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Abstract
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ous entrants’ decisions. The relative performance of these mechanisms is investigated
when entry is costly and selective, meaning that potential buyers with higher values are
more likely to participate. A simple sequential mechanism can give both buyers and
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1 Introduction

The simultaneous bid auction is a standard method for sellers to solicit offers from buyers.

A simple alternative is for a seller to ask buyers to make offers sequentially. If it is costly

for buyers to participate, the sequential mechanism will tend to be more efficient than the

simultaneous auction because later potential buyers can condition their participation deci-

sions on earlier bids. However, the sequential mechanism’s greater efficiency may not produce

higher revenues because while the possibility of deterring later potential entrants can lead

early bidders to bid aggressively, the fact that later firms might be deterred will tend to

reduce revenues. The relative revenue performance of the mechanisms will therefore depend

on whether the threat of potential future competition, which can raise bids in the sequential

mechanism, is more valuable to the seller than actual competition, which will tend to be

greater in the simultaneous auction.

The relative revenue performance of these alternative mechanisms has direct implications

for how assets should be sold. In the case of how to structure the sale of corporations, this

question has attracted attention from practitioners and commentators since the Delaware

Supreme Court’s 1986 Revlon decision charged a board overseeing the sale of a company

with the duty of “getting the best price for the stockholders” (Revlon v McAndrews &

Forbes Holdings (1986)). In practice, corporate sales occur through a mixture of simulta-

neous and sequential mechanisms (Denton (2008)), with sequential mechanisms sometimes

taking the form of “go-shop” arrangements where a seller may reach an agreement with one

firm while retaining the right to solicit other offers, to which the first firm may be able to

respond.1,2

Surprisingly, the only attempt to date to directly address this relative performance ques-

tion is Bulow and Klemperer (2009) (BK hereafter). They compare the revenue and efficiency

performances of the commonly-used simultaneous bid second-price auction with a similarly

simple, sequential mechanism. In this second mechanism, buyers are approached in turn,

and upon observing the history of offers, each chooses whether to enter and attempt to out-

bid the current high bidder. If the incumbent is outbid, the new entrant can make a jump

bid that may potentially deter later firms from participating. The incumbent at the end of

the game pays the standing price. As BK note (see also Subramanian (2008), Wasserstein

1A “go-shop” clause allows a seller to come to an agreement on an initial price with a buyer and retain
the right to solicit bids from other buyers for the next 30-60 days. If a new, higher offer is received, then
according to the “match right”, which is often included in the agreement with the initial buyer, the seller
must negotiate with the first buyer (for 3-5 days, for example) to see if it can match the terms of the new,
higher offer.

2There are numerous theory papers, some related directly to the field of corporate finance, that consider
sequential mechanisms similar to the one considered here. Examples include Fishman (1988), Daniel and
Hirshleifer (1998) and Horner and Sahuguet (2007).
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(2000)), these simple mechanisms can be thought of as stylized versions of sale processes

that are widely used in practice. In the comparison, BK assume that potential bidders only

know the distribution from which values are drawn prior to entering, and have no additional

information about their own value. After entry they find out their values for sure. These as-

sumptions are common in the auction literature as they provide greater analytic tractability.

Under this informational assumption, together with the assumption that bidders are sym-

metric and the seller cannot set a reserve price, BK show that “sellers will generally prefer

auctions and buyers will generally prefer sequential mechanisms” (p. 1547). Applying this

finding to M&A market, Denton (2008) uses BK’s results to criticize the use of go-shops as

effective means for a board fulfilling its Revlon duties.

This result holds in BK’s model because, in the equilibrium they consider, early bidders

with high enough values pool and submit a common bid that deters all future potential entry

(all future potential entrants have the same beliefs about their values prior to entry), and there

is too much deterrence from the seller’s perspective, so that he would prefer the greater actual

competition in the auction. In particular, deterrence means that later potential entrants with

high values will not enter, which decreases both the expected value of the winning bidder and

the price that an incumbent has to pay. In contrast, buyers prefer the sequential mechanism

as expenditures on entry costs are lower. This effect is sufficient to increase social efficiency.

In light of their result, BK interpret the fact that sequential mechanisms are actually

used as evidence that buyer’s preferences can determine the choice of mechanism. This is

consistent with the fact that some influential buyers, such as Warren Buffett, have explicit

policies that they will not “waste time” by participating in auctions.

In this paper, we consider a similar comparison, except that we allow potential buyers

to receive a noisy signal about their valuation prior to deciding whether to enter either

mechanism. After entry, they find out their values for sure, as in BK’s model. This structure

results in a “selective entry” model, where firms enter if they receive high enough signals, and

firms with higher values are more likely to enter.3,4 We believe that this is a natural model

to describe settings where firms are likely to have some imperfect information about their

value for an asset based on publicly available information, but must conduct costly research

to discover additional information that will affect their value.5 We also allow for potential

3The precision of the signal determines how selective the entry process is. In its limits, the model can
approach the polar cases of (a) perfect selection, which we term the S model after Samuelson (1985), whereby
a firm knows its value exactly when taking its entry decision, and (b) no selection, which we term the LS
model after Levin and Smith (1994), whereby a firm knows nothing of its value when taking its entry decision.

4Selective entry contrasts with standard assumptions in the empirical entry literature (e.g., Berry (1992))
where entrants may differ from non-entering potential entrants in their fixed costs or entry costs, but not
along dimensions such as marginal costs or product quality that affect competitiveness or the profits of other
firms once they enter.

5Examples include oil and gas leases, timber sales and government procurement contracts. The model also
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buyers to be asymmetric, which is another important feature of many real-world settings.

Using numerical analysis, which becomes necessary once either asymmetries or selective

entry are added to the model, we show that the sequential mechanism can give the seller

higher expected revenues than the simultaneous auction even when buyers’ signals about

their values are quite noisy. When the entry process is quite selective and/or entry costs are

large, the absolute difference in revenues can be substantial (for example, 10% or more). The

gains to using the sequential mechanism are also relatively larger than the gains to using an

optimal reserve price in the simultaneous auction. As in BK’s analysis, the sequential mech-

anism is more efficient, and the sequential mechanism generally gives higher expected payoffs

to both buyers and sellers. This result can obviously lead to a different interpretation of why

sequential mechanisms are sometimes used, and because the sequential mechanism increases

the payoffs of buyers, it is still consistent with comments like those of Warren Buffett. Our

findings are also consistent with observed differences in target shareholder returns in cor-

porate mergers and acquisitions documented by Subramanian (2008). He compares returns

when companies are sold using go-shops and a process where many firms are simultaneously

asked to submit bids before a winner is selected. He finds that target shareholder returns

are approximately 5% higher for go-shops6 and argues that, even though go-shop agreements

introduce asymmetries between bidders into the sale process, they are preferable for both

buyers and sellers.

Why does the sequential mechanism tend to produce higher revenues when entry is se-

lective? The key reason is that selective entry changes the nature of the equilibrium in the

sequential mechanism in a way that tends to increase both its relative efficiency and the rev-

enues that the seller can extract. With no selection, BK show that the “pre-emptive bidding

[which occurs in equilibrium] is crucial: jump-bidding allows buyers to choose partial-pooling

deterrence equilibria which over-deter entry relative to the social optimum” (p. 1546). Intro-

ducing any degree of selection into the entry process causes the bidding equilibrium to change

so that there is full separation, with bids perfectly revealing the value of the incumbent.7

describes firm takeover contests as an acquiring firm faces substantial sunk costs to learn its value for a target
and prepare its offer (see, for example, Easterbrook and Fischel (1982) or Bainbridge (1990)). Recently there
has been some work allowing for endogenous entry in empirical auction research. The dominant way this is
done is by assuming that bidders know their value precisely prior to entry, i.e. by assuming perfect selection.
For example, Li and Zheng (2009) compare estimates from both the LS and S models using data on highway
lawn mowing contracts from Texas to understand how potential competition may affect procurement costs,
and Li and Zheng (2011) test the LS and S models using timber auctions in Michigan. Marmer, Shneyerov,
and Xu (2011) extend this literature by testing whether the Li and Zheng (2009) data is best explained by
the LS, S or a more general affiliated signal model. They find support for the S and signal models, and they
also estimate a very simple version of their signal model. Finally, Gentry and Li (2012) show how partial
identification techniques can be used to construct bounds on the primitives of a signal model.

6Jeon and Lee (2012) find a similar premium (5.3%) based on an even larger sample of acquisitions.
7This is correct for values less than the upper limit of the value distribution minus the cost of entry. An
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At the same time, a potential entrant will enter if it receives a high enough signal about

its value. These changes increase the efficiency of the outcome in the sequential mechanism

as higher value incumbents deter more entry and higher value potential entrants are more

likely to enter. Unlike in BK’s model, the expected value of the winner can be higher in

the sequential mechanism, which increases the surplus available to all parties. In addition,

the change to a separating equilibrium affects the equilibrium level of jump bids. For some

values, this will increase the expected amount that bidders pay, benefiting the seller.

We illustrate our findings using parameters estimated from a sample of (simultaneous)

open outcry US Forest Service (USFS) timber auctions. This setting provides a close match

to the information structure assumed in our model as a potential bidder can form a rough-

estimate of its value based on tract information published by the USFS and knowledge

of its own sales contracts and capabilities, and it is also standard for interested bidders to

conduct their own tract surveys (“cruises”) prior to bidding. It is also a setting where various

auction design tools, such as reserve price policies, have been studied by both academics and

practitioners in order to try to raise revenues which have often been regarded as too low.8

Timber auctions are also characterized by important asymmetries between potential buyers,

with sawmills tending to have systematically higher values than loggers.

Our estimates imply that the entry process into timber auctions is moderately selective,

while average entry costs are 2% of the average winning bid, which is large enough to prevent

all potential buyers from entering the auctions. Even though such low entry costs tend to

weaken the sequential mechanism’s advantage over the auction, for the (mean) representative

auction in our data, our results imply that using a sequential mechanism (with no reserve)

would generate a nine times larger increase in revenues than setting the optimal reserve price

(the focus of the existing literature) in the simultaneous auction. We also find that the

efficiency gains from using the sequential mechanism are large enough that both the USFS

revenues and firm profits can increase.

Some comments about the nature of our results are appropriate. First, we do not seek

to compare revenues with those from the optimal mechanism. Instead, in the same spirit

as BK, we are interested in the relative performance of stylized versions of commonly used

upper limit on the value distribution is required for technical reasons but we assume that it is sufficiently
high that, for practical purposes, all incumbent values are revealed.

8Some examples of studies of timber auction reserve prices include Mead, Schniepp, and Watson (1981),
Paarsch (1997), Haile and Tamer (2003), Li and Perrigne (2003) and Aradillas-Lopez, Gandhi, and Quint
(forthcoming). All of these papers assume that entry is not endogenous. Academics have also provided
expert advice to government agencies about how to set reserve prices (stumpage rates) for timber (e.g.
Athey, Cramton, and Ingraham (2003)). In 2006, Governor Tim Pawlenty of Minnesota commissioned a task
force to investigate the performance of the state’s timber sale policies, and its report indicates an openness
to considering alternative sales mechanisms as well as different reserve prices (Kilgore, Brown, Coggins, and
Pfender (2010)).
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sales mechanisms, whereas the seller optimal mechanism, which is not known for a model

with imperfectly selective entry (Milgrom (2004)), is likely to involve features, such as side

payments or entry fees that are rarely observed in practice, and which might require the

seller to have implausibly detailed information.9 The seller would also need to know this

information if he wants to set the optimal reserve price in an auction, and, indeed, an

attraction of the simple sequential mechanism that we consider is that the only required

information concerns the set of potential entrants who should be approached.10 We show

below that if the seller has enough information to set an optimal reserve in the sequential

mechanism, he can do even better.

On the other hand, what is known about the optimal mechanism in models with costly

entry and either no selection or perfect selection suggests that the optimal mechanism should

be sequential, which helps to rationalize our results. For example, Cremer, Spiegel, and Zheng

(2009) consider the case with no selection and McAfee and McMillan (1988) consider a model

where buyers know their values but it is costly for the seller to engage additional buyers. In

both cases, the optimal mechanism involves some type of sequential search procedure, which

stops when a buyer with a high enough value is identified.11

Second, while we characterize the unique equilibrium of each mechanism under standard

refinements, our revenue comparisons are numerical in nature. This is a necessary cost of

allowing for either a more general model of entry, or bidder asymmetries. Our results show

that these features matter because the relative performance of the mechanisms can change

even when selection is quite imperfect. The computational approach also allows us to provide

a substantive empirical application of our model as selective entry and bidder asymmetries

are clear features of our data.

Third, we note two differences, besides the introduction of selective entry and bidder

asymmetries, between our model and the model considered by BK. First, we assume that the

number N of potential entrants is fixed and common knowledge to all players, whereas BK’s

model allows for some probability (0 ≤ ρj ≤ 1) of a jth potential entrant if there are j − 1

potential entrants. As these probabilities may equal 1 for j < N , and 0 for j ≥ N for any N ,

9Our approach is therefore similar to analyses of practical mechanisms in other settings, such as Chu,
Leslie, and Sorensen (2011) (bundling), Rogerson (2003) (contracts), McAfee (2002) (nonlinear pricing) and
Neeman (2003) (auctions).

10In this sense the sequential mechanism satisfies what has come to be known as the “Wilson doctrine”
(Wilson (1987)), which suggests that, from a practical standpoint, we ought to be concerned with mechanisms
that do not rely on the seller possessing unrealistically detailed information about buyers.

