is given by

Ia
jt = Et

{
D
(
Λjt ∥ Λ̄jt

)}
, (10)

D
(
Λ ∥ Λ̄

)
= Λ ln

(
Λ

Λ̄

)
+
(
1− Λ

)
ln

(
1− Λ

1− Λ̄

)
, (11)

where Λjt denotes the probability that the firm adjusts its price in period t, after

obtaining information about the realized state, Λ̄jt is the reference probability of

adjustment, based on the firm’s beliefs before obtaining current information, D
is the Kullback-Leibler divergence of the choice distribution from the reference

distribution, and expectations integrate over the joint distribution of idiosyncratic

and aggregate states that the firm could face in period t.3 Hence, the contribution

to the firm’s cost of conditioning the adjustment decision on a period’s realized

state is proportional to the probability of the firm finding itself in that state times

the divergence of Λ from Λ̄ in that state. The trade-off facing the firm captures the

fact that the more Λ conditions on the realized state, the more it deviates from Λ̄,

and hence the higher is its cost. It also reflects the fact that all else equal, paying

attention to more frequent states will cost more.

Analogously, for the pricing decision, the amount of information obtained in

order to decide what price to set is

Ip
jt = Et

{
D
(
fjt(p) ∥ f̄jt(p)

)}
, (12)

D
(
f(p) ∥ f̄(p)

)
=

∫
f(p) ln

(
f(p)

f̄(p)

)
dp, (13)

where fjt(p) is the probability that the firm sets its price equal to p conditional

on the information it acquires about the realized state, and f̄jt(p) is the reference

probability of setting the price equal to p, based on the firm’s beliefs about the right

price to set prior to obtaining current information. As is the case for the adjustment

decision, D is the Kullback-Leibler divergence of the choice distribution from the

3The KL divergence gives a measure of how “far off” one would be, on average, if they
assumed the first distribution when the true distribution were in fact the second distribution.
Shannon’s mutual information between two random variables x and y is the KL divergence of
the joint distribution from the product of the marginal distributions.
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reference distribution, and expectations integrate over the joint distribution of

idiosyncratic prices, productivities, and aggregate states. Hence, the contribution

to the total information flow of conditioning the pricing decision in a period on

that period’s state is equal to the probability of the firm finding itself in that state

times the divergence of fjt in that state from f̄jt.

Reference Distributions We assume the firms’ reference distributions are the

equilibrium distributions in steady state. Let Λss(p, a) denote the steady-state

probability of adjustment of a firm with price p and idiosyncratic productivity a.

The reference adjustment probability Λ̄ is the equilibrium frequency of adjustment

in the steady state,

Λ̄ =

∫
Λss(p, a) Ω̃ss(p, a) da dp, (14)

which integrates the adjustment probability over the steady-state distribution of

firms before price review decisions have been made, but after the idiosyncratic

shocks have been realized.

Similarly, the reference probability of charging each p in the set of possible

prices is the steady state distribution of prices, but after adjustments have been

made. Letting fss(p|a) denote the steady state probability with which a firm with

idiosyncratic productivity a sets price p when adjusting, the reference distribution

for prices is

f̄(p) =

∫
fss(p | a) Ωss(p, a) da, (15)

where Ω̃ss is the steady state joint distribution of idiosyncratic productivities and

prices prior to the adjustment decision, and Ωss is the joint distribution of produc-

tivities and post-adjustment prices, and are defined further below.

Discussion of Reference Distributions The assumption that firms use equi-

librium distributions as their reference is motivated by the idea, plausible to us,

that decision-makers with prior experience across a range of states may find it

“easier” to have as references rules that they have observed work well on average,

across many states.4

4See Woodford (2012) and Khaw, Stevens & Woodford (2019) for alternative deviations of
the default distributions from the RI optima.
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By constraining the reference distributions to be the cross-sectional equilibrium

distributions, we are using a slightly inefficient information structure relative to

the pure RI solution. How does it compare to benchmark alternatives?

One benchmark is the control cost (CC) model of stochastic choice. These

models assume a reference distribution for each period that is uniform around the

optimal action in that period. Choosing a more concentrated distribution entails

a cost proportional to the divergence of the chosen distribution from the uniform.

Such models allow for unbiased errors in the implementation of actions when the

optimal action is known in each state, generating volatile, noisy actions. For

example, Costain & Nakov (2019) apply control costs to price-setting in a general

equilibrium monetary model. However, as the name suggests, they are models of

costly control, rather than costly information.

On the other hand, RI models of costly information derive an endogenous refer-

ence distribution that is optimal, given the decision-problem at hand. Notice that

rational decision-makers have strong incentives to develop sophisticated reference

or default probabilities. A well-chosen default distribution can lower both the rel-

ative value of conditioning actions on the state in real time, as well as the cost of

doing so. Hence, a rational decision-maker would want to use knowledge about the

structure of the economy, the laws of motion of the shocks, and the shape of the

objective function to choose well-adapted reference distributions that can serve as

no-cost defaults.

What does a well-adapted no-cost default look like? In the RI model, it is

one that gets as close as possible to conditioning on the state in real time, without

actually doing so. Formally, the optimal reference distribution minimizes the choice

distribution’s average KL divergence from it, integrating over the distribution of

possible states of the world that the decision-maker can expect to encounter.

Here we are using less efficient, though still endogenous reference distributions

that take into account both the structure of the economy and the actions of others.

It is in this sense that the model is behavioral RI model.

Recursive Formulation and Optimal Choice Distributions We now solve

for each element of the firm’s optimal policy. For a given reference, the choice

distribution maximizes total firm value net of the information cost. First, consider
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the choice of the adjustment probability Λt (p̃, a) for a firm that begins a period

with real price p̃ and idiosyncratic productivity a. This choice solves:

V ∗
t (p̃, a) = max

Λt

{
Λt · [V a

t (a)− κ] + (1− Λt) · Vt(p̃, a)− θa D
(
Λt ∥ Λ̄

)}
, (16)

where the subscript t indicates dependence on the aggregate state and we have

suppressed the arguments of the adjustment probability to ease notation. The

retailer either adjusts to a new price, with probability Λt (p̃, a), or continues with

its current price, which occurs with probability 1−Λt (p̃, a). In either case, it pays

the cost of conditioning this period’s adjustment probability on this period’s state.

If the firm continues with its existing price, it obtains Vt(p̃, a), which consists

of the flow operating profit at this price plus the expected discounted continuation

value of entering the next period with this price,

Vt(pjt, ajt) = πt(pjt, ajt) + Et

{
Mt,t+1 V

∗
t+1 (p̃j,t+1, aj,t+1)

}
, (17)

where expectations condition on the current state, Mt,t+1 is the real discount factor

between the two periods, p̃j,t+1 = pjtPt/Pt+1 is the real price at the beginning of the

next period given the current-period real price pjt and the aggregate price levels,

and V ∗
t+1 is the maximum attainable value the firm can expect in the next period

(assuming optimal choices henceforth), which takes the form of equation (16).

If, instead, the firm adjusts its price, it pays the menu cost κ and can expect

to obtain V a
t (a), the expected value under the optimal pricing policy, net of the

information cost associated with it,

V a
t (a) = max

ft

{∫
ft(p | a)Vt(p, a) dp− θpD

(
ft(p | a) ∥ f̄(p)

)}
(18)

s.t.

∫
ft(p | a) dp = 1. (19)

The optimality condition for the choice of Λt (p̃, a) equates the marginal value

of a more accurate adjustment decision to its marginal cost, state by state. This
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yields an expression for the optimal log odds of adjustment given by

ln

(
Λt(p̃, a)

1− Λt(p̃, a)

)
= ln

(
Λ̄

1− Λ̄

)
+

1

θa

[
V a
t (a)− Vt(p̃, a)− κ

]
. (20)

The model predicts a linear relationship between the conditional log odds, the

unconditional log odds, and the net gain from adjusting the firm’s price, with the

unit cost θa governing the sensitivity of the adjustment decision to the state of the

economy. Moreover, the firm can choose how much to deviate from the reference

distribution state by state, which means it can have state-dependent accuracy if

the value of having more accurate timing of adjustments differs across states. The

contribution to the total information flow of conditioning the adjustment decision

on a period’s state is equal to the probability of the firm finding itself in that state

times the KL divergence of Λt (p̃, a) from Λ̄,

In the limit, θa → ∞ implies a constant probability of adjustment, as in the

Calvo model, while as θa → 0 the adjustment decision converges to the determinis-

tic menu cost adjustment rule. For intermediate values of this cost, the adjustment

probability is stochastically state-dependent, as in the information model of Wood-

ford (2009) and as in the random menu costs model of Dotsey et al. (1999).

