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1 Introduction [XXX]

Production technology differences across firms have been shown to affect exporting behavior

and firm performance. Melitz (2003) describes a selection mechanism in which more pro-

ductive firms charge lower prices, sell more, earn higher variable profits, and are thus able

to cover the fixed costs to enter export markets. Empirically, many papers have shown that

there is a relationship between total factor productivity and the decision to export (Bernard

and Bradford Jensen (1999), Clerides, Lach, and Tybout (1998), and Tybout (2003)).

More recently, it has been argued that product quality, in addition to firm productivity,

is also a source of heterogeneity in exporting behavior among firms. Specifically, that

firms that are capable of producing high-quality output tend to export more and to high-

income markets of destination. The argument is that high-income countries value quality

more and are willing to pay for high-quality goods.1 With the increasing availability of

detailed customs data, there is vast empirical evidence supporting these claims. A positive

correlation between income in the destination market and product quality has been reported

by Manova and Zhang (2012), Bastos and Silva (2010), Görg, Halpern, and Muraközy (2010)

and Martin (2012) for firms in China, Portugal, Hungary and France. Production and

export of high-quality output is also associated with employing skilled workers and high-

quality intermediate inputs. Verhoogen (2008), Brambilla, Lederman, and Porto (2012),

and Brambilla and Porto (2015) establish a causal relationship between high-income exports

and wages (and skills) in Mexico, Argentina, and for a panel of 82 countries. Bastos, Silva,

and Verhoogen (2014) establish a similar relationship between high-income exports and the

quality of intermediate inputs in Portugal.

While the evidence linking high-income exports and quality of output and skilled work-

ers is substantial, little attention has been paid to the firm-level heterogeneity in technology

from which these differences in behavior might arise, and to how efficiency in quality pro-

duction is a determinant of the choice of export destinations. In this paper we intend to

fill that gap by studying the link between the choice of export destinations and technology

differences across firms. Our idea is based on three premises: firms differ in their skilled-

labor productivity, that is, the efficiency with which they can utilize skilled labor (relative

to unskilled labor); product quality is higher when more skilled workers and higher quality

1See, for example, Verhoogen (2008), Hallak and Sivadasan (2013), Baldwin and Harrigan (2011), Johnson
(2012), Brambilla, Lederman, and Porto (2012), and Feenstra and Romalis (2012). An additional channel
linking high-income markets and high-quality output is the “Washington apples” effect (Hummels and Skiba
(2004)).
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intermediate inputs are used; and, finally, high-income countries value quality more. There-

fore, firms that are more efficient in the use of skilled labor will export a larger share of

their output to high-income destinations.

To formally establish these relationships —and to form the basis of our estimation

methodology— we set up a dynamic model of firm behavior. Our model is based on the

model of Olley and Pakes (1996) (OP, henceforth), but we extend it in several impor-

tant ways. Our model and estimation method integrate three features into the existing

framework of the productivity and production function estimation literature: it allows for

firm heterogeneity that is not Hicks-neutral (heterogeneous labor coefficients), it develops a

strategy to deal with output quantity information and multiproduct firms, and it provides

a framework to study input and output quality choice and endogenous input and output

prices.

Our methodological contribution is twofold. First, we contribute to the production func-

tion estimation literature by allowing for non-additive productivity shocks. Our estimation

strategy is closely related to the homogeneous coefficient cases of OP, Levinsohn and Petrin

(2003) (LP, henceforth), and Ackerberg, Caves, and Frazer (2016) (ACF, henceforth). In

OP, investment is used as a proxy to control for unobserved TFP, which varies across firms

and is correlated with input use. In our baseline setting, we have four sources of unobserved

heterogeneity across firms and thus we use four proxies.2 The proxies are raw materials,

electricity, fuel, and output quality. We estimate the firm-level labor and capital produc-

tivity coefficients non-parametrically, joint with the coefficients on intermediate inputs, by

GMM in a manner that is analogous to ACF. The identification of the coefficients relies

on the structural nature of the model, but requires only one parametric assumption, the

production technology.3

Second, we contribute by proposing a strategy to deal with the aggregation problem

that arises from multiproduct firms in the estimation of a production function in physical

units. Previous methods relied on using total revenue at the firm level as the left-hand-side

variable. This has been shown to produce biased estimates of the production parameters due

to unobserved differences in quality and demand shocks across firms (Klette and Griliches

2The possibility of using additional proxies to control for more than one source of unobserved hetero-
geneity across firms has been discussed by Ackerberg, Benkard, Berry, and Pakes (2005), although not in
the context of non-additive productivity shocks.

3We assume technology is Cobb-Douglas, as most of the productivity literature. Some exceptions are De
Loecker and Warzynski (2012) and De Loecker, Goldberg, Khandelwal, and Pavcnik (2015) who work with
translog specifications, and Doraszelski and Jaumandreu (2013) and Doraszelski and Jaumandreu (2015)
who estimate CES production functions.
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(1996); Foster, Haltiwanger, and Syverson (2008); De Loecker (2011)). We exploit data on

output by product (sales and unit prices) from single product firms to estimate (physical)

rates of transformation between different products that allow us to add up quantities of

different products for multiproduct firms.4 These transformation rates are technology-based

and not contaminated with demand-side information.

It is worth noting that the estimation method we propose is general and can be applied

to other settings without relying on the underlying trade model. Relaxing the assumption

of a common production technology across firms—even within well specified industries—

serves two fundamental objectives.5 First, the functional form choice restricts the type of

questions that can be addressed. In our application, we exploit differences in relative skilled-

labor productivity across firms and thus the specification of the production function has

to allow for these differences. Second, even in cases where the researcher is only interested

in recovering the TFP shocks, a misspecified production function may produce biased and

inconsistent TFP estimates. In other words, if the estimation method ignores heterogeneity

in, for example, the labor coefficients, the TFP estimates will pick this heterogeneity up.

In terms of our empirical contribution, we use a panel of Chilean firms spanning the

period 1996–2006. The dataset includes information on revenue, employment of skilled and

unskilled workers, and use of materials, fuels and electricity. Furthermore, the survey col-

lects information on quantities and unit prices of products and materials. We have also been

able to match the survey information with customs data containing information on value

of exports by country of destination. We combine the two data sources to test the theory

that differences in technology lead to differences in exporting behavior across destinations.

We show that there is a link between differences in the production technology across firms

and their input and output quality choices and their choices of export destinations. In par-

ticular, firms that have a technological advantage in the production of quality (i.e., firms

that are more efficient in the use of skilled labor) use (relatively) more skilled labor —our

measure of labor quality— and higher quality intermediate inputs, they produce higher

quality output, and export a larger share of their output to high-income destinations.

The paper is organized as follows. In Section 2 we provide a model of firm behavior

that establishes a link between the relative efficiency in the use of skilled labor and the

4De Loecker, Goldberg, Khandelwal, and Pavcnik (2015) also use single product firms to deal with the
aggregation problem.

5This is an idea that dates back to the beginning of the estimation of production function literature.
For instance, in the seminal paper by Marschak and Andrews (1944) they begin by saying “[the production
functions] will be assumed to involve parameters that vary from firm to firm and from year to year [...]”.
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destination of exports. In Section 3 we propose an estimation procedure to recover the

production function parameters. In Section 4 we explore the empirical relation between

differences in technology and export choices using firm-level data from Chile. Section 5

concludes.

2 Model

In this section we set up a model of firm behavior. The objective of the model is twofold.

First, we use the theoretical model to highlight the channels underlying our main hypoth-

esis, namely, that differences in technology across firms that are not Hicks-neutral are a

determinant of skill use, input and output quality, and the destination of exports. Second,

the model of firm behavior provides the basis for the structural estimation of the technol-

ogy parameters (TFP, output elasticities, and transformation rates across products). The

estimates of the technology parameters allow us to test our main hypothesis.

We build upon the dynamic model of Olley and Pakes (1996) of firm investment decisions

and total factor productivity and incorporate the following key features: multi-dimensional

heterogeneity across firms in the production technology, product differentiation and a de-

mand side, choice of product quality, and exports. The dynamic aspect of the firm decision

problem is not essential to the argument that technology differences explain skill use, quality

and exporting behavior, however, we keep this feature to be consistent with the productiv-

ity estimation literature. We start by describing the consumer and firm domestic-economy

problem in Sections 2.1 and 2.2 and add export decisions in Section 2.3.

2.1 Consumers

On the demand side we assume a discrete choice framework with multinomial logit prefer-

ences as in Verhoogen (2008) and Brambilla, Lederman, and Porto (2012). Preferences are

defined over varieties that are given by firm-product pairs, and which in turn are vertically

and horizontally differentiated. The utility that individual i derives from choosing product

r by firm j is given by

Uijrt = α(xt)θjt − pjrt + εijrt, (2.1)

where θjt is the quality of all varieties produced by firm j, pjrt is the price of variety jr,

and t denotes time. The coefficient α denotes the valuation for quality, which is assumed
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to be a strictly increasing weakly concave function of income xt.
6 The variable εijt is an

individual-level random demand shock that adds horizontal differentiation into the model.

We assume that it follows an iid type-I extreme value distribution and that it is the only

source of heterogeneity among consumers.

