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1. Introduction

We prove that in the independent private-values model with linear utility, the outcome—in

terms of expected probabilities of trade and expected transfers—of any Bayesian incentive-

compatible mechanism, can also be obtained with a dominant-strategy mechanism. In other

words, a mechanism is Bayesian incentive compatible if and only if there is a dominant-

strategy incentive-compatible mechanism that generates the same expected probability of

trade for every agent. This equivalence result is valuable. Dominant-strategy mechanisms

have advantages over Bayesian mechanisms. For instance, one may be more confident that

a rational agent will play a dominant strategy (if one is available) than that the same agent

will play a Nash equilibrium strategy.1

The model has a single indivisible object and finitely many agents. Every agent has

private information, customarily interpreted as the agent’s valuation for the object. Payoffs

are linear in valuation and transfer. From each agent’s viewpoint, other agents’ valuations

are random variables independently distributed according to known distribution functions.

The setup is sufficiently flexible to include a privately informed seller and heterogeneous

buyers.
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1See Mas-Colell, Whinston, and Green (1995), page 870, for a brief discussion of this point.
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A direct mechanism consists of two maps per agent, a probability-of-trade function and

a transfer function. Every agent, after observing her valuation, sends a report to the mech-

anism designer. Given the profile of reported valuations, the probability-of-trade function

specifies the probability that the agent receives the object, and the transfer function speci-

fies the amounts that the agent must pay. Thus, a direct mechanism defines a game where

an agent’s strategy is her report given her private information, and an agent’s payoff is

determined by the two functions.

A direct mechanism is Bayesian incentive compatible if reporting truthfully is a Bayesian

Nash equilibrium, and is dominant-strategy incentive compatible if reporting truthfully is an

equilibrium in weakly-dominant strategies. In a Bayesian-Nash equilibrium an agent reports

truthfully when doing so maximizes the agent’s interim utility, i.e. the agent’s expected

payoff given the agent’s true valuation (and assuming by way of equilibrium analysis that

opponents report their valuations truthfully). The interim utility is determined by the

agent’s expected probability of trade and expected transfer. The actual probability of trade

and transfer depend on the realization of opponents’ reports.

Our result is of the form “for every Bayesian incentive-compatible mechanism there is an

equivalent dominant-strategy mechanism.” We consider that two mechanisms are equivalent

if both yield the same interim utility to each agent. With independent private values and

linear utilities, this is so if and only if every agent is assigned the same expected probability

of trade and expected transfer by both mechanisms. Since expected transfers are determined

up to a constant by the expected probability-of-trade functions (Myerson 1981), it suffices

to consider the latter. Hence, we use the term outcome to refer to the expected probability-

of-trade functions.

Our equivalence applies to every Bayesian incentive-compatible outcome. Hence, solely

moving from dominant-strategy to Bayesian incentive compatibility imports no gain; any

such gain must come from variations in other constraints such as ex ante or ex post budget

balance. As an illustration, consider a well-known example: d’Aspremont and Gerard-Varet

(1979a) and Arrow (1979) showed that a particular Bayesian mechanism, the expected

externality mechanism, achieves ex post efficency, ex post budget balance, and ex ante indi-

vidual rationality. Green and Laffont (1977) proved that no dominant-strategy mechanism

can match those achievements. Our equivalence implies that there is a dominant-strategy
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mechanism that achieves the same interim (and therefore ex ante) allocation, transfer, and

payoffs as the Bayesian mechanism; it does not, however, satisfy ex post budget balance.

Our result is specific to the independent private values model with linear utilities. Without

linearity, for instance under risk aversion, the expected probability of trade does not suffice

to determine interim utility. Thus, even if there is a dominant-strategy mechanism that

generates the same expected probability-of-trade as the target Bayesian mechanism, agents

need not be indifferent between both mechanisms. With nonindependent valuations, Crémer

and McLean (1988, Appendix A) provide an example where the seller obtains the full surplus

with a Bayesian mechanism, but cannot do so with a dominant-strategy mechanism. Once

again there is no equivalent dominant-strategy mechanism.

We depart from the existing literature in the notion of equivalence that we employed, and

consequently, in the technique of proof and the scope of the result. We comment first on

the technique of proof.

