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1 Introduction

How strong are nominal rigidities in the US economy? Have prices become more responsive

to shocks over time? Does price rigidity vary over the business cycle? These questions are

at the core of monetary economics: Rigidities in prices change how the economy adjusts in

response to supply and demand shocks, and they determine the extent to which monetary

policy can stabilize fluctuations in inflation and economic activity. Consider the debate

regarding the likelihood of a soft or hard landing for the US economy following the inflation

surge of 2021-2022. That likelihood depends in part on how flexibly prices adjust – first to

the inflationary shocks themselves, and second to the interest rate increases undertaken by

the Federal Reserve in its efforts to lower inflation. Despite the large literature measuring and

modeling price rigidities, uncertainty and disagreement persist, reflecting both the difficulty

of constructing model-free empirical estimates and the lack of clarity regarding what frictions

are most relevant when modeling this rigidity.

This paper provides a structurally estimated time series for the degree of nominal price

rigidities (NPR) in the United States, documenting that it has varied substantially in recent

decades. We proceed in three steps: First, we propose a generalized model of nominal

rigidities that nests existing paradigms. Next, we undertake a Bayesian estimation where

variation in nominal frictions is identified using the dynamics of the empirical distribution

of price changes underlying the US Consumer Price Index (CPI). Finally, using the frictions

extracted from the Bayesian estimation, we compute two time-varying measures of NPR: the

consumption response to a monetary policy shock and the sacrifice ratio of lowering inflation

by one percentage point via a contraction in demand.

Our model allows for rigidity and imprecision in both the timing of price changes and

the choice of what reset price to set when adjusting. In this way, we depart from prior

quantitative models in which the nominal rigidity arises exclusively from the infrequent

adjustment of prices. We microfound these frictions in a unified framework that combines

rational inattention (Sims, 2003; Woodford, 2009) variable costs with fixed menu costs,

allowing firms to optimize both the timing and precision of their choices. Firms are rational

in that they fully understand their environment and maximize well-defined objectives; but
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they can only learn about the realized state in real time at cost. In our context, a firm’s choice

is what price to charge, which in turn determines its demand and production inputs. Since

repricing is subject to a fixed cost, firms first decide if they want to change their existing

price. They do so based on an imprecise awareness of the state of the economy, which

generates not only infrequent adjustment, but a smooth adjustment hazard à la Caballero

& Engel (1999, 2007), with the decision to change prices only probabilistically tied to the

value of adjusting prices in a given state.1

When adjusting, firms decide how much to learn about the right price to set. Unlike in

standard models with sticky prices, we do not assume that firms know the state perfectly

when adjusting. Instead, they choose how much to learn about the optimal reset price, which

amounts to choosing how strongly the reset price conditions on the state in real time. As a

result, reset prices are only probabilistically tied to the full information optimal price. This

generates state-dependent inefficient price dispersion even conditional on price adjustment,

giving rise to additional nominal rigidity. Overall, the model spans pricing behavior from full

state contingency to no state contingency in terms of both timing of price changes and reset

prices, and we let the data pin down the degree of state dependence along each margin.2

Allowing imprecision in reset prices is motivated by a large body of evidence that eco-

nomic choices are based on dispersed, imprecise beliefs and are only partially related to

optima in a variety contexts. Many studies have documented dispersion and stochasticity in

actions and forecasts conditional on adjustment, in both surveys and incentivized controlled

laboratory experiments, from the seminal work of Carroll (2003), Mankiw, Reis & Wolfers

(2003), Coibion & Gorodnichenko (2012), to the more recent work of Cavallo, Cruces &

Perez-Truglia (2017), Magnani, Gorry & Oprea (2016), Khaw, Stevens & Woodford (2017),

Coibion, Gorodnichenko & Kumar (2018), Coibion, Gorodnichenko & Ropele (2020), Dean

& Neligh (2023), Khaw, Li & Woodford (2021), Fuster, Perez-Truglia, Wiederholt & Zafar

1See Caballero & Engel (2007); Costain & Nakov (2011) for early discussions of the desirability of a
smooth adjustment hazard for prices, and Blanco, Boar, Jones & Midrigan (2024); Gagliardone, Gertler,
Lenzu & Tielens (2025) for applications to the 2021 inflation surge.

2Another class of models with stochastic reset prices is the class of search-theoretic models of imperfect
competition, which can generate both price dispersion and price rigidity (Burdett & Menzio, 2017; Head, Liu,
Menzio & Wright, 2012). This alternative class of models has very different implications for non-neutrality
and monetary policy, and yet a discussion of the identification of search frictions versus rational inattention
remains an open question.
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(2022), Angeletos, Huo & Sastry (2021).3 Our model allows us to assess the relevance of

such inaccuracy in U.S. price data, and its consequences for monetary non-neutrality.

We back out the implied pricing frictions by incorporating the dynamics of the distri-

bution of price changes in the estimation, in addition to data on real economic activity,

interest rates, and inflation, and a rich set of shocks. The distributional moments provide

rich information that helps identify the time-varying pricing frictions in the model. This

approach contrasts with prior work, which uses the averages of various pricing moments as

targets, yielding an average degree of NPR. The distributional moments are built from the

micro data underlying the U.S. CPI and cover the period from January 1978 to March 2023.

These series were created by Nakamura, Steinsson, Sun & Villar (2018) and extended to

2023 by Montag & Villar (2023).4 We incorporate this cross-sectional variation in our esti-

mation, much like the work on heterogeneous households has begun using household income

and wealth distributional data to inform models of the aggregate economy.5 Our approach

opens the door to further work on heterogeneous firms with other frictions and distributional

moments (e.g., investment costs or financial frictions).

Matching the time series of the distributional price moments requires variation in the

pricing frictions over time. A wide range of shocks to firms’ desired prices are simply not

enough to generate the kind of volatility in the distribution of price changes that we see in the

data. Most of the time, the distributional data suggest a menu cost model with time-varying

errors in repricing. Moreover, volatility in the cost of repricing is strongly correlated with the

measures of exogenous uncertainty of Jurado, Ludvigson & Ng (2015) and Ludvigson, Ma

& Ng (2021): In times of rising aggregate uncertainty, firms start paying close attention to

the prices they set, which reduces monetary non-neutrality. Conversely, when fundamental

aggregate uncertainty is low, firms are less attentive to the environment, and monetary non-

neutrality rises. We interpret this as variability in the attention and efficiency with which

firms process information about the state of the economy (e.g., Flynn & Sastry, 2024).

3See also the reviews of Assenza, Bao, Hommes & Massaro (2014) and Fuster & Zafar (2023). Our
friction is also related to models of misallocation and misoptimization due to information frictions, e.g.,
David, Hopenhayn & Venkateswaran (2016); David & Venkateswaran (2019); Flynn & Sastry (2024).

4We thank Daniel Villar for sharing the time series of these moments.
5For example, Auclert, Rognlie & Straub (2020); Bayer, Born & Luetticke (2020); Bilbiie, Primiceri &

Tambalotti (2023)

3



Variability in the estimated frictions in turn generates variation in NPR. For each period

in our sample, we compute what the cumulative response of consumption would have been in

each period, in reaction to a monetary policy shock, given the pricing frictions we estimate for

that period. To our knowledge, this is the first such structurally estimated series. According

to our results, a shock to the monetary policy rule of of 25 basis points yields a cumulative

change in consumption equal to 0.12 percent of annual steady-state consumption, on average.

This represents 80% of the response a Calvo model would predict when calibrated to the

same frequency and size of price changes. Underlying this average, we find considerable

fluctuations, with nominal rigidities peaking in the mid-1990s and mid-2010s. We find no

consistent pattern during recessions, casting some doubt on the hypothesis of increased price

flexibility during recessions, and also no clear trend.

Another way to understand the severity of these frictions is via the sacrifice ratio, which

asks what is the output loss associated with lowering inflation by one percentage point via

contractionary monetary policy. A high sacrifice ratio indicates a high cost of disinflation.

We find a time-varying sacrifice ratio that shows considerable volatility. Most of the time,

the sacrifice ratio fluctuates below 0.5 in our sample. But two episodes stand out: First, we

estimate an unusually high sacrifice ratio (above 2) during the 2011-2016 years of the first

ELB period. During that time, price rigidities were very high, making output highly sensitive

to monetary policy. Second, by the time of the 2021 inflation surge, the sacrifice ratio had

fallen to a mere 0.03. Pricing frictions had come down dramatically, making monetary policy

highly potent in controlling inflation.

The sharp increase in price flexibility that we estimate starting in 2016 is particularly

noteworthy. This change coincides with both the Federal Reserve’s liftoff of its policy rate

from the effective lower bound and with an acceleration of the use of machine learning al-

gorithms to determine real-time pricing (Adams, Fang, Liu & Wang, 2024).6 Price rigidities

had been falling well before the COVID-19 shocks and had already fallen below historical

lows by January 2021, when CPI inflation was only 1.5%. In hindsight, this evidence sug-

gests that we might have expected any inflationary shocks to be met with a sharper inflation

6While the former change suggests transitory heightened attention to price-setting, the latter could be a
sign of a structural change worth monitoring with more disaggregated data on AI pricing practices.
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response post-2016 versus pre-2016. It may explain why inflation surged so rapidly in 2021

and then declined so sharply in 2022. It also points to the high value of monitoring distri-

butional pricing data in real time. According to our estimates, when the Federal Reserve

started targeting higher interest rates in the first quarter of 2022, the cross-sectional distri-

bution of price changes in the CPI implied that lowering inflation from its level at the time

(approximately 8.5%) down to 2% would, all else equal, be associated with a contraction

of less than 0.2 percentage points of consumption. But due to the varying severity of the

pricing frictions, the same disinflation would have cost 2.7 percentage points of consump-

tion in 1994. In contrast, according to the Calvo model, disciplined only by a time-varying

frequency of price changes, the consumption loss would have been 0.5 percentage points in

2022 and 2 percentage points in 1994.

Underlying our estimated NPR series are several results that shed new light on the sources

and dynamics of nominal rigidity. These results depart meaningfully from the conventional

wisdom embedded in standard DSGE models with nominal frictions and reflect the interac-

tion between firms’ timing decisions and their repricing choices. First, we estimate a strongly

state-dependent probability of adjustment (especially when prices are high relative to the

expected reset price) and a modest menu cost that accounts for only a small fraction of both

adjustment costs and the total degree of price rigidity. Conversely, we estimate substantial

inaccuracy in repricing that drives most of the NPR on average and over time. In the par-

lance of literature, firms only partially close their price gaps when adjusting. It seems that

firms are able to determine quite accurately when their prices have become obsolete, but

they have more difficulty determining the right reset price.

Second, firm-level mistakes do not average out with aggregation. When firms adjust, they

do not fully close the gap to the optimal price, so that the intensive margin of adjustment

moves less than one-for-one with the shock. This incomplete closing of the pricing gap

challenges standard models that assume perfect repricing conditional on adjustment. It

breaks the connection between adjustment and flexibility : Even if prices are not very “sticky,”

in the sense that they are changing over time, they nevertheless only partially respond to

economic conditions. Underscoring this dichotomy, we show that under some conditions, a

higher frequency of price changes can be associated with a higher degree of NPR, generating
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a paradox of flexibility. Moreover, we show that this implies that the Calvo model no longer

determines the upper bound on monetary non-neutrality.

Third, we find that imprecision in repricing is itself a source of infrequent adjustment:

Most of the inaction in prices reflects uncertainty about the right price to set, rather than

an unwillingness to pay the adjustment cost. In our model, firms understand that they risk

picking the wrong price, so they often choose to forgo price changes altogether. This un-

certainty provides a potent micro-foundation for inaction that is quantitatively significant:

Introducing a very small degree of errors in pricing can nearly halve the frequency of ad-

justment.7Moreover, the degree to which firms tolerate errors in pricing interacts with their

tolerance for errors in the timing of price changes. Under certain conditions, this interaction

can rationalize Calvo-like price-setting as an optimal way to economize on repricing costs.

Lastly, our estimation method contributes methodologically to the literature that has

sought to introduce heterogeneity in DSGE models. To our knowledge, this is the first

Bayesian estimation of a model with rationally inattentive firms using the sequence-space

Jacobian (SSJ) method of Auclert, Bardóczy, Rognlie & Straub (2021). Moreover, our sample

includes two periods in which the effective lower bound (ELB) was binding on the federal

funds rate. To handle this, we also show how to do maximum likelihood evaluation with

SSJ and an occasionally binding constraint on the nominal interest rate, by adapting the

methods proposed by Guerrieri & Iacoviello (2015) and Kulish, Morley & Robinson (2017).

Related Literature We build on work that has sought to use moments from the micro

pricing data to develop micro-founded models of nominal rigidities. For example, while the

frequency of price adjustment is a sufficient statistic for the canonical Calvo (1983) model,

Alvarez, Le Bihan & Lippi (2016) prove that under certain conditions, frequency relative

to kurtosis pins down non-neutrality in a wide class of menu cost models, Berger & Vavra

(2018) argue for the additional empirical relevance of the standard deviation of price changes,

and Luo & Villar (2021) suggest also taking into account the skewness of price changes.

Empowered by detailed empirical analyses of micro pricing patterns starting with the seminal

work of Bils & Klenow (2004), Nakamura & Steinsson (2008), and Campbell & Eden (2014), a

7Imprecision driving inaction is also discussed in Costain & Nakov (2015) and Ilut, Valchev & Vincent
(2020), though arising via different mechanisms (namely, control costs and ambiguity aversion).
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wave of menu cost models (e.g., Alvarez & Lippi, 2014; Golosov & Lucas Jr, 2007; Midrigan,

2011; Nakamura & Steinsson, 2010; Vavra, 2013) have studied the contribution to NPR of

different moments of the price change distribution. Our results underscore the importance

of studying how time variation in these moments relates to time-varying price flexibility.

Second, our framework nests both models that generate non-neutrality via infrequent

price adjustment and models that generate non-neutrality via the incomplete response of

individual prices to shocks. In the first category, our model belongs to the class of generalized

Ss models (Caballero & Engel, 2007), in which the probability of adjustment varies smoothly

with the value of adjusting, as in Dotsey, King & Wolman (1999); Woodford (2009), and

Karadi, Amann, Bachiller, Seiler & Wursten (2023). In the second category, our model

belongs to the class of models with imprecise price-setting (Woodford, 2003), in particular

work that operationalizes tools from information theory (Afrouzi, 2020; Afrouzi & Yang,

2021; Maćkowiak & Wiederholt, 2009; Matějka, 2015; Stevens, 2020; Turen, 2023). We nest

these two classes and allow the estimation to speak to their relative importance in generating

non-neutrality. Two important precursors to our work are the control cost pricing model of

Costain & Nakov (2019) and the inattentive forecasting model of Khaw et al. (2017). Khaw

et al. (2017) model rationally inattentive adjustment in both the timing of adjustment and

the choice of a new forecast for individual decision-makers tracking the realizations of a slow-

moving random variable. The model is then estimated on individual data from a controlled

laboratory experiment. Costain & Nakov (2019) model price-setting firms that are subject to

control costs in timing and repricing, and they use steady state moments of the distribution

of price changes to estimate the severity of control costs on average. However, since the

control costs that introduce errors in pricing centered around the optimal price, they largely

average out with aggregation, playing a limited role in generating NPR, unlike here.