The aggregate demand function qd for variety jr takes the usual logit form (in logs)

qdjrt(pjrt, θjt) = logWt + α(xt)θjt − pjrt, (2.2)

where Wt is an exogenous demand shifter given by the number of consumers at time t

divided by a logit inclusive value term that aggregates all available choices.7

2.2 Firms

On the production side, we assume that there is a large fixed number of small heterogeneous

firms. Markets are monopolistically competitive. Firms choose the number of products

that they offer, output price, output quality, investment, skilled and unskilled labor, and

intermediate inputs. We abstract from entry-exit decisions, which means we assume no

sunk costs of entry or fixed costs for the first product.8

The production function for physical output has a two-tier structure. We follow the

convention in the production function literature and denote with lower case letters variables

in logs. The lower-tier is given by a Cobb-Douglas production technology that combines

skilled labor (lsjt), unskilled labor (lujt), capital (kjt), and a vector of three intermediate

inputs (mjt = (m1
jt,m

2
jt,m

3
jt)
′) to produce a composite input (yjt). The three intermediate

inputs are raw materials, electricity and fuels. The production function in logs is given by

yjt = β0jt + βl
s

jtl
s
jt + βl

u

jt l
u
jt + βkjtkjt + m′jtβ

m
t + ηjt. (2.3)

The terms β0jt and ηjt denote a Hicks-neutral productivity shock and unforeseen random

i.i.d. shock. As it is standard in the productivity literature, we assume that Hicks-neutral

productivity, β0jt, differs across firms and time periods. We further allow for heterogeneity

6For simplicity we assume that all individuals share the same income level. We later allow income to vary
across countries of destination. The utility function can be microfounded by defining primitive preferences
over income.

7The inclusive value term is
∑

j′r′∈Vt
exp(α(xt)θj′r′t−pj′r′t), where Vt is the set of available firm-product

varieties at time t.
8In terms of estimation, disregarding sunk costs implies not correcting for the issues of selection pointed

out by Olley and Pakes (1996).
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in the production technology. The labor and capital coefficients —βl
u

jt , β
ls
jt, and βkjt— are

allowed to vary across firms and time as well, to capture differences in efficiency in the

utilization of skilled labor, unskilled labor, and capital. The feature that is key to our

model is the heterogeneity in efficiency in the use of skilled and unskilled labor. We assume

that the Hicks-neutral productivity and the labor and capital output elasticities are random

variables that evolve according to independent first-order Markov stochastic processes with

stochastically increasing transition function.9

In the upper-tier the composite input is transformed into different products. We denote

the (log) units of composite input that firm j assigns to the production of product r by yjrt

and the (log) units of output of product r by qjrt. We assume that the composite input can

be transformed into product r at a constant rate µrt , that is, exp(qjrt) = µrt exp(yjrt). These

assumptions imply that the rate at which product r can be transformed into product r′ is

given by µrt/µ
r′
t , or, put it in other words, that the adjusted output quantities exp(qjrt)/µ

r
t

and exp(qjr′t)/µ
r′
t are expressed in units of equivalence in terms of input use.

Once quantities of all products are measured in the same units we can then aggregate

output at the firm level. Aggregating across the set of products that firm j produces,

denoted by Rjt, we write the production function as

log

∑
r∈Rjt

exp(qjrt)

µrt

 = β0jt + βl
u

jt l
u
jt + βl

s

jtl
s
jt + βkjtkjt + m′jtβ

m
t + ηjt. (2.4)

Notice that this specification does not rule out economies of scope since the (heterogeneous)

productivity parameters may be positively correlated with the number of products. The

composite input yjt is also interpreted as total firm output expressed in units of equivalence.

In equation (2.4), the TFP term (β0jt), the output elasticities (βl
u

jt , β
ls
jt, β

k
jt, β

m
t ), and the

rates of transformation (µrt ) are parameters to be estimated.

Let the set of all existing products be denoted by Rt, where the total number of products

is then given by the cardinality of the set, |Rt|. For simplicity, we assume that the firm

chooses the number of products to produce but not which products. Specifically, we assume

that each firm faces a random sorting of the products in Rt. The sorted products are an

9While the first-order Markov assumption is key, these processes need not be exogenous, nor independent
of each other. In Section XXX, we discuss how this assumption can be relaxed. In particular, it is straight-
forward to allow all four processes to depend on past realizations of all four productivity shocks. Moreover,
investment, capital, expenditure in R&D, and exports may also affect the evolution of productivity, as in
Aw, Roberts, and Xu (2011), Doraszelski and Jaumandreu (2013) and De Loecker (2013). These variables
can be easily added into the model and the estimation method.
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|Rt| × 1 vector that we denote by Rjt. The difference in Rjt across firms is the order of

the products. We define the first product in Rjt as the firm’s core product, which can

be produced at no fixed cost. In addition to the core product, firms can also choose to

produce additional products in the order given by Rjt by paying a fixed cost. The fixed

cost is increasing in the number of products that each firm produces (i.e., the fixed cost of

producing n products is Fn, with Fn > Fn−1 and F1 = 0, where, again, product 1 is the

core product.) Let Rjt denote the set of products actually produced by firm j. Notice that

from a production point of view, products are determined by their transformation rates.

Thus, we define µjt and µjt as the vectors of transformation rates that correspond to the

sets of products Rjt and Rjt; that is, the sorting of transformation rates faced by firm j

and the transformation rates of the products that firm j actually chooses to produce.

While the exogeneity assumption on Rjt might seem restrictive at first, notice that it

does not rule out firms’ comparative advantages in the production of different products.

In particular, we can allow for serial correlation in the sorting of products, resulting in

persistence in comparative advantage over time. The exogeneity in the sorting of products

implies that firm actions do not affect their comparative advantage.

Our model allows for vertical differentiation in output. Output quality depends on the

quality of the inputs used in the production of physical output. There is no production of

quality per se, in the sense that there are no inputs affected to the production of quality.

We assume that firms choose a single quality (θjt) for all their products. Quality is a

deterministic increasing function of the ratio of skilled to unskilled workers (lsjt− lujt) —our

measure of the quality of labor—, the quality of raw materials utilized in production (θm1
jt ),

and TFP (β0jt). In the production of shirts, for example, output quality depends on the

quality of the fabric and the skill level of the workers but not on yards of fabric or hours of

work.10 We write the quality production function as

θjt = vt
(
lsjt − lujt, θm1

jt , β
0
jt

)
, (2.5)

where v is increasing in all of its arguments (vi > 0 ∀i) and the cross derivatives are non-

negative (vii′ ≥ 0 ∀(i, i′) i′ 6= i). Graphically, in the (lsjt×lujt) plane, we can think of quantity

as fixed along an isoquant and quality as fixed along a ray through the origin. In Figure

1, for a given level of capital, intermediate inputs and quality of raw materials, output

10Kugler and Verhoogen (2012) provide empirical support for complementarity in input and output quality
using a panel of firms from Colombia. Verhoogen (2008) and De Loecker, Goldberg, Khandelwal, and Pavcnik
(2015) also assume complementarity in inputs and output quality.
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Figure 1: Level Curves for Quantity and Quality
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Note: Figure depicts level curves from the production functions for output
quantity and quality conditional on fixed values for capital, intermediate in-
puts, and quality of raw materials. Output quantity is increasing in skilled
and unskilled labor (y2 > y1); whereas output quality is increasing in the ratio
of skilled to unskilled labor (θ2 > θ1).

quantity is increasing in both types of labor (y2 > y1) and output quality is increasing in

the ratio of skilled to unskilled labor (θ2 > θ1).

We assume that the adjustment of the capital stock is costly, that there are firing and

hiring costs, and that capital, labor, and product lines are subject to “time to build”, “time

to train”, and “time to develop”, so that investment, hiring and firing, and product decisions

become effective in the next period. These assumptions make the problem dynamic.11 The

adjustment cost of capital and labor are given by the functions Gkt (kjt, kjt+1), G
s
t (l

s
jt, l

s
jt+1),

and Gut (lujt, l
u
jt+1). The unit prices of intermediate inputs are given by pm1

t (m1
jt, θ

m1
jt ),

pm2
t (m2

jt) and pm3
t (m3

jt); thus nesting cases of linear and non-linear prices while assum-

ing that pricing schedules are the same across firms. Notice that the price of raw materials

(m1
jt) further depends on its quality (θm1

jt ).

The objective of the firm is to maximize the present value of the stream of current and

future profits. We can split the firm decision problem into a static component and a dynamic

component. In the static problem, firms maximize current profits taking as given decisions

from t−1 which include current capital, skilled and unskilled labor, and the set of products

that the firm will produce, as well as the technology parameters (input productivities and

TFP). They choose the quantity of intermediate inputs and output quality. Because all firm-

11These assumptions imply that in each period there is the sunk cost of predetermined labor, which is
assumed to be unavoidable because of binding contracts. Firms could choose not to hire any workers for the
next period if they anticipate bad productivity shocks, which implies zero output. This scenario is, however,
not akin to exiting the market in the sense that there are no costs of resuming production later on.
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product pairs enter the output demand symmetrically, once we condition on the number of

products, the only channel through which the sorting of products affects profits is through

their different rates of transformation. We can thus write the static choices of a firm that

produces n products as a function of the vector µt, of size n × 1. The policy function for

the static choices is given by

(
m1
jt,m

2
jt,m

3
jt, θjt

)′
= gnt(kjt, l

s
jt, l

u
jt, β

0
jt, β

ls

jt, β
lu

jt , β
k
jt, µjt). (2.6)

The policy function is indexed by t to reflect changing conditions in input and output

markets as well as in the output elasticity of intermediate inputs; these changes are common

to all firms. It is also indexed by the number of products n, to reflect the different vector

lengths of µjt across firms.

The intermediate inputs and output quality decisions implicitly define output prices,

quality of raw materials, and the price of intermediate inputs (pjt, θ
m1
jt , pm1

jt , pm2
jt , pm3

jt ),

which depend on the same state variables as (2.6), and where pjt is the vector of prices for

each output that the firm produces (thus, it has the same dimension as µjt and Rjt.) Notice

that under the model assumptions output and input prices differ endogenously across firms.