Our proofs have a geometric quality. First, we define the set of expected probability-

of-trade functions derived from Bayesian incentive-compatible mechanisms. Second, we

identify the step functions that are extreme points of that set. Third, we demonstrate, by

construction, that the identified extreme points can be obtained with dominant-strategy

mechanisms. Fourth, we show that other elements of the set—as convex combinations of

extreme points, and limits of those convex combinations—inherit the desired property, i.e.

they also have a dominant-strategy equivalent.

We borrow several ideas from Border (1991) and Matthews (1984). Border characterizes

the functions that are the expected probability of trade for some mechanism; he proves,

elegantly and in great generality, a conjecture in Matthews (1984), first established for the

real line by Chen (1986). Maskin and Riley (1984) prove, constructively, a variation of the

characterization for a particular case. Border (2007) extends his own result to nonsymmetric

environments. The relationship to the cited works will be indicated throughout this essay.

Formally we only use a simple observation from the mentioned literature, i.e. the trivial

part of Border’s characterization (Lemma 4.1). Our debt, however, is larger in that our

technique of proof stems from Border’s geometric approach.

We turn to our equivalence notion: Two mechanisms are equivalent if both give each

agent the same interim utility (or expected probability of trade). For example, the first and
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second-price, seal-bid auctions are equivalent in a stronger sense than the one we use: Both

auctions provide the same interim utility to all agents including the seller but they also

implement the same allocation, the same probability-of-trade function. (See for instance,

Myerson (1981) for details.)

Previous literature on the relationship between Bayesian and dominant strategy mech-

anisms has used the stronger equivalence notion. Mookherjee and Reichelstein (1992), in

their words, identify “. . . mechanism design problems for which there is no loss in replacing

Bayesian incentive compatibility by the stronger requirement of dominant strategy.” For

them, two “equivalent” mechanisms must not only provide the same interim utility to par-

ticipants but also implement the same allocation, i.e. the same ex post probability-of-trade

functions. They consider an independent private values model where utilities are quasilinear

and identify a monotonicity condition that is sufficient for dominant-strategy implementa-

tion. In the case of linear utility, their monotonicity condition is, simply, that the ex post

probability-of-trade function be monotone.2 Their contribution is to find conditions on util-

ities such as a single crossing property and their one-dimensional condensation property, so

that particular allocations can be implemented in dominant strategy.

An extensive literature, including d’Aspremont and Gérard-Varet (1979b), Laffont and

Maskin (1979), Makowski and Mezzetti (1994), and Williams (1999), shows in various cases

that if an ex post efficient allocation is implemented by a Bayesian incentive-compatible

mechanism, then it can also be implemented by a dominant-strategy mechanism. Williams

(1999) obtains an equivalence for quasilinear utilities and provides interesting applications,

a lucid discussion, and a summary of the literature.

We prove that the interim utilities of any Bayesian incentive-compatible mechanism can

be obtained with a dominant-strategy mechanism. Our result is not specific to particular

allocations and holds with heterogeneous agents and nonsymmetric mechanisms.

The formal results are presented in three sections. Section 4 deals with ex ante identical

bidders and symmetric mechanisms. This case allows us to present the main ideas in the the

proofs. Sections 5 and 6 use similar arguments to those introduced in Section 4. Section 5

treats heterogeneous agents and nonsymmetric mechanisms. Section 4 introduces a privately

informed seller and ex ante identical buyers.

2This follows from the standard characterization of incentive compatibility applied to a single agent (Myerson
(1981)).
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2. Notation

Vectors are represented in bold face. If b is a vector in RK , bk is its kth coordinate,

b−k = (b1, . . . , bk−1, bk+1, . . . , bK) ∈ RK−1, (a, b−k) = (b1, . . . , bk−1, a, bk+1, . . . , bK) ∈ RK ,

and

bk = (0, 0, . . . , 0, bk, bk+1, . . . , bK) ∈ RK

The vector whose kth’s coordinate is 1 and all others are 0 is denoted by ek. For b, b′ ∈ RK ,

b ∨ b′ = (max{b1, b′1}, . . . ,max{bK , b′K}) and b ∧ b′ = (min{b1, b′1}, . . . ,min{bK , b′K}).
A sum with no terms is defined to be zero; for instance,

∑2
j=3 bj = 0.

Given a set B, Bc denotes its complement, χB its characteristic or indicator function,

intB its interior, and |B| the number of elements it contains.