11In this environment, Ye (2007) considers two-stage bidding structures where the seller must choose how
many firms pay the entry cost ahead of the first stage. His paper clearly shows how to determine the optimal
number of entrants. However, he does not consider a wider range of mechanisms that might allow, for
example, the seller to set a reserve price or to decide how many firms should enter only after the first stage
bids are submitted.
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our model is a special case of theirs. Our choice reflects the standard practice in the empirical

literature, which we want to follow when estimating our model.12 Second, when modeling the

auction mechanism, we focus on the model where potential buyers make simultaneous entry

decisions as well as simultaneous bid choices, whereas BK’s primary focus is on a model

where firms make sequential entry decisions before bidding simultaneously. However, in

BK’s model “no important result is affected if potential bidders make simultaneous, instead

of sequential, entry decisions into the auction” (p.1560). We also give some consideration to

a sequential entry, simultaneous bid model, and show in examples that our qualitative results

are unchanged. Our choice to focus on simultaneous entry into the auction reflects a desire to

reduce the computational burden and, more importantly, the fact that simultaneous entry is

the appropriate way to model entry into the auctions in our empirical sample (Athey, Levin,

and Seira (2011) also apply a simultaneous entry model (with no selection) to USFS timber

auctions).

The paper proceeds as follows. Section 2 introduces the models of each mechanism and

characterizes the equilibria that we examine. Section 3 compares expected revenue and

efficiency from the two mechanisms for wide ranges of parameters, and provides intuition for

when the sequential mechanism outperforms the auction. Section 4 describes the empirical

setting of USFS timber auctions and explains how we estimate our model. Section 5 presents

the parameter estimates and counterfactual results showing that the USFS could improve its

revenues by implementing a sequential mechanism. Section 6 concludes. An online Appendix

contains all proofs and computational details.

2 Model

We now describe the model of firms’ values and signals, before describing the mechanisms

that we are going to compare.

2.1 A General Entry Model with Selection

Suppose that a seller has one unit of a good to sell and gets a payoff of zero if the good is

unsold. There is a set of potential buyers who may be one of τ = 1, ..., τ types, with Nτ of

type τ with all types known to buyers and the seller. In practice we will consider τ = 2. The

set of potential buyers and their types are common knowledge to all players. Buyers have

independent private values (IPV), which can lie on [0, V ], distributed according to F V
τ (V ).

12Examples of this assumption in the auction literature include Athey, Levin, and Seira (2011) and Li and
Zheng (2009). Examples elsewhere in empirical work on entry games include Berry (1992), Seim (2006) and
Ciliberto and Tamer (2009).
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F V
τ is continuous and differentiable for all types. For technical reasons, we assume that

bids must lie in the range [0, B], where B > V , although this assumption is very weak as no

bidder should want to bid more than its value. When we estimate our model and numerically

compare our sales mechanisms we assume that values are distributed lognormal and that V is

large, so that the density of values at V is very small, so that the upper truncation in values

should not affect the results.13 The numerical comparisons produce very similar results using

exponential, normal, Weibull or gamma distributions.

Before participating in any mechanism, a potential buyer must pay an entry costKτ . Once

it pays Kτ it finds out its value, so that the entry cost can be interpreted as including the cost

of researching the object for sale, as well as participation and bidding costs. We assume that

a firm cannot participate without paying Kτ . However, prior to deciding whether to enter, a

bidder receives a private information signal about its value. We focus on the case where the

signal of potential buyer i of type τ is given by Siτ = viτe
εiτ , where εiτ ∼ N(0, σ2

ετ ) and draws

of ε are assumed to be i.i.d. across bidders.14 Having received his signal, a potential buyer

forms a posterior belief about his valuation using Bayes Rule. The independence assumptions

on signals and values imply that a potential entrant’s signal provides no information about

other bidders’ values, and, as a result, optimal entry strategies will involve entering if and

only if a signal is above a particular threshold. We discuss what may change when signals

provide information on common values in the conclusion.

In this model, σ2
ετ controls how much potential buyers know about their values before

deciding whether to enter. As σ2
ετ → ∞, the model will tend towards the informational

assumptions of the Levin and Smith (1994) (LS) model in which pre-entry signals contain

no information about values. As σ2
ετ → 0, it tends towards the informational assumptions of

the Samuelson (1985) (S) model where firms know their values prior to paying an entry cost

(which is therefore interpreted as a bid preparation or attendance cost). For many empirical

settings, it seems plausible that buyers will have some, but imperfect, information about

their values prior to conducting costly research, consistent with intermediate values of σ2
ετ .

2.2 Mechanism 1: Simultaneous Entry Auction

The first mechanism we consider is a simultaneous entry second price or open outcry auction

that we model as a two-stage game. In the first stage all potential buyers simultaneously

decide whether to enter the auction (pay the entry cost) based on their signal, the number

13To be precise, fV (v|θ) = h(v|θ)R V
0 h(x|θ)dx

, where h(v|θ) is the pdf of the lognormal distribution.
14The normality assumption is not important, but our equilibrium does require us to assume a signal

technology which, combined with the assumption that K > 0, means that there is always some probability
that a potential entrant receives a signal which is so low that it does not choose to enter.
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of potential entrants of each type and the reserve price. In the second stage, entrants then

learn their values and submit bids. We assume that bidders bid up to their value in an open

outcry auction, so that, as in a second price or English button auction, the good is awarded

to the firm with the highest value at a price equal to the second highest value of the entrants

or the reserve price if one is used.15

Following the literature (e.g. Athey, Levin, and Seira (2011)), we assume that players

use strategies that form type-symmetric Bayesian Nash equilibria, where “type-symmetric”

means that every player of the same type will use the same strategy. In the auction’s second

stage, entrants know their values so it is a dominant strategy for each entrant to bid its value.

In the first stage, players take entry decisions based on what they believe about their value

given their signal. The (posterior) conditional density fVτ (v|Si) that a type-τ player’s value

is v when its signal is Si is defined via Bayes Rule.

The weights that a player places on its prior and its signal when updating its beliefs

about its true value depend on the relative variances of the distribution of values and ε

(signal noise), and this will also control the degree of selection. A natural measure of the

relative variances is the ratio σ2
ε

σ2
V +σ2

ε
, which we will denote α. If the value distributions were

not truncated above, player i’s (posterior) conditional value distribution would be lognormal

with location parameter αµτ + (1 − α)ln(Si) and squared scale parameter ασ2
V τ , so a lower

value of α implies a more informative signal.

The optimal entry strategy in a type-symmetric equilibrium is a pure-strategy threshold

rule where the firm enters if and only if its signal is above a cutoff, S ′∗τ . S ′∗τ is implicitly

defined by the zero-profit condition that the expected profit of entering the auction for a firm

with the threshold signal will be equal to the entry cost:∫ V

R

[∫ v

R

(v − x)hτ (x|S ′∗τ , S ′∗−τ )dx
]
fVτ (v|S ′∗τ )dv −Kτ = 0 (1)

where hτ (x|S ′∗τ , S ′∗−τ ) is the pdf of the highest value of other entering firms (or the reserve price

R if no value is higher than the reserve) in the auction, given equilibrium strategies. A pure

strategy type-symmetric Bayesian Nash equilibrium exists because optimal entry thresholds

for each type are continuous and decreasing in the threshold of the other type.

With multiple types, there can be multiple equilibria in the entry game when types

are similar (for example, in mean values) even when we assume that only type-symmetric

equilibria are played. As explained in Roberts and Sweeting (2011), we choose to focus on

an equilibrium where the type with higher mean values has a lower entry threshold (lower

15In the empirical analysis of USFS open outcry auctions, our estimation procedure does not require that
other losing bidders bid up to their values.
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thresholds make entry more likely). This type of equilibrium is intuitively appealing and

when firms’ reaction functions are S-shaped (reflecting, for example, normal or lognormal

value and signal noise distributions) and types only differ in the location parameters, µτ ,

of their value distributions then there is exactly one equilibrium of this form. We therefore

make this assumption about the parameters in what follows.16 Solving for this equilibrium

is straightforward: we find the S ′∗ values that satisfy the zero profit conditions for each

type and which satisfy the constraint that S ′∗1 < S ′∗2 , where a type 1 firm is the high type

(larger location parameter). It is important to note that the issue of type-symmetric multiple

equilibria affects only the auction, not the sequential mechanism.

2.3 Mechanism 2: Sequential Mechanism

The standard alternative to buyers submitting bids simultaneously is a sequential bid process.

Here we describe the simple sequential process that we consider, which is similar to the one

in BK. In Section 5 we address how this mechanism could be practically implemented in

settings such as USFS timber sales.

The seller places potential buyers into an order known to him and all buyers and may

depend on type, but which does not depend on signals, and approaches each potential buyer

in turn. We will call what happens between the seller’s approach to one potential buyer and

its approach to the next potential buyer a “round”. In the first round, the first potential

buyer observes his signal and then decides whether to enter the mechanism and learn his

value by paying K. If he enters and his value is above a reserve price (which may be zero),

he can choose to place a ‘jump bid’ weakly greater than the reserve price. If he enters and

learns his value is less than the reserve price he does not participate in the mechanism. Given

entry, submitting a bid is costless.

In the second round the potential buyer observes his signal, the entry decision of the first

buyer and his jump bid, and then decides whether to enter himself. If the first firm did

not enter and the second firm does, then the second firm can place a jump bid above the

reserve price in exactly the same way as the first firm would have been able to do had he

entered. If both enter, the firms bid against each other in a knockout button auction until

one firm drops out, in which case it can never return to the mechanism. If the second firm

wins a knockout it can choose to submit a jump bid above the standing price at the end of

the knockout. In order to show uniqueness of the equilibrium in the game with more than

16When we take the model to data, we have also estimated it using a nested pseudo-likelihood procedure
which does not require us to use an equilibrium selection rule. The parameter estimates in this case indicate
that the difference in mean values between our two types (sawmills and logging companies) are so large that
multiple equilibria cannot be supported.
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two rounds, we assume that firms are only able to submit jump bids the first time that they

become incumbents.17

This within-round bidding game is repeated for each remaining potential buyer, so that

in each round there is at most one incumbent bidder and one potential entrant. If a firm

drops out, or chooses not enter, it is assumed to be unable to re-enter at a later date. The

good is allocated to the last remaining bidder at a price equal to the current bid. The set of

potential entrants and the seller’s chosen order are known to all players, who also observe all

entry decisions and bids in previous periods.

A player’s strategy in this mechanism consists of an entry rule and a bidding rule as a

function of the round, the potential buyer’s signal and value (for bidding) and the observed

history.

2.3.1 Equilibrium with Pre-Entry Signals

We describe the equilibrium that we consider, before detailing the assumptions that lead us

to focus on it and how it compares to the equilibrium in BK’s model where there are no

signals. For notation, we define b̂pren as the standing bid from the previous round (̂bpre1 = 0 or

the reserve), b̂n as the standing bid after the knockout in round n, and βn,τ(n)(v, b̂n) as the

new incumbent’s jump bid function when he is in round n and is type τ . Πn,τ(n)(v, v
′, b) are

the expected continuation profits of a new incumbent in round n when he has value v, future

potential entrants believe that he has value v′ and he submits jump bid b, given equilibrium

behavior in subsequent rounds. The equilibrium we describe involves fully separating jump

bidding behavior for bidders with values on [̂bn, V −K], which will include almost all bidders

when V is high, and pooling for bidders with values on (V −K,V ].

The Perfect Bayesian equilibrium is defined for each round of the game by: (i) an entry

strategy for the potential entrant as a function of its signal and beliefs about the incumbent’s

value (if there is one); (ii) a bidding rule during the knockout phase; (iii) a jump bidding rule

for a new incumbent at the end of the knockout phase; and, (iv) the beliefs of the potential

entrant about the value of the incumbent given the observed history of the game.

(i) Entry strategy : A potential entrant in round n whose beliefs about the incumbent’s

value are described by the probability distribution function (pdf) gn(ṽ) and whose beliefs

about its own value when it receives a signal S are given by the conditional pdf fVτ(n)(v|S),

will enter if and only if it receives a signal above a threshold S ′∗n,τ(n) where S ′∗n,τ(n) satisfies the

17Toxvaerd (2010) studies a finite horizon dynamic limit pricing model and argues that a reasonable
equilibrium selection rule, inspired by the D1 refinement, but not identical to it, would select the equilibrium
where all signaling takes place in the first period.
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following zero-profit condition for n < N∫ V

dbpren

∫ V

ev Πn,τ(n)(v, v, βn,τ(n)(v, ṽ))fVτ(n)(v|S ′∗n,τ(n))gn(ṽ)dvdṽ −K = 0 (2)

If the left-hand side is less than zero for all values of S (e.g., the entrant believes that the

incumbent’s value is greater than V −K for sure) then the entrant never enters. If there is

no incumbent then the threshold is the one that solves∫ V

R

Πn,τ (v, v, βn,τ(n)(v,R))fVτ(n)(v|S ′∗n,τ(n))dv −K = 0 (3)

where R is the reserve price. In the final round there will be no jump bids by a firm who

wins a knockout so that S ′∗N,τ(N) will satisfy

∫ V

dbpreN

∫ V

ev (v − ṽ)fVτ(N)(v|S ′∗N,τ(N))gN(ṽ)dvdṽ −K = 0 (4)

(ii) Knockout bidding rule: A bidder bids up to his value during a knockout auction.

