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Abstract
We analyze a confidential reservation database provided by a luxury hotel, ”hotel 0”, based in a major
US city that enables us to observe individual reservations and cancellations at a daily frequency over
a 37 month period. We show how the hotel sets prices for various classes of customers and how its
prices vary over time. Hotel pricing is a challenging high-dimensional problem since hotels must not
only set prices for each current date, but they must also quote prices for a range of future dates, room
types and customer types. We formulate and estimate a structural model of optimal dynamic hotel
pricing using the Method of Simulated Moments (MSM). The estimated model provides accurate
predictions of the actual prices set by this firm and resulting paths of bookings and cancellations.
Prices quoted for bookings generally decline as the arrival date approaches on non-busy days, but can
increase dramatically in the final days before arrival on busy days when there is a high probability
of sell-out. Hotel 0’s prices co-move strongly with its competitors’ prices and we show that a simple
price-following strategy where hotel 0 undercuts its competitors’ average price by a fixed percentage
provides a good first approximation to its pricing behavior. However we show that simple price-
following is suboptimal: when hotel 0 expects to sell out, it is optimal to depart from price-following
and increase its price significantly above its competitors. Though price-following has the superficial
appearance of collusive behavior mediated by the use of a commercial revenue management system
(RMS), our results suggest that hotel 0’s pricing is competitive and is best described as a rational best
response to its beliefs about demand and the prices set by its competitors.
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1 Introduction

We analyze a unique new micro panel dataset of daily observations of reservations, prices, and occupancy

of a luxury hotel based in a major US city. Due to the confidential nature of the data we are unable to reveal

the name of the hotel or the city where it is located. Hereafter we refer to it as “hotel 0” since it is one of 7

competing luxury hotels (with its competitors labeled 1 to 6) that constitute a local market in a small but

highly desirable location of this city. We formulate and estimate a dynamic model of optimal pricing by

hotel 0: it sets its prices to maximize its expected profits (revenue less cost of cleaning/servicing rooms)

as a best response to its beliefs about the arrival of customers and the dynamics of its competitors’ prices.

Our main finding is that our model provides surprisingly accurate predictions of the prices set by hotel 0.

This suggests that hotel 0 is setting prices in an approximately optimal fashion and is consistent with the

hypothesis that there is a dynamic Bertrand price equilibrium in this particular luxury hotel market.

Hotel pricing is a challenging problem since beside setting different prices for various room categories

(standard rooms, deluxe rooms, penthouse suites, etc) and customer categories (tourist versus business

guests, group discounts for corporations, governments, etc.) a hotel manager must be able to continuously

update and quote a large array of future prices since most of its customers book rooms well in advance of

their planned arrival date. Optimal pricing depends critically on accurate knowledge of customer demand,

and there are two key aspects to this: 1) recognizing the stochastic nature of demand and bookings and

being able to use pricing to accommodate large day-to-day swings in the number of customers wishing to

stay in one of the hotels in this market, and 2) understanding customers’ evaluation of the relative desir-

ability of the competing hotels and their degree of price sensitivity, and being able to exploit differences

along these dimensions among its various types of customers.

We introduce a dynamic model of hotel demand that captures these two key aspects of demand. Cus-

tomers arrive stochastically and reserve a room at hotel 0 or one of its competitors at randomly distributed

lead times prior to arrival. Our model allows for stochastic cancellations but not overbooking: the dy-

namic allocation of capacity subject to “hard” capacity constraints is central to our explanation of hotel

0’s price setting behavior. Though we have daily observations of the best available rate (BAR) of com-

parable rooms quoted by the six competing hotels, we only observe the number of new reservations (and

cancellations) at hotel 0, but not at its competitors. Thus, we face a problem of censoring that makes it

challenging to estimate customer demand, and without knowing demand, it is hard to set good prices.

Via a matched dataset provided by STR, we observe the total occupancy and average daily rate (ADR)

for all seven hotels on a daily basis. The ADR is an average of different prices paid by different customers

who reserved at different times and may have been eligible for various group or corporate/government
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discounts. If we use ADR in place of the price customers were actually charged, at a minimum we have a

problem of errors in variables. But there is a more serious problem of endogeneity in hotel prices due to

the strong co-movement of prices of the seven hotels who independently raise or lower prices in response

to shocks to the aggregate demand for luxury hotel rooms in this part of the city. Prices peak to ration

the available supply of rooms on days where demand is high and occupancy is close to 100%, but prices

can fall precipitously on days when demand is low and there is significant excess capacity. Regressions

of hotel occupancy on hotel prices therefore produce spurious positively sloped demand functions due

to the effect of demand shocks on endogenously determined prices. There are few relevant instrumental

variables that can successfully deal with the endogeneity problem. Also, hotel demand is not given by

a simple linear demand equation but by a conditional probability distribution that is generally nonlinear

in prices, derived from micro aggregation of individual discrete choices of hotel by a random number of

customers who book rooms at various future arrival dates. It is not obvious how to control for endogeneity

in our stochastic nonlinear dynamic model even if we did have good instruments.

We show how the censoring, errors-in-variables, and endogeneity problems can be solved using struc-

tural econometric methods. We provide credible structural estimates of the stochastic arrival process

of customers and their preferences for the competing hotels using the method of simulated moments of

McFadden (1998) as extended to dynamic structural models with continuous decisions and endogenous

censoring by Merlo, Ortalo-Magne, and Rust (2015) and Hall and Rust (2018).1 Our key identifying

assumption, besides parametric restrictions on consumer arrival and demand, is the maintained assump-

tion that hotel 0 is an expected profit maximizer. In essence, our structural estimation can be regarded

as process for inferring the hotel manager’s beliefs about customer demand that are implicit in the array

of prices the hotel sets on a daily basis. As such, our structural estimation method can be regarded as a

procedure for inferring the hotel manager’s revealed beliefs about customer demand from observations of

the prices they set, similar to the way that structural estimation is used to infer the revealed preferences of

consumers from observations of their choices, see e.g. McFadden (1976).

However just because we assume that hotel 0 maximizes profits does not imply that our relatively

simple and parsimoniously parameterized model will be able to provide reasonable estimates of demand

or good predictions of the prices the hotel actually charges. We show, via simulations of counterfactual

pricing strategies, that our model and optimal pricing algorithm provides intuitively reasonable counter-

factual predictions of occupancy and revenues. We showed the predictions to the manager of hotel 0, who

agrees that they are plausible. We can use the model to simulate a wide range of counterfactual pricing

1See also MacKay and Miller (Harvard Business School, typescript, 2018) who provide a related method of moments based
method for “instrument-free demand estimation.”
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strategies and quantify the forgone profits relative to a dynamically optimal strategy.

Our model generates optimal prices for hotel 0 in virtually any scenario. The optimal strategy entails

both price following and price undercutting under typical conditions, but it is optimal for hotel to raise

its prices unilaterally to values significantly above its competitors when it expects to sell out. However it

is not optimal for hotel 0 to decrease its prices unilaterally in the face of expected excess capacity unless

its competitors also decrease their prices. Thus, the optimal strategy takes the form of a conditional price

following rule: undercut competitors’ price by a roughly fixed percentage unless hotel 0 expects to sell

out. In the latter case optimal prices rise in a way that resembles an auction for scarce room capacity.

Our paper contributes to the academically understudied area of applied revenue management. A key

reference to this literature is Phillips (2005) who notes that despite the fact that pricing decisions “are

usually critical determinants of profitability” “pricing decisions are often badly managed (or even unman-

aged).” (p. 38). He documents the growth of commercial revenue management systems that originated in

the 1980s when American Airlines was threatened by the entry of the low-cost carrier PeopleExpress.

“In response, American developed a management program based on differentiating prices be-
tween leisure and business travelers. A key element of this program was a “yield management”
system that used optimization algorithms to determine the right number of seats to protect for
later-booking full-fare passengers on each flight while still accepting early-booking low-fare pas-
sengers. This approach was a resounding success for American, resulting in the ultimate demise
of PeopleExpress.” (p. 78).

Commercial RMSs are now widely used both by the airlines and in the hospitality industry due to the sim-

ilar nature of the problem of advance booking and optimally allocating a finite and perishable “inventory”

to stochastically arriving customers with differing willingness to pay. Examples include IDeaS (a SAS

subsidiary), JDA, PROS, and Revenue Analytics. According to Anderson and Kimes (2011) “At its most

basic level, RM is about a hotel’s ability to segment its consumers and price and control room inventory

differently across these segments — in essence practicing some form of price discrimination. In many

instances RM used in the hotel industry has been shown to increase revenue by 2 to 5 percent.” (p. 192).

Revenue management systems are proprietary so we do not know what sort of optimization principles

they use and what types of data and econometric methods they employ. McAfee and te Veld (2008)

note that “At this point, the mechanism determining airline prices is mysterious and merits continuing

investigation because airlines engage in the most computationally intensive pricing of any industry.” (p.

437). Phillips (2005) notes that “The tools that pricers use day to day are far more likely to be drawn

from the fields of statistics or operations research than from economics.” (p. 68) and he credits marketing

(which he regards as a subfield of operations research and management science) noting that “marketing

science has brought some science to what was previously viewed as a ‘black art”’ (p. 70). Yet “there
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remains a gap between marketing science models and their use in practice. The reasons for this gap

are numerous. Many marketing models have been build on unrealistically stylized views of consumer

behavior. Other models have been build to ‘determine if what we see in practice can happen in theory.’

Other models seem limited by unrealistically simplistic assumptions.” (p . 70).

Phillips’ book and the related literature on revenue management systems contain many important prac-

tical insights and offer many heuristic principles for revenue management such as the advice of Anderson

and Kimes (2011) to “Be careful with rate reductions because you could lower your rates (and dilute your

ADR) without improving occupancy.” (p. 195). However these studies make no mention of a key tool for

calculating optimal dynamic prices — dynamic programming (DP). In fact, there is a substantial literature

in operations research/management science that uses DP to characterize optimal dynamic pricing strate-

gies for perishable inventories over a finite horizon, see for example Gallego and van Ryzin (1994) and

McAfee and te Veld (2008) and references in these papers to literature dating back to the 1960s. Recent

work has focused on numerical calculation of optimal dynamic pricing strategies specifically for hotel

revenue management, see Ivanov (2014), Anderson and Xie (2012), Zhang and Lu (2013), and Zhang

and Weatherford (2016). Still, most of the OR/management science literature is highly theoretical and

to our knowledge only Zhang and Weatherford (2016) provide any empirical evidence of how well the

DP algorithms perform in practice, and they conclude that though the “relative magnitude of the revenue

improvement is small” (approximately 0.19%) “this truly can be a significant improvement, especially

given that DP decomposition is the state-of-the-art in the industry in terms of implemented algorithms.”

In fact, dynamic pricing has not been widely adopted by most RMSs. Instead they practice yield

management an orientation inherited from their origin in the airline industry. This involves controlling

quantities using a predefined set time-invariant prices “many revenue management (RM) applications are

based on product availability control, in which product prices are fixed and product availability is adjusted

dynamically over time. Static pricing, whereby the price for each product is fixed, is also frequently

observed in practice.” (p. 102). As Gallego and van Ryzin (1994) note, “Airlines and hotels must, for a

variety of operational and customer-relations reasons, offer a limited number of fares that remain relatively

static, at least in the sense of spanning several problem instances.” However they argue that dynamic

pricing can be approximated using yield management strategies “a static set of fare classes together with a

dynamic allocation scheme can be used to synthesize different prices for each instance. This interpretation

better explains both the magnitude of revenue increases and the disparity in fare prices found in yield

management practice.” (pp 1000-1001).2

2See also Board and Skrzypacz (2016) who characterize optimal selling strategies using mechanism design when buyers are
forward looking. They find that “in the continuous-time limit, the optimal mechanism can be implemented by posting anony-
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There have been a number of claims that yield management and RMS have lead to significant im-

provements in profitability. Gallego and van Ryzin (1994) claim that “The benefits of yield management

are often staggering; American Airlines reports a five-percent increase in revenue worth approximately

$1.4 billion dollars over a three-year period, attributable to effective yield management.” (p. 1000). How-

ever, we are unaware of studies that provide scientific validation (say via controlled experiments or other

means) of the claims that commercial RMS have resulted in significant increases in hotel revenues and

profits. The only study we found was Ortega (2016) who used a database of chain hotels with 3 star

ratings and ANOVA methods to analyse whether hotels that use a RMS outperform non-RMS-users in a

context of decreasing demand. This study concludes that “RMSs have been more effective in improving

occupancy than in achieving higher rates.” (p. 656). We are not aware of any other studies that analyze

the algorithms that RMS use to allocate rooms or set recommended prices, or any comparisons of the

profitability of commercial RMS relative to expert human revenue managers.

Since our econometric model calculates optimal recommended prices in real time for any possible sce-

nario, it can be regarded as a prototype RMS. We can subject our model, and in principle any commercial

RMS, to scientific validation and testing such as using holdout samples to validate its performance. The

ultimate validation is via controlled field experiments that compare the profitability of a “treatment loca-

tion” where prices are set by a RMS with the profitability of a “control location” where prices are set by

an expert human revenue manager. This type of field experiment was conducted in Cho and Rust (2010)

to demonstrate that DP can improve the profitability of rental car rate-setting and replacement decisions.

Unfortunately, there is only a single hotel 0 so it is not possible to compare differences in profitability

between a treatment and control location: at best we could evaluate our model using a “before-after”

comparison similar to the one done in Misra and Nair (2011). The design of effective field experiments to

validate our model (or commercial RMS) is beyond the scope of this paper, but we show that our model

enables us to conduct simulated field experiments that provide considerable insight into how an effective

experiment must be designed to make valid inferences about whether one decision procedure (or RMS) is

better than another given the inherent variability in outcomes driven by stochastic shocks to the demand

for hotel rooms.

The closest available study to our’s methodologically is the recent econometric study by Williams

(2018) who uses a dynamic structural estimation approach that is very similar to the one we use in this

study, but using data from a particular airline.3 To our knowledge Williams is the first to use an empirically

mous prices.” (p. 1046).
3Other relevant papes include Lazarev (2013) and Sweeting (2012). Lazarev also studies airline pricing on monopoly routes,

and Sweeting studies dynamic pricing of major league baseball games using secondary market data from eBay and StubHub. To
the extent that particular baseball games are one-time events, they are essentially dynamic auctions by a monopolist that differ in

5



estimated dynamic programming model to show how dynamic pricing in the face of stochastic demand

complements intertemporal price discrimination in airline markets. He concludes that “By having fares

respond to demand shocks, airlines are able to secure seats for late-arriving consumers. These consumers

are then charged high prices. While airlines utilize sophisticated pricing systems that result in significant

price discrimination, these systems also more efficiently ration seats.” (p. 47). The airline that Williams

studied used a commercial RMS to help set its prices, and his results suggest that commercial RMSs are

capable of recommending nearly optimal prices.

We find very similar conclusions for the hotel we study, except that the human revenue manager

frequently overrides the recommended prices from the RMS. Thus, we conclude that the hybrid human-

supervised/RMS system results in a nearly optimal dynamic pricing strategy. Similar to Williams we show

that dynamic pricing results in significantly higher expected profits than fixed price strategies, calling into

question the empirical revelance of a major conclusion of Gallego and van Ryzin (1994) “that policies that

have no price changes are asymptotically (as the expected volume of sales increases) optimal over the class

of policies that allow an unlimited number of price changes at no cost.” (p. 1001). The major difference

between our study and Williams’ (besides the difference in application area, hotels versus airlines) is that

due to lack of data on airfares of competing airlines Williams focused on monopoly routes. However it is

obvious that the value of dynamic pricing is even greater in a competitive context where the hotel needs

to adjust its own prices in response to changes in the prices of its competitors.

With only a 13% revenue/occupancy share in the local market where it operates, hotel 0 is far from

having monopoly power, so it is not surprising that the prices of its competitors is a key state variable

in hotel 0’s pricing strategy. As we noted above, hotel 0’s pricing strategy can be well approximated

by a combined price-following and price-undercutting strategy where it discounts its price relative to its

competitors’ by a fixed percentage. In fact a simple regression of hotel 0’s prices on the average price of

its competitors and seasonal and weekday dummy variables has an R2 of .86.

The fact that most hotels use commercial RMS systems that provide recommended prices and have

real time access to the prices charged by their competitors has raised concerns about the potential for

algorithmic collusion that may not be technically illegal given current US Anti-trust law (see Harrington

(2017) and Ezrachi and Stucke (2016)). Yet Harrington admits that “there is currently no evidence of

key respects from repeated competitive pricing game that occurs in the hotel market we analyze. There are also methodological
differences: Sweeting uses a two-step approach that differs from the fully structural estimation approach that our study and the
Williams study employs. In the first step Sweeting estimates the demand for tickets using instrumental variable methods, and
in the second step he tests whether a first order Euler equation condition for optimal dynamic pricing holds given the estimated
demand curve. Sweeting finds that “the simplest dynamic pricing models describe very accurately both the pricing problem faced
by sellers and how they behave, explaining why sellers cut prices dramatically, by 40 percent or more, as an event approaches.
The estimates also imply that dynamic pricing is valuable, raising the average sellers expected payoff by around 16 percent.” (p.
1133).
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collusion by autonomous price-setting agents in actual markets, and research has yet to be conducted to

investigate whether such collusion can occur in a reasonably sophisticated simulated market.” (p. 71).

If hotel 0’s price setting can be described as a price-following strategy, is this evidence of algorithmic

collusion fostered by the hotels’ real time access to each others’ prices and their use of a commercial

RMS that might be recommending collusive prices? A time series plot of the hotels’ prices shows price

cycles with high price periods interspersed with briefer periods of deep price cuts. Is this evidence of tacit

collusion by these hotels with periodic “price wars” that punish hotels that deviate from the collusive price

recommended by their RMS? Kimes (2009) analyzes an international survey of hotel revenue managers

who cite “price wars” as one of their chief concerns. One respondent wrote “Price wars! Keep your cool

and be a price leader also in rough times. Your comp. set will follow (eventually).” (p. 9).

However in the market we study, we see little evidence of tacit collusion and price wars. The price-

following behavior we observe can be explained by stochastic demand shocks that result in highly corre-

lated movements in occupancy and ADRs of the hotels in this market. The hotels raise their prices sharply

to effectively “auction off” scarce collective capacity on particularly busy days when all the hotels are

nearly sold out, but they cut prices in a manner predicted by a model of Bertrand price competition on

non-busy days where the hotels have significant excess capacity.

We find that price following with proportional price undercutting is a best response by hotel 0 to its

competitors except in situations where hotel 0 expects to sell out. Though price following has the superfi-

cial appearance of collusive behavior mediated by the use of a commercial revenue management systems

(RMS), our results suggest that a dynamic competitive Bertrand equilibrium provides a better description

of the outcomes in this market. Further, the fact that hotel 0 frequently disregards the recommended prices

of its RMS also casts doubt on the hypothesis of RMS-mediated collusion. In any event, we think it is

unlikely that the RMS used by hotel 0 recommends collusive prices, and effective collusion would seem

to require all of the hotels in this market to subscribe to the same RMS, which is also unlikely.

Section 2 describes the data set and documents the price following behavior by hotel 0 relative to

its competitive set. Section 3 introduces our dynamic model of demand for hotel rooms and the dynamic

programming problem we solve to provide our own version of “recommended prices.” Section 4 describes

the method of simulated moments estimator we use to uncover the hotel manager’s beliefs about stochastic

demand for hotel 0 and presents our estimation results and main empirical findings. We show that the

optimal prices from our dynamic programming model are close to the prices hotel 0 actually sets. Section

5 illustrates the predictions of the model by considering several counterfactual pricing strategies. Section

6 summarizes our conclusions and discusses topics we plan to explore in future work.
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Table 1: Hotels in the local market in our study

Property Avg. BAR Star Class Chained
Brand Rate Relative

Capacity
Distance to
mass transit

Cancel
Policy

hotel 0 $ 293.26 4 Luxury No 4.4 79% 3 min 1 day before
hotel 1 $ 282.64 4.5 Upper Up No 4.4 81% 5 min 3 day before
hotel 2 $ 285.16 4 Upper Up No 4.4 63% 3 min 1 day before
hotel 3 $ 338.29 4 Upper Up Yes 4.2 99% 8 min 2 day before
hotel 4 $ 397.09 4 Luxury No 4.6 100% 10 min Strict
hotel 5 $ 253.51 4 Upper Up No 4.2 47% 8 min 3 day before
hotel 6 $ 454.30 5 Luxury Yes 4.7 52% 10 min 1 day before

2 Data

As we noted in the introduction, due to a non-disclosure agreement with the hotel that provided the data

for our study, we are unable to provide too much detail about the local market in which hotel 0 operates to

guarantee the anonymity of the hotel and the owner. We can say that it is a luxury hotel located in a highly

desirable downtown location of a major US city. The company that owns this hotel operates a small chain

of “boutique hotels” in leading cities worldwide.

Hotel 0 is one of seven luxury hotels operating in a tightly defined local area that is recognized by

OTAs and other travel agents. Though customers can book at other luxury hotels in other parts of this city,

the locations of these other luxury hotels are sufficiently far from this particular desirable area that they

are not regarded as relevant substitutes for customers who wish to stay in this specific area of the city.

Table 1 lists some summary information about the seven hotels: all are 4-star or higher rated hotels that

are classified as upscale class or luxury class. To avoid identifying the hotels we show only the relative

capacity, where we normalize the capacity of the largest hotel to 1. However our model uses all relevant

information including the actual capacity, which we will show is quite important to the optimal pricing

rule we derive.

2.1 Data sources

The customers of the hotel are both business/government customers who mainly stay in the hotel on week-

days and tourists who typically stay on weekends. Since business customers and government customers

are reimbursed for their travel expenses, we can expect them to be more price inelastic than tourists. On

the other hand, many government agencies and large corporations that do frequent business in this city

have negotiated government and corporate discounted rates with this hotel. These discounted rates are
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typically a fixed percentage, often 15 to 20%, off the currently quoted price that is called the best avail-

able rate (BAR). The revenue manager of hotel 0 is in charge of updating an array of BARs for different

room classes and different future arrival dates and posting these prices to the web via the GDS and via

its own website. As we noted above, the revenue manager uses a uniform price strategy and does not sell

blocks of rooms to wholesalers under contracts that give wholesalers discretion to set their own prices for

the blocks of rooms they purchase. Thus, there is no ability to “arbitrage” prices of rooms for hotel 0 by

searching different OTAs. However hotel 0 does pay a significant commission, ranging from 15 to 25%,

for reservations that are made via OTAs such as Expedia. The GDS that hotel 0 uses allows the revenue

manager to change prices as frequently as she desires, though there is a short lag before the prices are

propagated everywhere on the Internet including the leading OTAs. However for hotel 0’s own website

and reservation system, price changes take place instantaneously, and hotel 0 has its own loyalty program

that provides discounts to customers who are members of the program. There are other groups that in-

clude weddings that involve a larger group of guests that are typically individually negotiated with the

hotel revenue manager, but the discounts to these groups are typically quoted as a percentage discount off

the BAR similar to corporate and government contract rates.

