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Academic researchers and antitrust agency economists almost always use models that assume that
firms set prices to maximize their profits in static and complete information (CI) environments.
If an alternative is considered, it is typically tacit collusion with repeated CI stage games, often
modeled by adding a conduct parameter term to static CI Nash first-order conditions. These
formulations are tractable and, under fairly weak assumptions, the cost and conduct parameters
are identified from price and market share data (Bresnahan (1982), Lau (1982), Nevo (1998), Berry
and Haile (2014)).
However, the CI assumption that every firm knows everything that might affect its rivals’ pricing

choices appears inconsistent with how companies conceal the profitability of individual product
lines, and with how antitrust agencies, even while using these models, presume that cost and
margin data are confidential and competitively sensitive. A natural question is therefore whether
predicted outcomes, and implications for antitrust enforcement, would change in a material way if
the CI assumption is relaxed.
In this article, we consider non-collusive models where a small number of oligopolists repeatedly

set prices, which are perfectly observable, and each firm has a privately observed, time-varying
and positively serially-correlated state variable. We will focus on the case where this state variable
is a firm’s marginal cost, but, as illustrated in our working paper, Sweeting, Tao and Yao (2022)
(STY-WP), results are similar when we allow another component of each firm’s payoff function to
be private information.
If higher marginal costs imply higher prices, and firms set higher prices and make higher profits
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when their rivals set higher prices, firms will have an incentive to raise their prices in order to signal
that they have higher current costs. We consider fully separating equilibria where each firm can
infer its rivals’ current marginal costs from the prices that they set. The simplicity of equilibrium
beliefs leads to computational tractability.1

In a two-period model with linear demand, Mailath (1989) shows that signaling will raise equi-
librium prices relative to the CI model. The novelty in our article comes from computing the size
and the policy implications of these effects.2 In games with longer time horizons, signaling can
raise prices significantly (i.e., by more than a few percentage points) and, because both merging
and non-merging firms can have stronger incentives to signal after a horizontal merger (that does
not lead to monopoly), our model can predict substantially larger post-merger price increases in
both symmetric and asymmetric industries. Importantly, the effects we identify can be large even
when the degree of private information is small, in the sense that the supports of marginal costs are
narrow. Therefore, one only needs to slightly relax the CI assumption to get substantively different
predictions.
In asymmetric industries, we find examples where signaling leads non-merging firms to raise their

prices as much or more than the merged firm. This partly motivates our empirical application where
we calibrate a stylized version of our model using data from the U.S. beer market prior to the 2008
MillerCoors (MC) joint venture (JV). Miller and Weinberg (2017b) (MW) show that MC and its
larger domestic rival Anheuser-Busch (AB), raised their prices by similar amounts after the JV.
MW use the fact that this cannot be rationalized by a static CI Nash model to identify a collusive
conduct parameter.
When we calibrate our model using pre-JV data and make plausible assumptions about likely

synergies, we find that our model predicts increases in price levels that are similar to those observed
in the data, and that our model also predicts some qualitative changes in price dynamics that are
not predicted by a simple conduct parameter model. Under some additional assumptions about
which aspect of marginal cost is private information, our model can also explain some observed
changes in the pass-through of transportation costs. While folk theorems suggest that there is
likely to be a richer collusive model that could also explain the changes in price dynamics and
pass-through, we interpret our results as showing that one does not need to assume collusion to
explain why post-merger prices increase more than CI models predict (Peters (2009), Garmon
(2017), Ashenfelter, Hosken and Weinberg (2014)).3

After a review of the related theoretical literature, Section I presents our model and equilibrium
concept. Section II presents examples and illustrates the implications for merger analysis. Section
III provides our empirical application. Section IV concludes. The online appendices detail our
computational algorithms, some additional examples (with more explored in STY-WP) and our
data. Code to replicate our results is available online (Sweeting, Tao and Yao (2023)).

Related Literature. — Mailath (1988) identifies conditions under which a separating equilibrium
will exist in an abstract two-period game with continuous types, and shows that the conditions on
payoffs required for the uniqueness of each player’s separating best response functions are similar
to the ones required in a model where one agent signals. Mailath (1989) applies these results to a

1Fershtman and Pakes (2012) and Asker et al. (2020) develop dynamic asymmetric information games with discrete actions,
and reduce the computational burden by assuming that players maintain beliefs about expected payoffs from different actions
rather than rivals’ types.

2Shapiro (1986) and Vives (2011) show how asymmetric information about costs directionally affects prices and welfare in
one-shot models, where there are no signaling incentives. For the parameters we consider, the differences between static CI
prices and static Bayesian Nash equilibrium prices are tiny.

3In a three period quantity-setting model, Mester (1992) shows that marginal cost signaling will increase output, relative to
a CI Cournot model, as firms want their rivals to produce less. Mester’s model is motivated by trying to explain outcomes in
banking where more concentration appeared to lead to more competitive behavior, a result consistent with the banking merger
retrospectives cited in Ashenfelter, Hosken and Weinberg (2014).
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two-period duopoly pricing game with linear demand, and shows that there is a unique equilibrium
where signaling increases first-period prices. We rely on Mailath’s results to characterize best
response signaling pricing functions, and use computation to extend this model to more periods,
more firms and a richer demand structure. However, we cannot claim equilibrium uniqueness.
A feature of our model is that marginal costs can evolve over time, so there is always an incentive

to signal except in the last period. Kaya (2009) and Toxvaerd (2017) consider repeated games where
one firm has a privately known state that is fixed, and it signals until its reputation is established.
Harrington (2021) and Sweeting, Leccese and Tao (2023) consider models where a merged firm has
private information on the size of a realized marginal cost synergy, and firms may pool on the prices
that would form a CI Nash equilibrium only for the smallest possible realization of the synergy.
Our article is also related to Sweeting, Roberts and Gedge (2020) (SRG). SRG develop dynamic

versions of the Milgrom and Roberts (1982) limit pricing model where an incumbent monopolist’s
cost evolves over time so that there is persistent price signaling, and they show that the model
explains why incumbent airlines lowered prices by 15% on some routes when Southwest threat-
ened entry. The differences are that the current paper considers more common oligopoly market
structures and a more broadly relevant policy application. The effects are also large for different
reasons. In SRG, an incumbent may lower its price significantly because entry by an efficient rival
will permanently and dramatically lower its profits. In the current paper, any signal only affects
outcomes one-period ahead, and it is feedbacks between the signaling strategies of different firms
that generate large equilibrium effects.

I. Model

A. Specification.

A fixed set of N risk-neutral firms simultaneously set prices in each period of a game with
t = 1, ..., T periods, where T ≤ ∞. Unless otherwise stated, the discount factor is β = 0.99. If a
firm sells multiple products, we will assume that those products are symmetric and must be sold at
a common price. There may be commonly known differences in demand and marginal costs across
firms, but exactly one dimension of a firm’s type is private information. All firms observe current
and past prices.
We will consider two different formulations of types. The first formulation (“continuous types”)

assumes firm i’s type can take any value on a known compact interval [θi, θi], whereas the second

formulation (“discrete types”) assumes i’s type is either θi or θi. The second formulation is useful
when we need to lower the computational burden.
In both cases, types evolve exogenously and independently according to a first-order Markov

process, ψi : θi,t−1 → θi,t. In this article, we will assume that types reflect marginal costs, in which
case the transition assumption, while strong, is consistent with the assumptions in Olley and Pakes
(1996) and the subsequent structural production function literature.

Within-Period Timing. — In each period t, timing is as follows. Firms enter t with their t − 1
types, which then evolve according to ψi. Each firm observes its own new type, but not the previous
or new type of rivals.4 Each firm simultaneously chooses (and commits to) its price, pi,t, with no
menu costs. Demand is static and time-invariant. i’s one period profit is πi(pi,t, p−i,t, θi,t) and we

assume that ∂πi
∂p−i,t

> 0 for all −i.

4Our fully separating equilibria would be unchanged if t− 2 types are revealed in t.
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Transition Assumptions. —

Assumption 1 Type Transitions for the Continuous Type Model. The conditional pdf
ψi(θi,t|θi,t−1)

(i) has full support, so that the type can transition from any value on the support to any other
value in a single period.