Finally, by allowing both information frictions and nominal adjustment frictions to play

potentially distinct roles in generating nominal rigidity in response to shocks, our paper re-

lates to work that bridges these two approaches to endogenizing pricing frictions: Angeletos

& La’O (2009) and Nimark (2008) study the interaction between Calvo (1983) price-setting

and dispersed information a la Woodford (2003), while Klenow & Willis (2007) models a

sticky-information version of menu cost pricing. Melosi (2014) estimates that imperfect
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common knowledge a la (Woodford, 2003) fits U.S. inflation and output time series better

than a model with Calvo frictions alone, and Alvarez, Lippi & Paciello (2011) present a

theoretical analysis of price adjustment in the presence of menu costs and (fixed) informa-

tion costs a la Reis (2006), and they also emphasize the interaction between the two sources

of nominal rigidity. We also contribute to work that seeks to measure the costs of pric-

ing frictions (Anderson, Jaimovich & Simester, 2015; Bandeira, Castillo-Martınez & Wang,

2024; Gorodnichenko & Weber, 2016) and the severity of information frictions (Coibion &

Gorodnichenko, 2015). Our work is also complementary to Carvalho, Dam & Lee (2020),

who study the degree of real rigidities and heterogeneity in price stickiness.

2 Theoretical Framework

To provide a credible structural estimation of the degree of nominal frictions over time, we

need a model that can accommodate different types of uniquely identifiable pricing frictions.

This section presents such a model, which allows for frictions in both the timing of price

adjustment and the repricing decision. Information costs and menu costs are the sources

of these frictions and generate volatile, infrequently updated prices. We place the informa-

tion and adjustment frictions on monopolistically competitive retailers while retaining the

assumption of full information, flexible adjustment for other agents in the economy. We first

describe the retailers’ problem, and then close the economy with a representative household,

competitive intermediate goods producers, and fiscal and monetary authorities.

2.1 Pricing Frictions

A continuum of retailers j sell differentiated varieties and are monopolistically competitive

price-setters in their product market and competitive price-takers in the market for their

production input.

Operating Profits Each retailer faces demand yjt = p−εt
jt Yt, with εt > 1 denoting the time-

varying elasticity of substitution, Yt final aggregate demand, and pjt = Pjt/Pt the good’s

relative price, with
(∫

p1−εt
jt dj

) 1
1−εt = 1. The production function is yjt = eajtxjt, where ajt
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is an AR(1) process for idiosyncratic productivity and xjt is a homogeneous intermediate

input with real price pxt . Real operating profit per period is

πr
jt = pjtyjt − pxt xjt. (1)

Price Setting Costs In each period, firms decide whether or not to update their price,

and if so, what price to set. They then produce whatever quantity is needed to satisfy

demand at the current price. These decisions are made subject to both information costs

and a fixed price adjustment cost κ. For tractability, the decision of whether or not to

adjust prices and the decision of what price to set conditional on adjustment are treated

as two separate decisions, and the information used to make the first decision is not freely

available to inform the second decision. The cost of information is assumed to be linear in

the information acquired in order to make each decision,

Ca
jt = θa Ia

jt and Cp
jt = θp Ip

jt, (2)

where θa is the unit cost of making a more informed decision about whether or not to adjust

prices, θp is the unit cost of making a more informed reset price choice when adjusting

prices, and Ia
jt and Ip

jt measure how much information is acquired for each decision. We

allow for (but do not impose) potentially different unit costs, since they may reflect different

managerial marginal costs of attention.

Value of the Firm Firms acquire information and make pricing decisions to maximize

V0 = Ej0

∞∑
t=0

M0,t

[
πr
jt − Ca

jt − δjt
(
κ+ Cp

jt

)]
, (3)

where M0,t is the stochastic discount factor used to discount real profit streams from date

t to date 0, δjt is an indicator equal to 1 if the firm picks a new price in period t and 0

otherwise, and κ is the fixed cost of repricing. If the firm does not revise its price in the

period, it continues with its existing nominal price. Note that if θa and θp are zero, the

firm’s problem collapses to a canonical (full information) menu cost model. On the other
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hand, if θa and κ are zero, it collapses to a version of Woodford’s (2003) imperfect common

knowledge model, with variable signal precision.

Acquiring Information Firms fully understand the structure of their environment (pay-

offs, shock processes, markets), but they must expend resources to learn the realizations of

stochastic variables in real time. Acquiring information about real-time market conditions

is formalized as a choice that can be optimized using tools from information theory (Shan-

non, 1948, 1959), subject to a cost per unit of uncertainty reduction.8 The choice of how

much information to obtain amounts to choosing how much each decision conditions on the

realized state in real time, relative to the decisions the firm could make based on beliefs it

has for free, given its knowledge about the structure of its environment.

The amount of information that the firm expects to use in order to make its adjustment

decision in some period t is

Ia
jt = Et

{
D
(
Λjt ∥ Λ̄

)}
, (4)

D
(
Λ ∥ Λ̄

)
= Λ ln

(
Λ

Λ̄

)
+
(
1− Λ

)
ln

(
1− Λ

1− Λ̄

)
, (5)

where Λjt denotes the probability that the firm adjusts its price in period t, after obtaining

information about the realized state, Λ̄ is the reference probability of adjustment, based on the

firm’s beliefs before obtaining current information, D is the Kullback-Leibler (KL) divergence

of the choice distribution from the reference distribution, and expectations integrate over the

joint distribution of idiosyncratic and aggregate states that the firm could face in period t.9

Hence, the contribution to the firm’s cost of conditioning the adjustment decision on a

period’s realized state is proportional to the divergence of Λ from Λ̄ in that state. The

trade-off facing the firm reflects the fact that the more Λ conditions on the realized state,

the more it deviates from Λ̄, and hence the higher is its cost.

Analogously, for the pricing decision, the amount of information that the firm expects to

8While Sims’s (2003) original formulation of rational inattention assumed optimization subject to a fixed
cap on information, we use here the variable cost setup popularized by Woodford (2009).

9The KL divergence gives a measure of how “far off” one would be, on average, if they assumed the first
distribution when the true distribution were in fact the second distribution.
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acquire in some period t in order to decide what price to set, conditional on adjustment, is

Ip
jt = Et

{
D
(
fjt(p) ∥ f̄(p)

)}
, (6)

D
(
f(p) ∥ f̄(p)

)
=

∫
f(p) ln

(
f(p)

f̄(p)

)
dp, (7)

where fjt(p) is the probability that the firm sets its price equal to p conditional on the

information it acquires about the realized state, and f̄(p) is the reference probability of

setting price p, based on the firm’s beliefs about the right price to set prior to obtaining

current information. As is the case for the adjustment decision, D is the KL divergence of

the choice distribution from the reference distribution, and expectations integrate over the

joint distribution of prices, productivities, and aggregate states. Hence, the contribution to

the total information flow of conditioning the pricing decision in a period on that period’s

state is proportional to the divergence of fjt from f̄ in that state. Note that D
(
f̄ ∥ f̄

)
= 0,

so the cost of using the reference distribution is zero.

Reference Distributions We assume that the firms’ reference probability of adjustment

Λ̄ in any period is the equilibrium frequency of adjustment in the steady state,

Λ̄ =

∫
Λss(p̃, a) Ω̃ss(p̃, a) da dp̃, (8)

which integrates the steady state adjustment probability Λss over the (endogenous) steady-

state joint distribution of firm prices and productivities, Ω̃ss, which we will derive later,

and which is the distribution that arises before price review decisions are made, but after

idiosyncratic shocks are realized in each period.10

Similarly, letting fss(p|a) denote the steady state probability with which a firm with

idiosyncratic productivity a sets price p when adjusting, the reference distribution for prices

is set to the steady state distribution of prices, after price adjustments have been made,

f̄(p) =

∫
fss(p | a) Ωss(p, a) da, (9)

10Going forward, we will index firms by p, a rather than j to make explicit the dependence on current
price and idiosyncratic productivity.
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where Ωss is the (endogenous) joint distribution of productivities and prices post-adjustment,

which we will also derive later, as a function of the optimal adjustment and pricing policies.

The assumption that firms use the steady state cross-sectional distributions as their

reference is motivated by the idea, plausible to us, that decision-makers with prior experience

across a range of states may find it “easier” to have as references rules that they have observed

work well on average, across many states. By constraining the reference distributions in this

way, we are using a slightly inefficient information structure that should nevertheless be

quite close to the optimal reference distributions that would be predicted by the pure RI

solution, which would require the reference distributions to also be optimized, by being set

to the discounted expected values of the choice distributions across the states expected to be

encountered over the expected life of the policy. The Online Appendix discusses alternatives.

Recursive Formulation We now define the firm’s problem recursively and solve for each

element of the optimal policy. The value charging price p in a particular state is

Vt(p, a) = πr
t (p, a) + Et

{
Mt,t+1 V

∗
t+1 (p

′, a′)
}
, (10)

where the subscript t indicates dependence on the aggregate state, expectations condition

on the current state, V ∗
t+1 is the maximum attainable value the firm can expect in the next

period (assuming optimal choices henceforth), p′ ≡ pP/P ′ is the real price with which the

firm begins the next period (eroded by inflation), and a′ is next period’s idiosyncratic state.

For a firm that begins period t with real price p̃ and productivity a, the firm’s choices solve

V ∗
t (p̃, a) = max

Λt∈(0,1)

{
Λt · [V a

t (a)− κ] + (1− Λt) · Vt(p̃, a)− θaD
(
Λt ∥ Λ̄

)}
(11)

V a
t (a) = max

ft∈(0,1)

{∫
Vt(p, a) ft(p | a) dp− θp D

(
ft(p | a) ∥ f̄(p)

)}
(12)

s.t.
∫
ft(p | a) dp = 1 ∀a, where in the first equation we have suppressed the arguments of

Λt to ease notation. The firm either adjusts to a new price, with probability Λt (p̃, a), or

continues with its current price, which occurs with probability 1 − Λt (p̃, a). In either case,

it pays the cost of conditioning this period’s adjustment probability on this period’s state.
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If the firm continues with its existing price, it obtains Vt(p̃, a), which consists of the flow

operating profit at this price plus the expected discounted continuation value of entering the

next period with this price. If, instead, the firm adjusts its price, it pays the menu cost κ

and can expect to obtain V a
t (a), the expected value under the optimal repricing policy, net

of the cost of using a policy that deviates from the default f̄ .

Optimal Choice Distributions The optimality condition for the choice of Λt (p̃, a) equates

the marginal value of a more accurate adjustment decision to its marginal cost, state by state.

This yields an expression for the optimal log odds of adjustment given by

ln

(
Λt(p̃, a)

1− Λt(p̃, a)

)
= ln

(
Λ̄

1− Λ̄

)
+

1

θa

[
V a
t (a)− Vt(p̃, a)− κ

]
, (13)

with Λ̄ given by equation (8). The model predicts a linear relationship between the con-

ditional log odds, the reference log odds, and the net gain from adjusting the firm’s price,

with the unit cost θa governing the sensitivity of the adjustment decision to the real-time

value of adjusting in each state. In the limit, θa → ∞ implies a constant probability of

adjustment, independent of the state, as in the Calvo model. As θa → 0 the adjustment

decision converges to a deterministic Ss adjustment rule, with the firm adjusting its price

with certainty outside the Ss bounds and not adjusting inside these bands. For intermediate

values of θa, the adjustment probability is smoothly increasing in the value of adjusting,

yielding a stochastically state-dependent adjustment decision, as in (Woodford, 2009) and

similar to random menu costs models (Dotsey et al., 1999).

Now consider the optimal choice for the probability of charging a particular price in a

particular state. This choice too can be optimized state by state and is given by

ft(p | a) =
f̄(p) exp

{
Vt(p,a)

θp

}
∫
f̄(p̂) exp

{
Vt(p̂,a)

θp

}
dp̂

(14)

for each p charged with positive probability in the steady state, with f̄ given by equation (9).

A price is charged with a higher probability in a particular state if it yields a higher value

in that state compared to the average value across all possible prices under the reference
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distribution. The value of deviating from the reference must be high enough, relative to the

marginal cost of information θp, to compensate for the higher information expenditure. A

lower attention cost θp enables finer differentiation across states. As the cost approaches

zero, the firm’s repricing policy approaches a degenerate distribution for each state, concen-

trating all the probability mass at the optimal full-information reset price. Conversely, as θp

increases, the firm increasingly relies on the reference distribution. It does so first in states

in which its continuation value is not too price sensitive, and eventually across all states.

Equations (13) and (14) give an optimization-based approach to generalizing the fixed

adjustment cost model to a stochastic version. The firm acts probabilistically in both its

decision about whether or not to change its price and its choice about what price to set.

But the degree of stochasticity in each is the result of a cost-benefit analysis that is made

state by state and period by period: In states of the world where mispricing is very costly,

the firm devotes more resources to information acquisition. Conversely, in states where its

payoffs are not very sensitive to pricing accuracy, the firm economizes on information costs,

reallocating these savings to improve decision accuracy in more profit-sensitive states.

Price Distributions The law of motion for the joint distribution of prices and idiosyncratic

states after all pricing decisions have been made is given by

Ωt(p, a) = [1− Λt(p, a)] · Ω̃t(p, a) +

[∫
Λt(p̂, a) Ω̃t(p̂, a) dp̂

]
· ft(p | a), (15)

where Ω̃t(p, a) is the joint distribution at the beginning of the period, before any pricing

decisions have been made, but after the realization of all shocks in the period. It is given

by the post-adjustment distribution in the previous period Ωt−1(p, a), with prices eroded by

inflation and idiosyncratic states transitioned to period-t values,

Ω̃t(p, a) =

∫
Ωt−1(pPt/Pt−1, â) · Ta(â, a) dâ, (16)

where Ta gives the probability of transitioning from productivity â to a.
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Price Dispersion and Resource Cost To complete the exposition of the pricing block

of the model, we next define the total demand for the intermediate input,

xd
t ≡

∫
xjt dj =

∫
p−εt
jt e−ajt Yt dj = Yt∆t, (17)

where ∆t is the equilibrium level of price dispersion in the economy and is pinned down by

the distribution of prices:

∆t =

∫
p−εte−adΩt(p, a). (18)

Given aggregate and idiosyncratic conditions, retailers make their pricing choices, generating

a level of aggregate price dispersion ∆t. In the economy with no pricing frictions, price

dispersion would arise only due to differences in idiosyncratic productivity. With frictions,

there is additional, inefficient price dispersion that causes misallocation across firms.

Finally, the resource cost of the pricing frictions is

Ft =

∫ {
θaD

(
Λt(p̃, a) ∥ Λ̄

)
+ Λt(p̃, a)

[
κ+ θpD

(
ft(·|a) ∥ f̄

) ]}
dΩ̃t(p̃, a), (19)

where the first term integrates over all review costs and the second term adds the repricing

costs of all firms that adjust in the period.

2.2 Closing the Model

Intermediate Goods Producers The supply of intermediate inputs is determined by

a continuum of competitive producers who choose labor to maximize static real profits,

πx
t = pxt xt − wtLt, subject to the production function xt = eat+ztLt, where Lt is labor

input, wt is the real wage, at is an AR(1) process for log aggregate productivity, and zt is a

random walk process that grows at the rate γzt, itself an AR(1) process. Optimization by the

intermediate goods producer yields the real price for the intermediate input, pxt = wt e
−(at+zt),

and market clearing for the intermediate input yields total labor demand Lt = Yt ∆t e
−(at+zt).