As we noted above, hotel 0 subscribes to a RMS that provides recommended prices. The hotel revenue

manager uses her own discretion to select a relatively small number of different possible BARs (effectively,

she discretizes the pricing space) which are treated as a predefined choice set that is entered into the

RMS. Based on a proprietary algorithm that considers remaining availability, seasonal effects, cancellation

rates and competitors’ prices, the RMS communicates a recommended BAR to the revenue manager at

the start of each business day. Even though the revenue manager has some control over the prices the

RMS can recommend via her choice of a predefined finite set of possible BARs, she typically ignores

the recommended price from the RMS and instead sets her own BARs based on her own experience,

judgement and intuition.

We do not know to what extent the RMS is able to observe and adapt to the knowledge that the revenue

manager is disregarding their recommended prices. This would seem to be important information that any

RMS would want to collect, including the revenue manager’s feedback about the overall quality of the

recommended prices from the system. We can imagine that manual “price overrides” are common for

newly launched hotels where the RMS may initially not have enough data to form good predictions about

demand, or when there are unexpected changes to demand or entry/exit of other hotels in the local market.

In these cases we might expect that the recommended prices from the RMS would be less trustworthy until

sufficient data are accumulated to enable the RMS to provide an updated model of customer demand that
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Table 2: Data sources used in this study

Data The first day
of occupancy

The last day
of occupancy Observations Description

market vision 2010-09-21 2014-08-13 609,181 competitors’ price
reservation raw 2009-09-01 2013-10-31 201,176 reservations detail information
cancellation raw 2009-09-01 2013-10-31 29,241 cancel detail information
daily pick-up report 2010-09-16 2014-05-21 475,187 daily revenue report
STR market data 2010-01-01 2014-12-31 1,731 competitors’ occupancy

Data range 2010-10-01 2013-10-31 37 months

provides accurate predictions for the local market in question. But price overrides are the norm for hotel

0, even though it has been using the RMS for many years and market conditions are reasonably stable

(e.g. no major entry or exit of competing luxury hotels or expansions of its competitors’ capacity, etc). It

is puzzling that the RMS does not appear to adapt and respond to the fact that hotel 0’s revenue manager

repeatedly ignores its recommendations.

Hotel 0 provided us information from its reservation database that enabled us to track all bookings,

cancellations, and prices for a 37 month period between September 2010 and October 2013. In addition,

we were provided aggregate daily reports and their competitive daily rates of hotel 0’s six competitors

from a service called Market Vision provides quotes from hotel 0’s six competitors for several room rate

categories several times per day. While Market Vision provides excellent data on prices, it provides no

information on the reservations at hotel 0’s competitors. This information does not seem to be readily

available, but we were able to obtain data on the occupancy of hotel 0’s competitors on a daily basis

thanks to data provided by STR. Table 2 summarizes the data sources we used for our study.

Market Vision’s provides prices sampled from all channels such as GDS, OTAs/Meta sites, and hotel

websites. Although it collects only the lowest priced rooms for each hotel, it also collects prices relevant

to different customer segments such as groups like AAA, Advance purchase, Any Non-qualified rates,

Government, Unrestricted/No Merchant, and Unrestricted. Advance purchase rates can provide customers

discounts of 10-15% off the current BAR if booked more than 7 days prior to arrival and often include

a deposit or pre-payment to guarantee the reservation. Any Non-qualified rates are the lowest of the

Unrestricted, Advance Purchase/No Merchant Model but exclude qualified rates that require membership,

association or identification and contract customers such as government. Unrestricted/no merchant rates

are prices available to all customers without qualification or advance purchase requirements except that

other merchants and wholesalers are excluded. Unrestricted prices are the residual set that are offered
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Table 3: Room Types

Code Description % of rooms
(before renovation)

% of rooms
(after renovation) Rack Rate

B1K Superior, 1 King 57 43 $203.15
B2D Superior, 2 double beds 33 19 $ 203.15
A1K Deluxe, 1 King 4 14 $ 253.15
A2D Deluxe, 2 double beds 1 14 $ 253.15
GD1K Grand Deluxe, 1 King 0 3 $ 303.15
GD2D Grand Deluxe, 2 double beds 0 1.5 $ 303.15
others Suites, etc 5 5.5 >$600 or negotiated

to any customer including merchants and room wholesalers and typically have a 24 hour cancellation

window, i.e. there is no penalty for cancellation provided it is done more than 24 hours prior to the

standard check-in time on the date of arrival. Market vision separately collects special price offers that

come with non-standard cancellation penalties.

Our data are unique in the level of detail we have on reservations and cancellations. Our reservation

database contains the full history of each individual booking, including the channel through which the

booking was made. Each booking is identified with a unique reservation identification number that is

created when the reservation is initiated and becomes the permanent identifier for each reservation along

with time stamps and dates of arrival and departure and amounts actually paid including incidental charges.

Among these 11 room types, Hotel 0 essentially has two basic categories: regular rooms and luxury

suites but 95% of the rooms in the hotel are regular rooms. Typically, BAR is the rate for room categories

B1K and B2D in Table 3. We rarely observe the hotel overbooking the rooms in these categories, though

on the few occasions where this happens the overflow customers are automatically upgraded to the next

highest tier of rooms such as A1K or A2D.

There are around 200 rate codes which can be broken into 14 categories summarized in Table 4.

To simplify the analysis, we divided the codes into two; transient and group bookings. Transients are

individual travelers who pay the BAR or discounted BAR. Although the net of commission price that

hotel 0 receives differs depending on which channel was used to do the booking (i.e. an OTA versus hotel

0’s own website), transient customers themselves pay the same price regardless of channel, namely the

BAR in effect at the time they booked. Group bookings are also generally based on the BAR in effect

when they booked, however it will vary by pre-negotiated contract discount rate that differs from different

groups (rate codes).

A field in the reservation database, “share amount,” records how much the guest has paid for the room
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Table 4: Hotel Reservation type

Category Market
Segment Title Description Booking

Share

Transient

BAR Best Available Rate
Best available rates that have hotel house cancellation policy,
rate codes BAR only applicable in this segment

68.4%

CON Consortia/TMC Consortia, Travel Management Companies bookings

RESW Restricted-Web
Advance purchase and/or any promotional offers available in Hotel 0
collection web site with restrictions such as pre-paid/non-refundable
i.e. 10% off 7 day advance purchase, 2mlos at 20% off, or limited time offer

CORL Corporate LRA Corporate/local negotiated rates with last room availability
CORN Corporate NLRA Corporate/local negotiated rates with Non-last room availability

GOV Government
Federal or state government per diem and/or accounts with
per diem equivalent rates

PAK Package Room package
FIT Wholesale Locally negotiated wholesale accounts and Third party vacation package
DIS Qualified Discount AAA, AARP, Employee rate or any qualified discounted rates

RESO Restricted-OTAs Same rates as restricted segment available in OTA merchant sites
OPQ Opaque Hotwire/ Priceline

Group

CGP Corporate corporate group

31.6%
CGV Government government group
ASS Association convention group
TOT Tour & Travel tour group
group group uncategorized group

per night excluding tax. The share amount is generally the gross is revenue that hotel 0 earns from that

customer on the given date. However when a guest books through a traditional travel agency, the hotel

must subsequently pay a commission to the travel agent, typically 10% of share amount. However if the

booking is made via an OTA, the share amount is net of the OTAs commission, which is typically 22%

for hotel 0. The reservation database also allows us to observe cancellations. Due to the 24 hour standard

cancellation policy at hotel 0, we observe the highest rate of cancellations a day before the scheduled

arrival date. As we show below, it is critical to account for cancellations, and the way cancellations are

modeled (including whether or not cancellations are “strategic” and respond to changes in the BAR that

Hotel sets after the reservation was initially made) has a significant impact on its pricing strategy.

Note that while the hotel reservation database tracks each separate reservation and cancellation, we had

to use these data to reconstruct the occupancy and revenues earned by the hotel on a day by day basis over

our sample period. hotel 0 has an information system that provides a daily summary of its bookings and

revenue called the “Daily Pace Report”. We used this information to provide a check on the occupancy

and revenues that we constructed directly from hotel 0’s reservation database. On most days we can

exactly replicate the summary numbers in the Daily Pace Reports from our own constructed totals using

the reservations and cancellation information in the reservation database. When there were discrepancies,

the differences only amounted to a few rooms, or about only 2-3% of total occupancy. However since the
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time interval for the Daily Pace Reports is a subset of the time interval of reservations in the reservation

database, we restricted our analysis to the subinterval from September 16, 2010 to October 31, 2013 where

it was possible for us to cross-check our constructed occupancy and revenue totals.

Although the data we have on hotel 0 provides an incredible level of detail, as we show in the next

section, our model requires more data about the reservation/cancellation quantity dynamics of hotel 0’s

competitors that are not provided in the Market Vision data, which provide only competitors’ prices. The

information on the total number of consumers who “arrive” and book rooms at one of the seven hotels

in this local market is critical for our inferences about customer demand, and especially how customers

respond to daily fluctuations in the relative BARs of the seven competing hotels. Unfortunately we do

not have access to the reservation databases of hotel 0’s competitors, so we are unable to observe the

total number of new reservations that are made in at all the hotels and at which prices (including group,

corporate discounts, etc) besides hotel 0. However as we show in the next section, it is possible to make

inferences on the booking and reservation/cancellation dynamics of hotel 0’s competitors given their prices

if we can at least observe the total final occupancy rates of its competitors. Fortunately we were able to

obtain this information from STR via an academic research contract it has with Georgetown University. In

addition to total occupancy at each competing hotel on a daily basis, the STR data provide information on

the competitors’ ADRs and total revenue. The STR data turn out to be crucial for our ability to estimate a

credible demand model.

2.2 Data summary

Figure 1 illustrates the cyclicality of reservations and prices, both over a given week and over the year,

reflecting seasonal variations in the demand for hotels. The bars in the left hand panel of figure 1 show

a typical weekly cycle of occupancy for hotel 0 where the lowest occupancy is on Sunday, but a peak

occupancy on Saturday, and a midweek peak occupancy on Tuesdays and Wednesdays. The ADR peaks

on Tuesday, and the higher rates during the weekdays reflects price discrimination for less price elastic

business guests, whereas the lower rates on Fridays and Saturdays are designed to attract more price

elastic tourists. Occupancy is lowest on Sundays when tourists are checking out to return home for work

on Monday, whereas a typical business guest checks in during the middle of the week and departs before

the weekend. The right hand panel of figure 1 shows the price and occupancy dynamics over the year.

Occupancy rates are the highest in the spring and early fall, and are lowest around holidays such as

Thanksgiving, Christmas and New Year’s. The black line in the figure plots hotel 0’s ADR and total

revenues, and we seek that both of these move in sync with the ups and downs in occupancy rates. This

suggests that prices and revenues at hotel 0 are highly “demand driven”.
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Figure 1: Booking and price dynamics over the week and year
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Figure 2: Annual price dynamics for all seven hotels
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Figure 2 compares the price dynamics for hotel 0 to those of its six competitors over the year. It

plots the weekly average BAR from October 2010 to October 2013 for same-day reservations using the

Market vision data, though we would obtain similar results if we plot a time series of ADRs using the STR

data. The bold line plots the average BAR of hotel 0 while the other lines indicate BAR of six competitor

hotels. We see strong co-movement in the prices of the seven hotels, and that they follow similar cyclical

fluctuations, though hotel 0 tends to underprice its competitors with the exception of hotel 5. Similar the

prices in figure 1 we find that prices are highest in the spring and the fall with peaks in early May and

mid-September and October. Prices are lowest at the key holidays: Thanksgiving, Christmas, New Year’s,

as well as early July and August. During peak periods the average BAR of hotel 0 can be over $350 per

night, whereas in the lowest periods it averages about $200.

The pattern of co-movement in the prices in this market might be described as “price following” and
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given the fact that most hotels use RMS and have extensive knowledge of their competitors’ prices from

services such as Market Vision, it could raise concerns about the possibility that the RMS enable these

hotels to engage in algorithmic collusion. The price troughs following price peaks might be interpreted as

“price wars” that are designed to punish hotels that deviate from the recommended prices that are highest

when prices are peaking. However we do not think this is the correct interpretation or conclusion to draw

from these price patterns.

Figure 3 plots the time series of ADRs and occupancy rates for all seven hotels in this market for the

first half of 2010 using the STR data. The top left panel plots the occupancy rate for hotel 0 versus the

occupancy rate of its competitors, where the competitor occupancy rate is defined as the total occupancy

at the six competing hotels divided by the total room capacity of those hotels. With few exceptions, we

see that occupancy follows the same weekly cycle at all of the hotels that we illustrated in the left panel

of figure 1 for hotel 0, as well as the seasonal fluctuations (i.e. higher in the spring but lower at end of

June) that we observed in the right panel of figure 1. The top right panel of figure 3 shows that all seven

hotels also have strong weekly cycles in their ADRs and the reasons are likely to be much the same as we

conjecture for hotel 0: higher mid-week prices to discriminate against less price elastic business guests

and lower weekend rates to try to attract the more price elastic tourists.

The lower two panels of Figure 3 plot the cycles in occupancy rates (red lines) and ADRs (blue lines)

for hotel 0 (right hand panel) versus its competitors (left hand panel). The data suggests that the weekly

price cycles are driven not only by different compositions of guests (business versus tourists) but also to

ration scarce capacity, since these hotels tend to be fully booked midweek but not on weekends. Both

hotel 0 and its competitors follow similar weekly occupancy and price cycles, as well as similar seasonal

price/occupancy cycles. For example we see that ADRs for both hotel 0 and its competitors peaked in mid

April 2010, during a period where occupancy was close to 100% both mid-week and on the weekends.

It is natural to ask the question: which motive is more important for hotel 0? That is, does the revenue

manager increase prices mainly to ration scarce capacity, or to try to exploit the more inelastic demand of

business travelers who are more likely to be staying in the hotel midweek? Or, is hotel 0 simply following

the prices of its competitors? If so, is this price following behavior a sign that all of the hotels are following

the recommended prices from their RMS, and could this be evidence of tacit collusion mediated by the

RMS?

Table 5 provides some insight into this question by presenting the results of a simple OLS regression of

the logarithm of hotel 0’s ADR on the average ADR of its six competitors and on its own and competitors’

occupancy rates. This simple model results in an R2 of 86% when we also add dummies for different days
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Figure 3: Co-movement in ADR and cccupancy rates for all seven hotels
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of the week and months of the year to capture the weekly and seasonal price cycles.

Note that the occupancy also affects hotel 0’s pricing but in a counterintuitive fashion: hotel 0’s

occupancy rate has a negative coefficient, but the occupancy rate of its competitors has a much larger

positive coefficient. We may suspect that the co-movement in occupancy rates leads to a collinearity issue

but hotel 0’s own occupancy has a negative coefficient even after we move the occupancy of the competing

hotels from the regression. The coefficient estimate for Hotel 0’s own occupancy rate only turns positive

when we remove the ADR of the competing hotels, but then the fit of the model drops precipitously, to an

R2 of 0.17.

The regression findings suggest that the effect of occupancy on hotel 0’s pricing decisions are second

order relative to the dominant effect of the prices set by its competitors. To a first approximation, hotel

0 sets its prices at 70% of the average of its competitors’ prices. The R2 drops to 0.69 when we remove

ADRc from the regression but retain occupancy variables and daily and seasonal dummies. Overall, the

regression results suggest that the revenue manager is setting prices in accordance with a “price following”
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Table 5: Ordinary least squares regression with dependent variable ADR0

Variable Estimate Standard Error
constant 27.93 2.24
ADRc 0.73 0.01
OCC0 −0.09 0.027
OCCc 0.273 0.044

N = 1277, R2 = 0.83

strategy, and that knowledge of her competitors’ prices is the most important piece of information besides

the day of the week and the season of the year that she uses to set her own prices. The fact that hotel 0’s

own occupancy appears to have only a second order effect on its price setting once we condition on the

prices of competitors suggests that raising prices to ration scarce capacity is not an important motive for

hotel 0.

On the other hand it is not clear whether the fact that hotel 0’s behavior is well approximated by “price

following strategy” is evidence in favor of “algorithmic collusion” that Ezrachi and Stucke (2016) and

Harrington (2017) discuss. Even if demand for rooms cycles in a systematic way during the week versus

weekends, it is not clear that collusive prices would necessarily follow the same cyclical pattern that we

observe in this market. In particular, we would expect that if the hotels in this market operated as a cartel,

their prices would rise sufficiently high that there would be excess capacity even during the peak weekday

periods, and the excess capacity would serve in part as a credible threat to engage in a price war that would

deter any of the hotels that contemplated deviating from the collusive recommended prices, see Benoit and

Krishna (1987) and Davidson and Deneckere (1990).

An alternative hypothesis is that this market is best approximated by a dynamic competitive equilib-

rium in a market characterized by strong Bertrand price competition subject to fixed capacity constraints.

Stochastic shocks to demand lead to the price cycles we observe, with prices peaking to ration the available

capacity in periods where demand exceeds available supply, but prices falling significantly as predicted

by Bertrand price competition in periods of low demand where there is excess capacity. In this paper we

will argue that the latter explanation is more likely to be closer to the truth, especially given what we have

already reported about hotel 0’s disinclination to follow the recommended prices of its RMS, combined

with the fact that the revenue manager believes that the recommended prices are too low.

Regardless of the interpretation, the strong co-movement of hotel 0’s prices with the prices of its

competitors creates real difficulties for demand estimation. We can see the problem in figure 4. The right

hand panel lots the ADR of hotel 0 against the average ADR of its competitors. The co-movement in
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Figure 4: Price scatterplots for hotel 0 and its competitors
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prices is evident it the positive correlation in prices we see in the figure, something already captured in

the regression results in table 5. However we might expect that on days where the relative price of hotel

0 is higher that there should be fewer guests booking its rooms. But the left hand panel of figure 4 shows

that there is little evidence in favor of this hypothesis. The scatterplot of hotel 0’s share of total occupancy

on the ratio of hotel 0’s ADR to the average ADR of its competitors is roughly a circle of dots, which

explains why we do not obtain a negative coefficient on hotel 0’s price in an OLS regression of its market

share on the ADR of hotel 0 relative to its competitors.

These results strongly suggest a problem of endogeneity in the prices we observe in this market. If the

market is well approximated as a dynamic Bertrand equilibrium but subject to large stochastic demand

shocks, then we would expect to see high prices set to ratio demand when demand is high but low prices

as the hotels compete for the available demand in periods where there is excess supply of rooms. This type

of competition will generate a positively sloped scatterplot of prices similar to what we observe in figure 4

and generally a positively sloped relationship between ADRs and occupancy for hotels individually. Thus,

simple OLS regressions will infer positively sloped demand curves in this market.

There are no obvious instrumental variables that can solve this endogeneity problem. One possible

instrumental variable is a decrease in capacity of the hotel. If we regard the hotel as setting prices to

ration demand, then in periods where there is a reduction in available rooms for exogenous reasons (such

as a bursted pipe or other problems that remove rooms from service, or planned upgrades to rooms that

take rooms out of services for a period of time, similar to what we showed in table 3 when the hotel

converted 23 of its standard rooms to deluxe rooms), then the decrease in supply of rooms may serve as

an instrumental variable that may allow us to estimate a negatively sloped demand curve.
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Unfortunately when we tried to use available capacity as an instrument we find highly unreliable and

generally insignificant results. Depending on the subsample we use, that estimated coefficient for 2SLS of

the log of the ratio of the ADR of hotel 0 to the average ADR of its competitors ranges from−4.02 to 7.76

but the maximum t-statistic for any of these subsamples is 1.2. Most likely the capacity instruments are

weak instruments since the F-statistic in the first stage regressions ranges from 0.03 to 5.43. There is not

enough exogenous variation in hotel 0’s available capacity to make this a good instrument for estimating

the effect of hotel 0’s price on demand. An additional complication is that the model of demand we specify

in section 3 is not a simple linear demand model but a stochastic nonlinear demand function that results

from a micro-aggregation of the individual discrete choices of consumers who are arriving at random

times prior to occupancy to book a room at one of these hotels and are choosing the best option given the

BARs quoted by these hotels at that time.

2.3 Booking and pricing dynamics

Figure 5 plots the inflows and occupancy distribution by days before arrival (DBA), which were drawn

from actual reservation records, i.e. reservation raw data. We classify our data into quintiles based on

total occupancy. The highest demand quintile results in a sellout and near 100% capacity on the date

of occupancy. The right hand panel of figure 5 plots the average occupancy trajectory leading up to the

sellout and we see from the top green line, even 10 days away from arrival the hotel has still only sold 80%

of its total capacity. Thus, there are peaks in reservations that occur at 20 days before arrival and in the last

day before arrival (i.e. the date the reservation starts when customers occupy the room). Overall, while

the hotel may be able to predict well ex ante which days will be busy, the pattern of bookings suggests

that the hotel will typically not know if it will be sold out until the arrival date.

Figure 6 plots the reservation trajectories on particular busy days to provide further understanding of

the co-evolution of bookings and price setting dynamics. The top left panel of figure 6 shows bookings

and the path of BARs for April 18, 2013. The revenue manager knew in advance that this would be an

extremely busy day due to spring festivals in the city. At 45 days out, she sets the BAR to be nearly twice

as high as she would set for less busy days. The red line in the figure also plots the average BAR of her

competitors, and we can see this is a relatively rare example where hotel 0 sets its price higher than the

average price of its competitors. Despite the high price, hotel 0 has sold out 20 days prior to the arrival

date, April 18, 2013. We can see that the hotel has overbooked itself (selling 106% of its capacity) 13

days out, and in response to continued interest the hotel raised its BAR up to $1050 10 days out. However

cancellations in the last 10 days enabled the hotel to book a few more customers, but evidently the fear of

more last minute cancellations prompted the hotel to reduce the BAR to $399, which is even lower than

19



Figure 5: Inflow and reservation dynamics prior to occupancy
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the price it had initially set 45 days out. There was a strong response to this price drop and evidently this

raised hotel 0’s expectation of a sellout, so in the last several days prior to arrival, the manager increased

the the BAR to $559, matching the average BAR of her competitors.

The upper right panel of figure 6 shows the path of reservations and BARs prior to the arrival date July

7, 2014. This is also a busy day but not quite as busy as April 18, 2013. The revenue manager appears to

realize that there is a high chance that this will not be a sellout date, so she sets the BAR 45 days ahead

of arrival at a more typical level of $209, just slightly undercutting the average BAR of her competitors.

Although the occupancy of hotel 0 is already reasonably high 45 days before the arrival date, the manager

decreases the BAR to $169 40 days out. There is a strong demand response to this price cut and 15 days

out the hotel is nearly 80% booked. The manager raises the price back to $209 about 5 days out, but then

appears to reconsider and drops the price back to $169. A strong response to this final price cut enables

the hotel to reach 100% capacity and then two days before arrival the manager raises the price to $295.75,

significantly higher than the average BAR of her competitors.