(iii) A jump bidding rule for a new incumbent in round n < N : New incumbents with

values on the interval [̂bn, V − K] submit a bid from a bid function βn,τ(n)(v, b̂n) that is

uniquely determined by the following differential equation (the j superscript denotes the

partial derivative with respect to the function’s jth argument):

dβn,τ(n)(v, b̂n)

dv
= −

Π2
n,τ(n)(v, v, βn,τ(n)(v, b̂n))

Π3
n,τ(n)(v, v, βn,τ(n)(v, b̂n))

(5)

and the lower boundary condition that βn,τ(n)(̂bn, b̂n) = b̂n, which means that a new incumbent

with value exactly b̂n (i.e., the price at which the knockout ends) should submit a bid of b̂n

(no jump bid). As Π2
n,τ(n)(·) > 0 and Π3

n,τ(n)(·) < 0 there is full separation of types on the

interval [̂bn, V −K]. New incumbents with values (V −K,V ] pool, submitting bids equal to

βn,τ(n)(V −K, b̂n). An entrant with a value less than the standing bid, or the reserve if there

is no incumbent, does not submit a jump bid. There will be no jump bidding in the final

round.

(iv) Beliefs of the potential entrant about the value of an incumbent who submitted a jump

bid in an earlier round m: For a jump bid x in the interval [̂bm, βm(V −K, b̂m)], the potential

entrant will believe that the incumbent’s value is v′ = β−1
m,τ(m)(x, b̂m) where β−1 is the inverse

of the bidding function; for a jump bid βm,τ(m)(V −K, b̂m), the potential entrant will believe

the incumbent’s value lies on the interval [V −K,V ] with the pdf given by Bayes Rule; for
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bids strictly greater than βm,τ(m)(V −K, b̂m), which will never be observed on the equilibrium

path, we will assume for completeness that future potential entrants believe that such a bid

is by an incumbent with value exactly V −K.

Given equilibrium behavior, Πn,τ (v, v
′, b) will be:

Πn,τ(n)(v, v
′, b) = [v − b]

[
F n,τ(n)(b|v′)

]
+

∫ v

b

(v − x) fn,τ(n)(x|v′)dx (6)

where F n,τ(n)(x|v′) is the probability that the maximum value of a future entrant is less than

x when potential entrants believe that the incumbent’s value is v′, and fn,τ(n)(x|v′) is its

derivative with respect to x. Explicitly:

F n,τ(n)(x|v′) =
N∏

k=n+1

[∫ x

0

fVτ(k)(y)dy +

∫ V

x

FS,τ(k)(S
∗
k,τ(k)(v

′)|y)fVτ(k)(y)dy

]
(7)

where FS,τ(k)(S|y) is the conditional cdf of the signal for a type τ potential entrant in round

k when its value is y.

We can show that equilibrium bidding and entry strategies are unique under additional,

and quite standard, assumptions. First, we assume that all players use the weakly dominant

strategy of bidding up to their value in a knockout auction both on and off the equilibrium

path. This eliminates the possibility of an equilibrium where some incumbent never drops

out in a knockout auction, and later potential entrants do not enter.18 Second, we place

two restrictions on the inferences that later potential entrants can make when observing an

off-the-equilibrium path bid. The first restriction, consistent with a sequential equilibrium

(Fudenberg and Tirole (1991)), is that all potential entrants draw the same inference about

an incumbent’s type when observing the jump bid. The second restriction, consistent with

the D1 refinement (Cho and Sobel (1990) and Ramey (1996)), is that when they observe

an off-the-equilibrium-path jump bid, potential entrants place zero posterior weight on the

deviating incumbent having value v if an incumbent with value v′ would strictly prefer the

deviation for any inferences that the future potential entrants could make which would give

the v incumbent a weak incentive to deviate (Ramey (1996), p. 516). This restriction allows

us to rule out the existence of pooling equilibria.

We show that the equilibrium exists and is unique in the Appendix, but it is worth

highlighting the features of the game that lead to these results. All else equal, an incumbent’s

expected profits are higher when future potential entrants are less likely to enter for any value.

This provides an incentive for an incumbent to raise its jump bid in order to distinguish itself

18It also allows us to specify the incumbent’s continuation payoff when placing a jump bid as only a function
of his jump bid, not his subsequent knockout bidding strategy which is determined by our assumption.
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from incumbents with lower values.

A single crossing condition on the incumbent’s expected payoffs ensures that a higher

value incumbent who faces the possibility of entry, will always be willing to pay more than a

lower value incumbent to raise the potential entrant’s belief about his value. Mailath and von

Thadden (2011), Theorems 2 and 4, show how single crossing, together with other conditions,

leads to the existence of a unique separating equilibrium bid schedule that satisfies differential

equation (5) and the lower boundary condition. The D1 refinement on how out-of-equilibrium

actions are interpreted ensures that incumbents with values less than V −K will not pool.

Intuitively, if an incumbent in any hypothetical pool deviated by submitting a slightly higher

bid, single crossing implies that, under the refinement, this deviation would be interpreted

as being made by the highest valued incumbent in the pool, providing the highest type in a

pool with a strict incentive to deviate. This logic does not apply for incumbents with values

greater than V −K who do pool in equilibrium. No potential entrant will enter against these

incumbents, so there is no incentive for any member of the pool to raise its bid in order to

try to signal that it has a higher value.

Given the nature of this equilibrium we can solve the game recursively. Full details are

given in the Appendix. For the final potential entrant, who believes that he will win if his

value is greater than the incumbent’s (in which case the final price will be the incumbent’s

value), we can solve for the equilibrium entry thresholds for a grid of values of an incumbent

firm. Next we consider the previous potential entrant. Assuming that this firm becomes an

incumbent, we solve for its equilibrium bid functions as a function of the standing bid using

the final round thresholds, and we then use the expected profits that this bid function and

the final round thresholds imply to compute its entry thresholds for the grid of values for

an incumbent in the previous round. We then repeat these steps for the previous potential

entrants until we reach the first round, where there is no incumbent.

2.3.2 Comparison with BK’s Equilibrium

BK show that when there are no pre-entry signals and firms are ex ante symmetric equilibrium

jump bidding and entry is quite different to our model. They find a partial pooling equilibrium

where incumbent bidders separate into two groups. In particular, BK show that when an

incumbent’s value is less than some endogenously determined cut-off V S, which is the same

across rounds, the incumbent submits no jump bid and all later potential entrants respond

by entering. Incumbents with values more than V S post a common jump bid which deters all

future entry, reflecting the fact that all future potential entrants have common information
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about their values.19 In equilibrium, entry therefore happens in every round until a potential

entrant has a value above V S when it ceases forever. BK show that this outcome is more

efficient than the auction, because it economizes on entry costs, but that from the seller’s

standpoint, there is excess deterrence, reducing revenues.

2.3.3 Illustrative Example of the Sequential Mechanism’s Equilibrium

To provide additional clarity about how the mechanism works, given equilibrium strategies,

Table 1 presents what may happen in a game with four potential entrants and one type of

firm with values distributed proportional to LN(4.5, 0.2) on [0,200], K = 1 and σε = 0.2

(α = 0.5).

Initial Potential Entrant Post-Knockout Post-Jump Bid
Round Standing Bid Value Signal S ′∗ Entry Standing Bid Standing Bid

1 - 80.0 90.1 75.0 Yes - 69.3
2 69.3 75.4 50.5 69.4 No 69.3 69.3
3 69.3 116.0 114.9 61.7 Yes 80.0 87.1
4 87.1 100.0 114.0 107.0 Yes 100.0 100.0
Seller’s Revenue = 100.0, social surplus (winner’s value less total entry costs) =113.0

Table 1: A simple example of how the sequential mechanism works in a game with four
potential entrants and one type of firm with values distributed proportional to LN(4.5, 0.2)
on [0,200], K = 1 and σε = 0.2.

The first potential entrant enters if he receives a signal greater than 75.0, which is the

case here. The signal thresholds in later rounds depend on the number of rounds remaining

and the incumbent’s value. So, when the incumbent is the same as in the previous round,

the threshold S ′∗ falls since the expected profits of an entrant who beats the incumbent rise

(because he will face less competition in the future). On the other hand, S ′∗ does not depend

on the level of the standing bid given the incumbent’s value, because it has no effect on the

entrant’s profits if he beats the incumbent in a knockout (since the standing bid must be

below the incumbent’s value). In round 2, the incumbent does not face entry, so there is no

change in the standing bid because incumbents do not place additional jump bids.20 In round

3, the standing bid rises during the knockout, and the new incumbent places an additional

19V S is independent of the round of the game and history to that point. It is determined by the condition
that future potential entrants are indifferent to entering if they know that the incumbent firm’s value is at
least V S . The level of the deterring bid, which may differ by round, is determined by the condition that
a firm with value exactly V S is indifferent between submitting the bid and deterring all future entry and
submitting no jump bid and having entry occur.

20There would also have been no change in the standing bid if the entrant had come in, because the
entrant’s value was below the current bid, so the standing bid would not have risen in the knockout.
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Figure 1: Penultimate round bid function for a new incumbent and probability of entry for
the final round potential entrant, with symmetric firms, values LN(4.5, 0.2) on [0,200], K = 1
and standing bid of 80.

jump bid. In round 4 the last potential entrant participates, but his value is less than the

incumbent’s and so revenue is the price at which this last entrant drops out.

We can also use this example to give intuition for how introducing selection affects bid

functions and entry probabilities. With selection, the level of bids is determined by the fact

that bids must be sufficiently high that firms with lower values will not want to copy them.

In particular, if the entry decisions of later potential entrants are likely to be more sensitive

to beliefs about the incumbent’s value, then the equilibrium bid function must increase more

quickly in v. A straightforward way to illustrate this is to focus on the last two rounds when

a new incumbent in the penultimate round only needs to worry about one more potential

entrant, and the final round potential entrant would face no further entry if he enters and

outbids the incumbent. An example is shown in Figure 1, which compares the equilibrium

bid functions in the penultimate round, and equilibrium probabilities of entry in the final

round of the sequential mechanism for varying degrees of selection.

The left panel displays bid functions for a new incumbent in the penultimate round, when

the previous incumbent’s value was 80. The right panel gives the probability that the final

round potential entrant participates as a function of this new incumbent’s value. Successively

lower degrees of selection change the bid function so that when α→ 1 it approaches the bid
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function in the LS (no selection) model (the bold line), which is a step function that jumps

at a value of 119 (the level of the incumbent’s value that deters all future entry). The slope

of the bid function is more gradual for lower αs since the probability that the final round

potential entrant participates declines more smoothly when α is lower.

3 Comparison of Expected Revenues and Efficiency

This section compares the revenue and efficiency performance of the sequential mechanism

and simultaneous auction for a wide range of entry cost (K) and selection (α) parameters.

This allows us to show that the sequential mechanism performs better than the auction quite

generally, and to investigate what factors lead to the difference in performance. In Section

5 we will perform a more detailed comparison using particular parameters estimated from

USFS timber auctions.

As a base case, we consider 8 symmetric potential entrants whose values are distributed

LN(4.5, 0.2) so that the value distribution has a mean of 91.6 and a standard deviation of

18.6.21 Additionally, we allow an optimal reserve price to be used in the simultaneous auction

but restrict attention, for now, to a sequential mechanism with no reserve. In this way the

results are biased against a seller preferring the sequential mechanism.

Figure 2 shows the results of comparing expected revenues from the sequential mechanism

(with no reserve) and a simultaneous entry auction with an optimal reserve in (K,α) space.22

Filled squares represent outcomes where the expected revenues from the sequential mecha-

nism are higher by more than 4% (of auction revenues), while hollow squares are outcomes

where they are higher but only by between 0.1% and 4%. Diamonds represent cases where

the simultaneous auction gives higher revenues. Crosses on the grid mark locations where

the difference in revenues is less than 0.1%. Due to the possibility of small numerical errors

in solving differential equations and simulation error in calculating expected revenues, we

take the conservative approach of not signing revenue differences in these cases.

21The comparisons in this section are based on a lognormal distribution of values. We do this to ease com-
parison with our empirical framework which also models values as being distributed lognormally. However, we
have verified that the qualitative conclusions we draw in this section hold for alternative value distributions
such as normal, exponential, Weibull and gamma.

22Sequential (auction) mechanism’s expected revenues are calculated using 200,000 (5,000,000) simulations.
The optimal reserve price is calculated by numerically solving for the revenue maximizing reserve price, where
revenues are calculated via simulation using the same set of simulations. That is, for each candidate reserve
price and number of bidders we solve for the equilibrium entry thresholds in the auction and the equilibrium
entry thresholds and jump bidding functions in the sequential mechanism. Then we draw N × S simulated
values, where N is the number of bidders per auction and S is the number of simulated mechanisms and
compute the average revenue across the S simulated mechanisms based on the equilibrium for that reserve
price and number of bidders. The Appendix contains more details of our calculation of optimal reserve prices.
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Figure 2: Expected revenue comparison for 8 symmetric firms, values LN(4.5, 0.2), optimal
reserve price in auction, no reserve price in sequential mechanism.

The sequential mechanism generally gives higher revenues than the auction, even though

the auction has an optimal reserve. As entry costs rise, the differences in revenues can be

large. For example, when α = 0.5 and K = 6 (6.5% of the average value), the sequential

mechanism gives expected revenues that are 7.3% higher than the auction. When α = 0.5

and K = 10, expected revenues in the sequential mechanism are 11.5% higher. The only

cases where the auction does better are when both K is very low and α is close to 1 (little

selection). These points are consistent with BK’s results as their assumptions require no

selection and that at least two firms enter the auction, implying low entry costs. However,

in these cases the revenue advantage of the auction is small (at most it can raise expected

revenues by 1.1%).

