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ABSTRACT

It is commonplace that the data needed for econometric inference are not contained in a single source. In this paper

we analyze the problem of parametric inference from combined individual-level data when data combination is based

on personal and demographic identifiers such as name, age, or address. Our main question is the identification of

the econometric model based on the combined data when the data do not contain exact individual identifiers and

no parametric assumptions are imposed on the joint distribution of information that is common across the combined

dataset. We demonstrate the conditions on the observable marginal distributions of data in individual datasets that can

and cannot guarantee identification of the parameters of interest. We also note that the data combination procedure is

essential in the semiparametric setting such as ours. Provided that the (non-parametric) data combination procedure

can only be defined in finite samples, we introduce a new notion of identification based on the concept of limits of

statistical experiments. Our results apply to the setting where the individual data used for inferences are sensitive

and their combination may lead to a substantial increase in the data sensitivity or lead to a de-anonymization of

the previously anonymized information. We demonstrate that the point identification of an econometric model from

combined data is incompatible with restrictions on the risk of individual disclosure. If the data combination procedure

guarantees a bound on the risk of individual disclosure, then the information available from the combined dataset

allows one to identify the parameter of interest only partially, and the size of the identification region is inversely

related to the upper bound guarantee for the disclosure risk. This result is new in the context of data combination

as we notice that the quality of links that need to be used in the combined data to assure point identification may

be much higher than the average link quality in the entire dataset, and thus point inference requires the use of the

most sensitive subset of the data. Our results provide important insights into the ongoing discourse on the empirical

analysis of merged administrative records as well as discussions on the disclosive nature of policies implemented by the

data-driven companies (such as Internet services companies and medical companies using individual patient records

for policy decisions).
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1 Introduction

Often, data combination is a vital step in the comprehensive analysis of industrial and government

data and resulting policy decisions. Typical industrial data are contained in large, well-indexed

databases and combining multiple datasets essentially reduces to finding the pairs of unique matching

identifiers in disjoint databases. Examples of such databases include the supermarket inventory and

scanner data that can be matched by the product UPCs, patient record and billing data that can

be matched by name and social security number. Non-matches can occur, e.g., due to record errors.

Given that most industrial databases have a homogenous structure, prediction algorithms can be

“trained” using a dataset of manually resolved matching errors and those algorithms can be further

used for error control. These algorithms step from the long-existing literature in Econometrics and

Statistics on validation samples. Such procedures are on the list of routine daily tasks for database

management companies and are applied in a variety of settings, from medical to tax and employment

databases.1

A distinctive feature of data used in economic research is that the majority of utilized datasets are

unique and, thus, standardization of the data combination procedure may be problematic. More-

over, many distinct datasets that may need to be combined do not contain comprehensive unique

identifiers either due to variation in data collection policies or because of the disclosure and privacy

considerations. As a result, data combination tasks rarely reduce to a simple merger on unique iden-

tifiers with a subsequent error control. This means that in the combination of economic datasets,

one may need to use not only the label-type information (such as the social security number, patient

id or user name) but also some variables that have an economic and behavioral content and may be

used in estimated models. In this case the error of data combination becomes heteroskedastic with

an unknown distribution and does not satisfy the “mismatch-at-random” assumption that would

otherwise allow one to mechanically correct the obtained estimates by incorporating a constant

probability of an incorrect match.2 In addition, economic datasets are usually more sensitive than

typical industrial data and data curators may intentionally remove potentially identifying informa-

tion from the data that further complicates combination of different datasets.

In this paper we introduce a novel framework for inference from combined data when individual

datasets used for combination do not contain unique individual identifiers. Our framework is only

requires partial information regarding the quality of the matches between the observations of com-

bined datasets (e.g. upper and lower bounds on these probabilities) and allows to avoid parametric

assumptions regarding the joint distribution of combined variables. This contrasts many existing

approaches that are either based on the assumption of the known parametric form of the joint

distribution of individual observations in the combined data, or a known distribution of the data

combination errors. Our framework embeds both these settings as special cases. We develop an

approach to identification of the parameters of an econometric model specified on the combined

1See, e.g. Wright [2010] and Bradley et al. [2010] among others.
2See, for instance, Lahiri and Larsen [2005]
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dataset and demonstrate when these parameters can and cannot be identified.

The data combination procedure suggested in this paper is based on infrequent observations of some

numeric or string variables that are either available directly from the data or need to be constructed

by the data curator. We formalize all the conditions that this procedure has to satisfy in order to give

a meaningfully combined dataset. We prove that the accuracy of this procedure can be controlled

and can vary from the “worst” (all the matches are incorrect) to the “best” (all the matches are

correct) as the sizes of split data sets increase. We establish how exactly the control of its accuracy

can be executed.

Our approach to identification is novel as we notice that the data combination procedure in non-

parametric settings can only be defined and implemented in the finite sample and not in the popu-

lation. As a result, the identification is characterized as the property of limits of sequences of data

combination rules (as opposed to the property of the population distribution as in the standard

literature on identification). This is a crucial aspect in our identification method as we provide a

new approach to model identification from combined datasets as a limiting property in the sequence

of statistical experiments. Namely, we introduce the notion of identification from combined data

through a limit of the set of parameters inferred from the combined data as the sizes of both datasets

approach infinity. These sets and their limiting behavior depend, first, on the properties of the data

combination procedure and, second, on what kind of information about this procedure is provided

to the researcher by the data curator.

Our framework naturally applies to the analysis of situations where the identifying information is

intentionally removed from the data by the data curators to reduce the “sensitivity” of the data. In

this case, an instance of a successful combination of two observations from two disjoined datasets

means that the variables contain enough information to attribute these two observations to the same

individual. This implies that the corresponding individual information can be de-anonymized, i.e.

the individual disclosure can occur. Our novel econometric framework allows us to study estimators

that use combined data in the settings where the data curators explicitly limit such cases of individual

disclosure. We also study the tradeoff between disclosure limitation (defined by the probability that

an individual disclosure can occur) and the quality of identification of the parameters of interest.

To our knowledge, our paper is the first one to study such a tradeoff.

The importance of the risk of potential disclosure of confidential information is hard to overstate.

With advances in data storage and collection technologies, issues and concerns regarding data se-

curity now generate front-page headlines. Private businesses and government entities are collecting

and storing increasing amounts of confidential personal data. This data collection is accompanied

by an unprecedented increase in publicly available (or searchable) individual information that comes

from search traffic, social networks and personal online file depositories (such as photo collections),

amongst other sources. If one of the data curator’s objectives is to provide some privacy guarantees

and prevent disclosure when conducting the task of combing the data, then we argue that the issues

of model identification/estimation and the risk of disclosure should be analyzed jointly. In particu-
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lar, we investigate how the limitations imposed on the risk of disclosure of confidential personal data

affect the amount of information that researchers and policy makers can obtain about the empirical

model of interest.

Among our findings is that there is a trade-off between the identification of the model and limitations

on individual disclosure. Whenever a non-zero disclosure restriction is imposed, the model of interest

that is based on the dataset combined from two separate datasets is not point identified. Further,

we analyze the partial identification issue and what estimates our consumer behavior model can

deliver under the constraints on the identity disclosure. We note that the goal of our work is not to

demonstrate the vulnerability of online personal data but to provide a real example of the tradeoff

between privacy and identification.

In the main part of the paper, we consider a scenario in which a data curator conducts the data

combination procedure and the researcher is given a single combined dataset (with auxiliary variables

that helped combine the data possibly removed). This combined dataset is of course not guaranteed

to contain all correct matches. Moreover, if the combined dataset is randomly selected from all

possible constructed combined datasets with the data combination rule that honors the bound on

the disclosure risk, there is a positive probability that all matches in this dataset will be incorrect.

This scenario is likely to occur when a combined dataset is released into a public domain and thus the

researcher does not bear the burden of assuring that an appropriate bound on the risk of disclosure

has been imposed.

In our empirical application, we illustrate a scenario where the researcher has access to both the

sensitive and public datasets, and thus, the researcher essentially takes the role of the data cura-

tor. Provided that in this case the researcher can control the properties of the data combination

procedure, it becomes her responsibility to ensure that a required bound on the risk of disclosure is

imposed. We illustrate both the data combination procedure itself and the impact of the choice of

this procedure on the identification of a semiparametric model. We use review data from the Health-

care section and general business sections on Yelp.com, where Yelp users rank health care facilities

based on their experiences. The data pertain to facilities located in Durham county, North Carolina.

The empirical question that we address in our work is whether a Yelp.com user’s visit to a doctor has

an impact on the user’s reviewing behavior for other businesses. However, a user profile on Yelp.com

does not contain any demographic or location information about the user. Without controlling for

this information, inference based solely on the review data would be prone to a selection bias because

consumers who use the healthcare facilities more frequently may be more prone to writing a review.

On the other hand, active Yelp users may be more likely to review a healthcare business among

other businesses. To control for sample selection using the individual-level demographic variables,

we collected a database of individual property tax records in Durham county. Applying a record

linkage technique from the data mining literature, we merge the health service review data with

the data on individual locations and property values, which we use to control for sample selection

bias. To be more precise, when combining data with the aim of bias correction we rely on observing
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data entries with infrequent attribute values (extracted from usernames, and individual names and

locations) in the two datasets. Accurate links between these entries may disclose the identities of

Yelp.com users.

In this paper we focus on the risk of individual disclosure as the possibility of recovering the true

identity of individuals in the anonymized dataset with sensitive individual information. However,

even if the combined dataset is not publicly released, the estimated model may itself be disclosive

in the sense that consumers’ confidential information may become discoverable from the inference

results based on the combined data. This situation may arise when there are no common identifiers

in the combined data and only particular individuals may qualify to be included in the combined

dataset. If the dataset is sufficiently small, a parametric model may give an accurate description

of the individuals included in the dataset. We discuss this issue in more detail in Komarova et al.

[2015] where we introduce the notion of a partial disclosure. In this paper we deal only with the

identity disclosure.

The setup of this paper can be applied to situations when there are several independent data curators

having access to separate datasets. Private firms and large government agencies collect large socio-

economic datasets. The Internal Revenue Service, Social Security Administration and the US Census

Bureau collect large comprehensive datasets that have large or complete overlaps over individuals

whose data has been collected. Each of these agencies operate as independent data curators meaning

that each of them has full control over their data, full exclusion rights over access to these data.

Most existing data curators operate based on the vault storage model where the data is stored locally

in a secure location and raw disaggregated data cannot be taken outside of the vault. Within their

data management programs, each such a data owner allows researchers to access the data vault upon

passing some clearance procedure. With this data analysis model there could be many researchers

who can access many of such data vaults. However, provided that the raw data cannot be removed

from the vault, neither of these researchers can combine individual data from two or more such

vaults. Thus, this is the situation where each of the researchers knows the marginal distribution

of the data in each of the vaults. However, none of the researchers knows the joint distribution

of the data across the vaults and thus cannot estimate the model that contains the variables from

multiple sources. Recently, several empirical researchers have been able to obtain permissions to

merge separate administrative data sources. We note that while each data curator controls their

own dataset, they also control the “sensitivity” of the variables contained in the dataset. For

instance, some variables can be removed from the researcher’s access based on the disclosure risk

considerations. Such a risk cannot be controlled if the data from one source controlled by one data

curator are combined with the data controlled by another data curator. Provided that the marginal

data distributions from different sources are already known to the researchers the disclosure threat

in this case comes precisely from the data combination.

The rest of the paper is organized as follows. In Section 2 we describe the problem of econometric

inference and characterize the structure of the data generating process. In Section 3 we describe
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the class of data combination rules used in this paper and demonstrate the implications of these

rules for individual identity disclosure. We introduce the notion of a bound on disclosure risk and

show that there exist data combination rules that honor this bound. In Section 4 we introduce the

notion of identification from combined data and characterize the structure of the pseudo-identified

set of model parameters when one uses the data combination rules that we propose. We also analyze

the relationship between the structure of the pseudo-identified set and the bound on disclosure risk.

In Section 5 using an empirical example we demonstrate the implications of the tradeoff between

identification and disclosure protection. In Section 6 we provide final remarks and conclude.

Related literature.

Our paper is related to several strands in the computer science literature. One of them is on the

optimal structures of linkage attacks as well as the requirements in relation to data releases. The

structure of linkage attacks is based on the optimal record linkage results that have been long used

in the analysis of databases and data mining. To some extent, these results have been used used

in econometrics for combination of datasets as described in Ridder and Moffitt [2007]. In record

linkage, one provides a (possibly) probabilistic rule that can match the records from one dataset with

the records from the other dataset in an effort to link the data entries corresponding to the same

individual.3 In several striking examples, computer scientists have shown that a simple removal

of personal information such as names and social security numbers does not protect data from

individual disclosure. For instance, Sweeney [2002b] identified the medical records of William Weld,

then governor of Massachusetts, by linking voter registration records to “anonymized” Massachusetts

Group Insurance Commission (GIC) medical encounter data, which retained the birthdate, sex, and

zip code of the patient.

In relation to the security of individual data, the computer science literature, e.g. Samarati and

Sweeney [1998], Sweeney [2002a], Sweeney [2002b], LeFevre et al. [2005], Aggarwal et al. [2005],

LeFevre et al. [2006], Ciriani et al. [2007], has developed and implemented the so-called k-anonymity

approach. A database instance is said to provide k-anonymity, for some number k, if every way of

singling an individual out of the database returns records for at least k individuals. In other words,

anyone whose information is stored in the database can be “confused” with k others. Under k-

anonymity, a data combination procedure will respect the required bound on the disclosure risk.

We describe it in Section 2.3 and use it in the empirical part. An alternative solution is in the

use of synthetic data and a related notion of differential privacy, e.g. Dwork and Nissim [2004],

Dwork [2006], Abowd and Vilhuber [2008], as well as Duncan and Lambert [1986], Duncan and

Mukherjee [1991], Duncan and Pearson [1991], Fienberg [1994], and Fienberg [2001] Duncan et al.

[2001], Abowd and Woodcock [2001].

We note that while the computer science literature has alluded to the point that data protection

may lead to certain trade-offs in data analysis, data protection has never been considered in the

context of model identification. For instance, a notion of “data utility” has been introduced that

3This is not what we are using in this paper as our data combination rule is deterministic.
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characterizes the accuracy of a statistical function that can be evaluated from the released data (e.g.

see Lindell and Pinkas [2000], Brickell and Shmatikov [2008]), and it was found that existing data

protection approaches lead to a decreasing quality of inference from the data measured in terms of

this utility.

Our paper is also related to the literature on partial identification of models with contaminated

or corrupted data, even though our identification approach is new. Manski [2003], Manski [2007]

and Horowitz and Manski [1995] note that data errors or data modifications pose identification

problems and generally result in only set identification of the parameter of interest. Manski and

Tamer [2002] and Magnac and Maurin [2008] give examples where – for confidentiality or anonymity

reasons – the data may be transformed into interval data or some attributes may be suppressed,

leading to the loss of point identification of the parameters of interest. Consideration of the general

setup in Molinari [2008] allows one to assess the impact of some data “anonymization” as a general

misclassification problem. Cross and Manski [2002] and King [1997] study the ecological inference

problem where a researcher needs to use the data from several distinct datasets to conduct inference

on a population of interest. In ecological inference, several datasets usually of aggregate data are

available. Making inferences about micro-units or individual behavior in this case is extremely

difficult because variables that allow identification of units are not available. Cross and Manski

[2002] show that the parameters of interest are only partially identified. We note that in our case

the data contain individual observation on micro-units and there is a limited overlap between two

datasets, making the inference problem dramatically different from ecological inference.