(ii) is continuous and differentiable (with appropriate one-sided derivatives at the boundaries).

(iii) for any θi,t−1 there is some θ′ such that
∂ψi(θi,t|θi,t−1)

∂θi,t−1
|θi,t=θ′ = 0 and

∂ψi(θi,t|θi,t−1)
∂θi,t−1

< 0 for all

θi,t < θ′ and
∂ψi(θi,t|θi,t−1)

∂θi,t−1
> 0 for all θi,t > θ′.

Assumption 1(iii) implies that each firm’s marginal cost is positively serially correlated in the
sense that a higher cost in period t implies a higher cost in t + 1 is more likely. In the discrete
type model we will assume there is a probability, ρ > 0.5, that each firm’s cost remains the same
in the next period. Assumption 1(i) is important because it implies that a firm will keep on having
incentives to signal its current marginal cost even in a long game.
We will consider fully separating equilibria where each firm has correct beliefs, in equilibrium,

about each rival’s previous period type. In order to avoid the inconvenience of calculating different
strategies for the first period of a game, we make the following assumption so that beliefs in t = 1
have the same structure.

Assumption 2 Initial Period Beliefs. Firms know what their rivals’ types were in a fictitious
prior period, t = 0.

B. Fully Separating Equilibrium in a Finite Horizon and Continuous Type Game.

We now describe the equilibrium for a continuous-type game with two ex-ante symmetric single-
product duopolists. We start in the last period (T ), assuming that play in T − 1 was separating so
that each player has a point belief about the T − 1 costs of other players.

Final Period (T ). — In the final period, firms use Bayesian Nash Equilibrium (BNE) strategies
that maximize their expected payoffs given their own types, their beliefs about their rival’s type

and their rival’s strategy. If firm j believes that firm i’s period T −1 type was θ̂ji,T−1 and j’s period

T pricing function is Pj,T (θj,T , θj,T−1, θ̂
j
i,T−1)

5, then a type θi,T i will set a price

(1)

p∗i,T (θi,T , θj,T−1, θ̂
j
i,T−1) = argmax

pi,T

∫ θj

θj

π(pi,T , Pj,T (θj,T , θj,T−1, θ̂
j
i,T−1), θi,T )ψ(θj,T |θj,T−1)dθj,T .

Earlier Periods (1, .., T − 1). — In earlier periods, i may choose not to set a static best response
price because its price can affect future play, via rivals’ beliefs. The equilibrium concept that we
use is symmetric Markov Perfect Bayesian Equilibrium (MPBE) (Toxvaerd (2008), Roddie (2012)).
An MPBE specifies each firm’s beliefs about costs given observed prices and period-specific pricing

5This notation reflects the fact that we are assuming that player j used an equilibrium strategy in T − 1 that revealed its
type (θj,T−1), but we are allowing for the possibility that firm i may have deviated so that j’s beliefs about i’s previous type
are incorrect.
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strategies for each firm i as a function of its current type and beliefs, where the strategy maximizes
i’s discounted future payoff given rivals’ strategies. History can matter because it affects beliefs.
In a fully separating MPBE, each firm’s pricing function allows rivals to infer the firm’s current

cost from its chosen price, and equilibrium beliefs have a simple form. For completeness, we also
need to define beliefs that a firm will have if the rival sets a price that is outside the range of the
equilibrium pricing function. As price functions are continuous, we will assume that when a firm
sets a price below (above) the lowest (highest) price in the range of the pricing function, it will be
inferred to have the lowest (highest) possible cost type.

Characterization of Separating Pricing Functions in Period t < T . — We characterize
fully separating pricing functions by defining a firm i’s period-specific “signaling payoff function”,

Πi,t(θi,t, θ̂
j
i,t, pi,t), following Mailath (1989). Πi,t is the present discounted value (PDV) of firm i’s

expected current and future payoffs when its current type is θi,t, it sets price pi,t and j believes,

at the end of period t, that i has type θ̂ji,t. Πi,t is assumed to be continuous and at least twice

differentiable in its arguments. It is implicitly conditional on (i) j’s period t pricing strategy, which
will depend on j’s beliefs about t− 1 types, and (ii) both players’ strategies in future periods. As
j’s end-of-period t belief about i’s type enters as a separate argument, pi,t only affects Πi,t through
period t profits.
Following Mailath, the separating best response function of firm i, which is also implicitly condi-

tioned on j’s current pricing strategy and beliefs about previous types, can, under the conditions to
be listed in a moment, be uniquely characterized as follows: i’s pricing function will be the solution
to a differential equation where

(2)
∂p∗i,t(θi,t)

∂θi,t
= −

Πi,t2

(
θi,t, θ̂

j
i,t, pi,t

)
Πi,t3

(
θi,t, θ̂

j
i,t, pi,t

) > 0,

and a boundary condition. The subscript n in Πi,tn denotes the partial derivative of Πi,t with respect
to the nth argument. Assuming that lower types want to set lower prices (e.g., a type corresponds
to the firm’s marginal cost), the boundary condition will be that p∗i,t(θi) is the solution to

(3) Πi,t3

(
θi, θ̂

j
i,t, pi,t

)
= 0,

i.e., the lowest type’s price maximizes its static expected profits given j’s pricing policy. The
numerator in (2) is i’s marginal future benefit from raising j’s belief about θi,t, and the denominator
is the marginal effect of a price increase on i’s current profit. For prices above a static best response
price, the denominator will be negative, and the pricing function will slope upwards in the firm’s
type.
Πi,t must satisfy the following conditions for this characterization to hold.

Condition 1 Shape of Πi,t with respect to pi,t. For any (θi,t, θ̂
j
i,t), Πi,t

(
θi,t, θ̂

j
i,t, pi,t

)
has a

unique optimum in pi,t, and, for all θi,t, for any pi,t where Πi,t33

(
θi,t, θ̂

j
i,t, pi,t

)
> 0, there is some

k > 0 such that

∣∣∣∣Πi,t3 (
θi,t, θ̂

j
i,t, pi,t

)∣∣∣∣ > k.
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Condition 2 Type Monotonicity. Πi,t13

(
θi,t, θ̂

j
i,t, pi,t

)
̸= 0 for all (θi,t, θ̂

j
i,t, pi,t).

Condition 3 Belief Monotonicity. Πi,t2

(
θi,t, θ̂

j
i,t, pi,t

)
is either > 0 for all (θi,t, θ̂

j
i,t) or < 0 for

all (θi,t, θ̂
j
i,t).

Condition 4 Single-Crossing.
Πi,t

3

(
θi,t,θ̂

j
i,t,pi,t

)
Πi,t

2

(
θi,t,θ̂

j
i,t,pi,t

) is a monotone function of θi,t for all θ̂ji,t and for

(θi,t, pi,t) in the graph of p∗i,t(θi,t, θj,t−1).

Assuming types correspond to marginal costs, the first condition requires that a firm’s current
expected profit is always quasi-concave in its own price, whatever prices rivals set, for all possible
costs. This is true for common forms of demand, such as the nested logit model. Type monotonicity
requires only that, when a firm increases its price, its (current) lost profit is smaller when its
marginal cost is higher. Belief monotonicity requires that a firm’s expected future profits should
increase when rivals believe its current cost is higher (holding its actual cost fixed) and single-
crossing requires that a higher marginal cost firm is more willing to raise its price in order to
increase rivals’ beliefs about its cost. Online Appendix B.4 uses a discrete type example to illustrate
why belief monotonicity and single-crossing can fail when prices rise too much from static CI Nash
levels.
These conditions are sufficient for a fully separating best response function to exist and be unique,

but they do not imply the existence or uniqueness of a fully separating equilibrium when multiple
firms are signaling. This is the case even when the linear demand duopoly model of Mailath (1989)
is extended to more than two periods.6

We use computation to find an equilibrium (see online Appendix A for details), assuming that
pricing functions have the form described above and verifying that the required conditions hold at
our solutions. This approach allows us to consider longer games, more firms and non-linear demand
systems. In games with continuous types, we have found that using different starting points and
updating rules for strategies leads to equilibrium pricing functions that are almost identical.