Households and Fiscal Authority The representative household chooses streams of con-

sumption Ct, labor supply Lt, and the real value of the risk-free bonds Bt purchased in period
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t, to maximize lifetime utility,

U = E0

∞∑
t=0

βtζt

[
ln (Ct − hCt−1)− ξt ·

(
L
1+ 1

ν
t

1 + 1
ν

)
+ χt ·Bt

]
(20)

subject to the sequence of flow budget constraints

Ct +Bt = wtLt +Dt − Tt +Bt−1
it−1

πt

, (21)

and a no-Ponzi condition, where β ∈ (0, 1) is the discount factor, ζt is a discount factor

shock, h ∈ [0, 1) is the degree of habit in consumption, ν ≥ 0 is the Frisch elasticity of labor

supply, ξt is a shock to the relative disutility of working with mean ξ̄, χt is a shock to the

household’s preference for bonds with mean χ̄, Dt are firm dividends, Tt are lump-sum fiscal

taxes net of transfers, it−1 is the gross nominal interest rate earned on bonds between t− 1

and t, and πt ≡ Pt

Pt−1
is the gross inflation rate between t− 1 and t.

The discount factor shock ζt affects the intertemporal Euler equation and has been shown

by Justiniano, Primiceri & Tambalotti (2010) and others to be a useful (reduced-form) driver

of consumption fluctuations. It is also often used to drive the economy to the effective lower

bound on the nominal policy rate of the monetary authority (Eggertsson & Woodford, 2003).

Shocks to labor disutility ξt are introduced to affect the firm’s marginal cost function. Lastly,

including the real value of bond holdings in the household’s utility function allows for reduced

form risk preference shocks χt, following Krishnamurthy & Vissing-Jorgensen (2012), Fisher

(2015), and Campbell, Fisher, Justiniano & Melosi (2017).

The final good is used for consumption Ct, government spending Gt, and to pay for the

costs associated with pricing frictions Ft,

Yt = Ct +Gt + Ft, (22)

where government spending is funded by lump-sum consumer taxes and is a fixed share g of

steady state output net of pricing frictions, Gt = g(Yss − Fss).
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Wage Rigidity To avoid over-stating the role of pricing frictions and the degree of marginal

cost flexibility, we include a simple reduced-form wage rigidity given by wt = δww̄∗ + (1 −

δw)w∗
t , where w̄∗ is the steady state real wage and w∗

t is the competitive real wage.

Monetary Authority The monetary authority follows a Taylor rule featuring deviations

of output growth from long-run growth, as in Sims (2013). The rule also features interest

rate smoothing and is subject to a zero lower bound. When not constrained by the lower

bound, monetary policy implements

iat = ρi i
a
t−1 + (1− ρi)

[
iass + ϕπ (π

a
t − πa

ss) + ϕy (dy
a
t − γa

ss)
]
+ eπt + eit , (23)

where iat is the annual nominal rate in month t, πa
t is the inflation rate over the most recent

12 months, dyat is the real output growth over the most recent 12 months, γa
ss is steady-state

annual output growth, and iass is the steady state nominal rate associated with steady state

inflation πa
ss. Policy is subject to a Gaussian AR(1) shock eπt and a Gaussian i.i.d. shock eit.

Balanced Growth The source of long-run growth is labor-augmenting technological progress

zt, which grows at rate γzt. We detrend aggregate variables by zt and require that κt, θ
r
t , θ

p
t

grow at the same rate as zt.

Shocks We include a range of fundamental shocks, to avoid overstating the role the pricing

frictions play in generating aggregate volatility. The shocks are to aggregate TFP (at),

impatience (ζt), disutility of labor supply (ξt), bond demand (χt), markups (εt), the Taylor

rule (eπt , e
i
t), and permanent productivity growth (γzt).

3 Steady State Frictions

In this section we report what the pricing statistics over recent decades suggest about the

nature and severity of pricing frictions in the United States, on average.
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TABLE I: Data and Baseline Model Moments

Full Sample Post-1984 Moderation Baseline
1978-2023.Q1 1984-2023.Q1 1984-2007.Q2 Model

Frequency 0.1131 0.1092 0.1005 0.0972

Size 0.0735 0.0744 0.0740 0.0750

Std. deviation 0.129 0.133 0.129 0.122

Skew -0.131 -0.166 -0.142 -0.141

Kurtosis 11 10 11 11

Frequency cuts 0.031 0.032 0.029 0.030

Size cuts 0.074 0.077 0.076 0.080

GDP growth rate 0.0151 0.0158 0.0204 0.0204

Inflation rate 0.0354 0.0281 0.0308 0.0308

Federal funds rate 0.0462 0.0354 0.0532 0.0532

The pricing statistics report averages for moments constructed for the monthly distributions
of log-price changes. Size is the size of the absolute value of price changes. Frequency cuts
and Size cuts are the frequency and size of price cuts. Per-capita real GDP growth, CPI
inflation, and average effective federal funds rate are annual rates. The shaded column
shows the moments targeted in the steady state estimation. Sources: Daniel Villar, FRED.

3.1 Moments and Parameters

We use statistics from the U.S. Consumer Price Index (CPI) to estimate the steady-state

pricing frictions. These statistics are based on the individual price quotes underlying the

CPI, as constructed by Nakamura et al. (2018) for the sample starting in January 1978

and ending in December 2014, and extended by Montag & Villar (2023) to March 2023.

We thank Daniel Villar for sharing the time series of these moments with us. Table I

reports the average values of seven pricing moments for the full sample period and for two

sub-samples: post-1984, which may be of independent interest since it represents a period

of modern monetary policy, and the Great Moderation, which the Federal Reserve dates

between January 1984 and June 2007, and which we target for our steady-state. The table

also reports GDP growth, inflation, and the effective federal funds rate, which we also target.

We parameterize the steady state by targeting averages over the Great Moderation period

since that was a period of relative macroeconomic stability. The estimation of aggregate

shocks away from the steady state will then make use of the entire data, including the volatile
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TABLE II: Steady State Parameters

Parameter Baseline θp
.
= 0 κ

.
= 0 θa

.
= 0 K

.
= 5

Annual real growth rate γa
ss 1.0204

Annual inflation rate πa
ss 1.0308

Gov’t share G/C gc 0.25

Frisch elasticity ν 2

Monthly discount factor β 0.9583

Mg. disutility of labor ξ 1.7 1.1 1.8 2.1 1.3

Mg. utility of bonds χ 0.058 0.059 0.059 0.059 0.057

Repricing accuracy cost θp 1.07 0 0.57 1.09 1.59

Fixed cost κ 0.026 0.18 0 0.038 0.055

Timing accuracy cost θa 0.097 2.58 0.29 0 0.0008

EOS among varieties ε 11 5.8 11 11 6

SD(idios. shocks) σ 0.077 0.19 0.05 0.09 0.067

Persistence(id. shocks) ρ 0.94 0.60 0.98 0.95 0.95

The estimation is at the monthly frequency. Parameters are set at conventional values or to
match Great Moderation averages. The bottom six parameters are estimated jointly, targeting
seven pricing moments. The ‘Baseline’ column shows the best fit. The K

.
= 5 column shows the

estimation that targets a steady state kurtosis of price changes of 5. The remaining columns show
parameter values when we re-estimate the model shutting down one pricing friction at a time.

periods at the beginning and end of the sample. Prices showed considerable volatility even

during the Great Moderation, as has been pointed out in previous work (e.g., Bils & Klenow,

2004; Golosov & Lucas Jr, 2007; Nakamura & Steinsson, 2008). In particular, the coexistence

of large price cuts and price increases during a period of low inflation volatility points to the

importance of idiosyncratic shocks. Hence, as is common in the pricing literature, we solve

for a stochastic steady state with idiosyncratic shocks to firms’ marginal costs.11

Table II presents the steady-state parameter values and the last column of Table I reports

the model-implied values for the targeted moments. The empirical pricing moments are

constructed using monthly price changes, so we estimate the model at the monthly frequency,

to avoid having to make assumptions about price rigidities in the mapping from monthly to

quarterly moments. We set monthly productivity growth in the model to target the average

11Results are similar in an alternative parameterization that includes idiosyncratic demand shocks and
decreasing returns to scale, as, for example, in Burstein & Hellwig (2008).
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annual real GDP growth per capita (γa
ss = 1.0204), the steady state gross inflation rate

to match the realized annual average (πa
ss = 1.0308), and government spending to 25% of

steady state consumption, per the realized sample average. The Frisch elasticity of labor

supply is ν = 2 and the relative disutility of working is ξ = 1.7, set to normalize steady-state

employment. Following Michaillat & Saez (2021), we parameterize wealth in the utility by

setting the monthly discount factor to β = 0.9583 and internally calibrating the parameter

governing the marginal utility of bonds (χ = 0.058) such that the steady state nominal

interest rate matches the average federal funds rate (iass = 1.0532). This specification helps

the estimation when shocks push the economy to the effective lower bound on nominal

interest rates (see also Cuba-Borda & Singh, 2019).

The seven pricing moments are used to jointly determine the six parameters that gov-

ern the price-setting frictions, ε, σ, ρ, κ, θa, θp, by minimizing the sum of residuals, in

percentage terms. A notable feature of the estimated parameters is the high degree of mis-

pricing conditional on adjustment, coupled with accurate timing of adjustment: We estimate

θp = 1.07 and θa = 0.097, implying that firms determine quite accurately when their prices

have become obsolete, but they have more difficulty determining the right price level to set.

The coexistence of price cuts that are larger than price increases, excess kurtosis, negative

skew, and a large standard deviation of price changes can only be reconciled with substan-

tial imprecision in reset prices. On the other hand, we estimate only a modest menu cost

(κ = 0.026, about half the value typically estimated in models with perfect repricing).

Matching the pricing moments also requires a high elasticity of substitution (ε = 11,

larger than the value usually estimated in menu cost models), and volatile and persistent

idiosyncratic shocks (which is typical in this literature, given the large volatility of price

changes). Since we target more moments than we have parameters, the fit between model

and data is not perfect, but it is quite close. The match is particularly notable given the

Gaussian idiosyncratic shocks (rather than the leptokurtic shocks typically used to target

the standard deviation and kurtosis of price changes, e.g., Karadi & Reiff (2019)).12

12We have also computed results for alternative parameterizations that vary the moments targeted. For
example, if we remove the frequency and size of price cuts as targets, and set the elasticity of substitution
among varieties to a more frequently used value (ε = 6), the model can match the remaining five moments
with slightly lower pricing frictions. One could proceed with this parameterization, which is quite common
in the second-generation menu cost literature. However, the frequency and size of price cuts offer useful
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3.2 Optimal Policies and Incentives for Information Acquisition

The accuracy with which firms make pricing decisions is shown in Figure 1, which plots the

state-dependent probability of adjustment Λ and the state-dependent distribution of reset

prices conditional on adjustment, f . When a firm’s existing price is close to the price it

would expect to set upon repricing, the probability of adjustment is essentially zero. Unlike

in the canonical menu cost models, the probability of adjustment is never exactly zero or

exactly one. Hence, instead of an area of inaction, there is an area of infrequent price

adjustment, for which the probability of adjustment is still positive, but very close to zero.

This area is shown in dark in the figure. For prices that are farther from the optimum,

the probability of adjustment rises rapidly, generating strong state-dependence. The area

of infrequent adjustment is funnel-shaped : narrow in the region of low marginal costs, and

widening and flattening as marginal costs rise. Low marginal costs provide an opportunity

to generate significantly higher profits than average, especially given a high elasticity of

substitution across varieties. Hence, firms have strong profit incentives to accurately identify

and capitalize on these states. At higher marginal costs, profits become less sensitive to

mispricing, as long as prices are not too low. As a result, the area of infrequent adjustment

fans out asymmetrically: the hazard function triggers adjustment with near certainty when

the existing price is relatively low, protecting the firm from having to satisfy a lot of demand

at a high cost, but only gradually increases when the firm’s current price is above the expected

reset price, helping the firm economize on repricing costs at little profit loss.

Conditional on adjustment, reset prices are drawn from an imprecise, weakly state-

dependent distribution. The distribution of reset prices also features state-dependent pass-

through of marginal cost to price, conditional on adjustment: At low marginal cost, the

expected reset price tracks the optimal reset price closely and the dispersion of the pricing

policy is low since, as noted above, the firm has strong profit incentives to acquire enough

information to track the optimum closely, because the profit gains are so large. As marginal

costs rise, the reset price distribution becomes more dispersed and less sensitive to marginal

cost. For high enough marginal costs, the pricing policy does not meaningfully differentiate

clues not just about the distribution of idiosyncratic shocks, as previously discussed in the literature, but
also about the severity and nature of mispricing, as we discuss in the identification section.
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(a) Hazard function (b) Pricing policy

Figure 1: Optimal Policy in the Baseline Model

Notes: (a) Estimated adjustment probability Λ and (b) optimal pricing policy f in
steady state. The dashed line in panel (a) indicates the full information reset price.

across states, saving in repricing costs. Models that assume reset prices based on perfect

information yield a single state-dependent optimal reset price, rather than a distribution,

potentially misstating any possible state-dependence in the responsiveness of prices to shocks.

It is important to underscore that timing and repricing accuracy are chosen to be jointly

optimal, and hence they interact to optimize the use of information. On the one hand, the

possibility of mistakes in price-setting makes firms more careful when changing prices so that

the timing of adjustments becomes more state-dependent. On the other hand, mistakes in

timing make the firm pay more attention to the price it sets, reducing the dispersion in the

distribution of reset prices. Finally, both types of mistakes are sensitive to the asymmetry of

the profit function, which features larger losses from under-pricing than from over-pricing.

This asymmetry shapes the state dependence in the attention of a firm trying to decide how

to learn most efficiently about what price to set.13

3.3 Alternative Parameterizations

Tables II and III also report alternative parameterizations and the resulting pricing moments

for versions of the model in which we re-estimate the steady state shutting down one pricing

cost at a time. The results show that each pricing friction plays an important role in matching

13This asymmetry, which has been discussed in the menu cost literature before, is also why it is important
to work with the actual profit function rather than quadratic approximations that are usually employed in
the information frictions literature.
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TABLE III: Pricing Moments: Baseline & Alternative Estimations

Baseline θp
.
= 0 κ

.
= 0 θa

.
= 0 K

.
= 5

Freq. of price changes 0.097 0.075 0.088 0.092 0.095

Absolute size 0.075 0.079 0.085 0.079 0.079

Standard deviation 0.122 0.098 0.116 0.145 0.107

Skew -0.142 -0.139 -0.098 -0.127 -0.141

Kurtosis 11 9 7 12.6 5

Freq. of price cuts 0.030 0.027 0.030 0.025 0.065

Size of price cuts 0.080 0.063 0.082 0.098 0.078

Alternatives re-estimate the model when shutting down one friction at a time. The last
column re-estimates the full model targeting a steady state kurtosis of 5.

the distribution of price changes. Importantly, the worst performing alternative is the one

that imposes no frictions in reset prices (θp
.
= 0). To approach the empirical targets, this

version requires near-Calvo price adjustment (θa = 2.6), a much higher menu cost (κ = 0.18),

and implausibly large and transitory idiosyncratic shocks (σ = 0.19, ρ = 0.6). The finding

that without imprecision in reset prices the data require weaker state dependence in the

timing of price changes is consistent with the large literature on second-generation menu cost

models that has found it necessary to augment menu cost models with Calvo-like features.14

The fact that the re-estimated model cannot generate price cuts larger than price increases

and yields a standard deviation, skew, and kurtosis of price changes are too small relative

to the data is in line with prior work that has found it necessary to use Poisson arrival

of idiosyncratic shocks (Midrigan, 2011) or a mixture of Gaussian shocks with different

volatilities (Karadi & Reiff, 2019). Inaccuracy in reset prices instead delivers the needed

dispersion and skew in the distribution of price changes without the need to change the

underlying distribution of fundamental shocks, which has been found by the firm dynamics

literature to be well approximated by AR(1) Gaussian processes.