The bottom left panel of figure 6 shows the path for November 18, 2010, which comes at the end of

peak period but just before Thanksgiving which is a slack holiday period for hotel 0. However November

18, 2010 was expected to be a busy day as evident from the unusually high BAR, $319, that the manager

sets 45 days out. This price is below the average BAR quoted by her competitors and we see a jump in

bookings about 42 days out. In response the manager increased the BAR to $339 37 days out, and a further
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Figure 6: Occupancy and BAR dynamics on busy days
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increase to $379 15 days out. This latter increase results in her BAR being higher than the average BAR

of her competitors. Perhaps as a result of this, the growth of occupancy in the next several days slows

down and 9 days out she drops the price back to $319. This price drop results in a surge in new bookings

that results in a sellout, so the manager raises the price up to $379 for the last few days prior to arrival.

Although there are several cancellations in the last few days, the hotel is nearly 100% booked.

The bottom right panel of figure 6 shows the path for March 22, 2013. There was high occupancy on

the same day in 2012 and both days are weekdays. The revenue manager expects relatively high demand

by business travelers and sets a relatively high BAR of $239 but perhaps due to uncertainty about how

much demand will materialize, this price is not as high as the prices she set 45 days out on days where she

has more optimistic expectations of demand. Indeed, due to a relatively lackluster rate of new bookings,

the manager reduces the BAR to $185 40 days out and maintains this price until 20 days out when the

number of rooms booked appears to be large enough to make her optimistic about the changes of selling

out. She raises the price on a succession of days, but by 11 days out she appears to conclude that she has
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raised the price too high and is not on a trajectory to sell out. She lowers the BAR again and keeps it at a

lower level until about 3 days out when it seems clear that the hotel will not sell out. She drops the BAR

again and this appears to result in enough additional bookings in the last few days that she again raises the

price, then making a small final price cut to $219 on the arrival date.

Note that our narrative of these trajectories represents our ex post interpretation of factors motivat-

ing the revenue manager to change her prices, but we may indeed be reading too much into the data to

ascribe specific motives based on specific information that caused her to make various price changes. Sim-

ilarly, though we do see changes in bookings in response to various price changes that seem reasonable

predictable, we cannot be sure that the hotel’s price changes “caused” these changes in bookings. In par-

ticular, our narrative above may make the reader imagine that the revenue manager’s goal in setting BAR

was to try to sell out on these particular days, and this may or may not be her actual objective. Given our

discussion in the introduction, the revenue manager would probably strongly disavow that her goal is to

maximize occupancy, and indeed one reason she routinely ignores the recommended prices from hotel 0’s

RMS is because she believes its prices are set too low with the objective of trying to maximize occupancy

rather than expected profits.

Thus, it is helpful to show the hotel’s occupancy slack days where there is no hope that the hotel can

sell out. On these days we observe both lower BARs and fewer changes in the BAR. We also see that on

non-busy days, hotel 0 systematically undercuts the average BAR of its competitors at every booking date

prior to arrival.. Figure 7 illustrates four specific slack days where the occupancy rate ends up below 30%.

The upper left hand panel shows the trajectory for February 13, 2011. For this day, the revenue manager

sets a single BAR of $279 and makes no further changes. The top right panel illustrates the trajectory

leading up to January 6, 2011 and in this case she does make several changes to the BAR, lowering it

between 30 and 28 days out, but then appearing to respond to an increase in her competitors’ BAR about

22 days out, she increases her BAR to $279 where it remains unchanged until the arrival date. In this case

we do not see any evident demand response to the temporary “experiment” of the drop in BAR between

30 and 22 days out.

The lower left panel of figure 7 shows the occupancy and price trajectories leading up to arrival on

December 20, 2012. In this case the manager underprices her competitors except for a single upward blip

in her BAR about 9 days out. She then reduces the price back to the initial value and then makes a further

price cut to $149 4 days out. Again, there appears to be no obvious demand reaction to the temporary

increase in prices, though the final price drop may have brought in a few extra bookings. The lower

right panel illustrates the booking history prior to arrival on January 17, 2011. In this case we see mixed
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Figure 7: Occupancy and BAR dynamics on non busy days

Date : 2011-02-13

 $279.00

 22.3 %

Hotel Capacity (100%)

051015202530354045

Days before arrival (DBA)

0

50

100

150

200

250

300

350
B

A
R

 (
$)

Date : 2011-01-06

 $279.00

 23.5 %

Hotel Capacity (100%)

051015202530354045
0

50

100

150

200

250

300

350

Date : 2012-12-20

 $149.00

 22.9 %

Hotel Capacity (100%)

051015202530354045
0

50

100

150

200

250

300

350

Date : 2011-01-17

 $179.00

 27.2 %

Hotel Capacity (100%)

051015202530354045
0

50

100

150

200

250

300

350

Occupancy rate(%) Best Available Rate Competitors price average

evidence for the “price following” strategy, since though the revenue manager systematically undercuts

the BAR of her competitors, she appears to raise her BAR in response to an increase of her competitors’

BARs 40 days, but she does not continue to increase her BAR as her competitors continue to raise their

BARs up about 12 days prior to the arrival date. However the competitors start cutting their BARs at this

point and though hotel 0 does not immediately respond to the price cuts, at 7 days out she does drop hotel

0’s BAR and does another price cut, down to $179 in the final night prior to arrival.

Overall, our analysis of individual trajectories (observations) is consistent with our earlier conclusion

that hotel 0’s pricing responds strongly to the prices set by its competitors, but not so much to capacity,

except on days where the manager expects Hotel to sell out, when we do observe increases in BAR as the

arrival date approaches and examples where hotel 0 can set its BAR higher than the average BAR of its

competitors. But on non busy days we rarely observe hotel 0 setting a higher BAR than its competitors.
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2.4 New reservation arrival dynamics

Central to our model of hotel 0’s price dynamics is the stochastic arrival of customers wishing to book

rooms in this market. Let rt be the number of new transient and gt be the number of group reservations

booked t days before arrival. We observe the exact values of {rt ,gt}, the number of bookings in advance of

arrival at hotel 0 for all t and all possible arrival days (via its reservation database) but not at its competitors,

where we only observe total occupancy on the arrival day (i.e. the day the reservation starts). As we have

seen above, there is substantial day to day variability in the number of reservations made on any given day

which we denote by the random variable d̃. We modeled reservation inflow to this market using both a

Poisson and a Negative binomial distribution, but found the latter distribution provided a better fit to the

data due to the well known restriction inherent in the Poisson distribution that its mean and variance are

equal. A negative binomial distribution has two parameters (φ,q) and its probability distribution for the

π(r|φ,q) is given by

π(r|φ,µ) =
(

r+φ−1
r

)
qφ(1−q)r (1)

with mean and variance given by µ = E{r̃} = (1−q)φ/q and var(r̃) = (1−q)φ/q2 where q ∈ (0,1) and

φ is a positive real number. The main advantage of the negative binomial over the Poisson distribution

is that the negative binomial allows for “overdispersion” i.e. the possibility that the variance of arrivals

exceeds the mean number of arrivals whereas the Poisson restricts the mean and variance of the number

of arrivals to be the same. When modeling, we find it convenient to re-parameterize negative binomial

distribution with (φ,µ) instead of (φ,q).

Using the reservation data for hotel 0, we estimated the parameters (φt ,µt) for negative binomial dis-

tributions of the number of bookings by transient and group customers separately. We estimated different

(φt ,µt) parameters for each group for up to 45 days in advance of arrival by maximum likelihood, where

we assumed that the number of reservations r̃t for each booking t prior to arrival are independent but

non-identically distributed negative binomial random variables.

Figure 8 plots the estimated (φt ,µt) parameters and we see distinct dynamics for the two different

types of customers. For transient customers (φt ,µt) are decreasing in t which implies that the mean and

variance of the number of transient bookings increase as the arrival date approaches, suggesting a greater

proclivity towards “last minute” bookings. Group customers are much more likely to book in advance,

with the mean number of bookings peaking about 25 days in advance of arrival. This makes sense since

group bookings may often be for conferences or business meetings that require more advance planning

than for tourists who may have more flexibility to come on the spur of the moment. Simulations of the

estimated negative binomial model of bookings produce simulated booking dynamics that are very similar
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Figure 8: Estimated negative binomial parameters and polynomial approximations
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to the ones we illustrated in figure 8, including the peak in reservations about 20 to 30 days prior to arrival,

the dip in reservations about 10 days prior to arrival and a rapid increase in last minute reservations in the

last few days prior to arrival. The solid red lines in figure 8 show that the dynamics in the estimated (φt ,µt)

parameters can be well approximated by low order polynomial functions of t. Based on these findings,

we used 3rd degree polynomial approximations to capture systematic trends in booking dynamics prior to

arrival date in our structural estimation results in section 5.

2.5 Cancellation dynamics

Hotel 0’s standard policy is to allow free cancellations (i.e. with no penalty) up to 24 hours before check

in time on the date the reservation starts. A customer who cancels within 24 hours of checkin forfeits the

price of the room for the first night of the reservation, but can be refunded the amount paid for additional

nights beyond the first. No shows are customers who book but never arrive for their stay at the hotel: these

customers are also charged though there are far fewer of them: only 1.7% of all reservations recorded in

our database. We are more concerned about cancellations than no shows since a cancellation gives the
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Figure 9: Cancellation dynamics
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hotel an opportunity to rebook the room if the cancellation happens early enough. A no show is actually

a good thing for the hotel: the customer pays for the room but the hotel incurs no room cleaning or other

charges, though if the hotel were able to predict no shows accurately enough it could potentially factor

them into its booking strategy and be a bit more aggressive in how it books rooms on days it expects to

sell out.

Figure 9 plots statistics relevant to cancellations at hotel 0. The upper left panel plots the expected

number of cancellations on a daily basis based on the number of days before arrival. Cancellations start

to increase rapidly about 10 days prior to arrival and peaks at over 3 cancellations per day before it starts

to decrease sharply two or three days before arrival. Customers who forget to cancel prior to the 24 hour

window prior to check in may end up as no-shows, however if they have a multiple day reservation, it

makes sense to cancel and be refunded at least part of the cost for their stay rather than incur the full

charge as a no show.

The upper right panel of figure 9 plots the cancellation rate, i.e the fraction of booked customers who
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cancel as a function of the number of days prior to arrival. The cancellation rate has a similar shape to the

expected number of cancellations, increasing from under 0.5% 40 days prior to arrival to a peak of 1.4%

a few days prior to arrival. We can decompose the cancellation rate into the product of the probability

at least one customer cancels on any given day times the expected number of cancellations given at least

one cancellation occurs. The lower left panel of figure 9 plots the probability that at least one cancellation

occurs. This is essentially a monotonically decreasing function of the number of days before arrival

except for a small downturn on the arrival date which is likely a reflection of the cancellation penalty. The

expected number of cancellations given that at least one cancellation occurs is an increasing function of

the number of days before arrival at least up to about 15 days out when it reaches a minimum of 1.16

cancellations. The cancellation rate increases as we approach the check in date between 15 days out until

about 3 days out, and then it drops sharply, also likely reflecting the penalty for cancelling within 24 hours

of check in.

Williams (2018) found that there are no significant gains to the strategic timing of purchasing tickets

for the airline flights he analyzes, and he used this fact to simplify his dynamic programming analysis of

optimal airline pricing. We would like to follow a similar approach for hotels but there are much stiffer

penalties for cancelling an airline reservation than a hotel reservation. Most airlines have a significant

cancellation penalty (typically $200 or more) for cancellations or changes in reservations outside a 24

hour window when a flight is booked. Hotels have typically been laxer in their cancellation policies, and

most have no penalty as long as the reservation is cancelled more than 24 hours prior to check in. hotel 0

has this cancellation policy.4

These lax cancellation policies could encourage consumers to engage in dynamic price shopping that

can impede a hotel’s ability to engage in dynamic pricing. For example a consumer may book far in

advance of their intended arrival date to lock in a base price and then continue to monitor the hotel’s

website and other OTAs to search for an even better deal. If the consumer finds one, then they can

costlessly cancel the initial reservation and rebook at a lower price. If sufficiently many consumers follow

this type of strategy, it limits a hotel’s ability to cut its BAR as the arrival date approaches to try to attract

additional guests with lower willingness to pay. It sufficiently many of the hotels already booked guests

are motivated to engage in strategic cancellations then any these price cuts would come at the cost of

partially cannibalizing revenue from customers the hotel may have already booked at higher BARs.

4Jet (2017) notes that hotels are experimenting with cancellation policies, becoming more like the airlines in penalizing
customers who cancel. For example, he notes that some hotels are considering tiered cancellation policies where “you might be
able to cancel for free a week or more in advance and the hotel will slowly ratchet up the fee as the check-in date approaches.
Ultimately costing one or two nights.” He also notes that “Hotel chains are also experimenting with nonrefundable booking (also
known as an advanced booking/purchase).”
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We do not find strong evidence that strategic cancellations are an issue for hotel 0. We estimated a

simple binary logit model of the decision to cancel a reservation, where the probability of cancelling a

reservation depends on the difference in the BAR that the customer paid when they made their reservation

and subsequent path of BARs posted by the hotel up to the arrival date. The estimated coefficient on

the price differential is negative (indicating that customers are more likely to cancel if a subsequent BAR

is lower than the BAR that they made their reservation at), but the estimated coefficient is small and

barely significant. Thus, even though there are negligible penalties for cancelling and rebooking a hotel

reservation, our findings suggest that relatively few consumers engage in sophisticated dynamic strategies

that involve an initial booking relatively far in advance of arrival combined with periodic monitoring of

prices to find a better deal up to 24 hours before arrival (when the cancellation penalty kicks in). If a

significant fraction of consumers were following this type of strategy we would expect to find strong

evidence of strategic cancellations but we don’t.

2.6 Price dynamics of competing hotels

The model we introduce in the next section requires hotel 0 to not only have knowledge of the BARs

set by their competitors, but they also need to have expectations about how their competitors’ BARs will

evolve in the future for each different arrival date. We do not develop a full dynamic equilibrium model of

the hotel market in this paper, and assume that the local market we study is approximately in equilibrium

and stationary in the sense that the price dynamics of the hotels may differ between busy and less busy

days but the price dynamics are not shifting with calendar time (such as due to entry or exit of additional

hotels, which has not happened during our sample period). Thus, we econometrically estimate a transition

probability for the average BAR of hotel 0’s competitors that take the form of an AR(1) process in logs of

the average BAR charged by hotel 0’s competitors which we denote by ρt :

logρt−1 = αt +βt logρt + et . (2)

We assume that the error term in equation (2) is a normally distributed IID error process with mean 0

and variance σ2
t where t indexes the number of days prior to arrival. Thus, hotel 0 treats the prices of

its competitors as “exogenous” and while we do allow the coefficients (αt ,βt ,σ
2
t ) to vary based on the

number of days t prior to arrival, the {ρt} is otherwise stochastically stationary in the sense that these

coefficients are not shifting in calendar time (i.e. the coefficients (αt ,βt ,σ
2
t ) that are valid t days before

arrival are the same for an arrival date in 2010, 2011 or 2012, etc).

Figure 10 plots the estimated (αt ,βt ,σ
2
t ) coefficients as a function of t from t = 45 days prior to arrival

to t = 0, the day of arrival. To a first approximation we find that competitor prices evolves as random walks
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Figure 10: Estimated competitor BAR transition parameters

without drift: the βt coefficents are very close to 1 and the αt coefficient estimates are very close to 0. The

pattern of estimated σ2
t parameters in figure 10 indicate that there is particularly high price volatility 10

and 5 days ahead of arrival, as well as on the day of arrival itself. The pattern of the estimated intercept

coefficients αt also indicates that hotel 0 expects its competitors to raise their BAR at 9 and 4 days prior to

arrival, respectively. Given the low estimated values of σ2
t , a plot of the conditional lognormal distribution

for ρt−1 given ρt is nearly symmetrically distributed about its mean. For example when αt = 0, βt = 1,

σ2
t = 0.005 and ρt = 350, the distribution of ρt−1 is highly concentrated near its current value, ρt = 350

with an expected value of E{ρt−1|ρt = 350}= 350.876 and a conditional standard derivation of 24.8 and

a probability of nearly 98% that ρt−1 will fall in the interval [346,352].

3 Dynamic programming model of optimal hotel pricing

We assume hotel 0 chooses a dynamic pricing strategy to maximize its expected profits and focus on

the BAR as its key decision variable. As we noted in the introduction, some RMS set fixed price tiers

for different types of rooms and use a dynamic quantity allocation strategy instead of a dynamic pricing

strategy. We have already documented that both hotel 0 and its RMS use dynamic pricing, and we believe

this is a superior strategy when implemented correctly, since it provides the hotel more flexibility in how
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it tailors prices to different types of customers and how it responds to unexpected demand shocks.5

As we noted in the introduction, hotel 0 does not sell blocks of rooms at wholesale rates and follows a

uniform pricing strategy so its prices are the same regardless of whether a customer books via an OTA or

hotel 0’s own website. However hotel 0 does pay a commission for reservations that are made via OTAs

so for the roughly 20% of all of its bookings that are done via OTAs, hotel 0’s revenue is its BAR less

the OTA’s commission. Though hotel 0 can choose not to accept reservations via OTAs if it believes the

commission is too large, in practice it does pay the commission and accept bookings via all major OTAs.

In addition hotel 0 has negotiated corporate and government discounts that are typically a fixed percentage

reduction off the BAR prevailing at the time of the booking. We treat hotel 0’s decision to adopt a uniform

pricing strategy, to accept reservations from all OTAs, and its negotiated discounts with corporate and

government customers, as given and do not include these as additional decisions in our DP model. The

only decision we focus on is hotel 0’s choice of its BAR, which we assume is updated at the start of each

day.

3.1 State and control variables

Our analysis in the previous section suggests that there are three key pieces of information that the revenue

manager needs to consider when setting the BAR and predicting revenue and occupancy in the hotel:

(n, p,ρ) where n is the number of rooms reserved for occupancy on a specific date, p is the ADR (average

price of rooms booked so far), and ρ is the average BAR of competing hotels for a comparable room.6

Our optimal dynamic pricing strategy uses these three variables as the state variables of the dynamic

programming (DP) problem. There are other implicit non-time-varying variables such as the capacity of

5Technically, we solve for the optimum within the class of uniform pricing strategies. However hotels could use other
selling mechanisms that might potentially raise higher revenue. Maskin, Riley, and Hahn (1989) show that in a static, one-shot
environment when n units are to be sold to nb buyers who each demand one unit and have IID valuations their units, the optimal
mechanism can be implemented using a reserve price and bids, where bidders with the min(n,nb) highest bids are allocated a
unit at a price equal to their bid. However they note if their are different types of bidders, or their valuations are correlated, the
optimal selling mechanism may have a very different form. Board and Skrzypacz (2016) consider the optimal selling mechanism
in a dynamic context with forward looking buyers. “A seller wishes to sell multiple goods by a deadline, for example, the end
of a season. Potential buyers enter over time and can strategically time their purchases. Each period, the profit-maximizing
mechanism awards units to the buyers with the highest valuations exceeding a sequence of cutoffs. We show that these cutoffs
are deterministic, depending only on the inventory and time remaining” (p. 1046). However their analysis does not consider the
effect of competition, and behavioral-based realities that customers may prefer the immediacy, convenience and familiarity of
posted prices relative to auctions, which involve uncertainties and a delays while bidders are informed whether their bids were
winning bids. However auctions seem preferable to random rationing of excess demand when a hotel is overbooked, yet it is not
clear why auctions are rarely used in the hotel industry even as a priority queuing device when they are oversold.

6Though the demand for rooms could potentially depend on the full vector of competitors’ prices, this would increase the
dimensionality of the pricing problem, since the manager would have to keep track of the six different BARs set by the six
competing hotels. We have found that the average of these six BARs represents a “sufficient statistic” for the competitors’ BARs
that enables us to model the demand for hotel 0’s room with sufficient accuracy. We believe the gains in accuracy in predicting
demand from incorporating all six prices is outweighed by the curse of dimensionality in solving the dynamic programming
problem using six individual BARs as state variables. However a formal evaluation and validation of this conjecture would
require solving the model using all six BARs, something we have not attempted to do yet.
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the hotel n and its attributes as well as the capacity and attributes of its competitors. The role of these

factors be clear when we introduce a model of stochastic demand for hotel rooms in this market.

In section 3 we showed that the number of days prior to occupancy t is also an important state variable

that affects the hotel 0’s pricing. There is one continuous decision variable in our model, the revenue

manager’s choice of the BAR, which we denote by pt . We assume that the revenue manager updates the

BAR at the start of each day and this updating is instantaneous, so all consumers who wish to book a room

on day t will observe hotel 0’s BAR pt as well as the BARs of its competitors, ρt , and will choose one of

them based on a simple static utility maximization. Allowing for unobserved heterogeneity in consumer

choices, our model of hotel demand (to be described in more detail below) implies that a consumer of type

τ has a probability Pt(pt ,ρt ,τ) of making a reservation at hotel 0 t days prior to arrival.

We start the backward induction calculation to solve the DP problem by defining the value function

V−1(n, p,ρ) for realized profits on the morning after the arrival date, t = 0. On this date there are no further

decisions by the hotel: the value function simply summarizes the realized profits earned by the hotel that

become known on the arrival date when n of its rooms are occupied at ADR of p. V1(n, p,ρ) equals the

total revenues received from the guests net of any discounts they were given, and net of the hotel’s costs

which includes room cleaning or other costs involved in serving the guests less any commissions to OTAs

or other travel agencies.7 Note that on t = −1 or the night of the arrival date, the prices set by hotel 0’s

competitors ρ does not affect hotel 0’s profits, and hence does not enter V0. However ρt does affect how

many customers book at hotel 0 prior to that night so it is a critical state variable that affects hotel 0’s

pricing decisions and expected profits for all t ≥ 0.

Hotel 0’s pricing problem starts some fixed number of days T prior to any given arrival date, where

T is the maximum number of days in advance of arrival that the hotel will book a room. We assume that

T = 45, though in practice hotel 0 does book rooms even further in advance than this. In principle the

hotel is solving many DP in “parallel” and is setting prices not only for the current date (e.g. Dec 3, 2012

for customers who arrive on the same day as “walk-in” clients) but it must be able to set future prices

for advance bookings up to T days in the future. We now describe further assumptions to make these

DP problems tractable, enabling us to solve the relevant DPs in parallel to obtain BAR decision rules that

enable hotel 0 to set prices and book rooms at all future dates in real time.

Our DP solution distinguishes several types or categories of days that have similar patterns of occu-

pancy and customers, such as weekdays versus weekends and busy versus non busy days. As we noted,

7The hotel may also earn additional revenues from guests from in-house restaurants, bars, video/internet services, room
service charges and so forth. We account for the profits from these add-on services as a reduction in the costs of serving its
guests.
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business customers are more likely to stay in the hotel during a weekday whereas tourists are more likely

to stay during weekends. Our stochastic demand model will take account of differential arrival rates of

different types of customers on different types of arrival dates, as well as their differential willingness to

pay for rooms. We will assume that the hotel revenue manager knows in advance that certain days are

likely to be particularly busy, and hence the arrival rate for reservations will be higher than for less busy

days. For example, the revenue manager will know when there are large conferences or events occurring

in the city or due to other seasonal reasons (i.e. graduation dates, sports events, and so forth). We will

solve separate DPs for the different occupancy categories that we can identify from our data. The model

we estimate will have 8 different dynamic programs for 4 occupancy quartiles that index how busy the

hotel is likely to be as well as differentiating weekdays versus weekends.