C. Fully Separating Equilibrium in a Finite Horizon and Discrete Type Game.

In a discrete type game, even separating best responses may not be unique. As described in
online Appendix B, our solution method therefore applies a refinement by always solving for the
best response strategies that achieve separation at the lowest cost to the signaling firm given our
current guess of rivals’ strategies. This is consistent with the type of “intuitive criterion” (Cho and
Kreps (1987)) refinement that has been widely used in one-sided signaling models with two types.
However, we have identified examples of multiplicity in discrete type games with infinite horizons.
In the text, we therefore report results when we solve finite horizon games and iterate backwards
until strategies converge, although, even in this case, there is no guarantee of uniqueness.

II. Examples

We now use examples to illustrate the effects of simultaneous signaling on prices and on the
effects of mergers. Appendix B of STY-WP provides further examples where marginal costs are
fixed and known, and some other element of each firm’s profit function is private information.

6Appendix C of STY-WP shows that existence and uniqueness require that the effects of signaling on prices are sufficiently
small to guarantee single-crossing.
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A. A Continuous-Type Symmetric Duopoly Example.

Specification. — Two ex-ante symmetric single-product firms play a finite horizon game with
T ≥ 25 periods. Demand is nested logit, with both products in one nest and the outside good in its
own nest. Consumer c’s indirect utility from buying product i is ui,c = 5− 0.1pi+σνc+(1−σ)εi,c.
where pi is the dollar price, εi,c is a draw from a Type I extreme value distribution and νc is an
appropriately distributed draw for c’s nest preferences (Cardell (1997)), given a nesting parameter
of σ = 0.25. For the outside good, u0,c = ε0,c.
Firm marginal costs are private information. For each firm, ci,t lies in the interval [c, c] =

[$8, $8.05] and evolves according to an independent and exogenous truncated AR(1) process

(4) ci,t = ρci,t−1 + (1− ρ)
c+ c

2
+ ηi,t,

where ηi,t ∼ TRN(0, σ2c , c− ρci,t−1− (1− ρ) c+c2 , c− ρci,t−1− (1− ρ) c+c2 ).7 ρ = 0.8 and σc = $0.025.
The demand parameters and the level of marginal costs imply that CI Nash margins are high,

with limited demand diversion to the outside good. As illustrated in online Appendix B.3, limited
diversion plays an important role in supporting separating equilibria with significant price effects.
On the other hand, the cost transition parameters imply that marginal costs can only vary

by a small amount and that, within the allowed range, they are quite likely to vary from being
relatively high to relatively low (or vice-versa) from one period to the next. One summary measure

of persistence is Pr(ci,t+1 ≥ c+c
2 |ci,t = c), which equals 0.68 for our parameters. This implies that j

cannot gain much information on the likely value of ci,t+1 when it infers ci,t, so that i’s incentives
to distort its price to signal in period t should be limited.

Equilibrium Strategies and Outcomes. — In period T , firms use one-shot BNE pricing strategies.
Figure 1(a) shows four pricing functions for firm 2, for different values of firm 1’s period T − 1
marginal cost (c1,T−1), assuming that both firms know/believe that c2,T−1 = $8. Firm 2’s price
increases with c1,T−1 because firm 1’s expected period T price rises with c1,T−1. However, the
variation in c1,T−1 can change p2,T by no more than one cent. Average prices and welfare measures
are almost identical to static CI Nash outcomes, implying that the effects of incomplete information
with no dynamics (Shapiro (1986), Vives (2011)) are negligible given our parameters.8

In period T − 1, a firm’s price may affect its rival’s period T price, creating a signaling incentive.
Assuming both firms’ period T−2 costs were $8, Figure 1(b) shows firm 1’s signaling pricing function
(found by solving the differential equation (2) given the boundary condition (3)) if (hypothetically)
it expects firm 2 (in period T−1) to use its static period T strategy. The period T pricing strategies
are shown for comparison. The pricing functions intersect for c1,T−1 = $8, but signaling may lead
firm 1 to raise its price by as much as 20 cents for higher c1,T−1 values.
This strategy is profitable because firm 1’s period T −1 profit is quite flat in its own price. Figure

2 shows that if c1,T−1 = $8.025, setting the signaling price of $22.76, rather than the statically
optimal price, only lowers T − 1 profits by $0.00070 (per potential consumer). This is smaller than
the expected period T gain ($0.00079) from being viewed as a firm with c1,T−1 = $8.025 rather
than c1,T−1 = $8.0002 (firm 2’s inference if firm 1 set its statically optimal price).
Of course, firm 2 also has an incentive to signal. Figure 1(c) shows firm 2’s best signaling response

when (hypothetically) firm 1 uses the strategy in Figure 1(b) (once again shown for comparison).
As firm 1’s expected price is rising, firm 2’s static best response pricing function shifts upwards.

7TRN denotes a truncated normal distribution, whose arguments are the mean and the variance of the untruncated distri-
bution, and the lower and upper truncation points.

8For example, expected consumer surplus differs by less than $0.0001 per potential consumer.



8 AMERICAN ECONOMIC JOURNAL MONTH YEAR

Figure 1. : Period T and T −1 Pricing Strategies in the Finite Horizon, Continuous Type Signaling
Game.
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Of course, this will, in turn, affect firm 1’s pricing function. Figure 1(d) shows the equilibrium
period T − 1 pricing functions where firms are best responding to each other. The price functions
are steeper and more spread out than those for period T , implying that prices will have higher
variance as well as a higher average level.9

While the qualitative effects of signaling on T−1 prices are similar to those considered by Mailath
(1989), we are interested in what happens to prices in longer games. As the T − 1 price functions
are more spread out, signaling incentives will tend to be greater in period T − 2 than period T − 1.
As a result, Figure 3 shows that T − 2 pricing functions are higher and have steeper slopes than
those in T − 1. They are also more spread out, leading to even stronger incentives in T − 3. As we
continue backwards, the pricing functions continue to rise until around T − 15, after which they
change only slightly. In T −14 average prices are $24.76 (or $2 above static CI Nash levels) and the

9The mean (standard deviation) of a firm’s equilibrium price in period T − 1 is 22.88 (0.065), compared with 22.62 (0.003)
in period T .
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Figure 2. : Expected T − 1 Period Profit Function: c1,T−1 = $8.025 and c1,T−2 = c2,T−2 = $8.
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Note: the profit function is drawn “per potential consumer” for a firm assumed to have a marginal cost of $8.025, and with a
rival using the static BNE pricing strategy when both firms’ previous period marginal costs were $8.

standard deviation of each firm’s price is $0.47. Prices are, however, much lower than joint-profit
maximizing CI prices ($45.20).
We can also solve for stationary pricing functions in an infinite horizon game. In this case, we

calculate firms’ best responses when they expect that the current guess of the pricing functions will
be used in all future periods. The computed pricing strategies are visually indistinguishable from
the strategies in the early periods of the T = 25 finite horizon game, although our calculations
imply that average prices may be a cent higher.10

B. Mergers with Continuous Types.

We can extend the example, maintaining the same demand and cost parameters, to consider
the effect of mergers. Specifically, we consider a 4-to-3 merger and a 3-to-2 merger, where, after
the merger, one of the firms owns two products that have the same marginal cost realization each
period and for which the seller must set exactly the same price. In this way, the one unobserved
state variable-one signal per firm structure is maintained.11

Table 1 presents the results, based on infinite-horizon signaling prices. When there are three
single-product firms, average prices are $19.89. This contrasts with expected static BNE prices of
$19.20. Absent cost efficiencies, a 3-to-2 merger raises the merged firm’s average price by 38% and
the average price of the non-merging firms by 20%. With static BNE (or static CI Nash) pricing,
the price increases would be 28% and 10% respectively. The predicted price increases after a 4-to-3
merger are also substantial (in this case, merging and non-merging firm price increases would be
16% and 3% with static BNE pricing).
Figure 4 illustrates how pricing strategies change for a merging party and a non-merging party

in the static BNE and infinite horizon dynamic signaling games after a 3-to-2 merger. In the BNE

10We do not interpret this difference as significant, as we have found that the number of gridpoints, the choice of methods for
integrating and solving differential equations and convergence criteria can change average prices by up to 5 cents in long games.
We have found that finite horizon strategies converge so that they are close to the infinite horizon ones in all of our continuous
type examples, unless Mailath’s conditions are very close to being violated, in which case the finite horizon strategies often
oscillate up and down across periods.