Why does the sequential mechanism perform better? The natural way to analyze this

question is in terms of the expected total surplus that each mechanism produces, measured

as the value of the winner less total entry costs, itself an economic outcome of interest, and

then the seller’s ability to extract as much of this surplus as possible. BK show that with no

selection the sequential mechanism is more efficient (generates more surplus). The sequential

mechanism remains more efficient in our model, dominating the auction for every grid point
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in Figure 2. There are two reasons for this. First, it is generally true that there is less

entry into the sequential mechanism. For example, continuing with the case from above,

when α = 0.5 and K = 6 the average number of entrants into the sequential mechanism is

1.59, which is less than the average number of entrants into the auction, 2.66. Second, the

expected winner’s value can be higher in the sequential mechanism because later potential

entrants will enter if the incumbent’s value is low. For example, when K = 1 the expected

winner’s value is higher in the sequential mechanism if α < 0.25, and it is always higher for

larger values of K. An following with the example from above, when α = 0.5 and K = 6 the

expected value of the winner in the sequential mechanism is 115.68, whereas the expected

value of the winner in the auction is 113.92.

With no selection, BK show that bidders capture all of the additional surplus created by

the sequential mechanism, reflecting the ability of early entrants to deter entry, and reducing

the seller’s expected revenues below the level in the simultaneous auction. The seller’s revenue

in the auction is simply the second highest value among the entrants, whereas its revenue in

the sequential mechanism is the maximum of the second highest value among the entrants

and the jump bid submitted by the winner. Lower entry into the sequential mechanism

reduces the expected second highest value, and when there is no selection, even high value

incumbents may be able to submit relatively low, but fully deterring, jump bids in the partial

pooling equilibrium. When there is selection, the greater ability of the sequential mechanism

to select high value entrants tends to increase the second highest value among the entrants,

just as it does for the highest value entrant, but for all the grid points in Figure 2 the

expected value of this statistic is higher in the auction. However, by changing the nature of

equilibrium jump bidding, selection can also raise the jump bid submitted by incumbents in

the sequential mechanism.

An example of this effect can be seen in Figure 1, which shows jump bidding functions

in the penultimate round when the previous incumbent had a value of 80 for different values

of α. When the new incumbent has a value less than 119, the bid functions with selection

lie above the bid function with no selection (LS). These values are the ones that are most

likely to be observed in practice: for example, when α = 0.1, the mean and 90th percentile

values of a new penultimate round incumbent who would find himself submitting a jump

bid are 101 and 121, respectively. With selection, these jump bids reduce the probability of

final round entry (right panel), but this reduction will be smaller for potential entrants with

values above the jump bid, whose entry is valuable to the seller. The figure also shows that,

with selection, equilibrium jump bids are also higher for incumbents with very high values.

This reflects their incentive to submit higher jump bids to reduce the probability that a high

value potential entrant will enter in the final round.
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In many settings, such as in the USFS timber sales studied below, buyers will be asymmet-

ric. In a simultaneous entry auction weaker bidders need to consider the odds of competing

against stronger bidders. While this is still true in the sequential mechanism, if the weaker

bidders are approached last, in the separating equilibrium they know the value of the high-

est strong type that has entered. This permits more efficient entry of the weaker bidders

and achieves a more efficient allocation of the good relative to the auction. For example

suppose that K = 5, α = 0.4, N = 4 and the first two bidders approached have values

proportional to LN(4.5, 0.2), while the last two bidders approached have values proportional

to LN(4.4, 0.2).23 Each of the weaker firms enters the simultaneous auction with probability

0.20 and the probability that one of them wins is only 0.17. On the other hand, in the

sequential mechanism the entry probabilities are similar (0.204 for the first and 0.175 for the

second) but the probability that one of them wins increases to 0.283. This is much closer

to the probability that one of the weaker firms will have the highest value (0.33). In this

case, the sequential mechanism’s expected revenues (efficiency) of 83.34 (97.96) exceed those

of the auction, which are 78.40 (94.05). When bidders are asymmetric, sellers may prefer a

first price auction with type-specific reserve prices to a second price auction with a uniform

reserve. However, continuing with this example, even a first price auction with type-specific

optimal reserve prices only generates expected revenues of 80.41, and so it is outperformed

by the sequential mechanism with no reserve price.

The ability of the sequential mechanism to more efficiently allocate goods to weaker

bidders while also raising revenues is particularly relevant given the commitment of many

government agencies to award a certain proportion of contracts to minority-owned firms and

small businesses who are likely to be weaker bidders. For example, the federal government

seeks to award at least 23% of its $400 billion of annual contracts to small businesses (Athey,

Coey, and Levin (2011)). Existing methods for achieving these distributional goals include

bid subsidies for preferred firms, which may allow these firms to win even when they have

lower values, and set-asides, where other firms are prevented for participating. In the context

of USFS timber auctions, Athey, Coey, and Levin (2011) show that the set-aside program

that was used created significant revenue and efficiency losses relative to a counterfactual bid

subsidy program, while in the context of highway procurement, Krasnokutskaya and Seim

(2011), find that bid subsidies have only small effects on procurement costs. Our results

suggest that the sequential mechanism may provide a mechanism for achieving distributional

goals, while increasing efficiency and revenues, without requiring the seller to know the type

of information required to compute an optimal bid subsidy program, although we leave a

23Our simulations show that approaching all of the high value firms first, followed by all of the low value
firms is better than doing the opposite.
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more complete analysis of this issue to future work.

Our computations show that a simple, stylized version of real-world sequential mecha-

nisms tends to outperform the commonly used auction, even when the optimal reserve price

is set in the auction. The sequential mechanism’s advantage over the auction could be in-

creased through additional design elements, an obvious example being a reserve price. Figure

3 computes expected revenues when an optimal reserve price is added to each mechanism

when there are five or eight symmetric bidders using the same value distribution parameters

as before and assuming K = 5. For the sequential mechanism, only one reserve price is used,

which is constant across all rounds in the mechanism. Generally, the seller could do better

with a round-specific reserve price, but we view a constant reserve price as approximately

imposing the same informational demands on the seller as does setting the optimal reserve

price in the simultaneous auction.
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Figure 3: Expected revenue comparison for varying N , with and without reserves. Firms are
symmetric with values distributed LN(4.5, 0.2) and K = 5.

Figure 3 shows that when α is low, in contrast to the simultaneous auction, adding a

constant reserve price to the sequential mechanism may substantially improve revenues. The

reserve price affects sequential mechanism revenues in two ways. First, in the event that no
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firm has entered through the first N − 1 rounds, a reserve price guards the seller against

giving the good away for free to the last potential entrant. Second, a reserve price raises the

first entrant’s deterring bid function.

The efficacy of a reserve price varies across mechanisms and across different values of N

and α. There are two main reasons for this. First, when entry is endogenous, a reserve price

has a smaller impact when the level of entry is greater, as is generally the case (i) in the

auction or (ii) when N is greater (unless α is very close to 1), as is clearly shown in Figure

3. Second, a reserve price excludes some bidders and if these are valuable to the seller, this

reduces the value of a reserve price. This effect can be seen in Figure 3 by noticing that

the impact of a reserve price in the sequential mechanism falls for higher values of α: less

selection implies that marginal and inframarginal entrants are more similar, which makes the

exclusion of marginal bidders more costly to the seller (it is also true that the level of entry

increases in α, which also limits a reserve price’s impact).

Using the parameters in Figure 3 and N = 5, we have also investigated the importance of

our assumption that bidders make simultaneous entry decisions into the auction, as well as

simultaneous bids. An alternative, even though it has not been considered in the empirical

literature on auctions, is sequential entry into the auction so that later firms can condition

on the participation decisions, but not values, of the firms that move earlier.24 In general,

sequential entry increases expected revenues and efficiency in the auction by lowering the

probability that very few or very many firms enter. However, the sequential mechanism,

which, in equilibrium, also allows later firms to more efficiently condition their entry decisions

on the values of earlier entrants, still outperforms the auction in terms of revenues. For

example, with no reserve prices, when α = {0.1, 0.5, 0.9}, the sequential mechanism gives

expected revenues of {88.0, 89.8, 92.3}, the sequential entry auction {87.3, 87.2, 89.6} and the

simultaneous entry auction {85.6, 86.4, 88.6}.25

24There is an increased computational burden in solving for equilibrium in the sequential entry, simultane-
ous bid auction model. This arises from the fact that later potential entrants’ equilibrium entry thresholds
are a function of the complete history of the game and thresholds in earlier rounds, so that it is necessary
to solve for all of the thresholds simultaneously. In contrast, in the sequential mechanism we consider, a
potential entrant’s equilibrium threshold only depends on the value of the incumbent which (with any degree
of selection) is completely revealed by its jump bid.

25We have also computed expected revenues for the sequential entry auction using the parameters from
USFS auctions reported in Table 4. For these parameters the sequential mechanism also gives higher expected
revenues and efficiency than the sequential entry auction.
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4 Empirical Application

We now turn to our empirical application that focuses on USFS timber auctions. These

auctions provide a good fit to the informational assumptions of our model. Moreover, unlike

other environments where this might be true, such as the M&A market, we can convincingly

estimate the parameters of the model because we see many similar objects (tracts of timber)

being sold. Finally, while a great deal of work has concentrated on auction design tools, such

as reserve prices, as means to increasing revenues in timber auctions, we show that a shift

to a sequential sales process has a much larger impact. We are brief in our discussion of

the data, estimation and reduced form evidence of selection as Roberts and Sweeting (2011)

discuss these topics in detail.

4.1 Data

We analyze federal auctions of timberland in California. In these auctions the USFS sells

logging contracts to individual bidders who may or may not have manufacturing capabilities

(mills and loggers, respectively). When the sale is announced, the USFS provides its own

“cruise” estimate of the volume and value of timber for each species on the tract as well as

estimated costs of removing and processing the timber. It also announces a reserve price and

bidders must indicate a willingness to pay at least this amount to qualify for the auction.

After the sale is announced, interested potential bidders perform their own private cruises

in order to assess the tract’s value. These cruises are informative about the tract’s volume,

species make-up and timber quality.

We assume that bidders have independent private values. This assumption is also made

in other work with similar timber auction data (see for example Baldwin, Marshall, and

Richard (1997), Haile (2001) or Athey, Levin, and Seira (2011)). A bidder’s private value

is primarily related to its own contracts to sell the harvest, inventories and private costs of

harvesting. In addition, we focus on the period 1982-1989 when resale, which can introduce

a common value element, was limited (see Haile (2001) for an analysis of timber auctions

with resale).

We also assume non-collusive bidder behavior. While there has been some evidence of

bidder collusion in open outcry timber auctions, Athey, Levin, and Seira (2011) find strong

evidence of competitive bidding in these California auctions.

Our model assumes that bidders receive an imperfect signal of their value and they must

pay a participation cost to enter the auction.26 We interpret the USFS’s publicly available

26We note that we are not the first to model endogenous entry decision into these auctions (e.g. Athey,
Levin, and Seira (2011)).
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tract appraisal and a firm’s own knowledge of its sales contracts and capabilities as generating

its pre-entry signal. Participation in these auctions is costly for numerous reasons. In addition

to the cost of attending the auction, a large fraction of a bidder’s entry cost is its private

cruise. People in the industry tell us that firms do not bid without doing their own cruise,

which can provide information that bidders find useful, such as trunk diameters, but is not

provided in USFS appraisals.

We use data on 887 ascending auctions.27 Table 2 shows summary statistics for our

sample. Bids are given in $ per thousand board feet (mbf) in 1983 dollars. The average mill

bid is 20.3% higher than the average logger bid. As suggested in Athey, Levin, and Seira

(2011), mills may be willing to bid more than loggers due to cost differences or the imperfect

competition loggers face when selling felled timber to mills.

Variable Mean Std. Dev. 25th-tile 50th-tile 75th-tile N
WINNING BID ($/mbf) 86.01 62.12 38.74 69.36 119.11 847
BID ($/mbf) 74.96 57.68 30.46 58.46 105.01 3426
LOGGER 65.16 52.65 26.49 49.93 90.93 876
MILL 78.36 58.94 32.84 61.67 110.91 2550

LOGGER WINS 0.15 0.36 0 0 0 887
FAIL 0.05 0.21 0 0 0 887
ENTRANTS 3.86 2.35 2 4 5 887
LOGGERS 0.99 1.17 0 1 1 887
MILLS 2.87 1.85 1 3 4 887

POTENTIAL ENTRANTS 8.93 5.13 5 8 13 887
LOGGER 4.60 3.72 2 4 7 887
MILL 4.34 2.57 2 4 6 887

SPECIES HHI 0.54 0.22 0.35 0.50 0.71 887
DENSITY (hundred mbf/acre) 0.21 0.21 0.07 0.15 0.27 887
VOLUME (hundred mbf) 76.26 43.97 43.60 70.01 103.40 887
RESERVE ($/mbf) 37.47 29.51 16.81 27.77 48.98 887
SELL VALUE ($/mbf) 295.52 47.86 260.67 292.87 325.40 887
LOG COSTS ($/mbf) 118.57 29.19 99.57 113.84 133.77 887
MFCT COSTS ($/mbf) 136.88 14.02 127.33 136.14 145.73 887

Table 2: Summary statistics for sample of California ascending auctions from 1982-1989. All
monetary figures in 1983 dollars. SPECIES HHI is the Herfindahl index for wood species
concentration. SELL VALUE, LOG COSTS and MFCT COSTS are USFS estimates of the
value of the tract and the logging and manufacturing costs of the tract, respectively.