In the dynamic problem firms choose investment (ijt), skilled and unskilled labor, and

the number of products, all of which will become operative at time t + 1.12 The firm-

level state variables that enter the dynamic problem are predetermined capital and labor,

next period’s sorting of products, and the technology parameters (TFP, and the input

coefficients). Notice that whereas the choice of products depends on the full vector of

product sorting Rjt+1, the input choices can be written as conditional on the number of

products and the set of products actually produced. The policy variables for the dynamic

problem are thus

Rjt+1 = hRt (kjt, l
s
jt, l

u
jt, β

0
jt, β

ls

jt, β
lu

jt , β
k
jt, µjt+1). (2.7)(

ijt, l
s
jt+1, l

u
jt+1

)′
= hnt(kjt, l

s
jt, l

u
jt, β

0
jt, β

ls

jt, β
lu

jt , β
k
jt, µjt+1). (2.8)

The function h is indexed by the number of products n, and both functions h and hR are

indexed by time. As will become clear later on, splitting the dynamic choices in this manner

is useful for the estimation strategy.

12Investment in the current period determines capital according to the usual law of motion (variables in
logs): exp(kjt+1) = (1 − δ) exp(kjt) + exp(ijt), where δ is the depreciation rate.
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Recall that the objective of the model is to establish a link between technology differ-

ences, quality choice, and the destination of exports. Before introducing exports we start by

arguing that firms that are more efficient in the use of skilled labor produce higher quality

output.

Proposition 1 (Skilled-intensive technology implies higher quality). Given kjt, β
0
jt and

µjt, output quality θjt is, on average, increasing in the ratio of skilled to unskilled labor

coefficients βl
s

jt/β
us
jt .

The intuition is straightforward: output quality θjt is increasing in both the skilled

ratio (lsjt − lujt) and quality of raw materials (θm1
jt ), while in turn a firm that is relatively

more efficient in the use of skilled labor chooses both a higher skilled ratio and higher

quality of raw materials. The choice of higher quality of raw materials follows from the

complementarity between the skilled ratio and the quality of intermediate inputs in output

quality production. See the Online Appendix for a formal proof.

2.3 Exports

We now introduce exports into the model. Firms sell across different countries of destination

c ∈ C, including the domestic market. The willingness to pay for quality varies across

destinations. As in Verhoogen (2008) and Brambilla, Lederman, and Porto (2012), quality

valuation is increasing in destination income (α′(xct) > 0). The utility that consumer i in

country c derives from product r produced by firm j is given by

Uijrct = α(xct)θjt − pjrct + εijrct. (2.9)

To simplify we assume that firm quality is the same across products and destinations whereas

firm prices are allowed to vary. The dynamic and static problems are analogous to Section

2.2. At time t firms choose investment, skilled and unskilled labor, and number of products

(all of which become operative at t + 1), intermediate inputs, product quality, and prices

at each destination. Choosing prices is equivalent to choosing the level of exports.

We further assume that there are no fixed or sunk cost of exporting. This implies that

all firms sell domestically and to all destinations. Sunk costs of entry and fixed costs of

production and exports are found to be empirically relevant in the IO and trade literature

and our ignoring them here serves the purpose of simplifying the algebra as well as pointing

out that the mechanisms described in this model do not depend on selection derived from
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participation decisions based on fixed or sunk cost. Differences in technology lead firms

to differ in the share of production that they ship to different destinations. This is the

variation across firms that we exploit both in the model and in the empirical results.

We now turn to the link between technology, quality, and income across destinations.

Because quality valuation is increasing in income, firms that choose a higher output quality

sell a higher share of their exports to high-income (or high-quality-valuation) markets. This

is because, for a given price, country income operates as a demand shifter which is in turn

increasing in output quality.

Proposition 2 (Higher quality implies larger high-income share). The share in sales of

firm j of countries with income above the sales-weighted average income across destinations

(high-income countries) is increasing in output quality.

Proof. Let ϕjct =
exp(yjct)∑

c′∈C exp(yjc′t)
denote the share of destination c in total sales of firm j.

The derivative of the share ϕjct with respect to quality θjt is

∂ϕjct
∂θjt

= ϕjct

(
α(xct)−

∑
c′

ϕc′α(xc′t)

)
. (2.10)

If c is a high-income country, then xct−
∑

c′ ϕjc′txc′t > 0. Because α is a strictly increasing

function, α(xct)− α (
∑

c′ ϕc′xc′t) > 0. By Jensen inequality, because α is a weakly concave

function, α(xct) −
∑

c′ ϕc′α(xc′t) > 0, which implies that the derivative (2.10) is strictly

positive and proves that the share of high income countries in sales is increasing in quality.

The mechanisms described in Propositions 1 and 2 create a link between skilled-intensive

technology and exports to high income countries whereby firms that are relatively more

efficient in the use of skilled labor tend to export more to high-income destinations. Our

objective is to test empirically that technology differences across firms are a determinant of

output quality and the destination of exports.

3 Estimation of the Technology Parameters

In this section we discuss the estimation of the production technology parameters: the

TFP shock (β0jt), the output elasticities (βl
u

jt , β
ls
jt, β

k
jt, β

m
t ), and the rates of transformation

(µrt ). With estimates of these parameters at hand, we later test the model predictions on
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technology and firm decisions on input use, quality and exports in Section 4 using firm level

data from Chile. Our estimation strategy has two novel components: the estimation of

heterogeneous input coefficients for labor and capital, and the estimation of transformation

rates that allow us to use information on physical units of output instead of revenue.

Relaxing the assumption of homogeneous labor and capital coefficients serves the fun-

damental objective of allowing a broader type of questions. In our application, we exploit

differences in relative labor productivity across firms and thus the specification of the pro-

duction function has to allow for these differences. Doraszelski and Jaumandreu (2015) also

allow for differences in labor and capital productivity across firms to estimate labor biased

technical change. Additionally, even in the case where the researcher is only interested in

recovering the TFP shocks, a misspecified production function may produce biased and

inconsistent TFP estimates, as TFP estimates pick up other heterogeneity.

In the homogeneous coefficient methods of Olley and Pakes (1996) (OP) and Levinsohn

and Petrin (2003) (LP), the estimation is based on using a proxy (derived from inverting a

structural policy function) to control for unobserved TFP, and exploiting the Markov pro-

cess for TFP. Our estimation method extends that logic to control for higher-dimensional

heterogeneity in the production function. We thus write the unobserved firm-level technol-

ogy parameters (β0jt, β
ls
jt, β

lu
jt , β

k
jt) as a function of four proxies. Suitable proxies are all of

the choice variables in the static and dynamic policy functions (2.6) and (2.8). We describe

a baseline case in which the proxies are the three intermediate inputs (raw materials, elec-

tricity, and fuel) and output quality. Alternatively, forward skilled labor, forward unskilled

labor, and investment can also be used as proxies with minor modifications to the estima-

tion algorithm to account for the different vector of transformation rates that enter (2.6)

and (2.8). The heterogeneous input coefficients are estimated as non-parametric functions

of state variables and proxies. We estimate all input coefficients jointly, as in ACF, instead

of sequentially as in OP and LP.

Our strategy is also closely related to De Loecker, Goldberg, Khandelwal, and Pavcnik

(2015) (DLGKP) in that we use information on output quantity by product. Estimating

production functions typically involves using deflated revenue instead of physical output.

Because price deflators are common to all firms in an industry, estimates of the productivity

parameters confound the effects of physical productivity with demand shocks, quality and

mark-ups (DLGKP; Klette and Griliches (1996); Foster, Haltiwanger, and Syverson (2008);

De Loecker (2011)). With the increasing availability of firm-product level data on quantities
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and unit values, it is possible to use more detailed firm information instead of industry-

deflated revenue.

When dealing with multiproduct firms there are three issues we need to address. First,

there is a problem when using quantity information in that units of different products are not

comparable even within well specified industries (i.e., the proverbial comparison of apples

and oranges). In the case of single-product firms producing exactly the same product, a

production function with quantity on the left-hand side could be estimated using the regular

methods. When products differ, or in the case of multiproduct firms, some assumptions are

needed to make units of physical output comparable. When revenue is used on the left-hand

side, firm-level prices are used implicitly as transformation rates, which makes physical units

comparable at the cost of contaminating quantities with demand-side information. Instead,

we estimate transformation rates that are technology-based and make the assumption that

heterogeneous products can be written in terms of constant units of equivalence (equation

2.4). Second, from typical firm-level input-output data it is not possible to determine the

quantities of inputs used in the production of each product.13 The assumption of the two-

tier production technology introduced in Section 2.2 together with the assumption that the

(constant) rates of transformation are common across firms, allow us to write and estimate

the production functions at the firm-level rather than at the firm-product level. Finally,

there is the issue of endogeneity of product choice. We assume that transformation rates

are constant across firms, and that the core and subsequent sorting of products is given

exogenously to each firm. The constant transformation rates across firms rule out Roy-type

selection in product choice. However, comparative advantage in the production of different

products is not ruled out, and is instead represented by the exogenous sorting of products for

each firm. Serial correlation in the sorting of products results in persistence in comparative

advantage over time. The exogeneity in the sorting of products implies that firm actions

do not affect their comparative advantage.

We now turn a discussion of the estimating assumptions we make. The first assumption

has to do with the structure of the demand system. We assume that the sorting of products

affects instantaneous firm profits (and therefore input and quality decisions) only through

the transformation rates. In other words, the policy functions can be written in terms of

the number of products and the transformation rates of the products actually produced

by the firm, instead of as a function of the full sorting of products Rjt. In our model this

13Typically, even when output data is available at the product level, input data is aggregated at the firm
level.
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condition holds because of the particular demand structure that we assume. More generally,

the condition holds for any demand structure in which products enter the utility function

symmetrically except for an iid demand shock and endogenous choices such as quality.