11In these examples, we will assume that, if a synergy is realized, the magnitude of the synergy is known to all players.
Sweeting, Leccese and Tao (2023) considers a game where the magnitude of the realized synergy is private information to the
merging firms.
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Figure 3. : Equilibrium Pricing Functions for Firm 1 in the Infinite Horizon Game and Various
Periods of the Finite Horizon Game.
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Note: all functions drawn assuming that firm 1’s perceived marginal cost in the previous period was $8.

case, the merged firm internalizes diversion between its products, which causes its optimal price to
increase. The non-merging firm’s best response price function shifts upwards as a result. In the
signaling case, the pricing functions of both the merged firm and the non-merging firm also become
steeper and more spread out.12 This reflects how the elimination of the third firm leads to both
surviving firms having a rival whose future price will be more responsive to the price that it sets,
leading signaling incentives to increase.

Typically, an antitrust agency would challenge a 4-to-3 or 3-to-2 merger unless they expect
the merged firm to realize significant marginal cost efficiencies. Agencies usually calculate the
Compensating Marginal Cost Reduction implied by a static CI Nash model (CI CMCR), to assess
whether likely efficiencies are “large enough”. Table 1 reports the CI CMCRs an analyst would
calculate if she knows demand and calculates pre-merger costs assuming that average pre-merger
prices reflect static CI Nash pricing.13

12In contrast, the BNE pricing functions become slightly flatter after the merger as the markups increase.
13For example, when there are three firms before the merger, the analyst would calculate that each pre-merger firm has a

marginal cost of $8.73, whereas the true average cost is $8.025. For a 3-to-2 merger, a CI CMCR synergy would give the merged
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Table 1—: Post-Merger Prices and Required Synergies in an Infinite Horizon Continuous-Type
Model. Firms are ex-ante symmetric before the merger. After the merger, the merged firm sells
two products that have identical cost realizations and the same price.

4-to-3 Merger 3-to-2 Merger

Pre-Merger Average Prices $18.24 $19.89

Post-Merger Average Price of Merged $21.61 (+18.4%) $27.46 (+38.1%)
Firm if No Marginal Cost Synergy

Post-Merger Average Price of Non- $19.21 (+5.3%) $23.85 (+19.9%)
Merging Firm if No Marginal Cost Synergy

CI CMCR $4.87 $10.65

Merged’s Firm Post-Merger Average Price with $18.75 (+2.8%) $23.14 (+16.4%)
CI CMCR Synergy in Signaling Equilibrium

Marginal Cost Reduction Required to Keep Merged $5.81 $21.10
Firm’s Average Price from Rising in Signaling Equilibrium

Note: parameterization described in the text. Note that the CI CMCR is the
marginal cost reduction that an analyst would compute using the true demand sys-
tem, observed (signaling) pre-merger signaling prices and a CI Nash assumption.

The CI CMCRs for these mergers are large, but even if they are realized, post-merger prices
would increase if firms use signaling strategies.14 For example, the prices of the merged firm and
the non-merging firm would rise by 16% and 13% after a 3-to-2 merger. The final row of Table 1
reports the marginal cost reductions required to keep the merged firm’s average price at its pre-
merger level in our model. This required efficiency is 19% larger than the CI CMCR in the 4-to-3
case, and more than 100% larger in the 3-to-2 case.15

C. Alternative Specifications.

Changing Cost Parameters for Duopoly. — We have suggested that the values of σc and c− c
imply that signaling incentives are relatively weak in our baseline specification, as signaling a high
cost in period t cannot have too much effect on the cost that the rival expects in t+1.16 We might
therefore expect even larger price effects if we lower σc or raise c− c.17

The second to sixth columns of Table 2 show that this intuition is correct, but that, when prices
increase too much, the conditions required to characterize best response functions fail.18

firm a negative marginal cost. The analyst assumes that the merged firm cannot freely dispose of the good, so that it would
not choose to produce an infinite amount.

14We assume that both c and c for the merged firm fall by the CI CMCRs with the other cost parameters unaffected.
15These efficiencies are still not large enough to prevent consumers from being harmed as the non-merging firm’s price would

still increase (for example, by an average of $1.61 in the 3-to-2 case).
16For example, the expected ci,t+1s if ci,t takes on its minimum and maximum values are 8.0194 and 8.0306 respectively.
17The logic for why each of these changes would raise prices is slightly different. A reduction in σc makes costs more

persistent, so that signaling a higher current cost will have a greater effect on rivals’ expectations of next period’s costs. This
will tend to raise the numerator in the differential equation, causing the pricing functions to become steeper. An increase in c,
holding c fixed, will tend to raise each firm’s average signaling price by more than their average static BNE price if the signaling
pricing functions are steeper than the static BNE functions. In both cases, these changes will cause rivals’ best response prices
to rise, and their price functions to be translated upwards.

18Of course, equilibria that involve different types of strategies may exist, but we do not know how to find them.
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Figure 4. : Static Bayesian Nash and Infinite Horizon Dynamic Signaling Equilibrium Pricing
Functions Before and After a 3-to-2 Merger.
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Note: parameters discussed in the text. Pricing functions shown are those when all products have marginal costs of 8 in the
previous period, and those where all products have marginal costs of 8.05 in the previous period, although these different pricing
functions cannot be visually distinguished for the static BNE cases.

The final column increases both c and σc so that we maintain Pr(ci,t+1 ≥ c+c
2 |ci,t = c) ≈ 0.68.

In this case, a fully separating equilibrium exists with a similar price increase to our baseline
specification. This example is relevant for thinking about the calibrated parameters in our empirical
application.
These examples assume that the duopolists are symmetric. In Appendix C.6, we will also discuss

some assumptions which would lead to the supports of marginal costs of duopolists being different.
While we have not explored these types of examples systematically, in the one or two examples we
have looked at we have found that increases in the average prices of both firms are more sensitive
to the narrower of the cost supports.19

Additional Firms and Alternative Discount Factors. — We use the two-type model to consider
a wider range of market structures and alternative discount factors.
First, we vary the number of symmetric single-product firms from 2 to 7, and consider discount

factors of 0.8, 0.95 and 0.99. Each firm’s marginal cost state is either 8 or 8.05. The Markov
probability that a firm’s cost remains the same in the next period is ρ = 0.65. The demand

19For example, if we increase the c of one firm from 8.05 to 8.075, and leave the other fixed, the average prices of both firms
in a long or infinite horizon game are similar to those in the first column, whereas when we increase the c of both firms, average
prices increase significantly (second column).
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Table 2—: Equilibrium Expected Prices in a Finite Horizon Game with Alternative Cost Specifi-
cations.

Reduce Expand Range
Baseline Expand Range Std. Deviation & Increase Std. Dev.

[c, c] ($) [8,8.05] [8,8.075] [8,8.15] [8,8.3] [8,8.05] [8,8.05] [8,8.50]
σc ($) 0.025 0.025 0.025 0.025 0.02 0.01 0.25
Static CI Nash Pricing
Every Period $22.62 $22.63 $22.67 $22.74 $22.62 $22.62 $22.84

Dynamic Signaling Game
T-24 $24.70 $26.43 - - $25.63 - $24.87
T-10 $24.69 $26.50 - - $25.62 fails $24.87
T-9 $24.68 $26.50 fails - $25.60 $27.94 $24.86
T-8 $24.66 $26.47 $28.21 - $25.58 $28.44 $24.86
T-7 $24.62 $26.41 $28.98 fails $25.52 $28.63 $24.84
T-6 $24.55 $26.28 $29.18 $29.85 $25.41 $28.10 $24.82
T-3 $23.85 $24.88 $26.89 $28.33 $24.31 $25.93 $24.47
T-2 $23.37 $23.95 $25.11 $26.21 $23.60 $24.33 $24.12
T-1 $22.88 $23.05 $23.43 $23.94 $22.93 $23.05 $23.56
T $22.62 $22.63 $22.67 $22.74 $22.62 $22.62 $22.84