We assume that these categories are essentially generic: i.e. we assume that the stochastic process

governing the pattern of arrivals and cancellations, the types of customers who make reservations, and

their willingness to pay for hotel 0 relative to other hotels are the same for all days of a given type.

This allows us to pool all days of a given type for purposes of econometric analysis and for solving the

optimal pricing strategy for the firm. Thus, if there are K types of occupancy days, we will need to

estimate K separate stochastic demand/arrival processes and solve K corresponding dynamic programs.

Let p∗t,k(nt , pt ,ρt), k ∈ K be the optimal price hotel 0 will charge as a BAR reservation at non-contract

rates for an occupancy day of type k t days before arrival. If we have solved all K dynamic programs, then

will have K corresponding optimal pricing rules {p∗1, . . . , p∗K} and we can then regard these as “dynamic

price schedules” that the hotel can supply to its GDS and quote to its customers via its own website.

Note how our formulation of the DP problem has used the principle of decomposition to significantly

simplify the overall decision problem the hotel faces. Without an appeal to decomposition, the hotel must

potentially solve separate DPs for each possible arrival date. Since there are 365 possible days per year,

in principle we might expect to have to solve 365 separate DPs to determine the hotel’s pricing problem

for every day in the year. However by grouping arrival dates into a smaller number of K similar types of

days with similar occupancy dynamics, we only need to solve K = 8 < 365 DPs to be able to generate a

dynamic pricing strategy that enables hotel 0 to set its prices in any given day in the year. We also apply

the principle of decomposition to the way we analyze reservations that involve multiple day stays at the

hotel. To do this, we need to ignore the possibility of length of stay based discounts, i.e. a lower daily

rate for customers who book a room for a longer period of time. Initial empirical analysis using our data

seems to indicate that length of stay based discounts are not easy to see in the data, and this suggests

that they do not play a major role in attracting customers to stay in this hotel. This assumption could be
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wrong, however, and we note that it is an assumption we might want to relax in future work if we find

from an analysis of consumer demand that length of stay based discounts could be effective in attracting

more customers and generating more revenue. But initially we will treat a single customer who wishes to

reserve a room for S successive days as equivalent to S individual customers making separate, independent

1 day reservations.

Finally, we ignore substitution across the 9 different room classes in our data set, i.e. between standard

rooms and the luxury suites (much larger rooms on higher floors of the hotel, with balconies, kitchens and

additional living areas, and so forth). Most of hotel 0’s available space are allocated to the standard rooms

at the lower price tiers. We ignore the possibility that customers who are looking to book a luxury suite

would choose a standard room instead because of the significantly lower price of a standard room. Similar

to our exogenous assumption about occupancy dates and length of stay, we assume that the customers

make a choice of room class in advance and may substitute between hotels in an attempt to, say, find

a luxury suite in one of the other luxury hotels in this market on a given date based on price, but these

customers represent a separate market segment and are not likely to substitute and book a standard room

based on a simultaneous price comparison between prices of luxury suites and standard rooms in all seven

hotels in this market. This assumption is another application of the decomposition principle that allows

us to analyze the room reservation and pricing decisions for standard rooms and luxury suites separately.

Thus, we need to solve 2 separate DPs instead of a single DP involving a choice of up to 11 different

BARs for the 11 different room types that hotel 0 has.8

3.2 The Bellman Equation

We now introduce a bit of further notation and we are ready to write the Bellman equation which defines

the objective and solution to the optimal dynamic hotel pricing problem. We need to distinguish between

reservations that are booked at the current BAR or discounted BAR by individual (which we referred to as

transient reservations) versus any party of customers who are eligible for a pre-negotiated discount off the

BAR, which are typically group reservations for corporations and governments. There are two different

types of transient customers, business and leisure, which we can distinguish in the reservation database.

Our demand model will allow separate utility parameters for business and leisure customers, including

the possibility that business customers are less price elastic. Though business customers are typically

8If our analysis, or discussion with the revenue manager, leads us to conclude that there is significant substitution between
narrower room type categories, then we can relax these assumptions in future work. For example if there is significant substitution
between the lowest tier of rooms, B1K/B2D, and the next highest tier, A1K/A2D, then we could solve the DP as a 6-dimensional
problem with state variables (n1, p1,ρ1,n2, p2,ρ2) where n1 is the number of reservations for B1K/B2D rooms and n2 is the
number of reservations for A1K/A2D rooms, and so forth.
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corporate or government employees, if they are classified as transients, they will generally pay the BAR

in effect at the time they make their reservation. If the business or leisure traveler is part of a group, then

they are eligible for a discount off the BAR that can differ depending on the contract negotiated between

hotel 0 and the group that they are a part of. Our DP model assumes that group reservations are exogenous

random events that do not depend on the BAR.

Hotel 0 has a variety of corporate and government contracts that allow their employees to reserve

certain rooms in the hotel at pre-negotiated discounts subject to room availability. Though there are

different government and corporate discounts for group reservations and different restrictions associated

with each, we will let pg denote these group rates. Most of the group discounts are provided as a fixed

discount relative to the prevailing BAR, pg = δg p where p is the BAR and δg ∈ (0,1) is the negotiated

discount rate for the group. Actual corporate and government contracts are more complicated and include

“block out dates” such as holidays where the pre-negotiated rate is not applicable, and there may be

different rates for weekend vs weekday, or the rates can vary over the season of the year. We can take

some of these details into account in subsequent work but initially our objective is to keep our DP model

as simple as possible, so we treat any group customer as having the right to book on any date at the

discounted price pg = δg p subject to room availability.

Let ct be the total number of cancellations by existing customers (both group and transients) t days

prior to arrival, and let et(ct |n, p,ρ, p) be the corresponding conditional probability density for ct . Note

that while we allow the conditional density for cancellations et to depend on (p,ρ) and potentially allow

for the possibility of strategic cancellations, our empirical results in section 3.4 indicate that none of the

price variables (p,ρ, p) are significant predictors of the number of cancellations, so the model we actually

solve excludes prices from et and thus we assume exogenous cancellations for both group and transient

customers.

Let gd
t denote the number of new group reservation requests received by Hotel 0 t days before arrival,

and let gt(gd
t |p,ρ) be the corresponding probability distribution for this random variable. Similarly, let

rd
t be the number of new transient reservation requests from non-group customers who are generally

ineligible for a discount off the BAR. However some transient customers may be eligible for discounts

based on standard, non-negotiated discounts that the hotel provides to some classes of customers such

as senior discounts, discounts to military, and so forth. Let ft(rd
t |p,ρ) denote the conditional probability

distribution of the number of new requests by transient customers which depends on state variables (p,ρ).

To enforcing the capacity constraint on the number of hotel rooms, n, we distinguish the actual number

of bookings of group and transient customers, (gt ,rt) from the total number of desired bookings (gd
t ,r

d
t ).
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The actual number of bookings result from censoring the desired number of bookings to ensure that the

hotel capacity constrain n is satisfied with probabiliy 1 for all t.

We assume that hotel 0 strictly enforces its capacity constraint n at every date t prior to arrival, and

thus never overbooks. Though we do see temporary periods where the number of rooms booked nt > n,

we rarely observe overbooking on the final arrival date, i.e. n−1 > n. Though hotel 0 can feasibly allow

overbooking sufficiently far in advance of the arrival date and gamble that cancellations will occur in

the intervening period as we see in the left panels of figure 6, in our DP model we assume that the

occupancy constraint is enforced with probability 1 every day t prior to arrival. Thus on any date t where

demand for rooms exceeds remaining available capacity, the hotel accepts new bookings according to

some predetermined censoring rule η(.) until there are no rooms left. This “no overbooking assumption”

has important implications for the optimal pricing strategy.

We let the function η encode the demand censoring rule that enables us to satisfy the hotel capacity

constraint with probability 1 for each t,

(rt ,gt) = η(rd
t ,g

d
t ,ct ,nt ,n). (3)

The function η satisfies following conditions:

1 if capacity constraint is not binding and the number of group and transient guests who desire to stay

at hotel do not exceed its capacity, i.e. if n > nt − ct + rd
t +gd

t , then (rt ,gt) = (rd
t ,g

d
t ),

2 otherwise, the total desired number of bookings (rd
t ,g

d
t ) are reduced according to some random

allocation rule approximating “first-come, first served”, so nt−1 = n with probability 1.

Hotel 0’s group contracts have ‘subject to availability” clauses that imply that in any situation where nt +

rd
t +gd

t − ct > n the group reservation requests will be denied first. If total remaining demand nt + rd
t − ct

still exceeds capacity after the denying the group reservation request, the hotel takes as many transient

reservations on a first-come, first served basis until it sells out. Since we do not model the order of arrival

of bookings with the day, this amounts to a probabilistic censoring of rd
t and gd

t , starting with group

bookings first and continuing to the transient bookings to ensure that nt−1 ≤ n with probability 1. Given

this, the law of motion for nt , the number of rooms booked t days prior to arrival is given by

nt−1 = nt − ct + rt +gt , (4)

where (rt ,gt) are given by the censoring rule (3).

Let pt be the ADR at hotel 0 for all bookings that been made t days prior to arrival. We provide an

accounting identity below that serves as a “law of motion” for the ADR in our DP model that enables us to
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keep track of revenues from rooms already booked using this pt in conjunction with the number of rooms

already booked nt . We define

pt−1 =
(nt − ct)pt +δr ptrt +δg ptgt

nt−1
, (5)

where δr is the average discount provided to transient customers, δg is the average discount for group

customers. Thus, equation (5) simply specifies pt−1 to be the total revenues booked t− 1 days prior to

arrival divided by the total number of customers booked, i.e. the ADR. In equation (5) we assume that

when cancellations occur, on average the hotel must refund cancelled reservations at the existing ADR

pt . Let pt−1 = λ(nt ,rt ,gt ,ct , pt , pt) denote the law of motion for the ADR given in equation (5) and let

ht(ρ
′|ρ) represent the (exogenous) transition probability for the average BAR of hotel 0’s competitors.

Now we have the notation we need to write down the Bellman equation. Let V−1(n, p, p) be the hotel’s

realized profits on the morning after the occupancy date, t = 0, which we denote by t = −1 and is given

by

V−1(n, p,ρ) = n · (p−ω), (6)

where n is hotel 0’s total room capacity and ω is the marginal cost of servicing a room, net of per customer

profits on incidental spending and services at the hotel such as in its bar and restaurant. Equation (6)

implicitly enforces a hard constraint on room capacity through η(.).9 We also allow the ω parameter to

capture commissions that the hotel must pay to OTAs for some of its bookings, so ω reflects the average

or expected net marginal cost to the hotel for each room it books. We use the term “marginal cost” since

we do not attempt to allocate fixed costs such as depreciation/amortization of the hotel building or other

“front office” costs including the salary of hotel management, including the revenue manager.

Given the terminal value V−1 in (6) the Bellman equation recursively defines the expected profit func-

tions {V0,V1, . . . ,VT} via the recursion relation

Vt(n, p,ρ) =max
p

[∫
ρ′

∑
rd

∑
gd

∑
c

Vt−1(n′, p̄′,ρ′)et(c|n) ft(rd |p,ρ)gt(rd |p,ρ)ht(ρ
′|ρ)

]
s.t. n′ = n− c+ r+g

p′ = λ(n,r,g,c, p, p)

(r,g) = η(rd ,gd ,c,n,n).

(7)

9Hotel 0 rarely overbooks, but when it does, it accommodates any unexpected additional guests in one of its higher class
rooms. There may be a higher marginal cost of servicing a guest in a higher class room and for reputational reasons, the hotel
seeks to avoid a situation where it effectively significantly underprices its available higher class rooms by letting overbooked
customers stay in them for the price of the lower class tier that they reserved at. In future work we will provide a deeper analysis
of overbooking, but given that it rarely occurs we have decided to use the simpler specification where the capacity of standard
class rooms n is treated by the revenue manager as a hard constraint.
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The value of pt that maximizes the right hand side in (7) defines the optimal dynamic pricing strategy

{p∗t (n, p,ρ)} that specifies the BAR that the hotel should charge, pt = p∗t (n, p,ρ), in any state and for

each day t in advance of arrival. Though realized profits on the arrival date, V−1(n, p,ρ), do not depend

on ρ, the BAR of competing hotels, ρt is a critical state variable since it affects hotel 0’s pricing and the

number of customers who book at hotel 0 for any day t ≥ 0 which includes the morning of the arrival

date t = 0. Intuitively, hotel 0 needs to pay attention to ρt when it sets its own BAR pt , since if it sets

pt too high it increases the probability that new customers who are booking rooms will book at one of its

competitors.

Note that for notational simplicity we have omitted the index k ∈ {1, . . . ,K} of the type of occupancy

date and room type (regular vs luxury suite). In principle each of the stochastic laws of motion in the

Bellman equation (7), gt , ft and ht , also depend on k and thus there are implicitly k different value functions

V k
t and corresponding optimal pricing strategies that we compute by solving K separate DP problems. In

our empirical work we ignore luxury suites since they constitute such a small fraction of hotel 0’s total

rooms and we do not have enough data to provide reliable parameter estimates for these rooms. Instead

we focus on regular rooms, which are 95% of the total rooms at hotel 0 and solve K = 8 DP problems for

the 4 quartiles of occupancy and weekend vs weekday arrivals. Each of these DPs implies a corresponding

optimal pricing strategy pt,k = p∗t,k(n, p,ρ) that provides a complete operating plan for the hotel in all days

of the year and under any eventuality. Our interest is to see how well the optimal pricing rule predicts the

actual prices charged by hotel 0. For notational simplicity we will drop the k index, though we will make

it clear in the following section how the results depend on the type of occupancy day k.

3.3 Properties of an optimal dynamic pricing strategy

The optimal dynamic pricing strategy depends potentially on four key variables: 1) number of days prior

to arrival, t, 2) number of rooms already booked, nt , 3) the average BAR of competing hotels, ρt , and 4)

hotel 0’s own ADR pt . The dependence of pricing decisions on the first three items seems completely

intuitive. In particular, knowing how many rooms are already booked, nt along with knowledge of the

capacity of the hotel (which is an implicit but non-time-varying state variable) determines the number of

rooms left to be sold, and it may be optimal for the hotel to raise its prices when it expects to sell out.

However the potential dependence of BAR on ADR variable seems unintuitive, since one might expect

that pricing is a forward looking decision whereas the ADR summarizes the average price at which past

bookings were made. While knowledge of the ADR is important for forecasting the ultimate revenue and

profit the hotel will earn, we now discuss conditions under which ADR will have no effect on the optimal

BAR. That is, we now ask under what conditions will p∗t (n, p,ρ) depend on t, n and ρ but not p? We
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will show there are conditions under which p∗t will depend on ADR ρt even though it is true that pricing

is a primarily a forward looking decision. However if cancellation decisions are endogenous, then they

will generally depend on both the current BAR p and the ADR p and tend to increase when p falls below

p. In this case hotel 0 has to trade-off the gain from cutting the BAR in the last few days before arrival

against the loss in revenue from existing bookings if enough already booked customers decide to cancel

and rebook at the lower BAR.

First we show that the value function Vt can be decomposed into the sum of two components: 1) a

“backward looking component” V b
t that provides the expected profits from customers who are already

booked, and 2) a “forward looking component” V f
t that provides the expected profits from customers who

will arrive and book rooms in the future. This representation holds regardless of whether cancellations are

endogenous or exogenous. If cancellations are exogenous the optimal dynamic pricing rule p∗t will indeed

be independent of ADR p, but if cancellations are endogenous then p∗t depends on p.

Theorem 1 For each t ∈ {1, . . . ,T} the value function Vt has the representation

Vt(n, p,ρ) =V f
t (n, p,ρ)+V b

t (n, p,ρ) (8)

where V f
t is the “forward looking component” that equals the expected profits from rooms that are not yet

booked, whereas V b
t is the “backward looking component” that equals expected profits from rooms that

are already booked.

We now introduce an assumption about the stochastic demand function for hotel rooms that is satisfied

by the static discrete choice model that we introduce in the next section.

Assumption 1 The conditional probability distributions for the number of new transient and group reser-

vation requests, rd
t and gd

t are independent of the hotel’s ADR p.

Note that we can see that Assumption 1 is satisfied by virtue of the form of the conditional probability

distributions ft(rd |p,ρ) and gt(gd |p,ρ) entering the Bellman equation (7): neither of these conditional

densities depend on the ADR, p. Intuitively if future customers do not care about the ADR in making

their decisions, then it is optimal for the hotel revenue manager to disregard ADR when it comes to setting

BAR.

While it is tempting to conjecture that Assumption 1 implies that the optimal decision rule for BAR

should also be independent of ADR (since the revenue manager sets BAR to attract future customers

to book some or all of the hotels available rooms), the result depends on the additional assumption of

exogenous cancellations, given below.
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Figure 11: Example demand functions and optimal prices p∗1(n1,ρ) for ρ = 300 and ρ = 350
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Assumption 2 (Exogenous cancellations) The conditional probability distributions for the number of

cancellations, ct , by existing customers does not depend on the hotel 0’s BAR p or ADR p.

Assumption 2 holds if the conditional probability density et(c|n, p,ρ, p) in the Bellman equation (7)

does not depend on (p, p). As we observed in section 3.4 we find only weak evidence that cancellation

decisions depend on hotel 0’s BAR and ADR.

Theorem 2 If Assumption 1 and 2 hold, then for each t ∈ {1, . . . ,T} the forward looking component of the

value function V f
t is independent of p, i.e. it can be written as V f

t (n,ρ) and depends on (n,ρ) but not p.

Theorem 3 If Assumptions 1 and 2 hold then for each t ∈ {1, . . . ,T} the optimal decision rule for BAR p∗t

is independent of p, i.e. it can be written as p∗t (n,ρ) and depends on (n,ρ) but not p.

When the exogenous cancellation condition in Assumption 2 holds, it provides additional special

structure that we can exploit to substantially speed up the solution to the DP problem, since we only have

to compute optimal prices over a two-dimensional grid of points (n,ρ) instead of a three dimensional

grid (n,ρ, p), via a backward induction recursion to calculate the forward-looking component of the value

function, V f
t (n,ρ). The gain in speed from exploiting this additional structure can be important for struc-

tural estimation of the model since as we see in the next section, the MSM estimator of the model’s

unknown parameters requires repeated trial solutions of the hotel’s DP problem as we search for structural

parameters that enable the model to best fit a vector of moments characterizing the hotel’s actual pricing

behavior and the occupancy and cancellation decisions of its customers.

The left panel of figure 11 illustrates example demand curves for business guests using parameter

estimates from the model that we present in the next section. For this example we assume that the revenue
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manager is certain that a total of k0 = 50 business guests are making reservations on the arrival date.

However the revenue manager is uncertain about how many of these guests will choose to book a room at

hotel 0. Under our assumption that the guests make independent decisions, the distribution of demand for

hotel 0 will have a binomial distribution with parameters (50,P0(p,ρ)) where P0(p,ρ) is the probability

any of these consumers will book a room at hotel 0 given that its BAR is p and the average BAR of its

competitors is ρ. In the next section we will describe a more general stochastic demand model that allows

for a random number of customers to arrive on any given day to book rooms. This model will imply that

rd
t , the number of new transient reservation requests at hotel 0, is a mixture of binomials. We will also

derive the functional form of P0(p,ρ) from a simple static binary choice model.

But to simplify the illustration, assume that the number of arrivals k0 is known to be some fixed value

such as k0 = 50. Then the expected demand (requests) curve for hotel 0 is particularly simple: it can be

written as D0(p,ρ) = k0P0(p,ρ). In figure 11 we illustrate how expected demand depends on the average

price ρ of hotel 0’s competitors. The blue line plots the expected demand for hotel 0’s rooms 1 day in

advance of arrival when ρ = 300 and the red line plots the expected demand when ρ = 350. Thus, via

a straightforward substitution effect in customers’ choices, the increase in ρ results in an upward shift in

the demand for hotel 0. As we show below, this simple demand substitution effect is the key reason why

Hotel 0’s optimal price strategy can be described as “price following” — the rise in the price of competing

hotels increases the demand for hotel 0 and this makes it optimal for hotel 0 to raise its prices in response.

The right hand panel of figure 11 plots the optimal pricing rule p∗0(n,ρ) for the demand model above

under the assumption that the marginal cost of servicing a room is ω = 50. We have assumed exogenous

cancellations so by Theorem 3, p∗0 does not depend on ADR p. However we can see that it does clearly

depend on competitors’ BAR ρ as well as the number of remaining unsold rooms n−n0. We see that BAR

is essentially flat as a function of n0 for values of n0 sufficiently below the hotel’s capacity n. However it

starts to rise steeply, and well above the prices ρ set by its competitors, as n1 gets close to n and hotel 0

expects to sell out. Thus, we see a clear price asymmetry: it is optimal to increase prices to ration scarce

capacity, but when the hotel has too much excess capacity it is not optimal to cut its BAR to try to increase

its occupancy. Instead it is better to keep its prices high (though undercutting its competitors) and accept

the fact that there will be many unsold rooms.

It is tempting to frame the hotel’s optimal pricing problem as a simple “Econ 101 problem” where the

hotel has a supply function with a constant marginal cost of ω until its capacity n is reached, at which

point its marginal cost curve becomes a vertical line. Would it be valid to calculate the optimal price

as the value of p that equates expected marginal revenue to marginal cost? Unfortunately this simplistic
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approach does not provide the correct solution.

The actual calculation of optimal prices for hotel 0 is more complicated due to the stochastic nature

of demand and the need to enforce the capacity constraint with probability 1. To see why, let’s illustrate

the breakdown of V f
0 with only one segment of customers. Suppose that at t = 0, the morning of arrival,

hotel 0 has already booked a total of n0 rooms, so it has a remaining capacity of n−n0 rooms left to sell.

Let r̃0(p,ρ) be a binomially distributed random variable with parameters (50,P0(p,ρ)) that represents the

stochastic demand (number of new bookings) at hotel 0 by the 50 customers who are booking rooms in

this market on the arrival day and face prices (p,ρ) for hotel 0 and its competitors, respectively. Then we

have

V f
0 (n,ρ) = max

p
E {min[r̃0(p,ρ),n−n0](p−ω)} , (9)

and p∗0(n,ρ) is the value of p that maximizes the forward looking expected profit in equation (9).

Let b(r|k1,P1(p,ρ)) and B(r|k1,P1(p,ρ)) be the probability density and cumulative distribution func-

tions for the binomial random variable r̃1(p,ρ) with parameters k1 = 50 and P1(p,ρ). Then we can write

the expectation on the right hand side of (9) as

E {min[r̃0(p,ρ),n−n0](p−ω)} = (n−n0)[1−B(n−n0−1|k0,P0(p,ρ))](p−ω)+
n−n0−1

∑
r=0

rb(r|k0,P0(p,ρ))(p−ω). (10)

The left panel of figure 12 plots the optimal price function p∗0(n,ρ) and the forward looking profit function

V f
0 (n,ρ) for this example by numerical maximization of expected profits in equation (10) over a grid of

points over the number of unsold rooms n− n1 ranging from 1 to 50 and over a uniformly spaced grid

of points over ρ from ρ = 200 to ρ = 1000. The right panel plots the corresponding value of maximized

expected profits, V f
1 (n,ρ). Profits are monotonically increasing in ρ but are decreasing in n since there

are fewer remaining unsold rooms n−n left to sell to new customers. We also see that V f
0 (n,ρ) is neither

convex nor concave. While it is generally concave in available unsold capacity n−n for all values of ρ, its

shape as a function of ρ depends on n. V f
0 (n,ρ) is convex in ρ when available capacity n−n is sufficiently

large, but is concave in ρ when the hotel is close to selling out.