We define potential entrants as the auction’s bidders plus those firms who bid within 50

km of an auction over the next month. One way of assessing the appropriateness of this

definition is that 98% of the bidders in any auction also bid in another auction within 50

27Roberts and Sweeting (2011) include a detailed description of the sample selection process.
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km of this auction over the next month and so we are unlikely to be missing many actual

potential entrants. The median number of potential bidders is eight (mean of 8.93) and this

is evenly divided between mills and loggers.

In Table 2, entrants are defined as the set of bidders we observe at the auction, even

if they did not submit a bid above the reserve price.28 The median number of mill and

logger entrants are three and one, respectively. Among the set of potential logger entrants,

on average 21.5% enter, whereas on average 66.1% of potential mill entrants enter. The

differences in bids and entry decisions are consistent with mills having significantly higher

values than loggers.29

4.2 Evidence of Selection

Roberts and Sweeting (2011) present reduced form evidence that the data are best explained

by a model allows for selection. There are two main pieces of evidence. First, Athey, Levin,

and Seira (2011) show that in the type-symmetric mixed strategy equilibrium of a model with

endogenous, but non-selective, entry and asymmetric bidder types, whenever the weaker type

enters with positive probability, the stronger type enters with probability one. Thus, for any

auction with some logger entry, a model with no selection would imply that all potential mill

entrants enter. In 54.5% of auctions in which loggers participate, and there are some potential

mill entrants, some, but not all, mills participate. Likewise, they show that whenever the

stronger type enters with probability less than one, a model with no selection implies that

weaker types enter with probability zero. However, in the data we find that in 61.1% of

auctions in which only some mill potential entrants participate and potential logger entrants

exist, some loggers enter. A model with selective entry can rationalize partial entry of both

bidder types into the same auction.

Second, a model without selection implies that bidders are a random sample of potential

entrants. Roberts and Sweeting (2011) test this by estimating a Heckman selection model

with the exclusion restriction that potential competition affects a bidder’s decision to enter an

auction, but has no direct effect on values. The second stage regression of all bids on auction

covariates and the estimated inverse Mills ratio from a first stage probit of the decision to

participate shows a positive and highly significant coefficient on the inverse Mills ratio. This

is consistent with bidders being a selected sample of potential entrants.

28However, in our empirical specification below, we interpret the data more cautiously and allow bidders
that do not submit bids to have entered (paid K), but learned that their value was less than the reserve
price.

29Roberts and Sweeting (2011) present evidence that differences in values, and not entry costs, explain
why mills are more likely than loggers to enter an auction.
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While these tests strongly suggest a selective entry process, we need to estimate the model

to recover α and perform revenue comparisons between alternative sale mechanisms.

4.3 Estimation

We estimate the model using Ackerberg (2009)’s method of simulated maximum likelihood

with importance sampling, which we detail in the Appendix and Roberts and Sweeting (2011).

This method requires that we allow for cross-auction heterogeneity in all of the structural

parameters, which is also realistic in our setting as our sample auctions come from different

forests and several different years, and also differ greatly in observed characteristics such as

sale value, size and wood type. Our chosen specification uses the following parametric dis-

tributions where Xa are observed auction characteristics and TRN(µ, σ2, a, b) is a truncated

normal distribution with upper and lower truncation points a and b.

Location Parameter of Logger Value Distribution: µa,logger ∼ N(Xaβ1, ω
2
µ,logger)

Difference in Mill/Logger Location Parameters: µa,mill − µa,logger ∼ TRN(Xaβ3, ω
2
µ,diff, 0,∞)

Scale Parameter of Mill and Logger Value Distributions: σV a ∼ TRN(Xaβ2, ω
2
σV
, 0.01,∞)

α: αa ∼ TRN(β4, ω
2
α, 0, 1)

Entry Costs: Ka ∼ TRN(Xaβ5, ω
2
K , 0,∞)

This specification reflects our assumption that σV , α and K are the same for mills and loggers

within any particular auction. It also assumes that observed variables, such as wood type,

do not affect the degree of selection (α) across auctions. We have estimated a number of

specifications allowing for observed variables to affect α without finding economically or

statistically significant effects.

To apply the estimator, we also need to define the likelihood function based on the open

outcry auction data. Two problems arise when interpreting these data. First, a bidder’s

highest announced bid in an open outcry auction may be below its value, and it is not obvious

which mechanism leads to the bids that are announced (Haile and Tamer (2003)). Second, if

a firm does not know its value when taking the entry decision, it may learn (after paying the

entry cost) that its value is less than the reserve price and so not submit a bid. We take a

conservative approach (the details of which are provided in the Appendix) when interpreting

the data by assuming that the winning bidder has a value greater than the second highest

bid, the second highest observed bid is equal to the value of the second-highest bidder, all

other bidders had values less than the highest observed bid and that potential entrants that

we do not see bid may or may not have paid the entry cost. Standard errors are calculated
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using a bootstrap where auctions, and importance sampling draws, are re-sampled 100 times.

4.3.1 Identification

While we make parametric assumptions to estimate the model, we informally discuss identi-

fication here. Gentry and Li (2012) study non-parametric identification of a class of selective

entry auction models, assuming no unobserved auction heterogeneity.30 They show that en-

try costs and the joint distribution of signals and values are exactly identified when there is

sufficient exogenous variation in equilibrium entry thresholds, and that otherwise they can

be bounded. Variation in entry thresholds (S ′∗) can be created by variation in the number of

potential entrants (possibly of different types), variables affecting entry costs (although we

do not find statistically significant evidence that observed variables affect these) and reserve

prices. The following argument provides intuition for identification. Suppose that in some

auctions, expected competition and the reserve price are low so that all potential bidders

enter and there is no selection. In this case, standard identification arguments (see Athey

and Haile (2002)) imply identification of the unconditional value distributions. The degree

of selection in the entry process can then be identified by how similar the value distributions

of entrants are to these unconditional distributions when entry thresholds are higher and not

all firms enter. For example, if entry is very selective (low α in our model) then the value

distributions of entrants will be almost perfectly truncated around the threshold, whereas

with no selection they will be similar to the unconditional distributions. The level of entry

costs, K, will be identified by the fact that a potential entrant receiving the threshold signal

must expect zero profits from entering.

Identification is more difficult in the presence of unobserved auction heterogeneity in

values, which is generally viewed as an important feature of timber auction data (Athey,

Levin, and Seira (2011)). In fact, even with full entry, value distributions are not exactly

identified unless all bids are observed and are directly informative about values (Theorem 4

of Athey and Haile (2002)). Bids in open outcry auctions clearly cannot be interpreted in

this way (e.g. Haile and Tamer (2003)). These issues explain why we, like Athey, Levin, and

Seira (2011) and Krasnokutskaya and Seim (2011), use a parametric approach that also lets

us allow for unobserved heterogeneity in entry costs and the degree of selection.

30In their conclusion they consider identification with unobserved heterogeneity that it is only revealed
to bidders after they enter. In contrast, we assume that they know factors that shift mean values prior to
making entry decisions.
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5 Empirical Results

In this section we present estimates of our structural model and counterfactual results mea-

suring the benefits to the USFS of switching from the current simultaneous entry and simul-

taneous bid auction to our simple sequential process.

5.1 Parameter Estimates

Table 3 presents the parameter estimates for our structural model. We allow the USFS

estimate of sale value and its estimate of logging costs to affect mill and logger values and

entry costs since these are consistently the most significant variables in regressions of reserve

prices or winning bids on observables, including controls for potential entry. We also control

for species concentration since our discussions with industry experts lead us to believe that

can matter to firms. The righthand columns show the mean and median values of the

structural parameters when we take 10 simulated draws of the parameters for each auction.

For the rest of the paper, we refer to these as the “mean” and “median” values of the

parameters.

The coefficients show that tracts with greater sale values and lower costs are more valu-

able, as one would expect. There is unobserved heterogeneity in values across auctions (the

standard deviation of µlogger) and some unobserved heterogeneity in the difference between

mill and logger mean values across auctions (the standard deviation of µmill − µlogger).

Based on the mean value of the parameters, the mean values of mills and loggers in the

population are, in 1983 dollars, $61.95/mbf and $42.45/mbf, respectively, a 46% difference.

We estimate a mean entry cost of $2.05/mbf, also in 1983 dollars. One forester we spoke

with estimated modern day cruising costs of approximately $6.50/mbf, or $2.97/mbf in 1983

dollars. It is sensible that our estimate is less than the forester’s estimate if firms in our data

are able to use any information they learn when deciding whether to enter other auctions.

Our estimates of the αs across auctions indicate a moderate amount of selection in the

data. This is illustrated by the difference in expected values for marginal and inframarginal

bidders in a representative auction where the reserve price and the number of potential mill

and logger entrants are set to their respective medians of $27.77/mbf, four and four. Based

on the mean parameter values, the expected values of a marginal and inframarginal mill

entrant are $45.22/mbf and $68.13/mbf, respectively (the former is lower than the population

average because most mills enter). The comparable numbers for loggers are $48.13/mbf and

$59.80/mbf, respectively.

Our estimation approach assumes that, if there are multiple equilibria, the firms will play

the equilibrium where mills have the lower S ′∗. We can check whether our parameter esti-
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mates can support multiple equilibria by plotting type-symmetric equilibrium best response

functions for mills and loggers for each auction. For every auction in our data, our parameter

estimates support only a single equilibrium. This is because our estimates imply a large

difference in the mean values of loggers and mills, relatively low entry costs and a moderate

amount of selection, all of which tend to lead to uniqueness.

5.2 Counterfactual Results

Table 4 compares expected revenues and efficiency from the sequential mechanism and the

simultaneous entry auction for a range of parameters and different numbers of firms. The sim-

ulations assume mills are approached first (in a random order) followed by loggers, although

we have found some cases where a different order can strengthen the results below.31

The first line in Table 4 gives the results for the representative auction (four mills and

four loggers) based on the mean parameter estimates from Table 3. Relative to setting no

reserve price in the simultaneous entry, simultaneous bid auction, the sequential mechanism

with no reserve price improves the USFS’s revenues by 1.81% (s.e. of 0.17%). For a tract of

average size (7,626 mbf) the expected revenue difference would be $9,834 (s.e. of $1,672), all

$ numbers in 1983 dollars.

The increase in revenues in this representative case of switching from the simultaneous bid

auction with no reserve price to the sequential mechanism with no reserve price is 9.05 (s.e.

of 1.95) times as large as the improvement from using an optimal reserve in the simultaneous

bid auction, which is just 0.2% (s.e. of 0.03%). The finding that the revenue increase from

using the sequential mechanism is much larger than the returns to using a reserve price in

the current auction format is important since understanding optimal reserve price policies for

timber auctions has been the subject of significant interest (examples include Mead, Schniepp,

and Watson (1981), Paarsch (1997), Haile and Tamer (2003), Li and Perrigne (2003) and

Aradillas-Lopez, Gandhi, and Quint (forthcoming)). Additionally, the sequential mechanism

provides an easily implementable mechanism that does not require the USFS to possess

detailed information on all of the model’s primitives. Such information would be required to

set an optimal reserve price. However, were the USFS to possess such information, a reserve

price could also be set in the sequential mechanism. If a reserve price is used in the sequential

mechanism, the increase in revenues becomes 10.43 times (s.e. of 2.27) as large as the gain to

setting an optimal reserve price in the auction. This advantage would increase if we considered

round-specific, or type-specific, optimal reserve prices in the sequential mechanism.

31Auction results are based on 5,000,000 simulations and sequential results are based on 200,000 simulations.
As the number of simulations used to compute auction and sequential mechanism revenues is so large, the
standard errors reported in this section reflect uncertainty about the value of the parameters only.
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Not only does the sequential mechanism have a much larger impact on revenues than does

setting an optimal reserve price in the standard auction format, it also increases efficiency, as

shown in the penultimate column in Table 4. In the representative case given in the first row

of the table, the USFS captures the majority of the increase in surplus, but expected firm

profits still increase in the sequential mechanism. As mentioned in Section 3, the sequential

mechanism tends to promote more efficient entry of weaker bidders and this increases their

expected profits. In the USFS auctions, switching from the current auction format to the

sequential mechanism tends to increase expected logger profits without substantially harming

those of mills. For example, in the representative case, expected logger profits increase 21%

(s.e. of 4.4%) when the sequential mechanism is used, while mill profits only fall by 0.60%

(s.e. of 0.90%).

The other rows in the table compare outcomes when we increase or decrease the number

of potential entrants or structural parameters by one standard deviation from the point

estimates of their means (the changing parameter is in italics), reflecting the fact that our

estimates imply that the coefficients will differ across sales. The cases we consider indicate

that using the sequential mechanism generally raises expected revenues. In case 14 the entry

cost is very low and in either mechanism almost all firms participate so that revenues are

essentially the same. In all cases, once a constant reserve price is used in the sequential

mechanism, it earns higher revenues than the current auction format even with an optimal

reserve price. We can see that setting a reserve price in the standard auction format is

particularly ineffective when there are many potential entrants or when entry is less selective

(α is high). In all cases the sequential mechanism increases efficiency and in only one example

does total bidder surplus fall (case 10). The finding from the first row that loggers benefit

from switching to the sequential mechanism holds in all rows. Additionally, when expected

mill profit falls, it tends to be by a small amount, and in some cases it rises. As an example,

in case 8, when µdiff is low (0.169), loggers’ expected profit increases by 10.18% and mills’

increases by 1.40%.

The USFS also uses first price, sealed bid auctions to sell timber. We can also compare

the performance of the sequential mechanism to this alternative. Across all of the cases in

Table 4, with the exception of cases 6 and 14, a sequential mechanism with no reserve price

earns the USFS higher revenues than a first price auction with an optimal reserve price.

Introducing a reserve price to the sequential mechanism increases its advantage over the first

price auction by even more so that it now dominates in all cases.

