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1 Introduction

In many industries, producers’ marginal costs tend to fall with their accumulated past output

(learning-by-doing, LBD).1 LBD creates a tension between achieving productive efficiency

by concentrating production at a single producer, and sustaining meaningful competition,

which may require spreading production across multiple producers. A range of dynamic

models has been used to study whether, without regulation, market competition is likely to

be sustained and whether outcomes are likely to be efficient.

Two literatures making different assumptions about buyers have reached qualitatively

different conclusions. For example, Lewis and Yildirim (2002) (LY) consider a model where,

in each period, two suppliers that benefit from LBD compete to sell a single unit to a long-

lived, forward-looking monopsonist. LY’s model has a unique Markov Perfect equilibrium

where the monopsonist spreads its purchases between the suppliers to maintain competition,

even though this has the effect of raising prices.2 On the other hand, some well-known models

predict that a single seller may come to dominate the market when buyers are assumed to be

atomistic. For example, Cabral and Riordan (1994) (CR) consider a model where duopolists

sell differentiated products, LBD stops once a certain level of cumulative sales is reached,

and there is an infinite sequence of short-lived buyers with idiosyncratic preferences over the

sellers.3 CR show, using an example, that if it is possible for sellers to exit, equilibria exist

where the market may become a monopoly after initially intense competition. Besanko,

Doraszelski, and Kryukov (2014) (BDK1) and Besanko, Doraszelski, and Kryukov (2019)

(BDK2) show, using a richer version of CR’s model (the BDK model), that this type of

equilibrium exists for a broad range of parameters, and that these equilibria often co-exist

with equilibria where duopoly will be sustained and initial pricing is less aggressive. The

possibility of monopoly tends to lower the discounted surplus of buyers, even if the initial

1Industries with documented LBD include airframes (Alchian (1963), Benkard (2000)), chemicals (Lieber-
man (1984), Lieberman (1987)), semiconductors (Irwin and Klenow (1994),Dick (1991)), shipbuilding
(Thompson (2001), Thornton and Thompson (2001)), power plant construction (Zimmerman (1982), Joskow
and Rose (1985)) and hospital procedures (Gaynor, Seider, and Vogt (2005), Dafny (2005)).

2The monopsonist also seeks to maintain competition in the related models of Lewis and Yildirim (2005)
and Anton, Biglaiser, and Vettas (2014).

3CR also assume that sellers’ costs are observed and that buyers’ idiosyncratic preferences over sellers
are private information, whereas LY assume that each seller’s marginal cost contains an element that is
idiosyncratic and private information.
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buyers benefit from lower prices.

In practice, many industries with LBD, while not being monopsonies, have large, repeat

buyers who are likely both to care about future competition and to recognize that their pur-

chase choices may affect how competition evolves.4 In this article, we extend the BDK model

in a tractable way to cover cases that lie between atomistic buyers and monopsony. Specifi-

cally, we model buyers who expect to capture a particular share of future buyer surplus, and

therefore partially internalize how their purchase choices affect how market structure evolves.

We will describe an increase in this share as reflecting buyers behaving more “strategically”.

When monopoly will lower future buyer surplus, the response of strategic buyers will be to

adjust their purchase choices in ways that will tend to preserve competition, which raises

the question of whether equilibria where monopoly can occur will be eliminated.

We find that the multiplicity of equilibria is eliminated across a broad range of the

parameter space as buyers become more strategic. The equilibria that survive have a higher

probability, or certainty, of sustained long-run competition, and they tend to increase total

surplus even though a softening of competition may leave buyers worse off. These qualitative

results are sensible given that we expect strategic buyers to try to avoid monopoly outcomes,

but a novel and less expected finding is that we observe these changes even when the degree

of strategic behavior is fairly low. This reflects how, in the BDK model, a single sale may be

enough to prevent a firm from ever wanting to exit. For example, for the parameters that

BDK1 use as their leading example, there is a unique equilibrium with permanent duopoly

once each buyer expects to capture 15% of future buyer surplus.

Our method and our results make several contributions. First, allegations of anticom-

petitive conduct often come from industries where LBD, network effects or switching costs

can lead to an incumbent’s high current market share creating a lasting competitive ad-

vantage. The decision to initiate an investigation will often turn on whether the agency

determines that features of the industry, including the sophistication of buyers (who may be

large distributors, rather than final customers), are plausibly consistent with an exclusionary

equilibrium.5 While we consider a specific model of LBD that is not designed to capture the

4Even government procurement may not be a monopsony if different agencies or governments in different
jurisdictions purchase from the same suppliers.

5The Department of Justice’s report “Competition and Monopoly: Single-Firm
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features of any particular market, our results suggest that a theory of inefficient exclusion

may be less plausible when buyers are likely to be even moderately strategic.6

Second, we believe that our tractable formulation of how strategically buyers behave

may be usefully applied to models where dynamics arise from other sources, such as network

effects, or product durability or perishability. Existing models with strategic buyers (e.g.,

Gul, Sonnenschein, and Wilson (1986), Besanko and Winston (1990), Levin, McGill, and

Nediak (2010), Jerath, Netessine, and Veeraraghavan (2010), Hörner and Samuelson (2011),

Board and Skrzypacz (2016), Chen, Farias, and Trichakis (2019) for models with a monopolist

seller, and under oligopoly, Levin, McGill, and Nediak (2009)) allow buyers to choose when to

buy and do not consider what happens as the degree to which buyers are strategic varies. In

contrast, we vary buyer strategicness in a setting where buyers can influence future market

structure. Our formulation may also be useful in extending the empirical literature on

estimating games with dynamic competition (e.g., Benkard (2004) and Kim (2014) estimate

games where sellers benefiting from LBD are dynamic but buyers are static).

Third, we make a methodological contribution with a new algorithm to identify equilibria.

Following BDK, we use homotopies as our primary method for identifying Markov equilibria.

However, homotopies are not guaranteed to find all equilibria, so we also use a new recursive

algorithm that, under some plausible assumptions, can identify whether a particular type of

equilibrium that may result in monopoly exists. While backwards recursion is widely used

to solve finite horizon sequential games, or games that must end up in a single absorbing

state (for example, CR’s model when there is no exit), we believe that we are the first to

Conduct Under Section 2 of the Sherman Act” (https://www.justice.gov/atr/
competition-and-monopoly-single-firm-conduct-under-section-2-sherman-act) discusses the
issues involved in challenging allegedly anticompetitive conduct, although it was withdrawn as official policy
in 2009.

6While BDK do not advocate for any particular anti-predation screen or policy, they use their results to
suggest that predation is a real phenomenon that agencies should invest in trying to prevent. For example,
BDK1 (p. 892): “Our analysis suggests that guiding these expectations toward “good” equilibria by creating
a business environment in which firms anticipate that predatory pricing “does not work” (by issuing general
guidelines about how allegations of predation are handled, speaking out against predation, pursuing high-
profile cases, etc.) can be a powerful tool for antitrust policy.” and p. 894: “Behavior resembling conventional
notions of predatory pricing - aggressive pricing followed by reduced competition - arises routinely. This casts
doubt on the notion that predatory pricing is a myth and does not have to be taken seriously by antitrust
authorities.” We agree with both of these statements, and view our work as highlighting that, in assessing
alleged predation, it may be more important than previously recognized to account for how strategically
buyers behave.
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use it to test whether or not a particular type of equilibrium exists.7

The rest of the paper proceeds as follows. Section 2 describes the extended version of

BDK’s model. Section 3 explains why strategic buyer behavior changes equilibrium outcomes

using BDK’s baseline parameters. Section 4 shows that we see qualitatively similar patterns

for different degrees of LBD and different degrees of product differentiation. Sections 3 and

4 find equilibria using homotopies. Section 5 provides supporting evidence about how strate-

gic buyer behavior affects the types of equilibria that exist using our recursive algorithm,

and examines the robustness of our results to changing several of the model’s assumptions.

Section 6 concludes. The Online Appendices contain details of the methods used, as well as

additional figures and results.

2 Model

In this section we briefly describe the model. BDK1 and BDK2 provide additional motiva-

tion.

Overview. Two ex-ante symmetric but differentiated sellers and a set of symmetric strate-

gic buyers play an infinite horizon, discrete time, discrete state dynamic game. Each seller

i has a publicly observed state variable ei, and is either a potential entrant (ei = 0), or

active with ei ∈ {1, 2, ...,M}, which represents the seller’s “know-how”. Every period, active

sellers set prices to compete for the unit demand of a buyer. An active seller’s marginal cost

is κρlog2(min(ei,m)) where ρ ∈ [0, 1] is the “progress ratio”. For states below m, a doubling

of know-how implies a 100(1 − ρ)% marginal cost reduction, but there is no marginal cost

reduction when know-how increases above m. Marginal costs are constant for ei ≥ m, and

ei ≤ M constrains the state space to be finite. We follow BDK in assuming κ = 10, M = 30,

m = 15 and a discount factor of β = 1
1.05

.

A buyer’s flow indirect utility if it buys from seller i is vi − pi + σϵi, where v1 = v2 = 10,

7We thank a referee for pointing out the novelty of our approach. Iskhakov, Rust, and Schjerning (2016)
show that recursive algorithms can be used to identify equilibria in stochastic Markov equilibrium games
where all movements through the state space must satisfy a directional property. One can view our approach
as using recursion to identify the existence of a specific type of equilibrium where movements through parts
of the state space are directional.

5



Figure 1: Within-Period Timing

a. Buyer
selected

from pool.
Its tastes
are private
information.

b. Active sellers
simultaneously

set prices.

c. Buyer
makes

purchase
choice.

d. Successful
seller’s

experience
increases
by 1

(up to M).

e. Private info.
seller entry

costs and scrap
values revealed

and simultaneous
entry/exit
choices.

f. State space
evolves
given

entry/exit
choices.

pi is i’s price, and σ parameterizes the degree of product differentiation. The no purchase

option (0) has v0 − p0 = 0. We model strategic buyers by assuming that the chosen buyer

in each period is drawn, with replacement, from a pool of symmetric potential buyers, and

that each buyer expects to be the buyer in any future period with probability 0 ≤ bp ≤ 1.

The ϵis are private information Type I extreme value payoff shocks which are i.i.d. across

buyers, options and periods, and do not depend on a buyer’s past purchases. Buyers and

sellers cannot sign multi-period contracts, and we ignore the effects that possible donwstream

competition between buyers may have on purchase behavior.

Timing, State Transitions and Entry/Exit. Figure 1 summarizes within-period tim-

ing. Active sellers simultaneously set prices, without knowing the buyer’s ϵs. A sale raises

a seller’s state by 1, unless it is already at M . There is no know-how depreciation. Sellers

make simultaneous exit and entry choices. Sunk entry costs and scrap values are drawn

independently from symmetric triangular distributions, with CDFs Fenter and Fscrap, and

supports [S − ∆S, S + ∆S] and [X − ∆X , X + ∆X ], respectively, with ∆X ,∆S > 0. The

finite supports mean that entry may be certain or never optimal, and that exit may never be

optimal.8 We will use BDK’s baseline parameter values, S = 4.5, X = 1.5, ∆S = ∆X = 1.5.

Equilibrium. We consider symmetric and stationary Markov Perfect Nash equilibria (MPE,

Ericson and Pakes (1995), Maskin and Tirole (2001)). Existence of at least one MPE follows

8When the support of the scrap value is wide enough, a seller that draws a low scrap value will always
prefer to remain in the market.
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from Doraszelski and Satterthwaite (2010). An equilibrium will consist of, for each state

e = (e1, e2), active seller prices (p(e)) and seller continuation probabilities (λ(e)), and the

values of the sellers and a representative buyer in the pool defined at the start of the period

(V S(e), V B(e)) and before private entry/exit decisions are taken (V S,INT (e), V B,INT (e)).

Assuming, for simplicity, that σ = 1, equilibrium values and strategies will solve the

following equations, where symmetry implies that we can express the equations in terms of

seller 1’s strategies and values only.9,10

Beginning of period value for seller 1 (V S
1 ):

V S
1 (e)−D1(p(e), e)(p1(e)− c1(e1))−

∑
k=0,1,2

Dk(p(e), e)V
S,INT
1 (e′k) = 0, (1)

where e′1 = (min(e1 + 1,M), e2), e
′
2 = (e1,min(e2 + 1,M)) and e′0 = (e1, e2), i.e., the states

that the game will transition to if there is a purchase from seller 1 or seller 2, or no purchase,

respectively. The sale probabilities, D, will be defined below.

Value for seller 1 before entry/exit stage (V S,INT
1 ) :

V S,INT
1 (e)−

 βλ1(e)λ2(e)V
S
1 (e) + βλ1(e)(1− λ2(e))V

S
1 (e1, 0)+

(1− λ1(e))E(X|λ1(e))

 = 0, (2)

for e = (e1, e2) where e1, e2 > 0, with similar equations when a seller is a potential entrant.

E(X|λ1(e)) is the expected scrap value when seller 1 chooses to exit.