Let I be a positive integer and I = {1, 2, . . . , I}. For i ∈ I, let Xi ⊆ R, and λi be a

probability distribution on Xi. Then, λ =
∏

i∈I λi is the product distribution and λ−j =∏
i∈I\{j} λi. All functions are assumed to be measurable with respect to the corresponding

Borel σ-algebras; product spaces are endowed with the product σ-algebras. We use the

following conventions for expectations. Given a function q :
∏I

i=1Xi → R,

Ex−j
q(xj) =

∫
Q

i∈I\{j}Xi

q(x1, . . . , xI) dλ1 . . . dλj−1 dλj+1 . . . dλI .

Thus the expectation is taken over x−j.

Analogous notation is applied to other objects.

Step functions are used prominently in our analysis. Any increasing step function can

be represented by a collection of pairs {(bk, βk)}Kk=1 where k represents the kth step, βk is

the value of Q on that step, and bk is the size of the step (in the domain) according to the

underlying probability distribution. The following definition makes this observation precise.

Definition 2.1. Let X ⊆ R, let λ be a probability distribution on X, and let Q : X → [0, 1].

We say that Q is a step function with K steps if Q(X) has K elements and [β ∈ Q(X) =⇒
λ(Q−1(β)) > 0].

Any nondecreasing step function Q with K steps can be represented by K pairs {(bk, βk)}Kk=1

where

(a) Q(X) = {βk}Kk=1, 1 ≥ βK > βK−1 > . . . > βk > βk−1 > . . . > β1 ≥ 0 and

(b) for k = 1, . . . , K, bk = λ (Q−1(βk)).
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We denote such Q by {(bk, βk)}Kk=1 or by (b,β) where b = (b1, . . . , bK) and β = (β1, . . . , βK).

Abusing notation, we may write Q = {(bk, βk)}Kk=1 = (b,β).

Remark 2.1. Nondecreasing step functions that differ only on λ-measure zero sets may

have the same representation by K pairs.3

If the function Q has K steps and is nondecreasing, then βk > βk−1 for all k with 1 <

k ≤ K, otherwise it would have fewer than K steps.

3. Model

We use a standard independent private-values model. There is a single indivisible object

and a finite set I = {1, 2, . . . , I} of agents. Agent i’s type is an element xi ∈ Xi = [xi, xi] ⊆
R, distributed according to a nonatomic probability distribution λi. Agents are risk neutral.

Preferences are linear in type and money: If ti is the amount paid by agent i, and qi is the

probability that i obtains the object, i’s utility is xiqi − ti; hence the interpretation of an

agent’s type as her valuation for the object.

A direct mechanism consists of two functions per agent, qi(x) and ti(x), where qi(x) is

the probability that i is assigned the object and ti(x) is the amount i pays when the profile

of reports is x. The sum over i of the probabilities qi(x) must be less than or equal to

one. (Strict inequality is allowed.) Henceforth, all mechanisms are direct unless specified

otherwise.

Fix a mechanism {(qi, ti)}i∈I . If i reports her type truthfully (and other players report

x−i), then i’s payoff is ui(xi,x−i) = qi(xi,x−i)xi − ti(xi,x−i). Assuming other players also

report truthfully, i’s expected payoff is Eui(xi) = Ex−j
qi(xi)xi − Eti(xi).

A mechanism is incentive compatible if truthful reporting is an equilibrium. For differ-

ent equilibrium concepts, i.e. dominant-strategy or Bayesian-Nash equilibrium, there are

different characterizations of incentive compatibility in terms of probabilities of trade. The

following well-known results follow from Myerson (1981). A mechanism is

(a) dominant-strategy incentive compatible if and only if for all i and x−i, qi(xi,x−i) is

nondecreasing on xi and ti(xi,x−i) = qi(xi,x−i)xi −
∫ xi

xi
q(z,x−i)dz − u(xi,x−i).

3If Q(X) is finite but λ(Q−1(β)) = 0 for some β ∈ Q(X), then Q belongs to the equivalence class of a step
function in Lp space.
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(b) Bayesian incentive compatible if and only if for all i, Ex−i
qi(xi) is nondecreasing on xi

and Ex−i
ti(xi) = Ex−i

qi(xi)xi −
∫ xi

xi
Ex−i

qi(z)dz − Ex−i
ui(xi).

4

This characterization justifies the usage summarized in the following definition.