We can also compare total efficiency and revenues across all 887 auctions in our data. Our

results predict that the sequential mechanism would increase our efficiency measure by $11.3

million (s.e. of $1.2 million) from a base of $797 million using simultaneous auctions, with no
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reserve in either mechanism. 65% of this increase in efficiency would be captured by the USFS

in terms of higher revenue. In the 76% of the sample where there are at least 5 potential

entrants, the sequential mechanism with no reserve also raises expected revenues by $5.4

million (s.e. of $1.1 million) relative to simultaneous auctions with optimal auction-specific

reserve prices.

Of course, these gains from using a sequential mechanism would have to be weighed

against sunk costs that might need to be incurred in switching from simultaneous auctions to

a sequential procedure. For example, it would be necessary to develop appropriate software,

while training USFS staff and educating potential bidders about the system. However, in

this regard it is important to note that in the USFS context these costs could be spread

across a very large number of auctions, while the gains that we estimate above come from

only 18% of the USFS auctions held in one state between 1982 and 1989.32

It is also worth considering other potential practical impediments. First, the USFS must

be able to identify potential buyers. We have been told by USFS officials that they believe

that they can accurately identify potential entrants for a given sale. Even if at times they

are unsure, it would be straightforward to allow potential participants to costlessly identify

themselves before the full details of a sale are announced. Second, were the USFS to use

the sequential mechanism, there may be concern that approaching firms in an order places

some of them at an advantage over others and may lead firms to try to affect the order

in which they are approached. However, for all of the examples that we have considered,

expected firm profits are fairly constant across the order of moves within bidder type, and

there is no systematic pattern suggesting that a particular spot in the order is best. In-

tuitively, while the first potential entrant will be more likely to participate, he also must

pay more to win. For example, in the representative auction, where the four mills are ap-

proached first followed by the four loggers, the expected profits (in $/mbf) by order are

{6.07, 6.09, 6.14, 6.18, 1.08, 1.05, 1.09, 1.04}. The maximum amount by which expected mill

(logger) profits differ in this case is 0.016 (0.042). Third, there may be some concern about

whether the USFS can commit to an order. However, repeated use of the mechanism likely

would incentivize the USFS to maintain its credibility through consistent commitment to

stated orders. Additionally, the lack of variation of profits across spots in the order could

mean that firm lobbying efforts, which might dissuade a seller from sticking to a stated order,

are likely to be small. Fourth, collusion may be a concern given the existing evidence from

other USFS regions consistent with noncompetitive bidding (Athey, Levin, and Seira (2011)).

However, as Bulow and Klemperer (2009) note (their footnote 40), the “simple auction is

32The federal Bureau of Land Management also auctions timber and many state agencies also conduct
hundreds of timber auctions each year.
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perhaps more easily undermined, than a sequential process, by collusion.”

There may also be some concern that switching to the sequential mechanism would in-

crease the time required to sell any stand of timber since cruises would have to be done

sequentially and the mechanism allows for knockout auctions in between jump bids. While

the length of the bidding process would necessarily increase, we note that there is already a

sizable gap (over a month) between when a sale is announced and when it is completed.33

Since cruising takes between a day and seven days, depending on the size of the sale, even in

the extreme (assuming a large sale in which 8 potential bidders all decide to participate), a

sequential mechanism could be run in under two months. Often the sequential process could

happen much faster, but even an extra month may be a small price to pay to realize the

sequential mechanism’s advantages.

6 Conclusion

This paper compares the performance of a sequential and a simultaneous bidding mechanism

in an environment where it is costly for potential buyers to participate and they receive

imperfectly-informative signals about their values prior to deciding whether to enter, so

that the entry process is selective. In contrast to results when there is no selection, a very

simple sequential mechanism can generate higher expected revenues for the seller than the

commonly used auction, and it also has an efficiency advantage so that buyers may prefer

it is as well. The revenue result holds even though there is less entry (actual competition)

into the sequential mechanism. Instead, with selection, the sequential mechanism can do a

better job of allocating the good to the firm with the highest value and this fact, combined

with the feature that firms with high values have to bid aggressively in an attempt to deter

future entry, provides its revenue advantage.

We view our results as relevant and important for at least three reasons. First, our results

highlight the important role that selective entry can play in the performance of different sales

mechanisms. We believe that a model where potential bidders have some information about

their values, but perform costly assessments prior to bidding, is a plausible description for

many real-world sale or procurement settings. One example is corporate takeovers where

there is an on-going debate about whether corporate boards should be able to use sequential

sale procedures, such as go-shops, to fulfill their Revlon duty to maximize shareholder value.

Our results indicate that there are circumstances in which a sequential bidding process will

achieve this aim more effectively than a simultaneous auction, and they identify two factors

33As USFS officials informed us, the gap is usually much longer since the USFS must file documents to
comply with the National Environmental Policy Act.
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(the level of entry costs and the degree of selection) that will determine how well these

alternatives perform. Our results also address some of the concerns that some commentators

have raised about sequential sale procedures treating potential bidders asymmetrically, giving

the initial bidder an unfair advantage (Bloch (2010)). In our model, the initial bidder does try

to deter later firms from entering, but in equilibrium this does not raise its profits significantly

because it pays entry costs more often and tends to pay more when it wins.34

Second, our results are consistent with recent empirical evidence on corporate takeovers,

where both Subramanian (2008) and Jeon and Lee (2012), find that target shareholders

earn significantly higher returns, on the order of 5%, when sequential go-shop procedures

are used, as well as Subramanian’s observations that both buyers and sellers often prefer

go-shops. Our model can also explain other well-documented features of takeover data. For

example, Betton and Eckbo (2000) and Betton, Eckbo, and Thorburn (2008) show that

jump bids do not perfectly deter all future entry, and that multiple jump bids, sometimes

by different firms, are observed. These features are not consistent with a sequential bidding

model with no selection.

Third, the revenue differences that we identify are not trivial. When entry costs are large

or there is strong selection, we show in Section 3 that the sequential mechanism can have

a large absolute revenue advantage over the simultaneous auction. When entry costs are

relatively low, the gains to using a sequential mechanism over a simultaneous auction are

relatively much larger than the gains to use auction design tools, such as reserve prices, that

are the focus of much of the auction literature. We illustrate this point in our empirical

application. In contrast, we have been unable to find parameters where the simultaneous

auction provides a significant advantage over the sequential mechanism.

There are, of course, some limitations of the model considered here. One example is that

we assume that firms act competitively in both mechanisms. Another example is that we use

an IPV framework, which would not be satisfied in a setting where potential buyers have to

form imperfect opinions about an asset’s innate future potential. A common value component

could change jump bidding strategies in a sequential mechanism where a bidder finds out

more after entering, as an incumbent bidder could now want to signal that the value of the

common component is low in order to deter other firms from entering.35 Understanding how

34Sautter (2008) notes that “Proponents of go-shops argue that the provisions may aid the target in
achieving maximum stockholder value. They reason that ... the initial acquirer is incentivized to offer the
highest possible price in order to avoid a post-signing bidding war and the possibility that the deal may be
successfully ‘jumped’.”

35Denton (2008) notes that sequential go-shop procedures are believed to work best in takeover settings
where there are potential strategic (industry) buyers. As he notes, an IPV framework, reflecting the different
synergies that each firm can realize with the company being sold, is likely to be more appropriate for these
settings.
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common values or the threat of collusion affect the performance of sequential mechanisms

appear to be profitable directions for future research.
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A Propositions and Proofs: FOR ONLINE PUBLICA-

TION

This Appendix shows that the entry thresholds, beliefs of potential entrants and jump bidding

functions defined in the text form an equilibrium and is the only equilibrium consistent with

our refinement assumptions. For clearer exposition, we begin with a two period game and

show the there exists a unique equilibrium under the D1 refinement. We extend the result

to games with more than two rounds by showing how a recursive application of the same

arguments leads to the uniqueness of bidding and entry rules in earlier rounds.

A.1 Two Round Game

In a two round game, the equilibrium consists of strategies for potential entrants in both

rounds, a jump bidding rule for a first round entrant and the beliefs of the potential entrant

about the value of the first-round potential entrant given a jump bid. As explained in the

text, we assume that both firms would bid up to their values in a second-round knockout

auction.

The main proposition that we prove below is that there exists a unique equilibrium to this

game under the D1 refinement. To show this, we establish the following three lemmas which

immediately yield the proposition and characterize the nature of the unique equilibrium.

Lemma 1. The expected post-entry profits of the potential entrant in round 2 are strictly

increasing in its signal, S2.

Proof. Given the knockout bidding assumption, the expected profit of the potential entrant

who enters with signal S2 will be∫ V

dbpre2

∫ V

ev (v − ṽ)fVτ(2)(v|S2)g2(ṽ)dvdṽ (8)

when his belief is that the value of the incumbent has pdf g2(ṽ). If there is no incumbent,

then the reserve price R can be viewed as an incumbent with known value R. The expression

in (8) is weakly increasing in v and since F V
τ(2)(v|S) is strictly decreasing in S, the entire

expression is strictly increasing in S2.

Since the expected post-entry profits are monotonic in the second potential entrant’s

signal we get the following corollary.

Corollary 1. If the expected post-entry profits are less than K for all S, then the second

round potential entrant does not enter. Otherwise he enters if and only if his signal exceeds a
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threshold S ′∗2,τ(2) uniquely given by the solution to
∫ Vdbpre2

∫ Vev (v−ṽ)fVτ(2)(v|S ′∗2,τ(2))g2(ṽ)dvdṽ−K =

0.

Lemma 2. There exists a unique equilibrium jump bidding function for a new entrant in

period one under the D1 refinement which can be described as:

(i) strictly increasing for incumbent values on [R, V −K] and characterized by the differential

equation in (5) and the lower boundary condition β1,τ(1)(R,R) = R;

(ii) equal to β1,τ(1)(V −K,R) for incumbent values greater than V −K;

(iii) and submitting no bid for incumbent values < R.

Proof. We begin by showing (i). Theorems 2 and 4 of Mailath and von Thadden (2011),

generalizing Mailath (1987), provide sufficient conditions under which there is a unique sep-

arating equilibrium signal function β1,τ(1)(v,R), determined by the differential equation (5)

and the initial condition β1,τ(1)(R,R) = R. We now list these conditions (a)-(f) in our setting

and show that each holds.

(a) The possible value of the incumbent and its action space are compact intervals. This

is true in our model given our assumptions that values lie on [0, V ] and possible bids lie on

[0, B], V < B.

(b) If the final round potential entrant observed the value of the incumbent, the jump

bidding problem of the incumbent would have a unique solution. The optimal bid would be

equal to R. This is because it cannot be optimal for the incumbent to submit a bid above

its value. Further, no bid below its value affects the potential entrant’s entry decision but

will reduce the incumbent’s profit, relative to submitting a bid equal to R, if the potential

entrant stays out.

(c) Π1,τ(1)(v, v
′, b) is continuous and differentiable in each argument. This is true in the

model since the exact form of Π1,τ(1)(v, v
′, b) is

Π1,τ(1)(v, v
′, b) = [v − b]F 1(b|v′) +

∫ v

b

(v − x)f 1(x|v′)dx, (9)

where F 1(x|v′) =

[∫ x

0

fVτ(2)(y)dy +

∫ V

x

FS,τ(2)(S
′∗
2,τ(2)(v

′)|y)fVτ(2)(y)dy

]
(10)

and f 1(x|v′) =
∂F 1(x|v′)

∂x
. (11)

These profits will be continuous and differentiable in each argument as all of the pdfs and

cdfs in these functions are continuous and differentiable and S ′∗2,τ(2)(v
′), determined by the

threshold rule described above, will be continuous and differentiable in v′. Below we will
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make use of the fact that:
∂F 1(w|z)

∂z
= −

∫ V

w

∂f 1(y|z)

∂z
dy

and that
∂f 1(y|v′)
∂v′

= −
∂FS,τ(2)(S

′∗
2,τ(2)(v

′)|y)

∂S ′∗2,τ(2)(v
′)

∂S ′∗2,τ(2)(v
′)

∂v′
fVτ(2)(y) < 0

since S ′∗2,τ(2) is increasing in the potential entrant’s perception of the incumbent’s value because

the incumbent will have a higher dropout point in a knockout auction.

(d)
∂Π1,τ(1)(v,v

′,b)

∂v′
> 0 for all (v, v′). After some algebra we have:

∂Π1,τ(1)(v, v
′, b)

∂v′
= − [v − b]

∫ V

b

∂f 1(y|v′)
∂v′

dy +

∫ v

b

(v − x)
∂f 1(y|v′)
∂v′

dy

= −

[
[v − b]

∫ V

v

∂f 1(y|v′)
∂v′

dy + [v − b]
∫ v

b

∂f 1(y|v′)
∂v′

dy −
∫ v

b

(v − x)
∂f 1(y|v′)
∂v′

dy

]

> −

[
[v − b]

∫ V

v

∂f 1(y|v′)
∂v′

dy

]
> 0

(e)
∂Π1,τ(1)(v,v

′,b)

∂b
6= 0 for all b. This is immediate since

∂Π1,τ(1)(v,v
′,b)

∂b
= −F 1(b|v′) < 0.

(f)
∂Π1,τ(1)(v,v

′,b)

∂b
/
∂Π1,τ(1)(v,v

′,b)

∂v′
is monotonic in v for all (v′, b). We can prove this directly.