First-order condition for seller 1’s price (p1) if e1 > 0:

D1(p(e), e) +
∑

k=0,1,2

∂Dk(p(e), e)

∂p1
V S,INT
1 (e′k) + (p1(e)− c1(e1))

∂D1(p(e), e)

∂p1
= 0 (3)

9For example, symmetry implies that λ2(e1, e2) = λ1(e2, e1), p(e) = (p1(e1, e2), p1(e2, e1)), V
B(e2, e1) =

V B(e1, e2) and V B,INT (e2, e1) = V B,INT (e1, e2).
10The Bellman equation at the price-setting stage is V S

1 (e) = maxp1 D1(p1, p2(e), e)(p1(e) − c1(e1)) +∑
k=0,1,2 Dk(p1, p2(e), e)V

S,INT
1 (e′k), from which equation (1) can be derived by substituting in the prices

implied by the first-order conditions. Similarly, equation (2) can be derived from a Bellman equation that
determines the continuation choice.
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Seller 1’s continuation probability in entry/exit stage (λ1):

λ1(e)− Fenter(β [λ2(e)V1 (1,max(1, e2)) + (1− λ2(e))V1 (1, 0)]) = 0 if e1 = 0, (4)

λ1(e)− Fscrap(β [λ2(e)V1 (e1,max(1, e2)) + (1− λ2(e))V1 (e1, 0)]) = 0 if e1 > 0. (5)

For buyers’ their values and choice probabilities are defined by the following equations.

Beginning of period representative buyer value (V B) :

V B(e)− bpσ log

( ∑
k=0,1,2

exp

(
vk − pk + V B,INT (e′k)

σ

))
− (1− bp)

∑
k=0,1,2

Dk(p(e), e)V
B,INT (e′k) = 0,

(6)

where the last term is the continuation value for a non-chosen buyer, and the second term

is the expected value, reflecting both the expected flow utility and the continuation value,

for a chosen buyer.

Value for representative buyer before entry/exit stage (V B,INT ) :

V B,INT (e)− β

(∑
e′

Pr(e′|e, λ1(e), λ2(e))V
B(e′)

)
= 0. (7)

where e′ are the states the game can evolve to depending on the entry and exit choices of

the sellers.

Choice/sale probabilities (Di(p, e)), including for the outside option (i = 0):

Di(p, e) =
exp

(
vi−pi+V B,INT (e′i)

σ

)
∑

k=0,1,2 exp
(

vk−pk+V B,INT (e′k)

σ

) . (8)

Discussion of bp. bp is a buyer’s expected share of future buyer surplus, or, equivalently,

the proportion of a purchase choice’s effect on future buyer surplus that a buyer internalizes.

If bp = 0, V B = V B,INT = 0 for all states and the model is equivalent to BDK. If bp = 1,

the model is consistent with LY’s assumption of a single repeat buyer. If 1
bp

is an integer,

the model is consistent with a pool of this number of symmetric buyers from which a buyer
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is chosen with replacement each period (e.g., 5 buyers if bp = 0.2). However, we will vary

bp continuously, and one can rationalize values where 1
bp

is not an integer using a behavioral

interpretation where all buyers over- or under-estimate their future importance.

bp only affects purchase probabilities in states where the purchase choice that is made

can affect the state that the industry will be in the next period. In particular, the V B,INT

terms will cancel in (8) in states (M, 0) and (M,M) and a buyer will maximize its current

flow utility.

Types of Equilibria. It is useful to distinguish different types of equilibria. Following

BDK, equilibria where sellers never exit from duopoly states are “accommodative”.

Definition An equilibrium is accommodative if λ1(e1, e2) = λ2(e1, e2) = 1 for all states

(e1, e2) where e1 > 0 and e2 > 0.

As active sellers always have a positive probability of making a sale, a game that begins

with duopoly must end up in absorbing state (M,M) when an equilibrium is accommodative.

It is theoretically possible for more than one accommodative equilibrium to exist, although

we have never found an example of this type of multiplicity.11

Non-accommodative equilibria may take many forms. For policy purposes, one might

be particularly interested in equilibria where one seller can become a permanent monopolist

(i.e., (M, 0) or (0,M) are absorbing states that can be reached with positive probability).

We will pay particular attention to a subset of this type of equilibria.

Definition A symmetric equilibrium has the“Some Exit Leads to Permanent Monopoly”

(SELPM) property if there is some state e∗1 > 1, where (i) λ1(e1, e2) = 1 for all e1 ≥ e∗1
12 and

∀e2, including e2 = 0; (ii) λ2(e
∗
1, e2) < 1 for some e2 where 0 < e2 < e∗1, and λ2(e1, 0) = 0

for all e1 ≥ e∗1.

In words, an equilibrium is SELPM if the leader will not exit for the rest of the game

once it has attained a certain level of know-how (e∗1) (condition (i)), but there is a non-zero

11However, the form of demand implies that accommodative equilibrium prices in state (M,M) must be
unique for all bp.

12Note, that as we are only looking at symmetric equilibria, this condition implies that λ2(e1, e2) = 1 for
all e2 ≥ e∗1.

9



probability that a laggard seller 2 will exit in which case there will be no re-entry (condition

(ii)). Therefore, once e∗1 has been reached the game will either evolve, with both sellers

accumulating know-how, to (M,M), and stay there, or seller 2 may exit in which case the

game will evolve, with seller 1 accumulating know-how, to (M, 0), and stay there.13 As noted

previously, purchase choices do not change the state in these states, so firms will set static

Nash prices in these states for all values of bp.14

In Sections 3 and 4 we will note that, for the parameters considered, all of the non-

accommodative equilibria identified using homotopies are SELPM. In Section 5.1 we will use

a recursive algorithm that can identify if SELPM equilibria exist.

3 The Effects of Strategic Buyers on Equilibrium Out-

comes: An Illustration

In this section, we use the parameter values assumed by BDK in their leading example,

including σ = 1 and ρ = 0.75, to examine how varying bp from 0 to 1 changes incentives

and equilibrium outcomes.15 BDK1 argue that these parameters are empirically plausible,

although they are not intended to match any particular industry.16 We will call these the

“illustrative parameters”. The methods that we use to find equilibria are described in Online

Appendix A.

Table 1 shows equilibrium strategies, for a subset of states, for the three equilibria (“base-

line equilibria”) that both our analysis and BDK identify when bp = 0. One equilibrium is

accommodative and the other two are SELPM.17 The three equilibria differ only in states

where at least one firm is in states 0 or 1, with lower SELPM duopoly prices, consistent with

the sellers recognizing that a seller that has made no sales may exit.

13In a SELPM equilibrium the game must eventually end up in one of these two absorbing states unless
(0, 0) is also an absorbing state, in which case the game could end with a completely inactive industry. We
have not found an equilibrium where (0, 0) is absorbing for any of the parameterizations considered in this
paper.

14Note that a monopolist would still set a static price in state (M, 0) even if there was a possibility of
re-entry so that (M, 0) was not absorbing.

15All of the other parameters take the values noted in Section 2.
16Ghemawat (1985) reports the average estimated ρ across 97 empirical studies to be 0.85, with 79 estimates

between 0.75 and 0.9.
17Any e1 = 2, .., 30 meets the SELPM criteria in both cases.
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BDK measure long-run market structure using the long-run HHI (HHI∞)

HHI∞ =
∑

e ̸=(0,0)

µ∞(e)

1− µ∞(0, 0)
HHI(e) where HHI(e) =

∑
i=1,2

(
Di(p, e)

D1(p, e) +D2(p, e)

)2

where µ∞(e) is the probability that a game beginning in state (1,1) will be in state e

after 1,000 periods, approximating the long-run, given equilibrium strategies. The long-

run expected price (P∞) is defined similarly with the sale probabilities weighting the prices

of the active sellers. In an accommodative equilibrium µ∞(M,M) is essentially one, so

HHI∞ = 0.5 and P∞ = 5.24. In either of the SELPM equiibria, the game may alternatively

end up in absorbing states (M, 0) or (0,M), where the HHI(e) is 1 and prices are 8.54, so

thatHHI∞ and P∞ reflect the probabilities of permanent duopoly and permanent monopoly

outcomes.

Increasing bp. We now consider the effect of increasing bp. We first consider buyer be-

havior, and how changes in buyer behavior affect seller incentives, and then equilibrium

outcomes.

As λ2(e1, e2 > 1) = 1 in the SELPM equilibria, a buyer in a state (e1 > 1, 1) can guarantee

long-run duopoly if it buys from seller 2 (the laggard). The large difference (79.58) in the

present value of buyer surpluses in the absorbing duopoly and monopoly states, (M,M) and

(M, 0), implies that the incentive for even a moderately strategic buyer to buy from the

laggard may be substantial.18

Figure 2(a) shows seller 2’s demand in state (3,1), holding seller strategies fixed at their

baseline equilibrium values, for different values of bp.19 As bp rises, seller 2’s demand increases

significantly in the SELPM Mid-HHI and High-HHI equilibria even for low values of bp.20

18Recall that the value of bp does not affect equilibrium prices in absorbing states. The present value of

buyer surplus in state (M,M) is 114.57 ( ln(2∗exp(10−5.242)+exp(0))

1− 1
1.05

) and the present value in state (M, 0) is

34.99 ( ln(exp(10−8.543)+exp(0))

1− 1
1.05

). Of course, the fact that prices in states like (4, 1) are lower than in states

such as (4, 2) in the SELPM equilibria partially offsets this incentive.
19The figure is drawn varying p2(3, 1) only in the current period i.e., the buyer assumes that p2 will have

its baseline equilibrium value if the game is in state (3,1) in any future period. p1, λ1 and λ2 are held fixed
at their baseline equilibrium values in all states.

20There is also a small shift in demand towards the laggard in the accommodative equilibrium as accom-
modative prices are lower when states are more symmetric.
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For example, at the High-HHI baseline equilibrium price (4.15), the probability that seller 2

wins the sale increases from 0.027 to 0.306 as bp increases from 0 to 0.1 (seller 1’s probability

falls from 0.973 to 0.694).

This shift in buyer demand increases seller 2’s value. Figure 2(b) shows V S
2 (3, 1) holding

seller strategies fixed at their baseline equilibrium values but allowing demand to change. If

βV S
2 (3, 1) is greater than (X +∆X) (maximum scrap value) then seller 2 will never choose

to exit in state (3,1). The buyer-demand adjusted V S
2 (3, 1)s for the High-HHI and Mid-HHI

equilibria cross this threshold when bp ≈ 0.16 and 0.05 respectively.

The change in demand also affects the sellers’ pricing incentives. BDK define two dynamic

incentives for a seller.

Definition Seller 1’s advantage-building (AB) incentive is V S,INT
1 (e1+1, e2)−V S,INT

1 (e1, e2),

and its advantage-denying (AD) incentive is V S,INT
1 (e1, e2)− V S,INT

1 (e1, e2 + 1).

BDK identify the advantage-denying incentive as particularly important in sustaining equi-

libria that can result in monopoly. Figure 2(c) shows how seller 1’s incentives change in

state (3, 1) as bp increases, holding seller strategies fixed so that changes reflect only changes

in demand. Even though seller 2 is still likely to exit if it does not make the sale, seller 1’s

High-HHI equilibrium AD incentive, which is large when bp = 0, falls rapidly as bp increases,

reflecting how seller 2 is more likely to make a sale in future periods if it remains. The other

incentives decline only slightly, and more linearly, as bp increases.

Figure 2(d)-(f) shows state (3,1) prices, seller 2’s continuation probability in state (3,1)

and the HHI∞s implied by equilibria when we follow the equilibrium correspondence using

bp-homotopies from each baseline equilibrium (see Online Appendix F.1 for what happens

to incentives). The High (H)- and Mid (M)-HHI baseline equilibria lie at the two ends of

a loop (i.e., the homotopies trace the same path in opposite directions) in the equilibrium

correspondence that does not extend beyond bp = 0.142 (approximately 7 symmetric sellers).

All of the equilibria on this loop are SELPM. The homotopy path from the accommodative

equilibrium extends to bp = 1, and all equilibria on this path are accommodative (i.e., λ = 1

for all duopoly states, and HHI∞ = 0.5). We only ever find one accommodative equilibrium

so that we have a unique equilibrium for bp > 0.142. We will provide additional evidence
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Figure 3: Present Value of Surplus for the Illustrative Parameters along bp-Homotopy Paths.
H = High-HHI, M = Mid-HHI and A = Accommodative Baseline Equilibria. The black line
traces the homotopy path from the Accommodative (A) baseline equilibrium. The red line
traces the overlapping paths from the High-HHI (H) and Mid-HHI (M) baseline equilibria.

(a) PV Total Surplus. (b) PV Consumer/Buyer Surplus.

that there are no SELPM equilibria for bp > 0.142 in Section 5.1. The decline in seller 1’s

demand causes equilibrium prices to initially fall as bp increases from zero from the H and M

equilibria, but sellers’ prices rise on the path from the accommodative equilibrium as both

sellers’ incentives to gain an advantage are weakened by how strategic buyers tend to favor

the laggard.