Though less directly related to our analysis, there is also a literature within economics that considers

privacy as something that may have a subjective value for consumers (see Acquisti [2004]) rather

than a formal guarantee against intruders’ attacks. Considering personal information as a “good”

valued by consumers leads to important insights in the economics of privacy. As seen in Varian [2009],

this approach allows researchers to analyze the release of private data in the context of the tradeoff

between the network effects created by the data release and the utility loss associated with this

release. The network effect can be associated with the loss of competitive advantage of the owner of

personal data, as discussed in Taylor [2004], Acquisti and Varian [2005], Calzolari and Pavan [2006].

Consider the setting where firms obtain a comparative advantage due to the possibility of offering

prices that are based on the past consumer behavior. Here, a subjective individual perception of

privacy is important. This is clearly shown in both the lab experiments in Gross and Acquisti [2005],

Acquisti and Grossklags [2008], as well as in the real-world environment in Acquisti et al. [2006],

Miller and Tucker [2009] and Goldfarb and Tucker [2010]. Given all these findings, we believe that

disclosure protection is a central theme in the privacy discourse, as privacy protection is impossible

without the data protection.
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2 Econometric model

2.1 Model and data structure

In this section, we formalize the empirical model based on the joint distribution of the observed

outcome variable Y distributed on Y ⊂ Rm and individual characteristics X distributed on X ⊂ Rk

that needs to be estimated from the individual level data. We assume that the parameter of interest

is θ0 ∈ Θ ⊂ Rl, where Θ is a convex compact set.

We characterize the parameter of interest by a conditional moment restriction which, for instance,

can describe the individual demand or decision:

E [ρ(Y,X, θ0) |X = x] = 0, (2.1)

where ρ(·, ·, ·) is a known function with the values in Rp. We assume that ρ(·, ·, ·) is continuous in θ

and for almost all x ∈ X ,

E [‖ρ(Y,X; θ)‖ |X = x] <∞ for any θ ∈ Θ.

We focus on a linear separable model for ρ(·, ·, ·) as our lead example, which can be directly extended

to monotone nonlinear models.

In a typical Internet environment the outcome variable may reflect individual consumer choices by

characterizing purchases in an online store, specific messages on a discussion board, comments on

a rating website, or a profile on a social networking website. Consumer characteristics are relevant

socio-demographic characteristics such as location, demographic characteristics, and social links with

other individuals. We assume that if the true joint distribution of (Y,X) were available, one would

be able to point identify parameter θ0 from the condition (2.1). Formally we write this as the

following assumption.

ASSUMPTION 1. Parameter θ0 is uniquely determined from the moment equation (2.1) and the

population joint distribution of (Y,X).

As an empirical illustration, in Section 5 we estimate a model of consumer ratings on the online rating

website Yelp.com for Yelp users located in Durham, NC, where ratings are expressed as rank scores

from 1 to 5 (5 is the highest and 1 is the lowest score). Our goal is to explore the impact of a visit of a

particular Yelp.com user to a local doctor on this user’s subsequent rating behavior. In this context,

we are concerned with potential selection induced by the correlation of rating behavior, frequency

of visits to entertainment and food businesses (disproportionately represented on Yelp.com), and

patronage of health care businesses with consumer-level demographics. However, the individual

demographic information on Yelp.com is limited to the self-reported user location and self-reported

first name, in addition to all reviews by the user.

To obtain reliable additional demographic variables that can be used to deal with the problem of

sample selection, we collected an additional dataset that contains the property tax information for
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local taxpayers in Durham county. The data reflect the property tax paid for residential real estate

along with characteristics of the property owner such as name, location, and the appraised value of

the property. If we had data from Yelp.com merged individual-by-individual with the property tax

records, then for each consumer review we would know both the score assigned by the consumer to

the healthcare business and healthcare business and consumer characteristics. In reality, however,

there is no unique identifier that labels observations in both data sources.

As a result, the variables of interest Y and X are not observed jointly. One can only separately

observe the dataset containing the values of Y and the dataset containing the values of X for subsets

of the same population.

The following assumption formalizes the idea of the data sample broken into two separate datasets.

ASSUMPTION 2. (i) The population is characterized by the joint distribution of random vec-

tors (Y,W,X, V ) distributed on Y ×W ×X × V ⊂ Rm × Rq × Rk × Rr.

(ii) The (infeasible) data sample {yi, wi, xi, vi}ni=1 is a random sample from the population distri-

bution of the data.

(iii) The observable data is formed by two independently created random data subsamples from

the sample of size n such that the first data subsample is Dyw = {yj , wj}N
y

j=1 and the second

subsample is Dxv = {xi, vi}N
x

i=1.4

(iv) Any individual in Dyw is present in Dxv. In other words, for each (yj , wj) in Dyw there exists

(xi, vi) in Dxv such that (yj , wj) and (xi, vi) correspond to the same individual.5

Assumption 2 characterizes the observable variables as independently drawn subsamples of the

infeasible “master” dataset. This means that without any additional information, one can only re-

construct distributions FX,V of (X,V ) and FY,W of (Y,W ) but this is not enough to learn the joint

distribution FY,X of (Y,X), even though one can use the Fréchet sharp bounds on FY,X in terms of

the marginal distributions FY and FX , or on FY,W,X,V in terms of the distributions FY,W and FX,V .

EXAMPLE 1. For linear models, without any additional information identification with split sam-

ple data comes down to computing Fréchet bounds. For example, in a bivariate linear regression of

random variable Y on random variable X with V ar[X] > 0, the slope coefficient can be expressed as

b0 =
cov (Y,X)

Var [X]
.

Because the joint distribution of Y and X is unknown, cov (Y,X) cannot be calculated even if the

marginal distributions of Y and X are available.

4Our analysis applies to other frameworks of split datasets. For instance, we could consider the case when some

of the variables in x (but not all of them) are observed together with y. This is the situation we deal with in our

empirical illustration. The important requirement in our analysis is that at least some of the relevant variables in x

are not observed together with y.
5This assumption is imposed for technical simplicity and can be relaxed.
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As a result, the only information that allows to draw conclusions about the joint moments of the

regressor and the outcome can be summarized by the Cauchy-Schwartz inequality |cov (Y,X)| ≤√
Var [Y ]

√
Var [X], which gives the sharp bounds on cov (Y,X). Therefore, we can determine the

slope coefficient only up to a set:

−

√
Var [Y ]

Var [X]
≤ b0 ≤

√
Var [Y ]

Var [X]
.

As we can see, the bounds on b0 are extremely wide, especially when there is not much variation

in the regressor. Moreover, we cannot even identify the direction of the relationship between the

regressor and the outcome, which is of interest in many economic applications. �

The information contained in vectors V and W is not necessarily immediately useful for the econo-

metric model that is being estimated. However, this information can help us to construct measures

of similarity between observations yj in dataset Dyw and observations xi in dataset Dxv. Random

vectors W and V are very likely to be highly correlated for a given individual but uncorrelated across

different individuals. In our empirical example, the Yelp.com dataset contains the username of each

Yelp reviewer while the property tax bills dataset has the full name of each individual taxpayer. As

the first component of V we use the Yelp.com username and as the first component of W we consider

the first name of the taxpayer. Other elements of V constructed from the Yelp data are the modal

zip code of the businesses rated by the user, and the presence of “mostly female” businesses in the

ratings (such as day spa’s, pilates and yoga studios and nail salons). The corresponding elements of

W include the zip code of the taxable property and the following three binary variables: a) whether

the first name of the taxpayer is in the list of 500 most popular white, black, and hispanic names

as per 2010 US Census; b) whether the last name of taxpayer is in the list of 500 most popular

white, black, and hispanic last names; c) whether the name of the taxpayer is in the list of 500 most

popular female names in the US Census. For instance, we can expect that consumers tend to rate

businesses that are located closer to where they live. It is also likely that the self-reported name in

the user review on Yelp.com is highly correlated with her real name (the default option offered by

Yelp.com generates the user name as the first name and the last name initial). We can thus consider

a notion of similarity between the observations in the “anonymous” rating data on Yelp.com and the

demographic variables in the property tax data. This measure of similarity will be used to combine

observations in the two datasets.

2.2 Identifiers and decisions rules for data combination

Our data linkage procedure is based on comparing the value of an identifier Zy constructed for each

observation in the main dataset with the value of an identifier Zx constructed for each observation

in the auxiliary dataset. These identifiers are random vectors that can consist of both numerical and

string variables. Zy = Zy(Y,W ) is the multivariate function of Y and an auxiliary random vector

W observed together with Y , while Zx = Zx(X,V ) is the multivariate function of X and some an

auxiliary random vector V observed together with X. We suppose that these identifiers Zy and
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Zx are constructed in such a way that they have the same dimension and the same support. Our

combination rule is based on comparing the values of zyi and zxi for each j = 1, . . . , Ny and each

i = 1, . . . , Nx.

Namely, we describe the linkage procedure employed by the data curator by means of a binary

decision rule DN (yj , z
y
j , xi, z

x
i ), where N = (Ny, Nx), such as

DN (yj , z
y
j , xi, z

x
i ) =

{
1, if zyj and zxi satisfy certain conditions,

0, otherwise.

If DN (yj , z
y
j , xi, z

x
i ) = 1, this means that observations j from the main dataset and i from the

auxiliary one can potentially be linked. If DN (yj , z
y
j , xi, z

x
i ) = 0, then we do not consider j and i to

be a possible match. Conditions in the definition of DN (yj , z
y
j , xi, z

x
i ) are chosen by the data curator

and in general depend on N , features of the data and objectives on the non-disclosure guarantees

discussed later in the paper. A specific feature of such a decision rule is that these conditions do

not depend on the values of yj and xi and only depend on the values of zyj and zxi .

Decisions rules used in this paper are based on a chosen distance between zyj and zxi . Without

a loss of generality, suppose that Zy = (Zy,n, Zy,s) and Zx = (Zx,n, Zx,s), where Zy,n and Zx,n

are random subvectors of the same dimension that contain all the numeric variables in Zy and Zx,

respectively, and Zy,s and Zx,s are random subvectors of the same dimension that contain all the

string variables in Zy and Zx. Then we can define a distance d(zyj , d
x
i ) between zyj and zxi as

d(zyj , d
x
i ) = ωn‖zy,nj − zx,ni ‖E + ωs‖zy,sj − z

x,s
i ‖S ,

where ‖ · ‖E denotes the Euclidean distance, ‖ · ‖S stands for a distance between strings (e.g., the

edit distance), and ωn, ωs ≥ 0 are weights. Below we give some examples of decision rules.

Notation. Let mij be the indicator of the event that j and i are the same individual.

EXAMPLE 2. A decision rule can be chosen as

DN (yj , z
y
j , xi, z

x
i ) = 1

{
d(zyj , d

x
i ) < αN

}
. (2.2)

The properties of this decision rule – such as the behavior of probabilities of making linkage errors as

Ny, Nx →∞, – would depend on the behavior of the sequence of thresholds {αN} and the properties

of the joint distribution of (Y, Zy, X, Zx).

Suppose that Zy and Zx contain a common variable (e.g., a binary variable for gender). It is clear

that in this case j and i can be a potential match only if the values of this variable coincide. Let

us denote this variable as Zy,g in the main dataset and as Zx,g in the auxiliary dataset. Then the

distance for the decision rule (2.2) can be defined as

d(zyj , z
x
i ) =

{
ωn‖zy,nj − zx,ni ‖E + ωs‖zy,sj − z

x,s
i ‖S , if zy,gj = zx,gi

∞, otherwise.
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This idea can be extended to any situation when data linkage is partly based on the values of discrete

variables whose values must coincide exactly for the same individual. �

We focus on two types of data combination procedures. Procedures of the first type look only at

observations with infrequent values of zxi . To the best of our knowledge, this paper offers the first

formal analysis of the record linkage based on infrequent observations. Procedures of the second type

employ decision rules that satisfy the property of k-anonymity suggested in the computer science

literature.

2.3 Data combination from observations with infrequent values

Let us define the norm of zxi as

‖zxi ‖ = ωn‖zx,ni ‖E + ωs‖zx,si ‖S .

Analogously, the norm of zyj is

‖zyj ‖ = ωn‖zy,nj ‖E + ωs‖zy,sj ‖S .

By infrequent attributes we mean the values of identifiers in the tails.

We suppose that all the variables in Zx and Zy are either discrete or continuous with respect to

the Lebesgue measure. For technical simplicity, we also suppose that at least one variable in Zx

(and, analogously, in Zy) is continuous with respect to the Lebesgue measure, which implies that

the norms ‖Zx‖ and ‖Zy‖ are continuous with respect to the Lebesgue measure too.

ASSUMPTION 3. There exists ᾱ > 0 such that for any 0 < α < ᾱ the following hold:

(i) (Proximity of identifiers with extreme values)

Pr

(
d(Zy, Zx) < α

∣∣ X = x, Y = y, ‖Zx‖ > 1

α

)
≥ 1− α.

(ii) (Non-zero probability of extreme values)

lim
α→0

sup
x,y

∣∣∣∣Pr

(
‖Zx‖ > 1

α

∣∣ X = x, Y = y

)
/φ(α)− 1

∣∣∣∣ = 0,

lim
α→0

sup
x,y

∣∣∣∣Pr

(
‖Zy‖ > 1

α

∣∣ X = x, Y = y

)
/ψ(α)− 1

∣∣∣∣ = 0

for some non-decreasing and positive at α > 0 functions φ(·) and ψ(·).

(iii) (Redundancy of identifiers in the full data)

FY |X,Zx,Zy (y |X = x, Zx = zx, Zy = zy) = FY |X(y |X = x),

where FY |X,Zx,Zy denotes the conditional CDF of Y conditional on X, Zx and Zy, and FY |X

denotes the conditional CDF of Y conditional on X.
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(iv) (Uniform conditional decay of the tails of identifiers’ densities) There exist positive at large z

functions g1(·) and g2(·) such that

lim
z→∞

sup
x

∣∣∣∣f‖Zx‖|X(z|X = x)

g1(z)
− 1

∣∣∣∣ = 0,

lim
z→∞

sup
y

∣∣∣∣f‖Zy‖|Y (z|Y = y)

g2(z)
− 1

∣∣∣∣ = 0,

where f‖Zx‖|X denotes the conditional density of ‖Zx‖ conditional on X, and f‖Zy‖|Y denotes

the conditional density of ‖Zy‖ conditional on Y .

Assumption 3 implies that the ordering of the values of ‖Zy‖ and ‖Zx‖ is meaningful and that the

tails of the distributions of ‖Zx‖ and ‖Zy‖ contains extreme values. If we considered a situation

when all the variables in Zy and Zx were discrete, this would mean that at least one of these variables

has an infinite support – for instance, it takes integer values 1, 2, 3, . . . with positive probabilities.

Ridder and Moffitt [2007] overview cases where a priori available numeric identifiers Zy and Zx

are jointly normally distributed random variables, but we avoid making such specific distributional

assumptions.

Assumption 3 (i) states that for infrequent observations – those for which the values of ‖Zx‖ are in

the tail of the distribution f‖Zx‖|X,Y – the values of Zy and Zx are very close, and that they become

arbitrarily close as the mass of the tails approaches 0.