Now consider the optimal choice in (18)-(19) for the probability of charging a

particular price in a particular state. This choice too can be made independently

for each state and satisfies

ft(p | a) =
f̄(p) exp

{
Vt(p,a)

θp

}
∫
f̄(p̂) exp

{
Vt(p̂,a)

θp

}
dp̂

(21)

for each p charged with positive probability in the steady state.

In equation (21), the value of charging a certain price in a particular state

consists of both its current payoff (in terms of the period operating profit) and

the expected continuation value of entering the following period with this price. A

price is charged with a higher probability in a particular state than unconditionally

if it yields a higher value in that state compared with the average value across all

possible prices, such that the gain in value is enough to compensate for the increase

in information expenditure needed to increase the probability of charging the price
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in that particular state. A lower attention cost θp enables more differentiation

across states in terms of the price being charged. As the cost approaches zero,

the firm’s repricing approaches a degenerate distribution centered on the optimal

full-information reset price.

Taking the reference distributions as given, the optimal choice distributions are

given by (20) and (21). This gives us an optimization-based approach to gener-

alizing the menu cost model to a stochastic version. Entropy reduction generates

stochastic decisions: shrinking uncertainty to a degenerate distribution is often too

costly, so the decision-maker is left with some residual uncertainty about the opti-

mal course of action. In our context, this means that the firm acts probabilistically

both in its decision about whether or not to change its price and in its decision

about which price to charge. But the degree of randomness in choice is the result

of a cost-benefit analysis and, as long as information is not infinitely costly, the

firm will be more likely to adjust when the value of adjusting is higher and more

likely to set a particular price when its continuation value at that price is higher

compared with other possible prices. Moreover, the firm can specify the accuracy

of its decisions in each state. For instance, in some states, it may not be worth-

while to expend resources on very precise information about market conditions,

since perhaps in those states, the firm’s payoffs are not very sensitive to having

the correct price in place. On the other hand, other states of the world may make

mispricing very costly, in which case the firm will want to condition its decisions

more strongly on those states and be willing to pay the extra cost associated with

that accuracy.

Price Distributions The law of motion for the joint distribution of prices and

idiosyncratic states after all pricing decisions have been made is given by

Ωt(p, a) = [1− Λt(p, a)] · Ω̃t(p, a) +

[∫
Λt(p̂, a) Ω̃t(p̂, a) dp̂

]
· ft(p | a). (22)

where Ω̃t(p, a) is the joint distribution at the beginning of the period, before any

pricing decisions have been made, but after the realization of all shocks in the

period, which is given by last period’s post-adjustment distribution with all real

prices eroded by inflation and idiosyncratic states transitioned to new values ac-
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cording to the law of motion for the idiosyncratic state.

In (22), the first term captures the mass of firms that start the period in state

p × a and do not adjust their price, while the second term captures the mass of

firms with idiosyncratic state a that adjust from any price p̂ to end up with price

p.

This completes the exposition of the pricing block of the model. Given aggre-

gate and idiosyncratic conditions, retailers make their pricing choices, generating

a level of aggregate price dispersion ∆t, given by

∆t ≡
∫

e−ajtp−ε
jt dj. (23)

This measure of price dispersion in turn is the only input into the non-pricing

block of the model, allowing us to separate the information problem from the rest

of the economy.

Given the solution to the retailers’ pricing problem, total demand for the in-

termediate input is

xd
t ≡

∫
xjt dj =

∫
p−ε
jt e−ajt Yt dj = Yt ∆t. (24)

3.3 Intermediate Goods Producers

The supply of intermediate inputs is determined by a continuum of competitive

producers who choose labor to maximize static real profits

πx
t = pxt xt − wtLt (25)

subject to the production function

xt = eat+ztLt, (26)

where Lt is labor input, wt is the real wage, at is an AR(1) process for log aggregate

productivity, and zt is a random walk process that grows at the rate γz.
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Optimization by the intermediate goods producer yields

pxt = e−(at+zt) wt (27)

and market clearing for the intermediate input yields total labor demand

Lt = Yt ∆t e
−(at+zt). (28)

3.4 Households

The representative household chooses streams of consumption Ct, labor supply

Lt, and the real value of the risk-free bonds purchased in period t, Bt, to maximize

lifetime utility,

E0

∞∑
t=0

βtζt

[
ln (Ct − hCt−1)− ξt ·

(
L
1+ 1

ν
t

1 + 1
ν

)
+ χt ·Bt

]
, (29)

subject to the sequence of flow budget constraints

Ct +Bt = wtLt +Dt − Tt +Bt−1
1 + it−1

1 + πt

, (30)

and a no-Ponzi condition, where β ∈ (0, 1) is the household’s discount factor, ζt

is a discount factor shock, ν ≥ 0 is the Frisch elasticity of labor supply, ξt is a

shock to the relative disutility of working, and h ∈ [0, 1) is the degree of habit in

consumption, Dt are firm dividends, and Tt are lump-sum taxes net of transfers,

and πt ≡ Pt

Pt−1
− 1 denotes the net inflation rate between period t − 1 and period

t. The household supplies labor to the intermediate goods producers, earns a real

wage wt, and can invest in one-period bonds that earn a nominal rate it between

period t and period t+ 1.

Let λt denote the Lagrange multiplier on the flow budget constraint. Household
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optimization yields

FOC−Ct :

(
1

Ct − hCt−1

)
− Et

[(
βζt+1

ζt

)(
h

Ct+1 − hCt

)]
= λt (31)

FOC−Lt : ξtL
1
ν
t = λtwt (32)

FOC−Bt : χt + Et

[(
βζt+1

ζt

)(
1 + it

1 + πt+1

)
λt+1

]
= λt. (33)

The exogenous discount factor shock affects the intertemporal Euler equation

and has been shown by Justiniano, Primiceri & Tambalotti (2010) and others to

be an important (reduced-form) driver of consumption fluctuations. It is also often

used to drive the economy to the effective lower bound on the monetary authority’s

nominal policy rate (Eggertsson & Woodford, 2003). Shocks to the disutility of

labor are introduced to affect the firm’s marginal cost function. Lastly, including

the real value of bond holdings in the household’s utility function allows for “flight

to quality” shocks χt. This is particularly relevant in an extension of the model

that features investment in capital, since these shocks generate variation in the

demand for risk-free bonds that allows the interest rate controlled by the monetary

authority to deviate from the return on other assets. Originally, Krishnamurthy

& Vissing-Jorgensen (2012) proposed introducing “convenience” assets, namely

highly liquid, very safe assets, such as U.S. Treasuries, in the utility function,

analogously to a money-in-the-utility specification.5 Fisher (2015) shows how this

specification endogenizes the risk preference shocks that Smets & Wouters (2007)

introduce to the consumption Euler equation to help generate comovement between

investment and consumption, and Campbell, Fisher, Justiniano & Melosi (2017)

use it in a DSGE model that quantifies the effects of forward guidance on the U.S.

economy since the Great Recession.

5Krishnamurthy & Vissing-Jorgensen (2012) point to theoretical results demonstrating how
assets with superior liquidity and perceived safety can command a premium. They also demon-
strate the empirical relevance of this premium. Using U.S. data on corporate bond-Treasury
spreads, Krishnamurthy & Vissing-Jorgensen (2012) estimate an average convenience yield of 73
basis points from 1926 to 2008, nearly two thirds of which represents liquidity convenience, with
the remainder representing safety convenience. This spread implies that the Treasury yield is
lower than the actual risk-free rate and suggests care when parameterizing the risk-free rate in
models that do not explicitly model the preference for convenience assets.
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3.5 Balanced Growth

The source of long-run growth in the model is labor-augmenting technological

progress, zt, which grows at a constant rate γ. To guarantee balanced growth, we

require that the variables bt, κt, θ
r
t , θ

p
t grow at the same rate as zt. Hence, we define

xt ≡ x · zt for each element in this set.

3.6 Wage Rigidity

We include reduced-form real wage rigidity given by

wt = δww̃∗ + (1− δw)w∗
t , (34)

where w̃∗ is the steady state real wage and w∗
t is the competitive real wage.