Definition 3.1. Let {qi}i∈I be a collection of I functions qi :
∏I

i=1Xi → [0, 1] such that for

every x ∈
∏I

i=1Xi,
∑

i∈I qi(x) ≤ 1.

If for every i and x−i, qi(xi,x−i) is nondecreasing in xi, then {qi}i∈I is a dominant-

strategy incentive compatible mechanism.

If for every i, Ex−i
qi(xi) is nondecreasing in xi, then {qi}i∈I is a Bayesian incentive-

compatible mechanism.

The omitted transfer functions are recovered, up to a constant, using the corresponding

incentive compatibility characterizations.

The framework presented is sufficiently flexible to include, among other things, a seller

with private information. These and other features are discussed farther in the following

sections.

4. Ex ante identical bidders

In this section we assume that the I agents or bidders are ex ante identical: Types are

identically and independently distributed according to the nonatomic probability distribu-

tion λb in X = [x, x]. We denote by λ the product distribution λIb .

We require that mechanisms be symmetric, i.e. that ex ante identical bidders be treated

ex ante identically. (We introduce a privately informed seller, heterogeneous bidders, and

nonsymmetric mechanisms in the following sections.)

Symmetric mechanisms are interesting on their own right. An alleged advantage of com-

petitive bidding is that competitive bidding tends to reduce agency problems. Favoring

a particular bidder when they are all ex ante identical may diminish this advantage. For

instance, in several countries, government agencies must use competitive bidding for their

purchases and are often not permitted to favor a particular bidder when all bidders are ex

ante identical.

4Myerson (1981) assumes that distributions have densities, and that the densities are strictly positive on
their supports. Monteiro and Svaiter (2007) extend the characterization to arbitrary measures.
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Every symmetric mechanism can be represented by a single probability-of-trade function

satisfying a permutation inequality. This representation is introduced in the definition

below; its relationship to Definition 3.1 is made clear afterwards.

Definition 4.1. Let q : XI → [0, 1] be such that for every x ∈ XI ,
∑I

i=1 q(σi(x)) ≤ 1,

where σi(x1, . . . , xI) = (xi, x2, . . . , xi−1, x1, xi+1, . . . , xI), i.e σi(x) interchanges the first and

ith coordinate of the vector x.

(a) q is a symmetric, dominant-strategy incentive compatible, mechanism with I bidders if

q(x1,x−1) is nondecreasing in x1.

(b) q is a symmetric, Bayesian incentive compatible, mechanism with I bidders if Ex−1q(x1)

is nondecreasing in x1.

Remark 4.1. Each bidder’s probability-of-trade function qi is derived from the single func-

tion q by setting qi(x) = q(σi(x)). The omitted transfer functions are recovered, up to a

constant, using the corresponding incentive compatibility characterizations.

Theorem 1 is this section’s main result: Every Bayesian incentive compatible mechanism

has a dominant-strategy equivalent. Both mechanisms yield the same interim utilities for

all agents.

Theorem 1. If q′ is a symmetric, Bayesian incentive-compatible mechanism with I bid-

ders, then there is a symmetric, dominant-strategy incentive-compatible mechanism q with

I bidders that generates the same expected probability of trade, i.e. Ex−1q = Ex−1q
′ a.e.

Remark 4.2. We prove a stronger result: Even if the Bayesian incentive-compatible mech-

anism q′ is not symmetric, provided Ex−1q
′ is the same for all bidders, there is a symmetric

dominant-strategy incentive-compatible mechanism q so that Ex−1q = Ex−1q
′.

Theorem 1 demonstrates that, ceteris paribus, going from dominant strategy to Bayesian

implementation does not increase the set of implementable outcomes, when outcomes are

defined in terms of expected probabilities of trade and expected transfers. This is the ap-

propriate notion of outcome for Bayesian mechanisms in this setting because expected prob-

abilities of trade determine bidders’ expected payoffs given their private information, and

expected transfers up to a constant.
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Figure 1 depicts two mechanisms in an environment with two bidders whose valuations

are uniformly distributed in [0, 1]. Types are divided in five intervals of equal probability

and types in the same interval are treated equally. The left diagram in the figure represents

the mechanism q′(x1, x2). Every type profile (x1, x2) belongs to a cell and the number in that

cell is the value of q′(x1, x2). (Cells without values indicate q′(x1, x2) = 0.) The numbers

below the horizontal axis are the expected probability of trade Ex−1q
′(x1)—the integral