Figure 3 shows what happens to the present value of equilibrium expected total surplus

(PV TS) and buyer surplus (PV CS) for a game starting in state (1,1). The long-run values

of both measures are higher in the accommodative equilibrium, but lower initial prices can

raise present values in the SELPM equilibria. The accommodative equilibria have higher

PV TS, but, when multiple equilibria exist, the PV CS of the accommodative equilibrium

lies between the PV CSs of the SELPM equilibria.21 Therefore, strategic buyer behavior can

actually eliminate a type of equilibrium that produces more surplus for buyers, and, within

the type of equilibrium that survives, increasing bp can lower buyer welfare, as prices rise,

and lower total surplus, as discounted production costs increase when the sellers are kept

21Online Appendix F.2 further explores the welfare patterns by examining what happens to the number of
sales and production costs, in the long-run and in the first ten periods of the game. Even though one seller
is likely to exit, expected surplus is highest in the High-HHI equilibrium in the first ten periods because
duopoly prices are so low.
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relatively symmetric (see Online Appendix Figure F.3(a)).22

4 Results Across Values of ρ and σ

In this section, we examine whether strategic buyer behavior changes equilibrium outcomes

in similar ways for different values of ρ, the progress ratio and σ, the degree of product

differentiation. Lower σ reduces long-run duopoly prices and profits, which tends to lead to

more exit, while slightly increasing monopoly profits, which may increase the competition to

become a monopolist. Lower ρ tends to raise duopoly profits but it also gives the seller that

makes the first sale a larger cost advantage, so that the effect on the incentives of a laggard

to exit are ambiguous. We find equilibria by running σ- and ρ-homotopies for different,

discrete, values of bp, holding all of the other parameters fixed at their illustrative values.23

Figure 4(a) and (b) show the values of HHI∞ and P∞ implied by the equilibria on σ-

homotopy paths (ρ = 0.75) for 11 different values of bp.24 All of the equilibria identified are

accommodative or SELPM, and we only ever find one accommodative equilibrium for given

parameters. The “ALL bp” lines identify outcomes associated with accommodative equilibria

that exist for all 11 values of bp that we consider.25 For bp = 0 (black solid line, shown on its

own in Online Appendix F.3 for clarity), we find a single, accommodative equilibrium when

σ > 1.12 (high differentiation), but for lower σ, we find that at least one equilibrium exists

where a duopolist may exit and for some values there are many equilibria. For example, there

are 23 equilibria for σ = 0.8, all of which have HHI∞ ≥ 0.95 and very similar P∞ > 8.5.

When accommodative and SELPM equilibria coexist, the accommodative equilibrium has

22These results are potentially relevant for whether buyers who do not compete downstream might have
an incentive to merge before the game starts in order to prevent the upstream industry possibly ending up
in monopoly. Even ignoring possible costs of agreeing to a merger, there would be no incentive for all buyers
to merge in this example if, absent a merger, the Mid-HHI equilibrium would be played. If the High-HHI
equilibrium would be played, there would not be an incentive to merge to monopsony, as this would lower
PV CS, and it might not be attractive for a subset of buyers to merge, without a subsidy from the remaining
buyers who might capture many of the benefits from the merger.

23Varying other parameters may also generate interesting effects. However, we think it is natural to focus
on the progress ratio, which measures the extent of LBD, and product differentiation, which distinguishes
the CR and BDK models from earlier analyses of LBD and market structure, such as Dasgupta and Stiglitz
(1988).

24For all bp, we begin the path at σ = 1.3 where we find what appears to be a unique equilibrium by
solving the equilibrium equations.

25This does not imply that the accommodative equilibria are identical in all states for all values of bp, just
that these equilibria generate essentially identical values of HHI∞ and P∞.
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Figure 4: Equilibrium HHI∞, P∞ and Present Value of Surplus on σ or ρ-Homotopy Paths
for Different bp, with Other Parameters at their Illustrative Values. Surplus in panels (e) and
(f) is measured relative to surplus in the accommodative equilibrium when bp = 1, and solid
(dashed) lines indicate accommodative (non-accommodative) equilibria. The solid “ALL bp”
lines indicates where lines for all of the bp values that we consider (0, 0.01, 0.025, 0.05, 0.1,
0.2, 0.3, 0.5, 0.7, 0.9 and 1) would overlap.

(a) σ-Homotopies: HHI∞. (b) σ-Homotopies: P∞.

(c) ρ-Homotopies: HHI∞. (d) ρ-Homotopies: P∞.

(e) ρ-Homotopies: PV CS. (f) ρ-Homotopies: PV TS.
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the lowest P∞.

The σ-homotopy paths unwind as bp rises, which tends to reduce multiplicity but also

leads to accommodative equilibria existing for lower σ. The probability of monopoly, reflected

in HHI∞, in the SELPM equilibria tends to fall. While multiplicity was eliminated when

bp > 0.142 for σ = 1, we find a similar result, but with a higher bp threshold, when there is

less differentiation. For example, we find a unique (accommodative) equilibrium for σ = 0.8

only when bp ≥ 0.5.

Figures 4(c) and (d) show similar plots for ρ-homotopy paths, with the other parameters

at their illustrative values, including σ = 1. The x-axis is ordered so that LBD increases

to the right. We find one accommodative equilibrium for all ρ and for all bp. All identified

non-accommodative equilibria are SELPM. For ρ > 0.803, which is very relevant empirically

(see footnote 16), we find only an accommodative equilibrium for all bp. For lower ρ, we find

that SELPM and accommodative equilibria co-exist when bp is small enough. For bp = 0,

the SELPM equilibrium correspondence has (in this dimension) two disconnected loops. The

loop with the highest HHI∞/P∞s is eliminated for bp ≥ 0.05, and the second loop contracts

as bp rises, disappearing entirely for bp > 0.3, so that only accommodative equilibria remain.

Figures 4(e) and (f) show PV TS and PV CS for the ρ-homotopies (Online Appendix

F.4 shows the figures for the σ-homotopies). The patterns are broadly consistent with the

illustrative parameter example. When accommodative and SELPM equilibria coexist, the

accommodative equilibrium has higher PV TS, while its PV CS lies between the values of

the SELPM equilibria. BDK2 argue that equilibria are quite efficient in the BDK model,

and this conclusion tends to be strengthened when buyers are strategic in the sense that less

efficient types of equilibria are eliminated. Increasing bp lowers PV CS in accommodative

equilibria, as initial price competition is softened, and it tends to lower PV TS for ρ ≤ 0.9.

For high ρ the pattern is different, as costs are sufficiently high that the probability that non-

strategic buyers make no purchase is not negligible, which inefficiently slows the industry’s

progress down, but this probability tends to fall when buyers are strategic.26

26For example, when σ = 1, ρ = 0.925 and bp = 0.2, the probability that the buyer chooses the outside
option in state (1, 1) is around 0.272. When bp = 1, this probability falls to 0.241 (a 10% decrease).
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5 Robustness Checks, Extensions and Discussion

The results presented so far suggest that, for empirically relevant progress ratios, moderately

strategic buyer behavior eliminates the multiplicity of equilibria that is common when buyers

are atomistic and, in particular, tends to eliminate equilibria that are likely to result in long-

run industry domination by a single seller. However, the limitations of the method used

to find equilibria and the simplicity of the model may provide reasons for caution. In this

section, we explore and discuss the robustness of our results.

5.1 Alternative Method for Identifying SELPM Equilibria

Homotopies are only guaranteed to be able to find all equilibria under particular restrictions

that our model does not satisfy (Judd, Renner, and Schmedders (2012)), so our results could

potentially reflect a systematic failure to find non-accommodative equilibria when buyers are

strategic. As a check, we therefore use an alternative algorithm that can identify whether

SELPM equilibria exist for given parameters, exploiting the feature that, in a SELPM equi-

librium, once a state e∗1 has been reached, the state will transition to either (M,M) or (M, 0)

without returning to a previously visited state. This feature implies that an algorithm that

works backwards from (M,M) and (M, 0) will be able to find an e∗1 state, if one exists, as

long as we can find all SELPM-consistent equilibria in a given state given continuation val-

ues if a state changes. Online Appendix D describes the algorithm and the conditions under

which it will work.27 Online Appendix E describes a simpler algorithm that can identify if

an accommodative equilibrium exists.

To be clear, the algorithm cannot determine if non-SELPM non-accommodative equilibria

exist. However, as all of the non-accommodative equilibria identified by the Section 3 and

4 homotopies are SELPM, proving that no SELPM equilibra exist for given parameters

provides, at least, highly suggesting evidence that an accommodative equilibrium, if one

exists, is likely unique.

Figure 5 shows the types of equilibria that we find exist for a grid of values of (bp, ρ, σ)

27Note that the algorithm does not identify how many SELPM equilibria there may be, partly because
the recursive algorithm cannot find equilibrium strategies in parts of the state space where there can be exit
followed by re-entry.
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with the other parameters at their illustrative values. We highlight three results. First, for

ρ = 0.75 or σ = 1, the results are completely consistent with those presented in Sections 3

and 4 suggesting that homotopies are an effective way to find SELPM and accommodative

equilibria for all bp. Second, there is a small set of parameters with no LBD and low

differentiation (ρ = 1, σ ≤ 0.65) where equilibria must be non-accommodative and non-

SELPM. For these parameters, the present value of perpetual duopoly profits in state (M,M)

is less than the highest possible scrap value, so (M,M) cannot be an absorbing state. Third,

for the remaining combinations, the qualitative pattern is consistent with our earlier findings.

Accommodative and SELPM equilibria co-exist over a wide range of the parameter space

when bp = 0. Accommodative (SELPM) equilibria are supported for wider (narrower) ranges

of parameters as bp rises. However, for 0.2 < ρ < 0.9, SELPM equilibria can exist even when

bp = 1 when there is minimal product differentiation.

5.2 Mixture of Strategic and Non-Strategic Buyers.

The Section 2 model assumes that all buyers are equally strategic, whereas it may be more

common that there are some repeat purchasers and some buyers that expect to be in the

market only once. To investigate how our results may change if strategic and non-strategic

buyers coexist, we solve, for the illustrative parameters, an extended version of our model

with four symmetric strategic buyers.28 Nature chooses a non-strategic buyer each period

with probability (1−γ), and otherwise randomly chooses one of the strategic buyers. Sellers

can set different prices depending on the buyer’s type. If γ = 0 then the model is equivalent

to the original BDK model, with prices equal to those in the baseline equilibria. The details

of this extension, and the next three extensions, are provided in Online Appendix G.

Figure 6(a) shows the HHI∞ implied by the equilibria on γ-homotopy paths that start

from the γ = 0 equilibria. We find accommodative equilibria for all γ and non-accommodative

equilibria, all of which are SELPM, when γ ≤ 0.79. If γ = 0.79, each strategic buyer expects

to be the buyer with probability γ
4
= 0.198 in future periods. This is greater, but not too

much greater, than the threshold probability of 0.142 which eliminated SELPM equilibria

in the Section 2 model, suggesting that the existence of non-strategic buyers may require

28Patterns are qualitatively similar for different numbers of strategic buyers.
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Figure 6: Equilibrium Expected Long-Run HHI (HHI∞) for Various Extensions.

(a) Mixture of Strategic and Non-Strategic
Buyers: γ-Homotopies. Red line indi-
cates paths from non-accommodative equilib-
ria. Black line indicates path from accommoda-
tive equilibrium.

(b) Buyers with Different Seller Preferences: θ-
Homotopies for bp = 0, 0.05 and 0.1. The “ALL
bp” line indicates where lines for all of the bp

values shown in the diagram (0, 0.05, 0.1), as
well as values of bp above 0.15, would overlap.

(c) Bargaining as a Constraint on Monopoly
Power: bp-Homotopies. τ is the Nash bargain-
ing parameter that indicates the buyer’s share
of surplus. Thye “ALL τ” lines indicates where
lines for values of τ = 0, 0.1, 0.2,..., 0.9, 1 would
overlap.

(d) Variable Buyer Discount Factors: βB-
Homotopies for bp = 1. Red line indicates paths
from non-accommodative equilibria. Black line
indicates path from accommodative equilib-
rium.
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strategic buyers to behave “more strategically” to eliminate SELPM equilibria.

5.3 Buyers with Persistent Preferences Over Sellers.

The Section 2 model also assumes that all buyers have identical preferences over sellers

up to iid preference shocks. In reality, some buyers may have systematic preferences for a

particular seller (for example, because of geographic location or compatibility with existing

equipment). We therefore extend the Section 2 model by assuming that there are equal

numbers of two types of buyers. Type 1’s indirect utility when it purchases from sellers 1

and 2 respectively are v1 +
θ
2
− p1 + ϵ1 and v2 − θ

2
− p2 + ϵ2. For type 2 buyers, the signs on

the θ
2
terms are reversed. Sellers recognize the type of the buyer before setting prices. The

model is equivalent to Section 2 model when θ = 0. Intuitively, as θ increases it will become

more attractive for a seller that has a marginal cost disadvantage to remain in the market

as it will still have an advantage when selling to half of the market.

Figure 6(b) shows, for the illustrative parameters, the HHI∞ implied by equilibria on

θ-homotopy paths that start at the θ = 0 equilibria for bp = 0, 0.05 and 0.1, values that

support multiple equilibria when θ = 0.29 There are accommodative equilibria for all θ, but

the non-accommodative equilibria, all of which are SELPM, are eliminated for relatively low

θs, especially when buyers are strategic.30 Therefore, less strategic behavior may be required

to generate our qualitative results than in our simple model when buyers have persistent

preferences.