Additional demand systems that satisfy the latter structure are, for example, a demand

model with homogeneous products or a symmetric CES utility function with horizontal

product differentiation. Formally, we write the assumption of symmetry of the demand

system as

(SYM ) gnt(kjt, l
s
jt, l

u
jt, β

0
jt, β

ls

jt, β
lu

jt , β
k
jt, µjt) = gt(kjt, l

s
jt, l

u
jt, β

0
jt, β

ls

jt, β
lu

jt , β
k
jt, Rjt)

hnt(kjt, l
s
jt, l

u
jt, β

0
jt, β

ls

jt, β
lu

jt , β
k
jt, µjt) = ht(kjt, l

s
jt, l

u
jt, β

0
jt, β

ls

jt, β
lu

jt , β
k
jt, Rjt).

The relevance of (SYM ) is that for the inversion strategy to work, it is necessary to be

able to write the four unobserved technology parameters as a function of observed vari-

ables or estimable parameters. The full sorting of products Rjt is an unobserved variable,

whereas the number of products is observed and the rates of transformation are estimable

parameters.

The remaining estimating assumptions are similar to the ones in the production function

estimation literature. The policy function for intermediate inputs and quality (system (2.6)),

is assumed to be invertible (conditional on the state variables kjt, l
s
jt, l

u
jt, and µjt), so that

we can write the firm-level technology parameters as

(INV ) (β0jt, β
ls

jt, β
lu

jt , β
k
jt)
′ = g−1nt (kjt, l

s
jt, l

u
jt, µjt,mjt, θjt).

This assumption is an extension of the invertibility condition of the homogeneous coeffi-

cients literature (OP, LP, ACF, DLGKP) to a multi-dimensional case. The extension is

not straightforward as it requires functional independence of the intermediate input de-

mands in (2.6). Intuitively, to work as separate proxies the input demands need to provide

independent information on the technology parameters. Functional independence of the in-

put demands may come from two sources. First, raw materials are vertically differentiated

whereas electricity and fuels are not. Because output quality is increasing in the ratio of the

labor coefficients βl
s
/βl

u
(Proposition 1), the quantity and quality of raw materials react

differently to values of the labor coefficients compared to electricity and fuels. Second, the

price of electricity usually takes the form of a two-part tariff. This again leads to different

intermediate input use upon different realizations of TFP and labor productivity. More
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generally, a condition under which intermediate inputs are not functionally dependent is

when two of the price schedules pm1
t (m1

jt, θ
m1
jt ), pm2

t (m2
jt) and pm3

t (m3
jt) are non-linear.14

Following the literature, the unforeseen i.i.d. shock, ηjt, is assumed to be orthogonal to

the firm’s input and quality choices. That is,

(IND) E[ηjt|kjτ , lsjτ , lujτ , β0jτ , βl
s

jτ , β
lu

jτ , β
k
jτ , µjτ ] = 0.

Total factor productivity, β0jt, is assumed to follow a first-order Markov process. Specif-

ically, letting Ijt = σ(kjt, l
s
jt, l

u
jt, β

0
jt, β

ls
jt, β

lu
jt , β

k
jt, µjt, kjt−1, l

s
jt−1, l

u
jt−1, β

0
jt−1, β

lu
jt−1, β

ls
jt−1,

βkjt−1, µjt−1, · · · ) denote the information available to firm j at the end of time period t, we

assume that the stochastic process for β0jt satisfies

(MAR) E[β0jt | Ijt−1] = E[β0jt | β0jt−1].

The assumption that the evolution of β0jt depends solely on β0jt−1 is made for expositional

simplicity. Variables in t − 1 such as the skilled and unskilled labor coefficients, invest-

ment, capital, labor, output, expenditure in R&D, and exports may also affect firm-level

productivity, as in Aw, Roberts, and Xu (2011), Doraszelski and Jaumandreu (2013) and

De Loecker (2013). The addition of these variables into the estimation method is straight-

forward as long as the stochastic process remains first-order Markov. In the empirical

implementation we add lagged input coefficients and lagged endogenous variables to the

conditioning set in (MAR). The statistical significance of the conditioning variables can be

tested empirically as part of the estimation.

Intuitively, our estimation method extends the framework of homogeneous input coeffi-

cients to estimate labor and capital coefficients that vary across firms, and transformation

rates that allow us to add up differentiated products. We exploit the structural nature of the

model to write the firm-level coefficients as non-parametric functions of observed variables,

which in turn requires four proxies and invertibility of a system of four equations (INV ).

The symmetry of the demand system assumption (SYM ) is needed so that an estimable

vector of rates of transformation can be used as a control for the sorting of products, enter-

ing as an argument in (INV ). The independence (IND) and Markov (MAR) assumptions

are identical to the homogeneous coefficients literature (OP, LP, ACF, DLGKP).

The estimation algorithm involves two steps. We first estimate the rates of transfor-

14In cases in which assuming functional independence of the intermediate inputs is unreasonable, or when
no disaggregate data on intermediate input use is available, other proxies may be used. See Section 3.3.
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mation (µrt ). With estimates of the transformation rates we can then add up quantities of

different products and estimate the input coefficients (βl
s

jt,β
lu
jt ,β

k
jt,β

m
t ) and TFP (β0jt).

3.1 Estimation of the Transformation Rates

The production function regression is given by (2.3). The challenge is that the composite

input yjt, which is empirically interpreted as firm-level physical output aggregated across

heterogeneous products in units of equivalence, is not observed in the data. We follow a

strategy that has some similarities with DLGKP in the sense that we exploit information

from single product firms. Using single product firms works because, by definition, there

is no need to add up output quantities across products. DLGKP estimate the input co-

efficients using the set of single product firms and later apply these same parameters to

multiproduct firms. This method cannot be applied to our setting because input coeffi-

cients are assumed to be heterogeneous across firms. What we do instead is to use single

product firms to estimate rates of transformation between products and then estimate the

production function parameters using single and multiproduct firms together.

From equation (2.4) we can write the production function for single-product firms as

qjrt =
∑
r∈Rt

logµrtDjrt + β0jt + βl
s

jtl
s
jt + βl

u

jt l
u
jt + βkjtkjt + m′jtβ

m
t + ηjt. (3.1)

where Djrt is a dummy variable that takes the value of one if single-product firm j produces

product r.

The objective is to estimate the transformation rates µrt using a non-parametric function

to control for everything else in the regression, including unobserved firm-level technology.

Based on the symmetry and invertibility assumptions (SYM ) and (INV ), we can write the

unobserved technology parameters for the sample of single-product firms as a function of

the observed inputs and quality as β01t(kjt, l
s
jt, l

u
jt, µjt,mjt, θjt), β

ls
1t(kjt, l

s
jt, l

u
jt, µjt,mjt, θjt),

βl
u

1t (kjt, l
s
jt, l

u
jt, µjt,mjt, θjt), and βk1t(kjt, l

s
jt, l

u
jt, µjt,mjt, θjt). These functions depend on the

transformation rates µjt, which are unobserved. In order to write the technology parame-

ters as a function of observed variables only, we can exploit the information of which core

product each firm produces. For single-product firms producing the same (observed) core

product r, we can write the unobserved technology parameters as β0r1t(kjt, l
s
jt, l

u
jt,mjt, θjt),

βl
s

r1t(kjt, l
s
jt, l

u
jt,mjt, θjt), β

lu
r1t(kjt, l

s
jt, l

u
jt,mjt, θjt), and βkr1t(kjt, l

s
jt, l

u
jt,mjt, θjt). Plugging these
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functions into (3.1) we can write the production function for single-product firms as

qjrt =
∑
r∈Rt

logµrtDjrt + β0r1t(kjt, l
s
jt, l

u
jt,mjt, θjt) + βl

s

r1t(kjt, l
s
jt, l

u
jt,mjt, θjt)l

s
jt + (3.2)

βl
u

r1t(kjt, l
s
jt, l

u
jt,mjt, θjt)l

u
jt + βkr1t(kjt, l

s
jt, l

u
jt,mjt, θjt)kjt + m′jtβ

m
t + ηjt,

or, more compactly, as

qjrt =
∑
r∈Rt

logµrtDjrt + φ1rt(kjt, l
u
jt, l

s
jt,mjt, θjt) + ηjt (3.3)

where the unknown function φ1 is the expectation of output conditional on the inputs and

proxies. The function φ1 varies across time and across products to reflect the different

choices made by single-product firms that face different transformation rates for their core

(and only) product.

We estimate regression (3.3) for the set of single-product firms using data on units of

output, inputs, proxies, and the indicator variables D. Since the functional form of φ1 is

unknown, the regression can be estimated by partially linear least squares (Robinson, 1988)

or with a high order polynomial. Estimates of the rates of transformation µ̂r are obtained

from the coefficients on the indicator variables.15

The estimates of µ̂r are used to add up across heterogeneous products produced by

multiproduct firms by previously transforming them into units of equivalence according to

yjt = log

∑
r∈Rj

exp(yjrt)

µr

 . (3.4)

This is a measure of physical output which, unlike revenue, is not contaminated by prices.

3.2 Estimation of the Input Coefficients and TFP

We now turn to the estimation of the input coefficients and TFP. The estimation of the

input coefficients and TFP is based on equation (2.4) where the left-hand side variable is

firm-level physical output yjt computed using the transformation rates as described in the

previous section. The estimation algorithm is again based on writing unobserved technology

parameters as a function of firm choices. It can be split into two stages most closely

15Transformation rates only need to be identified up to a numéraire product. We assume that the constant
in φ1

rt is the same across products and without loss of generality we normalize it to zero.
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resembling ACF and DLGKP but allowing for heterogeneous input coefficients.