Alternatively we can define the profit function in terms of entry thresholds instead of beliefs

about the incumbent’s value: π1,τ(1)(v, S
′∗
2,τ(2), b) and show single crossing in terms of signal

threshold:
∂π1,τ(1)(v,S

′∗
2,τ(2)

,b)

∂b
/
∂π1,τ(1)(v,S

′∗
2,τ(2)

,b)

∂S′∗
2,τ(2)

is monotonic in v for all (S ′∗2,τ(2), b). Roddie (2011)

shows (his fact 2) that when S ′∗2,τ(2)(v
′) is monotonically increasing in v′, which was shown

above, that this signal-threshold version of single crossing implies
∂Π1,τ(1)(v,v

′,b)

∂b
/
∂Π1,τ(1)(v,v

′,b)

∂v′
is

monotonic in v for all (v′, b). As it will be useful to have a single crossing condition written in

terms of the potential entrant’s signal threshold for proving that no pooling equilibria exist

below, we take this second route by establishing
∂π1,τ(1)(v,S

′∗
2,τ(2)

,b)

∂b
/
∂π1,τ(1)(v,S

′∗
2,τ(2)

,b)

∂S′∗
2,τ(2)

is monotonic

in v for all (S ′∗2,τ(2), b).

We prove this by showing that the derivative of this expression with respect to v is always

positive. Differentiating this expression with respect to v yields (using superscripts to denote

partial derivatives) π13
1,τ(1)

[
π2

1,τ(1)

]−1

− π3
1,τ(1)π

12
1,τ(1)

[
π2

1,τ(1)

]−2

, which is equal to:

F 1(b|S ′∗2,τ(2))

[
−
∫ V

v

∂f 1(y|S ′∗2,τ(2))

∂S ′∗2,τ(2)

dy

][
− [v − b]

∫ V

b

∂f 1(y|S ′∗2,τ(2))

∂S ′∗2,τ(2)

dy +

∫ v

b

(v − x)
∂f 1(y|S ′∗2,τ(2))

∂S ′∗2,τ(2)

dy

]−2

This expression is always positive since all three terms being multiplied are positive.
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This establishes the form and the uniqueness of the separating equilibrium bid function

on the interval [R, V −K]. We now show that no pooling equilibria exist over this interval.

Theorem 3 of Ramey (1996) shows that if the incumbent does not want to submit the

maximum possible bid and
∂π1,τ(1)(v,S

′∗
2,τ(2)

,b)

∂b
/
∂π1,τ(1)(v,S

′∗
2,τ(2)

,b)

∂S′∗
2,τ(2)

is monotonic in v for all (S ′∗2,τ(2), b),

then no pooling equilibria can exist under D1. We just established the second condition and

we know that the first condition holds since our assumption that B > V implies that even

the highest incumbent type will not submit the maximum possible bid.

We now show part (ii) of the lemma. A potential entrant who believes that the incum-

bent’s value is V −K will not enter whatever his signal as the signal technology implies that

there is some probability that the entrant’s value will be less than V . Given this, the expected

benefit of entering the mechanism is less than the entry cost K. Therefore, considering only

bids greater than or equal to β1,τ(1)(V −K,R), the strictly dominant strategy will be to bid

β1,τ(1)(V −K,R). The single crossing condition implies that if β1,τ(1)(V −K,R) is preferred

to a lower bid by the incumbent with value V −K then it is also preferred by an incumbent

with a value greater than V −K.

Part (iii) of the lemma is immediate since an incumbent should not bid more than his

value as he may have to pay this bid if the potential entrant stays out or comes in with a

value less than the incumbent.

Lemma 3. The expected post-entry profits of the potential entrant in round 1 are strictly

increasing in S1.

Proof. In the first round, the expected post-entry profit of a potential entrant if it enters

with signal S1 is ∫ V

R

Π1,τ(1)(v, v, β1,τ(1)(v,R))fVτ(1)(v|S1)dv (12)

where β1,τ(1)(v,R) is the equilibrium jump bidding strategy, characterized above, for the firm

if it enters and has a value above the reserve (if it has a value less than the reserve it does

not submit a bid after entering). As long as the expression in (12) is weakly increasing in v,

it will be strictly increasing in S1 since F V
τ(1)(v|S) is strictly decreasing in S. We now show

that the expression in (12) is weakly increasing in v.

To do this we must establish that Π1,τ(1)(v, v, β1,τ(1)(v,R)) is increasing in v for v > R.

Consider any v on [R, V −K], where we know from above that the jump bidding schedule is

separating. Incentive compatibility of the jump bidding strategy implies that

Π1,τ(1)(v, v, β1,τ(1)(v,R)) ≥ Π1,τ(1)(v, v̂, β1,τ(1)(v̂, R)) for any v̂ < v

and, as the payoff of a v incumbent will be higher than a v̂ incumbent if he wins without
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having to compete in a knockout auction when both use a bid of β1,τ(1)(v̂, R), we also know

that

Π1,τ(1)(v, v̂, β1,τ(1)(v̂, R)) > Π1,τ(1)(v̂, v̂, β1,τ(1)(v̂, R)) for any v̂ < v

and thus Π1,τ(1)(v, v, β1,τ(1)(v,R)) > Π1,τ(1)(v̂, v̂, β1,τ(1)(v̂, R)) for any v̂ < v, as required. For

any v greater than V−K, equilibrium payoffs will also be increasing in v as Π1,τ(1)(v, v, β1,τ(1)(v,R))

= v − β1,τ(1)(V −K,R).

Since the expected post-entry profits are monotonic in the first round potential entrant’s

signal we get the following corollary.

Corollary 2. If the expected post-entry profits are less than K for all S, then the first round

potential entrant does not enter. Otherwise he enters if and only if his signal exceeds a thresh-

old S ′∗1,τ(1) uniquely given by the solution to
∫ V
R

Π1,τ(1)(v, v, β1,τ(1)(v,R))fVτ(1)(v|S ′∗1,τ(1))dv−K =

0.

The above lemmas immediately imply that the following:

Proposition 1. There exists a unique equilibrium bid function and entry thresholds in the

two round sequential mechanism with pre-entry signals under the D1 refinement.

A.2 Three or More Round Games

We now explain how the above proposition’s existence and uniqueness results can be extended

to sequential mechanisms with three or more rounds. To do so, we use the same recursive

arguments that were used in the two round game. Consider a three round game. The proofs

for the equilibrium strategies in the penultimate and final rounds are exactly the same as

above, except that the incumbent in the penultimate round may be bidding from a standing

bid determined by the value of a previous incumbent rather than the reserve price, and the

penultimate round entry threshold will depend on the agent’s beliefs about the value of the

incumbent if there is one. Following the arguments above, this threshold, S ′∗2,τ(2), is uniquely

determined by the zero profit condition
∫ Vdbpre2

∫ Vev Π2,τ(2)(v, v, β2,τ(2)(v, ṽ))fVτ(2)(v|S ′∗2,τ(2))dvdṽ −
K = 0.

We need to characterize the jump bidding function for an incumbent in the first round.

After this, extending the arguments to four or more round games is straightforward as again

the proofs for the equilibrium strategies in the last three rounds of a four round game would

be exactly the same as in a three round game (except that the incumbent in the second round

may be bidding from a standing bid determined by the value of a previous incumbent rather

than the reserve price, and the second round entry threshold will depend on the agent’s

beliefs about the value of the incumbent if there is one).
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To characterize the first round jump bidding function requires establishing the three-plus-

round versions of properties (a)-(f) listed in the proof of part (i) of Lemma 2. Properties

(a)-(c) and (e) are immediate. For property (d) to hold, so that the incumbent in the first

round is better off being perceived as having a higher value, we must show that the entry

thresholds of the subsequent potential entrants are increasing in their beliefs about his value

since this implies that they are less likely to enter for any potential entrant value. We know

from above that this will be the case for the final round potential entrant. As the following

lemma illustrates, it is also true for the second round potential entrant and so property (d)

holds.

Lemma 4. The second round potential entrant’s entry threshold is increasing in its beliefs

about a round one incumbent’s value v′.

Proof. This requires showing that Π2,τ(2)(v, v, β2,τ(2)(v, v
′)) decreases in v′, the standing bid

at the end of a knockout that the potential entrant wins. This will be the case because

β2,τ(2)(v, v
′) increases in v′ (since, by standard arguments, two bid functions defined by the

same differential equation, but with different initial conditions, cannot cross) and since the

final round potential entrant’s entry decision depends only the second round entrant’s value

if he wins the knockout (since the bid function is fully revealing), then this jump bid will

only serve to increase the price paid by the second round entrant in the event the final round

entrant stays out.

The final property needed to show the existence and uniqueness of a separating equi-

librium bid function, and that there are no pooling equilibria, in the first round is the

three-plus-round version of single crossing, property (f) above. With three rounds, this can

be more compactly proved by using the non-derivative form of single crossing.

Lemma 5. Consider any two possible bid and entry threshold combinations (S2′
A , S

3′
A , bA) and

(S2′
B , S

3′
B , bB) where bB > bA. For vH > vL, if Π1,τ(1)(v

L, S2′
B , S

3′
B , bB) ≥ Π1,τ(1)(v

L, S2′
A , S

3′
A , bA),

then Π1,τ(1)(v
H , S2′

B , S
3′
B , bB) > Π1,τ(1)(v

H , S2′
A , S

3′
A , bA).

Proof. Consider all possible combinations of values and signals of the second and third round

potential entrants. The required implication will hold if the profit gain to (S2′
B , S

3′
B , bB) is not

lower for the incumbent with value vH than the incumbent with type vL for any combination,

and it is strictly greater for some combination (all combinations are possible). In the following

we will use vmax
2:3,A as the maximum value of an entrant under (S2′

A , S
3′
A , bA) conditional on the

incumbent still being the incumbent after round 2.

If the switch to (S2′
B , S

3′
B , bB) has no effect on the entry of this entrant, then the payoffs

of either incumbent are only affected if bB ≥ vmax
2:3,A, in which case there is a cost to both

incumbents of bB −max{vmax
2:3,A, bA}, which is independent of v.
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If the switch to (S2′
B , S

3′
B , bB) causes this entrant not to enter, which will happen with

positive probability for any vmax
2:3,A, then label the maximum value of the highest entrant

vmax
2:3,B, which could be equal to zero and will be less than vmax

2:3,A. If bA ≥ vmax
2:3,A then the cost to

both incumbents is bB − bA and so is independent of v. If bB ≥ vmax
2:3,A ≥ bA, the cost to both

incumbents is bB − vmax
2:3,A, which is independent of v. If vH > vL ≥ vmax

2:3,A ≥ bB there is a gain

to both incumbents of vmax
2:3,A−max{bB, vmax

2:3,B} and so is independent of v. If vmax
2:3,B ≥ vH there

is no impact on either incumbent’s profits. In the remaining cases the H incumbent will gain

strictly more than the L incumbent. This can happen when vH > vmax
2:3,A > vL > vmax

2:3,B > bB in

which case the gain to the H incumbent is vmax
2:3,A− vmax

2:3,B which exceeds the gain of vL− vmax
2:3,B

for the L incumbent. It can happen when vH > vmax
2:3,A > vmax

2:3,B > vL > bB in which case

gain to the H incumbent is vmax
2:3,A − vmax

2:3,B which exceeds no gain for the L incumbent. It

can happen when vH > vmax
2:3,A > vL > bB > vmax

2:3,B in which case gain to the H incumbent

is vmax
2:3,A − bB which exceeds the gain of vL − bB for the L incumbent. It can happen when

vmax
2:3,A > vH > vL > bB > vmax

2:3,B in which case gain to the H incumbent is vH − bB which

exceeds the gain of vL − bB for the L incumbent. It can also happen when vmax
2:3,A > vH >

vmax
2:3,B > vL > bB in which case gain to the H incumbent is vH − vmax

2:3,B which exceeds no gain

for the L incumbent. Finally it can happen when vmax
2:3,A > vH > vL > vmax

2:3,B > bB in which

case gain to the H incumbent is vH − vmax
2:3,B which exceeds the gain of vL − vmax

2:3,B for the L

incumbent.

The arguments easily extend to more than three rounds leading to the following proposi-

tion.

Proposition 2. There exists a unique equilibrium for entry and bidding behavior in the

sequential mechanism with pre-entry signals in which:

1. A type τ(n) potential entrant in round n will enter if and only if it receives a signal

above a threshold S ′∗n,τ(n) defined by the zero profit condition given by equation (2) for

n < N and by equation (4) for n = N ;

2. Any entrant participating in a knockout auction bids up to its value;

3. Any incumbent placing a jump bid in round n when either the reserve or the standing

bid at the end of the previous knockout is b̂n bids according to a bid function βn,τ(n)(v, b̂n)

that is unique and:

(a) when v ∈
[
b̂n, V −K

]
is determined by the solution to the differential equation:

dβn,τ(n)(v, b̂n)

dv
= −

Π2
n,τ(n)(v, v, βn,τ(n)(v, b̂n))

Π3
n,τ(n)(v, v, βn,τ(n)(v, b̂n))
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with lower boundary condition: βn,τ(n)(̂bn, b̂n) = b̂n; and

(b) when v ∈ (V −K,V ] is βn,τ(n)(V −K, b̂n).

Off-the-equilibrium-path beliefs of potential entrants are not unique. While a potential en-

trant in round n that observes a jump bid x in an earlier roundm between
[
b̂m, βm,τ(m)(V −K, b̂m)

]
will believe that the value of this incumbent is β−1

m,τ(m)(x, b̂m), the density of potential entrants’

beliefs of the incumbent’s type over the interval (V − K,V ] upon observing a bid greater

than βm,τ(m)(V −K, b̂m) is not pinned down. However, for all such beliefs, the equilibria have

the common feature that entry will cease once this bid is placed.