5.4 Bargaining as a Constraint on Monopoly Power.

When a low know-how laggard may exit, a strategic buyer has an incentive to buy from

the laggard in order to reduce the probability that it will be exposed to monopoly power in

future periods. However, at least two considerations might make a large buyer less concerned

about a monopoly outcome. First, in the spirit of Aghion and Bolton (1987), Rasmusen,

29The interpretation of bp is still the unconditional probability with which a given buyer expects to be the
chosen buyer in any future period, so that a model with a single buyer of each type would have bp = 0.5.

30To put the magnitude of θ in context, a seller’s marginal cost drops by 1.5 with its first sale for these
parameters.
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Ramseyer, and Wiley (1991) and Segal and Whinston (2000), the leader might sign multi-

period contracts with large buyers, which simultaneously protect these buyers from future

monopoly power while also making it less profitable for the laggard to remain in the market.

We view the relaxation of the period-by-period price competition assumption of BDK, CR

and LY to allow for contracts as an important next step in this research, although contracts

may provide imperfect protection from a monopolist when products are complicated and/or

customized.

Second, even if we assume period-by-period competition, it is possible that a buyer would

be able to negotiate with a monopoly seller rather than being faced with a take-it-or-leave-

it price. If negotiations partially protect buyers this could make them less concerned with

preserving competition, but it could also provide a leader with less incentive to try to become

a monopolist. To provide a preliminary assessment of how these forces play out, we adjust the

Section 2 model by assuming that, in monopoly states, a strategic buyer and a monopolist

play a complete information Nash bargaining game (i.e., the buyer ϵ preferences become

observed) where, in each period, the buyer receives a share τ of the surplus from trade. The

change in the assumed information structure means that BDK’s model is no longer a special

case even when bp = 0. However, as a comparison, the expected transaction price in state

(30,0) is approximately the same as in the baseline equilibria when τ is slightly greater than

0.2.

Figure 6(c) shows, for the illustrative parameters, the HHI∞ implied by equilibria on

bp-homotopy paths for different values of τ . An accommodative equilibrium exists for all

considered (τ , bp) combinations, and we find only accommodative equilibria when τ ≥ 0.6.

When a monopolist seller and a buyer have equal bargaining power (i.e., τ = 0.5), we find

only accommodative equilibria when bp ≥ 0.08, which is a lower threshold than we identified

for our basic model.
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5.5 Buyer Discount Factors.

It may be tempting to believe that bp can also be interpreted as buyer patience, as the

bp = 0 equilibria would still be equilibria if there was a myopic monopsonist.31 However,

increasing a buyer discount factor (call this βB) from zero has a different effect to increasing

bp because, for low βB, the buyer will care primarily about surplus in the immediate future,

and, in non-accommodative equilibria, this is often increased by buying from the leader.

This is illustrated in Online Appendix Figure G.1 which shows that, for baseline equilibrium

seller strategies, increasing βB when bp = 1 tends to move demand away from seller 2 in

state (3,1) in the Mid- and High-HHI equilibria, until βB ≥ 0.5, reflecting how prices are

significantly lower in state (4,1) than state (3,2). This is the opposite of the pattern when

bp increases from zero (Figure 2(a)).

Figure 6(d) shows the HHI∞ implied by equilibria on the βB-homotopy paths from the

baseline equilibria when we assume bp = 1, limit βB ≤ β = 1
1.05

and other parameters have

their illustrative values. Accommodative and non-accommodative equilibria coexist until βB

is almost equal to β, which is a qualitatively different pattern to the elimination of these

equilibria for low bp in our model. While there may be industries where buyers are less

patient than sellers, it seems plausible that buyers and sellers have similar time preferences

in most industries where LBD has been identified, even if each buyer knows it will only

account for a proportion of future demand.

5.6 Forgetting.

Our model follows CR and BDK in assuming that sellers can only lose know-how by exiting

the industry. However, Benkard (2000) and Thompson (2007) provide empirical evidence

that know-how can also depreciate when production slows (“forgetting”). Besanko, Doraszel-

ski, Kryukov, and Satterthwaite (2010) (BDKS) show that a model where duopolists can

stochastically forget but cannot exit also has multiple equilibria that result in different ex-

pected levels of long-run industry concentration. One might expect strategic buyer behavior

to have less effect on equilibria in the BDKS model because depreciation may eliminate the

31We thank David Besanko for asking a question that led us to realize that one should not interpret bp in
terms of buyer patience.
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know-how that a laggard gains through a sale. However, our working paper, Sweeting, Jia,

Hui, and Yao (2021) shows that for many values of ρ and alternative forgetting probabilities,

multiplicity of equilibria and equilibria that tend to lead to the most asymmetric long-run

market structures are eliminated for lower values of bp than in the BDK model, although we

also identify small groups of parameters where increases in bp can increase the number of

equilibria.

6 Conclusion

We have provided a tractable framework for analyzing how equilibrium strategies and market

outcomes change when buyers partially internalize how their purchase decisions affect future

surplus, in the context of a well-known dynamic model where sellers benefit from LBD. Our

framework allows for an investigation of what happens between the polar cases of short-lived

atomistic buyers and monopsony, motivated by the fact that many industries where cost-side

dynamics are important have at least some large and repeat customers. Our main finding

is that, for many empirically relevant parameters, even moderately strategic buyer behavior

can eliminate equilibria where the market may come to be dominated by a single firm.

We view this result as having implications for anti-predation policies that have to strike a

delicate balance between the potentially large benefits of preserving competition and the risk

that intervention will deter pro-competitive pricing. Our results suggest that the existence

of equilibria where an industry may become a monopoly will depend on the incentives of

customers to offset predatory behavior, and it may be appropriate to treat claims of predation

more skeptically when there are several large, repeat customers.

We believe that our framework can be usefully applied to investigate the effects of strate-

gic behavior in settings where incumbents’ advantages may arise from other sources, such as

network effects or switching costs, or where dynamics arise from the durable or perishable

nature of products. While we have investigated some alternative specifications, we view

understanding how the ability of sellers to offer multi-period contracts to some customers

would affect our results as an important next step of this research. We also believe that, in

some settings, it may be useful to include strategic buyers in empirical models of dynamic
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competition, as doing so may not only make these models more realistic but also help to

reduce concerns that multiple equilibria may make it hard to interpret counterfactuals.
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A Methods for Finding Equilibria

In this Appendix we describe the two methods that we use to find equilibria for our analyses

in Sections 3, 4 and 5 (excepting Section 5.1).

A.1 Equation Solving.

One method for finding an equilibrium for a fixed set of parameters is to numerically solve

the 4,743 value, continuation probability and first-order condition equations in Section 2

using the fsolve tool in MATLAB.32 We specify tolerances of 1e-14 on the variables and on

the objective function.

We use equation solving to identify equilibria from which we can start homotopies, and

also, as we describe below, to fill in any gaps in a homotopy path that results from the

homotopy algorithm stalling.

A.2 Homotopies

This Appendix details of our implementation of the homotopy algorithm, using the example

of the bp-homotopies that we use in Section 3. The methods used for other homotopies

are similar. Our description of the homotopy algorithm follows the description in Besanko,

Doraszelski, Kryukov, and Satterthwaite (2010) closely, and our implementation is based on

the code of Besanko, Doraszelski, and Kryukov (2014) (BDK), and we use their numerical

tolerances.

32We have used this tool with both numerical and analytic derivatives, and using different algorithms.
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A.2.1 Overview.

An equilibrium for a given set of parameters is defined as the solution to the 4,743 equations

presented in Section 2 . We can write these equations collectively as

F (x; bp, ρ, σ) = 0, (A.1)

where x = (V∗,VINT∗,p∗, λ∗) (i.e., values, for buyers and sellers, and strategies) and we are

implicitly conditioning on other parameters that we hold fixed such as the discount factor

and the entry cost and scrap value distribution parameters. The objective of a bp-homotopy

is to explore the correspondence

F−1 = {x|F (x; bp, ρ, σ) = 0, bp ∈ [0, 1]}. (A.2)

To follow the correspondence, the homotopy method introduces an ancillary parameter

s, so that equation (A.2) becomes,

F−1 = {x(s)|F (x(s); bp(s), ρ, σ) = 0, bp ∈ [0, 1]}. (A.3)

Assuming that a vector x satisfies the equations, the following conditions must be satisfied

for the homotopy to remain on the correspondence

∂F (x(s); bp(s), ρ, σ)

∂x
x′(s) +

∂F (x(s); bp(s), ρ, σ)

∂bp
bp′(s) = 0 (A.4)

where ∂F (x(s);bp(s),ρ,σ)
∂x

is a (4,743 x 4,743) matrix, x′(s) and ∂F (x(s);bp(s),ρ,σ)
∂bp

are both (4,743 x

1) vectors and bp′(s) is a scalar. The solution to these differential equations will have the

following form, where y′i(s) is the derivative of the ith element of y(s) = (x(s), bp(s)),

y′i(s) = (−1)i+1 det

((
∂F (y(s); ρ, σ)

∂y

)
−i

)
(A.5)

where −i means that the ith column is removed from the (4,743 x 4,744) matrix ∂F (y(s);ρ,σ)
∂y

.
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A.2.2 Implementation.

The homotopy procedure is implemented using the FORTRAN routines FIXPNS and STEPNS

from HOMPACK90. Jacobians are computed numerically, although we specify which ele-

ments of the Jacobian are non-zero.33,34 The algorithm keeps track of the values of x and bp

at each step on the path, which we can then use to compute associated outcomes, such as

HHI∞ and P∞, which we do using the same code as BDK.

Restarting. A practical problem that arises is that a homotopy can stall or start taking an

apparently endless sequence of increasingly small steps. We use a few different approaches to

try to complete a path. One approach involves running homotopies in the opposite direction

(e.g., decreasing bp, rather than increasing bp) from equilibria that have already been found.

This often connects up sections of a path that have been found using different homotopy runs.

If this does not work, we try to identify an adjacent equilibrium by solving the equilibrium

equations for a close value of bp, and then use this value to start a new homotopy path. If

this path also does not progress, we solve the equations for additional small changes of bp.

Computational Burden. The time taken to run a homotopy is usually between one hour

and seven hours, when it is run on the University of Maryland’s Department of Economics

cluster. The servers on this cluster have the configurations of Dell PowerEdge R620 2x Intel

Xeon E5-2680 v2 384GB.

33STEPNS is a predictor-corrector algorithm where hermetic cubic interpolation is used to guess the next
point, and an iterative procedure is then used to return to the path.

34For details of the HOMPACK subroutines, please consult manual of the algorithm at https://users.
wpi.edu/~walker/Papers/hompack90,ACM-TOMS_23,1997,514-549.pdf.
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B Definition of SELPM Equilibria.

As explained in Section 2, we pay particular attention to one type of non-accommodative

equilibria which we call SELPM equilibria.

Definition A symmetric equilibrium has the“Some Exit Leads to Permanent Monopoly”

(SELPM) property if there is some state e∗1 > 1, where (i) λ1(e1, e2) = 1 for all e1 ≥ e∗1
35 and

∀e2, including e2 = 0; (ii) λ2(e
∗
1, e2) < 1 for some e2 where 0 < e2 < e∗1, and λ2(e1, 0) = 0

for all e1 ≥ e∗1.

After some additional discussion of this definition, Appendix C provides a classification

of the equilibria identified by the σ- and ρ-homotopies in Sections 4 into accommodative,

SELPM and two alternative types of non-accommodative equilibria. Appendix D details the

algorithm that we use to identify whether at least one SELPM equilibrium exists.

Discussion. The High and Mid-HHI baseline (bp = 0) equilibria in Table 1 (illustrative

parameters) are both SELPM: e∗1 = 30 satisfies the definition in both cases. In fact, it is

usually the case that e∗1 = M = 30 satisfies the definition if an equilibrium is SELPM.36

Note that our algorithm that tests whether a SELPM equilibrium exists will stop when at

the highest e1 that satisfies the criteria for e∗1.

Figures B.1 and B.2 provide examples of how play may move through the state space in

SELPM equilibria. The first figure shows two paths where we assume that the sellers use

the baseline High-HHI equilibrium strategies. The red line shows a path where both sellers

make a sale in the first two periods of the game, and the game then evolves to (M,M). The

black line shows a path where seller 1 makes the first M − 4 sales, and seller 2 then exits.

Once seller 1 has made a sale, there is no possibility of entry by a potential entrant seller 2,

and the games moves to (M, 0).