3.7 Monetary and Fiscal Authorities

The monetary authority follows a Taylor rule that features interest-rate smooth-

ing, responds to deviations of inflation from its (potentially time-varying) target

and to deviations of output growth from long run growth, subject to a zero lower

bound. When not constrained by the zero lower bound, monetary policy imple-

ments

it = itargett + ϵrt, (35)

itargett = ρiit−1 + (1− ρi) [iss + ϕπ (πt − π∗
t ) + ϕy(γt − γss)] , (36)

where πt and γt are inflation and GDP growth over the latest 12 months, π∗
t is a

potentially time-varying inflation target that allows for persistent deviations of the

policy rule from targeting a constant inflation rate, and ϵrt is an i.i.d. monetary

policy shock.6

Finally, government spending is a characterized by an exogenous spending pol-

6Sims (2013). Here, we define GDP as output net of the pricing frictions cost: GDP =
Yt − Ft = Ct +Gt.
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icy g on output net of pricing frictions,

Gt = g(Yt − Ft), (37)

and is funded by lump-sum consumer taxes.

3.8 Shocks

We include a range of fundamental shocks, to avoid overstating the role the

pricing frictions play in generating aggregate volatility. The aggregate exoge-

nous shocks are to aggregate TFP (at), impatience (ζt) labor supply (ξt), bond

demand (χt), markups (εt), the Taylor rule, trend inflation, and to permanent

productivity growth. In addition, we allow for unanticipated shocks to the menu

cost, the marginal costs of acquiring information, and to the standard deviation

of idiosyncratic shocks. Variation in the pricing costs over time is interpreted as

variation in the efficiency with which firms can process information and implement

price changes. Allowing for this variation enables us to uncover to what extent

nominal frictions move with the economy’s cycle, and if there have been trends in

pricing costs over time.

4 Steady State Frictions

In this section we estimate what the pricing statistics over recent decades sug-

gest about the nature and severity of pricing frictions in the United States, on

average.

4.1 Steady State Data

We use statistics on price-setting patterns from the U.S. Consumer Price Index

(CPI) to estimate the steady-state parameters. These statistics are based on the

individual price quotes underlying the CPI, as constructed by Nakamura et al.

(2018) for the sample starting in January 1978 and ending in December 2014, and

extended by Montag & Villar (2023) to March 2023. We thank Daniel Villar for

sharing the time series of these pricing moments with us.
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The microdata underlying these statistics consist of approximately 80,000 monthly

price quotes for products grouped into roughly 305 categories, or “entry-level

items” (ELIs), which are then further aggregated into 13 major groups. Authors

with access to the microdata can use the individual price quotes to construct em-

pirical distributions of log price changes for each month, from which various pricing

statistics are then calculated.

For example, to calculate the frequency of price changes in each period, one

computes the fraction of nonzero price changes across products within each entry-

level item (ELI), and then the expenditure-weighted median across ELIs. Similarly,

conditional on a price change, the absolute size of price changes is computed by

taking the average log price change across products within each ELI and aggre-

gating it to the expenditure-weighted median across ELIs. Higher moments are

computed in a similar way, but by pooling data within each major group rather

than within each ELI, and by taking an expenditure-weighted average across the

13 major groups.7

Table I reports the averages of several key pricing moments, for the full sample

period (from January 1978 until March 2023), for the full sample and two sub-

samples: the post-Volcker period, following the end of Chairman Volcker’s term in

August 1987, which may be of independent interest since it represents a period of

established modern monetary policy, and for the Great Moderation, from January

1984 to June 2007, which we target in our steady state calibration. In addition

to pricing moments, the table also reports the average values for inflation, GDP

growth, and federal funds rate, which we also target in our steady state estimation,

and which we take from the Federal Reserve Bank of St. Louis FRED.

We calibrate the model to target the Great Moderation period for the steady

state since that was a period of modest macroeconomic instability. During the

Great Moderation, the frequency of price changes averaged 10% per month, the

mean absolute size averaged 7.4%, and the standard deviation of price changes was

almost 13%. The distribution of price changes was negatively skewed and had fat

tails. Approximately two thirds of price changes were price increases, and these

7Higher moments are particularly sensitive to outliers, which is why a small number of obser-
vations would be insufficient to compute them reliably. Luo & Villar (2021) discuss sample size
constraints: since ELIs are narrowly defined categories, there are often not enough observations
to estimate higher moments of the price change distribution at the ELI level.
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TABLE I: Data Moments

Full Sample Post-Volcker Great Moderation
1978-2023.Q1 1987.Q4-2023.Q1 1984-2007.Q2

Frequency 0.1131 0.1103 0.1005

Size (absolute value) 0.0735 0.0746 0.0740

Standard deviation 0.1293 0.1350 0.1295

Skew -0.131 -0.168 -0.142

Kurtosis 10.6 10.2 10.9

Frequency up 0.0758 0.0713 0.0683

Size up 0.0690 0.0690 0.0697

Federal funds rate 0.0462 0.0307 0.0532

Inflation rate 0.0353 0.0275 0.0307

GDP growth rate 0.0153 0.0145 0.0206

Notes: The pricing statistics report average values for moments constructed for the monthly
distributions of log-price changes. Frequency up and Size up report the frequency and size
of price increases. In the data, price increases are more frequent than price cuts, but also
smaller. The average effective federal funds rate, CPI inflation, and per capita real GDP
growth for each sub-sample are annual rates. The first column of numbers reports statistics
for the full sample, ending in March 2023. The second column reports statistics for the post-
Volcker period, starting in the fourth quarter of 1987. The last column reports statistics
for the Great Moderation, which the Federal Reserve dates between January 1984 and June
2007. Sources: Daniel Villar and FRED.

increases were on average nearly half a percentage point smaller than price cuts.

As discussed in prior work (e.g., Bils & Klenow, 2004; Golosov & Lucas Jr,

2007), the pricing moments indicate high pricing volatility, despite a relatively

stable macroeconomic environment. In particular, given the low variability of

inflation, the coexistence of large and frequent price cuts and price increases points

to the importance of fairly large and frequent idiosyncratic shocks. Hence we will

solve for a stochastic steady state with idiosyncratic shocks to firms’ desired prices.

4.2 Steady State Parameters

We parameterize the model’s stochastic steady state by targeting averages over

the Great Moderation period. The estimation of shocks away from the steady
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TABLE II: Steady State Parameters

Parameter Value Target

Discount factor β = 0.61/12
iss = 5.32%

Marginal utility of bonds χ = 0.0578

Frisch elasticity of labor supply ν = 2

Marginal disutility of labor supply ξ = 1.68 Normalization

Gov’t spending (% private consumption) gc = 0.25

GM averagesSteady state inflation rate πss = 1.03071/12

Steady state productivity growth γss = 1.02061/12

Elasticity of substitution among varieties ε = 11

Standard deviation of idiosyncratic shocks σa = 0.23

Persistence of idiosyncratic shocks ρa = 0.94 GM pricing
moments

Fixed menu cost κ = 0.026

Marginal cost of timing accuracy θa = 0.097

Marginal cost of repricing accuracy θp = 1.07

Notes: The model is estimated at the monthly frequency and parameters are set either at
conventional values or to match targets for the Great Moderation (GM) period. The bottom six
parameters are estimated jointly, targetting seven steady state pricing moments.

state will then make use of the entire data, including the volatile periods at the

beginning and end of the sample.

Since the pricing moments aggregate monthly price changes, we set our model

to a monthly frequency. In this way, we avoid having to map pricing moments

based on monthly data into quarterly moments, which would require us to make

assumptions about price rigidities in the transformation.8

Table II presents the calibrated and estimated steady state parameter values.

We set the steady state inflation rate to the realized average (πss = 1.0307
1
12 ),

8For example, a Calvo model and a menu cost model parameterized to deliver the same
frequency and size of price changes at the monthly frequency yield different quarterly moments,
because the menu cost model features selection in price adjustment, whereas the Calvo model
does not. Hence, mapping the monthly size of price changes to a quarterly frequency requires
making assumptions about price adjustment selection, which we seek to avoid.

24



and we set productivity growth to target the average real GDP growth per capita

(γss = 1.0206
1
12 ). Following Michaillat & Saez (2021), we parameterize wealth

in the utility by setting the annual discount factor to 60% (β = 0.6
1
12 ) and then

internally calibrating the parameter governing the marginal utility of bonds (χ =

0.0578) such that the steady state nominal interest rate is equal to the average

federal funds rate during the Great Moderation (iss = 1.0532). This specification

helps the later estimation, when shocks push the economy to the effective lower

bound on nominal interest rates.9 The Frisch elasticity of labor supply is ν = 2

and the relative disutility of working is ξ = 1.68, set to normalize employment in

the steady state. Finally, we set government spending to 25% of consumption, per

the realized sample average.

We estimate a vector of six parameters that jointly affect price-setting frictions,

Θ = {ε, σa, ρa, κ, θ
a, θp}, to target the averages of seven pricing moments: fre-

quency, size, standard deviation, skew, and kurtosis of price changes, and frequency

and size of price increases. We estimate Θ as follows:

Θ = argmin
X

(
µ(X )− µdata

)
W
(
µ(X )− µdata

)′
(38)

where µ(X ) is the vector of model moments for a given pricing parameter X ,

µdata is the vector data moments, and our weighting matrix (W ) equals a diagonal

matrix with the inverse of the data moments.