The first stage is based on the production function regression in equation (2.3) and the

assumptions (SYM ), (INV ) and (IND). We again proceed to write the unobserved param-

eters as a function of the proxies as β0nt(kjt, l
s
jt, l

u
jt, µjt,mjt, θjt), β

ls
nt(kjt, l

s
jt, l

u
jt, µjt,mjt, θjt),

βl
u

nt(kjt, l
s
jt, l

u
jt, µjt,mjt, θjt), β

k
nt(kjt, l

s
jt, l

u
jt, µjt,mjt, θjt), for n = 1, . . . , Nt, where Nt is the

largest number of products produced by one firm. We can control for µjt using the esti-

mates obtained in the previous section. Plugging these functions into (2.3) we can write

the production function as

yjt = β0nt(kjt, l
s
jt, l

u
jt, µjt,mjt, θjt) + βl

s

nt(kjt, l
s
jt, l

u
jt, µjt,mjt, θjt)l

s
jt (3.5)

+βl
u

nt(kjt, l
s
jt, l

u
jt, µjt,mjt, θjt)l

u
jt + βknt(kjt, l

s
jt, l

u
jt, µjt,mjt, θjt)kjt

+m′jtβ
m
t + ηjt,

or, more compactly, as

yjt = φnt(kjt, l
s
jt, l

u
jt, µjt,mjt, θjt) + ηjt (3.6)

where the unknown function φnt is the expectation of output conditional on the inputs and

proxies. This function varies across time and across firms that produce a different number

of products. Equation (3.6) can be estimated non-parametrically. We denote the estimated

non-parametric functions with φ̂nt(·).

In the second stage we estimate the input coefficients. This stage is based on as-

sumptions (SYM ), (INV ) and (MAR). For notational convenience, we define the condi-

tional expectation function Λ, so that Λ(β0jt−1) = E(β0jt | β0jt−1), and the random variable

ξjt = β0jt − Λ(β0jt−1), which is interpreted as an unanticipated component of the evolution

of TFP. Using symmetry and invertibility to write the unobserved technology parameters

as a function of the inputs and proxies we can write the unanticipated component of TFP
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as

ξjt = φjt − βl
s

nt(kjt, l
s
jt, l

u
jt, µjt,mjt, θjt)l

s
jt − βl

u

nt(kjt, l
s
jt, l

u
jt, µjt,mjt, θjt)l

u
jt (3.7)

−βknt(kjt, lsjt, lujt, µjt,mjt, θjt)kjt −m′jtβ
m
t

−Λ
[
φjt−1 − βl

s

nt−1(kjt−1, l
s
jt−1, l

u
jt−1, µjt−1,mjt−1, θjt−1)l

s
jt−1

−βlunt−1(kjt−1, lsjt−1, lujt−1, µjt−1,mjt−1, θjt−1)l
u
jt−1

− βknt−1(kjt−1, lsjt−1, lujt−1, µjt−1,mjt−1, θjt−1)kjt−1 −m′jt−1β
m
t−1

]
where φjt = φnt(kjt, l

s
jt, l

u
jt, µjt,mjt, θjt).

The input coefficients are estimated by GMM by defining orthogonality conditions

E
(
ξjt(β

ls
nt(·), βl

u

nt(·), βknt(·), βmt )zjt
)

= 0 with ξjt defined as in equation (3.7), and plug-

ging in the estimates φ̂nt(·) from the first stage into (3.7).16 The vector zjt is a vector

of instruments. Suitable instruments are kjt, l
u
jt, l

s
jt, mjt−1 and higher order lags of these

same variables. The non-linear search is performed over the parameters βmt and the non-

parametric functions βl
s

nt(·), βl
u

nt(·), βknt(·), while the non-parametric function Λ(·) is es-

timated in each iteration. Estimates of the heterogenous input coefficients are obtained

from the estimates of the non-parametric functions as β̂l
s

jt = β̂l
s

nt(kjt, l
s
jt, l

u
jt, µjt,mjt, θjt),

β̂l
u

jt = β̂l
u

nt(kjt, l
s
jt, l

u
jt, µjt,mjt, θjt), and β̂kjt = β̂knt(kjt, l

s
jt, l

u
jt, µjt,mjt, θjt).

Finally, the Hicks-neutral parameter β0jt is estimated using all previous estimates, by

noting that from equations (2.3) and (3.6)

β0jt = φjt − βl
s

jtl
s − βlujt − βkt kjt −m′jtβ

m
t . (3.8)

As discussed by Gandhi, Navarro, and Rivers (2013), the coefficients of flexible inputs

(the intermediate inputs in our case) are non-parametrically not identified. The identifi-

cation of the βm’s in our setting relies on the Cobb-Douglas functional form assumption

and on the non-linear price schedules for intermediate inputs.17 The Cobb-Douglas tech-

nology is thus a structural assumption in our model and not merely an approximation to

the true shape of the production function. The intuition behind why we need non-linear

intermediate input prices is simple. With a Cobb-Douglas production function and constant

16Alternatively, orthogonality conditions can be defined in terms of the composite error term ξ + η.
17In contrast, ACF assume a fixed coefficient technology and avoid estimating the coefficient on interme-

diate inputs. In a case of predetermined capital and labor this implies that the demand for the intermediate
input does not depend on its price. Also, for the fixed coefficient assumption to work, TFP needs to apply
only to labor and capital. See Gandhi, Navarro, and Rivers (2013) for a discussion of output versus value
added production functions.
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input prices, if inputs are chosen optimally and are perfectly flexible, then all inputs are

perfectly collinear with the productivity shocks observed by the firms. It is clear then that

we need some differential “friction” across the flexible inputs so that they do not respond

in a collinear way to changes in βl
s

jt, β
lu
jt , β

k
jt, and β0jt. Different non-linear price schedules

provide such a friction. This idea is similar in spirit to the one proposed by Bond and

Söderbom (2005). Using a Cobb-Douglas production function and constant input prices,

they propose the introduction of input adjustment costs to attain identification. Closely

related, Doraszelski and Jaumandreu (2015) also attain parametric identification of the co-

efficients on flexible inputs with constant prices but assuming a CES production function

(the “friction” in their case comes from the elasticity of substitution being different from

one). While both the method in Doraszelski and Jaumandreu (2015) and our method re-

quire a parametric assumption on the production function, the former cannot accommodate

non-linear input prices18 and requires the researcher to observe input prices.

A different concern regarding the identification of the coefficients on flexible inputs has

to do with mjt−1 potentially being weak instruments. Differently from the traditional setup

in which firms only differ in their TFP shock, in our setting, βl
s

jt, β
lu
jt , and βkjt are serially

correlated. Since intermediate inputs depend on the productivity shocks (equation (2.6)),

lagged and current intermediate input choices are going to be correlated through channels

that are not controlled for in (3.7).

3.3 Discussion

Our model and estimation method integrate three features into the existing framework of the

productivity and production function estimation literature: it allows for firm-heterogeneity

that is not Hicks-neutral (heterogeneous labor and capital coefficients), it develops a strat-

egy to deal with output quantity information and multiproduct firms, and it provides a

framework to study quality choice and endogenous output and input prices. We argue that

these three features can be introduced into the model and estimation strategy separately,

since they do not rely on one another. Here we discuss the assumptions and implications

of each of the three contributions in more detail.

First of all, the estimation of heterogeneous labor coefficients does not rely on having

quantity information or a setting of vertical differentiation. The strategy to estimate het-

erogeneous labor coefficients can be applied to datasets with information on revenue and

18This is problematic, since electricity pricing usually takes the form of a two part tariff, and quantity
discounts for materials are prevalent in practice.
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input use. In this case revenue is used as the left-hand side variable y in regression equation

(2.3).

Second, regarding our strategy to deal with output quantity data, it does not rely

on labor coefficients being heterogeneous or in a particular demand system, as long as it

satisfies (SYM ). It can be applied to homogenous coefficient methods such as ACF. The

transformation rates are estimated in an initial stage to express output quantity in units

of equivalence. The control functions in all stages need to be adapted to having a sole

dimension of firm heterogeneity (and one proxy).

Finally, we integrate a demand system and quality choice into the dynamic firm model.

We study quality choice and exports in our application and thus we need to be clear about

how we treat these variables empirically. Our assumption is that all firms face the same price

schedule for intermediate inputs. The implication is that differences in prices of intermediate

inputs across firms are endogenous and that thus input prices are not a state variable in

equation (2.6), the policy function that is inverted to express unobserved technology as a

function of the proxies. This assumption could be relaxed as in LP and DLGKP to allow

for exogenous variation in input prices at the regional level. We can actually go further and

relax the assumption that the input price schedules could differ only based on observables.

In fact, we can allow each input price schedule to depend on a (scalar) iid supply shock that

varies across firmsas long as the schedule is strictly monotone in the supply shock. The

right-hand-side of (2.6) would now include the unobservable input supply shocks, but note

that given the intermediate input choices, the observed input prices are sufficient statistics

for the intermediate supply shocks.

The estimation of heterogeneous coefficients can be adapted to other model specifications

and assumptions. The production function regression (2.3) could be written as a function of

different input combinations, for example, merging skilled and unskilled labor as a sole labor

input, and merging materials, electricity and fuel as a sole intermediate input. Likewise the

coefficients on skilled labor, unskilled labor and capital need not all be heterogeneous across

firms. We adopt the specification that provides the largest flexibility that is compatible with

our dataset, and that allows us to test the hypothesis that differences in the productivity

of skilled and unskilled workers explains quality and export destinations.