Figure B.2 provides a second (hypothetical) example where a potential entrant seller 2

could enter in some states. However, e1 = 30 satisfies the definition of e∗1, so the equilibrium

is SELPM.
35Note, that as we are only looking at symmetric equilibria, this condition implies that λ2(e1, e2) = 1 for

all e2 ≥ e∗1.
36Intuitively, a laggard will have the strongest incentive to exit, and a potential entrant the least incentive

to enter, when it is as far behind the leader as possible.
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Figure B.1: Baseline High-HHI Equilibrium: Examples of Possible Paths Through the State
Space For a Game Starting at (1,1). The numbers in each cell are seller 2’s continuation
probabilities. The circular arrows indicate no sale being made, due to the buyer choosing
the “outside option”.

e1
out 1 2 ... M−4 M−3 M−2 M−1 M

out 0.9583 0 0 0 0 0 0 0

1 1 0.9996 0.7799 0.7777 0.7777 0.7777 0.7777 0.7777

2 1 1 1 1 1 1 1 1

...

e2 M−4 1 1 1 1 1 1 1 1

M−3 1 1 1 1 1 1 1 1

M−2 1 1 1 1 1 1 1 1

M−1 1 1 1 1 1 1 1 1

M 1 1 1 1 1 1 1 1

The following are examples of strategies where the equilibrium would not be SELPM:

1. accommodative equilibria (i.e., λ2(e1, e2) = 1 for all e1, e2 ≥ 1);

2. an equilibrium where λ2(M, 0) > 0 (for example, due to a low lower bound on entry

costs);

3. an equilibrium where λ1(M,M) < 1 (for example, due to a high upper bound on scrap

values and/or intense duopoly competition); or,

4. an equilibrium where λ2(M, 0) = 0, λ1(M, e2) = 1 for e2 ≥ 2 or e2 = 0, but λ1(M, 1) <

1. If the state reaches (30, 2) the game will either proceed to (M,M) (permanent

duopoly) with no exit, or seller 2 may exit and seller 1 will be a permanent monopolist.

However, it fails to meet our definition because seller 1 may exit in state (M, 1). We

require the condition that λ1(e1, e2) in all e1 ≥ e∗1 because it allows us to construct
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Figure B.2: Alternative SELPM Example with Possible Re-entry: Examples of Possible
Paths Through the State Space For a Game Starting at (1,1). The numbers in each cell are
seller 2’s continuation probabilities. The circular arrows indicate no sale being made, due to
the buyer choosing the “outside option”.

e1
out 1 2 ... M−4 M−3 M−2 M−1 M

out 0.958 0.758 0.643 0.123 0.042 0 0 0

1 1 1 0.945 0.689 0.675 0.672 0.669 0.666

2 1 1 1 0.695 0.689 0.686 0.683 0.681

...

e2 M−4 1 1 1 1 1 1 1 1

M−3 1 1 1 1 1 1 1 1

M−2 1 1 1 1 1 1 1 1

M−1 1 1 1 1 1 1 1 1

M 1 1 1 1 1 1 1 1

an algorithm that can check whether a SELPM equilibria exists or not under weaker

assumptions on the scale of problem for which we can find all equilibria. Of course, if

this equilibrium exists, it is also possible that a different equilibrium, where λ1(30, 1) =

1, will satisfy the SELPM definition.

6



C Classification of Equilibria.

We now classify the equilibria identified in Section 4 into different types. Two mutually

exclusive types are accommodative (see definition in Section 2) and SELPM. For a complete

discussion of what we find, it is also useful to define two other types.

Definition An equilibrium has the“Any Exit Leads to Permanent Monopoly” (AELPM)

property if (i) λ1(e) = 1 for all e = (e1, e2) where e1 ≥ e2; (ii) there is some e = (e1, e2)

where e1 > e2 > 0 and λ2(e) < 1, and (iii) for any e = (e1, e2) where e1 > e2 > 0 and

λ2(e) < 1, λ2(e
′
1, 0) = 0 for e′1 ≥ e1.

In an AELPM equilibrium, the only exit from duopoly will be by a strict laggard and

there will be no re-entry once a laggard exits. Any AELPM equilibrium will be SELPM.37

But, SELPM equilibria may not be AELPM. For example, the High-HHI baseline equilibrium

in Table 1 is not AELPM because there is a chance that sellers exit in state (1,1), so that

there is a small probability that both sellers exit, in which case there may be re-entry.

We also consider equilibria that satisfy BDK’s definition of “aggressive” equilibria.

Definition An equilibrium is “aggressive”if p1(e) < p1(e1, e2+1), p2(e) < p2(e1, e2+1), and

λ2(e) < λ2(e1, e2 + 1) for some state e = (e1, e2) e1 > e2 > 0.

This definition depends on both prices and continuation strategies. Aggressive equilibria

are not accommodative, and they may or may not be AELPM or SELPM.

C.1 Classification for σ- and ρ-Homtopies for the Illustrative Pa-

rameters.

Figure C.1(a) and (b) shows a classification of the equilibria found by σ- and ρ-homotopies

for different values of bp. The other parameters are held at their baseline values. The HHI∞

is shown on the y-axis. The different line styles indicate the different type of equilibria.

Recall that all AELPM equilibria are SELPM. For these parameters we find that:

37In particular, the fact that a leader will never exit rules out the fourth type of non-SELPM equilibrium
above. Any value of e1 where there is some possibility that a laggard seller 2 exits will meet the e∗1 definition.
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� all identified equilibria are either accommodative or SELPM (i.e., this classification is

exhaustive for the equilibria that the homotopies identify for these parameters); and

� all identified aggressive equilibria are SELPM, although many SELPM equilibria are

not aggressive.

There is also an interesting pattern where the AELPM equilibria tend not to be the

equilibria with the highest implied values of HHI∞. Even though high HHI∞ equilibria

tend to have low duopoly prices, and it is not attractive for a potential entrant to enter

against a monopolist, there is usually some probability of exit in symmetric duopoly states,

particularly (1,1), so these equilibria do not meet the AELPM criteria.
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Figure C.1: Classification of Equilibria Identified by ρ- and σ-Homotopies for Various bp.
Other parameters at their illustrative values. See text Figures 4(a) and (c) for which line
corresponds to which bp. Equilibria indicated as “SELPM” or “AELPM” only do not satisfy
the definition of aggressive equilibria.

(a) ρ-Homotopy Paths (σ = 1)

(b) σ-Homotopy Paths (ρ = 0.75)
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D The Algorithm for Identifying if SELPM Equilibria

Exist.

A property of SELPM equilibria is that once the state e∗1 has been reached, state transitions

have the directional property that the state will evolve to (M,M) or (M, 0) without return-

ing to a previously visited state. As discussed by Iskhakov, Rust, and Schjerning (2016),

recursive algorithms, which solve for equilibria in a sequence of individual states, can be

used when states evolve directionally. However, the way that we use this idea is novel in

at least two ways. First, we consider a directional property that applies to a certain type

of equilibrium in part of the state space, rather than a property which has to apply to all

equilibria given primitives of the model. Second, we apply a recursive algorithm to find

whether this type of equilibrium exists, rather than trying to find all equilibria.

We proceed as follows. First, we describe how the algorithm proceeds through the state

space, and how it terminates in success or failure, without providing details of how we

solve for equilibrium strategies in any particular state. Instead, we make assumptions about

our ability to solve for all equilibria in a particular state given continuation values if the

state changes.38 Second, we provide the proof that, under these assumptions, our algorithm

will terminate in success if and only if a SELPM equilibrium exists. Finally, we detail the

mechanics of how we solve for equilibria in different types of states.

D.1 Overview of the Algorithm

The algorithm recursively solves for equilibrium strategies in each state until we either (i)

find an equilibrium path where there is an e1 state that meets the SELPM definition of e∗1

(“success”), or (ii) find that all paths are inconsistent with SELPM (“failure”). Notably,

either outcome may be achieved by going only through a small part of the state space.

Figure D.1 describes the recursive path that the algorithm takes through the state space.

The key feature is that we only construct and follow paths that are consistent with SELPM

in states e1 ≥ e∗1. For example, this implies that if the industry becomes a monopoly then

38As noted by Iskhakov, Rust, and Schjerning (2016), assumptions are needed as no algorithms are guaran-
teed to find all equilibria in particular states, outside of some special cases that do not apply here. However,
we explain why we are confident that, in practice, we are able to find all equilibria.
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Figure D.1: Outline of the Recursive Algorithm.

Main Program: 

Create matrix E that will contain strategies and values on the equilibrium 

path. 

Solve for equilibrium strategies and values in all states where (e1,0) for all 

e1>0 assuming that λ1(e1,0)=1 and λ2(e1,0)=0 for all such states.  Store these 

strategies and values in E. 

Solve for equilibrium prices (which will equal static Nash prices) and values 

in state (30,30) assuming that λ1(30,30)=λ2(30,30)=1. If implied βV1
S(30, 30) <

(X̅ + ∆X), i.e., a seller may exit, then there are no SELPM equilibria, and the 
program terminates. Otherwise, add these strategies to E. 

Set e1==30, e2==29, call [fail,success] = recursion_function(e1,e2,E) 

If success==1, there is a SELPM equilibrium. 

If fail==1, there is no SELPM equilibrium.  

Program terminates. 

Recursive Function 

function [fail,success] = recursion_function(e1start,e2start,E) 

% Initialize variables 

Set success=0 

Set fail=0 

Set e1=e1start 

Set e2=e2start 

 

% Outer loop, decreasing over the states of the leader 

While success==0 && fail==0 && e1>=1, 

 

% Initialize 

e2=e2start 

 

% Inner loop, decreasing over the states of the laggard 

While success==0 && fail==0 && e2>=0, 

   

% In a state where firm 2 is a potential entrant, determine whether we 

have identified an e1 state satisfying the SELPM definition, or whether 

the equilibrium path is inconsistent with SELPM 

 

If e2==0, 

Given the continuation values in E, check whether firm 2 would 

want to enter in state (e1,0) if λ1(e1,0)=1.  

 

If yes, this is not a SELPM path, set fail=1. 

 

If no, check whether firm 1 would want to continue with 

probability 1 if λ2(e1,0)=0. 

 If no, this is not a SELPM path, set fail=1. 

 If yes, check whether this path involves some positive 

probability of laggard exit when the leader state is e1.  

  If yes, a SELPM path is identified, set success=1. 

   

Else % states where both firms are active 

If e1==e2, % symmetric state 

11



Figure D.1: Outline of the Recursive Algorithm cont.

Find assumed-to-be unique state-specific symmetric 

equilibrium prices and values in (e1, e2), using 

continuation values from E, assuming λ2(e1,e1)=λ1(e1,e2)=1. 

 

Check that these values imply that the leader will want to 

continue with probability 1.   

 If no, this is not a SELPM path, set fail=1. 

If yes, record the prices and values for (e1,e2) in E. 

 

If e1==1 && no exit from any e1 states, an accommodative 

equilibrium has been identified, set fail=1. 

else, % e1>e2 

 

Find all pricing and seller 2 continuation probability 

state-specific equilibria for (e1,e2), using continuation 

values from E, when assume λ1(e1,e2)=1.   

 

Identify state-specific equilibria where λ2(e1,e2)<1-(e-10) 

as equilibria with laggard exit. 

 

Remove any state-specific equilibria that imply the leader 

might want to exit from consideration. 

 

For the remaining equilibria: 

If there are none, set fail=1. 

If there is exactly one, record the prices and values 

for (e1,e2) in E. 

If there are multiple, set local_fail==1, and then 

while success==0 and local_fail==1,  

for each state-specific equilibrium in turn 

add the state-specific equilibrium to E to 

create E’, 

 set e2’=e2-1 and call 

[local_fail,success]= 

recursion_function(e1,e2’,E’) 

 

end (while) 

Set fail=local_fail. 

end (the if e1==e2 condition) 

end (the e2==0 condition) 

Set e2=e2-1. 

end (inner loop) 

Set e1=e1-1. 

Set e2start=e1. 

end (outer loop) 

 

end (function) 
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it will remain so. We therefore solve for equilibrium prices and values in duopoly states

assuming that this will be what happens in monopoly states, before verifying that, in fact,

potential entrants would not want to enter. The SELPM-consistent equilibrium strategies

and values on the current path (including for monopoly states that the algorithm has not

yet reached) are stored in a set of matrices, that, for ease of description, we collective label

as E.39

To understand the process, consider the illustrative parameters with bp = 0. The al-

gorithm solves for equilibria in monopoly states when seller 1 and the buyer assumes that

the potential entrant will not enter. Consistent with Table 1, this implies the incumbent

will set prices of 8.54 in state (30,0), and for example, 8.72 in state (2,0), although this

price will only be relevant if the search for an e∗1 continues back to e1 = 2. It then solves

for the SELPM-consistent equilibrium in state (30,30), where neither seller will exit, before

progressing through the states (30,29), (30,28),...,(30,2), using the continuation values in the

states that the game could move to in a SELPM equilibrium (including (30,0)) in order to

solve the game in a particular state. In these states, we find that the only SELPM-consistent

equilibria have λ2 = 1. In state (30,1) we find three equilibria with λ2 = 0.7777, 0.9577 and

1. The algorithm selects the 0.9577 (Mid-HHI) equilibrium to try first. In this case, it only

needs to check if λ1(30, 0) = 1 and λ2(30, 0) = 0 given the implied V S
1 (30, 1) and V S

2 (30, 1).