We find a modest menu cost (κ = 0.026), a larger, though still moderate vari-

able cost of information to determine if a price change is warranted (θa = 0.097),

and a large cost of accuracy in repricing (θp = 1.07). Together, these costs im-

ply a steady state level of expenditure on repricing that is 2.6% of steady state

revenues.

Table III reports the breakdown of price-setting costs: Firms spend almost 0.3%

of steady state sales on the fixed cost of price reviews. They spend approximately

0.76% of revenues on acquiring information to decide if the value of adjusting is

high enough to warrant an adjustment, and roughly twice that amount (1.6% of

revenues) to determine what price to charge, conditional on adjustment.

Compared with the flexible price steady state with the same distribution of

9See also Cuba-Borda & Singh (2019).
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TABLE III: Steady State Outcomes

Spending (share of revenues)

Fixed cost (κ Λ̄) 0.0028

Review cost (θa Iass) 0.0076

Repricing cost (θp Ipss) 0.0159

Total expenditure 0.0263

Outcomes (relative to flex-price outcomes)

Consumption 0.9272

Employment 1.0514

Wages 0.9507

Output 0.9523

Price Dispersion 1.1041

Note: Baseline steady state estimation. Spending on pric-
ing decisions is reported as a share of steady state revenues.
Aggregate outcomes are reported as a share of the aggregate
outcomes in an economy without pricing costs, but otherwise
identically parameterized.

idiosyncratic shocks and the same elasticity of substitution among varieties, the

economy with pricing frictions delivers significantly lower welfare. Steady state

consumption is 7.3% lower, employment is 5.1% higher, and wages are 4.9% lower.

Acquiring information and adjusting prices does not bring prices to the flexible

price levels, and as a result, equilibrium price dispersion is 10.4% higher than

the price dispersion that would be warranted given heterogeneity in productivities

alone. Hence, although relatively modest at the level of each individual firm, these

frictions aggregate to considerable losses for consumers.

Table IV presents the match between model and data for the pricing moments.

Since we target more moments than we have parameters, the fit is not perfect,

but it is quite close. In addition to the pricing costs, matching these moments

also requires a high elasticity of substitution (ε = 11, which is higher than the

value usually estimated in menu cost models, but closer to the values used in the

trade literature), and highly volatile and persistent idiosyncratic shocks (which is

typical in this literature, given the large volatility of price changes). The match
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TABLE IV: Pricing Moments

Data Model

Freq. of price changes 0.1005 0.0976

Absolute size 0.0740 0.0751

Standard deviation 0.1295 0.1223

Skew -0.1419 -0.1419

Kurtosis∗ 10.9 11.1

Freq. of price increases 0.0683 0.0676

Size of price increases 0.0697 0.0728

∗ Reflecting in part cross-sectional heterogeneity (which
may be due to differences across ELIs in either technolo-
gies or costs of repricing), kurtosis is much higher than the
values typically reported in the literature, which tend to
range between 3.5 and 5.5. See text for additional discus-
sion.

is particularly notable since we use normally distributed shocks (rather than the

leptokurtic shocks that are usually used in order to match the standard deviation

and kurtosis of price changes). The first two moments (frequency and size) are the

standard targets in Calvo and first-generation menu cost models, where they pin

down the menu cost and the variance of idiosyncratic shocks needed to generate

large price changes, in excess of the rate of inflation. The remaining moments are

used in various second-generation menu cost models, as they help pin down the

degree of asymmetry in the profit function and the degree of state-dependence and

selection in price adjustment in response to aggregate shocks.

Among all the targeted moments, which are quite standard, kurtosis deserves

additional discussion, since the value for our data is much higher than the values

typically reported in the literature, which tend to range between 3.5 and 5.5. This

difference may be due to the broader range of goods in the CPI than in other data

sets, and may reflect a combination of cross-sectional heterogeneity (for instance,

differences across ELIs in repricing costs or in technologies) and measurement error

(since higher order moments are much more difficult to estimate accurately). How

much are results driven by this higher than usual level of kurtosis in the distribution

of price changes? Estimating the model parameters targeting a kurtosis of 5 would
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Figure 1: Pricing Policy

Note: This figure plots the optimal adjustment probability Λ and the optimal
pricing policy f , in steady state, as functions of log price and log marginal
cost.

yield a significantly higher value for the cost of repricing accuracy (θp = 1.6 instead

of 1.1), a much lower elasticity of substitution (ε = 6 instead of 11), higher menu

cost (κ = 0.055 vs. 0.026), and lower values for θp, σa, and ρa. In short, a lower

kurtosis requires somewhat smaller shocks and higher markups, and a different

mix of fixed cost and variable reviewing costs, but the main result that errors in

pricing are the primary driver of pricing frictions is just as strong if not stronger.

4.3 Discussion of Steady-State Policies

What do the estimated parameters imply for the accuracy of pricing decisions?

Inaccuracy in pricing arises along two dimensions: the decision of whether or not

to review the existing price, as well as the decision of what price to set when

deciding to change the existing price. The accuracy with which firms make these

two decisions is captured in their adjustment probability and in their pricing policy,

both of which are plotted in Figure (1).

We estimate fairly high accuracy in the timing of price adjustments, as indicated

by the strongly state-dependent probability of adjustment shown in the left panel

of Figure (1). When a firm’s existing price is close to the price it would expect

to set upon repricing, the probability of adjustment is very close to zero. But for

prices that are farther away, the probability of adjustment rises rapidly, and as a

result, prices that are far from the optimum do not survive long. The adjustment

occurs especially quickly when prices are relatively low, resulting in an asymmetric
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survival probability. Prices that are above average do not yield very large losses

and as a result, are not worth reoptimizing. The probability of adjustment is nearly

zero, unless marginal costs are particularly low, in which case, it rises gradually.

Conversely, the probability of adjustment is almost always near one for prices

below average. This asymmetry has been documented as a feature of rationally

inattentive price adjustment (Woodford, 2009), and we find it is also a strong

feature in historical U.S. data. In effect, not only is the profit function asymmetric,

with the cost of under-pricing significantly rising much faster than that of over-

pricing, but historical inflation levels, although not very high, enable firms to

further save on repricing costs by pricing high and letting inflation erode the price

away.

Conditional on adjustment, we estimate substantial errors in pricing. As shown

in the right panel of Figure (1), prices are drawn from an imprecise, weakly state-

dependent distribution. Two features of this policy stand out: First, there is

significant price dispersion. For a given marginal cost, there is a wide range of

prices that the firm could charge with a significant probability, reflecting a high

degree of uncertainty about the right price to charge. Models that assume reset

prices based on perfect information would yield a degenerate distribution, thus

potentially significantly overstating the responsiveness of prices to shocks, condi-

tional on adjustment. Second, a pattern of occasional sales arises endogenously in

the optimal pricing policy, purely as a way to capture highly profitable demand

opportunities. The endogenous adjustment probability ensures that if the firm sets

prices that are too low, it will change these prices quickly – note the steep increase

in the right side of the hazard function. Hence, the review policy effectively in-

sures against pricing too low for too long. Given this insurance, firms choose to

occasionally set low prices, to capture significant demand from competitors (the

elasticity of substitution we estimate is high), knowing that if they are wrong in

their assessment of demand or marginal cost, they will promptly get an accurate

signal to revise prices, such that the profit loss will be short-lived.

Overall, we estimate a strongly state-dependent price adjustment probability

but inaccurate prices. It seems firms can determine quite accurately when their

prices have become obsolete, but they have more difficulty determining the right

price level to set. The data suggest a decomposition of the information frictions
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Figure 2: Firm Incentives

Note: This figure plots the profit function in the left panel and the distribution
of marginal costs in the right panel. The near-diagonal line marks the full
information flexible price optimum for each marginal cost value.

that is particularly severe along the pricing dimension, rather than along the di-

mension of whether or not to adjust one’s price. This finding departs from the

conventional models of price rigidity, which assume perfect but infrequent repric-

ing.

4.4 Incentives for Information Acquisition

Figure (2) plots firms’ operating profit function and the distribution of marginal

costs for the baseline parameterization. These two objects shape firms’ incentives

to acquire information and set prices accurately in the steady state. The former

governs the losses from mispricing, while the latter captures the incidence of these

losses across states. In particular, the firm’s operating profit per period – the flow

profit before spending on information and adjustment costs – is asymmetric. The

asymmetry shapes the attention of a firm trying to decide how to learn most effi-

ciently about what price to set. Different considerations are at play, depending on

where a firm finds itself in the distribution of marginal costs. Low current marginal

costs provide an opportunity to generate significantly higher profits than average,

especially given a high elasticity of substitution. Hence, firms have strong profit

incentives to capitalize on these low-cost states. On the other hand, underpricing

(relative to marginal cost) can generate large profit losses. Hence, firms have in-
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centives to err on the side of over-pricing unless they are quite certain their costs

are low.