There is also flexibility regarding which variables to use as proxies. We discuss an esti-

mation algorithm that is based on using static choice variables as proxies (three intermediate
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inputs and quality).19 It is also possible to use some or all of the dynamic choice variables

as proxies (equations 2.6 and 2.8). For example, when data on quality and separate use

of electricity and fuel is not available, the four proxies could be materials, electricity+fuel,

forward skilled labor, and forward unskilled labor. In the latter case, the algorithm needs

to be modified to include the forward transformation rates (µjt+1) as an additional state

variable. Investment can be used as proxy as well, subject to the problem of frequent zeros

pointed out by LP. The number of products is also a dynamic choice variable but it is not

an adequate proxy as it depends on the unobserved full vector of sorted products, including

those that the firm chooses not to produce (equation 2.7). As a general rule, if the number

of predetermined inputs is (n−1), it is possible to have n dimensions of heterogeneity across

firms (including TFP, β0jt); while the estimation of n dimensions of heterogeneity requires

n current decision variables as proxies.

Other model assumptions are also susceptible to change. In particular, some specifica-

tions of our estimation method are amenable to adding certain types of demand shocks.

Demand shocks would enter the static policy function (2.6) and because they are unob-

served they invalidate using static choice variables as proxies. Dynamic choice variables

can be used as proxies instead, as long as the demand shocks are i.i.d.20 Finally, in our

model we include labor adjustment costs to highlight that labor can be treated symmetri-

cally to capital. This assumption is not necessary either for the model or for the estimation

method. Labor does need to be predetermined, however, in order to be able to estimate

heterogeneous labor coefficients.

4 Data and Results [PRELIMINARY AND INCOMPLETE]

In this section we first describe the data we use, we then present the estimates for the

production function parameters and, finally, we discuss the results regarding quality, tech-

nology, and export destinations. As a preview of the results, our findings are the following.

First, both output and input quality (including both labor and intermediate inputs) are

determined by differences in the production technology. In particular, firms that have an

advantage in the use of skilled labor (i.e., firms that have an advantage in the production

of quality) use (relatively) more skilled labor and higher quality intermediate inputs, and

19In the empirical implementation we use output unit values and material unit values as two alternative
measures of quality.

20In the case of a multinomial logit demand system, the utility function can be written as Uijrct =
α(xct)θjt − pjrct + εjrct + εijrct., where εjrct is an i.i.d. variety-destination shock.
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produce higher quality output. Second, we show that the main hypothesis that we propose

in this paper —namely, that firms that have an advantage in the production of quality tend

to export to destinations with higher income— holds in our data.

4.1 Data

Our data is a panel of Chilean manufacturing firms spanning the years 1996–2006. The

data comes from the ENIA (Annual National Industrial Survey) and is collected by Chile’s

National Institute of Statistics (INE). It surveys all manufacturing firms with 10 or more

employees. The main module of the survey has detailed information on industry affiliation,

revenue, skilled and unskilled labor, investment, and intermediate inputs. This dataset,

spanning different years, has been used by Pavcnik (2002), LP, and several other studies. In

addition to the (firm-level) aggregated data, survey module 3 collects detailed information

on firm’s output by product, which is what allows us to estimate the production parameters

using units of physical quantity instead of revenue. The module contains product-level

information on units by product. Products are defined at the 7-digit-level of disaggregation

following INE’s own classification system.

We have augmented the input/output data from ENIA with customs data by matching

firms using their tax identification numbers. For each firm in the panel, we have information

on the value of exports by country of destination. These data are key for our empirical

application in which we establish an empirical link between technology and the destination

of exports.

Construction of variables.

The construction of the inputs and output variables follows from Lui (1991), LP, and

Greenstreet (2005). In particular, our measures of revenue, capital, materials, electricity,

and fuels are deflated with their own annual price deflator (constructed by the Banco Central

de Chile) and deflated to real 1995 Chilean pesos. Our measure of labor is the number of

man-years used in production, and it is broken down into skilled (white-collar) and unskilled

(blue-collar) workers. In the case of labor and intermediate inputs, we also purge our

measures from differences in quality across firms. For the labor variables, we deflate them

by the firm-specific wages relative to the industry. Similarly, for the intermediate inputs,

we construct and use a firm-specific price index (see details below).

As mentioned earlier, we complement the input/output data with customs data. We

construct a dummy variable that identifies the firms that are engaged in exporting activity in
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Table 1: Summary Statistics

Mean Std. Dev. 10-th perc. 50-th perc. 90-th perc. N

Labor force 71 138 13 29 156 65,180
Skilled 26 71 2 11 50 65,180
Unskilled 45 96 6 17 101 65,180
Share skilled 0.38 0.34 0.04 0.26 1.00 64,838

Materials 2,121,849 19,520,236 20,396 141,471 2,532,223 65,180
Electricity 80,737 921,310 445 3,068 52,503 65,180
Fuel 48,779 514,963 0 2,240 37,739 65,180
Capital 338,800 2,575,033 2,239 24,284 454,803 63,927
Investment 158,312 3,401,951 0 423 134,971 65,180

Investment>0 0.54 . . . . 65,180
Revenue 3,367,215 25,558,149 36,718 279,152 4,597,998 65,180
Exporter 0.17 . . . . 63,050

Exporter to high income dest. 0.81 . . . . 11,009
Main dest. is high income 0.52 . . . . 11,009
GDP dest (mean) 12,533 10,927 2,069 7,408 28,782 11,009
GDP dest (main) 13,342 13,510 879 7,408 30,888 11,009

a given year. Since we also have rich data at the firm level on destinations, we also construct

several measures related to export destinations: a dummy variable that identifies if the firm

exports to high-income countries,21 a dummy variable that equals 1 if the firm’s main

destination (measured by sales) is a high-income country, average GDP across destinations

(sales weighted), and GDP of the main destination. We report summary statistics of the

main variables we use in our empirical analysis in Table 1.

Proxies for quality of output and intermediate inputs.

Our theoretical model endogenizes firm’s choice of output and intermediate inputs qual-

ities (θjt and θmjt , respectively). Unfortunately, these variables are not directly observed in

the data. But, to the extent that prices reflect quality, we can use them to construct proxies

for quality that can be later used in the quality choice regressions.

We construct these proxies as follows. We work with two alternatives that exploit the

fact that, in our data, we observe multiple products and intermediate inputs for a given

firm-year. In the first alternative, the quality of output (intermediate inputs) is estimated

as a firm-year fixed effect from an OLS regression of firm-product (firm-intermediate inputs)

21We experimented with different definitions: high-income as classified by the World Bank, GDP above
the mean, GDP above the 75th percentile. We obtain similar results regardless of which definition we use.
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prices (in logs) that also includes product-year (input-year) dummies. That is, we run the

following regressions

pjrt = ψjt,FE + ψ̃rt + εjrt (4.1)

pmjmt = ψmjt,FE + ψ̃mmt + εmjmt (4.2)

where pjrt is the price (in logs) of product r produced by firm j at time t, pmjmt is the price

(in logs) of intermediate input m used by j at t, ψjt,FE and ψmjt,FE are firm-year fixed effects,

and ψ̃rt and ψ̃mmt are product-year and intermediate input-year fixed effects, respectively.

The coefficients ψFE and ψmFE are thus interpreted as the average deviation in prices of

output and intermediate inputs at the firm-level relative to the market average.

In the second alternative, quality is computed as a Stone Index of firm-level price devi-

ations relative to the product (prt) or input means (pmt), using the share in revenue and in

cost as weights (λ):

ψjt,stone =
∑
r∈Rj

λjrt (pjrt − prt) (4.3)

ψmjt,stone =
∑
m

λjmt (pjmt − pmt) . (4.4)

4.2 Estimates of the Technology Parameters

For the estimation of the technology parameters we split firms in groups of 2-digit industries

of the ISIC Revision 3 classification and consider three time periods. Thus, we allow the

function φnt(·) in equation (3.6) to vary at the industry-period level to reflect differences in

the homogeneous coefficients, demand, and input prices across industries and periods. We

estimate the homogeneous parameters (βmt ) at the industry-period level and the heteroge-

neous parameters (βl
s

jt, β
lu
jt , β

k
jt and β0jt) at the firm-year level.

[ IN WHAT FOLLOWS, WE ASSUME THAT βk DOES NOT VARY ACROSS FIRMS.

HENCE, WE ONLY NEED TO USE 3 PROXIES. WE USE THE 3 INTERMEDIATE

INPUTS AS PROXIES ]

Using data on output quantity from single product firms and input use from the main

module we estimate the rates of transformation across products in the same industry (µrt ).

With the estimated transformation rates we transform physical output into units of equiva-

lence relative to a numéraire product and add up products in units of equivalence to compute

total firm physical output yjt. Just as an illustration, in Table 2 we consider two firms, each

producing three products. The first firm belongs to the food industry and produces dried
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Table 2: Transformation Rates

Product Code Description Unit µ̂

Example 1: firm 10001, year 1996

3114908 dried fish kg 1
3114101 frozen fish kg 1.06
3114121 frozen seafood kg .43

Example 2: firm 10002, year 2006

3220153 slacks u 1
3220105 pants u .37
3220160 reflective vests u .66

Table 3: Production Function Estimates (Revenue)

Homog. Coeff. Heterog. Coeff.