Functions φ(·) and ψ(·) in Assumption 3 (ii) characterize the decay of the marginal distributions of

‖Zx‖ and ‖Zy‖ at the tail values. The assumptions on these functions imply that

lim
α→0

Pr

(
‖Zx‖ > 1

α

∣∣ X = x

)
/φ(α) = 1, lim

α→0
Pr

(
‖Zy‖ > 1

α

∣∣ Y = y

)
/ψ(α) = 1,

and therefore φ(·) and ψ(·) can be estimated from the split datasets. Moreover, our assumption on

the existence of densities for the distributions of ‖Zx‖|X and ‖Zy‖|Y implies that without a loss of

generality, functions φ(·) and ψ(·) are absolutely continuous.

Assumption 3 (iii) states that for a pair of correctly matched observations from the two databases,

their values of identifiers Zx and Zy do not add any information regarding the distribution of

the outcome Y conditional on X. In other words, if the datasets are already correctly combined,

the constructed identifiers only label observations and do not improve any knowledge about the

economic model that is being estimated. For instance, if the data combination is based on the names

of individuals, then once we extract all model-relevant information from the name (for instance,

whether a specific individual is likely to be male or female, or white, black or hispanic) and combine

the information from the two databases, the name itself will not be important for the model and

will only play the role of a label for a particular observation. Assumption 3 (iii) can be violated, for

example, if Zx and Zy are proxies for a random vector Z:

Zx = Z + ux, Zy = Z + uy,
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and measurement errors ux and uy are not independent of X and Y .

Function g1(·) (g2(·)) in Assumption 3 (iv) describes the uniform over x (over y) rate of the condi-

tional density of ‖Zx‖ conditional on X (‖Zy‖ conditional on Y ) for extreme values of ‖Zx‖ (‖Zy‖).
If Assumption 3 (iv) holds, then necessarily

lim
z→∞

φ′
(

1
z

)
z2g1(z)

= 1, lim
z→∞

ψ′
(

1
z

)
z2g2(z)

= 1.

We recognize that Assumption 3 puts restrictions on the behavior of infrequent (tail) realizations

of identifiers Zx and Zy. Specifically, we expect that conditional on ‖Zx‖ taking a high value, the

values of identifiers constructed from two datasets must be close. We illustrate this assumption

with our empirical application, where we construct a categorical variable from the first names of

individuals which we observe in two datasets. We can rank the names by their general frequencies

in the population. Those frequencies tend to decline exponentially with the frequency rank of the

name. As a result, conditioning on rare names in both datasets, we will be able to identify a specific

person with a high probability. In other words, the entries with same rare name in the combined

datasets are likely to correspond to the same individual.

REMARK 1. Assumption 3 (iii) can be relaxed to allow for situations when matching is based

on behavioral or demographic characteristics that would also be included among the regressors. But

weakening of Assumption 3 (iii) has to be done together with imposing stricter requirements on the

distance function d(·, ·).

Suppose that Zy = (Z̃y, ˜̃Zy), Zx = (Z̃x, ˜̃Zx) and X = (X̃, ˜̃X), where Z̃x = X̃, and Z̃y in the main

dataset and X̃ in the auxiliary dataset contain common variables (e.g., discrete variables for age

and gender). Suppose that the distance for the decision rule is defined in such a way that

d(zyj , z
x
i ) =∞ if z̃yj 6= x̃i

– that is, individuals j and i with different observations for age or gender cannot possibly be matched.

Then instead of assumption 3 (iii) we can impose the following weaker restriction:

F
Y |X, ˜̃Zx, ˜̃Zy (y |X = x, ˜̃Zx = ˜̃zx, ˜̃Zy = ˜̃zy) = FY |X(y |X = x).

REMARK 2 (k-anonymity). The description of k-anonymity approach can be found Samarati and

Sweeney [1998], Sweeney [2002a], Sweeney [2002b], among others. We describe it here with the

purpose of illustrating how the k-anonymity rule would translate into the properties of the decision

rule.

Given the binary decision rule DN (yj , z
y
j , xi, z

x
i ) in (3.5), we say that the k-anonymity property

is implemented if for each observation j in the main dataset, j = 1, . . . , Ny, one of the following

conditions hold:

either
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a) DN (yj , z
y
j , xi, z

x
i ) = 0 for all i = 1, . . . , Nx; that is, j cannot be combined with any individual

i in the auxiliary dataset;

or

b)
Nx∑
i=1

DN (yj , z
y
j , xi, z

x
i ) ≥ k; that is, for j there are at least k equally good matches in the auxiliary

dataset.

Under the rule of k-anonymity, for any j from Dy and any i from Dx,

Pr
(
mij = 1

∣∣ DN (yj , z
y
j , xi, z

x
i ) = 1,Dy,Dx

)
=


0, if

Nx∑
l=1

DN (yj , z
y
j , xl, z

x
l ) = 0,

1
Nx∑
l=1

DN (yj ,z
y
j ,xl,z

x
l )

, otherwise.

Clealry, it always holds that

Pr
(
mij = 1

∣∣ DN (yj , z
y
j , xi, z

x
i ) = 1,Dy,Dx

)
≤ 1

k
. (2.3)

The binary decision rule for k-anonymity does not have to be based on infrequent observations and

can use much more general ideas. One only has to guarantee that (2.3) holds.

3 Implementation of data combination and implications for identity dis-

closure

In this section, we characterize in more detail the class of data combination procedures that we use

in this paper, introduce the formal notion of identity disclosure and characterize a subclass of data

combination procedures that are compatible with a bound for the risk of the identity disclosure. We

suppose henceforth that Assumptions 1-3 hold.

3.1 Implementation of data combination

In our model, the realizations of random variables Y and X are contained in disjoint datasets. After

constructing identifiers Zy and Zx, we directly observe the empirical distributions of (Y, Zy) and

(X,Zx). Even though these two distributions provide some information about the joint distribution

of (Y,X), such as Fréchet bounds, they do not fully characterize it if no data combination whatso-

ever is conducted, and thus, there are many joint distributions of (Y,X) (or, more generally, joint

distributions of (Y,Zy, X, Zx)) consistent with the observed distributions of (Y, Zy) and (X,Zx).

This means that we would have to consider all such compatible joint distributions of (Y,X) when

trying to determine the parameter of interest using (2.1). Intuitively, any compatible joint distri-

bution of (Y,X) would give us a different value of the parameter of interest, which means that the
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parameter of interest can only be determined up to a set. Thus, the econometric model of interest

is not identified from the available information about the distributions of (Y, Zy) and (X,Zx).

The identification of the econometric model is potentially possible if the two datasets are combined

for at least some observations and thus, more information becomes available about the dependence

structure between vectors (Y, Zy) and (X,Zx), from which we can consequently obtain more in-

formation about the dependence structure between Y and X. The best case scenario from the

identification point of view occurs if our data combination procedure allows us to learn the copula

describing the true joint distribution of (Y,Zy, X, Zx) as a function of two separate distributions of

(Y,Zy) and (X,Zx). This would automatically give us the copula describing the true joint distribu-

tion of (Y,X) as a function of the marginal distributions of Y and X, and then we would be able to

point identify θ0 using (2.1). Whether this scenario will occur clearly depends on the quality of the

data combination procedure.

An important feature of data combination that has to be taken into account is that it is inherently

a finite-sample procedure. Therefore, in Section 4 we define identification from combined data as a

property of the limit of statistical experiments (as the finite-sample increases). To the best of our

knowledge, this is a new approach to analyzing parameter identification from combined data.

Now let us describe data combination procedures in more detail. Once the identifiers Zy and Zx

are constructed, we have the following two split data sets:

Dy = {yj , zyj }
Ny

j=1, Dx = {xi, zxi }N
x

i=1. (3.4)

Provided that the indexes of matching entries are not known in advance, the entries with the same

index i and j do not necessarily belong to the same individual.

We base our decision rule on the postulated properties in Assumption 3:

DN (yj , z
y
j , xi, z

x
i ) = 1

{
d(zyj , z

x
i ) < αN , ‖zxi ‖ > 1/αN

}
, (3.5)

for a chosen αN such that 0 < αN < ᾱ. We notice that for each rate rN → ∞ there is a whole

class of data combination rules DN (yj , z
y
j , xi, z

x
i ) corresponding to all threshold sequences for which

αNrN converges to a non-zero value as Ny, Nx → ∞. As is clear from our results later in this

section, this rate rN is what determines the asymptotic properties of the data combination procedure.

Provided that the focus of this paper is on identification rather than estimation in the context of

data combination, in the remainder of the paper, our discussion about a data combination rule refers

the whole class of data combination rules characterized by the threshold sequences with a given rate.

Consider an observation i from Dx such that ‖zxi ‖ ≥ 1/αN . If we find a data entry j from the

dataset Dy such that d(zyj , z
x
i ) < αN , then we consider i and j as a potential match. In other

words, if identifiers zxi and zyj are both large and are close, then we consider (xi, z
x
i ) and (yj , z

y
j )

as observations possibly corresponding to the same individual. This seems to be a good strategy

when αN is small because, according to Assumption 3, when the pair (Zx, Zy) is drawn from their
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true joint distribution, the conditional probability of Zx and Zy taking proximate values when

Zx is large in the absolute value is close to 1. Even though the decision rule is independent of

the values of xi and yj , the probability Pr
(
mij = 1 | DN (yj , xi, z

y
j , z

x
i ), xi = x, yj = y,Dx,Dy

)
for

a finite N = (Nx, Ny) can depend on these values (and also depend on the sizes of datasets Dx and

Dy) and therefore can differ across pairs of i and j.

Using the combination rule DN (·), for each j ∈ {1, . . . , Ny} from the database Dy we try to find an

observation i from the database Dx that satisfies our matching criteria and thus presents a potential

match for j. We can then add the ”long” vector (yj , z
y
j , xi, z

x
i ) to our combined dataset if neither

(yj , z
y
j ) for this specific j nor (xi, z

x
i ) for this specific i enter the combined dataset as subvectors of

other ”long” observations. In other words, if there are several possible matches i from Dx for some

j in Dy(or several possible matches j from Dy for some i in Dx), we can put only one of them in

our combined dataset. Mathematically, each combined dataset GN can be described by an Ny ×Nx

matrix {dji, j = 1, . . . , Ny; i = 1, . . . , Nx} of zeros and ones, which satisfies the following conditions:

(a) dji = 1 if observations (yj , z
y
j ) and (xi, z

x
i ) are matched; dji = 0 otherwise.

(b) For each j = 1, . . . , Ny,
∑Nx

i=1 dji ≤ 1 (i.e., each j can be added to our combined dataset with

at most one i).

(c) For each i = 1, . . . , Nx,
∑Ny

j=1 dji ≤ 1 (i.e., each i can be added to our combined dataset with

at most one j).

Because some j in Dy or some i in Dx can have several possible matches, several different combined

datasets GN can be constructed. The data curator decides which one of these combined datasets to

use (e.g., it can be chosen randomly, or the data curator could choose a different selection principle).

Once the data curator chooses some GN , from this combined dataset she deletes the data on zyj
and zxi leaving only that data on linked pairs (yj , xi). This reduced dataset GxyN is released to the

public along with some information about the properties of identifiers. This information is used by

the researchers to conduct the identification analysis. Even though the dataset Dxv = {(xi, vi)}
is publicly available and, thus, the researcher can potentially construct some identifiers (possibly

similar to zxi ) from that dataset, the researcher is not given any data on wj and thus would not be

able to construct identifiers similar to zyj (or any other identifiers for observations yj).

Our identification approach in section 4 will take into account all possible combined datasets and

take into account the probabilities of making data combination errors.

Consider an observation i from Dx such that ‖zxi ‖ ≥ 1/αN . Two kinds of errors can be made when

finding entry i’s counterpart in the dataset Dy.

(1) Data combination errors of the first kind occur when the decision rule links an observation j

from Dy to i, but in fact j and i do not correspond to the same individual. For the two given
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split datasets, the probability of the error of this kind is

Pr
(
d(zyj , z

x
i ) < αN

∣∣ ‖zxi ‖ > 1/αN , xi = x, yj = y,mij = 0,Dy,Dx
)
,

or

Pr
(
d(Z̃y, Zx) < αN

∣∣ ‖Zx‖ > 1/αN , X = x, Ỹ = y
)
,

where (X,Zx) and (Ỹ , Z̃y) are independent random vectors with the distributions FX,Zx and

FY,Zy , respectively.

(2) Data combination errors of the second kind occur when observations j and i do belong to

the same individual but the procedure does not identify these two observations as a potential

match (we still consider i such that ‖zxi ‖ ≥ 1/αN ). For the two given split datasets, the

probability of the error of this kind is

Pr
(
d(zyj , z

x
i ) ≥ αN

∣∣ ‖zxi ‖ > 1/αN , xi = x, yj = y,mij = 1,Dy,Dx
)
,

or

Pr
(
d(Zy, Zx) ≥ αN

∣∣ ‖Zx‖ > 1/αN , X = x, Y = y
)
, (3.6)

where (Y,X,Zx, Zy) is distributed with FY,X,Zx,Zy . Assumption 3 guarantees that (3.6) con-

verges to 0 as αN → 0.

While the second kind of error vanishes as one considers increasingly infrequent values, the behavior

of the probability of the first kind of error depends on the rate of αN and can be controlled by the

data curator. As we establish later in this section, this rate can be chosen e.g. in such a way that

the probability of the first kind of error will be separated away from 0 even for arbitrarily large split

datasets.

3.2 Risk of disclosure

What we notice so far is that given that there is no readily available completely reliable similarity

metric between the two databases we rely on the probabilistic properties of the data. As a result, in

estimation we have to resort to only using the pairs of combined observations. If correct matches are

made with a sufficiently high probability, this may pose a potential problem if one of the two datasets

contains sensitive individual-level information. In fact, if the main dataset contains de-personalized

but highly sensitive individual data and the auxiliary dataset, which is being combined with the

main dataset, contains publicly available individual-level information (such as demographic data,

names and addresses, etc.), then the combined dataset contains highly sensitive personal information

together with publicly available demographic identifiers at least for some individuals. The only way of

avoid such an information leakage is to control the accuracy of utilized data combination procedures.

In particular, we consider controlling the error of the first kind.
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For technical convenience, in the remainder of the paper we consider the case when Zy and Zx are

random variables, and the distance d(Zy, Zx) is defined as |Zy − Zx|. The the decision rule is

DN (yj , z
y
j , xi, z

x
i ) = 1

{
|zyj − z

x
i | < αN , |zxi | > 1/αN

}
. (3.7)

Propositions 1 and 2, which appear later in this section, give conditions on the sequence of αN ,

αN → 0, that are sufficient to guarantee that the probability of the error of the first kind vanishes

as Ny →∞. Proposition 5 give conditions on αN , αN → 0, under which the probability of the error

of the first kind is separated away from 0 as Ny →∞.

For given split datasets Dy of size Ny and Dx of size Nx as in (3.4), and given y and x, consider

the conditional probability

pNij (x, y,Dx,Dy) = Pr

(
mij = 1 | xi = x, yj = y, |zxi | >

1

αN
, |zyj − z

x
i | < αN ,Dx,Dy

)
(3.8)

of a successful match of (yj , z
y
j ) from Dy with (xi, z

x
i ) from Dx.