We see that p∗1(n,ρ) is a monotonically increasing function of ρ, so the optimal pricing rule displays

the “price following” behavior we found in the regression results for hotel 0’s actual prices in table 5.

We also have p∗0(n,ρ)≤ ρ when hotel 0’s occupancy n is sufficiently below its capacity n, so the optimal

pricing rule generally results in hotel 0 undercutting the prices of its competitors.

The optimal pricing rule appears to differ from the empirical pricing rule we uncovered for hotel 0

from the regression results in table 5: the regression estimates showed that hotel 0’s occupancy had a
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Figure 12: Example of optimal pricing rule p∗0(n,ρ, p) and V f
0 (n,ρ)
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negative but insignificant effect on its ADR. In figure 12 we see it is optimal for hotel 0 to depart from

price following and raise its prices significantly above the average BAR of its competitors as n approaches

n. The optimal price function is a convex function of (n−n,ρ) and the optimal price schedule increases

particularly rapidly when there are fewer than 10 rooms left to be sold.

However when there is significant excess capacity, it is not optimal for hotel 0 to cut its BAR to

try to attract more customers: the optimal price schedule p∗1(n,ρ) flattens out when remaining unsold

capacity n−n becomes sufficiently large, especially when the average BAR of competitors is low. Thus,

the optimal pricing strategy displays a conditional version of “price following” and “price undercutting”

— it is only optimal to do this when hotel 0’s occupancy rate is sufficiently low. When hotel 0 is close to

selling out, it is optimal to raise its prices sharply, even if this means that its BAR will be higher than its

competitors’ BAR. We observed this type of behavior for hotel 0 in the top left panel of figure 6.

We conclude that an optimal pricing strategy does not imply price aggressive unilateral price cutting

when occupancy rates are low and there is little chance that the hotel will be sold out on the arrival date.

If the hotels are pricing optimally, then on non-busy days we should not expect to see hotel 0 makes any

unilateral price cuts to try to sell more rooms. Instead, it should only cut its BAR in response to price

cuts by its competitors. But on busy days, it is optimal to increase prices both unilaterally to try to ration

scarce remaining capacity, and also in response to price rises by the hotel’s competitors. These reinforcing

effects of price increases in response to shocks to market demand that lead all of the hotels in this market

to be close to selling out at the same time can generate the sharp pricing peaking behavior we observed

for this hotel market at both seasonal and weekly frequencies that we observed in figures 2 and 3.
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3.4 A Stochastic Model of Hotel Demand

Our model of stochastic demand for hotel rooms is based on an assumption of inelastic but stochastic

arrival of customers who wish to book a room in one of the seven hotels in this market. At each day

t prior to an intended arrival to stay at one of the hotels in the particular neighborhood of the city, a

random number of customers kt “arrive” and consider the attributes and BARs of the seven hotels in this

neighborhood and choose to book at one of them. When we use the term “inelastic” we mean that the

stochastic process governing the number of consumers who arrive kt is independent of the prices of the

hotels in this market. However we can allow the choice of an “outside good” which can be interpreted

as a choice not to book a reservation at any of the seven luxury hotels in this market if all of their prices

are too high. When we allow for an outside option, then the demand to stay in one of the seven hotels is

not really inelastic, since a sufficiently high price for all of the hotels will cause an increasing fraction of

consumers who arrive to try to book a room to choose the outside good, which can be interpreted as either

the decision to cancel or reschedule their visit for another date (such as if they are a tourist) or to stay a

some nearby hotel that is outside the immediate neighborhood where the seven hotels are located.

Our consumer demand model ignores the more complicated possibility that customers solve dynamic

programs to calculate optimal dynamic search strategies for when to book a room at a particular hotel

in this market. As we noted in section 3.4, if customers were using these strategies we would expect to

observe endogenous cancellations i.e. consumers would tend to book early and monitor the prices in the

market and cancel their reservations and rebook if the BAR falls sufficiently prior to their intended arrival

date. The fact that we do not find any statistically significant effect of reductions in BAR on cancellations

suggests that a model of exogenous cancellations (where current BAR does not affect the cancellation

rate) is a reasonable approximation to consumer behavior in this market.

We will shortly discuss our assumptions about the stochastic process from which the realization for

the number of arriving customers kt is drawn from, but conditional on kt , the kt individual reservations

involve independent trinomial choices of whether to reserve a room at hotel 0 at price pt , or to make the

reservation at one of the competing hotels at price ρt , or to choose the “outside good” to either stay outside

this neighborhood or cancel or reschedule their trip to some other less busy date.

Let the consumer’s “type” be indexed by τ and assume that a consumer of type τ chooses to reserve

the room at the hotel that provides the highest utility, taking into account Type 1 extreme value distributed

shocks that represent other idiosyncratic factors affecting their choice of which hotel to reserve at. With

seven hotels in this local market and the outside good, the choice model is a multinomial choice model

with 8 alternatives (the seven hotels plus the outside good as the 8th choice). However we make an
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approximation to simplify the model by assuming that the probability of choosing to reserve at hotel 0 can

be well approximated with a 3 choice model consisting of 0) hotel 0, 1) the outside good, or 2) booking

at one of the other 6 hotels. We normalize the net utility of the outside good to be 0 and the net utility of

the hotel we are studying to be aτ, and let bτ > 0 denote consumer τ’s degree of price-sensitivity. We also

normalize the intercept representing the average utility of choosing one of other competing hotels to be

zero. Then a consumer of type τ chooses to book at hotel 0, which we denote by the choice d = 0 if

aτ +bτδτ pt + ε0 ≥max[ε1,bτδ
′
τρt + ε2], (11)

where δτ and δ′τ denotes any discount off the BAR that a customer of type τ might be entitled to (such as

if the customer is part of a group) at different hotels 10, and (ε0,ε1,ε2) are independent Type 1 extreme

value distributed random variables with mean 0 and scale parameters normalized to 1. This implies that

the probability the consumer chooses to reserve at hotel 0, which we denote by the choice d = 0, is given

by

Pr{d = 0|τ, pt ,ρt}=
exp{aτ +bτδτ pt}

1+ exp{aτ +bτδτ pt}+ exp{bτδ′τρt}
. (12)

Assume that mt(τ) is the probability at t that an individual consumer is of type τ and assume there are a

finite number L of types of consumers, then we have

Pt(pt ,ρt)≡ Pr{d = 0|pt ,ρt}=
L

∑
l=1

Pr{d = 0|τl, pt ,ρt}mt(τl) (13)

It follows that conditional on the number of arrivals kt , the number of new reservation requests at hotel

0 will be r̃d
t ∼ bin(kt ,Pt(pt ,ρt)), i.e. a binomial distribution with parameters kt and Pt(pt ,ρt). We allow

the distribution of types, mt(τ), to differ by the number of days prior to arrival and on the type of day, i.e.

weekend vs. weekday, busy vs. non busy, etc.

Unfortunately allowing an outside good in the choice model, while natural and appealing for several

reasons, creates identification problems. How do we distinguish empirically between a case where there

is a high rate of arrival of customers wishing to book a room in this market but a high fraction of these

customers end up choosing the outside good from an alternative case where there is a lower rate of arrivals

but fewer of these consumers choose the outside good? In both cases, the number of reservations being

made at hotel 0 and its competitors could be approximately the same. Unless we can somehow observe

the total number of people visiting OTA websites who are considering booking at one of the seven hotels

in this particular hotel market, it seems dubious that we can identify the parameters of a choice model that

allows for the possibility of an outside good.

10In estimation, we impose δ′τ = δτ.
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Thus it is not clear that we can identify the parameters of the stochastic process governing the arrival

of customers {kt} and the parameters of choice model that allows for the choice of an outside good. Our

“solution” to the identification problem is to rule out the possibility of the outside good in the consumer

choice model. Thus, our analysis presumes that every consumer wishing to book a room in this market

chooses to book at hotel 0 or one of its competitors. Given this restriction, the probability that a consumer

of type τ chooses hotel 0 is given by the following binomial logit model

Pr{d = 0|τ, pt ,ρt}=
exp{aτ +bτ(δτ pt −δ′τρt)}

1+ exp{aτ +bτ(δτ pt −δ′τρt)}
. (14)

We assume that the total number of customers who book new reservations at one of the hotels in this

market t days before their intended arrival date, kt , is a realization of a negative binomial distribution.

Now we derive the conditional probability of the number of new transient reservation requests rd ,

ft(rd |pt ,ρt), from our assumptions on the stochastic arrival of customers and their individual discrete

choices of which hotel to book at. While we can observe rd
t , which is the same as rt in hotel 0’s reservation

database, is capacity constraint is not binding, we (and also hotel 0) will generally not observe kt , the total

number of consumers wishing to book a room in this market of the city t days prior to any given arrival

date. However if there are rd
t new transient requests received by hotel 0, we can conclude that kt ≥ rd

t .

Thus, we have

ft(r|pt ,ρt) = ∑
k≥r

(
k
r

)
Pt(pt ,ρt)

r[1−Pt(pt ,ρt)]
(k−r)

π(k|φt ,µt), (15)

where the choice probability P(pt ,ρt) of booking at hotel 0 is given in equation (13) and π(k|φt ,µt) is the

negative binomial density (1).

In principle the parameters of our stochastic demand model could be estimated by the method of max-

imum likelihood, by pooling observations of new reservations rt at the various different dates t prior to

occupancy at dates of the same type (i.e. weekdays vs weekends, etc). However identification is problem-

atic if we do not observe kt , for reasons similar to the one that motivated us to exclude the possibility of an

outside good in the choice model. Even with a restriction to a binary choice model, it is not obvious that

it is possible to identify the demand parameters, especially for different observed and unobserved types of

customers. For example if we observe, say, a total of 10 new reservations made on a given day, was this

because hotel 0 managed to attract 50% of a total of the kt = 20 new reservations that were made that day

in this market, or only 10% of kt = 100 new reservations?

While we do not observe kt for any t, the data we obtained from STR enables us to observe occupancy

at t = 0 at hotel 0’s competitors. This provides identifying restrictions, since knowing the capacity and

arrival day occupancy at the other hotels helps us to infer the overall number of arrivals leading up to the
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occupancy date. The cumulative number of arrivals cannot be too high or too low, otherwise occupancy

rates at both hotel 0 and its competitors could not match the values we observe. In the next section we

propose a method of simulated moments (MSM) estimator and show that the STR data, combined with

the reservation and cancellation data we have from hotel 0 enables us to identify the parameters of our

stochastic demand model and control for the endogeneity problem we discussed in section 3, even in the

absence of having any relevant instrumental variables to control for endogeneity.

4 Results

In the previous section we showed that the dynamic programming model can generate solutions that are

qualitatively consistent with the “price following” behavior by hotel 0 that we described in section 3,

though not in all respects (e.g. the regression results suggest that hotel 0’s prices do not depend on its oc-

cupancy). In this section we show how to estimate the model so we can make a more rigorous quantitative

assessment of how well the model can approximate the actual pricing, occupancy, and cancellation data

from hotel 0.

4.1 Estimation method: MSM

Let θ be a M×1 vector of the unknown parameters of the model, such as the parameters of the stochastic

demand and cancellation model. The preferred method of estimating θ is maximum likelihood, since it

allows us to best fit the realized values of the data we observe and results in an asymptotically efficient es-

timator for θ. However there are several reasons why direct maximum likelihood estimation is not feasible

in this case. The key problem is that the model we formulated in section 4 is “statistically degenerate” in

the sense that the likelihood of the data will be zero regardless of value of θ. The reason is that the dynamic

programming model results in a deterministic optimal decision rule for the BAR, pt = p∗t (nt ,ρt , pt ,θ), and

so there will be observed values of (pt ,nt ,ρt , pt) that will not lie on the graph of this function regardless

of what value of θ we choose. In other words the dynamic programming model is incapable of predicting

any such observation.

One way to avoid the zero likelihood problem is to include an additional state variable ηt that can be

regarded as information observed by hotel 0 that affects its choice of BAR that we do not observe as the

econometrician. Under a sufficiently flexible specification of the hotel 0’s dynamic programming problem

it might be possible that an augmented decision rule that incorporates ηt as an unobserved state variable

could result in a non-degenerate decision rule for the BAR of the form pt = p∗t (ηt ,nt ,ρt , pt ,θ). That is,

for any given θ we can find at least one value of ηt such that (pt ,ηt ,nt ,ρt , pt) lies on the graph of p∗t . If
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this were possible, then we could write a likelihood for pt given (nt ,ρt , pt) that will be non-zero for any

θ, and in this case we could estimate θ by maximum likelihood.

However we are not aware of any specification of a dynamic programming model where we can do

this, at least if pt is treated as a continuous random variable. However if we are willing to discretize

the set of possible BARs and assume that hotel 0 chooses its BAR from a pre-defined finite set it would

be possible to model hotel 0’s choice of prices as a dynamic discrete choice problem as in Rust (1987).

Unfortunately the set of BARs chosen by hotel 0 is too large to be well approximated by a pre-defined

finite set of discretized prices and trying to impose a coarse discretization on the choice of BARs could

lead to an artificially suboptimal pricing policy for hotel 0.

Even if we used a finer discretization on the set of possible BARs (which is computationally burden-

some), there are additional econometric issues of censoring and endogeneity that make it challenging to

infer the parameters of our stochastic model of demand by maximum likelihood. The ideal data set would

allow us to observe the total number of customers kt who arrive to book a room in this market t days prior

to their intended arrival date, and enable us to observe which hotels they chose given the prices available

at date t. However as we discussed in section 4.4, we do not observe kt or the number of people reserving

rooms at hotel 0’s competitors prior to any given arrival date. Instead we only observe rt , and gt the num-

ber of new reservations made by transient and group customers of hotel 0, respectively. We also observe

total occupancy at hotel 0’s customers on a daily basis, but not the trajectory of bookings and cancella-

tions leading up to the final occupancy each day at hotel 0’s competitors. We would need to “integrate

out” a full likelihood for the data to match the subset of information we actually observe, and this lead to a

high dimensional numerical integration problem that is intractable, at least using deterministic quadrature

rules.

An even more serious econometric problem is the endogeneity in the hotel prices that we noted in the

introduction. Stochastic shocks to the total number of customers wishing to book rooms in this local hotel

market cause the prices of all of the hotels in this market to be strongly positively autocorrelated: when

there is high demand for rooms hotels are likely both raise their prices substantially and sell out, whereas

on days where demand is low we will see excess capacity and lower prices. The result is a strong positive

correlation in prices and occupancy that we observed in the right hand panel of figure 4, and an ambiguous

relationship between the occupancy share for hotel 0 versus the ratio of its ADR to its competitors’ average

ADR as shown in the left hand panel of the figure. We are not aware of any instrumental variables that

would be effective for solving this endogeneity problem and enable us to estimate a plausible negatively

sloped demand curve for hotel 0.
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Our solution to these problems is to estimate the unknown parameters of our model using the method

of simulated moments (MSM). The basic idea is to simulate the set of prices, bookings and cancellations

for all seven hotels in this market and then censor the simulated data in the same way the data we observe is

censored, namely, we exclude observations on the paths of bookings and cancellations leading up to each

arrival date at hotel 0’s competitors and use only the realized occupancy on the arrival dates to compare

to the comparable data that we have from STR. MSM requires us to specify a vector of J ≥M moments

based on the observed, censored data, which we denote by the J×1 vector mT where T denotes the total

number of arrival day observations we have in our data set. Using our dynamic programming model we

simulate a corresponding set of moments based on the simulated, censored data, which we denote by

mS,T (θ), where S denotes the number of independent simulations of the dynamic programming model that

were averaged to help reduce simulation noise, which we will specify more explicitly below. The MSM

estimator is then defined by a value θ̂T that satisfies

θ̂T = argmin
θ

[mT −mS,T (θ)]
′WT [mT −mS,T ] (16)

where WT is a J× J positive definite weighting matrix to be specified below.

Let ~xt be a vector of variables such as the paths for BARs, bookings, cancellations and final occupancy

at a given calendar date t for hotel and its six competitors. Due to the censoring we noted above, while

we observe final occupancy on date t and the full path of BARs leading up to the arrival date t for both

hotel 0 and its competitors, we only observe the paths of bookings and cancellations for hotel 0 but not

for its competitors. Let h(~xt) be a function that maps ~xt into RJ . Thus, h(~xt) constitutes a J×1 vector of

statistics summarizing the path of BARs, bookings, cancellations and final occupancy at hotel 0 and its

competitors on date t. Let mT denote the time average of these statistics over T different arrival dates,

mT =
1
T

T

∑
t=1

h(~xt). (17)

We assume that the paths ~xs and ~xt leading up to distinct arrival dates s 6= t are independently distributed,

which implies that h(~xs) and h(~xt) are independently distributed J× 1 vectors. Then under suitable reg-

ularity conditions, the Law of Large Numbers implies that with probability 1 we have mT → E{h(~xt)}.

Similarly, the Central Limit Theorem implies that

√
T [mT −E{h(~xt)}] =⇒ N(0,Ω), (18)

where Ω is the J× J variance-covariance matrix given by

Ω = E
{
[h(~xt)−E{h(~xt)}][h(~xt)−E{h(~xt)}]′

}
. (19)
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Table 6: Definition of estimation subsamples
Sample

(Weekday)
Number of

Observations
MSM

Criterion
Sample

(Weekend)
Number of

Observations
MSM

Criterion
Demand

Description
00 132 10,658.7 01 103 9,248.0 Lowest quartile
10 132 12,482.4 11 103 11,605.6 2nd quartile
20 132 20,670.8 21 103 14,111.5 3rd quartile
30 132 45,978.7 31 103 20,950.7 Highest quartile

We assume that the stochastic processes generating the observed paths of bookings, cancellations

and prices are independently distributed for different arrival days. So the J× 1 vector of moments mT

are formed as sample averages of various functionals of the realizations of these independent stochastic

processes, and a Law of Large Numbers for IID observations can be used to establish that mT converges

with probability 1 to J× 1 vector m∗ equal to the expectation of the individual random vectors entering

the average mT .

4.2 Model specification

In previous discussion of demand model, we assumes that there are two segments of customers: 1) tran-

sients and 2) groups, and there are multiple unobserved types of customers in each segment. In our

estimation, we adopt three segments of customers 1) leisure 2) business and 3) groups, and there’re no

unobserved types within each segment. Basically, we further divide ”transient” into ”leisure” and ”busi-

ness” according to observed market code in the database. This specification wouldn’t change our theorems

concerning value function and optimal policies 11.

We estimated a total of K = 8 separate DP models by MSM on K = 8 corresponding subsamples

based on classifying the 1731 days over our sample period into groups based on whether each day was

a weekend versus a weekend and based on four quartiles for total occupancy on the arrival date, t = 0.

The various samples and the MSM estimation criterion is listed in table 6. We define a “weekend” as

consisting of the three days Thursday, Friday and Saturday and the other days of the week as “weekdays”.

Table 7 shows the fractions of business, leisure and group customers as well as the average occupancy

rate in the 8 subsamples. As we would expect, there are more business and group customers staying in

the hotel on weekdays, and relatively more leisure travelers on weekends. Occupancy rates are generally

higher on the weekends, so the lower ADRs on weekends are presumbly caused by the higher fraction of

more price elastic leisure travelers who stay at hotel 0 on the weekends.

Before turning to the parameter estimates, we provide further information on our choice of functional

11In appendix, we provide proof for arbitrary number of segments and unobserved types.
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Table 7: Customer distribution by subsample

Sample
(Weekday)

Customer share Occupancy
rate

Sample
(Weekend)

Customer share Occupancy
ratebusiness leisure group business leisure group

00 0.18 0.61 0.21 51.6 % 01 0.12 0.67 0.21 58.7 %
10 0.20 0.51 0.29 73.9 % 11 0.13 0.65 0.22 81.5 %
20 0.25 0.39 0.36 88.5 % 21 0.14 0.60 0.26 91.0 %
30 0.26 0.30 0.44 99.2 % 31 0.15 0.56 0.30 95.3 %

forms for the probability densities of cancellations, each segment’s arrival process (the random k’s) re-

spectively, t days before arrival when a total of n rooms are booked. Starting first with cancellations,

though it is tempting to predict cancellations using a simple average per day cancellation rate, there is a

lot of day to day variability in cancellations that is not evident in our non-parametric plots of cancellation

probabilities and rates in figure 9. In particular, cancellations tend to be a very “spikey” process with zero

cancellations on most days and clusters of cancellations on others. This is also true for group reservations

and to a lesser extent transient reservations.

Instead of a negative binomial, we used zero-inflated negative binomial (ZINB) distributions to capture

the spikey aspects of reservations. And a zero-inflated binomial (ZIB) for ct . A ZINB random variable

equals 0 with probability γt ∈ (0,1) and with probability 1− γt it is a draw from a negative binomial

distribution with parameters (φt ,µt). Similarly, a ZIB random variable ct equals 0 with probability γt

and is a draw from a binomial distribution with probability 1− γt . We allow the probabilities of zero

outcomes, γt to differ for each segment and to depend on the number of days t prior to arrival. This

implies that cancellations, and new reservation arrivals are independent but non-identically distributed

events and contemporaneously independent of each other. We also assume that all existing reservations

have the same cancellation probability regardless of which segment they are in.