Hence, just based on the shape of the firm’s profit function, we would expect

firms to have a tendency to (i) price high when they do not have much information,

and (ii) pay more attention when profit opportunities are high. Prior work has

emphasized the shape of the profit function, in the context of discussions regarding

the strength of real rigidities as sources of price rigidity distinct from the nominal

rigidity. Here, the sensitivity of a firm’s profits to prices and how it varies across

states in turn affects its willingness to set prices accurately, thus generating an

interaction between real and nominal rigidities.

The incentive to set high prices is dampened by the frequency with which the

firm expects to find itself in different states. With normally distributed shocks

to marginal cost, the firm expects to spend more time closer to the center of the

distribution, as shown in the second panel of Figure (2), which plots the distribu-

tion of marginal costs. This force induces firms to charge moderate prices more

frequently, as these are likely to be close to optimal more often, thereby helping

firms economize on information and adjustment costs.

4.5 Menu Cost Model Alternatives

To illustrate the incentives to price accurately in different states, we now com-

pare our model to three menu cost alternatives: with perfect repricing, with repric-

ing errors, and with timing errors. To show the differences across models more

sharply, we begin with a higher menu cost than estimated, setting κ = 0.07.

Consider first the choices of firms that have perfect information for free, and

are subject only to the menu cost when changing prices. Due to the fixed cost,

there is a range of inaction in which firms keep their prices unchanged. Firms

whose prices fall outside this range adjust to a dynamically optimal reset price.

As has been extensively discussed in prior work, the resulting adjustment policy

features asymmetric Ss bands of adjustment.

As shown in Figure (3), for low marginal costs, the Ss bands are very narrow

and the optimal reset price, which maximizes the firm’s continuation value, closely

tracks the flexible price (though it is slightly above it): Despite the low incidence
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Figure 3: Policies Across Alternative Models

Note: This figure plots the adjustment policy and repricing policy for four
models: (a) the menu cost model with perfect repricing (κ = 0.07), (b) the
menu cost model with errors in pricing (κ = 0.07, θp = 0.1), in the top
right panel, (c) the menu cost model with errors in timing (κ = 0.07, θa =
0.1), in the bottom left panel, and (d) the model with all three costs. In all
panels, the cyan dashed line marks the full information flexible price optimum
for each marginal cost value, and the red solid line marks the optimal reset
price. Panels (b) and (d) (for which θp > 0) plot the weighted average of
the conditional reset price distribution, f , and also super-impose this reset
distribution.

of the low cost states, it is nonetheless worth it to the firm to price very accurately

in these states, because the profit gains are so large. On the other hand, for higher

marginal costs, the firm chooses instead a moderate price that applies to a wider

range of states and enables it to save on the menu cost: The Ss bands widen

(especially for prices above the optimal reset price), and the reset price becomes

less and less sensitive to the marginal cost.

The top right panel of Figure (3) shows the optimal policy for a new type
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of menu cost model that features repricing errors (θp > 0). Instead of setting a

deterministic reset price that maximizes its continuation value, the firm now sets

a price probabilistically, drawn from an optimal distribution that maximizes its

expected continuation value. The optimal distribution is given by an expression of

the same form as in equation (21), with the appropriately adjusted value function.

Compared to the pure menu cost model, the errors-in-pricing model features

additional endogenous price rigidity: The Ss bands widen and the frequency of

price changes drops significantly. The possibility of mistakes in repricing arises as

a new source of price rigidity, beyond the menu cost itself. A higher θp pushes

toward a lower frequency of adjustment, biasing the firm toward inaction. But

this is a rational response, given the possibility of mistakes in pricing. As a re-

sult, models may over-estimate the size of adjustment costs needed to match the

frequency of price changes, if they abstract from the possibility of mistakes in

repricing. Furthermore, compared to the optimal reset price in the pure menu

cost model, the weighted average price charged in different states now becomes

even less sensitive to marginal costs. The repricing distribution features strong

dampening of price responsiveness to marginal costs that are above average, while

maintaining the downward flexibility of prices for low marginal costs. The pricing

policy also features stronger over-pricing at low marginal cost values, as a way for

the firm to protect itself against underestimating its marginal cost.

The errors-in-pricing model features a distribution of reset prices that is most

dispersed in the middle, reflecting the fact that the firm fine-tunes its pricing

accuracy depending on the state. The firm’s optimal conditional distribution of

reset prices is tight at low marginal costs because low costs are highly profitable

opportunities that are worth capturing accurately. On the other hand, it is also

tight at high marginal costs, but for an entirely different reason: high marginal

costs present opportunities to save on information and adjustment costs by not

differentiating prices across states too much. Most of the time, however, firms are

in the middle range with the widest price dispersion.

The bottom left panel of Figure (3) shows the optimal policy for a menu cost

model with errors in timing, similar to the model of Woodford (2009). In this case,

θp = 0, and the firm sets the optimal reset price deterministically, but θa > 0,

such that the firm adjusts its price probabilistically, with a continuous adjustment
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probability Λ ∈ (0, 1), that takes a form similar to that in equation (20).

Compared to the pure menu cost model, the probability of adjustment is sig-

nificantly above zero everywhere, even at the optimal reset price, since the firm

is never certain of the state, and hence sometimes adjusts even when it should

not. Away from the optimal reset price, the probability of adjustment increases

gradually and asymmetrically: low costs are worth identifying accurately since, as

before, they offer highly profitable opportunities, while the rest of the time, ad-

justment is Calvo-like even for modest information frictions. As thetaa increases,

the probability of adjustment Λ becomes more and more Calvo-like, approaching

a constant probability of adjustment Λ̄.

Finally, the bottom right panel of Figure (3) reproduces the optimal policy for

the menu cost models with errors in both timing and pricing. Timing and repricing

accuracy are now chosen to be jointly optimal, and hence they interact to optimize

the use of information. Mistakes in price-setting make firms more careful when

changing prices so that the timing of adjustments becomes more state-dependent.

Relative to the model of Woodford (2009), the introduction of mistakes in pricing

makes the probability of adjustment Λ more well-shaped and with a wider region

of near-inaction. On the other hand, mistakes in timing make the firm pay more

attention to the price it sets, reducing over-pricing in low-cost states, slightly

increasing sensitivity to marginal cost in high-cost states, and overall reducing the

dispersion in the distribution of reset prices.

These interactions provide a new way to rationalize Calvo-like behavior. Firms

that can learn what the right price is very easily do not need to worry about timing

their price changes. They can change prices with some constant probability, as is

assumed in the Calvo model. But if figuring out the right price is very difficult,

firms should pay close attention to when their prices are wrong, thus making their

timing decision more state-dependent. In practice, our estimates suggest that firms

may find it easier to learn they are setting the wrong price than to know how to

fix it, as indicated by the relative sizes of the two information costs.
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TABLE V: Non-Neutrality

Model CIR

Our baseline model 0.112

The Calvo model 0.138

Woodford (2009) 0.097

Menu cost model 0.003

Notes: The table reports the cumu-
lative response of consumption, as a
percent of annual steady state con-
sumption, in response to a 25-bp im-
pulse to the federal funds rate.

4.6 Implied Non-neutrality

What do these pricing frictions imply for the degree of monetary non-neutrality?

Table V reports the cumulative impulse response (CIR) of consumption to a 25 bp

shock to the federal funds rate for our model and for alternatives parameterized

to match the same steady state frequency and size of price adjustment.

The model deviates from the conventional wisdom, which posits that in order

to get meaningful non-neutrality, one needs weak state dependence in the timing

of price changes. For example, with perfect repricing, menu cost models need some

auxiliary features to weaken the selection in terms of who adjusts in response to a

shock. But with mistakes in repricing, firms can end up with a suboptimal price

even if they correctly decide when to adjust. Hence mistakes in the timing of price

changes are no longer strictly necessary for non-neutrality.