According to our discussion, potential privacy threats occur when one establishes that a particular

combined data pair (yj , xi, z
y
j , z

x
i ) is correct with a high probability. This is the idea that we use

to define the notion of the risk of the identity disclosure. Our definition of the risk of disclosure

in possible linkage attacks is similar to the definition of the pessimistic disclosure risk in Lambert

[1993]. We formalize the pessimistic disclosure risk by considering the maximum probability of a

successful linkage attack over all individuals in a database.

Since by Assumption 2 (iv), Nx ≥ Ny, all of our asymptotic results will be formulated as the ones

obtained when Ny →∞ since this also implies that Nx →∞.

DEFINITION 1. A bound guarantee is given for the risk of disclosure if

sup
x,y

sup
Dx,Dy

sup
i,j

pNij (x, y,Dx,Dy) < 1

for all N , and there exists 0 < γ ≤ 1 such that

sup
x,y

lim sup
Ny→∞

sup
Dx,Dy

sup
i,j

pNij (x, y,Dx,Dy) ≤ 1− γ. (3.9)

The value of γ is called a bound on the disclosure risk.

Our definition of the disclosure guarantee requires, first of all, that for any two finite datasets Dy

and Dx and any matched pair, the value of pNij (x, y,Dx,Dy) is strictly less than one. In other words,

there is always a positive probability of making a linkage mistake. However, even if probabilities

pNij (x, y,Dx,Dy) are strictly less than 1, they may turn out to be very high when Ny is sufficiently

large and αN is sufficiently small. If this happens, it means that a pair of entries in two databases

correspond to the same individual with a very high level of confidence and that the linkage attack
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on a database is likely to be successful. Moreover, these probabilities may approach 1 arbitrarily

closely if αN → 0 at a certain rate as Ny →∞. Our definition of the disclosure guarantee requires

that such situations do not arise. The value of γ̄ is the extent of the non-disclosure risk guarantee.

We emphasize that the risk of disclosure needs to be controlled in split datasets of any sizes with

any realizations of the values of the covariates. In other words, one needs to provide an ad omnia

guarantee that the probability of a successful match will not exceed the specified bound. This

requirement is very different from the guarantee with probability one as here we need to ensure

that even for datasets observed with an extremely low probability the probability of a correct match

honors the stipulated bound.

An important practical question is whether there exist (the classes of the) decision rules that guar-

antee a specified bound on the disclosure risk. Below we present results that indicate, first, that for

a given bound on the disclosure risk we can find sequences of thresholds such that the correspond-

ing decision rules honor this bound, and second, that the rates of convergence for these sequences

depend on the tail behavior of identifiers used in the data combination procedure. Propositions 1

and 5 give general results. Propositions 3, 4 and 6, 7 consider two important cases where the tails

of the distributions of identifiers are geometric and exponential.

PROPOSITION 1. Suppose that for given non-decreasing and positive for α ∈ (0, ᾱ) functions

φ(·) and ψ(·) the sequence of αN → 0 (as Ny →∞) is chosen in such a way that

Nx

φ(αN )

∞∫
1
αN

(
ψ

(
1

z − αN

)
− ψ

(
1

z + αN

))
φ′
(

1
z

)
z2

dz → 0 (3.10)

as Ny →∞. Then

inf
x∈X ,y∈Y

inf
Dx,Dy

inf
i,j
pNij (x, y,Dx,Dy)→ 1 as Ny →∞.

The result of Proposition 1 implies the following result in Proposition 2.

PROPOSITION 2. (Absence of non-disclosure risk guarantee). Suppose the conditions in

Proposition 1 hold.

Then non-disclosure is not guaranteed.

PROPOSITION 3. Suppose for α ∈ (0, ᾱ), φ(α) = b1α
c1 , b1, c1 > 0 and ψ(α) = b2α

c2 , b2, c2 > 0.

Let αN > 0 be chosen in such a way that

αN = o

(
1

(Nx)
1

c2+2

)
(3.11)

as Ny →∞. Then

inf
x∈X ,y∈Y

inf
Dx,Dy

inf
i,j
pNij (x, y,Dx,Dy)→ 1 as Ny →∞,

and, thus, non-disclosure is not guaranteed.
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PROPOSITION 4. (Absence of non-disclosure risk guarantee in the case of exponential

tails)

Suppose for α ∈ (0, ᾱ), φ(α) = b1e
−c1/α, b1, c1 > 0, and ψ(α) = b2e

−c2/α, b2, c2 > 0. Let αN → 0

(as Ny →∞) be chosen in such a way that

lim
Ny→∞

Nxe
− c2
αN αN = 0. (3.12)

Then

inf
x∈X ,y∈Y

inf
Dx,Dy

inf
i,j
pNij (x, y,Dx,Dy)→ 1 as Ny →∞,

and, thus, non-disclosure is not guaranteed.

For instance, sequences αN = a
(Nx)d

when a, d > 0, satisfy this condition.

The proofs of propositions 1 - 4 are in Appendix B.

The next three propositions describe instances in which non-disclosure can be guaranteed.

PROPOSITION 5. (Non-disclosure risk guarantee). Suppose that for given non-decreasing

and positive for α ∈ (0, ᾱ) functions φ(·) and ψ(·) the sequence of αN → 0 (as Ny →∞) is chosen

in such a way that

lim inf
Ny→∞

Nx

φ(αN )

∞∫
1
αN

(
ψ

(
1

z − αN

)
− ψ

(
1

z + αN

))
φ′
(

1
z

)
z2

dz > 0. (3.13)

Then non-disclosure is guaranteed.

PROPOSITION 6. (Non-disclosure risk guarantee). Suppose for α ∈ (0, ᾱ), φ(α) = b1α
c1 ,

b1, c1 > 0, and ψ(α) = b2α
c2 , b2, c2 > 0. Let the sequence of αN → 0 (as Ny → ∞) be chosen in

such a way that

lim inf
Ny→∞

αN (Nx)
1

c2+2 > 0. (3.14)

Then non-disclosure is guaranteed.

PROPOSITION 7. (Non-disclosure risk guarantee in the case of exponential tails)

Suppose for α ∈ (0, ᾱ), φ(α) = b1e
−c1/α, b1, c1 > 0 and ψ(α) = b2e

−c2/α, b2, c2 > 0. Let the

sequence of αN → 0 (as Ny →∞) be chosen in such a way that

lim inf
Ny→∞

Nxe
− c2
αN αN > 0. (3.15)

Then non-disclosure is guaranteed.

For instance, sequences αN = a
logNx when a > c2, satisfy this condition (in this case, lim

Ny→∞
Nxe

− c2
αN αN =

∞).
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The proofs of propositions 5 - 7 can be found in Appendix B.

Propositions 2 and 5 demonstrate that the compliance of the decision rule generated by a particular

threshold sequence with a given bound guarantee for the disclosure risk depends on the rate at

which the threshold sequence converges towards zero as the sizes of Dy and Dx increase. Informally,

consider two threshold sequences αN and α∗N where the former converges to zero much faster than

the latter so that
α∗N
αN
→∞. Clearly, for large enough sizes of the datasets Dy and Dx, the sequence

α∗N not only allows more observations to be included in the combined dataset but also gives a greater

number of possible combined datasets. In fact, all observations with the values of the constructed

identifiers zxi between 1
α∗N

and 1
αN

are rejected by the decision rule implied by the sequence αN

but could be approved by the decision rule implied by the sequence α∗N . In addition, the sequence

α∗N is much more liberal in its definition of the proximity between the identifiers zyj and zxi . As a

result, the decision rule implied by the sequence α∗N generates larger combined datasets. Because the

matching information in (− 1
αN
,− 1

α∗N
)∪ ( 1

α∗N
, 1
αN

) is less reliable than that in (−∞,− 1
αN

)∪ ( 1
αN
,∞)

and linkages for observations with larger distances between the identifiers are decreasingly reliable,

the sequence α∗N results in a larger proportion of incorrect matches. The effect can be so significant

that even for arbitrarily large datasets the probability of making a data combination error does

not approach 0. In Proposition 2, where non-disclosure is not guaranteed, and the probability of

making a data combination error of the first kind approaches 0 as Ny and Nx increase, thresholds

used for the decision rule shrink to zero faster than those in Proposition 5, where non-disclosure is

guaranteed.

The result of Proposition 1 is stronger than that of Proposition 2 and will provide an important link

between the absence of non-disclosure risk guarantees and the point identification of the parameter

of interest discussed in Theorem 1.

It can be seen in propositions 3, 4 and 6, 7 that the rates of the threshold sequences used for the

decision rule can be described in terms of the size of the dataset Dx alone rather than both Dy and

Dx. This is quite intuitive because in Assumption 2 that database we assumed that Dy contains the

subset of individuals from the database Dx, and hence Dx is larger. The size of the larger dataset

is the only factor determining how many potential matches from this dataset we are able to find for

any observation in the smaller dataset without using any additional information from the identifiers.

With this discussion we find that the decision rules that we constructed are well-defined and there

exists a non-empty class of sequences of thresholds that can be used for data combination and that

guarantee the avoidance of identity disclosure with a given probability. The rate of these sequences

depends on the tail behavior of the identifiers’ distributions.

4 Identification with combined data

In the previous section we described the decision rule that can be used for combining data and its

implications for potential identity disclosure. In this section, we characterize the identification of
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the econometric model from the combined dataset constructed using the proposed data combination

procedure. We also show the implications of the bound on the disclosure risk for identification.

We emphasize that the structure of our identification argument is non-standard. In fact, the most

common identification argument in the econometrics literature is based on finding a mapping between

the population distribution of the data and parameters of interest. If the data distribution leads

to a single parameter value, this parameter is called point identified. However, as we explained

in the previous section, the population distribution of the immediately available data in our case

is not informative, because it consists of two unrelated marginal distributions corresponding to

population distributions generating split samples Dy and Dx. Combination of these two samples

and construction of a combined subsample is only possible when these samples are finite. In other

words, knowing the probability that a given individual might be named “Tatiana” is not informative

to us. For correct inference we need to make sure that a combined observation contains the split

pieces of information regarding the same Tatiana and not just two individuals with the same name.

As a result, our identification argument is based on the analysis of the limiting behavior of identified

sets of parameters that are obtained by applying the (finite sample) data combination procedure to

samples of an increasing size.

The proposition below brings together the conditional moment restriction (2.1) describing the model

and our threshold-based data combination procedure. This proposition establishes that if there is a

“sufficient” number of data entries which we correctly identify as matched observations, then there is

“enough” knowledge about the joint distribution of (Y,X) to point identify and estimate the model

of interest.

PROPOSITION 8. For any θ ∈ Θ and any α ∈ (0, ᾱ),

E

[
ρ(Y,X; θ)

∣∣ X = x, |Zx − Zy| < α, |Zx| > 1

α

]
= E

[
ρ(Y,X; θ)

∣∣ X = x
]
. (4.16)

The proof of this proposition is in Appendix B.

The result in Proposition 8 is quite intuitive. Record linkage is based on Zx and Zy, which are

by Assumption 3 are unrelated to Y and hence to ρ(Y,X, θ) given X. This immediately makes

E[ρ(Y,X, θ) |X] = E[ρ(Y,X, θ) |X,G(Zx, Zy)] for any function G, so we can in particular define G

to indicate a high probability of correctly matched data. In short, we can identify the parameters

in the model just using a subpopulation with relatively infrequent characteristics because are the

observations that are very likely to be correctly matched, because information used for matching is

by assumption conditionally independent of the model.

For example, if in the data from Durham, NC we find that two datasets both contain last names

“Komarova”, “Nekipelov” and “Yakovlev”, we can use that subsample to identify the model for the

rest of the population in North Carolina. Another important feature of this moment equation is

that it does not require the distance between two identifiers to be equal to zero. In other words,

if we see last name “Nekipelov” in one dataset and “Nikipelov” in the other dataset, we can still
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associate both entries with the same individual.

Thus, if the joint distribution of Y and X is known when the constructed identifiers are compatible

with the data combination rule (
{
|Zx| > 1

α , |Z
x − Zy| < α

}
), then θ0 can be estimated from the

moment equation

E

[
ρ(Y,X; θ0)

∣∣ X = x, |Zx − Zy| < α, |Zx| > 1

α

]
= 0 (4.17)

using only observations from the combined dataset. This is true even for extremely small α > 0.

Using this approach, we effectively ignore a large portion of observations of covariates and concentrate

only on observations with extreme values of identifiers.

A useful implication of Proposition 8 is that

lim
α↓0

E

[
ρ(Y,X; θ)

∣∣ X = x, |Zx − Zy| < α, |Zx| > 1

α

]
= E

[
ρ(Y,X; θ)

∣∣ X = x
]
.

EXAMPLE 3. Here we continue Example 1 and illustrate the identification approach based on

infrequent data attributes in a bivariate linear model. Let Y and X be two scalar random variables,

and V ar[X] > 0. Suppose the model of interest is characterized by the conditional mean restriction

E [Y − a0 − b0X | X = x] = 0,

where θ0 = (a0, b0) is the parameter of interest. If the joint distribution of (Y,X) was known, then

applying the least squares approach, we would find θ0 from the following system of equations for

unconditional means implied by the conditional mean restriction:

0 = E[Y − a0 − b0X]

0 = E[X(Y − a0 − b0X)].

This system gives b0 = Cov(X,Y )

Var[X]
and a0 = E[Y ]− b0E[X].

When using infrequent observations only, we can apply Proposition 8 and identify θ0 from the

“trimmed” moments. The solution can be expressed as

b0 =
Cov(X∗, Y ∗)

Var[X∗]
,

a0 =
E[Y ∗]− b0E[X∗]

E[1{|Zx − Zy| < α, |Zx| > 1
α}]1/2

,

where X∗ =
X1{|Zx−Zy|<α,|Zx|> 1

α}
E[1{|Zx−Zy|<α,|Zx|> 1

α}]1/2
and Y ∗ =

Y 1{|Zx−Zy|<α,|Zx|> 1
α}

E[1{|Zx−Zy|<α,|Zx|> 1
α}]1/2

. �

It is worth noting that observations with more common values of identifiers (not sufficiently far in

the tail of the distribution) have a higher probability of resulting in false matches and are thus less

reliable for the purpose of model identification.
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Our next step is to introduce a notion of the pseudo-identified set based on the combined data. This

notion incorporates several features. First, it takes into account the result of Proposition 8, which

tells us that the information obtained from the correctly linked data is enough to point identify

the model. Second, it takes into consideration the fact that it is possible to make some incorrect

matches, and the extent to which the data are mismatched determines how much we can learn

about the model. Third, it takes into account the fact that the data combination procedure is a

finite-sample technique and identification must therefore be treated as a limiting property as the

sizes of both datasets increase. We start with a discussion of the second feature and then conclude

this section with a discussion of the third feature.

As before, GN denotes some combined dataset of (yj , z
y
j , xi, z

x
i ) constructed from Dx of size Nx and

Dy of size Ny by means of a chosen data combination procedure. The joint density of observations

(yj , z
y
j , xi, z

x
i ) in GN can be expressed in terms of the true joint density of the random vector

(Y,Zy, X, Zx) and the marginal densities of (Y,Zy) and (X,Zx):

fY,Zy,X,Zx(yj , z
y
j , xi, z

x
i )1(mij = 1) + fY,Zy (yj , z

y
j )fX,Zx(xi, z

x
i )1(mij = 0).