Both checks are passed so the criteria for e∗1 are satisfied by e1 = 30 and the algorithm

terminates in success. If, counterfactually, we had found multiple equilibria in state (30,2),

then algorithm would have selected one path, extended that path to find an equilibrium in

state (30,1) and then performed the check on continuation probabilities in state (30,0). If

the SELPM conditions are rejected on one path, the next path, if one is available, is chosen.

D.2 Properties of the Algorithm

We make two claims about the property of the algorithm.

Claim 1 If the algorithm terminates in success, then a SELPM equilibrium exists.

39Our code also assumes that seller 2 is the leader, rather than seller 1. We present our description with
seller 1 as the leader as it is easier to follow.
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Proof. Inspection reveals that if the algorithm terminates in success for e1 = e′1 then (i)

λ1(e1, e2) = 1 for all e1 ≥ e′1 and all e2, including e2 = 040, and (ii) λ2(e
′
1, e2) < 1 for some

0 < e2 < e′1 and λ2(e1, 0) = 0 for all e1 ≥ e′1.

Therefore, the path that terminates in success has equilibrium strategies and values

consistent with SELPM for all states where e1 ≥ e′1, and e′1 satisfies the criteria for e∗1 in the

definition.41

It remains to show that a set of equilibrium strategies and values in earlier states must

exist that, when combined with these strategies and values, would form an equilibrium in the

whole game. In a SELPM equilibrium, once state e∗1 has been reached, play will only move

through states where equilibrium strategies and values have been calculated by the algorithm.

Therefore, we only require that an equilibrium exists in a reduced game where the states are

e1 = 1, ..., e∗1 − 1 and the terminal payoffs of players if a buyer purchases from seller 1 in a

state (e∗1 − 1, e2) are V S,INT
i (e∗1, e2) and V B,INT (e∗1, e2). Existence of an equilibrium in this

reduced game follows from the arguments in Doraszelski and Satterthwaite (2010).

To prove that the algorithm will terminate in success if a SELPM equilibrium exists, we

make three additional assumptions.

Assumption 1 There is a unique state-specific equilibrium (i.e., values of p1, V
S
1 , V S,INT

1 ,

V B, V B,INT satisfying the monopoly state version of the equilibrium equations in Section 2)

in a monopoly state (e1, 0) with e1 < M , given fixed buyer and seller continuation values if

the buyer purchases from seller 1, if λ1(e1, 0) = 1 and λ2(e1, 0) = 0.

Assumption 2 There is a unique symmetric state-specific equilibrium (i.e., values of p1, p2,

V S
1 , V S

2 , V S,INT
1 , V S,INT

2 , V B, V B,INT satisfying the duopoly state equations in Section 2)

in a symmetric duopoly state (e1, e1) with e1 < M , given fixed buyer and seller continuation

values if the buyer purchases from sellers 1 or 2, when λ1(e1, e1) = λ2(e1, e1) = 1.

40One may notice that the algorithm does not solve for strategies in a state where seller 2 is the leader,
e.g., (29,30). However, under the restriction that we are only solving for symmetric equilibria, then for the
algorithm to be looping through e2 states for e1 = 29 it must be the case that λ2(30, 29) = 1 on the path
that is being tracked, so it follows that λ1(29, 30) = 1.

41Of course, the strategies found in monopoly states where e1 < e′1 may not be consistent with equilibrium
behavior, but they would have been consistent if, in search of an e1 state meeting the SELPM-criteria, the
algorithm had visited these states.
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Assumption 3 We are able to find all state-specific equilibria (i.e., values of p1, p2, λ2,

V S
1 , V S

2 , V S,INT
1 , V S,INT

2 , V B, V B,INT satisfying the duopoly state version of the equations

in Section 2) in an asymmetric duopoly state (e1, e2) with e1 > e2, given fixed buyer and

seller continuation values if the buyer purchases from seller 2 or seller 1 (if e1 < M), when

λ1(e1, e2) = 1.

Assumption 1 concerns states (e1, 0) with e1 < M . In state (M, 0), a more general

property must hold.

Property 1 There is a unique state-specific equilibrium (i.e., values of p1, V
S
1 , V S,INT

1 , V B,

V B,INT satisfying the monopoly state version of the equilibrium equations in Section 2) in a

monopoly state (M, 0) if λ1(M, 0) = 1 and λ2(M, 0) = 0.

Proof. If λ1(M, 0) = 1 and λ2(M, 0) = 0, then it is certain that the game will remain

in state (M, 0) whatever purchase decision the buyer makes. Therefore, from text equation

(8), buyer demand will be identical to the demand of an atomistic buyer, whatever the value

of bp, and the monopolist’s price choice can also not affect its future value. Therefore, the

unique equilibrium will involve the seller setting the static monopoly price.

Assumption 2 concerns states (e1, e1) with e1 < M . In state (M,M), a more general

property must hold.

Property 2 There is a unique state-specific equilibrium (i.e., values of p1, V
S
1 , V S,INT

1 , V B,

V B,INT satisfying the monopoly state version of the equilibrium equations in Section 2) in a

monopoly state (M,M) if λ1(M,M) = λ2(M,M) = 1.

Proof. If λ1(M,M) = λ2(M,M) = 1, then it is certain that the game will remain in

state (M,M) whatever purchase decision the buyer makes. Therefore, from text equation

(8), buyer demand will be identical to the demand of an atomistic buyer, whatever the value

of bp. The price choice of either seller will not affect their future values, so the number of

equilibria consistent with Markov Perfect behavior will correspond to the number of equilibria

in a one-shot game where sellers have the same marginal costs. The multinomial logit form

of demand implies that the equilibrium will be unique (e.g., Mizuno (2003)).
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As noted below, we have never found examples under which either of Assumptions 1 or

2 are violated. We detail below the procedures that we use to find equilibria in any state,

and we provide evidence that explains why we believe all these assumptions hold, although,

like BDK, we find that it can be challenging to find any equilibrium for low values of σ. For

this reason, we do not report results for σ < 0.5.

Claim 2 Under assumptions 1-3, if a SELPM equilibrium exists, then our algorithm will

terminate in success.

Proof. The assumptions and Properties 1 and 2 imply that the algorithm will follow, and

evaluate, every possible SELPM-consistent equilibrium path before terminating in failure.

Therefore if a SELPM-consistent state e∗1 exists, the algorithm will find it.

D.3 Methods for Solving for Equilibria in Specific States

We now describe how we solve for equilibria that are consistent with SELPM in specific

states. We describe our routines assuming that σ = 1 to reduce notation. Our examples

assume the illustrative parameters, with ρ = 0.75 and σ = 1, unless otherwise stated.

D.3.1 Solving for Equilibria in Monopoly States (e1, 0) assuming λ1(e1, 0) = 1
and λ2(e1, 0) = 0.

Consider a state (e1 < M, 0). Assuming λ1(e1, 0) = 1 and λ2(e1, 0) = 0, the following

equations determine the equilibrium values of V B, V B,INT , V S
1 ,V S,INT

1 and p1 where seller

1’s marginal cost is c,

V B = bp ln(exp(V B,INT ) + exp(v − p1 + V B,INT (e1 + 1, 0)))+ (D.1)

(1− bp)(D1V
B,INT (e1 + 1, 0) + (1−D1)V

B,INT )

V S
1 = (p1 − c+ V S,INT

1 (e1 + 1, 0))D1 + V S,INT
1 (1−D1) (D.2)

D1 + (p1 − c+ V S,INT
1 (e1 + 1, 0)− V S,INT

1 )
∂D1

∂p1
= 0 (D.3)

V B,INT = βV B (D.4)

V S,INT
1 = βV S

1 (D.5)
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where D1 =
exp(v1−p1+V B,INT (e1+1,0))

exp(v1−p1+V B,INT (e1+1,0))+exp(V B,INT )
assuming, following BDK, that v0 = p0.

We could solve these sets of equations recursively for different monopoly states. However,

we find it quicker to solve the equations for all of the monopoly states simultaneously in

MATLAB using fsolve. We also reduce the number of variables by solving for V B, V S
1 and

p1 and using these values to solve for V B,INT and V S,INT
1 as needed.

Discussion of the Uniqueness Assumption. We have performed an analysis to check whether

Assumption 1 is likely satisfied. Specifically, we can look at whether two equilibrium curves

intersect more than once. The first curve solves the value of V B as a function of p1, reflecting

equation (D.1). The second curve solves for the value of p1 that maximizes the seller’s value,

given V B, as determined by the first-order condition (D.3).

Figure D.2 presents examples of what these curves look like for state (10, 0) using the

illustrative parameters when bp = 0.25, 0.5, 0.75 and 1. The black curves denote the value

of V B given p1, and the red curves reflect the value-maximizing choices of p1 given values

of V B. The curves cross only once in every case, consistent with a single equilibrium. We

have verified that there is only one intersection for a very large number of different values of

ρ, σ, bp, V S(e1 + 1, 0) and V B(e1 + 1, 0).42

D.3.2 Solving for Equilibrium in Absorbing Duopoly State (M,M).

(M,M) is an absorbing state in a SELPM equilibrium. This implies that there is a unique

SELPM-consistent equilibrium where prices are the same as static Nash prices with non-

strategic buyers (uniqueness of these prices follows from the multinomial logit form of demand

(e.g., Mizuno (2003))).

We find equilibrium prices by solving static pricing first-order conditions,

Di + (pi − c)
∂Di

∂pi
= 0,

and then calculating the implied buyer and seller values (V S). We verify that βV S is greater

42Specifically, we use bp values on a grid [0.2,0.4,0.6,0.8,1], ρ values [0,0.1,0.2,..,0.9,1], σ values
[0.5,0.6,..,1.1,1.2], V S(e1 + 1, 0) values [60,65,..,95,100] and V B(e1 + 1, 0) values bp∗[20,25,30,35,40]. This
gives a total of 19,800 combinations that we check. We have also experimented with other values.
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Figure D.2: Monopoly State Equations in State (10, 0): black curve is the value of V B as a
function of p1, red curve is the optimal p1 given V B. There is an equilibrium where the lines
intersect.
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than the maximum possible scrap value, so that exit is not optimal. If exit could be optimal,

there is no SELPM equilibrium.

D.3.3 Solving for Equilibria in Other Duopoly States (e1, e2), e1 ≥ e2 > 0, e2 < M .

In a duopoly state we want to solve for all SELPM-consistent values of

� prices (p1, p2)

� values (V S
1 , V S

2 , V S,INT
1 , V S,INT

2 , V B, V B,INT )

� continuation probability for seller 2 (λ2), although SELPM implies that λ2 = 1 if

e1 = e2 for e1 ≥ e∗1.

The continuation probability for seller 1 must be 1. The nine variables must satisfy the

following nine equations

V S
i −Di(p1, p2, V

B)(pi − ci(ei))−
∑

k=0,1,2

Dk(p1, p2, V
B)V S,INT

i (e′k) = 0 for i = 1, 2 (D.6)

where V S,INT
i (e′0) = V S,INT

i ,

V S,INT
1 = β

(
λ2V

S
1 + (1− λ2)V

S
1 (e1, 0)

)
and V S,INT

2 = βλ2V
S
2 + (1− λ2)E(X|λ2) (D.7)

Di(p1, p2, V
B)+

∑
k=0,1,2

∂Dk(p1, p2, V
B)

∂pi
V S,INT
i (e′k)+(pi − ci(ei))

∂Di(p1, p2, V
B)

∂pi
= 0 for i = 1, 2

(D.8)

λ2−Fscrap(βV
S
2 ) = 0 (D.9)

V B = bp log

( ∑
k=0,1,2

exp
(
vk − pk + V B,INT (e′k)

))
− (1− bp)

∑
k=0,1,2

Dk(p1, p2, V
B)V B,INT (e′k),

(D.10)

where V B,INT (e′0) = V B,INT ,

V B,INT = β
(
λ2V

B + (1− λ2)V
B(e1, 0)

)
, (D.11)

where e′k is the state that the game transitions to when the buyer purchases from k, and
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E(X|λ2) is the expected scrap value when seller 2 exits with probability 1 − λ2. When

this involves a change of state, we take the continuation values as given. For example, if

e1 < M43,

V S,INT
1 (e′1) = β

(
λ2(e1 + 1, e2)V

S
1 (e1 + 1, e2) + (1− λ2(e1 + 1, e2))V

S
1 (e1 + 1, 0)

)
(D.12)

V S,INT
2 (e′1) = β

(
λ2(e1 + 1, e2)V

S
2 (e1 + 1, e2) + (1− λ2(e1 + 1, e2))E(X|λ2(e1 + 1, e2))

)
,

(D.13)

where E(X|λ2(e1 + 1, e2)) is the expected scrap value if seller 2 exits with probability 1 −

λ2(e1 + 1, e2).

V B,INT (e′2) = β
(
λ2(e1, e2 + 1)V B(e1, e2 + 1) + (1− λ2(e1, e2 + 1))V B(e1, 0)

)
, (D.14)

V B,INT (e′1) = β
(
λ2(e1 + 1, e2)V

B(e1 + 1, e2) + (1− λ2(e1 + 1, e2))V
B(e1 + 1, 0)

)
(D.15)

If e1 = e2 ≥ e∗1 then a SELPM-consistent equilibrium must have λ2 = λ1 = 1. Therefore,

for these states, we solve for equilibrium prices and values assuming that λ2 = 1, and then

we verify that the solution implies that βV S
2 is greater than the highest possible scrap value,

implying that λ2 = 1 is optimal. In practice, we solve for V S
i , V B and pi for i = 1, 2,

substituting in for V S,INT
i and V B,INT .