As a dimensionality reduction device, instead of estimating separate values for the parameter (γt ,φt ,µt)

governing the zero-inflated distributions for each segment for each of the T = 45 days prior to arrival, we

specified these parameters to be 3rd order polynomials of t and estimated four polynomial coefficients to

capture the trajectory for these parameters as a function of t rather than estimate T = 45 different values

for each parameter in each of the K = 8 market segments. As we illustrated in figure 8 the 3rd order poly-

nomials are able to accurately capture how these parameters vary with t but much more parsimoniously.
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4.3 Estimation procedure

We adopted a two-step structural estimation approach. In the first step we used the reservation data from

hotel 0 to estimate the average discount rates δτ applicable to various types of customers, i.e. transients

versus groups and business versus leisure travelers. Using the data from Market Vision, we estimated the

parameters of the lognormal AR(1) specification for the competing hotels’ average BAR, {ρt}, given in

equation (2). Treating these estimates as given, we estimated the remaining parameters of the model such

as the binomial logit demand parameters (aτ,bτ) for the different types of customers and the parameters

for the stochastic arrival of transient customers, group reservations and cancellations using the 3rd order

polynomial approximations to capture the time variation in these parameters as a function of t, the number

of days prior to arrival by MSM using nested numerical solution and simulation of the DP problem of

optimal dynamic pricing developed in section 4.12

We formed a total of J = 481 moments to estimate the M = 46 parameters in each model (or a total of

368 parameters in total for all of the K = 8 models). Table 8 summarizes the moments we used to estimate

the model: in general terms we used observations of the mean and variance of BAR and occupancy

trajectories, the number of new reservations by group and transients for each day t prior to arrival, and the

number of cancellations at hotel 0, the distribution of ADRs and occupancy for hotel 0 on each occupancy

date, as well as means, variances and covariances between hotel 0’s ADRs and occupancy rates and the

ADRs and occupancy rates at hotel 0’s competitors over the 1731 day period in the data set we obtained

from STR.13

4.4 Estimation results

The fit of the estimated model is very good and the difference between the simulated moments from our

model and the actual moments is illustrated graphically in figure 13. The round-solid line indicates the

moments created by the actual data, while the star-solid line indicates the moments of simulation. We

used moments for estimation and almost all moments look very close to each other for sample20. The fit

of the model in the other 7 subsamples is equally good in terms of the graphical deviation between actual

and simulated moments. The values of the minimized SMD criterion differ across subsamples in table 6

12Prior to estimating the model on the actual data, we verified that the MSM could accurately estimate the model parameters
via a small scale monte carlo study where we generated artificial data from the DP model and verified that the MSM parameter
estimates were close to the true values and that the asymptotic approximation to the sampling distribution was approximately
normally distributed with a covariance matrix formed from a misspecification-consistent version of the covariance matrix for the
MSM estimator derived in Hall and Rust (2018).

13We pre-estimated the AR(1) processes for the average BAR of hotel 0’s competitors using the data from Market Vision.
There are an additional 135 parameters from these estimation results that were taken as given in our MSM of the remaining
parameters of the DP models. Note that we did not attempt to estimate the marginal cost parameter ω which we set to zero. We
are in the process of re-estimating the model where we add ω as part of the overall vector θ.
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Table 8: List of Moments

Hotel Description of Moment Number of Moments

Hotel 0

avg. occupancy rate, by t 47
distribution of occupancy on t=0 28
avg. Transient reservations (Leisure+Business), by t 47
variance of Transient reservations, by t 47
prob. of no Group reservations, by t 47
avg. Group reservations, by t 47
prob. of non-zero cancellations, by t 47
avg. cancellation rate, by t 46
avg. BAR, by t 47
avg. ADR on t=0 1
distribution of ADR on t=0 28

All Hotels avg. occupancy rate on t=0 1
distribution of occupancy rate on t=0 48

Total 481

mainly due to different sample sizes.

As we noted above, our stochastic demand model has a total of 46 unknown parameters after we do

the dimensionality reduction of using 3rd order polynomials to capture systematic changes in the densities

governing the number of reservation arrivals and cancellations, respectively, t days prior to arrival on an

occupancy day of type k. We estimated K = 8 separate DP models by MSM given the classification of

occupancy dates provided in table 6.

We start by presenting the estimated choice probability parameters (aτ,bτ) for the three different

classes of customers, leisure, business and group, in table 9. Note that the binomial logit specification

(14) implies the following demand elasticity

ηp =
dQ
dP
· P
Q

= bτ· pt . (20)

From table 9 we see that all of the estimated price coefficient estimates bτ have the a priori correct

sign (i.e. they imply a downward sloping demand curves) with reasonable implied demand elasticities.

For example at an average BAR of $180 the estimated value of b̂τ = −.006 for a business traveler on a

non-busy weekday implies a price elasticity of ηp = −1.06. The estimated bτ coefficients have larger

estimated values but also larger variances in the highest demand sample, and so we hesitate to speculate

whether bτ is really higher during the busiest periods, which seems counterintuitive.

However we do find the intuitively plausible result that b̂τ is higher for leisure travelers than business

travelers except for the case of weekdays in the busiest occupancy subsample, which we already noted are
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Figure 13: Difference between simulated and actual moments, sample 20
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estimated imprecisely. The minimum occupancy rate of seven hotels in the highest demand subsample

was greater than 92.0%. Considering the fact that 95.4% rooms of hotel 0 are regular rooms, almost all

of the regular rooms of the luxury hotels are sold out by arrival date in this subsample. For these reasons

we do not think the estimates for the highest demand weekday subsample are necessarily fully reliable

whereas the b̂τ coefficients in the other subsamples show less variability and are more consistent with

each other. Overall, we believe structural MSM estimator provides plausible estimates of demand, which

is remarkable considering the severe econometric problems of censoring and endogeneity that we noted in

the introduction. All of the traditional econometric methods we tried such as instrumental variables failed

to produce price and reasonable estimates and frequently implied upward sloping estimated curves.

The remaining parameter estimates are for the parameters of the stochastic reservation arrival and

cancellation processes and are presented in tables 10, 11, 12 and 13 in the Appendix. Tables 10 and

11 present the estimated coefficients of the 3rd degree polynomial for the µt parameters of the negative

binomial probability for leisure customers for weekdays and weekends, respectively. The coefficients of

the cubic terms (t3) are near zero and the coefficients of the quadratic terms (t2) are concentrated around

0.002. Thus, the trends in the µt parameter are dominated by the linear terms. The estimated coefficients

for the 3rd degree polynomial specification governing the φt parameters of the negative binomial model

that govern the arrival of transient customers to book rooms on one of the hotels in this market are similar:

the linear terms are the largest. However, the main difference is in the estimated coefficients of the third

and fourth powers of t which are rather different than the corresponding estimated coefficients for the µt

parameters.
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Table 9: Estimates of Choice Parameters (aτ,bτ)

Segment Parameter
Lowest
Demand
(0-25%)

Medium-Low
Demand
(25-50%)

Medium-high
Demand
(50-75%)

Highest
Demand

(75-100%)

Weekday

Leisure
aτ -1.698 (0.384) -1.546 (0.338) -1.329 (0.174) -2.300 (2.798)
bτ -0.008 (0.001) -0.007 (0.001) -0.010 (0.001) -0.074 (0.036)

Business
aτ -1.618 (1.151) -1.904 (0.150) -1.047 (0.134) -2.564 (0.742)
bτ -0.006 (0.002) -5.8E-3 (2.7E-4) -0.006 (0.001) -0.091 (0.091)

Group
aτ -0.539 (1.115) -0.935 (0.152) -1.167 (0.360) -1.370 (1.362)
bτ -0.012 (0.005) -0.011 (0.002) -0.012 (0.002) -0.094 (0.055)

Weekend

Leisure
aτ -1.580 (0.091) -1.803 (0.328) -0.296 (0.515) -3.821 (15.325)
bτ -0.008 (0.001) -0.009 (0.002) -0.035 (0.046) -0.128 (0.980)

Business
aτ -1.358 (0.149) -1.262 (0.314) -2.203 (2.480) -3.874 (5.172)
bτ -0.007 (0.001) -0.007 (0.003) -0.007 (0.010) -0.076 (0.269)

Group
aτ -0.813 (0.076) -0.913 (0.217) -0.002 (0.003) -2.537 (4.421)
bτ -0.012 (0.003) -0.017 (0.002) -0.015 (0.010) -0.134 (0.194)

Note: standard errors in parentheses.

Tables 12 and 13 present the estimated coefficients of a 3rd degree polynomials for the coefficients

of the cancellation probability et(c|n) for weekdays and weekends, respectively. The parameters are

fairly stable across subsamples and predict cancellation rates that are very close to the non-parametrically

estimated values shown in figure 9. The fact that our estimated cancellation rates are not highly sensitive

to demand conditions is consistent with our previous analysis where we showed that cancellation rates

do not depend on the current BAR, so the hypothesis of exogenous cancellation rates seems to be a good

approximation for this market.

We now turn graphical comparisons that illustrate how the estimated model is able to capture many of

the features we see in the data. Figure 14 compares the predictions of the model and the actual outcomes

for a specific day to show that the model does a good job of capturing dynamics on a day by day basis

and not just on average. The specific day comes from sample 20 which is a weekday and the second

highest demand quartile. The top left panel of Figure 14 plots the BAR of our hotel and the average

BAR of competing hotels, while the top right panel shows the simulated optimal price of hotel 0 and its

competitors. Both panels use the same average BAR of hotel 0’s competitors. We see that the predicted

optimal BAR for hotel 0 closely follows the BAR of the competitors, consistent with our “price following”

finding in section 3. The middle left panel compares the simulated and actual occupancy trajectories on
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Figure 14: Simulated versus actual outcomes, day 41 of sample20

this particular day. The blue dashed line plots the simulated occupancy for hotel 0 while the star-solid line

plots the actual occupancy trajectory on the same day. At 10 days before arrival, simulated occupancy

(dashed-line) is slightly higher than actual. But as the arrival date approaches, actual occupancy increases

slightly faster than simulated occupancy, so the model slightly underpredicts total occupancy on the arrival

date. The higher actual occupancy is likely due to the fact that the DP model sets a higher BAR in the last

few days prior to arrival than what hotel 0 actually set as seen in the top panels of figure 14.

The remaining panels of figure 14 compare simulated and actual daily bookings and cancellations. The

middle right panel shows the trajectory of transient reservations from both leisure and business customers.

The actual inflow marked with the star-dash line fluctuates quite a bit, so it is hard for the model to

exactly track its daily movements. Despite this, the model is able to track actual realizations on specific

days remarkably well. The bottom two panels of figure 14 plot the trajectories for group reservations

and cancellations. Unlike the previous panels, we see some large discrepancies between the data and
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Figure 15: BAR trajectories for busy weekday and busiest weekend
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the simulation. Given the spikey and random nature of group reservations, we cannot expect simulations

from our model to track actual outcomes as well. However the simulation errors in group and transient

reservations and cancellations tend to average out in a way that leads the overall simulated path of bookings

(top left panel) to track the actual path remarkably closely.

Figure 15 plots average simulated BAR trajectories for hotel 0 and its competitors in two separate

samples: 20 (busy weekdays) and 31 (busiest weekends). Starting with the left hand panel, we see that

the optimal BARs from the DP model track hotel 0’s actual BARs very closely, including the overall

downward trend in the BAR and an acceleration in price cutting that occurs in the last few days prior to

arrival. Given our characterization of the optimal pricing rule in section 4, the price cutting by hotel 0 is a

result of price following in response to price cuts by its competitors rather than unilateral price cuts.

The right hand panel of figure 15 plots the average BAR trajectories for the most busy weekends in

the sample. In this case the average BAR trajectory is essentially flat as the arrival date approaches, except

for price cutting in the last 5 days prior to arrival. For this sample the simulated BARs do not track actual

BARs quite as closely but they still follow by overall pattern very well, including a downturn in prices in

the week before arrival. Notice that in comparison to figure 15 prices on most busy weekend are lower on

average than the prices on a busy (but not most busy) weekday. This is due to the greater price elasticity

and lower arrival rate of leisure customers for weekends compared to business travelers on weekdays. The

same pattern occurs in the competitors prices ρt which are marked as pc in the figures.
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Figure 16 compares the average simulated booking trajectory from the estimated DP model to the

actual average trajectory for sample 31, busiest weekends. Though we do not observe the booking tra-

jectories of hotel 0’s competitors, we are able to simulate them and we present the average simulated

trajectory for the competitors as well. Note that our simulations indicate that the competitor hotels are

not completely sold out by the arrival date, and since we do observe the occupancy rates at the competing

hotels on each arrival date, we can confirm that our model does predict the final occupancy at the com-

peting hotels accurately. Note that our model simulations predict that the competing hotels tend to book

up faster compared to hotel 0. For example, 25 days away from arrival the model predicts that competing

hotels are 70% booked whereas hotel 0 is only 50% booked. In figure 16 we see that the estimated DP

model slightly overestimates occupancy rates at hotel 0 in the last few days prior to arrival, but generally

provides a very close prediction of the actual booking trajectory.

Lastly, we show how the DP model is able to track ADRs and occupancy rates. Figure 17 compares

the simulated ADRs for hotel 0 and its competitors to the actual realized ADRs over the interval from

February 16, 2012 to May 26, 2012. The top panel compares simulated and actual ADRs for hotel 0 and

the bottom panel does the same for the average ADRs of hotel 0’s competitors. The simulated ADRs

for hotel 0’s competitors were generated from our estimated random walk model for {ρt} given in equa-

tion (2). Generally the DP model tracks the weekly cycles in the ADRs at hotel 0 quite well, though it

tends to overpredict the ADRs during weekdays, in some cases by significant amounts. This same pat-

tern of prediction errors is also true of the more reduced-form AR(1) for the average ADRs of hotel 0’s

competitors.

Note that the ADR is generally different from the BAR due to various discounts provided to different

types of customers and the stochastic variability in how many customers book at different BARs prior to

the arrival date. Even if two customers book reservations on the same day for occupancy on the same date

in the future, they may be eligible for different discounts. Also some hotels do not enforce a uniform price

strategy that hotel 0 uses, and when hotels sell blocks of rooms to wholesalers, we can see quite a bit of

dispersion in the BAR across different OTAs even for the same hotel on the same occupancy date. This

high price dispersion is precisely why we see entry by meta sites such as Kayak.com and Trivago.

The additional price dispersion due to different discounts offered to different customers complicates

our simulations: we need to draw from the distribution of possible discount rates applicable when simu-

lating each booking. Since we cannot observe this distribution for hotel 0’s competitors, we used average

discount rates using ADRs provided by STR. We can observe the full distribution of discount rates using

hotel 0’s reservation database, since we see every customer and contract category and the discount rate
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Figure 16: Occupancy trajectory for sample 31, busiest weekend
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applicable to each. However in this version of the model we used the average discount rate for hotel 0’s

simulated bookings as well. Thus, some of the prediction errors for ADRs in figure 17 are likely due

to our use of average discount rates to calculate estimated ADRs for specific days, especially weekdays.

For example we do observe large group reservations at especially low discounted rates for events such as

conferences that occur on weekdays, and when such events occur, the model’s predicted ADR using an

average discount rate will naturally overpredict the actual ADR.

Figure 18 plots the arrival day occupancy rates for hotel 0 and its competitors over the same period.

For each arrival day, we used the reservation database information from hotel 0 to calculate its actual

occupancy rate, whereas for hotel 0’s competitors we obtained occupancy rates on each arrival day from

the STR data. The top panel compares actual and simulated occupancy rates for hotel 0 and the bottom
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Figure 17: Time Series of Average Daily Rate (ADR)

Time Series of Avg Daily Rate (ADR), 2012-02-16 to 2012-05-26 
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panel does the same for hotel 0’s competitors. We see that in general, the model is able to track both prices

and occupancy rates in this market quite well.

We also observe occasional large differences between simulated and actual rates in figure 18. The

prediction errors are even smaller for the competing hotels as we see in the bottom panel of figure 18.

Overall the two time series appear to match each other rather closely with the exception of a few dates

such as April 1, 2012 where the simulation produces an anomalously low final occupancy rate. The

unusually high actual occupancy rate on this date may be due to a special group reservation at a deeply

discounted rate. Indeed, we see an unusually high share of reservations of April 1, 2012 that were booked

under codes ‘RESO’ and ‘OPQ’ which are special discounted group codes for travel agency bookings.
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Figure 18: Time Series of Occupancy

Time Series of Occupancy , 2012-02-16 to 2012-05-26 
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4.5 Counter-factual experiments

We conducted several counterfactual price experiments to help judge whether the estimated stochastic

demand model provides a good approximation to reality. We had an opportunity to present our findings

to the revenue manager of hotel 0, and by in large, the revenue manager confirmed that the counterfactual

predictions seem reasonable and are broadly in line with her own intuitive prediction of how these various

changes to pricing would affect bookings, cancellations, occupancy, and overall profits. We presented

three different experiments using the estimated model. In experiment 1 we fixed BAR at a specific, time-

invariant value instead of adopting the optimal dynamic pricing strategy. In experiment 2 we instituted a

20% discount off the optimal BAR calculated by our DP model starting 15 days prior to arrival. In exper-

iment 3 we increased the BAR by 20% over the optimal BAR starting 15 days ahead of arrival. Though
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the results below show a single simulated path, it is quite easy to simulate many paths and construct a

distribution of outcomes given different realizations for customer arrivals and decisions. We will show

the entire distributions of simulated outcomes below, but it is helpful to start by showing a single typical

realized path for each of the three experiments described above.

Figures 19 and 20 compare simulated versus actual paths of occupancy under experiment 1, where we

turn off dynamic pricing and exogenously fix the BAR to a single constant value for all booking days t

prior to arrival. Both of these experiments were done for busy Thursdays in April, 2012. In each case, we

compare the actual occupancy path to the mean and 95% confidence interval of paths simulated by our

model of stochastic demand but conditioning on the actual path of BARs for hotel 0’s competitors.

The top panel of figure 19 compares the counterfactual constant BAR of p = 410 (marked with a

dashed line) with the actual BAR (solid line). The actual BAR trajectory ranges between $280 and $550.

We see the effect of price cuts by hotel 0 around t = 40 days prior to arrival which appear to have resulted

in a sharp increase in bookings about t = 35 days prior to arrival. Another price decrease between 30 and

25 days prior to arrival appear to have caused a jump in bookings over this same interval. However for

the fixed price policy, bookings and overall occupancy increase at a much more steady pace, which seems

intuitive given that prices are fixed in the counterfactual scenario.

Despite the fact that the fixed price of p = 410 is initially lower than the dynamically varying BAR

that hotel 0 actually charged, the simulated mean occupancy rate is close to the actual occupancy rate

until 38 days before arrival. But at that point the price cuts in the actual BAR appear to have stimulated

a significant increase in bookings and subsequently the actual path of bookings lies above the upper 95%

confidence interval of simulated booking paths under a fixed price policy. Actual revenues were $80,355

on April 19, 2012 which is significantly higher than the mean revenues of $68,865 that our model predicts

hotel 0 would have earned had it maintained a constant price of p = 410.

Figure 20 provides another illustration of experiment 1, but for a different day: April 26, 2012, where

we fixed the BAR at a lower price of p = 360 for all days t prior to arrival. Here again we see that

the dynamically changing price path that hotel 0 actually chose resulted in higher final occupancy and

revenues than the model predicts under a counterfactual suboptimal time-invariant BAR. We see that the

lower actual price charged by hotel 0 at t = 46 days before arrival leads to initially higher bookings, but a

price increase between t = 40 and t = 35 days before arrival dampened the growth in bookings, and actual

prices are closer to the counterfactual flat price of p = 360 between t = 35 and t = 25 days before arrival,

so the actual booking trajectory moves closer to the mean trajectory in our counterfactual simulations.

However at t = 17 days before arrival, the hotel cut its BAR to p = 260 and this lead to a large jump
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Figure 19: Experiment 1: constant BAR on April 19, 2012
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in occupancy. After this large jump in its occupancy, hotel 0’s actual bookings remains near the top of

the 95% confidence interval of bookings under the flat price counterfactual. The jump in bookings due to

its apparently strategically timed price cut at t = 17 days before arrival seems to have made hotel 0 more

confident of a sell out and at t = 14 days before arrival it raised its BAR to over $500, far above the average

BAR of its competitors. Then in the remaining two weeks it more or less steadily cuts its BAR, to p = 260

on the final day, well below the average BAR of its competitors. The actual revenues earned by hotel 0

on this day were $77,505, which is higher than the mean simulated revenues of $74,520, though given the

relatively high variability in simulated outcomes, actual revenues are not statistically significantly higher

than mean simulated revenues in this case.

Though we caution not to read too much into individual simulations, they provide helpful illustrations

of the dynamic process of price adjustment and how hotel 0 responds to occupancy and the prices set by its

competitors, and illustrate the potential gains from the use of a dynamic pricing strategy. The remaining

counterfactual experiments focus on evaluating the overall level of prices and are based on comparing

simulations using the optimal pricing strategy from the estimated DP model and two counterfactual paths:

one that is 20% higher than the optimal BAR and the other which is 20% lower. Though we simulated

prices for hotel 0, we used the actual average BARs quoted by hotel 0’s competitors leading up to the
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Figure 20: Experiment 1: constant BAR on April 26, 2012
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same arrival date, April 19, 2012, that we illustrated in figure 19. We instituted the counterfactual price

changes (relative to the optimal prices) starting at t = 15 days prior to arrival.

Figure 21 plots the results of experiments 2 and 3. We show the simulation starting at t = 20 days prior

to arrival and the black curve in the top left hand panel of the figure plots the optimal BAR calculated by

the DP model. Notice that it displays the “price following” property much more strongly than the actual

BAR trajectory that hotel 0 chose that is illustrated in the top panel of figure 19. In particular, the dotted

line in the latter figure plots the average BAR trajectory {ρt} of hotel 0’s competitors and as we see in

figure 21 the optimal BAR trajectory from the DP model tracks the shape of {ρt} relatively closely, and

the optimal pricing rule does prescribe that hotel 0 price undercuts its competitors. Also note that the

revenue earned under the optimal pricing rule is $89,066, which is 11% higher than the actual revenue

earned on April 19, 2012 of $80,355. Though there is “simulation noise” in counterfactual simulation

of optimal prices from the DP model (due to stochastic simulation of arrival rates of transient and group

customers), we have conditioned on the same path of average BARs for hotel 0’s competitors and this

conditioning considerably reduces the variability in the counterfactual simulations compared to a scenario

where we also simulate competitor BARs as well as stochastic arrival of customers. Later, we will show

the entire counterfactual distribution of occupancy and revenues that factors in the effect of stochastic
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Figure 21: Experiment examples of BAR addition/deduction
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arrival of customers so you can judge the variability created by the stochastic arrival of customers, which

does turn out to be substantial as we show below. However we think it is helpful for the understanding

of the model to show a single simulation where we condition on the same BAR trajectory for hotel 0’s

competitors and overall number of arrivals of customers at each day t before arrival in order to “control”

for these other factors and focus purely on the impact of the changes in prices on the outcomes.14

In figure 21 the counterfactual experiments start at t = 15 days before arrival. The dashed red line

plots the counterfactual BAR for experiment 2, where we increase the BAR by 20% in the remaining two

weeks prior to arrival. The blue dotted line plots the counterfactual BARs for experiment 3, where we

decrease prices by 20% relative to the optimal values until arrival day. The remaining panels of figure 21

use the estimated demand model to simulate the implications of these counterfactual price trajectories on

bookings, cancellations, occupancy and total revenues, controlling for prices of competitors’ BARs and the

stochastic arrival of customers as described above, so we can isolate the pure effect of the counterfactual

14We also conditioned on the same set of uniform random “seeds” that we used to simulate the choices of each customer who
arrives each day and chooses to stay either at hotel 0 or one of its competitors. Thus, in some sense our computer experiment
provides a type of controlled experiment that could never actually be done in reality.
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price changes on the outcomes. The top right hand panel of the figure shows the impact on occupancy

rates. As we would expect, the 20% decrease in BAR leads to an immediate jump in both transient and

group bookings shown by the blue dotted lines in the bottom two panels of the figure. The jump in

bookings results in a rapid increase in occupancy rates, which reach 100% at t = 12 days before arrival,

7 days earlier compared to what happens under the optimal pricing strategy. Conversely the 20% price

increase causes transient and group bookings to drop to nearly zero until just a few days prior before

arrival, so occupancy rates decrease under this experiment until experiencing a slight rebound just a few

days before arrival.