∞-Horizon $24.71 $26.45 fails fails $25.64 fails $24.88

Note: values in all but the last line are based on the duopoly, continuous type, finite hori-
zon model with demand parameters described in the text (cost parameters indicated in the
table). The last line reports results for the stationary strategies in the infinite horizon
model with the same parameters. “Fails” indicates that the belief monotonicity or single-
crossing conditions fail so that we cannot calculate signaling best response pricing functions.

parameters are the same as in our continuous type example. As we have identified multiple equilibria
in the infinite horizon discrete type game, we solve a finite horizon game backwards for at least 30
periods, adding additional periods, up to 150, until the pricing strategies change by less than 5e-4
across periods.
Figure 5(a) shows how much prices increase in the dynamic signaling equilibrium, relative to

static CI Nash prices.20 There is trivially no effect in the monopoly case as there is no rival to
signal to. The effect of signaling declines in the number of firms and increases in the discount
factor. When N = 4, price increases are more than 1% even with a discount factor consistent with
annual pricing.
Figure 5(b) uses the same computations to show the predicted price increases after a two firm

merger that results in one of the products being eliminated and no synergies (so that the firms
remain symmetric). The static CI Nash model naturally predicts a larger effect for a merger to
monopoly, but for the other mergers, dynamic signaling results in larger price effects, with non-
trivial differences to the static CI Nash model after 3-to-2, 4-to-3 and 5-to-4 mergers.

20Given that we are assuming a finite horizon, static CI Nash pricing every period would be the only subgame perfect
equilibrium outcome under CI. However, in a infinite horizon model, joint-profit maximizing CI prices would be much higher:
for example, with N = 4 they would be 170% higher than static Nash prices and these prices could be sustained by trigger
strategies if β > 0.62.
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Figure 5. : Results from a Discrete Cost Type Model with Symmetric Firms and Alternative
Discount Factors.
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(b) Percentage Increase in Average Prices After a Merger that Eliminates a Product.
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Demand Asymmetries. — We now consider how the effects of signaling vary with demand asym-
metries. We assume a discount factor of 0.99, and that, as before, each firm can have a marginal
cost of 8 or 8.05, with ρ = 0.65.21 The nesting and price demand parameters are unchanged, but we
choose the firm-specific indirect utility intercepts so that, with average marginal costs for each firm
and static CI Nash prices, 97.5% of potential consumers purchase one of the products, implying
limited substitution to the outside good, and the firms have shares that we specify. As before, we
iterate backwards until signaling prices converge.
Figure 6(a) shows the effect of signaling on share-weighted average prices, relative to static CI

Nash, with the circle areas indicating the magnitudes that are also written in the figure. The CI
share of the largest firm and the split of the shares of the other firms are represented on the axes.
Dynamic signaling causes a 3.4% average price increase in the symmetric 3-firm model (bottom-left
circle). The percentage increases are largest when the industry is close to an effective duopoly
(middle of the top row), but they can be quite large in some other cases. For example, when the
CI Nash shares of total sales are {0.68, 0.24, 0.08}, average prices are 4.0% higher with dynamic
signaling. In this example, it is the second largest firm whose average price increases the most
(7.7%).
Figure 6(b) shows how signaling increases share-weighted average prices (across all products)

after mergers in asymmetric 4-firm industries. The pre-merger model extends the example just
described to an additional firm that is assumed to be symmetric with firm 1. Firm 1 and the
additional firm then merge, so that the merged firm has two symmetric products after the merger.
We also assume that the merged firm benefits, and is known to benefit, from the CI CMCR so
that a static CI Nash model, as the agencies would use, would predict no increase in prices after
the merger. The x-axis indicates the combined (CI Nash) pre-merger market share of the merging
firms (so 0.5 means that each party makes 25% of sales), and the y-axis shows how the remaining
shares are split between the non-merging firms.
A merger with CI CMCR efficiency in a symmetric four-firm industry (coordinates (0.5,0.5))

increases average prices by 2.3% when firms signal. Price increases are larger when one of the
non-merging firms has a much larger market share (the upper rows in the figure). The intuition is
that when the price set by the merged firm becomes more sensitive to its own cost and the prices
set by its rivals, a dominant rival’s strategy will tend to respond more, creating a greater positive
feedback, than the strategies of two smaller rivals that will free-ride off each other’s efforts to raise
the merged firm’s prices.
We also find examples where the prices of the non-merging firms rise as much or more than those

of the merging firms, which would not happen in a static CI Nash model. For example, if pre-
merger shares of sales are {0.325, 0.325, 0.33, 0.02}, the equilibrium average prices of the merging
products rise by 7.7%, and the large rival increases its average price by 9.1%. The small rival’s
average price increases by 0.5%.

III. Application: MillerCoors Joint Venture

We calibrate the cost parameters of our model using data on retail prices before the 2008 Miller
Coors joint venture (MCJV), and compare what our model predicts should have happened to price
levels and price dynamics after the JV (an effective merger) with the changes observed in the data.
The text focuses on explaining the calibration and the comparison. We use data from the IRI
Academic Database (Information Resources Inc. (n.d.), Bronnenberg, Kruger and Mela (2008)).
The data that we use was purchased in September 2020, and covers 2001 to 2012. Online Appendix
C describes the data, and the selection choices that we make, in more detail. The appendix also

21If we assume a serial correlation of 0.7 or 0.75, the price effects are larger, but we are unable to find a converged fully
separating equilibrium for some of the more extreme market structures we consider here.
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Figure 6. : Price Effects in a Dynamic Signaling Model with Demand Asymmetries and Discrete
Costs.

(a) Increase in Share-Weighted Average Prices, Relative to CI Nash, in a Three Firm Model.
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(b) Increases in Average Prices after a 4-to-3 Merger Where the Merged Firm Benefits from the CI
CMCR.
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describes the types of dynamic variation in prices that identifies our parameters, and provides
some additional analyses, which make use of additional data on transportation distances (Miller
and Weinberg (2017a)), that justify our assumptions or are consistent with our interpretation of
the results.
While we will show that our model predicts changes more accurately than a simple CI model with

a collusive conduct parameter, we want to emphasize that we are not claiming that there are no
collusive models, or models involving dynamics other than signaling, that can explain the observed
changes in the data. We will return to what we believe our model potentially adds to the antitrust
analysis of mergers in the conclusion.
We focus on the MCJV for two reasons. First, we want a setting where the very strong assump-

tions that we have to make for tractability are not too unreasonable. For example, three firms,
Anheuser-Busch (AB), Miller and Coors, dominated the “subpremium” and “premium” segments
of the beer industry before the JV, so that it may be appropriate to focus on only three players.
After the JV, Miller Lite (ML) and Coors Light (CL) were produced in the same breweries, making
our assumption that they would have the same realized costs plausible. Online Appendix C.7 shows
that their post-JV prices are highly correlated, justifying our assumption that they are sold at the
same price.
Second, from MW, we know that the JV was followed by rising prices of domestic brands, despite

significant expected efficiencies, with AB and MC raising their prices by similar amounts (online
Appendix C.3). While we know that our model can generate this outcome, we want to test whether
this is the model’s actual prediction when we calibrate the parameters using pre-JV data.22

A. Calibration of the Dynamic Asymmetric Information Model.

We calibrate an infinite horizon, continuous marginal cost three-firm/product version of our model
to match several moments characterizing pre-JV price levels and price dynamics. As a comparison,
we will calibrate the cost parameters assuming static CI Nash pricing. We treat local markets as
different repetitions of the same game, rather than having different demand and cost primitives, in
order to limit the computational burden.23

Products. — We model the pricing of three brands, which we label BL, ML and CL, although
we view them as representing each brewer’s broader product portfolio.24 The products of other
brewers are included in the outside good.25

Demand. — We assume static, time-invariant nested logit demand, with the three brands in the
same nest.26 For our baseline specification, the four demand parameters (the nesting and price
parameters, and the mean utility intercepts of BL and of ML and CL, which must be the same for
our counterfactual) are chosen so that, at average real pre-JV prices ($10.09 per 12-pack for BL and
$9.95 for ML and CL), BL, ML and CL market shares are 28%, 14% and 14% respectively, the mean
own brand price elasticity is -3 and, on average, a price increase results in 85% of the brand’s lost

22Our approach, where we calibrate our parameters using pre-JV data, and then, assuming no change in the nature of
equilibrium play, compare the model’s post-JV predictions to the data, is different to the approach of MW, who use the
observed post-JV increase in AB’s price to estimate their collusive conduct parameter.