If e1 > e2 ≥ e∗1 then a SELPM-consistent equilibrium may have λ2 < 1, and we may

find multiple equilibria. Our method for identifying the set of SELPM-consistent equilibria

assumes that there is a unique equilibrium for a given value of λ2.
44 We specify a grid of

values of λ2, with steps of 0.01, and for each of these values we solve the equations (D.6),

(D.8) and (D.10) for pi, V
S
i and V B, substituting into equations (D.7) and (D.11) for the

values of V S,INT
i and V B,INT .45 We then calculate the best response value of λ2, λ

BR
2 (λ2),

given V S
2 using equation (D.9).

43Alternatively, if e1 = M , V S,INT
1 (e′1) = β

(
λ2V

S
1 + (1− λ2)V

S
1 (M, 0)

)
and V S,INT

2 (e′1) =

β
(
λ2V

S
2 + (1− λ2)E(X|λ2)

)
and V B,INT (e′1) = β

(
λ2V

B + (1− λ2)V
B
2 (e1, 0)

)
, so they depend on the en-

dogenous λ2, V
B and V S

1 , because a sale by seller 1 does not change the state.
44Given that equilibrium prices directly affect V S

2 and λ2 is a strictly increasing function of V S
2 for λ2 < 1,

we regard this assumption as weak for λ2 < 1.
45Occasionally the equations do not solve using the starting values chosen, in which case we use a Pakes-

McGuire type of routine to find alternative starting values.
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Figure D.3: Best Response Continuation Probability Functions for Seller 2 Given Endoge-
nous Pricing Choices by Both Sellers. Intersections with the 450-degree line are equilibria.

Figure D.3 shows examples of the function λBR
2 (λ2) for the illustrative parameters, for

states (30,1) and (30,5), with bp = 0 and bp = 0.2. There are equilibria at the points where the

functions cross the 45-degree line. We find the precise intersection using locations between

gridpoints either side of an intersection as starting points, before verifying that the solution

is consistent with the leader continuing with probability 1, as required for SELPM.46,47

Discussion of the Uniqueness Assumption. As noted, our approach assumes that there

is a unique pricing equilibrium given an assumed value of λ2 when λ1 = 1. There are

46We initially try to find the intersection by starting at the neighboring gridpoints, but if this fails, we use
convex combinations of the gridpoints as starting values until the intersection is identified.

47As the figure suggests, it is possible that we would miss an intersection where the function is close to
forming a tangent with the 45-degree line. We have found that gridpoints of 0.01 are adequate to identify
whether SELPM equilibria exist, in the sense that our results do not change if we use a finer grid. This is
partly because even if we do just miss an intersection in one particular state (e1, e2), there will often be a
clearer intersection for state (e1, e2 − 1) that we will capture, which may allow us to show that a SELPM
equilibrium exists.
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two types of evidence that support this presumption. First, we have never identified an

instance of multiple equilibria for any of the parameters that we have considered, even when

using multiple different starting points or alternative solution algorithms. Second, we have

investigated whether there could be multiple equilibria by using a reaction function-type of

analysis.

Specifically, for a given value of λ2 and the continuation values, we solve the equations

for V B, V S
1 and the first-order condition for p1 for a grid of alternative values of p2. We then

solve the equations for V B, V S
2 and the first-order condition for p2 for a grid of alternative

values of p1. We can then draw curves p∗1(p2) and p∗2(p1), which reflect optimal behavior of

buyers and the other seller to the assumed price. The intersections correspond to equilibria,

and we can test whether they intersect more than once. Figures D.4 presents some examples

of these curves for the illustrative parameters, bp = 0 or bp = 1 and e1 = 30 and e2 = 1.

Recall that in the state (30,1), if the buyer purchases from seller 1, the state remains

(30,1), whereas if seller 2 makes a sale, the state transitions to (30,2), where, for these

parameters, there is always a unique equilibrium. If seller 2 is setting a much lower price

in state (30,1) than in state (30,2), a strategic buyer will have an incentive to shift demand

towards seller 1 in order to keep the state the same in future periods. As a result, seller

1’s optimal price is less sensitive to seller 2’s price in this state when bp = 1, which accounts

for the change in the slope of the reaction functions. However, in all cases, the reaction

functions only intersect once, and there is a single equilibrium.48

In practice, it is prohibitive to perform this check for all values of λ2 for all states for

all parameters. However, our checking algorithm does perform this check in states where

e1 = M for λ2 =0.55, 0.65, 0.75, 0.85 and 0.95. We have never found parameters where

there is ever more than one intersection. This is also the case when we have solved games

for many different sets of arbitrary continuation values and parameters.

48Note that in a state (e1, e2) where e1 < M , the buyer cannot keep the state the same by buying from
seller 1. Therefore, for all values of bp, reaction functions tend to look more like the case where bp = 0.
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Figure D.4: Pricing Best Response Functions in State (30,1) for Different Assumed Contin-
uation Probabilities for Seller 2 (λ2).

(a) bp = 0

(b) bp = 1
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E Algorithm for Establishing Existence of an Accom-

modative Equilibrium

Definition An equilibrium is accommodative if λ1(e1, e2) = λ2(e1, e2) = 1 for all states

(e1, e2) where e1 > 0 and e2 > 0.

In an accommodative equilibrium there is no exit by active sellers. If the industry starts

off in state (1,1), it is guaranteed to arrive in state (M,M) in an accommodative equilibrium.

This definition is the same as in BDK (2019), Appendix B.

E.1 Existence of an Accommodative Equilibrium

We establish whether an accommodative equilibrium exists by solving, using fsolve in

MATLAB, for equilibrium prices and values assuming that there is no exit from any duopoly

state, and then verifying that it is always optimal for each duopolist to continue in every

duopoly state by checking that βV S(e1, e2) is greater than the highest possible scrap value.

E.2 Are Accommodative Equilibria Likely to Be Unique?

In an accommodative equilibrium the game is guaranteed to eventually end up in state

(M,M), and remain there, and once a state has been left, because one of the sellers has

made a sale and increased its know-how, it is guaranteed that the game will not return to

it. This feature would guarantee a unique equilibrium if it is the case that there is a unique

pricing equilibrium in any state given continuation values if the state changes. However,

even though it can be shown that there is a unique price equilibrium in a one-shot Nash

pricing game with a multinomial logit demand and an outside good that has a fixed price

(e.g., Mizuno (2003)), this result is not sufficient in our model where the prices in the stage

game affect sellers’ continuation values (and a strategic buyer’s continuation value if bp > 0)

if no sale is made.49 The intuition for multiplicity would be that “at a low price equilibrium,

each seller has a low opportunity cost of making a sale (when the other seller does not make

a sale) as the state is unprofitable, whereas at a high price equilibrium, the opportunity

49The result is sufficient for state (M,M) as, whatever the buyer does, the state will be (M,M) in the
next period. Therefore, the seller’s pricing incentives in a Markov Perfect Equilibrium, will be the same as
in a one-shot game.
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cost of making a sale is higher”. Note that this logic would tend to unravel with a strategic

buyer, who would recognize that the possibility of them being the chosen buyer in the next

period, which would make them keener to buy from one of the sellers when prices are high,

lowering the probability that the state remains the same.

However, in practice, we have not found any examples of states with more than one ac-

commodative pricing equilibrium despite extensive attempts to find an example for different

values of bp. One likely explanation for this is that the assumed value of vi = 10 implies that

the probability of the state remaining the same at prices that are close to equilibrium prices

is small. For example, for all of the duopoly prices shown in text Table 1 the probability

that the outside good is chosen is less than 0.02, and typically less than 0.01.
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F Additional Results

F.1 Equilibrium Buyer and Seller Incentives on bp-Homotopy Paths
for the Illustrative Parameters

Figure F.1(a) shows the equilibrium advantage-building and denying incentives for seller 1 in

state (3,1). The decline in seller 1’s demand and the falling probability that seller 2 will exit

causes seller 1’s advantage-denying incentive to fall sharply as we move from the High-HHI

baseline equilibrium.

Figure F.1(b) shows the equilibrium dynamic incentives of a strategic buyer in state

(3,1), measured by the change in the chosen buyer’s continuation values when, compared to

not buying, it buys from seller 1 (V B,INT (4, 1) − V B,INT (3, 1)) or seller 2 (V B,INT (3, 2) −

V B,INT (3, 1)). These incentives are zero in all of the equilibria when bp = 0. As bp rises, the

dynamic incentive to buy from seller 2 increases sharply in the non-accommodative equilibria,

while there is an increasing dynamic disincentive to buy from seller 1. In an accommodative

equilibrium there is a positive dynamic incentive to buy from the laggard as this lowers

future prices, and, for bp > 0.2 an incentive to buy from the leader which, relative to no

purchase, lowers future costs.
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Figure F.1: Equilibrium Dynamic Incentives Along bp-Homotopy Paths for the Illustrative
Parameters. H = High-HHI, M = Mid-HHI and A = Accommodative Baseline Equilibria,
and AB=Advantage-Building and AD=Advantage-Denying Incentives.

(a) Seller 1 Equilibrium Incentives

(b) Buyer Equilibrium Incentives
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F.2 Additional Welfare Results for the Illustrative Parameters

Text Figure 3 shows that, for bp = 0, the present value of consumer surplus (PV CS) is

highest in the Mid-HHI equilibrium and lowest in the High-HHI equilibrium, whereas the

present value of total surplus (PV TS) is highest in the accommodative equilibrium and

lowest in the High-HHI equilibrium. As bp increases, both measures of surplus fall in the

accommodative equilibrium as prices tend to increase.

The game will be in states (M,M) or (M, 0) in the long-run, so that long-run expected

consumer surplus will be higher in the accommodative equilibrium where (M,M) is the

certain long-run outcome. PV CS is therefore higher in Mid-HHI equilibrium only because

initial prices are lower, while the probability that the industry becomes a monopoly is not

too large. To illustrate what happens to welfare in the first part of the game, Figure F.2(a)

and (b) show the expected surplus measures for the first ten periods of a game beginning at

(1,1). Note that the reported numbers are sums and there is no discounting.

During the first ten periods, consumer surplus is highest in the High-HHI equilibrium

due to the very low duopoly prices when one firm has not made a sale. This also tends

to increase total surplus. Total surplus is also increased by the reduction in production

costs which results from one seller tending to make most of the sales. This is illustrated in

Figure F.2(c), which shows the sum of production costs over the first ten periods. The effect

that strategic buyer behavior increases prices in the accommodative equilibrium causes both

measures of surplus to fall in the accommodative equilibrium as bp is increased.

The NPV of total surplus is affected by the number of sales that are made and the costs

of production. Figure F.3(a) shows that the expected discounted production cost per sale is

highest in the accommodative equilibrium, due to slower early learning, and it is lowest in

the High-HHI equilibrium, where learning will tend to be quickest.50 Figure F.3(b) shows

the discounted total number of sales that are made. Even though low prices mean that more

sales are made at the very beginning of the game in the High-HHI and Mid-HHI equilibria,

the discounted number of sales is highest in the accommodative model as, despite higher

average production costs, long-run margins are low.

50The reported number is the expected discounted total sum of production costs divided by the expected
discounted total number of sales.
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Figure F.2: Equilibrium Expected Consumer Surplus, Total Surplus and Production Costs
Over the First 10 Periods for a Game Starting in State (1, 1) Along bp-Homotopy Paths for the
Illustrative Parameters. The black line traces the homotopy path from the Accommodative
(A) baseline equilibrium. The red line traces the overlapping paths from the High-HHI (H)
and Mid-HHI (M) baseline equilibria.

(a) Consumer Surplus

(b) Total Surplus
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Figure F.2: cont.

(c) Expected Production Costs Over the First 10 Periods of the Game
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Figure F.3: Expected Present Value of Per-Sale Production Costs and the Expected Present
Value (i.e., Discounted) Number of Sales for a Game Starting in State (1, 1) Along bp-
Homotopy Paths for the Illustrative Parameters.

(a) Expected Discounted Per-Sale Production Costs

(b) Expected Discounted Number of Sales
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F.3 ρ and σ-Homotopy Paths for bp = 0

Text Figure 4(a)-(d) show ρ and σ homotopy paths for 11 different values of bp. We reproduce

the HHI∞ plots for bp = 0 in Figure F.4 for clarity, and so they can be compared with the

figures in BDK1, Figure 2, panels A and B.
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Figure F.4: Expected Long-Run HHI (HHI∞) for Equilibria Identified by ρ- and σ-
Homotopies when bp = 0 and the Other Parameters are at their Illustrative Values.

(a) σ-Homtopies (ρ = 0.75)

(b) ρ-Homotopies (σ = 1)
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F.4 NPV of Consumer and Total Surplus on σ-Homotopy Paths

for Multiple bp = 0.