OLS ACF mean 10th perc. 50th perc. 90th perc.

skilled labor 0.154 0.144 0.146 0.132 0.147 0.159
unskilled labor 0.080 0.140 0.085 0.035 0.090 0.124
capital 0.132 0.094 0.090
materials 0.523 0.578 0.578
electricity 0.073 0.038 0.168
fuels 0.033 0.067 0.037

RTS 0.994 1.062 1.105 1.064 1.107 1.138

nobs 39833 30141 28248

βs < 0 (%) 0.01
βu < 0 (%) 5.82

and frozen fish and frozen seafood. From our estimates of the transformation rates we see

that the firm can transform the inputs used to produce 1 Kg. of dried fish into 943 grams

of frozen fish or 2.3 Kg. of frozen seafood. The second firm is in the apparel industry and

produces slacks, pants, and reflective safety vests. The firm can transform the inputs used

in the production of one pair of slacks into 2.7 pairs of pants, or 1.5 reflective vests.

For comparison, we use both the composite physical output y and revenue as left-hand

side variables. Table 3 shows the estimates of the production function parameters using

revenue as our measure of output, and Table 4 using the physical output. In each case,

we present estimates from OLS and a control function method that assumes homogeneous

labor coefficients across firms, and from our method. The tables also present the returns-to-
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Table 4: Production Function Estimates (Quantity)

(a) All firms

Homog. Coeff. Heterog. Coeff.

OLS ACF mean 10th perc. 50th perc. 90th perc.

skilled labor 0.041 0.018 0.038 0.021 0.030 0.069
unskilled labor 0.056 0.028 0.057 0.021 0.057 0.093
capital 0.041 0.028 0.031
materials 0.658 0.693 0.695
electricity 0.146 0.190 0.151
fuels 0.050 0.042 0.058

RTS 0.992 0.998 1.030 1.009 1.027 1.052

nobs 21749 15153 15135

βs < 0 (%) 0.17
βu < 0 (%) 0.13

(b) Single product firms

Homog. Coeff. Heterog. Coeff.

OLS ACF mean 10th perc. 50th perc. 90th perc.

skilled labor 0.034 0.024 0.026 0.008 0.018 0.054
unskilled labor 0.059 0.045 0.072 0.047 0.076 0.092
capital 0.042 0.023 0.015
materials 0.664 0.681 0.701
electricity 0.132 0.159 0.139
fuels 0.065 0.071 0.066

RTS 0.995 1.004 1.019 1.003 1.017 1.036

nobs 13924 9341 8736

βs < 0 (%) 0.73
βu < 0 (%) 5.23
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Figure 2: Distributions of Skilled and Unskilled Labor Productivity
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scale (RTS) and, for our method, some moments of the distribution of the labor coefficients

and RTS. Note that, due to the endogeneity and nonlinearity of the input choices, there is

no reason why the methods that assume that the labor coefficients are homogeneous will

even deliver an estimate of the mean of the distribution of the heterogeneous coefficients.22

Therefore, the usual exercise of comparing the estimates from a method that takes care

of the endogeneity problem with those from OLS to see if the OLS bias goes in the right

direction is not straightforwardly applicable to our method.

While it has been well established in the literature that firms are heterogeneous in terms

of their Hicks-neutral productivity, we now show that there is also non-trivial heterogeneity

in terms of firms’ labor productivities: βl
s

and βl
u
. Figure 2 plots the marginal densities

of the skilled and unskilled labor productivity parameters in Panel (a) and a contour level

map of the joint density in Panel (b). In both panels we use a Kernel estimator using the

firm level coefficients recovered by our method as data. While a firm in the 90th percentile

of the skilled labor productivity distribution has an output elasticity 20% higher than one

in the 10th percentile —all else equal— a firm in the 90th percentile of the unskilled labor

productivity distribution has an output elasticity 3.5 times higher than one in the 10th

percentile. Consistent with the previous literature we also find substantive heterogeneity

in terms of TFP: a firm in the 90th percentile of the distribution of TFP is 45% more

productive than one in the 10th percentile, all else equal.

22It is easy to show that in a linear model with random coefficients and no endogenous regressors, OLS
gives an estimate of the mean of the distributions of the coefficients. The problem, in our setting, is that
input choices are endogenous.
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Figure 3: TFP
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The (Kernel estimate) density of TFP is plotted in Figure 3. There, we also plot

the TFP distribution that we obtain from the method that imposes homogeneous labor

productivity parameters. Intuitively, the latter distribution has a higher variance since

the TFP, which is obtained as a residual, picks up any heterogeneity that has not been

accounted for, e.g., in the labor productivities. In Panel (b) we show that there is a positive,

though noisy, relationship between the TFP estimates from the two methods. The positive

correlation between the two estimates is reassuring, but the relationship also points out

that methods that neglect other forms of unobserved heterogeneity might result in biased

estimates of TFP. In the Online Appendix, we perform a Monte Carlo exercise to show that

if the researcher ignores other sources of heterogeneity, the TFP estimates are biased and

inconsistent.

Our estimation method assumes that the three heterogeneous productivity parameters

evolve according to a first-order Markvov process, but it poses no assumptions on the con-

temporaneous correlation structure between them. To further investigate the correlations

between the productivity parameters, in Figure 4 we show (pairwise) scatter plots of TFP,

skilled, and unskilled productivity. While there appears to be no correlation between TFP

and skilled labor productivity (Panel (a)), there is a positive correlation between TFP and

unskilled productivity (Panel (b)). Additionally, as we can see from Panel (c) in Figure 4

and Panel (b) in Figure 2, there appears to be a negative correlation between skilled and

unskilled productivities.
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Figure 4: Correlations between the Productivity Parameters
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4.3 Technology, Quality, and Export Destinations

Delving into the main hypothesis that we present in this paper, we now look at how dif-

ferences in the production technology affect exporting behavior and, in particular, export

destinations. The logic behind the hypothesis, which was presented in Section 2, builds

upon three key pillars: (i) firms that have an advantage in the use of skilled labor will

use (relatively) more skilled labor; (ii) firms that use higher quality inputs produce higher

quality output; and (iii) countries with higher GDP value quality more and thus are willing

to pay for high-quality goods. Putting these three pieces together, our main hypothesis

states that firms that have an advantage in the use of skilled labor will end up exporting to

countries with higher GDP. We show that the three relationships presented above and the

main hypothesis hold in our data from Chile.

While point (i) in the previous paragraph is new in the empirical trade literature, points

(ii) and (iii) have already been shown using data from other countries. These studies look at

the complementarities between input and output qualities and at the relationship between

export decisions —in particular, the decision to export to high-income countries— and the

quality of the output. Notice, however, that these relationships are between endogenous

outcomes. Our contribution is to go one step forward and show the following. First, that

output and input quality are both determined by differences in the production technology.

Thus, firms that have a technological advantage in the production of quality will produce

higher quality output. Second, that the firms that have an advantage in the production of

quality tend to export to destinations with higher income, namely, our main hypothesis.

Complementarities in Quality and Technology Determinants.

It has already been shown in the literature that the production of high quality output

is associated with employing more skilled workers and high quality intermediate inputs.

Verhoogen (2008), Brambilla, Lederman, and Porto (2012), and Brambilla and Porto (2015)

establish a causal relationship between high quality output and wages (and skills) in Mexico,

Argentina, and for a panel of 82 countries. Bastos, Silva, and Verhoogen (2014) establish a

similar positive relationship between the quality of the output product and the quality of

intermediate inputs in Portugal.

We show that similar relationships can be found in our data from Chile. In Table 5, we

see that our measure of output quality, ψjt,FE , (see above for details) is positively correlated

with (i) our measure of labor quality (the ratio of skilled to total labor force:
Ls
jt

Ls
jt+L

u
jt
∈ [0, 1])
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Table 5: Complementarities in Quality and Skills

Output Quality Mat. Quality

(1) (2) (3) (4)

Skilled ratio 0.353*** 0.323*** 0.107***
(0.062) (0.061) (0.033)

Materials quality 0.243*** 0.241***
(0.017) (0.017)

Time FE yes yes yes yes
Industry FE yes yes yes yes

Obs. 28790 27947 27947 29755

and (ii) with our measure of intermediate inputs quality, ψmjt,FE (see above for details).23

All regressions include year and industry fixed effects. Moreover, we also show that labor

quality and intermediate inputs quality are positively correlated (column (4)), suggesting

complementarities in the quality of inputs.

The previous relationships involve endogenous variables. In the model we present in

Section 2, firm’s choices of input and output quality (θmjt and θjt, respectively) are endoge-

nous outcomes that ultimately depend on the technology parameters. We show that next.

First, we establish that both labor and intermediate inputs quality are positively correlated

with the skilled productivity ratio (
βs
jt

βs
jt+β

u
jt
∈ [0, 1]) our measure of technological advantage

in the production of quality. In Table 6 we see that, the higher the skilled productivity

ratio, the higher the quality of labor (column (1)) as measured by the skilled labor ratio,

and the higher the quality of the intermediate inputs (column (5)).24 These positive rela-

tionships are still present once we also control for TFP (columns (2) and (6)). We also see

a positive effect of TFP on both the skilled labor ratio and intermediate inputs quality.25

Finally, consistent with the result in Proposition 1, we see from column (7) that the higher

the skilled productivity ratio, the higher the quality of the output product. In column (8)

we also control for TFP and the quality of the intermediate inputs. As expected, output

quality is positively associated with skilled productivity ratio, TFP, and the quality of the

intermediate inputs.

23We obtain virtually the same qualitative and quantitative results if we use our alternative measures of
quality: ψjt,stone and ψm

jt,stone. See the Online Appendix for these results.
24In the case of materials quality, the relationship is increasing in the skilled productivity ratio except at

the high end of the ratio.
25TFP is in logs and ranges from 3.45 to 4.2.
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Table 6: Technology and Quality

Skilled Ratio Mat. Qual. Output Qual.