Mistakes in repricing mean that in the aggregate there is a lower effective

frequency of adjustment. We can connect this discussion to the discussions of

selection in time-dependent and state-dependent models (Caballero & Engel, 2007;

Golosov & Lucas Jr, 2007; Auclert, Rigato, Rognlie & Straub, 2022; Gagliardone,

Gertler, Lenzu & Tielens, 2023). In effect, our model features negative selection on

the intensive margin that either amplifies the lack of selection along the extensive

margin in the Calvo model or works to offset the positive selection along the

extensive margin in the menu cost model. As a result, the menu cost model
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Figure 4: Exceeding the Calvo Bound on Non-neutrality

Note: This figure plots the CIR of consumption to a monetary policy shock
in the Calvo model with errors in pricing, as we increase the cost of pricing
accurately (θp) for (a) low elasticity of substitution and (b) high elasticity of
substitution.

may overstate flexibility both because of over-estimating selection in terms of who

adjusts and because of not considering the trade-offs between paying attention to

both the pricing and the timing decisions.

4.7 Calvo and the Bounds on Non-neutrality

Firms with an accurate adjustment policy will not devote as much effort to

implementing a very precise pricing decision: they will tolerate mistakes in price

levels because the adjustment probability is steep so that these mistakes won’t

survive long. On the other hand, firms that have a more imprecise adjustment

policy that conditions on the state more weakly, will choose to pay more attention

to the prices they charge, so that even if they mistakenly decide to change prices,

there is a relatively high probability that they will choose a suitable price.

This interaction illustrates how both the Calvo model and the menu cost model

can overstate price flexibility. Information frictions suggest that if the adjustment

is Calvo-like, the firm will try to make the pricing more accurate, while if the

adjustment is accurate like in the menu cost model, the pricing will be imprecise.

With perfect repricing, varying the severity of information frictions regarding

the timing of price adjustment spans the degree of state dependence in price setting,

with the menu cost model at one end (when the information friction approaches
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zero) to Calvo (1983) at the other end (when the information friction is strong

enough that the firm acquires no information to decide when to adjust its prices),

as shown by Woodford (2009). However allowing for errors in the repricing decision

itself adds a new source of mispricing, and hence non-neutrality. As a result, Calvo

need no longer be the upper bound on price rigidity: information could be so costly

that both the adjustment and the pricing decision are imprecise.

Figure (4) illustrates how non-neutrality can exceed that implied by the Calvo

model with perfect repricing, by plotting the cumulative impulse response of con-

sumption to a monetary policy shock as we increase θp from 0 to 1.

As the cost of setting accurate prices increases, mistakes in repricing increase,

and as a result, non-neutrality increases. However, the relationship between non-

neutrality and θp is non-monotonic, and the turning point depends on the degree

of strategic complementarities. This can be seen more clearly in the second panel

of Figure (4), which plots the CIR for a parameterization with stronger strategic

complementarities.

The non-monotonicity in the CIR reflects the non-monotonicity in price dis-

persion, which is a large contributor to the CIR. As θp increases, price dispersion

initially increases: each firm’s pricing policy becomes more imprecise. This feeds

into the cross-sectional distribution of prices f̄ , which in turn feeds into the individ-

ual pricing policy, f . At a certain point, θp gets large enough that price dispersion

starts to decrease, plateauing at the no-information limit.

This nonmonotonicity shows another way in which the errors-in-pricing model

diverges from models with perfect repricing: in the Calvo or menu cost model,

the degree of real rigidities is an independent amplifier of nominal rigidities. Here,

however, they are no longer independent.

5 Statistics and Simulations

In the model, the pricing costs pin down the degree of monetary non-neutrality.

What is the relationship between the model’s pricing costs and moments of the

price change distribution? Is there a sufficient statistic that captures the frictions

in price setting in this information-constrained model of price setting, as is the

case with a wide class of menu cost models (Alvarez et al., 2016)?
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Figure 5: Identification of Policy Parameters in Simulations (A)

5.1 Identification

How do pricing moments identify parameters in our model? Figures (5) and

(6) plot how the pricing moments vary with the three key pricing parameters (θp,

θa, and κ).

As has already been discussed in the menu cost literature, the frequency of

adjustment is the key parameter that pins down the size of the menu cost. To

match the size, standard deviation, and kurtosis, menu cost models then rely on

properties of the distribution of idiosyncratic shocks (for example, large shocks

Golosov & Lucas Jr (2007) and fat tails as in Midrigan (2011)).

We find that frequency is also highly informative for the identification of the
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Figure 6: Identification of Policy Parameters in Simulations (B)

information costs, θp and θa. However, these parameters also have large effects on

other pricing moments: the size and dispersion of price changes are particularly

sensitive to θp, while θa is relevant for skew and kurtosis.

5.2 From Prices to Non-neutrality

How does the model’s implied degree of nominal rigidities, as measured by the

CIR of consumption to a monetary policy shock, vary with the pricing costs? We

find that the CIR is particularly sensitive to mistakes in repricing driven by the

repricing cost θp. These generate substantial price dispersion and also significant

expenditure on information acquisition, both of which lower consumption. The
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Figure 7: Simulation Results: Non-Neutrality and Pricing Costs

Note: The figure shows scatter plots of the cumulative response of consump-
tion to a monetary policy shock for different model simulations parameterized
to a range of pricing costs. The top panel varies the menu cost κ, the middle
panel varies the review cost θa, and the lower panel varies the repricing cost
θp. The panels also show how the CIR varies with the Alvarez et al. (2016)
index (defined as kurtosis/frequency) for different parameterizations.

Figure 8: Simulation results varying all three costs, κ, θa, and θp.

Note: The figure shows scatter plots of the cumulative response of consump-
tion to a monetary policy shock for different model simulations parameterized
to a range of pricing costs. The figure shows how the CIR varies with the
Alvarez et al. (2016) index (defined as kurtosis/frequency) for different pa-
rameterizations.

CIR is also sensitive — though to a lesser extent — to the the value of the fixed

cost κ and it is about half as sensitive to the accuracy-in-timing cost θa as it is to

κ.

Figure (7) also plots simulated data to illustrate the strong positive relationship

in our model between the Alvarez et al. (2016) index (kurtosis / frequency) and

non-neutrality as we vary each pricing cost. Nevertheless, while strong, the rela-

tionship does not make ALL a sufficient statistic. This reflects the fact that even

when firms adjust, they do not fully close the gap to the optimal price, so that

the intensive margin of adjustment moves less than one-for-one with the shock.

It is nonetheless important to note that even with substantial errors in pricing,

kurtosis and frequency remain highly informative moments about the CIR, along

with standard deviation and size.

Figure (8) shows a scatterplot of the CIR against the ALL index when we

allow all three pricing costs to vary. The nonlinear interaction between timing

and pricing decisions as we vary all three parameters results in a weaker positive

relationship between the CIR and the ALL index, as now the dispersion of price

changes becomes more informative as well.
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6 Estimation

In this section, we report results from our Bayesian estimation. To our knowl-

edge, this is the first use of Bayesian techniques to estimate a model featuring

rationally inattentive agents.

6.1 Estimation Approach

To gain both speed and accuracy, we compute the equilibrium dynamics using

the sequence-space Jacobian (SSJ) method of Auclert et al. (2021). So far, the

SSJ approach has been successfully used in a variety of models with heterogeneity

across households; here we show how it can also be very effectively used in models

with heterogeneous information.

We extend the SSJ method to handle occasionally binding constraints, since our

sample period includes two episodes during which the lower bound was binding on

the federal funds rate. The appendix describes how we adapt the methods proposed

by Guerrieri & Iacoviello (2015) and Kulish et al. (2017) to handle the constraint

when solving the model dynamics using the SSJ method.

The estimation includes fundamental shocks to preferences, technologies, and

policies (whose realizations are not observable for free to firms) as well as shocks

to the pricing frictions themselves, interpreted as shocks to attention or efficiency

of information processing and implementation of decisions.

The presence of the two ELB periods makes the model evaluation time-consuming.

In addition, we evaluate the model many times since we have a monthly model

with a large number of observations (541 months). Hence, to reduce computa-

tional time, we only estimate the shocks. We set habit formation in consumption

to h = 0.67, based on the meta-study of DSGE models of Havranek, Rusnak &

Sokolova (2017), the rigidity in real wages to δw = 0.083, based on typical values,

and we run a separate Bayesian estimation for the parameters of the Taylor rule

for the monetary authority. Table VI reports the parameter values we use and the

appendix describes the estimation of the Taylor rule coefficients.
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TABLE VI: Calibrated Parameters

Parameter Value

Habit in consumption h = 0.67 Havranek et al. (2017)

Wage rigidity δw = 0.08 Monthly rigidity

Taylor Rule Separately estimated

Persistence ρi = 0.925

Inflation coefficient ϕπ = 1.7

GDP growth coefficient ϕy = 1.0

Notes: The table reports the values of the parameters that are calibrated rather
than estimated in the dynamic estimation. The procedure used to estimate the
Taylor rule parameters is detailed in the appendix.