The model with no menu cost (κ
.
= 0) continues to deliver infrequent price adjustment,

arising solely from the information friction: Firms understand that they risk picking the

wrong price, so they often choose to forgo price changes altogether. This uncertainty provides

14Two common ways of weakening state dependence are either assuming a menu cost that is zero with
some probability, e.g., Nakamura & Steinsson (2010), Gautier & Le Bihan (2022), or using multi-product
firms with some economies of scope in price setting, e.g., Midrigan (2011), Alvarez & Lippi (2014).
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a potent micro-foundation for inaction: despite no menu cost, the frequency of price changes

is only 8.8%. Matching the remaining pricing moments proves difficult however, without a

fixed cost: The re-estimated model yields either too little or too much skew and kurtosis

given the targets for the frequency and size of price changes. The best fitting alternative

requires weaker state-dependence in the timing of price changes (θa = 0.29 vs. 0.097 in the

baseline) that is partially offset by more accurate reset prices (θp = 0.57 vs. 1.07 in the

baseline), but still misses the data along key dimensions: The resulting distribution of price

changes has too little dispersion, skew, and kurtosis, price changes that are too large on

average, and price cuts that are, counterfactually, smaller than price increases. Hence, even

though the menu cost is not necessary for generating infrequent adjustment, it is needed for

matching the shape of the distribution of price changes conditional on adjustment.

Imposing θa
.
= 0, as in a menu cost model with errors in pricing, results in modest

changes: We continue to estimate large repricing errors (θp = 1.09) and a modest, albeit

larger menu cost (κ = 0.039 vs. 0.026). Overall, the errors-in-pricing menu cost model

delivers the broad patterns of the data, including larger price cuts than price increases. This

is consistent with the fact that the estimated friction in the timing of reviews is small to

begin with in the baseline model (θa = 0.097). But matching the size and frequency of price

changes without any errors in the timing of adjustment requires idiosyncratic shocks that are

quite large, generating too much dispersion and excess kurtosis in the resulting distribution

of price changes. We conclude that all three costs factor into firms’ pricing decisions, each

having a distinct role in shaping the distribution of price changes.

A Lower Kurtosis Among all the targeted moments, kurtosis deserves additional discus-

sion, since the value for the US CPI data is much higher than the values from US scanner

price data or datasets from Europe or Canada. This difference may be due to the broader

range of goods in the CPI than in scanner data sets and it may reflect a combination of

cross-sectional heterogeneity (in both pricing frictions and the distribution of desired price

changes) and measurement error (since higher order moments are much more difficult to es-

timate accurately). How important is this higher than usual level of kurtosis for the results?

The last columns of Tables II, IV, and III report the estimation results when targeting a
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TABLE IV: Steady State Outcomes Across Estimations

Baseline θp
.
= 0 κ

.
= 0 θa

.
= 0 K

.
= 5

Spending on repricing (share of revenues)

Fixed cost (κ Λ̄) 0.003 0.014 0 0.004 0.006

Review cost (θa Iass) 0.008 0.002 0.009 0 0.0003

Repricing cost (θp Ipss) 0.016 0 0.014 0.020 0.004

Total spending (Ft) 0.026 0.016 0.023 0.024 0.010

Outcomes (relative to flex-price outcomes)

Consumption 0.93 0.85 0.96 0.94 0.97

Employment 1.05 1.02 1.04 1.04 1.07

Wages 0.95 0.86 0.97 0.96 0.99

Output 0.95 0.87 0.98 0.96 0.98

Price Dispersion 1.11 1.18 1.06 1.09 1.09

Spending on pricing decisions is reported as a share of steady state revenues. The reported numbers
may not add up due to rounding. Aggregate outcomes are reported relative to the outcomes in a flexible
price economy that is otherwise identically parameterized.

kurtosis of 5. This yields a higher value for the cost of repricing accuracy (θp = 1.59 instead

of 1.07), a lower elasticity of substitution (ε = 6 instead of 11), and double the menu cost

(κ = 0.055). Since the estimated imprecision in reset prices is even stronger, we conclude

that the high kurtosis in the US CPI data is not driving our key finding that repricing errors

are a major source of inefficient price dispersion.

3.4 Aggregate Outcomes

Table IV reports the breakdown of price-setting costs and the steady state aggregate out-

comes. We estimate that firms annually spend approximately 2.6% of revenues on total

information and repricing costs: 0.8% on determining whether a price change is warranted,

1.6% on determining the right price to charge, and only 0.3% of revenues on the menu cost.

Compared with the flexible-price steady state, the economy with pricing frictions delivers

significantly lower welfare. Steady state consumption is 7% lower, employment is 5% higher,

and wages are 5% lower. Consumers work harder for less. Equilibrium price dispersion is

10% higher than the (efficient) price dispersion that would be warranted given the productiv-
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ity heterogeneity. This dispersion arises due to both inaction and inaccuracy in reset prices.

The steady state features a distribution of reset prices that is most dispersed in the middle,

reflecting the fact that firms fine-tune their pricing accuracy depending on the state. The

firm’s optimal distribution of reset prices is concentrated at low marginal costs because low

costs are highly profitable opportunities that are worth capturing accurately. On the other

hand, it is also narrow at high marginal costs, because they present opportunities to save on

information and adjustment costs by not differentiating prices across states too much. Most

of the time, however, firms are in the middle range with the widest price dispersion. As a

result, these frictions aggregate to considerable price dispersion.

Across the versions of the model with different pricing frictions, the level and composition

of total spending on price setting change, as do the resulting steady state outcomes. For

example, the model that imposes no repricing errors (θp
.
= 0) requires Calvo-like price

adjustment to match the pricing moments and as a result, delivers far lower steady state

consumption (85.3% of the flexible-price benchmark), due to a much higher level of inefficient

price dispersion (7 percentage points higher than the baseline model).

3.5 Identification and Sensitivity Analysis

Perhaps it is not surprising that adding another friction to price setting helps better match

the various pricing moments. What is surprising, however, is that this friction turns out

to dominate the other two frictions included. To better understand why, we now turn to

steady state simulations around our baseline estimates. The panels in Figure 2 plot how the

pricing moments vary with each of the three key pricing parameters when fixing all other

parameters at their estimated steady state levels.15

The first key finding of the simulations is that pricing moments are highly sensitive to

the repricing cost θp (in red). Moreover, θp has a non-monotonic relationship with multiple

moments. Introducing small frictions in reset prices generates substantial inaction, sharply

lowering the frequency of price changes and increasing the size and dispersion. Hence, models

may over-estimate the size of the adjustment costs needed to match the frequency of price

15In the interest of space, we omit the panel for the frequency of price cuts, which shows the same patterns
as the frequency of overall price changes.
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Figure 2: Pricing Moments in Simulations

Note: This figure plots pricing moments for different values of the pricing parameters
θp (red dots), θa (blue dots), and κ (green dots and top axis), while fixing the other
parameters at their baseline values.

changes, if they abstract from the possibility of mistakes in repricing. Inaccuracy in reset

prices incentivizes the firm to devote more attention to accurately choosing the timing of its

price adjustments and to widen its area of low probability adjustment: The firm now avoids

adjusting when the perceived value of adjusting is relatively small, so as not to risk setting

an even worse reset price. Once θp exceeds 0.4 however, inaccuracy in repricing becomes

high enough to generate more price changes. Beyond this threshold, θp monotonically raises

the frequency and lowers the size and standard deviation of price changes.

The second key finding is that the dynamics of the pricing moments in response to higher

information costs are very different not only from each other, but also from those in response

to higher menu costs. Higher menu costs lead to less frequent, larger, and more dispersed

price changes. They also slightly lower kurtosis, and sharply increase the negative skew of the

price change distribution. On the other hand, higher information costs lower firms’ incentives

to track market conditions in real time. As a result, price changes become more frequent.

In particular, a higher cost governing the timing of adjustments θa sharply increases the

frequency of price changes: If firms are more uncertain about when to review their prices,

they choose to review them more often, thus raising the overall frequency of adjustment. We
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conclude that menu costs should not be considered a stand-in for information frictions.

3.6 From Frictions to Non-Neutrality

The goal of estimating the frictions that govern pricing dynamics is to determine how flexibly

prices respond to shocks. The standard New Keynesian assumption is that firms stand ready

to produce whatever quantity is needed to satisfy demand at their posted prices. As a result,

any rigidity in prices translates into inefficient adjustments of factor inputs and production

in response to shocks, leading to an inefficiently low level of output and misallocation across

firms. A simple way to summarize this effect is to compute the cumulative response of output

or consumption to a monetary policy shock: In the absence of pricing frictions, the response

should be zero. The larger the response of real quantities, the more severe are the nominal

rigidities affecting the economy’s adjustment to shocks.

Table V reports the cumulative impulse response (CIR) of consumption, as a percent

of annual steady state consumption, to a 25 bp monetary policy shock, for our baseline

estimation and for alternatives that turn off different pricing frictions. All models use the

same Taylor rule for monetary policy, hence all responses will be dampened by the monetary

authority responding to the gaps that open in response to the shock. Our baseline estimation

implies substantial non-neutrality, despite the strong state-dependence in the timing of price

changes: the CIR is 88% of the CIR of a Calvo model parameterized to match the same

frequency and size of price changes. Frictions in reset prices amount to negative selection on

the intensive margin that works to offset the positive selection along the extensive margin.16

The CIRs for alternative parameterizations yield additional takeaways: First, ceteris

paribus, eliminating repricing frictions in the baseline model virtually eliminates non-neutrality

(CIR = 0.008%), demonstrating that inaccuracy in reset prices is the dominant friction in

the model. On the other hand, re-estimating the model by imposing no repricing frictions

requires much less state-dependence in the timing of price changes in order to fit the data,

potentially over-stating the degree of non-neutrality (CIR = 0.135% vs. 0.122% in the base-

line). It also suggests a way to rationalize Calvo-like behavior: Firms that can learn what

16For discussions of the importance of the extensive margin of adjustment in time-dependent and state-
dependent models, see Caballero & Engel (2007), Golosov & Lucas Jr (2007), Auclert, Rigato, Rognlie &
Straub (2022), and Gagliardone, Gertler, Lenzu & Tielens (2024).
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TABLE V: Consumption Responses to Monetary Shock

CIR (%)

Baseline 0.122

Ceteris Paribus Re-Estimated

No menu cost (κ
.
= 0) 0.084 0.098

No timing errors (θa
.
= 0) 0.131 0.081

No repricing frictions (θp
.
= 0) 0.008 0.135

Calvo (same freq + size) 0.138

CIR of consumption, as a percent of annual steady state consumption, to a 25-bp
impulse to the Taylor rule, for baseline model and versions that shut down one friction
at a time, ceteris paribus (first column) and re-estimating the other parameters (second
column). The Calvo model is parameterized to match the same frequency and size of
price changes as the baseline.

the right price is very easily do not need to worry about timing their price changes. They can

change prices with some constant probability, as is assumed in the Calvo model. In practice,

our estimates suggest that firms may find it easier to learn they are setting the wrong price

than to know how to fix it. Relatedly, it may seem surprising that the menu cost model

with errors in pricing (θa
.
= 0) generates higher non-neutrality that the baseline, which also

allows for imprecision in the timing of adjustments (CIR = 0.131% vs. 0.122%). But this

result also illustrates how frictions affect firms’ incentives to acquire information: Since in

the case of θa
.
= 0, firms know exactly when the value of adjusting is big enough to warrant

an adjustment, they save on information costs for repricing, paying little attention to the

prices they set, since if they make a costly mistake, they will promptly learn and adjust. In

the aggregate, this adds up to more overall rigidity.

How does the CIR vary with repricing frictions? With perfect repricing, varying the

severity of information frictions regarding the timing of price adjustment spans the degree

of state dependence in price setting, from the menu cost model (when θa approaches zero) to

Calvo (1983) (as θa becomes very large), as shown by Woodford (2009). However allowing for

errors in the reset price itself adds a new source of mispricing, and hence non-neutrality. We

illustrate this in Figure 3: The CIR increases monotonically with θp. Notice that this breaks

the conventional wisdom that ties the frequency of price changes to the degree of nominal

rigidities: For small to moderate values of θp, nominal rigidities increase with θp while
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Figure 3: CIRs and the Frequency of Price Changes

Variation as a function of θp: (a) Baseline Model, (b) Calvo model.

frequency declines. But beyond this threshold, both frequency and rigidities increase. This

paradox of flexibility implies that we can no longer take for granted that a higher frequency

of price changes is necessarily associated with higher price flexibility, since it may well reflect

lower or higher frictions in reset prices. Ultimately, what determines non-neutrality is the

information content of prices, not the fact that they are changing per se.

The second panel of Figure 3 shows that the monotonic relationship between θp and

non-neutrality also holds in the Calvo model augmented with inaccuracy in reset prices.

As a result, the canonical Calvo model is no longer the upper bound on price rigidity: In

the Calvo model, inaccurate reset prices substantially amplify nominal rigidities, while only

modestly lowering the frequency of price changes.

4 Estimation

In this section, we report results from our Bayesian estimation of nominal pricing frictions

over time. To our knowledge, this is the first use of Bayesian techniques to estimate a model

featuring rationally-inattentive heterogeneous agents and an occasionally binding constraint

on the nominal interest rate.

4.1 Estimation Approach

Our estimation exploits the time variation in the distribution of price changes to estimate

fluctuations in pricing frictions and, as a consequence, in monetary non-neutrality over time.

Figure 4 plots the time series for the pricing moments used in the estimation. There is
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Figure 4: Pricing Moments Over Time

Note: This figure plots the smoothed pricing series used for the model estimation, from
January 1978 to March 2023. Shaded areas mark NBER recession dates.

considerable volatility in the frequency and skew of price changes, with the monthly frequency

ranging between 10% and over 20% and skew ranging between -0.4 and 0.3. There is also a

large increase in the standard deviation of price changes, from around 9% at the beginning

of the sample to more than 15% by 2023, and moreover, movements in standard deviation

have been strongly negatively correlated with changes in kurtosis over time.

The jump in the frequency of price changes post-2020 is particularly striking. We caution

that it may reflect, in part, pandemic-related changes in the BLS’s data collection methods, in

particular, greater reliance on online data due to lockdowns, data imputations due to missing

price quotes, and changes in sample availability, especially for travel-related categories.17 The

extent to which these changes affected the aggregate pricing statistics during the 2020-2021

period remains unclear. But what is clear is that in fact the frequency, skew, and standard

deviation of price changes all started increasing, and kurtosis started decreasing, several

years before 2020. While neither of these moments is sufficient on its own to pin down non-

neutrality, these synchronized movements already suggest that we might expect a change in

the degree of price flexibility starting as early as 2016.