23Computationally light two-step approaches, which are often used to estimate dynamic games, require that all serially-
correlated state variables, which in our setting would include beliefs, are observed by the researcher.

24Online Appendix C.7 shows that the pairwise correlations of prices within a portfolio are very high.
25An earlier version of this paper calibrated a model that included two imported brands as a non-signaling fringe in a separate

nest. The model predicted that the JV would raise their prices by around 1 cent, compared with 70 cents for domestic brands.
26Demand-side dynamics, for example, reflecting habit formation, might also impact the effects of horizontal mergers (MacKay

and Remer (2022)).
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demand being diverted to the two remaining brands.27 The implied nesting and price parameters
are 0.77 and −0.10, and the BL and ML/CL mean utilities are 1.04 and 0.86 respectively. Online
Appendix C.4 explains our rationale for choosing these values for the mean elasticity and diversion,
but we will consider how alternative elasticity and diversion values change our results.

Marginal Costs. — The marginal costs of brand i, ci,t, are assumed to lie on an interval [ci, ci+c
′]

and to evolve according to an AR(1) process

(5) ci,t = ρci,t−1 + (1− ρ)
ci + (ci + c′)

2
+ ηi,t

where ηi,t ∼ TRN(0, σ2c , ci − ρci,t−1 − (1 − ρ)
ci+ci+c

′

2 , ci + c′ − ρci,t−1 − (1 − ρ)
ci+ci+c

′

2 ). σc is the
standard deviation of the untruncated innovation distribution. We calibrate the five parameters
cBL, cML/CL, c

′, ρ and σc.
28

Objective Function, Matched Statistics and Identification. — We calibrate the cost pa-
rameters using indirect inference (Smith (2008)). For a given guess, we solve the model (see
online Appendices A2 and A3 for details) and simulate time-series of prices to calculate six statis-
tics/regression coefficients. We find the parameters that provide the closest match to six similar
statistics calculated from the data. The objective function to be minimized is g(θ)′Wg(θ).

g(θ) is a vector where each element k has the form gk = 1
M

∑
m τ

data
k,m − τ̂k(θ) where τ

data
k,m is the

statistic estimated from the observed data and τ̂k(θ) is its simulated data equivalent. Our reported
results use the identity matrix for W , although, because we match the moments almost exactly,
alternative W s give similar calibrated parameters. Minimization uses fminsearch in MATLAB.
Standard errors are calculated treating different markets as independent observations of the same
game.
The six data statistics are calculated using series of average prices from 45 regional markets from

January 2001 to the announcement of the JV in October 2007. Our baseline specification uses
weekly data, excluding price reductions, and the five most common pack sizes (6, 12, 18, 24 and
30-packs).29 Market-week-brand-pack size average real prices per 12-pack equivalent are calculated
using only market-week-pack sizes where we observe more than five stores carrying at least one of
the flagship brands.
The first two statistics that we match are prices for BL and ML, averaged across pack sizes

and weeks. The third statistic is a measure of the dispersion of BL prices, calculated as the
interquartile range (IQR) of the market-specific residuals from a regression where market-week-
pack size average prices of BL products are regressed on dummies for the specific set of stores
observed in the market-week (interacted with pack size), to control for fixed cross-store differences
in retail prices, and week-pack size dummies, to control for national promotions.
The remaining statistics are coefficients from market-brand-specific regressions where weekly

brand-size prices are regressed on the lagged prices of all three brands, dummies for the specific
set of stores observed in the market-week (interacted with pack size) and pack size-specific time

27The assumed shares overstate the share of BL relative to ML and CL, but understate the share of AB, relative to Miller
and Coors, in the beer market.

28We have also fitted a model where ρ, σc and c′ vary across BL and ML/CL. However, this model only improves the fit
slightly, and the calibrated parameters are very similar. Moreover, when additional parameters are firm-specific it is unclear
what we should assume happens to them after the JV. Our approach means that we only have to make a transparent and
conventional assumption about a synergy that changes the level of marginal costs for the merged firm.

29Our model does not have different pack sizes, market heterogeneity, varying sets of stores or time trends, so the regressions
using simulated data do not control for these factors. See online Appendix C.1 for a discussion of the sample selection.
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trends. For each market, this provides estimates of nine coefficients ρi,jm , where i indicates the brand
of the dependent variable, and j the brand of the lagged price. We then match the average values
of ρML,ML

m and ρCL,CLm , ρBL,CLm and ρBL,ML
m , and ρML,CL

m and ρCL,ML
m .30

Assuming that there is a unique signaling equilibrium, the intuition for the identification of the
cost parameters is straightforward.31 Given the assumed demand system and observed price levels,
the mark-ups implied by static best responses, which will be chosen by the lowest cost type, will
identify the lower bounds on brand marginal costs.
The AR(1) price coefficients and the observed dispersion of prices will identify the range of

costs and the parameters of the cost innovation process. Online Appendix C.5 illustrates the
price dynamics in the pre-JV data using diagrams from the Seattle market, and regressions that
are national versions of the lagged price regressions used at the market-level. It also shows how
these patterns are robust to alternative ways of calculating the price series (for instance, whether
temporary price reductions are included).

B. Calibrated Parameters and Model Fit.

Table 3 reports the calibrated parameters. Column (1) is our baseline specification. Column (7)
shows the calibrated parameters for a CI Nash specification, based on the same moments. The
column (1) parameters imply that Pr(ci,t+1 ≥ c+c

2 |ci,t = c) ≈ 0.76, which is not far from the 0.68
probability that we used in our examples, even though the support of costs is much wider. As
the CI Nash model implies smaller mark-ups and less pass-through of cost changes to prices, the
calibrated CI parameters imply that costs are higher on average and can vary more.
The other columns vary the assumed elasticities, diversion or price series used in estimation.

Assuming more elastic demand and greater diversion to the outside good implies smaller margins
in a signaling equilibrium, so the calibrated average level of costs is higher. Prices are more volative
when temporary price reductions are included, so that the calibrated σc increases.
As discussed in online Appendix C.5, when we use monthly prices in the estimation of lagged

price coefficients, we can only include market-pack size fixed effects, rather than fixed effects for
the set of stores that are observed. If we include market fixed effects and use a monthly price series
that excludes temporary price reductions, prices appear much more persistent. The calibrated
parameters then lead the conditions required for our characterization of pricing strategies to fail in
our counterfactuals. We therefore report the monthly results including price reductions.
Table 4 reports the fit of the model for the column (1), (2) and (7) specifications. The upper

half of the table shows the targeted moments, and the lower half reports non-targeted moments,
including the skewness of the innovations in the lagged price regressions. Skewness is a moment of
a different order to the targeted moments.
The signaling models match both types of moments well, apart from tending to overpredict the

IQR of price levels and underpredict the variance of price innovations, although the match of these
moments is better when we only try to match moments for 12-packs. The CI model incorrectly
predicts that the cross-brand ρs should be very close to zero, and it fails to match the observed
skewness of price innovations.

C. Predicted Effects of the JV.

We resolve the model to predict the effects of the JV, and compare the predictions to changes
observed in the data. In line with our simulations, we assume that, after the JV, MC owns two

30Our model implies that the expected ρML,ML
m should equal ρCL,CL

m (etc.) so we match the average value of these coefficients.
31If there are multiple equilibria, minimization of the objective function may be difficult if our solution algorithm jumps

between different sections of the equilibrium correspondence when the parameters are changed. In practice, we can match
our chosen moments almost exactly suggesting that this is not a significant problem. We have also not found examples of
multiplicity with continuous types, although we recognize that multiple equilibria may exist.
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Table 3—: Calibrated Parameters for Seven Specifications.