of the function q′ for fixed x1 along the vertical axis. Since Ex−1q
′(x1) is nondecreasing,

q′ (with its implicit expected transfer) satisfies Bayesian incentive compatibility. (This is

incentive compatibility’s classic characterization.) It is clear, however, that q′ does not

satisfy dominant-strategy incentive compatibility because q′(x1, x2) is not nondecreasing

on x1 for some x2, say x2 ∈ [1/5, 2/5]. The right diagram in the figure represents the

mechanism q(x1, x2) that is equivalent to q′ in that yields the same expected probability

of trade, Ex−1q = Ex−1q
′, but it is also dominant-strategy incentive compatible. We go

from mechanism q′ on the left to mechanism q on the right by “rearranging the cells” in the

diagram so that q(x1, x2) is nondecreasing on x1 for fixed x2.

Care must be exercised so that the “rearrangement of cells” satisfies the symmetry of

the mechanism: Given a type profile (x1, x2), if q′(x1, x2) is the probability that agent 1

gets the object, the probability that bidder 2 gets the object is q′2(x1, x2) = q′(x2, x1), and

thus q′(x1, x2) + q′(x2, x1) ≤ 1. Thus, in both diagrams, the numbers in cells that are

symmetric with respect to the diagonal must sum up to no more than one. While focusing

on symmetric mechanisms allows us to use a single function q′, it also requires us to use a

single function q. In the example, the required “rearrangement of cells” is straightforward.

That the required rearrangement can be carried out for any arbitrary mechanism q is the

content of the theorem.

The proof of Theorem 1 follows from three lemmas of independent interest plus a conver-

gence argument. We will conclude the section with an example.

The inequality in Lemma 4.1 is a feasibility constraint that must be satisfied by any

mechanism not only Bayesian incentive compatible ones: The probability that a buyer with

type in B wins, I
∫
B
Ex−1q(x1) dλb, cannot exceed the probability that there is a buyer with

type in B, 1− λb(Bc)I .
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Figure 1. In cells with no values q′ and q are 0

Lemma 4.1. If q is a Bayesian incentive-compatible, symmetric, mechanism with I bidders,

then Ex−1q ∈ W where

W =

{
Q | Q : X → [0, 1] is nondecreasing and

B ⊆ X =⇒ I

∫
B

Q(x1) dλb ≤ 1− [λb(B
c)]I
}(1)

Proof. Bayesian incentive compatibility implies that Ex−1q is nondecreasing. Lemma 5.1 in

Border (1991) establishes the inequality. �

The feasibility constraint first appears in Matthews (1983) and in Maskin and Riley

(1984). It plays a key role in our proof. Matthews (1984) conjectured that for any function

Q : X → [0, 1], not necessarily nondecreasing, that satisfies the feasibility constraint, there is

a symmetric mechanism q with Ex−1q = Q, i.e. Q is the expected probability of trade of some

symmetric mechanism q. Border (1991) proves Matthews’ conjecture for general type spaces.

He is not concerned with incentive compatibility; he is interested in determining when the

expected probability of trade can be used as the primitive in the analysis. (Lemma 4.1 is

a corollary to Lemma 5.1 in Border (1991).) Maskin and Riley (1984, Theorem 7 in their

appendix) prove, constructively, a version of Matthews’ conjecture for nondecreasing step

functions Q. Matthews (1984) extends Maskin and Riley’s result to arbitrary nondecreasing
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functions Q. All these authors restrict attention to symmetric mechanisms and ex ante

identical bidders.

The rest of the proof proceeds as follows. Lemma 4.2 characterizes the step functions that

are extreme points of W . Lemma 4.3 constructs a symmetric, dominant-strategy mechanism

for each extreme point identified in Lemma 4.2. Finally, a convergence argument, provided

after the proofs of the Lemmas, establishes the theorem: Every function in W is the limit

of convex combinations of step functions.

Lemma 4.2 is based on the following observations. The domain of any step function can

be partitioned into finitely many sets where the function is constant; the elements of the

partition are the function’s level sets. Lemma 4.2 arbitrarily fixes one such partition and

identifies the step functions, relative to the fixed partition, that are extreme points of the

feasible set W . Verifying that a step function is an extreme point is a finite dimensional

matter: When applied to a step function, the inequality in (1) becomes a system of finitely

many linear inequalities, determined by the fixed partition. To be an extreme point, the step

function must make sufficiently many inequalities bind. (To visualize this point, imagine a

set in R2 defined by finitely many linear inequalities, say a rectangle. The extreme points

of the rectangle are its vertices. Vertices are defined by the intersection of sufficiently many

lines, more precisely two lines per vertex because the rectangle is a subset of R2.)