In other words, if j and i correspond to the same individual, then (yj , z
y
j , xi, z

x
i ) is a drawing from

the distribution fY,Zy,X,Zx , whereas if j and i do not correspond to the same individual, then the

subvector (yj , z
y
j ) and the subvector (xi, z

x
i ) are independent and are drawn from the marginal

distributions fY,Zy and fX,Zx respectively.

For a given value y ∈ Y and a given value x ∈ X, let πN (y, x,GN ) denote the proportion of incorrect

matches in the set

Syx(GN ) = {(yj , zyj ), (xi, z
x
i ) : yj = y, xi = x, (yj , z

y
j , xi, z

x
i ) ∈ GN}.

If this set is empty, then πN (y, x,GN ) is not defined.

By πN
(
y, x, {yj , zyj }N

y

j=1, {xi, zxi }N
x

i=1

)
let us denote the average proportion of incorrect matches across

all possible combined datasets GN that can be obtained from Dy and Dx according to the chosen

data combination. Then we find that

πN
(
y, x, {yj , zyj }

Ny

j=1, {xi, zxi }N
x

i=1

)
=

∑
GN
πN (y, x,GN )1 (Syx(GN ) 6= ∅)∑
GN

1 (Syx(GN ) 6= ∅)
if
∑
GN

1 (Syx(GN ) 6= ∅) > 0.

This value is not defined otherwise (that is, if (yj , z
y
j ) and (xi, z

x
i ) with yj = y, xi = x are never

combined).

Next, we define the distribution density for an observation in a “generic” combined dataset of size

N = (Nx, Ny):

fNY,Zy,X,Zx(yj , z
y
j , xi, z

x
i ) = (1−πN (yj , xi))fY,Zy,X,Zx(yj , z

y
j , xi, z

x
i )+πN (yj , xi)fY,Zy (yj , z

y
j )fX,Zx(xi, z

x
i )

for any pairs (yj , z
y
j ) and (xi, z

x
i ) with DN (yj , z

y
j , xi, z

x
i ) = 1. Using this density we can define the

expectation with respect to the distribution of the data in the combined dataset and denote it EN [·].
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In light of the result in (4.17), we want to consider EN
[
ρ(y, x; θ)

∣∣ X = x
]

and analyze how close

this conditional mean is to 0, and how close it gets to 0 as αN → 0 . If, for instance, πN (y, x)

approaches 0 almost everywhere, then in the limit we expect this conditional mean to coincide with

the left-hand side in (4.17), and thus, take the value of 0 if and only if θ = θ0. Intuitively, the

situation is going to be completely different if even for arbitrarily small thresholds the values of

πN (y, x) will be separated away from 0 for a positive measure of (y, x) .

We want to introduce a distance r(·) that measures the proximity of the conditional moment vector

EN [ρ(yj , xi; θ) | xi = x] to 0. We want this distance to take only non-negative values and satisfy

the following condition in the special case when πN (y, x) is equal to 0 a.e.:

r
(
E
[
ρ(Y,X; θ)

∣∣ X = x
])

= 0 =⇒ θ = θ0 (4.18)

The distance function r(·) can be constructed, for instance, by using the idea behind the generalized

method of moments. We consider

r
(
EN

[
ρ(yj , xi; θ)

∣∣ xi = x
])

= gN (θ)′W0g
N (θ),

where

gN (θ) = EX
[
h(x)EN [ρ(yj , xi; θ)|xi = x]

]
= EN [h(xi)ρ(yj , xi; θ)] ,

with a J × J positive definite matrix W0, and a chosen (nonlinear) J × p, J ≥ k instrument h(·)
such that

E

[
sup
θ∈Θ
‖h(X)ρ(Y,X; θ)‖

]
<∞, E∗

[
sup
θ∈Θ
‖h(X)ρ(Ỹ , X; θ)‖

]
<∞ (4.19)

where EX [·] denotes the expectation over the distribution of X, and E∗ denotes the expectation

taken over the distribution fY (ỹ)fX(x).

Condition (4.18) is satisfied if and only if for πN (y, x) = 0 a.e.,

E [h(X)ρ(Y,X; θ)] = 0 =⇒ θ = θ0.

In rare situations this condition can be violated for some choices of instruments h(·)6, so h(·) has

to be chosen in a way to guarantee that it holds. Here and thereafter we suppose that (4.18) is

satisfied.

For a givenN and a known πN (y, x), the minimizer (or the set of minimizers) of r
(
EN

[
ρ(yj , xi; θ)

∣∣ xi = x
])

is the best approximation of θ0 under the chosen r(·). The important question, of course, is how

much is known (or, told by the data curator) to the researcher about the sequences of πN (y, x).

Let ΠN denote the information available to the researcher about the proportions πN (·, ·). We can

interpret ΠN as the set of all functions πN (·, ·) that are possible under the available to the researcher

6Dominguez and Lobato [2004] give examples of situations when the selected unconditional moment restrictions

may hold for several parameter values even if the conditional restrictions from the are obtained hold only for one

value.
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information about the data combination procedure. For instance, the data curator could provide the

researcher with the information that any value of πN (y, x) is between some known π1 and π2. Then

any measurable function πN (·, ·) taking values between π1 and π2 has to be considered in ΠN . The

empirical evidence thus generates a set of values for θ approximating θ0. We call it the N -identified

set and denote it as ΘN :

ΘN =
⋃

πN∈ΠN

Argmin
θ∈Θ

r
(
EN

[
ρ(yj , xi; θ)

∣∣ xi = x
])
. (4.20)

The next step is to consider the behavior of sets ΘN as N → ∞, which, of course, depends on the

behavior of ΠN as N →∞.

Let Π∞ denote the set of possible uniform over all y ∈ Y and over all x ∈ X limits of elements in

ΠN . That is, Π∞ is the set of π(·, ·) such that for each N , there exists πN (·, ·) ∈ ΠN such that

sup
y∈Y,x∈X

|πN (y, x)− π(y, x)| → 0.

The fact that the data combination procedure does not depend on the values of y and x (even though

the probability of the match being correct may depend on y and x) implies that Π∞ is a set of some

constant values π. Suppose that this is known to the researcher.

Proposition 9 below shows that in this situation the following set Θ∞ is a limit of the sequence of

N -identified sets ΘN :

Θ∞ =
⋃

π∈Π∞

Argmin
θ∈Θ

r
(

(1− π)E
[
ρ(Y,X; θ)

∣∣X = x
]

+ πE∗
[
ρ(Ỹ , X; θ)|X = x

])
, (4.21)

where

r
(

(1− π)E
[
ρ(Y,X; θ)

∣∣X = x
]

+ πE∗
[
ρ(Ỹ , X; θ)|X = x

])
= gπ(θ)′W0gπ(θ)

with

gπ(θ) = EX

[
h(x)

(
(1− π)E

[
ρ(Y,X; θ)

∣∣X = x
]

+ πE∗
[
ρ(Ỹ , X; θ)|X = x

])]
= (1− π)E [h(X)ρ(Y,X; θ)] + πE∗

[
h(X)ρ(Ỹ , X; θ)

]
.

PROPOSITION 9. Suppose that Π∞ consists of constant values and for any π ∈ Π∞ there exists

πN (·, ·) ∈ ΠN such that

sup
y∈Y,x∈X

|πN (y, x)− π| → 0 as Ny →∞. (4.22)

Also suppose that for any π ∈ Π∞ the function gπ(θ)′W0gπ(θ) has a unique minimizer. Consider

ΘN defined as in (4.20) and Θ∞ defined as in (4.21). Then for any θ ∈ Θ∞ there exists a sequence

{θN}, θN ∈ ΘN , such that θN → θ as Ny →∞.

The proof of this proposition is in the Appendix.
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Proposition 9 can be rewritten in terms of the distances between sets Π∞ and ΠN and sets Θ∞ and

ΘN :

d(Π∞,ΠN ) = sup
π∈Π∞

inf
πN∈ΠN

sup
y∈Y,x∈X

|πN (y, x)− π|

d(Θ∞,ΘN ) = sup
θ∈Θ∞

inf
θN∈ΘN

‖θN − θ‖.

Indeed, the definition of Π∞ gives that d(Π∞,ΠN )→ 0 as Ny →∞. Proposition 9 establishes that

this condition together with the condition on the uniqueness of the minimizer of gπ(θ)′W0gπ(θ) for

each π ∈ Π∞ gives that d(Θ∞,ΘN )→ 0 as Ny →∞.

DEFINITION 2. Θ∞ is what we call the pseudo-identified set or the set of parameter values

identified from infrequent attribute values.

Obviously, the size of Θ∞ depends on the information set Π∞ because Θ∞ generally becomes larger

if Π∞ becomes a larger interval.

The definition below provides notions of point identification and partial pseudo-identification.

DEFINITION 3. We say that parameter θ0 is point identified (partially pseudo-identified) from

infrequent attribute values if Θ∞ = {θ0} (Θ∞ 6= {θ0}).

Whether the model is point identified depends on the properties of the model, the distribution of

the data, and the matching procedure. Definition 3 implies that if θ0 is point identified, then at

infinity we can construct only one combined data subset using a chosen matching decision rule and

that all the matches are correct (Π∞ = {0}). If for a chosen h(·) in the definition of the distance

r(·) parameter θ0 is point identified in the sense of Definition 3, then θ0 is point identified under any

other choice of function h(·) that satisfies (4.18), and (4.19).

If the parameter of interest is only partially pseudo-identified from infrequent attribute values, then

Θ∞ is the best approximation to θ0 in the limit in terms of the distance r(·) under a chosen h(·). In

this case, Θ∞ is sensitive to the choice of h(·) and W0 and in general will be different for different

r(·) satisfying (4.18) and (4.19). In the case of partial pseudo-identification, 0 ∈ Π∞ implies that

θ0 ∈ Θ0, but otherwise θ0 does not necessarily belong to Θ0.

Our next step is to analyze identification from combined data sets obtained using a decision rule

that honors a particular bound on the risk of individual disclosure. Having the bound on the risk of

individual disclosure does not mean that making a correct match in a particular dataset is impossible.

What it implies is that there will be multiple versions of a combined dataset. One of these versions

can correspond to the “true” dataset for which dji = mij (using the notation from Section 3).

However, as is clear from our discussion before, in addition to this dataset we can also construct

combined datasets with varying fractions of incorrect matches. This implies that for any x and y,

and any Dx = {xi, zxi }N
x

i=1 that contains x as one of the values xi, and any Dy = {yj , zyj }N
y

j=1 that
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contains y as one of the values yj , we have that if inf
i,j
πN
(
yj = y, xi = x, {yj , zyj }N

y

j=1, {xi, zxi }N
x

i=1

)
> 0

if πN
(
yj = y, xi = x, {yj , zyj }N

y

j=1, {xi, zxi }N
x

i=1

)
is defined.

Condition (3.9) in the definition of the disclosure risk implies that

inf
x,y

lim inf
Ny→∞

πN (y, x) ≥ γ.

Taking into account Assumptions 3 (i)-(ii) for αN → 0 and the property of our data combination

procedure – namely, that the values of yj and xi are not taken into account in matching (yj , z
y
j ) with

(xi, z
x
i ) and it only matters whether identifiers satisfy conditions |zxi − z

y
j | < αN and |zxi | > 1/αN ,

– we obtain that the limit of πN (y, x) does not depend on the value of y and x. Denote this limit

as π. Uniformity over x ∈ X and y ∈ Y in Assumptions 3 (i)-(ii) imply that π is the uniform limit

of πN (y, x):

sup
y∈Y,x∈X

|πN (y, x)− π| → 0 as Ny →∞.

If the only information released by the data curator about the disclosure risk is a bound γ, then the

researcher can only infer that π ≥ γ, that is, Π∞ = [γ, 1]. This fact will allow us to establish results

on point (partial pseudo-) identification of θ0 in Theorem 1 (Theorem 2).

Theorems 1 and 2 below link point identification and partial pseudo-identification with the risk of

disclosure.

THEOREM 1. (Point identification of θ0). Let αN → 0 as Ny →∞ in such a way that

inf
x∈X ,x∈Y

inf
Dx,Dy

inf
i,j
pNij (x, y,Dx,Dy)→ 1 as Ny →∞.

Then θ0 is point identified from matches of infrequent values of the attributes.

Proof. Condition

lim
Ny→∞

inf
x∈X ,y∈Y

inf
Dx,Dy

inf
i,j
pNij (x, y,Dx,Dy) = 1

can equivalently be written as

lim
Ny→∞

sup
x∈X ,y∈Y

sup
Dx,Dy

sup
i,j

(
1− pNij (x, y,Dx,Dy)

)
= 0,

which means that for any ε > 0, when Nx and Ny are large enough, sup
x∈X ,y∈Y

πN (y, x) < ε. Since

ε > 0 can be chosen arbitrarily small, we obtain that

lim
Ny→∞

sup
x∈X ,y∈Y

πN (y, x) = 0.

From here we can conclude that Π∞ = {0}, and hence, Θ∞ = {θ0}.
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As we can see, Theorem 1 provides the identification result when there is no bound imposed on

disclosure risk. The rates of the sequences of thresholds for which the condition of this theorem is

satisfied are established in propositions 1, 3 and 4 in Section 3.

Theorem 2 gives a partial pseudo-identification result when data combination rules are restricted to

those that honor a given bound on the disclosure risk and follows from our discussion earlier in this

section.

THEOREM 2. (Absence of point identification of θ0). Let αN → 0 as N →∞ in such a way

that there is a bound γ > 0 imposed on the disclosure risk. Then θ0 is only partially pseudo-identified

from the combined dataset which is constructed by applying the data combination rules that honor

the bound γ > 0.

Proof. As discussed earlier in this section, in this case Π∞ = [γ, 1], and thus,

Θ∞ =
⋃

π∈[γ,1]

Argmin
θ∈Θ

r
(
πE
[
ρ(Y,X; θ)

∣∣X = x
]

+ (1− π)E∗
[
ρ(Ỹ , X; θ)|X = x

])
.

In general, r
(
πE
[
ρ(Y,X; θ)

∣∣X = x
]

+ (1− π)E∗
[
ρ(Ỹ , X; θ)|X = x

])
is minimized at different

values for different π meaning that generally Θ∞ is not a singleton.

Using the result of Theorem 2, we are able to provide a clear characterization of the identified set

in the linear case.

COROLLARY 1. Consider a linear model with θ0 defined by

E[Y −X ′θ0|X = x] = 0,

where E[XX ′] has full rank. Suppose there is a bound γ > 0 on the disclosure risk. Then θ0 is only

partially pseudo-identified from matches on infrequent attribute values, and, under the distance r(·)
chosen in the spirit of least squares, the pseudo-identified set is the following collection of convex

combinations of parameters θ0 and θ1:

Θ∞ = {θπ, π ∈ [γ, 1] : θπ = (1− π)θ0 + πθ1},

where θ1 is the parameter obtained under the complete independence of X and Y .

Te proof of Corollary 1 is in Appendix B.

Note that θ0 = EX [XX ′]−1E[XY ]. The matrix E[XX ′] can be found from the marginal distribution

of X (we write EX [] to emphasize this fact) and, thus, is identified without any matching procedure.