For the aggregate macro series, we use quarterly real GDP growth per capita, quarterly

CPI inflation, the quarterly average of the federal funds rate, and the two-year and five-

year Treasury yields. Following Kulish et al. (2017), we include these yields as observables

17See Montag & Villar (2023) for a discussion.
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to aid identification at the effective lower bound (ELB) on the nominal interest rate. The

estimation includes yield-specific shocks (η2t , η
5
t ) and a common yield shock (ηyt ), in addition

to the fundamental shocks listed in the model description.18

We compute the equilibrium dynamics using the sequence-space Jacobian (SSJ) method

of Auclert et al. (2021). We extend this method to handle occasionally binding constraints,

since our sample period includes two episodes during which the lower bound was binding

on the federal funds rate. Appendix A describes how we adapt the methods proposed by

Guerrieri & Iacoviello (2015) and Kulish et al. (2017) to handle the occasionally binding

constraint when solving the model dynamics and evaluating the likelihood function. Even

though we gain speed and accuracy with SSJ, the two ELB periods make the likelihood

evaluation time-consuming, especially because we have a monthly model with a large number

of observations (543 months). To reduce computational time, we only estimate the shock

processes. Table B.1 in the Appendix reports the prior distributions for the estimated

shock parameters, along with the posterior mode and standard deviation. These results are

obtained by fixing habit formation and wage rigidity at conventional values, and running a

separate Bayesian estimation for the parameters of the monetary authority’s Taylor rule that

best fit the behavior of the federal funds rate during the estimation period. Specifically, we

set habit formation in consumption to h = 0.67, based on the meta-study of DSGE models of

Havranek, Rusnak & Sokolova (2017) and we set the wage rigidity parameter to δw = 0.083,

which implies that wages change once a year on average. The Bayesian estimation for the

parameters of the Taylor rule yields a value for persistence ρi = 0.925, an inflation coefficient

ϕπ = 1.7, and a coefficient on GDP growth ϕy = 1.0.

4.2 Pricing Frictions Over Time

Estimating the model by imposing constant pricing frictions yields a negligible amount

of variation in the pricing moments over time: Shocks to firms’ desired prices are simply not

enough to generate the kind of volatility in the distribution of price changes that we see in

the data. Hence, we allow for variation in the pricing frictions themselves: In addition to

the shocks listed in Section 2, we allow for unanticipated shocks to the menu cost and to

18The Online Appendix provides a detailed description of data sources and transformations.
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Figure 5: Estimated Pricing Frictions

Note: The upper panels show the estimated series for θp, θa, and κ and the lower
panels show the data decomposition when the model parameters are evaluated at the
posterior mode. θp and θa are in log-deviations with respect to steady state. κ is in
deviations with respect to steady state. Shaded areas represent NBER recession dates.

the marginal costs of acquiring information. Variation in these costs over time is interpreted

as variation in the efficiency with which firms can process information and implement price

changes. To avoid overstating the role of the pricing frictions, we also allow for unanticipated

variation in σt, the standard deviation of idiosyncratic shocks.

Figure 5 plots the estimated pricing frictions series, θ̂pt , θ̂
a
t , in log-deviations from their

steady state values, and κ̂t, in deviations, when the model parameters are evaluated at their

posterior mode. The lower panel of the figure shows the contribution of different pricing

moments over time, and Figure 6 shows the evolution of the implied reference distribution

f̄t. Overall, we find a large and variable repricing cost θpt that has remained above 1 (0 in

log-deviations from the steady state) for most of the sample period, indicating substantial

inaccuracy in reset prices. Conversely, menu costs have been relatively small and the timing

accuracy has been high.19 The lower panels of the figure show the data decomposition

19Even though log deviations for θp appear large, note that they are deviations from a very small steady
state value. With the exception of the 2011-2016 period, these fluctuations in θ̂at do not significantly change

33



Figure 6: Estimated Distribution of Prices Over Time

for our pricing parameters, which allows us to gauge what features of our data inform the

dynamics of our pricing parameters. All moments used in the estimation contain meaningful

information about the dynamics of the pricing parameters, but the relative importance of

different moments of the price change distribution varies over time. For example, while the

frequency and standard deviation of log-price changes informed the spikes in θp during the

mid-2010s, the decline in θp post-2020 was driven by the size and kurtosis of price changes,

with frequency only contributing at the very end of the sample period.

We identify two episodes of heightened frictions: the mid-1990s and the mid 2010s, both

periods when all costs–but especially the repricing cost–were highly elevated. In the 2012-

2016 period, for much of the first ELB episode, we estimate that prices were characterized by

near Calvo-like adjustment, with very little state-dependence in the timing of adjustments.

Coupled with the heightened frictions for reset prices, this period saw very high nominal fric-

tions. Notably, pricing frictions started falling precipitously in 2016 and reached historically

low levels by 2021. How can we interpret these fluctuations in pricing frictions? Figure ??

plots θ̂pt and θ̂at along with the time series of exogenous aggregate uncertainty of Jurado

et al. (2015) and Ludvigson et al. (2021) (henceforth the JLN series). The series are strongly

negatively correlated, suggesting a plausible economic interpretation to the variability we

estimate: In periods of low uncertainty, when the benefits of accurate pricing are relatively

the degree of state dependence in the timing of price changes.
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Figure 7: Information Frictions and JLN Aggregate Uncertainty

low, fewer resources are devoted to price-setting. This results in an empirical distribution of

price changes that can only be rationalized with relatively high pricing frictions. Conversely,

when uncertainty is high, mistakes in repricing can be quite costly, and so firms endoge-

nously choose to pay more attention to market conditions, generating a distribution of price

changes that our model rationalizes with low pricing frictions.

4.3 NPR Variability

What do these dynamics implied for how responsive the economy is to shocks? Figure 8

reports the estimated degree of NPR over time measured by the cumulative impulse response

(CIR) of consumption to a 25 basis points shock to the monetary policy rate, given the

estimated pricing parameters for each period, in percentage points of annual steady state

consumption. A larger value of the CIR implies stronger monetary non-neutrality. For each

point in time, we solve the model using the pricing parameters at that time and recalculating

the reference probability of price adjustment Λ̄ and the reference distribution of prices f̄ while

keeping all other parameters at their baseline values.

On average, we estimate a cumulative consumption response of 0.12 percent of annual

steady-state consumption. This is a considerable degree of non-neutrality, representing 88%

of the response a Calvo model would predict when calibrated to the same frequency and

size of price changes. Surprisingly, we find no trend over time in the CIR, despite the fact

that technology has arguably made repricing easier. We interpret this as suggestive of the

complexity that goes hand in hand with technological progress and data abundance: more
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Figure 8: Implied Nominal Rigidity Over Time

Note: This figure plots the model-implied degree of nominal price rigidities over time:
(a) CIR of consumption to a 25 bp monetary policy shock, in percentage points of steady
state consumption. (b) Sacrifice ratio per percentage point of inflation reduction via
contractionary monetary policy. Shaded areas represent NBER recession dates. The
series are smoothed with a centered moving average of 13 months.

data do not always make decisions easier (Veldkamp & Chung, 2024). We also do not find

consistent evidence of non-neutrality declining in recessions. A growing literature has argued

that monetary policy may be less effective during downturns. This argument is based on

evidence that price dispersion increases during downturns, which, viewed through the lens

of models with frictionless reset prices, implies more price flexibility. However, in our model,

the relationship between price dispersion and non-neutrality is not monotonic: While higher

accuracy in reset prices always implies lower non-neutrality, it can imply either higher or

lower price dispersion, depending on the initial level of pricing errors. Our results suggest a

mixed record for US recessions. For example, we estimate that price rigidities rose during

the Great Recession.

More importantly, we find substantial medium-cycle volatility in the degree of NPR over

time. Our estimation shows two big cycles, one that peaked in the mid-1990s and another

that peaked in the mid-2010s. Price rigidities reached a maximum value in the mid-2010s, a

period of highly inattentive and inaccurate price setting. Our estimation also suggests that

price rigidities started to decline well before the COVID-19 pandemic, pointing to the risk

of higher inflation even before the pandemic-related shocks. In particular, the CIR started

declining in mid-2016, concurrent with the Federal Reserve’s liftoff of nominal rates from
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the first ELB period. By January 2021, it had already reached historical lows, even though

inflation was only 1.5% at the time. This decline may explain why inflation surged then

declined so rapidly in 2021 and 2022. It is possible that the 2016 liftoff induced pricing

managers to refocus on inflation risks, thereby increasing the attention devoted to setting

prices accurately. At the same time, the mid-2010s were also a period of rapid advances in AI

pricing, with firms in retail, travel, and other industries increasingly using machine learning

algorithms to devise optimal real time pricing strategies. Adams et al. (2024) document the

rise of AI pricing at the aggregate level, and show a sharp acceleration starting in 2016 (see

their Figure 1). The introduction of machine learning may turn out to be a structural shift

in the rigidity of prices. Our series ends in March 2023, when we observe a slight uptick

in rigidities, but further real-time data on the cross-sectional distribution of price changes

would be needed to establish if 2016 was indeed a structural break.

The right panel of Figure 8 shows our estimated sacrifice ratio: how much would con-

sumption have to decline in order for inflation to be lowered by one percentage point via

contractionary policy. This measure offers an intuitive way to summarize the severity of

pricing frictions. Most of the time, the sacrifice ratio fluctuations between 0.1 and 0.5 per-

cent of consumption per percentage point of inflation decline. It was low during the early

1980s, suggesting that other factors beyond Volcker’s disinflation contributed to the eco-

nomic downturns of those years. It was high during most of the 1990s, a period of fast

technological growth when managers may have been more focused on expansion of product

markets than on accurate price setting. It was also extraordinarily high in the aftermath of

the Great Recession, when nominal interest rates were at the effective lower bound. In 2016

it started declining as pricing frictions started falling and by the time of the 2021 inflation

surge, the sacrifice ratio had fallen to a mere 0.03. Pricing frictions had come down dramati-

cally, making monetary policy highly potent in controlling inflation. We estimate that when

the Federal Reserve started raising interest rates in the first quarter of 2023, reducing infla-

tion from 8.5%, its level at the time, to 2% would have been associated with a consumption

cost of only 0.2%. Conversely, a similar disinflation in 1994 would have triggered a severe

recession, costing approximately 2.7% of consumption.

Lastly, we also contrast our estimate sacrifice ratio series with the series implied by a
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Calvo model parameterized to match the frequency of price changes over time. The Calvo

model implies a 0.5 sacrifice ratio on average, but deviates significantly from the series

predicted by our generalized model, serving as an imprecise guide to the cost of disinflation

in different periods.

5 Conclusion

This article estimates a time-varying degree of nominal price rigidity in the U.S. economy

over time. A key finding is that variation in the accuracy of reset prices is a major driver of

both the average level and the volatility of nominal rigidities. We identify costly information

as the main friction that prevents firms from adjusting prices more flexibly in response to

shocks, with information about the right price to charge, conditional on adjustment, being the

most significant friction. These results contribute to our understanding of how efficiently the

U.S. economy has adjusted to shocks in recent decades, and how effectively policymakers have

stabilized aggregate demand. On net, what do our results suggest for inflation and monetary

control going forward? We emphasize the endogeneity and variability in the degree of state-

dependence in price setting: First, our estimation results give great weight to firms’ choices

of how much attention to devote to choosing prices accurately. They suggest that while firms

generally know with fairly high accuracy when their prices are outdated, they are much less

certain about what the right price to charge is. Second, we find that firms’ attention to

market conditions is variable over time. This variability implies state-dependence in the cost

of disinflation over time.

More work is needed to measure the attention firms devote to price setting versus other

operational decisions. But our finding that mispricing is a major driver of monetary non-

neutrality connects models of nominal rigidities to the much broader literature that has

documented stochasticity in choice in a wide range of contexts. While stochastic choice may

appear at odds with classic principles of optimization of well-specified objective functions,

in this paper, we microfound it with rational acquisition of costly information. But it is

worth separating the stochasticity result from the model through which we endogenize this

stochasticity. We leave to future research other possible sources of randomness in decision-
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making (e.g., deliberate, or exploratory randomization, model uncertainty, or other forms of

bounded rationality). The important message is that whatever its source, the consequence

of stochastic choice is often a systematic bias in the response of the aggregate price level to

shocks. Stochasticity need not be divorced from but can rather be understood as a cause of

bias (Woodford, 2020).
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A Estimation: SSJ with Occasionally Binding ELB

For linear models written in a recursive formulation, Kulish et al. (2017) and Guerrieri &

Iacoviello (2015) show that, for an expected ELB duration, the law of motion of the economy

can be written as a time-varying linear policy function. As a result, the likelihood evaluation

can be computed based the Kalman filter with time-varying coefficients. For example, Kulish

et al. (2017) show that DSGE models can be estimated for sample periods including the ELB
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period by replacing the federal funds rate with a time series of expected ELB durations as

an observable. The expected ELB duration does not have to be model consistent. In other

words, in absence of any other shocks, the federal funds rate could be expected to be above

the ELB at a time period different than the implied by the expected ELB duration, adding

another form of monetary policy shocks. In the context of this paper, where we use SSJ

to solve and estimate the model, how can we estimate the model during the ELB period?

We show that one possibility is to recover the time-varying and recursive formulation of the

model based on SSJ IRFs for different ELB durations. Then, we can find the (time-varying)

MA representation of the model to compute the log-likelihood of the model. However, this

approach is time consuming as the matrix operations can be computationally demanding for

large number of state variables and a large number of draws.

Instead, we propose a new and efficient way of using SSJ to compute the log-likelihood

during the ELB period for a given expected ELB duration. Our approach is to model the

expected ELB duration as a sequence of anticipated monetary policy shocks. For each month

that the federal funds rate is at the ELB, given a sequence of shocks up to that month, and

given the expected duration of the ELB in that month, agents in the economy expected a

sequence of anticipated monetary policy shocks for as long as they expected the ELB to

bind. First, we show how to compute impulse responses with SSJ when the ELB is expected

to bind for m periods, and we show that those responses are identical to what we would get

based on the recursive formulation of the model based on Reiter (2009) and Kulish et al.

(2017). Second, we show how to get the time-varying recursive formulation of the policy

functions based on the IRFs for different ELB durations, and we show that the responses

from this method also match the previous methods. Next, we show that these responses are

also equivalent to assuming a sequence of anticipated monetary policy shocks for m periods.

We then combine these results to show how to evaluate the likelihood of the data when the

ELB is binding during some periods. These steps are detailed in the Online Appendix.
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B Prior and Posterior Distributions

The estimation includes the shocks listed in the model description plus shocks to yield

curve (η2t , η
5
t , η

y
t ), to aid the estimation at the ELB. Table B.1 reports the prior distributions

for these parameters along with the posterior mode and standard deviation. We use a

normal distribution for shocks affecting the pricing frictions, long-term interest rates, and

labor supply. Following Ferroni, Grassi & León-Ledesma (2019), we selected this prior,

whose support includes zero, to avoid estimating “nonexistent” shocks, as it does not force

the exogenous processes to be different from zero. For all other standard deviations, we

select a standard inverse gamma distribution. Following Del Negro & Schorfheide (2008),

we impose an implicit prior over the model-implied variance of the observable variables and

the covariance between the federal funds rate, GDP growth, and inflation. Our prior states

that those specific model-implied-covariances follow a normal distribution with parameters

determined by the data moments.20 Finally, to avoid exploring unreasonable areas of the

parameter space, we impose that the the filtered value of the menu cost is not below zero

and that the filtered log-deviations for θp and θa are not greater than three in absolute value.