Tracking the Distribution of Price Changes over Time We use the time

series for five pricing moments to keep track of how the distribution of price changes

evolves over time. These are the frequency of price changes, the mean absolute

size, the standard deviation, the skew, and the kurtosis of the distribution of price

changes in the Consumer Price Index.

Figure 9 plots the time series for these pricing moments for the estimation

sample period. Of particular interest, note that the frequency, size and standard

deviation of price changes all started increasing and kurtosis started decreasing

well before the 2020 recession. While neither of these moments is sufficient on its

own to pin down non-neutrality, these synchronized movements already suggest

that we might expect an increase in the degree of price flexibility starting around

2016. As a result, we might expect any inflationary shocks, should they occur, to

be met with a sharper inflation response, rather than a sharper output response

post-2026 versus pre-2016.

Other notable patterns in these pricing series are (i) a relatively high and

volatile frequency of price adjustment, ranging between 10% and over 20% monthly,

(ii) a more stable size of price changes, ranging between 6% and 8% per month,

(iii) a rising dispersion in price changes, measured by the standard deviation of

price changes, which increases from less than 10% at the beginning of the sample

to more than 15% by the end of the sample, (iv) volatile skew and kurtosis, both

trending down over time.
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(a) Frequency (b) Mean Absolute Size

(c) Standard Deviation (d) Skew

(e) Kurtosis

(f) Inflation

Figure 9: Pricing Moments Over Time

Note: This figure plots the smoothed pricing series used for the model es-
timation and the annualized CPI inflation rate. Shaded areas mark NBER
recession dates.
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In the last panel of the figure, we also plot the ratio of kurtosis over frequency,

which Alvarez et al. (2016) demonstrate is a sufficient statistic for nominal flexibil-

ity in a wide range of state-dependent pricing models. This statistic also exhibits

variability and was relatively high both during the early 1980s and during the

Great Recession.

Macro Series We complement the pricing data with quarterly real GDP growth

per capita, the monthly series for the federal funds rate, and the monthly CPI

inflation rate. We also include long-term interest rates in our estimation as in

Kulish et al. (2017), to aid with identification at the Effective Lower Bound on the

nominal interest rate. Appendix A provides details about the data sources and

transformations.

Measurement Equations For each of the five pricing moments x, the measure-

ment equation we use is of the form

CPI moment in quarter q =
1

3
(xq,1 + xq,2 + xq,3) + cx, (39)

where we average the monthly model moments for the months in each quarter, and

where cx is a constant we add to center the model’s mean at the data mean over

the estimation sample period.

The remaining measurement equations are

Federal funds rate = i12t (40)

Quarterly CPI inflation rate = πtπt−1πt−2 (41)

Real GDP growth = log
(
Ỹt + Ỹt−1 + Ỹt−2

)
− log

(
Ỹt−3 + Ỹt−4 + Ỹt−5

)
+ log (γt + γt−1 + γt−2) (42)

Two-year Treasury yield =
1

24

24∑
s=0

i12t + ηt + η2t + c2 (43)

Five-year Treasury yield =
1

60

60∑
s=0

i12t + ηt + η5t + c5 (44)
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where GDP in month t is Ỹt = Ct+Gt, and c2 and c5 are centering constants such

that the mean yields are equal to the empirical average yields over the estimation

sample period.

Shocks We include a range of fundamental shocks, to avoid overstating the role

the pricing frictions play in generating aggregate volatility.

The aggregate exogenous shocks are to aggregate TFP (at), impatience (ζt)

labor supply (ξt), bond demand (χt), markups (εt), the Taylor rule, trend inflation,

and permanent productivity growth. To aid with the estimation at the ELB,

following Kulish et al. (2017), we include shocks to the term structure of interest

rates: a common AR(1) yield shock, and i.i.d. shocks to the two-year and five-

year Treasuries yields. In addition, we allow for unanticipated shocks to the menu

cost, the marginal costs of acquiring information, and to the standard deviation

of idiosyncratic shocks. Variation in the pricing moments over time allows us to

disentangle the contribution of each of these shocks to price rigidity over time.

6.2 Estimation Results

Table VII shows the list of parameters we estimate along with the prior and

the optimization mode.

We present the estimated series for the three costs in Figure 10. This figure

plots the series for θp, θa, and κ when the model parameters are evaluated at the

optimization mode. Jointly, these parameter values imply a fairly volatile degree

of nominal price rigidities over time. Figure 11 plots our estimated series for the

NPR between January 1978 and March 2023.
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TABLE VII: Estimation of Shocks

Name Prior Mean SD Optimization Mode

σθp IG 1 0.5 2.40

σθa IG 1 0.5 1.44

σκ IG 0.05 0.025 0.01

σrisk IG 0.05 0.0125 0.02

σε IG 0.05 0.0125 5.62

σγ IG 0.19 0.0475 0.75

σζ IG 0.05 0.0125 5.05

σa IG 0.05 0.0125 20.11

σχ IG 0.05 0.0125 5.55

σπ∗ IG 0.117 0.0292 0.11

σi IG 0.11 0.0275 0.69

σyield2 IG 1.2 0.6 1.79

σyield5 IG 1.1 0.55 0.03

σyield IG 0 1 0.75

σξ IG 0.05 0.0125 2e-06

ρθp B 0.5 0.15 0.956

ρθa B 0.5 0.15 0.989

ρκ B 0.5 0.15 0.963

ρrisk B 0.5 0.15 0.968

ρε B 0.5 0.15 0.001

ργ B 0.025 0.15 0.546

ρζ B 0.5 0.15 0.896

ρa B 0.9 0.15 0.034

ρχ B 0.9 0.15 0.931

ρξ B 0.025 0.15 0.025

ρπ∗ B 0.5 0.15 0.323

ρyield B 0.5 0.15 0.980

Notes: We use Inverse Gamma prior distributions for the for
standard deviations of shocks and Beta prior distributions for
the autoregressive coefficients.
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The degree of NPR in each period is given by what the cumulative response of

real output would have been in reaction to a monetary policy shock in that period.

We estimate a fairly large degree of non-neutrality. Surprisingly, we find no trend

over time, despite the fact that technology has arguably made repricing easier. We

do however find substantial volatility in the degree of NPR over time.

A growing literature has argued that monetary policy may be less effective dur-

ing downturns. This argument rests on evidence that price dispersion rises during

downturns, which existing models predict implies more price flexibility. Our results

suggest that this chain of reasoning did not apply during recent U.S. recessions.

We estimate that price rigidities rose modestly during the Great Recession, and

otherwise remain largely unchanged during downturns. Instead, price rigidities

seem to vary at a medium-term frequency.

Our estimation also suggests that price rigidities started declining well before

the Covid-19 pandemic, pointing to the risk of higher inflation even before the

subsequent shocks.

One interpretation of our results is that they show that moments of the price

distribution are not sufficient to pin down the effectiveness of monetary policy. In

a way this is an expansion of the point originally made by the early literature on

menu costs, which showed that—contrary to popular belief—the frequency of price

changes is not a sufficient statistic for the degree of nominal rigidity. We push this

point further by showing that different models that match a range of moments

of the price distribution but have different assumptions regarding the information

that is available to decision makers when making price setting decisions also have

different implied degrees of monetary non-neutrality over the business cycle.

How to reconcile our findings with the growing literature that has documented

diminished monetary policy effectiveness in downturns? We believe the answers lies

in the distinction between the transmission of a central bank’s policy to the short

term real interest rate and the effect that rate has on consumption, investment,

employment, and other macroeconomic variables. In this article, we concentrate

on the first part, while the cyclicality and state-dependence of the second part has

been the focus of papers such as those of Berger, Milbradt, Tourre & Vavra (2021);

Eichenbaum, Rebelo & Wong (2022); McKay & Wieland (2021).
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Figure 10: Estimated Pricing Frictions

Note: This figure plots the estimated series for θp, θa, and κ when the model
parameters are evaluated at the optimization mode. Shaded areas represent
NBER recession dates.

7 Conclusion

This article estimates the degree of nominal price rigidity in the U.S. economy:

its trend and variability over time. We identify costly information as the main fric-

tion that prevents firms from adjusting prices more flexibly in response to shocks,
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Figure 11: Implied Nominal Rigidity Over Time

Note: This figure plots the model implied degree of nominal rigidities over
time. For each point in time, we solve the model and compute the cumulative
impulse response to a monetary policy shock, using the pricing parameters at
that time. For this exercise, we fix the reference probability of price adjust-
ment Λ̄ and the reference distribution of prices f̄ at their baseline value and
keep all other parameters constant at the optimization mode value. Shaded
areas represent NBER recession dates.

with information about the right price to charge, conditional on adjustment, being

the most significant driver of price rigidity. These results contribute to our un-

derstanding of how efficiently the U.S. economy has adjusted to shocks in recent

decades, and how effectively policymakers have stabilized aggregate demand.