The value of E[XY ], however, can be found only if the joint distribution of (Y,X) is known in the

limit – that is, only if there is no non-disclosure guarantee.
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When we consider independent X and Y with distributions fX and fY , we have E∗[X(Y −X ′θ)] = 0.

Solving the last equation, we obtain

θ1 = EX [XX ′]−1EX [X]EY [Y ], (4.23)

which can be found from split samples without using any matching methodology. When the combined

data contain a positive proportion of incorrect matches in the limit, the resulting value of θ is a

mixture of two values obtained in two extreme situations: θ0 when π = 0, and θ1 when π = 1.

The next example illustrates that the pseudo-identified set Θ∞, even if θ0 /∈ Θ∞ is informative about

the true parameter value of θ0.

EXAMPLE 4. As a special case, consider a bivariate linear regression model

E[Y − a0 − b0X|X = x] = 0,

where V ar[X] > 0. Using our previous calculations, we obtain that the pseudo-identified set for the

slope coefficient is

{bπ : bπ = (1− π)b0, π ∈ [γ, 1]}

because b1 = 0. Here we can see that we are able to learn the sign of b0, and in addition to the sign,

we can conclude that |b0| ≥ bπ
1−γ . This result is much more than we were able to learn about b0 in

Example 1.

The pseudo-identified set for the intercept is

{aπ : aπ = (1−π)a0+πEY [Y ], π ∈ [γ, 1]} = {aπ : aπ = EY [Y ]−(1−π)b0EX [X], π ∈ [γ, 1]}. �

Thus far, we have shown that using a high quality data combination rule that selects observations

with infrequent values of some attributes allows us to point identify the parameters of the econometric

model. However, given that we may be using a small subset of individuals to estimate the model,

the obtained estimates may reveal sensitive information on those individuals. To prevent this, the

data curator can decide to conduct the data linkage in a way that guarantees a bound on the risk

of disclosure. As we have seen however, in this case it is generally not possible to point identify the

parameter of interest, and the pseudo-identified set that can be obtained from the data does not

generally contain the true parameter value.

5 The Impact of Health Care on Consumer Satisfaction (Measured by

Individual Ratings on Yelp.com)

In our application, we want to illustrate a scenario when the researcher herself has access to both

the sensitive and public datasets (possibly with some variables that can be used for data linkage

purposefully removed) and thus she essentially takes the role of the data curator. Provided that in
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such a case the researcher can control the properties of the data combination procedure, it becomes

her responsibility to ensure that a required bound on the risk of disclosure is imposed. One of the

main reasons for this to occur is that it is guaranteed that one of the constructed combined datasets

(when a correct data combination rule is used) will contain all correct matches between the two

split datasets. Given that the researcher in this case will necessarily recover the correct dataset, the

corresponding set of estimated parameters that will be constructed for each of combined datasets

will contain the true parameter. This set of estimates (with the bound on the disclosure risk in

place) will be the identified set for the parameter of interest.

We study the identification of a simple linear model using data from Yelp.com and the public property

tax records. The “main” dataset that we use contains ratings of local businesses in Durham, NC

by Yelp users. The question we seek to answer can be informally formulated as: Does a visit to a

doctor change the general attitudes of individuals in rating businesses on Yelp.com?

We can answer this question if for each given individual we are able to provide a prediction of whether

and by how much the rating scores this individual gives to Yelp businesses change on average after

this individual visits a doctor. The Yelp dataset corresponds to the dataset Dy in our theoretical

analysis, and our outcome of interest Y has two elements: one is the mean of individual Yelp ratings

before visiting a health-related business and the other is the mean of individual Yelp ratings after

visiting a health-related business. It is clear, however, that producing such a prediction using data

from Yelp.com alone will be problematic due to a familiar sample selection problem. In fact, the

data sources solely from Yelp.com will over-sample the most active Yelp users who give reviews

most frequently because (i) they have relatively higher incomes and thus they can “sample” more

businesses; (ii) live more active lifestyles and reside closer to business locations; (iii) have more time

at their disposal and can regularly write Yelp reviews. Sample selection that arises for these reasons

can be controlled by including individual-level demographic characteristics into the model (such as

income, age, location, etc.). However, for individual privacy and other reasons such information is

not immediately available for Yelp users.

To control for sample selection, we reconstruct individual-level demographic information by com-

bining the ratings from Yelp with information contained in individual property tax records that are

publicly available for taxpayers in Durham county, NC. Combination of two datasets leads to the

reconstruction of proxy variables for individual demographics for a subset of records from Yelp.com.

Given that the property tax records contain the full name and address of the taxpayer, such a pro-

cedure will lead to the discovery of the exact name and residence for at least some Yelp users with

high confidence, i.e. lead to individual disclosure. Below we show how our obtained point estimates

behave with and without limits on the risk of individual disclosure.

The property tax data were extracted from a public access website via tax administration record

search (see http://www.ustaxdata.com/nc/durham/). Property tax records are identified by parcel

numbers. We collected data from property tax records for years 2009/2010, in total collecting

104,068 tax bills for 2010 and 103,445 tax bills for 2009. Each tax record contains information on
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the taxable property value, first and last names of the taxpayer and the location of the property

(house number, street, and zip code). We then merged the data across years by parcel number and

property owner, removing properties that changed owner between 2009 and 2010. Property tax data

allow us to assemble information on the names and locations of individuals as well as the taxable

value of their properties, which we use as a proxy for individual wealth. Table 1 summarizes the

distribution of taxable property values in the dataset constructed from property tax records.

[Table 1 about here.]

Histograms of the distribution of property tax values are presented in Figure 1. The outliers seen in

the histograms are caused by commercial properties. We manually remove all commercial properties

by removing properties in commercial zones as well as all properties valued above $ 3M.

[Figure 1 about here.]

The property tax dataset corresponds to the dataset Dx in our theoretical analysis. We used this

dataset to construct the vector of identifiers for each taxpayer Zx which contains the zip code of the

residence, as well as binary variables that correspond to our “guesses” of gender and ethnicity of the

taxpayer based on comparing the taxpayer’s first and last names to the lists of 500 most popular

male, female, white, hispanic and black first and last names in the 2010 US Census.

We collected the dataset from Yelp.com with the following considerations. First, we collected in-

formation for all individuals who ever rated health-related businesses. This focus was to find the

subset of Yelp users for whom we can identify the effect of a visit to a doctor. Second, for each

such individual, we collected all information contained in this individual’s Yelp profile as well as

all ratings the individual has ever made on Yelp.com. Third, we collected all available information

on all businesses that were ever rated by the individuals in our dataset. This includes the location

and nature of the business. For businesses like restaurants we collected additional details, such as

the restaurant’s cuisine, price level, child friendliness, and hours of operation. We further use this

information to construct a vector of identifiers Zy as in our theoretical analysis. Vector Zy contains

location variables (e.g. the modal zip code of the rated business) as well as binary variables corre-

sponding to “guesses” of individual demographics such as gender and ethnicity as well as a guess

for the user’s name constructed from the Yelp username.

The indicator for a visit to a health care business was constructed from the ratings of health care

businesses. We treat an individual’s rating of a health care business as evidence that this individual

actually visited that business. We were able to extract reliable information from 59 Yelp.com users

who rated health care services in Durham. We focused on only publicly released ratings: Yelp.com

has a practice of filtering particular ratings that are believed to be unreliable (the reasons for rating

suppression are not disclosed by Yelp). Though we collected information on suppressed ratings, we

chose not to use them in our empirical analysis. The final dataset contains a total of 72 reviews for
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Durham health care businesses. We show the summary statistics for the constructed variables in

Table 2.

[Table 2 about here.]

As mentioned above, for data combination purposes we used the entire set of Yelp ratings in Durham,

NC. We use our threshold-based record linkage technique to combine the Yelp and property tax

record datasets. We construct a distance measure for the individual identifiers by combining the edit

distance using the first and last names in the property tax dataset and the username on Yelp.com,

and the sum of ranks corresponding to the same values of binary elements in Zy and Zx, for instance

corresponding to the modal zip code of the rated business and the zip code of the residence of the

taxpayer or the guessed gender and ethnicity of the Yelp user and guessed gender and ethnicity of

the property taxpayer. Using this simple matching rule, we identified 397 individuals in the tax

record data as positive matches. Fourteen people are uniquely identifiable in both databases. Table

3 shows the distribution of obtained matches.

[Table 3 about here.]

The matched observations characterize the constructed combined dataset of Yelp reviews and the

property tax bills. We were able to find Yelp users and property owners for whom the the combined

edit distance and the sum of ranks for discrepancies between the numeric indicators (zip code and

location of most frequent reviews) are equal to zero. We call this dataset the set of “one-to-one”

matches. Based on matched first names we evaluate the sex of each Yelp reviewer and construct

dummy variable indicating that the name is on the list of 500 most common female names in the US

from the Census data, as a proxy that the corresponding taxpayer is a female. We also constructed

measures of for other demographic indicators, but they did not improve the fit of our estimated

ratings model and we exclude them from our analysis.

To answer our empirical question and measure the effect of a visit to a doctor on individual ratings

of businesses on Yelp, we associate the measured outcome with the average treatment effect. The

treatment in this framework is the visit to a doctor and the outcome is the average of Yelp ratings

of other businesses. Yelp ratings are on the scale from 1 to 5 where 5 is the highest score and 1 is

the lowest. We find first that on average, after attending a health related business, Yelp users tend

to have slightly (0.05 SD) higher average rating than before (see column 1 of Table 4).

[Table 4 about here.]

To visualize the heterogeneity of observed effects across individuals, we evaluate the difference in

their average Yelp ratings before and after visiting a health care business. The histogram in Figure

2 illustrates differences in the average rating changes after a visit to a healthcare business across

Yelp users.
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[Figure 2 about here.]

We find a significant difference between the average ratings before and after the visit to a healthcare

business: means in lower and upper quartile of average ratings significantly different from zero (at

10% significant level). Those in the upper quartile report an average increase in ratings of 1.02

points whereas those in the lower quartile reported an average decrease in ratings by 1.14 points

(see Table 5).

[Table 5 about here.]

One of the caveats of the OLS estimates is the selection bias due to selection of those who are

treated. For example, people with higher incomes may use the services of Yelp-listed businesses more

frequently or, for instance, males might visit doctors less frequently than females. This selection may

result in bias of the estimated ATE. The omission of demographic characteristics such as income

or sex may result in inability to control for this selection and inability to get consistent estimates

of treatment effects. Columns 2, 3 and 4 of Table 4 illustrate this point. To control for possible

selection bias, we use a matching estimator for the subsample of data for which we have data on the

housing value. Column 4 of Table 4 shows evidence of selection, with a positive correlation between

the housing value and participation in the sample. Column 2 and column 3 exhibit the OLS and

the matching estimates of treatment effect. After controlling for selection, the effect of visiting a

doctor is much higher. According to the matching estimates, visiting a doctor increases rating by

0.66 points (0.5 SD) compared to the estimate of 0.03 points obtained from OLS procedure.

We can now analyze how the parameters will be affected if we want to enforce a bound on the

disclosure risk. To do that we use the notion of k-anonymity which is described in Section 2.3.

k-anonymity requires that for each observation in the main database there are at least k equally

good matches in the auxiliary database corresponding to the upper bound on the disclosure risk

of 1/k (which is the maximal probability of constructing a correct match for a given observation).

In our data the main attribute that was essential for construction of correct matches was the first

and the last name of the individual in the property tax data. To break the link between the first

and last name information in the property tax data and the username in Yelp data, we suppress

letters from individual names. For instance, we transform the name “Denis” to “Deni*” and then to

“Den*”. If in the Yelp data we observe users with names “Dennis” and “Denis” and in the property

tax data we observe the name “Denis”, then the edit distance between “Denis” and “Denis” is zero,

whereas the edit distance between “Dennis” and “Denis” is 1. However, if in the property tax data

we suppressed the last two letters leading to transformation “Den*”, the distance between “Dennis”,

“Denis” and “Den*” is the same.

Using character suppression we managed to attain k-anonymity with k = 2 and k = 3 by erasing,

respectively, 3 and 4 letters from the name recorded in the property tax database. The fact that there

is no perfect matches for a selected value of the distance threshold, leads to the set of minimizers of

the distance function.
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To construct the identified set, we use the idea from our identification argument by representing the

identified set as a convex hull of the point estimates obtained for different combinations of the two

datasets. We select the edit distance equal to k in each of the cases of k-anonymity as the match

threshold. For each entry in the Yelp database that has at least one counterpart in the property

tax data with the edit distance less than or equal to k, we then construct the dataset of potential

matches in the Yelp and the property tax datasets. We then construct matched databases using

each potentially matched pair. As a result, if we have Ny observations in the Yelp database each

having exactly k counterparts in the property tax database, then the number of combined datasets

we can construct is of the rate kN
y

.

For each such matched dataset we can construct the point estimates. Figure 3 shows the identified set

for the average treatment effect and Figure 4 demonstrates the identified set for the linear projection

of the propensity score.

[Figure 3 about here.]

[Figure 4 about here.]

Even with a tight restriction on the individual disclosure, the identified set of the ATE lies strictly

above zero. This means that even with limits on the disclosure risk, the sign of the average treatment

effect is identified. The identified set for the linear projection of the propensity score the for the

effect of property value contains the origin, but does not contain the origin for effect of gender and

thus the sign of the gender coefficient in the propensity score remains identified.

6 Conclusion

In this paper we analyze an important problem of identification of econometric model from the split

sample data without common numeric variables. Data combination with combined string an numeric

variables requires the measures of proximity between strings, which we borrow from the data mining

literature. Model identification from combined data cannot be established using the traditional

machinery as the population distributions only characterize the marginal distribution of the data in

the split samples without providing the guidance regarding the joint data distribution. As a result,

we need to embed the data combination procedure (which is an intrinsically finite sample procedure)

into the identification argument. Then the model identification can be defined in terms of the limit

of the sequence of parameters inferred from the samples with increasing sizes. We discover, however,

that in order to provide identification, one needs to establish some strong links between the two

databases. The presence of these links means that the identities of the corresponding individuals

will be disclosed with a very high probability. Using the example of demand for health care services,

we show that the identity disclosure may occur even when the data is not publicly shared.
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Appendix

A Construction of individual identifiers

The key element of our identification argument is based on the construction of the identifying

variables Zy and Zx such that we can merge some or all observations in the disjoint databases to be

able to estimate the econometric model of interest. While we took the existence of these variables

as given, their construction in itself is an important issue and there is a vast literature in applied

statistics and computer science that is devoted to the analysis of the broken record linkage. For

completeness of the analysis in our paper we present some highlights from that literature.

In general the task of merging disjoint databases is a routine necessity in may practical applications.

In many cases there do exist perfect cross-database identifiers of individual entries. There could be

multiple reasons why that is the case. For instance, there could be errors in data entry and processing,

wrong variable formatting, and duplicate data entry. The idea that has arisen in Newcombe et al.

[1959] and was later formalized in Fellegi and Sunter [1969] was to treat the record linkage problem

as a problem of classification of record subsets into matches, non-matches and uncertain cases. This

classification is based on defining the similarity metric between each two records. Then given the

similarity metric one can compute the probability of particular pair of records being a match or

non-match. The classification of pairs is then performed by fixing the probability of erroneous

identification of a non-matched pair of records as a match and a matched pair of records as a non-

match by minimizing the total proportion of pairs that are uncertain. This matching technique is

based on the underlying assumption of randomness of records being broken. As a result, using the

sample of perfectly matched records one can recover the distribution of the similarity metric for the
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matched and unmatched pairs of records. Moreover, as in hypothesis testing, one needs to fix the

probability of record mis-identification. Finally, the origin of the similarity metric remains arbitrary.