(1) (2) (3) (4) (5) (6) (7)
Price Series Used for Calibration
Data Frequency Week Week Week Week Week Month Week
Pack Sizes All 12 only All All All All All
Temporary Drop Drop Include Drop Drop Include Drop
Price Reductions
Fixed Effects in Stores Stores Stores Stores Stores Market Stores
Price Regressions
Demand Assumptions
Mean Price Elasticity -3 -3 -3 -2.5 -3.5 -3 -3
Mean Diversion 85% 85% 85% 90% 80% 85% 85%
Between Flagship Brands

Model Signal Signal Signal Signal Signal Signal Static CI
Lower Bound Cost $5.248 $5.353 $4.856 $4.247 $5.973 $4.417 $5.405
for BL (cBL) (0.195) (0.075) (0.328) (0.178) (0.230) (0.212) (0.084)
Lower Bound Cost for $6.432 $6.588 $6.015 $5.800 $6.893 $5.572 $6.607
ML/CL (cML/CL) (0.075) (0.086) (0.243) (0.024) (0.301) (0.343) (0.351)

Width Cost Interval $0.616 $0.585 $1.197 $0.524 $0.647 $1.936 $0.727
(ci−ci) (0.233) (0.122) (0.581) (0.060) (0.106) (0.377) (0.173)
Cost AR(1) Parameter 1.114 0.762 1.119 1.330 1.052 0.716 0.920
(ρ) (0.437) (0.213) (0.668) (0.145) (0.254) (0.408) (0.995)
Std. Dev. Cost $0.268 $0.227 $0.573 $0.252 $0.272 $0.677 $0.278
Innovations (σc) (0.098) (0.020) (0.319) (0.022) (0.087) (0.063) (0.164)

Note: BL = Bud Light, ML = Miller Lite and CL=Coors Light. Stores = fixed effects
for the set of stores observed in the market-week (interacted with pack size) are included
in the price regressions using the observed data. Standard errors in parentheses. All price
series are calculated using market-week-pack sizes where at least five stores selling flagship
brands are observed. Flagship diversion refers to the average proportion of lost demand
that switches to the other two products when the price of one of the products increases.
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Table 4—: Model Fit for Three Specifications Using Weekly Data, Average Brand Price Elasticity
of -3 and Flagship Diversion of 85%.

Price Series Used for Calibration
Data Frequency Week Week Week Week Week
Pack Sizes All All All 12-Pack 12-Pack
Temporary Price Drop Drop Drop Drop Drop
Reductions

Data/Model Data Signal Static CI Data Signal

Targeted Moments
Mean pBL $10.09 $10.09 $10.09 $10.30 $10.30
Mean pML $9.96 $9.96 $9.96 $10.22 $10.22
Mean ρML,ML, ρCL,CL 0.389,0.395 0.391 0.391 0.468,0.450 0.458
Mean ρBL,ML, ρBL,CL 0.081,0.067 0.080 -0.001 0.102,0.056 0.083
Mean ρML,CL, ρCL,ML 0.049,0.037 0.036 -0.002 0.065,0.026 0.040
Interquartile Range pBL $0.141 $0.189 $0.198 $0.145 $0.186

Non-Targeted Moments
Mean pCL $9.94 $9.96 $9.96 $10.19 $10.22
ρBL,BL 0.430 0.389 0.396 0.442 0.448
Mean ρML,BL, ρCL,BL 0.057,0.0.43 0.046 0.005 0.065,0.040 0.043
Std. Dev. of Residuals
BL $0.175 $0.108 $0.118 $0.136 $0.103
ML/CL $0.202,$0.187 $0.157 $0.149 $0.161,$0.149 $0.155

Interquartile Range pML, pCL $0.168,$0.156 $0.272 $0.261 $0.169,$0.159 $0.277
Skewness of Residuals
BL -0.362 -0.339 -0.004 -0.307 -0.378
ML/CL -0.108,-0.334 -0.325 0.010 -0.296,-0.201 -0.381

Note: BL = Bud Light, ML = Miller Lite and CL=Coors Light. Residuals are from AR(1) re-
gressions, where the data regressions include set-of-store fixed effects. The calculation of the data
statistics is explained in the text, with the model predictions based on simulating 10,000 periods
of data. For the data we report separate values for the statistics for ML and CL, but, because the
model assumes that ML and CL are symmetric, and so predicts identical statistics (ignoring simu-
lation error), we match the average of these values during estimation and report a single prediction.
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Table 5—: Predicted Average Prices Before and After the MC JV For Signaling Model.

(1) (2) (3) (4) (5) (6)
Price Series Used for Calibration
Data Frequency Week Week Week Week Week Month
Pack Sizes All 12 only All All All All
Temporary Drop Drop Include Drop Drop Include
Price Reductions
Fixed Effects in Stores Stores Stores Stores Stores Market
Price Regressions
Demand Assumptions
Mean Brand Price Elasticity -3 -3 -3 -2.5 -3.5 -3
Mean Diversion 85% 85% 85% 90% 80% 85%
Between Flagship Brands
Pre-JV Mean Prices
BL $10.09 $10.30 $9.81 $10.09 $10.09 $9.75
ML/CL $9.96 $10.22 $9.68 $9.96 $9.96 $9.63

Assumed ML/CL Synergy $1.17 $1.20 $1.14 $1.50 $0.94 $1.13
(CI CMCR)
Post-JV Mean Prices with Signaling
BL $10.65

(+5.6%)
$10.98
(+6.5%)

$10.19
(+3.9%)

$11.04
(+9.4%)

$10.43
(+3.4%)

$10.21
(+4.7%)

ML/CL $10.51
(+5.5%)

$10.87
(+6.3%)

$10.05
(+3.9%)

$10.89
(+9.3%)

$10.29
(+3.3%)

$10.08
(+4.7%)

Note: BL = Bud Light, ML = Miller Lite and CL=Coors Light. Stores=fixed effects for
the set of stores (interacted with pack size) observed in the market-week which are included
in the price regressions using the observed data. For the data we report separate values for
the statistics for ML and CL, but, because the model assumes that ML and CL are symmet-
ric, and so predicts identical statistics (ignoring simulation error), we report a single prediction.

products, which, in each period, have the same realized marginal cost. We assume that cBL, ρ, c
′

and σc do not change, but we assume that cML/CL would have fallen by the synergy that would

have prevented a post-JV price increase with static CI Nash pricing. The Department of Justice
likely expected a synergy at least this large when it decided not to challenge the merger, and it is
similar to the synergy that MW estimate.
Online Appendix C.3 shows that, after the JV, the prices of the three domestic flagship brands

increased, relative to the prices of imports, by 4-6%, or 40 cents to one dollar per 12-pack. These are
consistent with the estimates in MW. Table 5 shows the predicted prices for each brand before and
after the JV for the six signaling model specifications. All of the predicted flagship price increases
are above 3%, and the price increases for ML/CL and BL are very similar. Therefore, the predicted
changes in price levels appear consistent with the data.
This broad conclusion is robust to some alternative assumptions. For example, if we assume a

synergy 50 cents (42%) larger (which would lower prices in a CI Nash model), the predicted column
(1) post-JV prices of ML/CL and BL are $10.21 (a 2.5% increase) and $10.54 (a 4.5%) respectively.
On the other hand, a 50 cent smaller synergy predicts prices of $10.79 (8.3%) and $10.75 (6.5%)
respectively. If we use a discount factor of β = 0.998, arguably more consistent with weekly data,
and re-calibrate the model, the predicted post-JV prices in column (1) change by less than a couple
of cents.
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Figure 7. : Bud Light Equilibrium Pricing Strategies (for estimates in column (1) of Table 3).
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Figure 7 compares, based on the column (1) parameters, BL’s equilibrium pricing strategies for
the static Bayesian Nash 3-firm model, the estimated signaling 3-firm model and the counterfactual
post-JV model. Even though BL’s costs are unchanged, the greater responsiveness of ML/CL
pricing causes BL’s prices to rise and become more volatile.
We can examine how accurately our model predicts changes in price dynamics. Table 6 compares

the cross-market averages of the IQR of prices and ρ parameter statistics before and after the JV
in the data, and the values predicted by the column (1) model. We also report the predicted values
for the CI model when we assume that, after the JV, the firms use CI first-order conditions with
a “conduct parameter” weight of 0.15 on the profits of their rivals, as such conduct gives similar
predicted post-JV price increases to the signaling model.32

The signaling model correctly predicts the direction in which each of the reported statistics
changes (i.e., post-JV prices vary more, and own-brand and cross-brand serial correlation coefficients
are higher). Our ability to match these changes is encouraging given that our calibration uses no
post-JV data, although we cannot rule out the possibility that other changes in the industry (e.g.,
changes in demand or cost shocks, or uncertainty after the 2008 financial crisis) also affect the
dynamics of prices. On the other hand, the CI-conduct model predicts close to zero cross-brand
ρs before and after the JV, that the dispersion of BL and ML/CL prices should move in opposite
directions, and that own-brand ρs should not have changed.