In sum, final occupancy rates on the arrival date, April 19, 2012, are predicted to be 100% under

both the optimal pricing strategy and the 20% price decrease counterfactual, but are below 92% under

the 20% price increase counterfactual. The price increase results in revenues of $80,998, or 9% lower

than the revenues under the optimal pricing strategy. Revenues under the price decrease counterfactual

are $86,601, or 3% lower than the revenues hotel 0 earns under the optimal pricing rule. Both of these

counterfactual revenues are higher than revenues that the model predicts under a non-dynamic fixed BAR

scenario, $68,865 as in figure 19.

Thus, this is a result of the property of an optimal dynamic pricing rule that we discussed in section

4.3, namely, that it is not optimal for hotel 0 to unilaterally cut its prices when it is close to selling

out. However the counterfactual does show there is a danger in “overpricing” which drives a significant

number of potential customers to hotel 0’s competitors and results in significant loss of revenue compared

to the optimal pricing rule. In summary, the change in the optimal price affects the new reservations

and occupancy rate and the results of experiments seem quite reasonable and are consistent with our

expectations. When we showed these predictions to the revenue manager at hotel 0, she also agreed that

the counterfactual predictions seem very reasonable given her own experience and beliefs about how the

hotel customers react to price changes.

Finally, figure 22 plots the distributions of occupancy and revenues for different realizations of stochas-

tic shocks, but conditioning on the actual realized path of BARs for hotel 0’s competitors as shown in

dotted black line in the top left panel of figure 21. The left hand panel plots the distribution of occupancy

rates on the arrival day implied by the optimal pricing strategy and the three counterfactual scenarios. We

see huge variability in occupancy rates for different simulated arrivals of customers under each pricing

scenario. For example under the optimal pricing strategy, the support of the distribution of occupancy

rates is approximately [.2,1] with an expected value of .8. The mode of the distribution is at 100% occu-

pancy but there is a long left tail corresponding to low occupancy rates on days when insufficiently many
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Figure 22: Distribution of occupancy and revenue in the experiments
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customers arrive to book rooms.

Occupancy rates are highest on average under the 20% price decrease (84%), and lowest under the

20% price increase scenario which is not surprising. However it is interesting to note that while ADRs

are higher under the optimal pricing strategy compared to a constant price, occupancy under the optimal

dynamic pricing strategy is actually higher — 80% versus 76%. This is an important indication of the

efficiency gain to dynamic pricing.

Of course the hotel is interested in maximizing profit, not occupancy. The right hand panel of figure 22

plots the distribution of revenues under the optimal pricing rule and the three counterfactual pricing sce-

narios. The variability in arrival rates of customers generates considerable variance in realized revenues.

However not surprisingly, expected revenues are highest under the optimal pricing rule and lower under

the other three suboptimal pricing rules. Expected revenues are lowest under experiment 1, the scenario

where the hotel does not adopt dynamic pricing. The failure to price according to an optimal dynamic

pricing rule would result in a loss of 10% in expected revenues, a significant amount. The losses are

lowest in experiment 3, i.e. the scenario where the hotel cuts its BAR 20% relative to the optimal values

starting t = 15 before arrival. Expected revenues are nearly 4% below the optimal expected value under

this scenario. However we see that there is a significant cost to “overpricing” — under experiment 2, the

20% price increase scenario, expected revenues would fall by nearly 9%.
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5 Conclusion

This paper has introduced a dynamic programming (DP) model of optimal dynamic hotel pricing. We have

shown how to infer the parameters of a stochastic model of hotel demand using the method of simulated

moments (MSM), and shown that the estimator produces reasonable, downward sloping demand curves

despite severe econometric problems such as censoring (i.e. inability to observe the total number of cus-

tomers booking rooms on any given date) and endogeneity (which results in a strong positive correlation

between hotel prices and occupancy). Thus, our structural MSM estimator enables us to make accurate

and valid inferences about demand, in a situation where traditional instrumental variables methods do not

apply. Instead, our estimation approach imposes a behavioral assumption — expected profit maximization

— which imposes strong restrictions that link the hotel’s beliefs about the stochastic process generating

demand for hotel rooms to the prices it sets which we can observe. In essence, our structural estimation

method can be viewed as a method of inverting observed pricing decisions to uncover the “revealed be-

liefs” of the hotel about the rate of arrival of customers wishing to book rooms and their preferences for

the competing hotels in this market.

We estimated the model using reservation data from an actual hotel in major US city and showed it

provides a remarkably good approximation to the hotel’s actual pricing behavior. In particular, our model

provides considerable insight into the apparent “price following” and “price undercutting” strategy that

hotel 0 uses. The strong co-movement of prices of the seven hotels in this local market has the superficial

appearance of tacit collusion that could be sustained by commercial price shopping services that inform

the hotels of each others’ prices in real time, combined with the hotels’ use of revenue management

systems (RMS) that provide “recommended prices.” However our analysis leads us to a much more

benign conclusion. We find that hotel 0’s price setting behavior is competitive and is well approximated

as a best response to the dynamic pricing of its competitors. The strong co-movement in prices in this

market is entirely consistent Bertrand price competition among all of the hotels, which are subject to

aggregate demand shocks that cause their occupancy rates and prices to move together. We showed that

when a hotel expects to sell out, it is optimal for it to increase its price to ration scarce capacity. This can

lead a hotel to increase its price far above the price of its competitors, even though under more typical

scenarios where the hotel is far from selling out, it is optimal for the hotel to price below its competitors in

a manner that closely approximates the “price following” behavior that we showed provides a very good

approximation to the way hotel 0 actually sets its prices.

Though there may be legitimate concern about the possibility that machine learning algorithms could

learn to collude via repeated interactions in real world markets as suggested by Harrington (2017) and
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Ezrachi and Stucke (2016), these concerns seem a long way off for the particular hotel market we studied.

Our own DP model can itself be regarded as a prototype RMS, and our MSM estimation method can

be regarded as a type of machine learning. However any model or algorithm can only be as good as

the information it is based on. The key information for an effective RMS is having an accurate model

on customer demand. It seems quite doubtful to us that machine learning algorithms would be capable

of learning about the nature of customer demand on their own in a vacuum, much less learn how to

collude especially if different hotels are using different RMSs. Instead, we think the more interesting

and relevant question is: how do commercial RMSs learn about customer demand given that they are

serving so many thousands of distinct hotel markets simultaneously? How do these systems solve the

highly challenging econometric problems we encountered that prevented us from using traditional demand

estimation methods (such as instrumental variables) for estimating consumer demand in these markets?

We have been able to solve these problems, but only because we have both highly detailed data and

the ability to observe the actual hotel pricing decisions set by the hotel’s existing RMS (as occasionally

overridden by the human revenue manager) which we have used to “train” our RMS. The downside is that

in doing this, we needed to assume that the hotel’s RMS sets prices optimally. But if this is truly the case,

then the hotel has no need for our RMS! We are currently investigating whether it is possible to relax the

assumption of expected profit maximization. We hope to demonstrate that it is possible to infer customer

demand even if the hotel is not setting optimal prices. This estimator relies on non-parametric estimation

of the hotel’s price-setting rule which would then be used in a semi-parametric two-step version of our

MSM estimator, where we use the non-parametrically estimated pricing rule in place of the optimal pricing

rule from the solution to the firm’s DP problem. If it is possible to infer demand via this approach, we can

use the price setting behavior of humans or by machines (e.g. RMS) to learn about demand without relying

on the assumption that either is behaving optimally. Given good estimates of consumer demand, we can

then employ our DP algorithm to provide optimal pricing and use field experiments to demonstrate and

validate (via scientific methods rather than marketing hype) that such an approach can help firms improve

their profitability, and thus outperform existing commercial RMS, as complemented by the oversight of

expert human revenue managers. But for the foreseeable future our advice to hotel 0 is: keep your RMS

and your human revenue manager. They appear to work very well together and are probably worth every

penny it pays for them.
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6 Appendix

6.1 Appendix 1: Estimated parameters and standard errors

Table 10: Estimates of ZINB Parameters (γ,φ,µ), Weekdays

Parameter
Polynomial
Coefficient

Lowest
Demand
(0-25%)

Medium-Low
Demand
(25-50%)

Medium-high
Demand
(50-75%)

Highest
Demand

(75-100%)

Weekday

µt ,
Negative
Binomial
(Leisure)

t3 -2.6E-5 (1.5E-5) 1.3E-5 (7E-6) -6E-5 (2.9E-5) -2.5E-5 (5.4E-6)
t2 0.002 (0.002) 0.001 (0.001) 0.002 (0.001) 0.002 (0.001)
t -0.111 (0.050) -0.110 (0.033) -0.093 (0.031) -0.088 (0.033)
1 3.677 (2.931) 3.639 (1.269) 3.397 (0.563) 3.372 (0.579)

φt ,
Negative
Binomial
(Leisure)

t3 -2.8E-5 (2.5E-5) -4.4E-5 (3.3E-5) -3.4E-5 (1.5E-4) -2.6E-5 (2.2E-5)
t2 0.001 (5.5E-5) 0.002 (0.001) 0.003 (0.002) 0.002 (0.001)
t -0.060 (0.099) -0.108 (0.025) -0.013 (0.014) -0.038 (0.019)
1 0.548 (1.181) 0.291 (0.204) 0.420 (0.540) -0.093 (0.081)

µt ,
Negative
Binomial
(Business)

t3 3.9E-5 (4.8E-6) 2.6E-5 (3.3E-5) 7.7E-6 (1.3E-6) 1.82E-5 (1.6E-5)
t2 -0.003 (0.001) -0.002 (0.001) -0.002 (3E-4) -0.003 (0.003)
t 0.048 (0.015) 0.029 (0.022) 0.034 (0.004) 0.036 (0.063)
1 0.933 (1.310) 2.749 (0.554) 2.246 (0.639) 3.003 (2.184)

φt ,
Negative
Binomial
(Business)

t3 3.7E-5 (7.5E-6) 5.8E-6 (1.4E-5) 2.2E-5 (5.8E-6) -2.7E-5 (6.6E-6)
t2 -0.003 (0.001) -8.4E-4 (2.2E-4) -1.8E-3 (4.3E-4) 1.2E-3 (4.6E-4)
t 0.012 (0.012) -0.008 (0.010) 0.009 (0.001) -0.022 (0.011)
1 -1.096 (1.630) -0.677 (0.541) -0.378 (0.049) -0.648 (0.338)

γt ,
Zero

Inflation
(Leisure)

t3 1.4E-18 (5.5E-18) 9.8E-19 (2.1E-18) 3.58E-18 (1.06E-17) 1.3E-18 (6.29E-18)
t2 -1.08E-16 (2.2E-16) -2.11E-17 (7.41E-17) -1.49E-17 (2.59E-17) -4.32E-17 (1.41E-16)
t 1.32E-15 (6.4E-15) 8.97E-16 (2.33E-15) 8.97E-16 (9.50E-16) 7.42E-16 (7.75E-16)
1 18.796 (55.835) 26.195 (79.966) 32.996 (76.012) 19.045 (22.840)

γt ,
Zero

Inflation
(Business)

t3 1.11E-18 (2.2E-18) 1.19E-18 (1.28E-18) 1.55E-18 (4.09E-18) 7.56E-19 (3.48E-18)
t2 -8.03E-17 (8.17E-17) -4.67E-17 (1.79E-16) -6.71E-17 (1.23E-16) -4.75E-17 (1.83E-16)
t 2.5E-15 (5.81E-15) 1.07E-15 (3.57E-15) 7.72E-16 (1.75E-15) 7.13E-16 (1.99E-15)
1 21.427 (126.721) 25.461 (33.661) 15.283 (30.505) 20.292 (13.631)

Note : t denotes number of days before occupancy. Standard errors in parentheses.

6.2 Appendix 2: Proof of Theorems

6.2.1 Review of Model Setup

We use ” ∼ ” sign to indicate random variable. There are S segments in total, indexed by s, s ∈ S =
{1,2, ...,S}. t days before arrival, state variables are (nt , p̄t ,ρt). A total of k̃st customers of segment s
enter the market. k̃st’s are exogenous and independent processes across s and t, k̃st ∼ fst(k). Observing
spot BAR prices (pt ,ρt) and relevant discount rate δs, customers decide which hotel to stay and send out
their reservation requests. The number of reservation requests received by Hotel 0 from segment s is ñd

st .
It follows a distribution which is a mix of fst(k) and binomial distribution,

ñd
st ∼ lst(n|pt ,ρt) (21)
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Table 11: Estimates of ZINB Parameters(γ,φ,µ), Weekends

Parameter
Polynomial
Coefficient

Lowest
Demand
(0-25%)

Medium-Low
Demand
(25-50%)

Medium-high
Demand
(50-75%)

Highest
Demand

(75-100%)

Weekend

µt ,
Negative
Binomial
(Leisure)

t3 -3.15E-5 (1.56E-5) -2.13E-5 (1.71E-5) -2.39E-5(3.35E-5) -4.34E-5(3.5E-4)
t2 2.5E-3 (2.7E-4) 0.002 (5.3E-4) 0.002 (0.003) 2.2E-3 (3.6E-3)
t -0.090 (0.022) -0.107 (0.044) -0.110 (0.098) -0.146 (0.479)
1 3.144 (0.547) 4.094 (0.926) 2.364 (2.501) 3.832 (6.629)

φt ,
Negative
Binomial
(Leisure)

t3 1.02E-5 (7.6E-6) -3.41E-7 (1.26E-6) -2.99E-5 (5.83E-5) 2.39E-5(2.59E-4)
t2 -4.4E-4 (2.9E-4) 3.63E-4 (1.83E-4) 2.8E-3 (3.1E-3) -1.7E-3 (7.5E-3)
t -0.032 (0.029) -0.010 (0.022) -0.108 (0.086) 0.006 (0.020)
1 0.686 (0.352) 0.098 (0.119) 0.733 (1.374) 0.191 (0.937)

µt ,
Negative
Binomial
(Business)

t3 2.65E-5 (1.3E-5) 3.81E-5 (7.61E-6) 2.79E-5 (3.59E-5) 8.74E-6 (6.68E-5)
t2 -0.002 (3.4E-4) -0.003 (0.001) -0.002 (0.003) -1.2E-3 (0.010)
t 0.022 (0.003) 0.071 (0.003) 0.046 (0.020) 0.010 (0.190)
1 2.021 (0.830) 1.561 (0.484) 2.313 (3.803) 1.661 (9.124)

φt ,
Negative
Binomial
(Business)

t3 2.19E-5 (9.23E-6) 2.22E-5(6.02E-6) -1.74E-6 (4.22E-6) -6.24E-6 (7.78E-5)
t2 -1.3E-3 (3.8E-4) -1.4E-3 (1.1E-4) 2E-4 (4E-4) 2.8E-4 (1.8E-3)
t -0.009 (0.003) -0.008 (0.004) -0.037 (0.038) -0.026 (0.116)
1 -1.487 (0.408) -0.871 (0.460) -1.002 (2.426) -0.744 (3.426)

γt ,
Zero

Inflation
(Leisure)

t3 7.07E-19 (1.13E-18) 6.91E-19 (2.66E-18) 9.11E-19 (6.61E-18) 8.16E-19 (1.53E-17)
t2 -4.16E-17 (1.54E-16) -4.33E-17 (6.37E-17) -1.79E-17 (1.12E-16) -5.11E-17 (8.56E-15)
t 1.15E-15 (3.92E-15) 1.03E-15 (1.49E-15) 9.74E-16 (1.16E-15) 7.84E-16 (1.74E-13)
1 19.701 (25.148) 28.028 (57.937) 17.821 (101.211) 21.158 (153.839)

γt ,
Zero

Inflation
(Business)

t3 8.90E-19 (2.17E-18) 1.2E-18 (3.3E-18) 6.97E-19 (2.41E-18) 8.04E-19 (1.36E-16)
t2 -5.35E-17 (1.20E-16) -5.20E-17 (1.21E-16) -3.35E-17 (8.07E-17) -5.71E-17 (1.26E-14)
t 7.52E-16 (8.58E-16) 9.18E-16 (6.99E-16) 7.5E-16 (1.99E-15) 7.96E-16 (7.71E-14)
1 23.215 (89.462) 16.588 (26.847) 26.186 (44.460) 21.073 (403.918)

Note : t denotes number of days before occupancy. Standard errors in parentheses.

(pt ,ρt) enter into (21) since they governs the underlying binomial distribution. δs is omitted here since it
is not a choice variable or a state variable, but is predetermined. 15

The number of requests approved by the manager, in another word, the number of new reservations is
ñst . We use a deterministic mapping η(.) to capture the manager’s approval procedure, i.e.

(ñ1t , ñ2t , ..., ñSt) = η(ñd
1t , ñ

d
2t , ..., ñ

d
St ,nt , c̃t) (22)

In particular, η(.) can accommodate ”no overbooking” assumption, where approvals depend on available
capacity.

Let c̃t be the number of cancellations (all segments combined) taking place in Hotel 0 (we assume it is
realized before the manager apply η(.)). It follows a binomial distribution characterized by state variable
nt and a uniform cancellation rate αt . The cancellation rate could potentially depend on (pt , p̄t ,ρt), when
customers make strategic cancellations. Thus in general,

c̃t ∼ et(c|nt , p̄t ,ρt , pt) (23)

Et(c̃t |nt , p̄t ,ρt , pt) = αt(pt , p̄t ,ρt) ·nt (24)

15We may allow for multiple unobserved types within segment. Unobserved types differ in price elasticity. So the static
choice probability in binomial distribution is the average across types weighted by type fractions. As long as type fractions are
exogenous, process of ñd

st only depends on (pt ,ρt).
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Table 12: Estimates of Other Parameters, Weekdays

Parameter
Polynomial
Coefficient

Lowest
Demand
(0-25%)

Medium-Low
Demand
(25-50%)

Medium-high
Demand
(50-75%)

Highest
Demand

(75-100%)

Weekday

γt ,
Zero

Inflation
(Group)

t3 -6.36E-5 (5.52E-5) -1.15E-4 (5.56E-5) -1.1E-4 (2.51E-4) -9.37E-5 (4.07E-5)
t2 3.06E-3 (2.41E-3) 0.006 (0.002) 0.008 (0.003) 1.15E-2 (1.06E-2)
t -0.019 (0.010) -0.054 (0.018) -0.027 (0.037) -0.048 (0.054)
1 -0.971 (0.960) 0.402 (0.401) 0.636 (0.333) -0.714 (0.632)

Mean Arrivals
(if arrival >0 )

(Group)

t3 -8.57E-5 (2.35E-5) 4.71E-6 (6.86E-6) -2.03E-5 (5.53E-5) 2.91E-5 (2.04E-5)
t2 2.82E-3 (3.18E-4) -3.60E-3 (9.7E-4) -5.04E-4 (1.42E-3) -5.78E-3 (1.27E-3)
t 0.058 (0.037) 0.151 (0.042) 0.076 (0.004) 0.201 (0.067)
1 0.457 (2.140) 0.304 (1.511) 0.792 (0.166) 0.423 (0.513)

Probability of
cancel >0

t3 2.41E-5 (2.09E-5) 3.83E-5 (4.68E-6) 4.67E-5 (1.4E-5) 8.98E-5 (2.54E-5)
t2 -0.003 (0.001) -3.57E-3 (8.44E-4) -4.02E-3 (0.92E-3) -7.19E-3 (2.13E-3)
t 0.147 (0.031) 0.157 (0.019) 0.175 (0.021) 0.240 (0.055)
1 -1.028 (0.073) -1.472 (0.153) -1.989 (0.201) -2.522 (0.418)

Cancellation Rate
(if cancel>0)

t3 3.83E-5 (1.47E-5) 1.65E-5 (6.07E-6) -2.08E-5 (3.96E-6) 1.92E-5 (5.25E-6)
t2 -0.003 (0.001) -1.47E-3 (1.48E-4) 4.11E-4 (1.41E-4) -2.15E-3 (6.79E-4)
t 0.060 (0.025) 0.061 (0.012) 0.025 (0.011) 0.047 (0.024)
1 3.884 (3.923) 3.206 (1.025) 3.432 (1.042) 4.043 (0.729)

Note : t denotes number of days before occupancy. Standard errors in parentheses.

Combining (21), (22) and (23), we have joint distribution Lt

(ñ1t , ñ2t , ..., ñSt)∼ Lt(n1,n2, ...,nS|nt , p̄t ,ρt , pt) (25)

Variable dependency is important for later discussion. Note that (ñd
1t , ..., ñ

d
2t) doesn’t depend on (nt , p̄t)

according to (21). The intuition is that new requests are static decisions by randomly arriving new cus-
tomers wishing to book a room, and make their choices based on the curent prices but not historical prices
nor how many rooms are already occupied. However, the distribution of (ñ1t , ..., ñ2t), Lt , does depend
on (nt , p̄t). This is because residual capacity, N̄ + c̃t −nt , matters when the realization of (ñd

1t , ..., ñ
d
2t) is

high and capacity constraint is binding. This binding case has positive probability, since ñd
st has negative

binomial component and its outcomes are not bounded. So with positive probability, c̃t and nt kick in.
Consequently, p̄t enters into Lt through (and only through) the cancellation channel as in (23). The law of
motion for nt and p̄t is

nt−1 = nt − ct +∑
s

nst ≡ n′(nt ,ct ,n1t , ...,nSt) (26)

p̄t−1 =
(nt − ct)p̄t + pt ∑s δsnst

nt−1
≡ λ(nt , p̄t , pt ,ct ,n1t , ...,nSt) (27)

Next period revenue-on-the-book and profit-on-the-book

nt−1 p̄t−1 = (nt − ct)p̄t + pt ∑
s

δsnst (28)

nt−1(p̄t−1−ω) = (nt − ct)(p̄t −ω)+∑
s
(δs pt −ω)nst (29)

With all notations above, the Bellman equation is
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Table 13: Estimates of Other Parameters, Weekends

Parameter
Polynomial
Coefficient

Lowest
Demand
(0-25%)

Medium-Low
Demand
(25-50%)

Medium-high
Demand
(50-75%)

Highest
Demand

(75-100%)

Weekend

γt ,
Zero

Inflation
(Group)

t3 -9.29E-5 (5.5E-5) -1.31E-4 (4.16E-5) 1.12E-4 (5.87E-5) -1.06E-4 (1.98E-4)
t2 5.28E-3 (2.74E-3) 0.007 (0.001) 0.007 (0.004) 0.008 (0.002)
t -0.069 (0.032) -0.057 (0.063) -0.080 (0.070) -0.106 (0.172)
1 0.158 (0.296) -0.661 (1.238) -0.281 (0.261) -0.991 (3.938)

Mean Arrivals
(if arrival >0 )

(Group)

t3 -8.34E-5 (4.98E-5) -5.22E-5 (1.42E-5) -1.79E-5 (1.59E-5) 3.87E-5 (3.89E-5)
t2 3.09E-3 (1.87E-3) 8.92E-4 (1.34E-4) -0.75E-3 (1.21E-3) -0.006 (0.010)
t 4.12E-3 (5.11E-3) 0.058 (0.065) 0.099 (0.028) 0.228 (0.427)
1 0.707 (3.132) 0.549 (0.427) 0.444 (0.428) 0.035 (0.031)

Probability of
cancel >0

t3 8.78E-5 (1.49E-5) 4.16E-5 (1.89E-5) 6.58E-5 (1.43E-4) 7.96E-5 (1.71E-4)
t2 -7.42E-3 (1.27E-3) -5.46E-3 (0.9E-3) -6.62E-3 (0.011) -0.008 (0.012)
t 0.227 (0.018) 0.239 (0.016) 0.253 (0.243) 0.276 (0.204)
1 -1.322 (0.116) -2.162 (0.103) -2.465 (1.506) -2.757 (1.293)

Cancellation Rate
(if cancel >0 )

t3 2.48E-5 (2.03E-5) 1.79E-5 (9.17E-6) 1.1E-5 (1.8E-5) 3.44E-5 (2.04E-4)
t2 -2.78E-3 (0.77E-3) -1.69E-3 (0.69E-3) -0.003 (0.006) -0.003 (0.014)
t 0.060 (0.008) 0.050 (0.011) 0.065 (0.045) 0.077 (0.768)
1 4.397 (0.299) 3.840 (1.125) 4.674 (4.595) 4.548 (2.403)

Note : t denotes number of days before occupancy. Standard errors in parentheses.