A large fraction of the further literature was devoted to, on one hand, development of classes of

similarity metrics that accommodate non-numeric data and, on the other hand, development of fast

and scalable record classification algorithms. For obvious reasons, measuring the similarity of string

data turns out to be the most challenging. Edit distance (see, Gusfield [1997] for instance) is a metric

that can be used to measure the string similarity. The distance between the two strings is determined

as the minimum number of insert, delete and replace operations required to transform one string

into another. Another measure developed in Jaro [1989] and elaborated in Winkler [1999] is based

on the length of matched strings, the number of common characters and their position within the

string. In its modification it also allows for the prefixes in the names and is mainly intended to

linking relatively short strings such as individual names. Alternative metrics are based on splitting

strings into individual “tokens” that are substrings of a particular length and then analyzing the

power of sets of overlapping and non-overlapping tokens. For instance, Jaccard coefficient is based

on the relative number of overlapping and overall tokens in two strings. More advanced metrics

include the “TF/IDF” metric that is based on the term frequency, or the number of times the term

(or token) appears in the document (or string) and the inverse document frequency, or the number

of documents containing the given term. The structure of the TF/IDF-based metric construction is

outlined in Salton and Harman [2003]. The distance measures may include combination of the edit

distance and the TF/IDF distance such as a fuzzy match similarity metric described in Chaudhuri

et al. [2003].

Given a specific definition of the distance, the practical aspects of matching observations will entail

calibration and application of a particular technique for matching observations. The structure of

those techniques is based on, first, the assumption regarding the data structure and the nature

of the record errors. Second, it depends on the availability of known matches, and, thus, allows

empirical validation of a particular matching technique. When such a validation sample is available,

one can estimate the distribution of the similarity measures for matched and non-matched pairs for

the validation sample. Then, using the estimated distribution one can assign the matches for the

pairs outside the validation sample. When one can use numeric information in addition to the string

information, one can use hybrid metrics that combine the known properties of numeric data entries

and the properties of string entries.

Ridder and Moffitt [2007] overviews some techniques for purely numeric data combination. In the

absence of validation subsamples that may incorporate distributional assumptions on the “similar”

numeric variables. For instance, joint normality assumption with a known sign of correlation can

allow one to invoke likelihood-based techniques for record linkage.
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B Proofs

Proof of Proposition 1. Probability pNij (x, y,Dx,Dy) in (3.8) is equal to

pNij (x, y,Dx,Dy)Pr(mij = 1 |xi = x, yj = y,Dx,Dy)

pNij (x, y,Dx,Dy)Pr(mij = 1 |xi = x, yj = y,Dx,Dy) + pN
ij

(x, y,Dx,Dy)Pr(mij = 0 |xi = x, yj = y,Dx,Dy)
,

(B.24)

where

pNij (x, y,Dx,Dy) = Pr

(
|zyj − z

x
i | < αN , |zxi | >

1

αN
|mij = 1, xi = x, yj = y,Dx,Dy

)
pN
ij

(x, y,Dx,Dy) = Pr

(
|zyj − z

x
i | < αN , |zxi | >

1

αN
|mij = 0, xi = x, yj = y,Dx,Dy

)
Note that Pr(mij = 1 |xi = x, yj = y,Dx,Dy) = 1

Nx .

By Assumption 3, for αN ∈ (0, ᾱ),

inf
Dx,Dy

inf
i,j
pNij (x, y,Dx,Dy) ≥ (1− αN )(φ(αN ) + o(φ(αN ))).

Therefore, inf
Dx,Dy

inf
i,j
pNij (x, y,Dx,Dy) is bounded from below by

(1− αN )(φ(αN ) + o(φ(αN ))) 1
Nx

(1− αN )(φ(αN ) + o(φ(αN ))) 1
Nx + sup

Dx,Dy
sup
i,j

pN
ij

(x, y,Dx,Dy)
.

The last ratio will converge to 1 as Ny →∞ if

Nx

φ(αN )
sup
Dx,Dy

sup
i,j

pN
ij

(x, y,Dx,Dy)

converges to 0.

Note that

pN
ij

(x, y,Dx,Dy) =

∫
|zxi |>

1
αN

∫ zxi +αN

zxi −αN
fZy|Y (zyj |yj = y)fZx|X(zxi |xi = x) dzyj dz

x
i .

From Assumption 3, for small αN ,

pN
ij

(x, y,Dx,Dy) =

∫
|zxi |>

1
αN

(
ψ

(
1

|zxi | − αN

)
− ψ

(
1

|zxi |+ αN

))
(1 + oy(1))g1(|zxi |)(1 + oxzx(1)) dzxi ,

(B.25)

where sup
|zxi |>

1
αN

sup
xi∈X

|oxzx(1)| → 0 and sup
yi∈Y

|oy(1)| → 0 as αN → 0. Thus, for any x and y,

Nx

φ(αN )
sup
Dx,Dy

sup
i,j

pN
ij

(x, y,Dx,Dy) ≤ Nx

φ(αN )

∫
|z|> 1

αN

(
ψ

(
1

|z| − αN

)
− ψ

(
1

|z|+ αN

))
g1(|z|) dz+

+

 sup
|zxi |>

1
αN

sup
xi∈X

|oxzx(1)|+ sup
yi∈Y

|oy(1)|

 Nx

φ(αN )

∫
|z|> 1

αN

(
ψ

(
1

|z| − αN

)
− ψ

(
1

|z|+ αN

))
g1(|z|) dz.
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Taking into account the relationship between g1(z) and φ
(

1
z

)
, we obtain the result in the proposition.

�

Proof of Proposition 2. This result of this proposition obviously follows from Proposition 1

because sup
Dx,Dy

sup
i,j

pNij (x, y,Dx,Dy) ≥ inf
Dx,Dy

inf
i,j
pNij (x, y,Dx,Dy).

�

Proof of Proposition 3. Let us check that if a sequence αN is chosen as in (3.11), then it satisfies

(3.10). In other words, let us check that

Nx

αc1N

∞∫
1
αN

((
1

z − αN

)c2
−
(

1

z + αN

)c2) 1

zc1+1
dz → 0 as Ny →∞.

Indeed,

Nx

αc1N

∞∫
1
αN

((
1

z − αN

)c2
−
(

1

z + αN

)c2) 1

zc1+1
dz =

Nx

αc1N

∞∫
1
αN

(
1−

(
z − αN
z + αN

)c2)( 1

z − αN

)c2 1

zc1+1
dz

(B.26)

=
Nx

αc1N

∞∫
1
αN

(
1−

(
1− 2αN

z + αN

)c2)( 1

z − αN

)c2 1

zc1+1
dz.

(B.27)

If αN is small enough, then for all z ≥ 1
αN

,

1−
(

1− 2αN
z + αN

)c2
≤ q1

αN
z + αN

for some constant q1 > 0. Therefore, if αN is small enough, then for all z ≥ 1
αN

we have(
1−

(
1− 2αN

z + αN

)c2)( 1

z − αN

)c2 1

zc1+1
≤ q2

αN
zc1+c2+2

for some constant q2 > 0. Finally, note that

q2N
x

αc1−1
N

∞∫
1
αN

1

zc1+c2+2
dz =

q2N
x

1 + c1 + c2
αc2+2
N → 0 as Ny →∞

if αN is chosen as in (3.11).

�
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Proof of Proposition 4. Let us check that if a sequence αN is chosen as in (3.12), then it satisfies

(3.10). In other words, let us check that

Nxe
c1
αN

∞∫
1
αN

(
e−c2(z−αN ) − e−c2(z+αN )

)
e−c1z dz → 0 as Ny →∞.

Indeed,

Nxe
c1
αN

∞∫
1
αN

(
e−c2(z−αN ) − e−c2(z+αN )

)
e−c1z dz = Nxe

c1
αN

(
ec2αN − e−c2αN

) ∞∫
1
αN

e−(c1+c2)z dz

= Nxe
− c2
αN

ec2αN − e−c2αN
c1 + c2

.

Note that for some constant r > 0

ec2αN − e−c2αN ≤ rαN .

Now it is obvious that if αN is chosen as in (3.12), then (3.10) holds.

�

Proof of Proposition 5. From (B.24), using Assumption 3 obtain that for αN ∈ (0, ᾱ)

pNij (x, y,Dx,Dy) ≤ 1

1 + Nx

φ(αN )+oxy(φ(αN ))

(
1− 1

Nx

)
pN
ij

(x, y,Dx,Dy)
,

and, thus,

sup
Dx,Dy

sup
i,j

pNij (x, y,Dx,Dy) ≤ 1

1 + Nx

φ(αN )+oxy(φ(αN ))

(
1− 1

Nx

)
inf
Dx,Dy

inf
i,j
pN
ij

(x, y,Dx,Dy)
.

From here we obtain that supx,y sup
Dx,Dy

sup
i,j

pNij (x, y,Dx,Dy) will be bounded away from 1 as Ny →∞

if
Nx

φ(αN )
inf
x,y

inf
Dx,Dy

inf
i,j
pN
ij

(x, y,Dx,Dy)

is bounded away from 0 as Ny →∞, that is, if

lim inf
Ny→∞

Nx

φ(αN )
inf
x,y

inf
Dx,Dy

inf
i,j
pN
ij

(x, y,Dx,Dy) > 0. (B.28)

Using (B.25), obtain that for small αN ,

pN
ij

(x, y,Dx,Dy) ≥

1− sup
|zxi |>

1
αN

sup
xi∈X

|oxzx (1)| − sup
yi∈Y

|oy(1)|

∫
|zxi |>

1
αN

(
ψ

(
1

|zxi | − αN

)
− ψ

(
1

|zxi |+ αN

))
g1(|zxi |) dzxi

Clearly then, Nx

φ(αN ) inf
x,y

inf
Dx,Dy

inf
i,j
pN
ij

(x, y,Dx,Dy) is bounded from below by1− sup
|zxi |>

1
αN

sup
xi∈X

|oxzx (1)| − sup
yi∈Y

|oy(1)|

 Nx

φ(αN )

∫
|zxi |>

1
αN

(
ψ

(
1

|zxi | − αN

)
− ψ

(
1

|zxi |+ αN

))
g1(|zxi |) dzxi
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Taking into account the relationship between g1(z) and φ
(

1
z

)
, and the fact that sup

|zxi |>
1
αN

sup
xi∈X

|oxzx(1)| →

0 and sup
yi∈Y

|oy(1)| → 0 as αN → 0, we obtain that the condition (3.13) guarantees then that (B.28)

holds.

�

Proof of Proposition 6. Let us check that if a sequence αN is chosen as in (3.14), then it satisfies

(3.13). In other words, let us check that

lim inf
Ny→∞

b2c1
Nx

αc1N

∞∫
1
αN

((
1

z − αN

)c2
−
(

1

z + αN

)c2) 1

zc1+1
dz > 0.

Use (B.26) and note that if αN is small enough, then for all z ≥ 1
αN

,

1−
(

1− 2αN
z + αN

)c2
≥ q̃1

αN
z + αN

for some constant q̃1 > 0. Therefore, if αN is small enough, then for all z ≥ 1
αN

we have(
1−

(
1− 2αN

z + αN

)c2)( 1

z − αN

)c2 1

zc1+1
≥ q̃2

αN
zc1+c2+2

for some constant q̃2 > 0. Finally, note that

lim inf
Ny→∞

q̃2b2c1
Nx

αc1−1
N

∞∫
1
αN

1

zc1+c2+2
dz = lim inf

Ny→∞
q̃2b2c1

Nx

1 + c1 + c2
αc2+2
N > 0

if αN is chosen as in (3.14).

�

Proof of Proposition 7. Let us check that if a sequence αN is chosen as in (3.15), then it satisfies

(3.13). In other words, we want to check that

lim inf
Ny→∞

c1N
xe

c1
αN

∞∫
1
αN

(
e−c2(z−αN ) − e−c2(z+αN )

)
e−c1z dz > 0.

Note that

Nxe
c1
αN

∞∫
1
αN

(
e−c2(z−αN ) − e−c2(z+αN )

)
e−c1z dz = Nxe

− c2
αN

ec2αN − e−c2αN
c1 + c2

and for some constant r̃ > 0

ec2αN − e−c2αN ≥ r̃αN .
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Thus, if αN is chosen as in (3.15), then (3.13) holds. �

Proof of Proposition 8. Using Assumption 3 (iii) and the law of iterated expectations,

E

[
1

(
|Zx| > 1

α
, |Zx − Zy| < α

)
ρ(Y,X; θ)

∣∣ X = x

]
=

E

[
E

[
1

(
|Zx| > 1

α
, |Zx − Zy| < α

)
ρ(Y,X; θ)

∣∣ X = x, Zx = zx, Zy = zy
] ∣∣ X = x

]
=

E

[
1

(
|Zx| > 1

α
, |Zx − Zy| < α

)
E

[
ρ(Y,X; θ)

∣∣ X = x, Zx = zx, Zy = zy
] ∣∣ X = x

]
=

E

[
1

(
|Zx| > 1

α
, |Zx − Zy| < α

)
E

[
ρ(Y,X; θ)

∣∣ X = x

] ∣∣ X = x

]
=

E

[
1

(
|Zx| > 1

α
, |Zx − Zy| < α

) ∣∣ X = x

]
· E
[
ρ(Y,X; θ)

∣∣ X = x

]
.

By Assumption 3 (i) and (iii),

E

[
1

(
|Zx| > 1

α
, |Zx − Zy| < α

) ∣∣ X = x

]
> 0.

This implies

E

[
1
(
|Zx| > 1

α , |Z
x − Zy| < α

)
ρ(Y,X; θ)

∣∣ X = x

]
E

[
1
(
|Zx| > 1

α , |Zx − Zy| < α
) ∣∣ X = x

] = E [ρ(Y,X; θ) | X = x] ,

which is equivalent to (4.16). �

Proof of Proposition 9. Fix θ̃ ∈ Θ∞. Let π ∈ Π∞ be such that θ̃ minimizes

Q(θ, π) ≡ gπ(θ)′W0gπ(θ).

We can find a sequence {πN (·, ·)} that converges to π uniformly over all y and all x. Let θN be any

value that minimizes

QN (θ, πN ) ≡ gN (θ)′W0g
N (θ)

for the chosen πN (·, ·). Clearly, θN ∈ ΘN . Let us show that θN → θ̃.

First, we establish that sup
θ∈Θ
|QN (θ, πN )−Q(θ, π)| → 0. Note that

QN (θ, πN )−Q(θ, π) =
(
gN (θ)− gπ(θ)

)′
W0

(
gN (θ)− gπ(θ)

)
+ 2gπ(θ)′W0

(
gN (θ)− gπ(θ)

)
.