(1) (2) (3) (4) (5) (6) (7) (8)

Skilled prod. ratio 0.245*** 0.306*** 0.200*** 0.263*** 2.384*** 3.917*** 0.202* 0.321***
(0.023) (0.024) (0.025) (0.026) (0.801) (0.848) (0.115) (0.119)

Skilled prod. ratio sq −1.719*** −2.713***
(0.572) (0.597)

TFP 0.765*** 0.754*** 3.400*** 3.398**
(0.142) (0.139) (1.204) (1.570)

TFP sq −0.083*** −0.082*** −0.407*** −0.409**
(0.018) (0.018) (0.156) (0.204)

Exporter 0.029*** 0.027***
(0.006) (0.006)

Materials quality 0.101***
(0.011)

Time FE yes yes yes yes yes yes yes yes
Industry FE yes yes yes yes yes yes yes yes

Obs. 36459 36459 35224 35224 29755 29755 29317 28419
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Figure 5: Skilled and Skilled Productivity Ratios

(a) Skilled Ratio (Ls/(Ls + Lu)) (b) Skilled Productivity (βs/(βs + βu))
0

.5
1

1.
5

2
2.

5
de

ns
it

y

-.1 0 .1 .2 .3 .4 .5 .6 .7 .8 .9 1 1.1
skilled ratio (L_s/(L_s+L_u))

0
1

2
3

4
5

de
ns

it
y

0 .1 .2 .3 .4 .5 .6 .7 .8 .9 1
skilled productivity (beta_s/(beta_s+beta_u))

Quality, Exporting Behavior and Technology Determinants.

Technology differences across firms have been shown to affect exporting behavior. For

example, Melitz (2003) describes a selection mechanism in which more productive firms (in

terms of TFP) engage into exporting activity. Empirically, many papers have shown that

there is a relationship between total factor productivity and the decision to export (Bernard

and Bradford Jensen (1999), Clerides, Lach, and Tybout (1998), and Tybout (2003)). In

recent years, it has been argued that product quality, in addition to firm productivity, is also

a source of heterogeneity in exporting behavior among firms. Specifically, that firms that are

capable of producing high-quality output tend to export more and to high-income markets of

destination. The argument is that high-income countries value quality more and are willing

to pay for high-quality goods.26 With the increasing availability of detailed customs data,

there is vast empirical evidence supporting these claims. A positive correlation between

income in the destination market and product quality has been reported by Manova and

Zhang (2012), Bastos and Silva (2010), Görg, Halpern, and Muraközy (2010) and Martin

(2012) for firms in China, Portugal, Hungary and France.

We can also establish similar results in our data. First, in Panel (a) of Figure 5 we

perceive a great deal of heterogeneity across firms in terms of our definition of labor quality.

What it is more important for us, is that firms engaged in exporting tend to use a higher

ratio of skilled labor (see Figure 6, Panel (a)). Similarly, firms that export to high-income

26Verhoogen (2008); Hallak and Sivadasan (2013); Baldwin and Harrigan (2011); Johnson (2012); Bram-
billa, Lederman, and Porto (2012); Feenstra and Romalis (2012). An additional channel linking high-income
markets and high-quality output is the “Washington apples” effect (Hummels and Skiba (2004)).
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Figure 6: Distribution of Skill Ratio

(a) Exporter (b) High Income Exporter
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destinations tend to use a higher quality of labor (see Figure 6, Panel (b)). To further

investigate the connections between exporting behavior and input and output quality we

present regression results in Table 7. The table shows that there is, in fact, a positive

correlation between exporter status and the quality of the output (column (1)), and exporter

status and the quality of the inputs (both labor —column (2)— and intermediate inputs

—column (3)). The correlations remain when we include all the variables at the same time

(column (5)). Moreover, we also observe similar correlations if, instead of looking at whether

the firms exports or not, we look at whether the firm exports to a high-income destination

(columns (6)-(10)).27

Once again, the relationships described in the previous paragraph involve endogenous

outcomes. Next, we show that the exporting behavior can be explained from technological

differences across firms above and beyond TFP. We start by documenting some differ-

ences across exporter and non-exporter firms. In Figure 7, Panel (a), we notice that while

exporters (i) tend to have higher skilled labor productivity (and are somewhat more ho-

mogeneous in terms of it) and (ii) tend to have lower unskilled labor productivity (and are

somewhat more heterogeneous in terms of it), they are clearly more likely to have a higher

skilled labor productivity ratio, our key technological heterogeneity that we will exploit in

the trade regressions below.28 Consistent with previous studies, in Table 8 we show that

higher TFP not only increases the likelihood that a firm becomes an exporter (columns (2)

27We obtain qualitatively similar results if we use the ratio Ls/Lu for our graphs and regressions. See the
Online Appendix for these results.

28We obtain qualitatively similar results if we use the ratio βs/βu. See the Online Appendix for these
results.
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Table 7: Quality and Exports

Exporter High-income Exporter

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10)

Output quality 0.010*** 0.006** 0.009*** 0.006**
(0.003) (0.003) (0.003) (0.003)

Materials quality 0.010*** 0.008*** 0.009*** 0.007***
(0.003) (0.003) (0.003) (0.003)

Skilled ratio 0.136*** 0.060*** 0.100*** 0.037***
(0.015) (0.014) (0.013) (0.012)

Log sales 0.115*** 0.113*** 0.098*** 0.098***
(0.003) (0.003) (0.003) (0.003)

Time FE yes yes yes yes yes yes yes yes yes yes
Industry FE yes yes yes yes yes yes yes yes yes yes

Obs. 29410 28775 35224 35224 28332 29410 28775 35224 35224 28332
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Figure 7: Labor Productivity and Exporting
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and (3)) but also the size of the firm’s exports (columns (5) and (6)). We go beyond differ-

ences in TFP to also claim that a higher skilled productivity ratio increases the likelihood

that a firm becomes an exporter and, conditional on exporting, it also increases the size of

the firm’s exports (columns (1) and (4)), even after controlling for TFP and sales (columns

(3) and (6)).

To sum up, we have shown so far the three key components that drive our main hypoth-

esis: (i) firms that have an advantage in the use of skilled labor will use more skilled labor

(relative to unskilled labor); (ii) firms that use higher quality inputs produce higher quality

output; and (iii) countries with higher GDP value quality more and thus will be more likely

to buy higher quality products.

Now, moving on to our main hypothesis, we want to show that firms that have an

advantage in the use of skilled labor end up exporting to countries with higher GDP. We

begin by looking at differences in the distribution of the skilled productivity ratio across

exporters to high-income destinations and other destinations. We see from Panel (b) in

Figure 7 that exporters to high-income destinations are more likely to have a higher skilled

productivity ratio. Next, we show robust evidence to our claim that labor productivity is

a key determinant of export destinations. We consider several outcome variables related to

export destinations. We find that skilled productivity ratio is positively correlated with:

the decision to export to high-income countries, even if we condition on exporting (Table 9);

the share of sales to high-income destinations (Table 10); the GDP of the main destination,

and the average GDP (weighted by sales) of the export destinations (Table 11).
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Table 8: Technology and Exports

Exporter Log Exports

(1) (2) (3) (4) (5) (6)

Skilled prod. ratio 1.625*** 1.659*** 1.364*** 11.565*** 11.726*** 5.927***
(0.044) (0.047) (0.083) (0.330) (0.332) (0.652)

TFP 0.073*** 0.074*** 1.066*** 0.483**
(0.023) (0.023) (0.217) (0.201)

Log sales 0.025*** 0.567***
(0.006) (0.058)

Time FE yes yes yes yes yes yes
Industry FE yes yes yes yes yes yes

Obs. 35224 35224 35224 8134 8134 8134

Table 9: Technology and Export Destinations (I)

High-income Exporter
High-income Exporter

(cond. on exporting)

(1) (2) (3) (4) (5) (6)

Skilled prod. ratio 1.439*** 1.483*** 1.414*** 0.884*** 0.883*** 0.793***
(0.044) (0.046) (0.080) (0.075) (0.075) (0.135)

TFP 0.094*** 0.094*** −0.011 −0.021
(0.021) (0.021) (0.043) (0.046)

Log sales 0.006 0.009
(0.005) (0.012)

Time FE yes yes yes yes yes yes
Industry FE yes yes yes yes yes yes

Obs. 35224 35224 35224 6899 6899 6899
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Table 10: Technology and Export Destinations (II)

Share of Sales to HI Dest.
Share of Sales to HI Dest.

(cond. on exporting)

(1) (2) (3) (4) (5) (6)

Skilled prod. ratio 0.277*** 0.282*** 0.327*** 0.120** 0.113* 0.352***
(0.022) (0.024) (0.042) (0.060) (0.060) (0.126)

TFP 0.011 0.011 −0.057 −0.029
(0.013) (0.013) (0.046) (0.045)

Log sales −0.004 −0.024**
(0.003) (0.011)

Time FE yes yes yes yes yes yes
Industry FE yes yes yes yes yes yes

Obs. 35224 35224 35224 6899 6899 6899

Table 11: Technology and Export Destinations (III)

Mean Dest. GDP Main Dest. GDP

(1) (2) (3) (4) (5) (6)

Skilled prod. ratio 0.683*** 0.656*** 1.424*** 0.557** 0.532** 1.495***
(0.194) (0.193) (0.352) (0.226) (0.226) (0.436)

TFP −0.251** −0.160 −0.224 −0.111
(0.114) (0.117) (0.140) (0.145)

Log sales −0.077** −0.097**
(0.032) (0.038)

Time FE yes yes yes yes yes yes
Industry FE yes yes yes yes yes yes

Obs. 6899 6899 6899 6899 6899 6899
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