20For example, we imposed that the model-implied variance for the federal funds rate is normal with
mean (µi) and standard deviation (σi) equal to the mean and ω times standard deviation of the quadratic
deviation of the federal funds rate with respect to the model’s steady state, where ω is a scalar that we set to

0.25. Hence, µi =
∑

t x
i
t/T and σ2

i = ω2
∑

t

(
xi
t − µi

)2
/T , where xi

t =
(
idatat − iss

)2
. Appendix A presents

formally this implicit prior.
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TABLE B.1: Model Priors and Posteriors

Prior Posterior
Parameter Name Dist Mode SD Mode SD 90% HPD

Standard deviation of shock innovations (x100)
Price setting cost θp norm 1.000 0.500 3.538 0.077 3.445 3.649
Price review cost θa norm 1.000 0.500 1.795 0.100 1.710 1.987
Menu cost κ norm 0.026 0.013 0.091 0.001 0.090 0.093
Idiosyncratic risk σ norm 0.008 0.002 0.034 0.001 0.033 0.034
Markup ε invg 0.055 0.014 5.694 0.025 5.659 5.725
Permanent TFP γ invg 0.190 0.048 1.434 0.049 1.362 1.479
Impatience ζ invg 1.118 0.280 2.524 0.028 2.491 2.562
Transitory TFP a invg 0.165 0.041 19.147 0.120 19.022 19.330
Bond demand χt invg 2.333 0.583 99.960 0.315 99.248 99.966
Labor supply ξ norm 0.000 0.041 0.004 0.024 0.005 0.065
Trend inflation eπt invg 0.116 0.029 0.117 0.041 0.084 0.194
Monetary policy eit invg 0.083 0.021 0.574 0.038 0.520 0.615
Term premia ηy norm 0.000 1.000 0.667 0.036 0.626 0.721
2yrs yield η2 norm 1.211 0.605 1.480 0.089 1.404 1.632
5yrs yield η5 norm 1.138 0.569 0.011 0.047 0.011 0.131

Autocorrelation
Price setting cost θp beta 0.500 0.150 0.959 0.001 0.957 0.961
Price review cost θa beta 0.500 0.150 0.980 0.002 0.977 0.981
Menu cost κ beta 0.500 0.150 0.854 0.003 0.850 0.857
Idiosyncratic risk σ beta 0.500 0.150 0.958 0.001 0.956 0.959
Markup ε beta 0.500 0.150 0.002 0.001 0.001 0.005
Permanent TFP γ beta 0.025 0.150 0.003 0.024 0.003 0.054
Impatience ζ beta 0.500 0.150 0.974 0.001 0.973 0.975
Transitory TFP a beta 0.900 0.150 0.001 0.000 0.000 0.002
Bond demand χt beta 0.900 0.150 0.502 0.003 0.498 0.505
Labor supply ξ beta 0.025 0.150 0.032 0.120 0.028 0.347
Trend inflation eπt beta 0.500 0.150 0.401 0.148 0.362 0.798
Term premia ηy beta 0.500 0.150 0.976 0.003 0.971 0.980

Notes: norm and invg refer to the normal and inverse gamma distributions, respectively. HPD:
High Probability Density.
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A Data Description

We set our model to a monthly frequency and aggregate the model-simulated series to a

quarterly frequency to align the model-simulated data with the U.S. data. In these notes,

the time subscript t refers to a month, and x̃ is variable x detrended by trend-productivity.

Pricing Moments The pricing moments we use are the frequency, size, standard devi-

ation, skewness, and kurtosis of log-price changes, and the frequency and size of log-price

increases and decreases. We take the quarterly averages for each series and we smooth them

using an 11-term moving average (MA), corresponding to a smoothing window equal to 5

on each side of a central observation. At the beginning and end of the sample, where fewer

observations are available, a lower degree of smoothing is applied by reducing the smoothing

window and ensuring all data points are included without truncation. The online appendix

includes a figure with the raw and smoothed time series of the different pricing moments we

use. The microdata underlying these series consist of approximately 80,000 monthly price

quotes for products grouped into about 305 categories, or “entry-level items” (ELIs), which

are then further aggregated into 13 major groups. Authors with access to the microdata can

use the individual price quotes to construct empirical distributions of price changes for each

month, from which various pricing statistics are then calculated. For example, to calculate

the frequency of price changes in each period, one computes the fraction of nonzero price

changes across products within each ELI, and then the expenditure-weighted median across

ELIs. Similarly, conditional on a price change, the absolute size of price changes is com-

puted by taking the average log price change across products within each ELI and then the

*The views expressed in this paper are solely the responsibility of the authors and should not be interpreted
as reflecting the views of the Board of Governors of the Federal Reserve System or of anyone else associated
with the Federal Reserve System. Contact: camilo.moralesjimenez@frb.gov, stevens7@umd.edu.

A.1



expenditure-weighted median across ELIs. Skewness and kurtosis are computed in a similar

way, but by pooling data within each major group rather than within each ELI, and then

taking an expenditure-weighted average across the 13 major groups.1

Growth rate of real per-capita GDP Data for quarterly real GDP of chained 2012

dollars and seasonally adjusted was retrieved from FRED (series GDPC1). This series is

divided by the quarterly average of the monthly civilian noninstitutional population, 16

yr+ available at FRED (series CNP16OV). Growth rates are computed by log differences

(quarterly growth rate). The quarterly GDP growth is linked to the model variable as follows:

dyqt = log

(
ỹt +

ỹt−1

γzt
+

ỹt−2

γzt−1

)
− log

(
ỹt−3 +

ỹt−4

γzt−3

+
ỹt−5

γzt−4

)
+ log (γztγzt−1γzt−2) (1)

where ỹt ≡ c̃t − G̃t.

Quarterly CPI inflation rate Data for the Consumer Price Index for All Urban Con-

sumer was retrieved from FRED (series CPIAUCSL). We take the quarterly average of this

monthly series and compute quarterly inflation as the ratio of the quarterly CPI index be-

tween two months minus one. The quarterly inflation rate is linked to the model variable as

follows:

πq
t = πt · πt−1 · πt−2 − 1. (2)

Quarterly Federal Funds Rate We retrieve the Federal Funds rate from FRED (series

DFF) and compute the quarterly average. The quarterly federal funds rate in the data (iqt )

is linked to the model variables as follows:

iqt =
1

3

(
i12t + i12t−1 + i12t−2

)
. (3)

Quarterly 2 year and 5 year Treasury Yields We retrieve data for the Market Yield

on U.S. Treasury Securities at 2-Year and 5-Year Constant Maturity from FRED (series

DGS2). We take the quarterly average of this series. We map the long-term interest rates to

our model based on the expectations hypothesis by relating yields on long-term bonds with

1Luo & Villar (2021) discuss the need to compute higher moments at the group level, due to sample size
constraints at the ELI level: Since ELIs are narrowly defined categories, they sometimes have only a small
number of observations. Higher moments are particularly sensitive to outliers, which is why a small number
of observations is insufficient to compute them reliably within each ELI. On the other hand, pooling across
ELIs introduces more heterogeneity across the products pooled.
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agent’s beliefs about the future path of the federal funds rate:

2 year treasury yield =c2 +
1

24
Et

[
23∑
j=0

i12t+j

]
+ η2t + ηyt (4)

5 year treasury yield =c5 +
1

60
Et

[
59∑
j=0

i12t+j

]
+ η5t + ηyt (5)

where c2 and c5 are yield specific, time invariant components set to match the average

difference between the federal funds rate and these yields, η2, and η5 are i.i.d. yield specific

shocks, and ηy is an exogenous AR(1) process, common to all yields.

Recession Dates The NBER dating committee lists dates for peaks and troughs in eco-

nomic activity. In the NBER’s convention, the first month of a recession is the month

following the peak, and the last month of a recession is the month of a trough. Therefore,

we define the start month of a recession as peak plus one month and the end month of a

recession as the trough. For example, in 2020, the peak economic activity was reached in

February 2020 and the trough was reached in April 2020, yielding a two-month recession:

March and April 2020.

The Effective Lower Bound The federal funds rate was at the effective zero lower

bound (ELB) twice during our sample period: between January 2009 and December 2015,

following the Great Recession, and between March 2020 and February 2022, following the

Covid Recession. We use the Blue Chip data between 2008 and 2010, and the survey of

primary dealers since January 2011 to construct a series with the expected ELB duration,

in months, for each month in which the federal funds rate was at the ELB. Figure 1 plots

the expected ELB duration series used in the Bayesian estimation.

This series is constructed as follows: Using the Blue Chip microdata, we compute the ex-

pected ELB duration (in quarters) for each forecaster and month, and then we take the

median for each month across forecasters. Blue Chip is a monthly survey, but participants

are asked for the expected federal funds rate in quarter intervals. We compute the expected

duration in months assuming a lag of one week between data collection and publication and

using the FOMC meetings calendar to determine the expected month of the liftoff. If a

quarter has two FOMC meetings, we take the average of the expected duration associated

with those two meetings. After 2010, we use the Survey of Primary Dealers. Between Jan-

uary 2011 and 2015, the survey asks for the “Most Likely Quarter and Year of First Target

Rate Increase”. Subsequently, it asks for the specific FOMC meeting in which the target
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Figure 1: Expected ELB duration
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Note: This Figure plots the expected ELB duration for each month used in the Bayesian
estimation of the model. We use the BlueChip survey between 2008 and 2010, and the
survey of primary dealers since 2011.

rate will be increased. Based on the median answer for those questions, the date in which

the survey was received, and the FOMC meetings calendar, we compute the expected ELB

duration in months. As with the Blue Chip survey, we take the simple average among the

expected durations associated with the meetings in each quarter, and we get a monthly series

by interpolating and rounding.

B Household Optimality Conditions

Let λt denote the Lagrange multiplier on the flow budget constraint. Household optimization

yields (
1

Ct − hCt−1

)
− Et

[(
βζt+1

ζt

)(
h

Ct+1 − hCt

)]
= λt, (6)

ξtL
1
ν
t = λtwt, (7)

ζt χt + Et

[
β ζt+1 λt+1

(
it
πt+1

)]
= ζt λt, (8)

along with thr real discount factor between t and t+ 1,

Mt,t+1 ≡
βζt+1λt+1

ζtλt
. (9)
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C Alternative Reference Distributions

One novelty of the model we consider is the fact that firms use the equilibrium distribution of

prices as their reference distribution. This feature introduces an interesting layer of strategic

complementarities (SC): Whereas the typical SC story is that each firm has incentives to keep

its price close to that of its competitors, here each firm benefits from keeping the distribution

from which it draws its prices close to the distribution of its competitors’ prices. How does

this fixed point relationship between individual policies and the aggregate distribution of

prices differ from existing alternatives?

One alternative is the control cost model of stochastic choice. As the name suggests, these

are models of costly control, rather than costly information. They allow for errors in the

implementation of actions, when the optimal action is known in each state. They feature

a reference distribution for each period that is uniform around the optimal action in that

period. Exerting effort to deviate from this default amounts to choosing a more concentrated

distribution to draw an action and entails a cost proportional to the divergence of the chosen

distribution from that uniform. For example, Costain & Nakov (2019) apply control costs

to price-setting in a general equilibrium monetary model. Since the reference distribution is

always centered on the optimal price, featuring control costs on pricing helps match micro

volatility moments well, but results in no meaningful additional rigidity: On average, reset

prices adjust fully to aggregate conditions, and the frequency and state-dependence in the

timing of price changes remain the main determinants of non-neutrality. Conversely, our

model generates endogenous bias in repricing, which makes pricing mistakes highly relevant

to aggregate outcomes.

On the other hand, rational inattention (RI) models of costly information imply not only

an endogenous reference distribution, but one that is furthermore optimized to the decision-

maker’s individual problem at hand. Rational decision-makers have strong incentives to

develop sophisticated reference or default probabilities. A well-chosen default distribution

can lower both the relative value of conditioning actions on the state in real time, as well

as the cost of doing so. Hence, a rational decision-maker would want to use knowledge

about the structure of the economy, the laws of motion of the shocks, and the shape of the

objective function to choose well-adapted reference distributions that can serve as no-cost

defaults. What does a well-adapted no-cost default look like? In the RI model, it is one that

gets as close as possible to conditioning on the state in real time, without actually doing so.

Formally, the optimal reference distribution minimizes the choice distribution’s average KL

divergence from it, integrating over the distribution of possible states of the world that the

decision-maker can expect to encounter. The pure RI model does not introduce any new
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parameters, but it places a strong restriction on what the reference distribution can be, by

imposing that it minimizes the KL divergence of the choice distribution that the firm uses

over the life of its policy. In our steady state estimations, we found that this formulation

does not fit the data well: the reference distribution is too concentrated, yielding too little

dispersion. We also found that trying to run the Bayesian estimation became intractable

with the KL-divergence minimizing reference distribution.

Instead, we propose using less efficient, though still endogenous reference distributions that

take into account both the structure of the economy and the actions of others. It is in this

sense that the model is behavioral RI model.2 In addition to fitting the steady state price

dispersion better and making the dynamic estimation feasible, this assumption implies that

the reference distributions do not fully discount states in which the current policy is likely

to be revised.

D Estimating the Steady State

In the steady state estimation of the pricing parameters, we make use of the fact that

pricing rigidities are determined by the value of the pricing parameters relative to steady

state output. Hence, in our steady state estimation, without loss of generality, we normalize

Y = 1 to estimate the pricing parameters thetap, θa, and κ:

Proposition 1. In steady state, for a given real input price px and aggregate demand Y ,

if Λ(p̃, a) and f(p | a) solve the firm’s problem for pricing parameters θp, θa, and κ, then

Λ(p̃, a) and f(p | a) also solve the firm’s problem for real input price px, aggregate demand

Ỹ , and for any set of pricing parameters θ̃p, θ̃a, and κ̃ such that:

θ̃p

Ỹ
=
θp

Y
,

θ̃a

Ỹ
=
θa

Y
,

κ̃

Ỹ
=
κ

Y
. (10)

Proof. First, we show that the value of the firm is homogeneous of degree 1 in aggregate

output as long as the pricing parameters (θp, θa, and κ) are constant relative to aggregate

output. Using this result, we show that the optimal choice distributions are homogeneous

of degree 0 in aggregate output as long as the pricing parameters are constant relative to

aggregate output.

2See Woodford (2012) and Khaw, Stevens & Woodford (2019) for alternative deviations of the default
distributions from the RI optima.
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Value of a firm Denoting x̄ = x
Y
for x = θp, θa, κ, the value of a firm in steady state is

V (pj, aj;Y ) = π(pj, aj;Y ) + E
{
M V ∗ (p̃j, aj;Y )

}
(11)

where p̃ = p
π
, π(pj, aj;Y ) = Y p−ε

j (pj − px), and

V ∗(p, a;Y ) = max
Λ

{
Λ(a) · [V a(a;Y )− κ̄Y ] + (1− Λ(a)) · V (p, a;Y )− θ̄aY D

(
Λ(a) ∥ Λ̄

)}
, (12)

V a(a;Y ) = max
f

{∫
f(p | a)V (p, a;Y ) dp− θ̄pYD

(
f(p | a) ∥ f̄(p)

)}
(13)

s.t.