Vt(n, p̄,ρ) =max
p

{∫
ρ′

∫
n1

...
∫
nS

∫
c

[
Vt−1(n′, p̄′,ρ′)·

et(c|n, p̄,ρ, p) ·Lt(n1, ...,nS|n, p̄,ρ, p) ·ht(ρ
′|ρ)
]}

≡max
p

{
Et

[
Vt−1(n′, p̄′,ρ′)

∣∣∣∣n, p̄,ρ, p
]}

,

∀ 0≤ t ≤ T

(30)

At t =−1,

V−1(n, p̄,ρ) = (p̄−ω) ·n (31)

6.2.2 Theorem and Proof

Theorem 1. For each t ∈ {0, . . . ,T} the value function Vt has the representation

Vt(n, p,ρ) =V f
t (n, p,ρ)+V b

t (n, p,ρ) (32)

where V f
t is the “forward looking component” that equals the expected profits from rooms that are not yet

booked, whereas V b
t is the “backward looking component” that equals expected profits from rooms that

are already booked.
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Proof. We will first prove by induction that Vt has the additive decomposition. Then we will show
the components V f

t and V b
t have the desired interpretation. Before the main argument, let’s denote

It ≡ {nt , p̄t ,ρt , pt}, I∗t ≡ {nt , p̄t ,ρt , p∗t (nt , p̄t ,ρt)}. It gathers all the information on the morning of day
t after the manager sets arbitrary BAR price pt , but before any random process (e.g. reservation requests,
cancellations, etc) realizes. I∗t is a similar information set, except for that the manager sets the optimal
price p∗t with respect to the state (nt , p̄t ,ρt). We will drop the time subscript wherever the context is clear.

Step 1: Prove the theorem holds for t = 0.
At t = 0,

E0

[
V−1(n′, p̄′,ρ′)

∣∣∣∣n, p̄,ρ, p
]

=E0

[
(n− c · (p̄−ω)

∣∣∣∣ I0

]
+E0

[
∑

s
(δs p−ω) ·ns

∣∣∣∣ I0

]
=(p̄−ω) ·n ·E0

[
1− c/n

∣∣∣∣ I0

]
+E0

[
∑

s
(δs p−ω) ·ns

∣∣∣∣ I0

]
=(p̄−ω) ·n · [1−α0(p, p̄,ρ)]+E0

[
∑

s
(δs p−ω) ·ns

∣∣∣∣ I0

]
The first equality is due to (29). The last equality is due to (24). Define

EV b
0 (n, p̄,ρ, p)≡ (p̄−ω) ·n · [1−α0(p, p̄,ρ)] (33)

EV f
0 (n, p̄,ρ, p)≡ E0

[
∑

s
(δs p−ω) ·ns

∣∣∣∣ I0

]
(34)

Thus,

E0

[
V−1(n′, p̄′,ρ′)

∣∣∣∣n, p̄,ρ, p
]
= EV b

0 (n, p̄,ρ, p)+EV f
0 (n, p̄,ρ, p) (35)

(33) is the expected ”backward-looking” value. It is the product of existing reservations n, their average
profit margin (p̄−ω), and the expected fraction (1−α0) of them that will stay until next period (i.e.
will show up and check in). Its dependency on (n, p̄,ρ, p) is obvious. (34) is the expected ”forward-
looking” value. It is the expected product of new reservations ns and profit margins of new reservations
(δs p−ω). The dependency of EV f

0 on (n, p̄,ρ, p) is due to (25), (26), (23). It is worth restating that p̄
enters into EV f

0 in a non-trivial way, through (and only through) cancellation channel (specifically, the
p̄-dependent cancellation rate αt) embedded in the η(.) mapping. In another word, it is the capacity
constraint mechanism that entangles future reservations, which stem from ”non-backward-looking” static
consumer choices, with p̄ — the information of past reservations. We will explore this finding further in
theorem 2 and 3. According to (30) and (35),

V0(n, p̄,ρ) = max
p

{
E0

[
V−1(n′, p̄′,ρ′)

∣∣∣∣n, p̄,ρ, p
]}

= max
p

{
EV b

0 (n, p̄,ρ, p)+EV f
0 (n, p̄,ρ, p)

}
It is obvious that optimal policy p∗0 depends on (n, p̄,ρ)

p∗0(n, p̄,ρ) = argmax
p

{
EV b

0 (n, p̄,ρ, p)+EV f
0 (n, p̄,ρ, p)

}
(36)
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Define

V b
0 (n, p̄,ρ)≡ EV b

0 ( n , p̄ , ρ , p∗0(n, p̄,ρ) )

= n · (p̄−ω) · [ 1−α0(p∗0, p̄,ρ) ]

= n · (p̄−ω) ·A0(n, p̄,ρ, p∗0)

where A0(n, p̄,ρ, p∗0)≡ 1−α0(p∗0, p̄,ρ)

(37)

V f
0 (n, p̄,ρ)≡ EV f

0 ( n , p̄ , ρ , p∗0(n, p̄,ρ) )

= E0

[
∑

s
[ δs · p∗0(n, p̄,ρ)−ω ] ·ns

∣∣∣∣ I∗0

]
(38)

As a result,

V0(n, p̄,ρ) =V b
0 (n, p̄,ρ)+V f

0 (n, p̄,ρ) (39)

Therefore, theorem holds for t = 0.

Step 2: Suppose for t−1,

Vt−1(n, p̄,ρ) =V b
t−1(n, p̄,ρ)+V f

t−1(n, p̄,ρ)

where V b
t−1(n, p̄,ρ) = n · (p̄−ω) ·At−1(n, p̄,ρ, p∗t−1)

(40)

we want to prove similar result holds for t, i.e.

Vt(n, p̄,ρ) =V b
t (n, p̄,ρ)+V f

t (n, p̄,ρ)

where V b
t (n, p̄,ρ) = n · (p̄−ω) ·At(n, p̄,ρ, p∗t )

(41)

We now prove (41). Denote A∗t ≡ At(nt , p̄t ,ρt , p∗t )

Et

[
Vt−1(n′, p̄′,ρ′)

∣∣∣∣ n, p̄,ρ, p
]

= Et

[
V b

t−1(n
′, p̄′,ρ′)+V f

t−1(n
′, p̄′,ρ′)

∣∣∣∣ It

]
= Et

[
n′ · (p̄′−ω) ·A∗t−1 +V f

t−1(n
′, p̄′,ρ′)

∣∣∣∣ It

]
= Et

[
A∗t−1 · (n− c) · (p̄−ω)

∣∣∣∣ It

]
+

Et

[
A∗t−1 ·∑

s
(p ·δs−ω) ·ns +V f

t−1(n
′, p̄′,ρ′)

∣∣∣∣ It

]
= n · (p̄−ω) ·Et

[
A∗t−1 · (1− c/n)

∣∣∣∣ It

]
+

Et

[
A∗t−1 ·∑

s
(p ·δs−ω) ·ns +V f

t−1(n
′, p̄′,ρ′)

∣∣∣∣ It

]
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Define

At(n, p̄,ρ, p)≡ Et

[
A∗t−1 · (1− c/n)

∣∣∣∣ It

]
(42)

EV b
t (n, p̄,ρ, p)≡ n · (p̄−ω) ·At(n, p̄,ρ, p) (43)

EV f
t (n, p̄,ρ, p)≡ Et

[
A∗t−1 ·∑

s
(p ·δs−ω) ·ns +V f

t−1(n
′, p̄′,ρ′)

∣∣∣∣ It

]
(44)

Similar to t = 0 case, we have

Vt(n, p̄,ρ) = max
p

{
Et

[
Vt−1(n′, p̄′,ρ′)

∣∣∣∣n, p̄,ρ, p
]}

= max
p

{
EV b

t (n, p̄,ρ, p)+EV f
t (n, p̄,ρ, p)

}

Likewise, optimal policy p∗t depends on (n, p̄,ρ)

p∗t (n, p̄,ρ) = argmax
p

{
EV b

t (n, p̄,ρ, p)+EV f
t (n, p̄,ρ, p)

}
(45)

Define

V b
t (n, p̄,ρ)≡ EV b

t (n, p̄,ρ, p∗t (n, p̄,ρ))

= n · (p̄−ω) ·At(n, p̄,ρ, p∗t )
(46)

V f
t (n, p̄,ρ)≡ EV f

t (n, p̄,ρ, p∗t (n, p̄,ρ)). (47)

As a result,

Vt(n, p̄,ρ) =V b
t (n, p̄,ρ)+V f

t (n, p̄,ρ)

where V b
t (n, p̄,ρ) = n · (p̄−ω) ·At(n, p̄,ρ, p∗t )

(48)

Therefore, (41) is proved.

Combining results from step 1 and step 2, we have proved by induction that the additive decomposition
holds, i.e.

Vt(n, p,ρ) =V f
t (n, p,ρ)+V b

t (n, p,ρ) ,0≤ t ≤ T (49)

, with recursive relation
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V b
t (n, p̄,ρ) = n · (p̄−ω) ·A∗t (50)

V f
t (n, p̄,ρ) = Et

[
A∗t−1 ·∑

s
(p∗t ·δs−ω) ·ns +V f

t−1(n
′, p̄′,ρ′)

∣∣∣∣ I∗t

]
(51)

At(n, p̄,ρ, p) = Et

[
A∗t−1 · (1− c/n)

∣∣∣∣ It

]
(52)

A∗t = At(n, p̄,ρ, p∗t ) = Et

[
A∗t−1 · (1− c/n)

∣∣∣∣ I∗t

]
(53)

V f
0 (n,ρ) = E0

[
∑

s
(p∗0 ·δs−ω) ·ns

∣∣∣∣ I∗0

]
(54)

A∗−1 = 1 (55)

Next, we will explain why V f
t and V b

t can be interpreted as claimed in the theorem.
With above recursion, A∗t can be written as,

A∗t = Et

[
(1− ct

nt
) ·Et−1

[
(1− ct−1

nt−1
) ·Et−2

[
(1− ct−2

nt−2
) · · · ·

∣∣ I∗t−2
] ∣∣∣∣ I∗t−1

] ∣∣∣∣∣ I∗t

]
(56)

Note that Et [1− ct/nt |I∗t ] measures the ”expected” probability at the beginning of day t that an existing
reservation will not be canceled on day t, given optimal BAR p∗t . Applying this interpretation recursively,
A∗t measures the ”expected” t-day-ahead probability that an existing reservation will not be canceled there-
after, if the manager follows optimal policies {p∗t , p∗t−1, ..., p∗0}. In another word, A∗t is the t-day-ahead
survival rate of existing reservations along optimal policy path. V b

t is the product of existing reserva-
tions n, their average profit margin (p̄−ω) and the corresponding survival rate A∗t . Obviously, V b

t is the
expected profit from existing reservations — a ”backward-looking” component.

To see why V f
t is ”forward-looking”, denote A∗t−1 · [∑s(p∗t ·δs−ω) ·nst ] as π∗t . π∗t is the (t−1)-day-

ahead expected profit from a particular realization of new reservations ns made on day t, given optimal
price path thereafter. It is a product of three factors: number of new reservations nst , profit margin of new
reservations (p∗t ·δs−ω) , and survival rate A∗t−1. 16 Apply (51) recursively. We have,

V f
t (nt , p̄t ,ρt) = Et

[
π
∗
t +Et−1

[
π
∗
t−1 +Et−2[π

∗
t−2 + ... |I∗t−2]

∣∣∣∣I∗t−1

]∣∣∣∣∣I∗t
]

(57)

V f
t is evidently the expected profit from all future reservations (made on day t, day t−1, ..., day 0), thus

the ”forward-looking” value at the beginning of day t.

Assumption 2 (Exogenous cancellations) The conditional probability distributions for the number of
cancellations, ct , by existing customers does not depend on the hotel 0’s BAR p or ADR p.

16Cancellation process (23) or (58) implicitly assumes that cancellation happens with existing reservations, but not with new
reservations. New reservation never gets canceled on the same day it is made. So the relevant survival rate for day t reservation
is A∗t−1.
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Theorem 2. If Assumption 1 and 2 hold, then for each t ∈ {1, . . . ,T} the forward looking component of
the value function V f

t is independent of p, i.e. it can be written as V f
t (n,ρ) and depends on (n,ρ) but not

p.

Theorem 3. If Assumptions 1 and 2 hold, then for each t ∈ {1, . . . ,T} the optimal decision rule for BAR
p∗t is independent of p, i.e. it can be written as p∗t (n,ρ) and depends on (n,ρ) but not p.

Proof of theorem 2 and theorem 3. Before the main argument, let’s revisit variable dependency given the
exogenous cancellation assumption that αt does not depend on (pt , p̄t). A direct implication is that (23)
and (24) now become

c̃t ∼ et(c|nt ,ρt) (58)

Et(c̃t |nt , p̄t ,ρt) = Et(c̃t |nt ,ρt) = αt(ρt) ·nt (59)

As discussed in model setup, p̄ enters into Lt , the distribution of (n1, ...,nS), only through the distribution
of cancellation. Now that the distribution of cancellation doesn’t depend on p̄, neither does Lt . (25)
reduces to

(ñ1t , ñ2t , ..., ñSt)∼ Lt(n1t ,n2t , ...,nSt |nt ,ρt , pt) (60)

Lt’s dependence on nt is not trivial because of the censoring procedure η(.). Next day state variable nt−1
is random on the morning of day t after the manager setting pt . ñt−1 is a function of (nt , c̃t , ñ1t , ..., ñSt)
through accounting identity (26). By (60) and (58), distribution of ñt−1 only depends on (nt ,ρt , pt)

ñt−1 ∼ ζt(n′|nt ,ρt , pt) (61)

(60) and (61) are keys to the proof. Now let’s move on to the main argument. t subscript is dropped
wherever the context is clear.
Step 1: At t=0, equation (33) now has a straightforward dimension reduction as follows,

EV b
0 (n, p̄,ρ, p)≡ [1−α0(ρ)]n(p̄−ω)≡ EV b

0 (n,ρ, p̄) (62)

Equation (34) has dimension reduction as follows,

EV f
0 (n, p̄,ρ, p)≡∑

s
(δs p−ω)E0

[
ns

∣∣∣∣n, p̄,ρ, p
]
= E0

[
∑

s
(δs p−ω)ns

∣∣∣∣n,ρ, p
]
.≡ EV f

0 (n,ρ, p) (63)

where the second equality follows from (60). Thus, the Bellman equation becomes,

V0(n, p̄,ρ) = max
p

{
E0

[
V−1(n′, p̄′,ρ′)

∣∣∣∣n, p̄,ρ, p
]}

= max
p

{
EV b

0 (n, p̄,ρ)+EV f
0 (n,ρ, p)

}

= EV b
0 (n, p̄,ρ)+max

p

{
EV f

0 (n,ρ, p)

}

By the decomposition above, it should be obvious p∗0 depends on (n,ρ) but not p̄. We have p∗0(n,ρ). Thus
Theorem 3 holds for t = 0. Furthermore, equations(37) and equation (38) can be written as,
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V b
0 (n, p̄,ρ) = A0(ρ) ·n · (p̄−ω)

where A0(ρ)≡ 1−α0(ρ)
(64)

V f
0 (n, p̄,ρ) = EV f

0 ( n , ρ , p∗0(n,ρ) )

= E0

[
∑

s
( δs · p∗0(n,ρ) − ω ) ·ns

∣∣∣∣n,ρ, p∗0(n,ρ)
]

≡V f
0 (n,ρ)

(65)

Thus Theorem 2 holds for t = 0 and the decomposition of the value function is given by

V0(n, p̄,ρ) =V b
0 (n, p̄,ρ)+V f

0 (n,ρ)

= A0(ρ) ·n · (p̄−ω)+V f
0 (n,ρ)

(66)

Step 2: (induction step) Suppose for t−1, Vt−1(n, p̄,ρ) has following representation,

Vt−1(n, p̄,ρ) = At−1(ρ) ·n · (p̄−ω)+V f
t−1(n,ρ) (67)

We can prove that for t, policy function p∗t only depends on (n,ρ) and Vt(n, p̄,ρ) has similar representation,

Vt(n, p̄,ρ) = At(ρ) ·n · (p̄−ω)+V f
t (n,ρ) (68)

Combining this result with step 1, theorem 2 and theorem 3 can be proved by induction. Following is how
to prove (68):

Et

[
Vt−1(n′, p̄′,ρ′)

∣∣∣∣ n, p̄,ρ, p
]

= Et

[
At−1(ρ

′) ·n′ · (p̄′−ω)+V f
t−1(n

′,ρ′)

∣∣∣∣ n, p̄,ρ, p
]

= Et

[
At−1(ρ

′) · (n− c) · (p̄−ω)

∣∣∣∣ n, p̄,ρ, p
]
+

Et

[
At−1(ρ

′) ·∑
s
(p ·δs−ω)ns +V f

t−1(n
′,ρ′)

∣∣∣∣ n, p̄,ρ, p
]

The second term is expected ”forward-looking” value EV f
t . The expectation is over random variables

(n′,ρ′,n1,n2, ...,nS), distributions of which collectively depend on (n,ρ, p) due to (60), (58) and (61). So
the ”forward-looking” part does not depend on p̄. We have

Et

[
At−1(ρ

′) ·∑
s
(p ·δs−ω)ns +V f

t−1(n
′,ρ′)

∣∣∣∣ n, p̄,ρ, p
]

= Et

[
At−1(ρ

′) ·∑
s
(p ·δs−ω)ns +V f

t−1(n
′,ρ′)

∣∣∣∣ n,ρ, p
]

≡ EV f
t ( n , ρ , p )

(69)
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The first term is expected ”backward-looking” value EV b
t , which can be further simplified to illustrate its

independence from p,

Et

[
At−1(ρ

′) · (n− c) · (p̄−ω)

∣∣∣∣ n, p̄,ρ, p
]

= (p̄−ω) ·
{

n ·Et

[
At−1(ρ

′)

∣∣∣∣ n, p̄,ρ, p
]
− Et

[
At−1(ρ

′) · c
∣∣∣∣ n, p̄,ρ, p

]}
= (p̄−ω) ·

{
n ·Et

[
At−1(ρ

′)

∣∣∣∣ ρ

]
− Et

[
At−1(ρ

′) · c
∣∣∣∣ n,ρ

]}
= (p̄−ω) ·

{
n ·Et

[
At−1(ρ

′)

∣∣∣∣ ρ

]
− n ·αt(ρ) ·Et

[
At−1(ρ

′)

∣∣∣∣ ρ

]}
= n · (p̄−ω) ·

{
Et

[
At−1(ρ

′)

∣∣∣∣ ρ

]
· [1−αt(ρ)]

}
= n · (p̄−ω) ·At(ρ)

≡ EV b
t (n, p̄,ρ),where

At(ρ) = Et

[
At−1(ρ

′)

∣∣∣∣ ρ

]
· [1−αt(ρ)]

(70)

The second equality is due to the fact that distribution of ρ′ only depends on ρ and distribution of c only
depends on (n,ρ). The third equality uses the Law of Iterated Expectations,

Et

[
At−1(ρ

′) · c
∣∣∣∣ n,ρ

]
=Et

[
Et [ At−1(ρ

′) · c | n,ρ,ρ′ ]
∣∣∣∣ n,ρ

]
=Et

[
At−1(ρ

′) ·Et [c|n,ρ,ρ′]
∣∣∣∣ n,ρ

]
=Et

[
At−1(ρ

′) ·Et [c|n,ρ]
∣∣∣∣ n,ρ

]
=Et

[
At−1(ρ

′) · [ n ·αt(ρ) ]

∣∣∣∣ n,ρ
]

=n ·αt(ρ) ·Et

[
At−1(ρ

′)

∣∣∣∣ n,ρ
]

=n ·αt(ρ) ·Et

[
At−1(ρ

′)

∣∣∣∣ ρ

]
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Now the Bellman equation is

Vt(n, p̄,ρ) = max
p

{
Et

[
Vt−1(n′, p̄′,ρ′)

∣∣∣∣n, p̄,ρ, p
]}

= max
p

{
EV b

t (n, p̄,ρ)+EV f
t (n,ρ, p)

}

= EV b
t (n, p̄,ρ)+max

p

{
EV f

t (n,ρ, p)

}

p only enters EV f
t . So optimal policy p∗t only depends on (n,ρ). Thus, Vt has the additive decomposition

into forward and backward looking components as claimed,

Vt(n, p̄,ρ) = EV b
t (n, p̄,ρ)+EV f

t (n,ρ, p∗t (n,ρ))

=V b
t (n, p̄,ρ)+V f

t (n,ρ),

where V b
t and V f

t are given by

V b
t (n, p̄,ρ) = n · (p̄−ω) ·At(ρ) (71)

V f
t (n,ρ) = Et

[
At−1(ρ

′) ·
(

∑
s
[ p∗t (n,ρ) ·δs−ω ] ·ns

)
+V f

t−1(n
′,ρ′)

∣∣∣∣ n,ρ, p∗t (n,ρ)
]

(72)

At(ρ) = Et

[
At−1(ρ

′)

∣∣∣∣ ρ

]
· [1−αt(ρ)] (73)

V f
0 (n,ρ) = E0

[
∑

s
( δs · p∗0(n,ρ) − ω ) ·ns

∣∣∣∣ n,ρ, p∗0(n,ρ)
]

(74)

A−1(ρ) = 1 (75)

Therefore we have proved theorem 2 and theorem 3. Now equation (57) becomes

At(ρt) = [1−αt(ρt)] ·Et

[
[1−αt−1(ρt−1)] ·Et−1

[
[1−αt−2(ρt−2)] · ...

∣∣∣∣ρt−1

]∣∣∣∣∣ρt

]
(76)

For the special case where αt does not depend on ρt we have

V b
t (n, p̄,ρ) = V b

t (n, p̄) = n · (p̄−ω) ·At (77)

At =
t

∏
τ=0

[1−ατ].
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