Text Figures 4(e) and (f) show the present value of consumer (PV CS) and total surplus

(PV TS) for equilibria on ρ-homotopy paths for 11 different values of bp. Here we provide

similar plots for the σ-homotopies.
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Figure F.5: Expected Present Value of Consumer and Total Surplus for Equilibria Along
σ-Homotopy Paths for Multiple bps with Other Parameters are at their Illustrative Values.

(a) Consumer Surplus

(b) Total Surplus
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G Extensions

Section 5 adapts our model in four ways to investigate how small changes to our very stylized

assumptions affect our results. In this Appendix we detail these extensions and present some

additional results.

G.1 Extension 1: Mixture of Strategic and Non-Strategic Buyers.

In this extension we assume that there are two types of buyers:

1. a mass of atomistic (A) buyers who, if they are chosen to the buyer, assume that they

will never be in the market again (i.e., they act as if bp = 0); and,

2. a group of 4 symmetric, strategic (NA, non-atomistic) buyers.

Each period nature picks a strategic buyer with probability γ, in which case each of

the four strategic buyers is chosen with equal probability. Otherwise, an atomistic buyer

is chosen. The sellers observe the chosen buyer’s type before they set prices. If γ = 0, all

buyers are atomistic and equilibrium play corresponds to play in the original BDK model.

We run γ-homotopies, for the illustrative parameters, from the three γ = 0 equilibria.

G.1.1 Equilibrium Equations.

Values of the sellers and the strategic buyers are defined before nature has selected the chosen

buyer’s type (or the chosen buyer’s identity). The values of atomistic buyers are equal to

zero, so the only additional set of equations that we have to solve are the pricing first-order

conditions of the sellers when selling to atomistic buyers.

Beginning of period value for seller 1 (V S
1 ):

V S
1 (e)− (1− γ)DA

1 (p
A(e), e)(pA1 (e)− c1(e1))− γDNA

1 (pNA(e), e)(pNA
1 (e)− c1(e1))− (G.1)∑

k=0,1,2

((1− γ)DA
k (p

A(e), e) + γDNA
k (pNA(e), e))V S,INT

1 (e′k) = 0
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where

DA
k (p

A, e) =
exp(vk − pAk )∑

j=0,1,2 exp(vj − pAj )
, DNA

k (pNA, e) =
exp(vk − pNA

k + V INT,NA(e′k))∑
k=0,1,2 exp(vj − pNA

j + V INT,NA(e′j))
,

(G.2)

e′1 = (min(e1 + 1,M), e2), e
′
2 = (e1,min(e2 + 1,M)) and e′0 = (e1, e2), i.e., the states that

the game will transition to if there is a purchase from seller 1 or seller 2, or no purchase,

respectively.

Value for seller 1 before entry/exit stage (V S,INT
1 ) :

V S,INT
1 (e)−

 βλ1(e)λ2(e)V
S
1 (e) + βλ1(e)(1− λ2(e))V

S
1 (e1, 0)+

(1− λ1(e))E(X|λ1(e))

 = 0 (G.3)

for e = (e1, e2) where e1, e2 > 0, with similar equations when one or both sellers is a potential

entrant. E(X|λ1(e)) is the expected scrap value when seller 1 chooses to exit with probability

1− λ1(e).

First-order condition for seller 1’s price to non-strategic buyers (pA1 ) if e1 > 0:

DA
1 (p

A(e), e)+
∑

k=0,1,2

∂DA
k (p

A(e), e)

∂pA1
V S,INT
1 (e′k)+

(
pA1 (e)− c1(e1)

) ∂DA
1 (p

A(e), e)

∂pA1
= 0 (G.4)

First-order condition for seller 1’s price to strategic buyers (pNA
1 ) if e1 > 0:

DNA
1 (pNA(e), e)+

∑
k=0,1,2

∂DNA
k (pNA(e), e)

∂pNA
1

V S,INT
1 (e′k)+

(
pNA
1 (e)− c1(e1)

) ∂DNA
1 (pNA(e), e)

∂pNA
1

= 0

(G.5)

Seller 1’s continuation probability in entry/exit stage (λ1):

λ1(e)− Fenter(β
[
λ2(e)V

S
1 (1, e2) + (1− λ2(e))V

S
1 (1, 0)

]
) = 0 if e1 = 0 (G.6)

λ1(e)− Fscrap(β
[
λ2(e)V

S
1 (e1,max(1, e2)) + (1− λ2(e))V

S
1 (e1, 0)

]
) = 0 if e1 > 0 (G.7)

Value for strategic buyer before entry/exit stage (V INT,NA) :
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V INT,NA(e)− β

(∑
e′

Pr(e′|e, λ1(e), λ2(e))V
NA(e′)

)
= 0. (G.8)

where the sum is over the states that the game may transition to given entry/exit

choices. Seller symmetry implies that, for buyers, V INT,NA(e1, e2) = V INT,NA(e2, e1) and

V NA(e1, e2) = V NA(e2, e1).

Beginning of period strategic buyer value (V NA) :

V NA(e)− 1

4
γ log

( ∑
k=0,1,2

exp
(
vk − pNA

k + V INT,NA(e′k)
))

− (1− γ)
∑

k=0,1,2

DA
k (p

A(e), e)V INT,NA(e′k)−

(G.9)

γ(1− 1

4
)
∑

k=0,1,2

DNA
k (pNA(e), e)V INT,NA(e′k) = 0

where 1
4
is the probability that a given strategic buyer is chosen when one of them is selected.

G.2 Extension 2: Buyers with Persistent Preferences Over Sellers.

The Section 2 model also assumes that buyers always have identical preferences over sellers up

to iid preference shocks. In reality, buyers may have systematic preferences for a particular

seller (for example, because of geographic location or greater compatibility with existing

equipment). We therefore extend the Section 2 model by assuming that there are equal

numbers of two types of buyers. Type 1’s indirect utility when it purchases from sellers 1

and 2 respectively are v1 +
θ
2
− p1 + ϵ1 and v2 − θ

2
− p2 + ϵ2 respectively. For type 2 buyers,

the signs on the θ
2
terms are reversed. Sellers recognize the type of the buyer before setting

prices. The model is equivalent to the Section 2 model when θ = 0. Intuitively, it will

become more attractive for a seller to remain in the market as θ increases, even when it has

a marginal cost disadvantage, as it will have an increasing advantage when selling to half of

the market.
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G.2.1 Equilibrium Equations.

To the equations of the Section 2 model are added type-specific first-order conditions for

prices, and equations for the values and intermediate values.51 For example,

First-order condition for seller 1’s price (ptype11 ) if e1 > 0:

Dtype1
1 (ptype1(e), e)+

∑
k=0,1,2

∂Dtype1
k (p(e), e)

∂ptype11

V S,INT
1 (e′k)+

(
ptype11 (e)− c1(e1)

) ∂Dtype1
1 (ptype1(e), e)

∂ptype11

= 0

(G.10)

Value for type 1 buyer before entry/exit stage (V type1,INT ) :

V type1,INT (e)− β

(∑
e′

Pr(e′|e, λ1(e), λ2(e))V
type1(e′)

)
= 0. (G.11)

Type 1 buyer value (V type1) :

V type1(e)− bp log

( ∑
k=0,1,2

exp

(
vk + [I(k = 1)− I(k = 2)]

θ

2
− ptype1k + V type1,INT (e′k)

))
−

(G.12)

(
1

2
− bp)

∑
k=0,1,2

Dtype1
k (ptype1(e), e)V type1,INT (e′k)−

1

2

∑
k=0,1,2

Dtype2
k (ptype2(e), e)V type1,INT (e′k) = 0

with similar equations for type 2 buyers. Note that bp is equal to the unconditional proba-

bility that the buyer will be the buyer in a future period, so the value of bp with a single,

rational buyer of each type would be bp = 0.5.

Values for sellers then come from adding across the two types of buyers.

51The assumed functional forms imply that there will be symmetry across types, e.g., the price set by
seller 1 to a type 1 buyer in state (4,1) will be the same as the price set by seller 2 to a type 2 buyer in state
(1,4).

39



Beginning of period value for seller 1 (V S
1 ):

V S
1 (e)− 1

2
Dtype1

1 (ptype1(e), e)(ptype1(e)− c1(e1))−
1

2

∑
k=0,1,2

Dtype1
k (ptype1(e), e)V S,INT

1 (e′k)−

(G.13)

1

2
Dtype2

1 (ptype2(e), e)(ptype2(e)− c1(e1))−
1

2

∑
k=0,1,2

Dtype2
k (ptype2(e), e)V S,INT

1 (e′k) = 0

where

Dtype1
i (p, e) =

exp(vi + [I(i = 1)− I(i = 2)] θ
2
− ptype1i + V type1,INT (e′i))∑

k=0,1,2 exp(vk + [I(k = 1)− I(k = 2)] θ
2
− ptype1k + V type1,INT (e′k))

. (G.14)

e′1 = (min(e1 + 1,M), e2), e
′
2 = (e1,min(e2 + 1,M)) and e′0 = (e1, e2), i.e., the states that

the game will transition to if there is a purchase from seller 1 or seller 2, or no purchase,

respectively.

G.3 Extension 3: Bargaining as a Constraint on Monopoly Power.

We consider a permutation of the model where we assume that, in the event that the industry

becomes a monopoly, the buyer and seller engage in Nash bargaining rather than the seller

simply setting a price. This formulation is somewhat ad-hoc because the Nash bargaining

approach assumes that the buyer and seller have complete information about their values

(i.e., the buyer’s ϵs are publicly observed) whereas, to keep the model as similar to the BDK

model as possible, we maintain the assumption that a buyer’s ϵs are private information in

duopoly states. However, the advantage of the Nash bargaining formulation is that it allows

us to vary a single parameter, τ , that measures the buyer’s share of the surplus from trade

in monopoly states.

G.3.1 Details.

The equations for states with two active sellers are the same as for the Section 2 model. The

following are the equations for a monopoly state e = (e1 < M, 0).
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Probability of trade when seller 1 is the monopolist

D1 =
exp(v1 + V S,INT (e′1) + V B,INT (e′1)− c(e1)) exp(v1 + V S,INT (e′1) + V B,INT (e′1)− c(e1))+

exp(V S,INT (e) + V B,INT (e))

 (G.15)

Beginning of period value for seller 1 (V S
1 ):

V S
1 (e)−D1(e)(p(e)− c1(e1))−D1(e)V

S,INT
1 (e′1)− (1−D1(e))V

S,INT
1 (e) = 0 (G.16)

Intermediate value for seller 1 (V S,INT
1 ) :

V S,INT
1 (e)−

 βλ1(e)λ2(e)V
S
1 (e1, 1) + βλ1(e)(1− λ2(e))V

S
1 (e)+

(1− λ1(e))E(X|λ1(e))

 = 0 (G.17)

Value for buyer before entry/exit stage (V B,INT ) :

V B,INT (e)− β
(
λ1(e)λ2(e)V

B(e1, 1)+λ1(e)(1− λ2(e))V
B(e)

)
= 0 (G.18)

Beginning of period buyer value (V B) :

V B(e)− bp
(
D1(e)(v1 − p(e, τ)− log(D1) + V B,INT (e′1)) + (1−D1(e))(− log(1−D1) + V B,INT (e))

)
(G.19)

−(1− bp)
(
D1(e)V

B,INT (e′1) + (1−D1(e))V
B,INT (e)

)
= 0
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Expected price in the event of trade is

p(e) = τ(c(e1) + V S,INT (e)− V S,INT (e′1)) + (1− τ)( v1 − log(D1)︸ ︷︷ ︸
exp. value of v+ε1 given trade

+ V B,INT (e′1)−

(G.20)

(1−D1) log(1−D1)

D1︸ ︷︷ ︸
exp. value of ε0when trade occurs

− V B,INT (e)) for e = (ei, 0) and e′1 = (e1 + 1, 0)

G.4 Extension 4: Buyer Discount Factors.

We investigate whether variation in bp has a similar effect to variation in buyer patience using

a model where bp = 1 (i.e., monopsony) but the buyer’s discount factor, βB ≤ β = 1
1.05

, the

assumed discount factor of the sellers. The equations are the same as for the Section 2 model

except that β in the V B,INT equation is replaced by βB.

G.4.1 Effect of Variation on βB on Seller 2 Demand Given Baseline Equilibrium

Seller Strategies.

Figure G.1 shows the demand curve for seller 2 in state (3,1) when we assume that sellers use

their baseline equilibrium seller strategies in all states, but we assume that there is a single

strategic buyer (bp = 1) with different discount factors. When sellers use accommodative

equilibrium strategies, an increase in buyer patience tends to move demand towards seller

2 (the laggard), in the same way that an increase in bp moved demand towards seller 2 in

text Figure 2(a). However, in the Mid- and High-HHI equilibria, increases in βB actually

shift demand away from seller 2 until βB > 0.5 in the High-HHI case, and until βB > 0.7 in

the Mid-HHI case, reflecting the fact that in these equilibria prices in state (4,1) are lower

than in state (3,2) and that the loss that the buyer will experience from monopoly is likely

to occur further into the future.
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Figure G.1: Seller 2 Demand in State (3,1) as a Function of βB.
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