∫
f(p | a) dp = 1. (14)

Substituting, and denoting the optimal distributions by Λ∗ and f ∗(p),

V (pj, aj;Y ) = π(pj, aj;Y )

+ E
{
MΛ∗ ·

[∫
f(p | a)V (p, a;Y ) dp− θ̄pYD

(
f(p | a) ∥ f̄(p)

)
− κ̄Y

]}
+ E

{
M (1− Λ∗) · V (p̃, a;Y )−Mθ̄aY D

(
Λ∗ ∥ Λ̄

)}
(15)

Hence, note that the value of the firm is H(1) in aggregate output,

V (pj, aj;Y ) = Y · V (pj, aj; 1), (16)

V (pj, aj; 1) = π(pj, aj; 1)

+ E
{
MΛ∗ ·

[∫
f(p | a)V (p, a; 1) dp− θ̄pD

(
f(p | a) ∥ f̄(p)

)
− κ̄

]}
+ E

{
M (1− Λ∗) · V (p̃, a; 1)−Mθ̄a D

(
Λ∗ ∥ Λ̄

)}
(17)

Substituting this result in V a(a;Y ), we can also verify that V a(a;Y ) = Y · V a(a; 1).

Optimal choice distribution The review distribution in steady state is

ln

(
Λ(p̃, a)

1− Λ(p̃, a)

)
= ln

(
Λ̄

1− Λ̄

)
+

1

θa

[
V a;Y (a)− V (p̃, a;Y )− κ

]
(18)

Given that the value of the firm is H(1) in aggregate output, and substituting x̄ = x
Y

for
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x = θp, θa, κ, Λ(p̃, a) is H(0) in aggregate output:

ln

(
Λ(p̃, a)

1− Λ(p̃, a)

)
= ln

(
Λ̄

1− Λ̄

)
+

1

θ̄aY

[
V a(a; 1)Y − V (p̃, a; 1)Y − κ̄Y

]
= ln

(
Λ̄

1− Λ̄

)
+

1

θ̄a

[
V a(a; 1)− V (p̃, a; 1)− κ̄

]
(19)

Analogously, the repricing distribution is also H(0) in aggregate output:

f(p | a) =
f̄(p) exp

{
V (p,a;Y )

θp

}
∫
f̄(p̂) exp

{
V (p̂,a;Y )

θp

}
dp̂

=
f̄(p) exp

{
V (p,a;1)Y

θ̄pY

}
∫
f̄(p̂) exp

{
V (p̂,a;1)Y

θ̄pY

}
dp̂

(20)

=
f̄(p) exp

{
V (p,a;1)

θ̄p

}
∫
f̄(p̂) exp

{
V (p̂,a;1)

θ̄p

}
dp̂
.

E Taylor Rule Estimation

TABLE I: Taylor Rule Paramters: Priors and Posterior

Prior Bounds
Parameter Mode Mean Std Lower Upper

ϕπ 1.6977 2.0000 0.2500 1.00 3.00

ϕy 1.004 0.5000 0.2500 0.00 3.00

ρi 0.7914 0.5000 0.0500 0.00 0.95

ρπ 0.2288 0.1200 0.0500 0.03 0.99

σi 0.3500 0.0625 0.0625 0.00 1.00

σπ 0.0934 0.0625 0.0625 0.00 1.00

Notes: The table reports the posterior mode of the estimated Taylor rule param-
eter along with their prior mean, prior standard deviation, and lower and upper
bounds. The prior distribution on all parameters is normal.

To estimate the parameters governing the Taylor rule, we run a Bayesian estimation on the

federal funds rate during the Great Moderation period (1984Q1 to 2007Q2). The Taylor rule
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is given by

it = ρiit−1 + (1− ρi) [iss + ϕπ (π
a
t − π̄∗) + ϕy(dy

a
t − dyss)] + ϵit + eπt

eπt = ρπe
π
t−1 + ϵπt

ϵit ∼ N (0, σi), ϵπt ∼ N (0, σπ)

where it is the federal funds rate at quarter t, πa
t is the annual CPI inflation rate at quarter

t, and dyat is the annual quarterly GDP growth. ϵi is an i.i.d. monetary policy shock, and

eπt is a persistent shock to the inflation target (π∗). We set iss, dyss, and π̄ to the sample

averages of the Federal Funds rate, annual quarterly GDP growth, and annual CPI inflation.

For a set of parameters Θ = {ρi, ϕπ, ϕy, ρ
π, σi, σπ}, we implement the Kalman filter on the

Taylor rule and evaluate the likelihood. We impose a normal prior distribution on all these

parameters, as shown in Table I. We restrict the Taylor rule parameter on inflation (ϕπ) to

be between 1 and 3, and our prior is that ππ distributes normal with mean equal to 2 and

standard deviation equal to 0.25. Similarly, we impose the Taylor rule parameter on GDP

growth (ϕy) to be between 0 and 3, and our prior is that ϕy distributes normal with mean

equal to 0.5 and standard deviation equal to 0.25. We constraint the interest smoothing

parameters (ρi) to be between 0 and 0.95, and we set the mean and stand deviations of its

prior to 0.5 and 0.05. The predicted rate equals:

ipt = ρii
p
t−1 + (1− ρi) [iss + ϕπ (π

a
t − π̄∗) + ϕy(dy

a
t − dyss)] , ip0 = i0.

In general, the predicted rate tracks well the movements in the actual Federal Funds Rate,

as shown in Figure 2, which plots the federal funds rate (solid line) and the predicted rate

with the parameters evaluated at their mode (dashed line).

F Model Estimation: SSJ with Occasionally Binding

ELB Constraint

We propose a new and efficient way of using SSJ to compute the log-likelihood during the

ELB period for a given expected ELB duration. Our approach is to model the expected

ELB duration as a sequence of anticipated monetary policy shocks. For each month that the

federal funds rate is at the ELB, given a sequence of shocks up to that month, and given the

expected duration of the ELB in that month, agents in the economy expected a sequence of

anticipated monetary policy shocks for as long as they expected the ELB to bind. First, in
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Figure 2: Federal Funds Rate and Fit
Note: This Figure plots the Federal Funds rate (solid line) along with the predict
federal funds rate when the parameters are evaluated at their posterior mode (second
column of Table I).

section F.1, we show how to compute impulse responses with SSJ when the ELB is expected

to bind for m periods, and we show that those responses are identical to what we would get

based on the recursive formulation of the model based on Reiter (2009) and Kulish, Morley

& Robinson (2017). Second, in section F.2 we show how to get the time-varying recursive

formulation of the policy functions based on the IRFs for different ELB durations, and we

show that the responses from this method also match the previous methods. In section

F.3, we show that these responses are also equivalent to assuming a sequence of anticipated

monetary policy shocks for m periods. In section F.4, we combined these results to show

how to evaluate the likelihood of the data when the ELB is binding during some periods.

F.1 IRFs when the ELB is binding using SSJ

Assuming that the ELB is not binding, the linearized system of equations describing the

equilibrium in SSJ can be written as:

FxdX + FzdZ = 0 (21)

where X and Z represent the paths of the endogenous and exogenous variables, respectively.

The Jacobians Fx and Fz are stacked matrices that represent different parts of the model.
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Hence, at the core of our model, the Jacobian Fx is given by:

Fx =
[
F P
x ;F px

x ;FARC
x ;FEuler

x ;F Taylor
x

]
(22)

Fz =
[
F P
z ;F px

z ;FARC
z ;FEuler

z ;F Taylor
z

]
(23)

where subscripts refer to the equations related to the aggregate price index (P), the aggregate

marginal cost (px), the aggregate resource constraint (ARC), the euler equation (Euler), and

the Taylor rule (Taylor). For example, F Taylor
x and F Taylor

z are the Jacobians describing the

path of the linearized Taylor rule in response to a path of the endogenous variables (dX)

and exogenous variables (dZ). F Taylor
x is a matrix of size T by nT, and F Taylor

z is a matrix

of size T by eT, where T is a large horizon for which the Jacobian is computed, n is the

number of endogenous variables, and e is the number of exogenous variables. In our case, the

endogenous variables are the inflation rate (π), output (Y ), consumption (C), interest rates

(i), and the marginal cost (px). Hence, in SSJ, the responses of the endogenous variables to

unanticipated shocks is given by:

dX = −F−1
x FxdZ (24)

How to compute the responses when the interest rate is expected to bind for m periods? In

this case, we would have to modify the Jacobian F Taylor
x to reflect that the interest rate is

at the ELB for the first m periods. Hence, in this case, the linearized system of equations

describing the equilibrium is given by:

F ∗
xdX + F ∗

z dZ + C∗ = 0 (25)

where C∗ is a column vector of size nT, and F ∗
x and F ∗

z are identical to Fx and Fz except

for those rows describing the Taylor rule. Those Jacobians describing the path of the Taylor

rule for the first m periods should reflect that in deviations with respect to the steady state:

ît = −iss (26)

Hence, F ∗Taylor
x will be equal to the identity matrix for the first m periods, and then equal

to F Taylor
x for periods between m + 1 and T. F ∗Taylor

z is a matrix of zeros, and CTaylor is

equal to −iss for the first m periods and zero everywhere else.3 In this case, the responses

3Here we assume that the ELB for the (net) interest rate is equal to 0. If the ELB is different than zero,
ît = −iss + i, where i is the lower bound in the interest rate.
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to unanticipated shocks are given by:

dX = −F−1
x (C∗ + F ∗

z dZ) (27)

Figure 3 plots the interest rate and consumption responses to a 1% productivity shock when

the interest rate is expected to be at 0 for 20 periods. The solid lines plot the responses

based on the method described in this section (which we denote by “direct”), and the dash

lines represent the same responses but computed based on the recursive formulation of the

model (using the Reiter (2009) method) and then employing the method proposed by Kulish

et al. (2017) for the ELB. These lines are almost identical and are on top of each other.45

Figure 3: IRFs at the Zero Lower Bound.
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Note: This Figure plots the impulses responses to a 1% increase in productivity when
the interest rate is expected to be at 0 for 20 periods. “Direct” refers to the approach
described in section F.1. “Reiter” refers to the responses computed using the Reiter
(2009) Method and Kulish et al. (2017). “Mapping” refer to the computation of the
responses using the time-varying and recursive formulation of the model recovered from
the SSJ solution as explained in section F.1.

F.2 Recovering time-varying recursive policy functions

Now, given that the goal is to evaluate the likelihood function, how can we use the Kalman

filter and SSJ for this purpose? Auclert, Bardóczy, Rognlie & Straub (2021) show how

to recover the unconditional recursive formulation of the policy functions given the IRFs

4The responses are also identical for all other endogenous variables in response to all exogenous shocks.
We also checked that the responses are identical in both cases when the interest rate is expected to be at 0
between periods j and j +m, where j > 1. Additional graphs are available up to request.

5The results presented in this Appendix are based on a smaller grid for the marginal cost, as the
computations with the Reiter method were taking hours with a grid size of 41 points for the marginal
cost. In this Appendix, we used a grid with 5 points for the marginal cost.
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computed based on SSJ. However, when the ELB is binding, the recursive formulation of

the policy functions is time-varying. When the ELB is binding, we show that we can use the

IRFs for different ELB durations computed in the previous section to recover the time-varying

policy functions. In particular, denote the recursive formulation of the policy functions as:

Xt = Ct + PtXt−1 +DtEt, (28)

where matrices Ct, Pt, and Dt describe the policy rules at time t when the expected ELB

duration is equal to durationt. To recover these matrices from the SSJ solution when the

ELB is expected to bind for m periods, one needs to (1) compute the IRFs for an expected

duration equal to 1, (2) recover C1, P1, and D1 from that solution following Auclert et al.

(2021), and (3) repeat for each duration equal to 2, 3... m.

Dotted lines in Figure 3 represent the responses computed based on the time-varying and

recursive formulation of the model recovered from the SSJ solution, which we denote by

“mapping”. These three lines are almost identical and are on top of each other.

F.3 ELB and anticipated monetary policy shocks

In this section, we show that responses presented above are equivalent to assuming antici-

pated monetary policy shocks that guarantee (in expectation) that the interest rate will be

at 0 for m periods. While this method is less efficient to compute specific responses, this

method is very efficient for the likelihood computation.

The basic idea of this method is the following: suppose that the monetary authority follows

a Taylor-type policy rule. But, during ELB periods, the monetary authority activates antic-

ipated shocks: today it announces future changes the the interest rate. Those anticipated

shocks are such that the interest rate will be expected to be 0 for m periods.

Formally this procedure works as follows. The linearized system of equations describing the

equilibrium in SSJ is given by:

FxdX + FzdZ + FndN = 0 (29)

where, compared to (21), N is the path of the anticipated monetary policy shocks. dN is a

column vector of size T · a, where a is the number of anticipated monetary policy shocks.6

Fn is the Jacobian of the endogenous equations with respect to the anticipated monetary

6For example, if the monetary authority announces shocks for the next 4 periods, a = 4.
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policy shocks.7 Then, the responses of the endogenous variables to shocks is given by:

dX = −F−1
x (FzdZ + FndN) (30)

From 30, we can extract the responses of the interest rate, which we can denote by:

di = AdZ +BdN (31)

Now, we want to find the sequence of anticipated monetary policy shocks (dN) that make

the expected interest rate be 0 for m periods. Hence, based on (31), we can solve for dN

such that:

di =Ci = AdZ +BdN (32)

dN =−B−1
(
Ci + AdZ

)
(33)

where Ci is a column vector of size T, with the first m entries equal to −iss.8 Now, substi-

tuting (33) into (30)

dX =− F−1
x

[
FzdZ − FnB

−1
(
Ci + AdZ

)]
(34)

dX =− F−1
x

[
−FnB

−1Ci +
(
Fz − FnB

−1A
)
dZ

]
(35)

Note the similarities between (35) and (27). Both expression would be identical if:

C∗ =− FnB
−1Ci (36)

F ∗
z =Fz − FnB

−1A (37)

In fact, Figure 3 also includes the responses to a 1% increase in productivity when the

interest rate is expected to be at 0 for 20 periods based on the “anticipated shocks” method.

This method deliver identical responses to the previous methods.

While the anticipated shocks method involves more operations than the “direct” method

presented in the previous section, we will shock in the next section that the anticipated

shocks method facilitates the computation of the likelihood. Note that recovering the time-

varying and recursive formulation of the policy functions is time consuming to evaluate

the likelihood function because it implies multiple large matrix operations for each set of

7In our case, this Jacobian is zero for all endogenous equations except for the rows associated with the
Taylor rule.

8As before, we assume that the ELB for the interest rate is equal to 0. If the ELB is different than zero,
the first m entries of Ci will be −iss + i, where i is the lower bound in the interest rate.
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parameters. However, given a set of parameters, recovering this approach is very efficient

to compute stochastic simulations with ELB periods, because the matrix operations have

to the executed only once. In contrast, for stochastic simulations, the anticipated shocks

method can be time consuming.

F.4 Algorithm: Steps to Compute Likelihood when ELB is Bind-

ing

The challenging part of computing the likelihood consists of combining the fact that, during

ELB period, there is sequence of past shocks and there is an expected duration of the ELB. In

the previous two sections, where we presented the “direct” and “anticipated shocks” methods,

we implicitly assumed that we were departing from the steady state of the economy. In other

words, there was not a sequence of past shocks. In this section, we borrow the intuition from

the “anticipated shocks” method to solve this problem. In particular, we can now make

the anticipated sequence of shocks not only a function of the expected ELB duration and

current shocks but also a function of the sequence of past aggregate shocks. To achieve this

result, we: (1) get the MA representation of the economy based on (30). This give us the

response of the endogenous variables to past shocks. (2) Based on the MA representation

of the economy we create a vector describing the expected path of the interest rate. (3) We

solve for the current set of anticipated shocks such that the interest rate is expected to be at

zero for m periods. Note, again, that the difference with respect the IRFs presented in the

previous two sections is that we are also conditioning on the past realizations of the shocks.