B Details of Estimation Method: FOR ONLINE PUB-

LICATION

This appendix describes our estimation procedure based on Ackerberg (2009)’s method of

simulated maximum likelihood with importance sampling.

This method involves solving a large number of games with different parameters once,

calculating the likelihoods of the observed data for each of these games, and then re-weighting

these likelihoods during the estimation of the distributions for the structural parameters. This

method is attractive when it is believed that the parameters of the model are heterogeneous

across auctions and it would be computationally prohibitive to re-solve the model many times

(in order to integrate out the heterogeneity) each time one of the parameters changes.36

To apply the method, we assume that the parameters are distributed across auctions

according to the specification given in Section 4.3. These specifications reflect our assump-

tions that σV , α and K are the same for mills and loggers within any particular auction,

even though they may differ across auctions. The lower bound on σV a is set slightly above

zero simply to avoid computational problems that were sometimes encountered when there

was almost no dispersion of values. Our estimated specifications also assume that the var-

ious parameters are distributed independently across auctions. This assumption could be

relaxed, although introducing a full covariance matrix would significantly increase the num-

ber of parameters to be estimated and, when we have tried to estimate these parameters, we

have not found these coefficients to be consistently significant across specifications. The set

of parameters to be estimated are Γ = {β1, β2, β3, β4, β5, ω
2
µ,logger, ω

2
µ,diff, ω

2
σV
, ω2

α, ω
2
K}, and a

particular draw of the parameters {µa,logger, µa,mill, σV a, αa, Ka} is denoted θ.

36Bajari, Hong, and Ryan (2010) use a related method to analyze entry into a complete information entry
game with no selection.
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Denoting the outcome for an observed auction by ya, the log-likelihood function for a

sample of A auctions is
A∑
a=1

log

(∫
La(ya|θ)φ(θ|Xa,Γ)dθ

)
(13)

where La(ya|θ) is the likelihood of the outcome y in auction a given structural parameters θ,

φ(θ|Xa,Γ) is the pdf of the parameter draw θ given Γ, our distributional assumptions, the

unique equilibrium strategies implied by our equilibrium concept and auction characteristics

including the number of potential entrants, the reserve price and observed characteristics Xa.

Unfortunately, the integral in (13) is multi-dimensional and cannot be calculated exactly.

We follow Ackerberg by recognizing that∫
La(ya|θ)φ(θ|Xa,Γ)dθ =

∫
La(ya|θ)

φ(θ|Xa,Γ)

g(θ|Xa)
g(θ|Xa)dθ (14)

where g(θ|Xa) is the importance sampling density whose support does not depend on Γ,

which is true in our case because the truncation points are not functions of the parameters

to be estimated. This can be approximated by simulation using

1

S

∑
s

La(ya|θs)
φ(θs|Xa,Γ)

g(θs|Xa)
(15)

where θs is one of S draws from g(θ|Xa). Critically, this means that we can calculate La(ya|θs)
for a given set of S draws that do not vary during estimation, and simply change the weights
φ(θs|Xa,Γ)
g(θs|Xa)

, which only involves calculating a pdf when we change the value of Γ rather than

re-solving the game.

This simulation estimator will only be accurate if a large number of θs draws are in

the range where φ(θs|Xa,Γ) is relatively high, and, as is well known, simulated maximum

likelihood estimators are only consistent when the number of simulations grows fast enough

relative to the sample size. We therefore proceed in two stages. First, we estimate an initial

guess of Γ using S = 2, 500 draws, where g(·) is a multivariate uniform distribution over

a large range of parameters which includes all of the parameter values that are plausible.

Second, we use these estimates Γ̂ to repeat the estimation using a new importance sampling

density g(θ|Xa) = φ(θs|Xa, Γ̂) with S = 500 per auction. Roberts and Sweeting (2011)

provide Monte Carlo evidence that the estimation procedure works well even for smaller

values of S.

To apply the estimator, we also need to define the likelihood function La(ya|θ) based on

the data we observe about the auction’s outcome, which includes the number of potential

entrants of each type, the winning bidder and the highest bids announced during the open
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outcry auction by the set of firms that indicated that they were willing to meet the reserve

price. Two problems arise when interpreting these data. First, a bidder’s highest announced

bid in an open outcry auction may be below its value, and it is not obvious which mechanism

leads to the bids that are announced (Haile and Tamer (2003)). Second, if a firm does not

know its value when taking the entry decision, it may learn (after paying the entry cost) that

its value is less than the reserve price and so not submit a bid.

We therefore make the following assumptions (Roberts and Sweeting (2011) present es-

timates based on alternative assumptions about the data generating process that deliver

similar results) that are intended to be conservative interpretations of the information that is

in the data: (i) the second highest observed bid (assuming one is observed above the reserve

price) is equal to the value of the second-highest bidder;37 (ii) the winning bidder has a value

greater than the second highest bid; (iii) both the winner and the second highest bidder

entered and paid Ka; (iv) other firms that indicated that they would meet the reserve price

or announced bids entered and paid Ka and had values between the reserve price and the

second highest bid; and, (v) all other potential entrants may have entered (paid Ka) and

found out that they had values less than the reserve, or they did not enter (did not pay Ka).

If a firm wins at the reserve price we assume that the winner’s value is above the reserve

price.

C Details and Robustness of Numerical Procedure for

Solving Sequential Mechanism with Pre-Entry Sig-

nals: FOR ONLINE PUBLICATION

This appendix details the recursive numerical procedure used to solve for equilibrium in the

sequential mechanism.

We start with the final potential entrant, who believes that he will win if his value is

greater than the incumbent’s. For every possible value v′ of the incumbent that this final

potential entrant faces, we solve for the equilibrium entry threshold S ′∗N,τ(N)(v
′) on a fine

grid of evenly spaced possible values [0, V ]. For example, the comparisons of mechanisms in

Figure 2 are based on a grid with unit spacing, but we have experimented with 1/10th unit

spacing with little effect on our results but substantial increases in the time needed to solve

37Alternative assumptions could be made. For example, we might assume that the second highest bidder
has a value equal to the winning bid, or that the second highest bidder’s value is some explicit function of his
bid and the winning bid. In practice, 96% of second highest bids are within 1% of the high bid, so that any
of these alternative assumptions give similar results. We have computed some estimates using the winning
bid as the second highest value and the coefficient estimates are indeed similar.
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the game. Since the final price, if the final potential entrant wins, will be the value of the

incumbent, the entry threshold of the final potential entrant is given by:

K =

∫ V

v′
(x− v′)fVτ(N)(x|S ′∗N,τ(N))dx (16)

The integral in Equation (16) is approximated using the trapezoidal rule. Since the right hand

side of Equation (16) is monotonic in S ′N,τ(N), we use the method of bisection to calculate

S ′∗N,τ(N)(v
′) at every v′ on [0, V ]. Our default tolerance for solving for signal thresholds is

10−6.

Next we solve for the jump bid functions of the previous potential entrant were he to

enter and win any knockout auction. The differential equation that defines the bid function

(the definition of the individual terms appears in the body of the text) is given:

dβ(·)
dv

=

[v − β(·)]

(b)︷ ︸︸ ︷[
dΠN

k=n+1FS,τ(k)(S
′∗
k,τ(k)(v))

dv
+
∂F n,τ(n)(β(·)|v)

∂v

]
+

∫ v

β(·)
(v − v̂)

∂fn,τ(n)(v̂|v)

∂v
dv̂

ΠN
k=n+1FS,τ(k)(S

′∗
k,τ(k)(v))︸ ︷︷ ︸

(a)

+F n,τ(n)(β(·)|v)︸ ︷︷ ︸
(c)

(17)

Term (a) can be calculated directly given our parametric assumptions. The derivatives

that appear in (b) are solved using numerical differentiation as we do not have analytical

expressions for these terms. The integrals that appear in term (b) and (c) are approximated

using the trapezoidal rule, although other methods, like Simpson’s Rule, did not meaningfully

change the results. All of terms (a), (b) and (c) are stored as arrays on the grid of values [v, v]

and our solver uses MATLAB’s interp1 and interp2 to read data from them and linearly

interpolating functions across the grid. Using cubic interpolation does not materially affect

our results.

We solve Equation 17 using MATLAB’s ode113 solver but alternative solvers, such as

MATLAB’s ode45 and ode23, do not materially affect our results.38 To give an example,

Table 5 displays summary statistics for the absolute differences in equilibrium bid functions

when different differential equation solvers are used. The baseline bid function is based on

ode113 (the solver used in the paper). Each row of the table represents differences from this

baseline when alternative differential equation solvers are used. These summary statistics

38The ode113 is a variable order Adams-Bashforth-Moulton PECE solver. The ode45 and ode23 solvers are
based on explicit Runge-Kutta methods using the Dormand-Prince and Bogacki-Shampine pairs, respectively.
It has been shown that solvers such as MATLAB’s ode113 can be more efficient that basic Runge-Kutta
methods when the function is expensive to compute (Shampine and Reichelt (1997)).
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pertain to the bid function for a potential entrant in the penultimate round when the current

incumbent has a value of 90 and firms are symmetric with values distributed LN(4.5,0.2) and

K = 1 and α = 0.5.

Absolute Difference in Solved Bid Function from ode113

ODE Solver Mean Min 25th-tile Median 75th-tile Max
ode23 1.0698e-05 0 0 1.6532e-06 2.1766e-05 3.1375e-05
ode45 1.0731e-05 0 0 1.6879e-06 2.1872e-05 3.1420e-05

Table 5: Example of robustness of equilibrium bid function to different differential equation
solvers. Details for the table’s construction are found in the accompanying text.

We have also tested our bid functions using a “best-response-like” check. This involves

numerically simulating the expected benefit to a bidder, say with value vtrue, from deviating

and pretending as if his value is vfake by submitting a bid b(vfake). This check is analogous

to that used in Gayle and Richard (2008) to check numerical solutions to equilibrium bid

functions in an asymmetric first price auction when there is no entry margin.

Take as an example the case of a potential entrant in the penultimate round who faces an

incumbent with a value of 90 when firms are symmetric with values distributed LN(4.5, 0.2)

and K = 1 and α = 0.5 (this is the same as in the example above). In this case we can

compute the optimal best bid deviation as just described using 100,000 simulations and

compare it to the bid function that we solved for. The average absolute difference in the two

bid functions is 0.09. The 25th percentile of the absolute differences is 0, the 75th percentile is

0.07 and the maximum absolute difference is 1.09. Moreover, the change in expected profits

from deviating from the equilibrium bid function for this potential entrant is a negligible

0.0014.

Finally, the entry threshold S ′∗n,τ(n)(v
′) for n < N is set so that the expected profit from

entering, conditional on the threshold, is zero. Using the notation from the paper, we have

that S ′∗n,τ(n)(v
′) must satisfy

∫ v

v′

[v − β(v, v′, n)]


(a)︷ ︸︸ ︷

N∏
k=n+1

FS,τ(k)(S
′∗
k,τ(k)(v

′)) +

(b)︷ ︸︸ ︷
F n,τ(n)(β(v, v′, n)|v′)


+

∫ v

β(v,v′,n)

(v − x) fn,τ(n)(x|v)︸ ︷︷ ︸
(c)

dx

 fVτ(n)(x|S ′∗n,τ(n)(v
′)) dv = K. (18)
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As before, term (a) is easy to compute for a given distribution of signals. Term (b) is

calculated via numeric integration via the trapezoidal rule, and term (c) is calculated via

numeric differentiation of term (b). As in Equation (16), the left hand size is montonic in

S ′n,τ(n)(v
′), and the method of bisection can be used to determine a solution.

We also perform a check on these entry thresholds as well as the entry thresholds in the

last round. We do this by numerically simulating the value of expected profits from entry at

S ′∗n . We always find that the value of the simulated profits is very close to zero. For example,

continuing with the example from above used to illustrate the bid check, the penultimate

round potential entrant’s equilibrium entry threshold is 71.344. The expected profit from

entering with a signal equal to this threshold is 0.009.

At times in the paper (e.g. Figure 2, Figure 3 and Table 4) we calculate optimal reserve

prices for the sequential mechanism and the auction. We briefly describe how this is done in

Footnote 22. Here we give greater detail.

When bidders are asymmetric, or entry is endogenous and/or selective, expected revenues

and optimal reserve prices must be calculated numerically. To calculate expected revenues

given a particular reserve price in the simultaneous auction, we first solve the model and then

calculate expected revenues using 5,000,000 sets of simulation draws of the values and signals

of each potential entrant. Holding these simulation draws fixed, we can calculate expected

revenues for different reserve prices, re-solving the game each time. With this number of

simulation draws, expected revenues are essentially smooth in the reserve price and we are

able to perform a one-dimensional maximization to find the optimal reserve price. However,

we note that we find almost identical optimal reserves using a grid search.

For the sequential mechanism it is more expensive to solve the game, especially when the

number of players is large. One reason for this is that the calculation of expected revenues

in the sequential mechanism is based on interpolation using our solution to the differential

equation, though we have checked that expected revenues are almost identical using 100,000

and 400,000 simulations. So we do not want to re-solve the game for many different reserves.

Instead we exploit the fact that the expected revenue in an N player game with a reserve

price of R is equal to the expected revenues from the last N players in an N + 1 player game,

where the first entrant enters and has a value of R. We therefore solve an N + 1 player game

once, which gives us later strategies for all possible values of the first round entrant. Then

we simulate forward from the second round of this game to compute expected revenues. In

this case we use 200,000 revenues and consider a grid (with unit spacing) of possible reserve

prices. In this way we may slightly under predict expected revenues with an optimal reserve

in the sequential mechanism.
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