32A value of 0.15 is smaller than MW’s estimated conduct parameters, reflecting how their preferred demand model implies
more substitution from domestic to imported brands than our assumed demand parameters. See online Appendix C.4.
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Table 6—: Observed and Predicted Changes in Price Dynamics for Calibrated Signaling Model
(Table 3, col (1)) and the Calibrated CI Model (Table 3, col (7)) with a Conduct Parameter
(θ = 0.15) to Predict the Same Change in Average Prices.

Calibrated CI Model
Data Calibrated Signaling Model with Conduct

Pre-JV Post-JV (Change) Pre-JV Post-JV (Change) Pre-JV Post-JV (Change)
Interquartile Range of Prices
BL 0.141 0.165 (+0.025) 0.189 0.356 (+0.167) 0.198 0.227 (+0.028)
ML 0.168 0.185 (+0.017) 0.271 0.355 (+0.084) 0.261 0.232 (-0.030)
CL 0.156 0.174 (+0.018) 0.271 0.355 (+0.084) 0.261 0.232 (-0.030)
AR(1) Regression Coefficients

ρBL,BL 0.430 0.500 (+0.070) 0.389 0.424 (+0.035) 0.396 0.397 (+0.002)
ρML,ML 0.389 0.454 (+0.065) 0.391 0.426 (+0.034) 0.391 0.393 (+0.002)
ρCL,CL 0.395 0.428 (+0.033) 0.391 0.426 (+0.034) 0.391 0.393 (+0.002)
ρBL,ML 0.081 0.100 (+0.019) 0.080 0.153 (+0.073) -0.001 0.000 (+0.000)
ρBL,CL 0.067 0.096 (+0.029) 0.080 0.153 (+0.073) -0.001 0.000 (+0.000)
ρML,BL 0.057 0.098 (+0.041) 0.046 0.147 (+0.101) 0.005 0.002 (-0.003)
ρCL,BL 0.043 0.080 (+0.037) 0.046 0.147 (+0.101) 0.005 0.002 (-0.003)

Note: BL = Bud Light, ML = Miller Lite and CL=Coors Light. The calculation of the data statis-
tics is explained in Section III.A, with the model predictions based on simulating 10,000 periods
of data. Pre-JV averages are calculated for 45 markets, and post-JV averages are calculated for 44
markets, as one market does not have at least 5 stores observed in consecutive weeks after the JV.
The CI Model simulations use the parameters from Table 3, column (7), which assumes CI Nash
pricing before the JV, and assume that after the JV the firms use a conduct parameter of 0.15.

The steeper pricing functions in the counterfactual also imply an increase in the pass-through
of (unobserved) marginal cost changes. For example, a 60 cent increase in BL’s unobserved cost
raises BL’s expected pre- and post-JV prices by 40 and 85 cents respectively. While directly testing
this implication is impossible without observing actual cost changes, we can identify a change in
the pass-through of transportation costs which is potentially consistent with the prediction of our
model.

Suppose that the unobserved portion of marginal cost reflects the trucking distance to a market,
which all firms observe, multiplied by the current “per mile per unit” cost of distribution (efficiency),
which is unobserved by rivals. Efficiency may vary over time depending on, for example, the capacity
utilization of the brewer’s truck fleet. If this is correct, the support for i’s marginal cost of selling a
unit of beer in market m, [ci,m, ci,m], will tend to be wider for brewer-markets with longer trucking
distances.

As noted in Section II, signaling will increase prices more when marginal costs have wider supports
and mergers tends to make signaling effects larger. If our speculative assumptions about costs are
correct, then we would expect to see larger post-JV price increases in markets with longer trucking
distances. Online Appendix C.6 presents regressions that show that, in the data, post-JV price
increases for domestic brands were larger in markets with longer trucking distances, including when
we control for changes in market concentration and transportation synergies realized by the merger,
with no significant changes for imported brands.
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IV. Conclusion

Mailath (1989) showed that, in a two-period game, simultaneous signaling will increase first
period equilibrium prices when firms have private information about their marginal costs. Mailath’s
insight has been ignored by the subsequent empirical IO and antitrust literatures, probably because
it has been assumed that the extent of private information will usually be fairly small, and that
limited private information would only have small effects on prices. We have shown that this
second assumption is incorrect, because of feedback loops between strategies across firms, and
across periods in games where firms set prices repeatedly.
As signaling incentives become stronger with fewer firms, we find that horizontal mergers can

raise prices more than static CI Nash models predict even in the absence of collusion. Our model
predicts observed changes in price levels, price dynamics and pass-through after the MillerCoors
joint venture without requiring a change in the nature of firm behavior. Our results suggest that
merger retrospectives in other industries could usefully assess whether post-merger price changes
are associated with changes in dynamics and pass-through that CI Nash or simple CI conduct
models cannot explain.
We have frequently been asked about the relationship between dynamic signaling and tacit collu-

sion. One question is whether dynamic signaling should be viewed, in the language of the Horizontal
Merger Guidelines, as a type of “unilateral effect” or as a type of “coordinated effect”, or as a com-
pletely different sort of theory. Unilateral and coordinated effects are sometimes interpreted as
reflecting those that arise in static CI Nash and CI tacitly collusive equilibria respectively (Porter
(2020)). Recently, Baker and Farrell (2019) and Farrell and Baker (2021) have suggested broaden-
ing the definition of coordinated effects to include “non-purposive” theories, such as the CI Markov
Perfect equilibrium models with asynchronous price-setting proposed by Maskin and Tirole (1988).
We view our model as being in this class of theories, although it departs from CI while making the
more conventional assumption of simultaneous price-setting.
A second question is whether there is any value in agencies or courts considering non-collusive

coordinated effects theories. We believe that there are two reasons why it should be valuable. First,
agencies find it very difficult to show that collusive effects are likely unless there is an established
history of cartel behavior or, at least, highly suspicious parallel accommodating conduct. It might
be much easier to use internal business documents to show that how firms predict their rivals’
pricing is consistent with firms having incentives to signal.33 Second, because our model predicts
price effects that are usually much smaller than a tacit collusion model, it does not completely close
the door on the merging parties arguing that efficiencies are likely to be large enough to counteract
the upward pressure on prices.
A third question is whether there are situations in which one could more convincingly distinguish

between our model and collusion as explanations for changes in price levels, price dynamics and
pass-through. We have emphasized that this kind of test may be very difficult in price-setting
industries where both models will tend to predict price increases, and some collusive model is
likely to be able to rationalize changes in price dynamics and pass-through, but this is clearly an
area where future work is important.34 However, in a quantity-setting game where quantities are
strategic substitutes, a signaling model will predict that firms will tend to overproduce, relative to

33In a later beer industry complaint, the Department of Justice highlighted language in AB’s Conduct Plan that described its
pricing as aiming to create “consistent and transparent competitive response” and to achieve the “highest level of followership”
(https://www.justice.gov/atr/case-document/file/486606/download [accessed December 3, 2023]) as evidence of collusive
intent. However, one could also view these statements as being consistent with AB wanting to make signaling as effective as
possible, and it is notable that the parts of the plan that have been publicly referenced do not discuss the types of threats to
punish that are an integral part of collusive strategies. In addition, as pointed out by a referee, the public record does not
indicate that any of the main elements of the Conduct Plan changed after the MCJV, which is consistent with our assumption
that the underlying nature of firm strategies remained the same.

34See Appendix D.12 of STY-WP for a more detailed analysis of how well conduct and price leadership models of collusion
explain the beer data.

https://www.justice.gov/atr/case-document/file/486606/download


26 AMERICAN ECONOMIC JOURNAL MONTH YEAR

static CI Nash, in order to lower their rivals’ future output. This is the opposite of what collusive
models will predict.
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