On net, what do our results suggest for inflation and monetary control going

forward? We emphasize the endogeneity and variability in the degree of state-

dependence in price setting: First, our estimation results give great weight to

firms’ choices of how much attention to devote to choosing prices accurately. They

suggest that while firms generally know with fairly high accuracy when their prices

are outdated, they are much less certain about what the right price to charge is.

Second, we find that firms’ attention to market conditions is variable over time.

This variability implies state-dependence in the cost of disinflation over time.

More work is needed to measure the attention firms devote to price setting
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versus other operational decisions. But our finding that mispricing is a major

driver of monetary non-neutrality connects models of nominal rigidities to the much

broader literature that has documented stochasticity in choice in a wide range of

contexts. While stochastic choice may appear at odds with classic principles of

optimization of well-specified objective functions, in this paper, we microfound

it with rational acquisition of costly information. But it is worth separating the

stochasticity result from the model through which we endogenize this stochasticity.

We leave to future research other possible sources of randomness in decision-making

(e.g., deliberate, or exploratory randomization, model uncertainty, or responding

to consumer constraints). The important message is that whatever its source, the

consequence of stochastic choice is often a systematic bias in the response of the

aggregate price level to shocks. Stochasticity need not be divorced from but can

rather be understood as a cause of bias (Woodford, 2020).
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A SSJ and Model Estimation During ELB Peri-

ods

For linear models written in a recursive formulation, Kulish et al. (2017) and ?
show that, for an expected ELB duration, the law of motion of the economy can
be written as a time-varying linear function. As a result, the likelihood of the data
can be computed based the Kalman filter with time-varying coefficients. Hence, for
example, Kulish et al. (2017) show that DSGE models can be estimated for sample
periods including the ELB period by replacing the federal funds rate with a time
series of expected ELB durations as an observable. The expected ELB duration
does not have to be model consistent. In other words, in absence of any other
shocks, the federal funds rate could be expected to be above the ELB at a time
period different than the implied by the expected ELB duration, adding another
form of monetary policy shocks. Kulish et al. (2017) even propose to estimate the
ELB duration.

In the context of this paper, where we use SSJ to solve and estimate the model,
how can estimate the model during the ELB period? One possibility is to (1)
recover the recursive formulation of the model, as shown by Auclert et al. (2021),
(2) compute the time varying formulation of the problem as shown by Kulish
et al. (2017), (3) find the (time-varying) MA representation of the model, and (4)
compute the log-likelihood of the model accordingly. This is time consuming as the
matrix operations of step (2) can be computationally demanding for large number
of state variables.

Instead, we propose a new and efficient way of computing the log-likelihood of
the model during the ELB period for a given expected ELB duration using SSJ.
This procedure is equivalent to the aforementioned possibility, but our approach is
faster. We first present the procedure, we then explain each step in details, and we
finally show its consistency/mapping with the method proposed by Kulish et al.
(2017) and ? for models written in recursive formulation.

A.1 Steps

1. Compute the MA representation of the model for the nx shocks, using SSJ.

2. Solving the model using SSJ, include L anticipated monetary policy shocks,
where L should be as large as the expected ELB duration.

3. Extract the MA representation for the Federal Funds rate distinguishing
between monetary policy shocks (anticipated and non-anticipated) and all
other shocks in the economy. Hence, the federal funds rate at time t is given
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by:

ît = MAi,1ϵ
t−1 + α̃i,0ϵ̃t + βi,0µt (A.1)

where:

ϵt = [ϵ̃t µt]
′ (A.2)

ϵt = [ϵt ϵt−1 ... ϵt−T ]
′ (A.3)

µt = [ε0,t ε1,t ... εL,t]
′ (A.4)

MAi,j =

αi,j1 αi,j+12 ... αi,T 0 0 · · · 0︸ ︷︷ ︸
j times

 ∀j = 0 · · ·T (A.5)

αi,j = [α̃i,j βi,j]
′ ∀j = 0 · · · 1...T (A.6)

µt is the vector of unanticipated and anticipated monetary policy shocks at
time t, ϵ̃t is the vector of all other shocks in the economy at time t, and
epsilont is the combination of the those two (i.e. all aggregate shocks at
time t).

Therefore, at time t, the expected federal funds rate for t+ 1 is:

Et

[̂
it+1

]
= [α2 α3 ... αT0] ϵ

t−2 + α̃1ϵ̃t + β1µt (A.7)

We can then group, the expected federal funds rate between t and t+ L as:
it

Et

[̂
it+1

]
...

Et

[̂
it+L

]

 =


α1 α2 α3 · · · αT−2 αT−1 αT

α2 α3 α4 · · · αT−1 αT 0
α3 α4 α5 · · · αT 0 0
...

...
...

...
...

...
αL+1 αL+2 αL+3 · · · 0 0 0


︸ ︷︷ ︸

Ω

ϵt−1 +


α̃0

α̃1

α̃2
...
α̃L


︸ ︷︷ ︸

ω

ϵt +


β0

β1

β2
...
βL


︸ ︷︷ ︸

λ

µt

(A.8)

Now, if the ELB is expected to bind for L periods:
it

Et

[̂
it+1

]
...

Et

[̂
it+L

]

 =


i− 1
i− 1
...

i− 1


︸ ︷︷ ︸

Z

(A.9)
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Hence, we can get the implied monetery policy shocks for time t as:

µt = λ−1
[
Z − Ωϵt−1 − ωϵt

]
(A.10)

This implies that the MA representation for the economy at period t is given
by:

MAt = MA (A.11)

B Data Description

Recession Dates The NBER dating committee lists dates for peaks and troughs
in economic activity. In the NBER’s convention, the first month of a recession is
the month following the peak, and the last month of a recession is the month of
a trough. Therefore, we define the start month of a recession as peak plus one
month and the end month of a recession as the trough. For example, in 2020, the
peak economic activity was reached in February 2020 and the trough was reached
in April 2020, yielding a two-month recession: March and April 2020.

The Effective Lower Bound The federal funds rate was at the effective zero
lower bound (ELB) twice during our sample period: between January 2009 and De-
cember 2015, following the Great Recession, and between March 2020 and February
2022, following the Covid Recession.

To calibrate the expected ELB duration at each point in time, we use the Blue
Chip data and the survey of primary dealers. For each survey, we compute the
expected ELB duration, in weeks, for each week as described below. Then, our
weekly series correspond to the BlueChip series between 2008 and January 2011,
and to the survey of professional forecasters since January 18, 2011.

Using the Blue Chip microdata, we compute the expected ELB duration (in
quarters) for each forecaster and month.10 Then, we compute the median expected
ELB duration for each month across forecasters. By construction, this expected
duration is top-coded, as the Blue Chip survey only asks for the expected federal
funds rate value for the next 5 quarters. However, before 2011, the median expected
ELB duration is less than 5 quarters. We compute the expected duration in weeks
by assuming a lag of one week between data collection and publication and by
using the FOMC meetings calendar. If a quarter has two FOMC meetings, we take
the simple average of the expected duration associated with those two meetings.
Finally, we get the expected ELB duration in weeks for each weeks by interpolating.

10Blue Chip is a monthly survey, but they ask for the expected federal funds rate in quarter
intervals. For example, the expected federal funds rate value in 2010Q1.
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Since January 2011, the survey of primary dealers asks for the “Most Likely
Quarter and Year of First Target Rate Increase”, later in our sample, they asked
for the specific FOMC meeting. Based on the median answer for those questions,
the date in which the survey was received, and the FOMC meetings calendar, we
compute the expected ELB duration in weeks. As with the Blue Chip survey, we
take the simple average among the expected durations associated with the meetings
in each quarter, and we get a weekly series by interpolating.

C Additional Data Plots

We smooth the pricing series using a centered moving average filter to reduce
volatility associated with measurement error. Figure (C.1) plots the time series
of the different pricing moments we use, both raw and smoothed. The estimation
uses the smoothed series.
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(a) Frequency (b) Mean Absolute Size (c) Standard Deviation

(d) Frequency Up (e) Mean Absolute Size Up (f) Skew

(g) Frequency Down (h) Mean Absolute Size Down (i) Kurtosis

Figure C.1: Data Pricing Moments

Note: These panels plot the raw and MA-smoothed series for the pricing
moments based on the U.S. CPI data from 1978 to 2023.Q1. Shaded areas
represent NBER recession dates.
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