Computing the likelihood

1. Solving the model using SSJ, include L anticipated monetary policy shocks, where L

should be as large as the maximum expected ELB duration. This results in an MA

representation of the endogenous variables (dX) of the form:

dX =MAϵt−1 + α̃0ϵ̃t + β0µt (38)
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where:

ϵt = [ϵ̃t µt]
′ (39)

ϵt = [ϵt ϵt−1 ... ϵt−T ]
′ (40)

µt = [ε0,t ε1,t ... εL,t]
′ (41)

MAj =

αj αj+1 ... αT 0 0 · · · 0︸ ︷︷ ︸
j times

 ∀j = 0 · · ·T (42)

αj = [α̃j βj]
′ ∀j = 0 · · · 1...T (43)

µt is the vector of unanticipated and anticipated monetary policy shocks at time t,

ϵ̃t is the vector of all other shocks in the economy at time t, ϵt is the combination of

the those two (i.e. all aggregate shocks at time t), and ϵt is the history of ϵt until

time t. βj is the response of the endogenous variables at time t to anticipated and

unanticipated monetary policy shocks at time t − j. Similarly, α̃j is the response of

endogenous variables at time t to all other aggregate shocks at time t− j. MAj is the

endogenous variables response to all shocks up to period t.9

2. Extract the MA representation for the Federal Funds rate distinguishing between mon-

etary policy shocks (anticipated and non-anticipated) and all other shocks in the econ-

omy. Hence, the federal funds rate at time t is given by:

ît =MAi
1ϵ

t−1 + α̃i
0ϵ̃t + βi

0µt (44)

where:

MAi
j =

αi
j αi

j+1 ... αi
T 0 0 · · · 0︸ ︷︷ ︸

j times

 ∀j = 0 · · ·T (45)

αi
j =

[
α̃i
j βi

j

]′ ∀j = 0 · · · 1...T (46)

βi
j is the response of the interest (i) at time t to anticipated and unanticipated monetary

policy shocks at time t − j. Similarly, α̃i
j is the response of the interest (i) at time t

to all other aggregate shocks at time t − j. MAi
j is the interest rate response to all

shocks up to period t.

9Because the solution is truncated at horizon T in SSJ, the last j elements of MAj are equal to zero.
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3. Get the implied vector of monetary policy shocks for time t, as a function of past

monetary policy shocks and as a function of the other aggregate shocks (current and

past). At time t, the expected interest rate for t+ 1 is:

Et

[̂
it+1

]
=

[
αi
2 αi

3 ... αi
T 0

]
ϵt−2 + α̃i

1ϵ̃t + βi
1µt (47)

We can then group, the expected interest rate between t and t+ L as:


ît

Et

[̂
it+1

]
...

Et

[̂
it+L

]

 =



αi
1 αi

2 αi
3 · · · αi

T−2 αi
T−1 αi

T

αi
2 αi

3 αi
4 · · · αi

T−1 αi
T 0

αi
3 αi

4 αi
5 · · · αi

T 0 0
...

...
...

...
...

...

αi
L+1 αi

L+2 αi
L+3 · · · 0 0 0


︸ ︷︷ ︸

Ωt

ϵt−1 +



α̃i
0

α̃i
1

α̃i
2
...

α̃i
L


︸ ︷︷ ︸

ωt

ϵ̃t +



βi
0

βi
1

βi
2
...

βi
L


︸ ︷︷ ︸

λt

µt

(48)

Now, if the ELB is expected to bind for L periods:
ît

Et

[̂
it+1

]
...

Et

[̂
it+L

]

 =


−iss

−iss
...

−iss


︸ ︷︷ ︸

ζt

(49)

Hence, we can get the implied monetary policy shocks for time t as:

µt =λ
−1
t

[
ζt − Ωtϵ

t−1 − ωtϵ̃t
]

(50)

Matrices, Z, ω, Ω, and λ are denoted with a subscript t as they are a funciton of the

expected ELB duration at time t. We can re-group the elements in equation (50) such

that:

µt =λ
−1
t ζt + ϕtϵ̃

t + ψtµ
t−1 (51)

where the first columns in ϕt correspond to the column in −λ−1
t Ωt associated with ϵ̃t−1,

and the last columns correspond to −λ−1
t ωt, and the columns of −λ−1

t Ωt associated
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with µt−1 correspond to ψt.

4. Get the implied sequence of monetary policy shocks as a function of current and past

aggregate shocks other than anticipated monetary policy shocks. Assuming that the

ELB binds between periods t and t+ E, stack


µt

µt+1

...

µt+E

 =


λ−1
t ζt

λ−1
t+1ζt+1

...

λ−1
t+Eζt+E


︸ ︷︷ ︸

C

+


0 0 · · · 0 ϕ0

t ϕ1
t · · · ϕT−1

t ϕT
t

0 0 · · · ϕ0
t+1 ϕ1

t+1 ϕ2
t+1 · · · ϕT

t+1 0
...

ϕ0
t+E ϕ1

t+E · · · 0 0 0 · · · 0 0


︸ ︷︷ ︸

Φ



ϵ̃t+E

ϵ̃t+E−1

...

ϵ̃t+1

ϵ̃t

ϵ̃t−1

...

ϵ̃t−T



+



0 0 · · · 0 0 0

ψ1
t+1 0 · · · 0 0 0

ψ2
t+2 ψ1

t+2 · · · 0 0 0
...

0 0 · · · ψ2
E+1 ψ1

E+1 0


︸ ︷︷ ︸

Ψ



µt

µt+1

...

µt+E−1

µt+E


(52)

where

ϕt =
[
ϕ0
t ϕ1

t ϕ2
t · · · ϕT

t

]
(53)

ψt =
[
ψ1
t ψ2

t · · · ψT
t

]
(54)

Hence, the implied sequence of monetary policy shocks is given by:

µt+E = (I −Ψ)−1 [C + Φϵ̃t+E
]

(55)

which implies that for each period t:

µt = Aµ
t + Bµ

t ϵ̃
t (56)

Note that in our model µt = 0 for all time periods before the first ELB episode. But

this analysis is easy to extend to a model with active anticipated monetary policy
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shocks in non-ELB periods.

5. Plug the vector of monetary policy shocks (56) into the (38) to get the time t MA

representation for the endogenous variables of the form:

dXt =At + Btϵ̃
t (57)

6. Using (57) compute the likelihood of as in Auclert et al. (2021) (section 5.3). In

particular, given the vector dXobs
t of nobs observables and a sample size of Tobs:

dXobs
t = B · dXt + ut (58)

where ut is a vector of measurement errors, and B is a selector matrix. We then stack

the covariances of these observables in a large symmetric matrix V of size nobs · Tobs.
Then, the likelihood function is given by:

L
(
dXobs | Θ

)
= (2π)−

Tobs
2 | V |−

1
2 exp

{[
dXobs −A

]′
V −1

[
dXobs −A

]}
(59)

where dXobs is the stacked vector of observables, A is the staced vector of constants

(B · At), and Θ is the vector of model parameters.10

F.5 Overall Prior Distribution

In our Bayesian estimation, in addition to the standard informative priors over the model

parameters, we specified an implicit prior over selected business cycle moments generated by

our model, following Del Negro & Schorfheide (2008). Denote µobs as the vector of selected

business cycle moments from the data, and µ(Θ) as the model generated moments given the

set of parameters Θ. µ(Θ) relates to the data business cycle moments as follows:

µobs = µ(θ) + ηobs (60)

where ηobs is a vector of measurement errors that distributes normal with matrix of variance

covariance equal to Σηobs . We express (60) in terms of a conditional density (likelihood

function) and use Bayes theorem in combination with a marginal density π(Θ) to generate

10Auclert et al. (2021) discuss how to quickly evaluate the determinant of V as well as the quadratic form.
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a distribution that reflects our beliefs about the selected business cycle moments:

p
(
Θ | µobs

)
= L

(
µ(Θ) | µobs

)
· π(Θ) (61)

where π(Θ) refers to the informative priors listed in Table ??. Hence, our posterior distri-

bution is given by:

p(Θ | dXobs, µobs) ∝ L(dXobs | Θ)p
(
Θ | µobs

)
(62)

∝ L(dXobs | Θ)L
(
µ(Θ) | µobs

)
· π(Θ) (63)

where L(dXobs | Θ) is the likelihood function of the data defined in (59). The selected

business cycle moments are: the variance of the observables, the covariance between the

federal funds rate and GDP growth and CPI inflation, and the covariance between GDP

growth and inflation. We assume that
(
Σηobs

)− 1
2
is a diagonal matrix with entries equal to

ω times the standard deviation of the data moment, where ω is a scalar that we set to 0.25.

Hence, for each moment m, we assume that the standard deviation of the measurement error

associated with that moment equals σm:

σm =ω

T obs∑
t=1

(xmt − x̄m)2

T obs

 1
2

(64)

where xmt refers to the data moment at time t, and x̄ is the sample average of x. For example,

xmt = (dyqt − d̄y
q
)2 for the variance of GDP growth, and xmt = (dyqt − d̄y

q
)(πq

t − π̄q) for the

covariance between GDP growth and quarterly inflation.

To compute the model generated moments µ(Θ), we make use of the time-varying MA

representation presented in the Online Appendix. Given the time-varying MA representation

of the observables:

dXobs
t = Aobs

t + Bobs
t ϵt (65)

we stack them to get:

dXobs = A+Bϵ (66)

Given that the steady state of our model matches the sample average of our observables, we
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are interested in computing:

E
{[
dXobs

]′ [
dXobs

]}
=Σ(Θ) (67)

=A′A+B′ΣϵB (68)

where Σϵ equals to the matrix of variance covariance of the model shocks.11 Note that Σ(Θ)

is a big square and symmetric matrix of size nobs · T obs.

Define matrix σ(Θ)t as the square and symmetric matrix of size nobs form by the rows and

columns of Σ(Θ) starting in row and column (t− 1)nobs+ 1 and ending in row and column

t ·nobs. Matrix σ(Θ)t is the expected sample covariance of the observables in period t or, in

other words, the expected quadratic deviation of the observables from their sample average

in period t. Then, the expected matrix of variance covariance generated by the model is

given by:

σ̄(Θ) =
T obs∑
t=1

σ(Θ)t
T obs

(69)

Hence, our selected model generated moments used in our prior (µ(Θ)) correspond to the

associated elements of matrix σ̄(Θ).

Note that our model generated moments condition on the ELB episodes. In other words, our

model generated moments are conditional on the ELB periods and their expected durations.

Other parameter restrictions: In addition to these priors, to avoid exploring unreason-

able areas of the parameter space, we get the filtered series for each draw of parameters and

discard those draws that imply a value of the menu cost below zero or log-deviations for θp

and θa greater than three in absolute value.

F.6 Posterior Sampler

We use a standard Metropolis Hasting Algorithm with similar specification as in Kulish et al.

(2017). The algorithm is the following:

Algorithm: At the beginning of each iteration j, given a set of parameters Θj−1 :

1. Randomly select how many parameters to update from a uniform distribution between

⌈0.2nΘ⌉ and nΘ, where nΘ is the number of parameters in Θ.

11Note that the last term in (68) equals to matrix V of Appendix F.
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2. Randomly select which parameters to update.

3. Construct a proposed set of parameters Θp
j . To do this, we use a multivariate Student

t distribution with 12+p degrees of freedom centered at Θj−1 and with a matrix of

variance covariance given by ΣΘp
, which will be specified below. p is te number of

parameters being updated.

4. Compute the acceptance ratio (AR):

ARΘ
j =

p(Θp
j | dXobs, µobs)

p(Θj−1 | dXobs, µobs)
(70)

set ARj = 0 if the proposal includes inadmissible values.

5. Accept the proposal with probability min{ARj, 1} and set Θj = Θp
j . Otherwise, set

Θj = Θj−1.

Matrix of variance covariance ΣΘ: To compute the matrix of variance covariance ΣΘ,

we run a chain of 150,000 draws using a matrix of variance covariance equal to the diagonal

matrix of the Hessian at the optimization mode scaled by κmcmc, which we set to 0.0575.

Then, we drop the first 50,000 draws and compute the matrix of variance covariance resulting

from this chain, which we denote by ΣΘ. Then, for the proposal density, we can decomposte

matrix ΣΘ as follows:

ΣΘ =

[
Σ11 Σ12

Σ21 Σ22

]
(71)

where the first block refers to the fixed parameters at iteration j. Hence, the specific matrix

of variance covariance used in iteration j equals to:

ΣΘp

= ωmcmcΣ22|1 = Σ22 − Σ21Σ
−1
11 Σ12 (72)

where ωmcmc is a scaling parameter that we set to 0.2 to target an acceptance rate of 30%.

Sample chain: We used a single chain of 500,000 draws with an average acceptance rate of

30%. We drop the first 100,000 draws to compute statistic on the the posterior distribution.
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F.7 Prior and Posterior distributions

Figure 4 plots the prior and posterior distributions and Figure 5 plots the trace plots. Solid

black lines represent the posterior mode.

Figure 4: Prior and posterior distribution
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Figure 5: Trace plots
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G Detrended Model Equations

Aggregate price index:

Pt = 1 =

[∫
p1−ε
jt Ωjtdj

] 1
1−ε

(73)

Aggregate resource constraint:

∆tỸt = C̃t + G̃t + F̃t (74)

where

F̃t =

∫ [
κ̃+ C̃a

jt + λjtC̃p
jt

]
Ω̃jtdj (75)

Euler equation:

ζt χt + Et

[
β

γt+1

ζt+1 λ̃t+1

(
it
πt+1

)]
=ζt λ̃t (76)

where

λ̃t = ztλt =

 1

C̃t − h C̃t−1

γt

− Et

[(
βζt+1

ζt

)(
h

γt+1C̃t+1 − hC̃t

)]
(77)

Marginal cost:

eat p̃xt = δweat
ξt

(
Ỹt

eat
∆t

) 1
ν

λ̃t
+ (1− δw)p̃x∗ (78)

where we made use of:

pxt =
wt

eat
(79)

w∗
t =

ξtL
1
ν
t

λt
(80)

Lt =
Ỹt
eat

∆t (81)

A.25



and where

∆t =

∫
j

e−ajtp−ε
jt Ωjtdj (82)

Taylor rule:

it = itargett + ϵrt, (83)

(itargett )p = ρi(it−1)
p + (1− ρi)

[
(iss)

p + ϕπ

(
Πp−1

j=0πt−j − (π∗
t )

p
)
+ ϕy(dyt − dyss)

]
, (84)

A.26



H Data Series

Figure 6 plots the raw and smoothed time series of the different pricing moments we use.

(a) Frequency (b) Mean Absolute Size (c) Standard Deviation

(d) Frequency Up (e) Mean Absolute Size Up (f) Skew

(g) Frequency Down (h) Mean Absolute Size Down (i) Kurtosis

Figure 6: Data Pricing Moments

Note: These panels plot the raw and MA-smoothed pricing series from 1978 to 2023.Q1.
Shaded areas represent NBER recession dates.
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