Therefore,

sup
θ∈Θ
|QN (θ, πN )−Q(θ, π)| ≤ sup

θ∈Θ
‖gN (θ)− gπ(θ)‖2‖W0‖+ 2 sup

θ∈Θ
‖gπ(θ)‖ sup

θ∈Θ
‖gN (θ)− gπ(θ)‖‖W0‖.
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Conditions (4.19) imply that sup
θ∈Θ
‖gπ(θ)‖ < ∞. Thus, we only need to establish that sup

θ∈Θ
‖gN (θ)−

gπ(θ)‖ → 0. Using condition (4.22), we can show that gN (θ) can be represented as the sum of four

terms –

gN (θ) = AN1 +AN2 +BN1 +BN2,

where

AN1 = (1−π)

∫ ∫ ∫
|zxi |>

1
αN

∫
|zyj−zxi |<αN

h(xi)ρ(yj , xi; θ)fY,X|Zy,Zx(yj , xi|zyj , zxi )fZy,Zx(zyj , z
x
i ) dzyj dz

x
i dyj dxi∫ ∫ ∫

|zxi |>
1
αN

∫
|zyj−zxi |<αN

fY,X|Zy,Zx(yj , xi|zyj , zxi )fZy,Zx(zyj , z
x
i ) dzyj dz

x
i dyj dxi

AN2 =

∫ ∫ ∫
|zxi |>

1
αN

∫
|zyj−zxi |<αN

oyx(1)h(xi)ρ(yj , xi; θ)fY,X|Zy,Zx(yj , xi|zyj , zxi )fZy,Zx(zyj , z
x
i ) dzyj dz

x
i dyj dxi∫ ∫ ∫

|zxi |>
1
αN

∫
|zyj−zxi |<αN

fY,X|Zy,Zx(yj , xi|zyj , zxi )fZy,Zx(zyj , z
x
i ) dzyj dz

x
i dyj dxi

BN1 = π

∫ ∫ ∫
|zxi |>

1
αN

∫
|zxi −z

y
j |<αN

h(xi)ρ(yj , xi; θ)fY,Zy (yj , z
y
j )fX,Zx(xi, z

x
i ) dzyj dz

x
i dyj dxi∫ ∫ ∫

|zxi |>
1
αN

∫
|zxi −z

y
j |<αN

fY,Zy (yj , z
y
j )fX,Zx(xi, zxi ) dzyj dz

x
i dyj dxi

BN2 =

∫ ∫ ∫
|zxi |>

1
αN

∫
|zxi −z

y
j |<αN

oyx(1)h(xi)ρ(yj , xi; θ)fY,Zy (yj , z
y
j )fX,Zx(xi, z

x
i ) dzyj dz

x
i dyj dxi∫ ∫ ∫

|zxi |>
1
αN

∫
|zxi −z

y
j |<αN

fY,Zy (yj , z
y
j )fX,Zx(xi, zxi ) dzyj dz

x
i dyj dxi

,

where terms oyx(1) do not depend on θ and are such that sup
yj∈Y,xi∈X

|oyx(1)| → 0 as αN → 0.

Proposition 8 implies that E
[
h(X)ρ(Y,X; θ)

∣∣ |Zx| > 1
α , |Z

x − Zy| < α
]

= E[h(X)ρ(Y,X; θ)]. There-

fore,

AN1 = (1− π)E[h(X)ρ(Y,X; θ)],

and thus,

gN (θ)− gπ(θ) = AN2 +BN1 +BN2 − πE∗
[
h(X)ρ(Ỹ , X; θ)

]
.

Note that

sup
θ∈Θ
‖AN2‖ ≤ sup

yj ,xi

|oyx(1)| · E
[
sup
θ∈Θ
‖h(X)ρ(Y,X; θ)‖

∣∣∣∣ |Zx| > 1

α
, |Zx − Zy| < α

]
= sup
yj ,xi

|oyx(1)| · E
[
sup
θ∈Θ
‖h(X)ρ(Y,X; θ)‖

]
→ 0

as αN → 0.

From Assumption 3 (iv), for small αN the denominator in BN1 is the sum∫
|zxi |>

1
αN

∫
|zxi −z

y
j |<αN

g2(zyj )g1(zxi ) dzyj dz
x
i +∫ ∫ ∫

|zxi |>
1
αN

∫
|zxi −z

y
j |<αN

(oxzx(1) + ozyy(1) + ozyy(1)oxzx(1)) g2(zyj )g1(zxi )fY (yj)fX(xi) dz
y
j dz

x
i dyj dxi,
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and, similarly, the numerator is the sum∫ ∫
h(xi)ρ(yj , xi; θ)fY (yj)fX(xi) dyj dxi ·

∫
|zxi |>

1
αN

∫
|zxi −z

y
j |<αN

g2(z
y
j )g1(z

x
i ) dz

y
j dz

x
i +∫ ∫

h(xi)ρ(yj , xi; θ)

∫
|zxi |>

1
αN

∫
|zxi −z

y
j |<αN

(oxzx(1) + ozyy(1) + ozyy(1)oxzx(1)) g2(z
y
j )g1(z

x
i )fY (yj)fX(xi) dz

y
j dz

x
i dyj dxi,

where oyzy (1) and oxzx(1) do not depend on θ and are such that sup
|zyj |>

1
αN
−αN

sup
yj

|oyzy (1)| → 0 and

sup
|zxi |>

1
αN

sup
xi

|oxzx(1)| → 0 as αN → 0. Then BN1−πE∗
[
h(X)ρ(Ỹ , X; θ)

]
is the sum of the following

two terms:

πE∗
[
h(X)ρ(Ỹ , X; θ)

]
·
(

CN1

CN1 +
∫ ∫

DN1(yj , xi)fY (yj)fX(xi) dyj dxi
− 1

)
(B.29)

and

π ·
∫ ∫

h(xi)ρ(yj , xi; θ)DN1(yj , xi)fY (yj)fX(xi) dyj dxi
CN1 +

∫ ∫
DN1(yj , xi)fY (yj)fX(xi) dyj dxi

, (B.30)

where

CN1 =

∫
|zxi |>

1
αN

∫
|zxi −z

y
j |<αN

g2(zyj )g1(zxi ) dzyj dz
x
i

DN1(yj , xi) =

∫
|zxi |>

1
αN

∫
|zxi −z

y
j |<αN

(oxzx(1) + ozyy(1) + ozyy(1)oxzx(1)) g2(zyj )g1(zxi ) dzyj dz
x
i

The sup
θ∈Θ

of the norm of the term in (B.29) is bounded from above by

πE∗
[
sup
θ∈Θ
‖h(X)ρ(Ỹ , X; θ)‖

]
·
∣∣∣∣ CN1

CN1 +
∫ ∫

DN1(yj , xi)fY (yj)fX(xi) dyj dxi
− 1

∣∣∣∣ .
Because

|DN1(yj , xi)| ≤ sup
|zxi |>

1
αN

sup
|zyj |>

1
αN
−αN

sup
yj ,xi

|oyzyxzx(1)| · CN1

with sup
|zxi |>

1
αN

sup
|zyj |>

1
αN
−αN

sup
yj ,xi

|oyzyxzx(1)| → 0, then CN1

CN1+
∫ ∫

DN1(yj ,xi)fY (yj)fX(xi) dyj dxi
→ 1 as

αN → 0. Hence, (B.29) converges to 0 uniformly over θ ∈ Θ.

The sup
θ∈Θ

of the norm of the term in (B.30) is bounded from above by

π ·

∫ ∫
sup
θ∈Θ
‖h(xi)ρ(yj , xi; θ)‖|DN1(yj , xi)|fY (yj)fX(xi) dyj dxi

CN1 +
∫ ∫

DN1(yj , xi)fY (yj)fX(xi) dyj dxi
≤

π · sup
|zxi |>

1
αN

sup
|zyj |>

1
αN
−αN

sup
yj ,xi

|oyzyxzx(1)| ·
CN1 · E∗

[
supθ∈Θ ‖h(X)ρ(Ỹ , X; θ)‖

]
CN1 +

∫ ∫
DN1(yj , xi)fY (yj)fX(xi) dyj dxi

,

which converges to 0 as αN → 0.
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Thus, we obtain that

sup
θ∈Θ

∥∥∥BN1 − πE∗
[
h(X)ρ(Ỹ , X; θ)

]∥∥∥→ 0.

Finally, consider sup
θ∈Θ
‖BN2‖. This norm is bounded from above by the sum of

sup
yj ,xi

|oyx(1)|·
∫

sup
θ∈Θ
‖h(xi)ρ(yj , xi; θ)‖fY (yj)fX(xi) dyj dxi·

CN1

CN1 +
∫ ∫

DN1(yj , xi)fY (yj)fX(xi) dyj dxi

and

sup
yj ,xi

|oyx(1)|· sup
|zxi |>

1
αN

sup
|zyj |>

1
αN
−αN

sup
yj ,xi

|oyzyxzx(1)|·
CN1

∫
sup
θ∈Θ
‖h(xi)ρ(yj , xi; θ)‖fY (yj)fX(xi) dyj dxi

CN1 +
∫ ∫

DN1(yj , xi)fY (yj)fX(xi) dyj dxi
,

and, hence, sup
θ∈Θ
‖BN2‖ → 0 as αN → 0.

To summarize our results so far, we showed that

sup
θ∈Θ
‖gN (θ)− gπ(θ)‖ ≤ sup

θ∈Θ
‖AN2‖+ sup

θ∈Θ

∥∥∥BN1 − πE∗
[
h(X)ρ(Ỹ , X; θ)

]∥∥∥+ sup
θ∈Θ
‖BN2‖,

and, thus, sup
θ∈Θ
‖gN (θ)− gπ(θ)‖ → 0 as αN → 0. This implies that

sup
θ∈Θ
|QN (θ, πN )−Q(θ, π)| → 0. (B.31)

Now, fix ε > 0. Let us show that for large enough Nx, Ny, Q(θN , π) < Q(θ̃, π) + ε. Indeed, (B.31)

implies that when Nx, Ny are large enough, Q(θN , π) < QN (θN , πN ) + ε/3. Also, QN (θN , πN ) <

QN (θ̃, πN )+ε/3 because θN is an argmin of QN (θN , πN ). Finally, (B.31) implies that when Nx, Ny

are large enough, QN (θ̃, πN ) < Q(θ̃, π) + ε/3.

Let S be any open neighborhood of θ̃ and let Sc be its complement in Rl . From the compactness of

Θ and the continuity of ρ(·, ·, ·) in θ, we conclude that min
Sc∩Θ

Q(θ, π) is attained. The fact that θ̃ is the

unique minimizer of Q(θ, π) gives that min
Sc∩Θ

Q(θ, π) > Q(θ̃, π). Denote ε = min
Sc∩Θ

Q(θ, π) − Q(θ̃, π).

As we showed above, for this ε we have that when Nx, Ny are large enough,

Q(θN , π) < Q(θ̃, π) + ε = min
Sc∩Θ

Q(θ, π),

which for large enough Nx, Ny gives θN ∈ S. Since S can be chosen arbitrarily small, this means

that θN → θ̃.

Proof of Corollary 1. Here ρ(Y,X, θ) = Y − X ′θ. From the conditional moment restriction we

obtain that E [X(Y −X ′θ0)] = 0 and, thus, θ0 = EX [XX ′]−1E[XY ]. When Ỹ is drawn from fY (·)
independently of X, then E∗

[
X(Ỹ −X ′θ1)

]
= 0 gives θ1 = EX [XX ′]−1EX [X]EY [Ỹ ].
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As established in Theorem 2, the identified set is

Θ∞ =
⋃

π∈[γ,1]

Argmin
θ∈Θ

r
(
πE
[
ρ(Y,X; θ)

∣∣X = x
]

+ (1− π)E∗
[
ρ(Ỹ , X; θ)|X = x

])
.

Here ρ(Y,X, θ) = Y −X ′θ. In the spirit of least squares, let us choose instruments h(X) = X and

consider the distance

r
(
πE
[
ρ(Y,X; θ)

∣∣X = x
]

+ (1− π)E∗
[
ρ(Ỹ , X; θ)|X = x

])
= gπ(θ)′gπ(θ),

where

gπ(θ) = (1− π)E[X(Y −X ′θ)] + πE∗[X(Ỹ −X ′θ)].

Note that

gπ(θ) = (1− π)E[XY ]− (1− π)EX [XX ′]θ + πEX [X]EY [Ỹ ]− πEX [XX ′]θ

= (1− π)E[XY ] + πEX [X]EY [Y ]− EX [XX ′]θ

= EX [XX ′]
(
(1− π)EX [XX ′]−1E[XY ] + πEX [XX ′]−1EX [X]EY [Y ]− θ

)
= EX [XX ′] ((1− π)θ0 + πθ1 − θ) .

Clearly, gπ(θ)′gπ(θ) takes the value of 0 if and only if gπ(θ) takes the value of 0, which happens if

and only if θ = (1− π)θ0 + πθ1. Thus for each π ∈ [γ, 1],

θπ = (1− π)θ0 + πθ1

is the unique minimizer of r
(
πE
[
ρ(Y,X; θ)

∣∣X = x
]

+ (1− π)E∗
[
ρ(Ỹ , X; θ)|X = x

])
. Therefore,

Θ∞ = {θπ, π ∈ [γ, 1] : θπ = (1− π)θ0 + πθ1}.
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Figure 1: Empirical distribution of taxable property values in Durham county, NC
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Figure 2: Distributions of Yelp.com ratings before and after a doctor visit
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Figure 3: Average treatment effect
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Figure 4: Identified sets for propensity score coefficients
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Table 1: Summary statistics from property tax bills in Durham County, NC.

Variable Obs Mean Std. Dev. 25% 50% 75%
year 2009-2010

Property: taxable value 207513 261611.9 1723970 78375 140980 213373
year 2010

Property: taxable value 104068 263216.1 1734340 78823.5 141490.5 214169.5
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Table 2: Summary statistics from Yelp.com for raitings of health services in Durham, NC

Variable Obs Mean Std. Dev. Min Max
Rating 72 4.06 1.34 1 5
Category: fitness 72 0.17 0.38 0 1
Category: dentist 72 0.29 0.46 0 1
Category: physician 72 0.36 0.48 0 1
Category: hospital 72 0.04 0.20 0 1
Category: optometris 72 0.10 0.30 0 1
Category: urgent care 72 0.06 0.23 0 1
Appointment? 72 0.51 0.50 0 1
Kids friendly? 72 0.08 0.28 0 1
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Table 3: Features of edit distance-based matches

# of matches Freq. Percent # of yelp users

1 in yelp − > 1 in tax data 66 1.54 66

1− >2 92 2.19 46

2 − > 1 2 2.19 2

1 − > 3 72 1.68 24

1− > 4 36 0.84 9

1 − > 5 65 1.51 13

1 − > 6 114 2.65 19

1 − > 7 56 1.3 8

1 − > 8 88 2.05 11

1 − > 9 81 1.89 9

1− > 10 or more 3,623 84.35 97

Total 4,295 100 304
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Table 4: Estimated treatment effects

(1) (2) (3) (4)
OLS OLS Matching

Rating Rating Rating I(After visit)
I(After visit) 0.06 0.033 0.661

[0.015]*** [0.054] [0.37]*
log(property value) 0.364

[0.064]***
I(female) 0.61

[0.062]***
Observations 20723 2605 2605 2605
Column 1,2,4: SE in brackets; column 3: bootstrapped SE in brackets
* significance at 10%; ** significance at 5%; *** significance at 1%
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Table 5: Quantile treatment effects

Variable Obs Mean SD Min Max
Lower quartile
Difference 57 -1.144 0.795 -4 -0.5
Upper quartile
Difference 55 1.026 1.035 0.19 4
Mean difference test: t-stat =1.662
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