The proof of Theorem 1 only uses one direction in Lemma 4.2: If a step function is an

extreme point, it must be one of those identified by the Lemma.

Lemma 4.2. Let Q = (b, β̄) = {(bk, β̄k)}Kk=1 be a step function in W . Then {(bk, β̄k)}Kk=1

is an extreme point of W if and only if either

(a) β̄k =
(

Pk
j=1 bj)

I
−(

Pk−1
j=1 bj)

I

Ibk
for k = 1, . . . , K, or

(b) β̄1 = 0 and β̄k is as in (a) for k = 2, . . . , K.

Proof. Letting B =
⋃K
j=kQ

−1(β̄k), the inequality in the definition of W becomes

(2)
K∑
j=k

Ibjβj ≤ 1−

(
k−1∑
j=1

bj

)I
or, in vector notation, Ibk · β ≤ 1− rk, where bk is the vector (0, . . . , 0, 0, bk, bk+1, . . . , bK),

and rk =
(∑k−1

j=1 bj

)I
. Taking k = 1, . . . , K, (2) becomes a system of K inequalities.
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Recall ek denotes the vector whose kth coordinate is 1 and all others are zero. Define

(3) P = {β ∈ RK : for k = 1, . . . , K, Ibk · β ≤ 1− rk and ek · β ≥ 0}

The set P ⊆ RK is defined by 2K inequalities; it is the set of all nonnegative vectors β ∈ RK

(K inequalities), such that (b,β) satisfies the inequalities (2) (another K inequalities).

A step function (b,β) ∈ W is an extreme point of W if and only if β is an extreme point

of P (Lemma A.2). A vector β ∈ P is an extreme point of P if and only if the set

(4) R(β) = {bk : k ∈ {1, . . . , K}, Ibk · β = 1− rk} ∪ {ek : k ∈ {1, . . . , K}, ek · β = 0}

has K linearly independent elements (Lemma A.1), i.e. if the inequalities defining P are

evaluated at β, they must include K linearly independent equations. We conclude that

(b, β̄) is an extreme point of W if and only if R(β̄) has K linearly independent vectors.

The set R(β̄) has K linearly independent vectors if and only if either {bk}Kk=1 ⊆ R(β̄) or

{e1, b2, . . . , bK} ⊆ R(β̄): Simple inspection reveals that both alternatives have K linearly

independent vectors. To see that no other alternative is possible suppose that ek ∈ R(β̄).

Then then β̄k = 0. This implies k = 1, otherwise β̄ has less than K steps.

Finally, {bk}Kk=1 ⊆ R(β̃) if and only if β̃ is as defined in Lemma 4.2 (a): The system of

equations Ibk · β̃ = 1− rk, k = 1, . . . , K has a unique solution (because the vectors {bk}Kk=1

are linearly independent.) The solution to IbK · β̃ = 1− rK is β̃K = β̄K . Pick any k < K.

Subtracting Ibk+1 · β̃ = 1− rk+1 from Ibk · β̃ = 1− rk yields β̃k = β̄k.

Similarly, {e1, b2, . . . , bK} ⊆ R(β̄) if and only if β̄ is as in Lemma 4.2 (b). �

Lemma 4.3 constructs a dominant-strategy incentive compatible mechanism that imple-

ments the extreme points identified in Lemma 4.2. Let the step function Q be an extreme

point of W . The mechanism is constructed as follows. Given a type profile (x1, . . . , xI),

bidders are ranked using Q(xi). Those bidders with maximum rank, i.e. maxiQ(xi), share

the object with equal probability in the new mechanism; those bidders with less than max-

imum rank are assigned the object with probability zero. Thus, the new mechanism q takes

values in {1
1
, 1

2
, . . . , 1

I
, 0}. It depends only on the partition {Q−1(bk)}Kk=1 defined by Q and

not on the actual values taken by Q.
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Lemma 4.3. Let the step function Q = {(bk, β̄k)}Kk=1 be an extreme point of W . Then, the

symmetric mechanism

q(x1, x2, . . . , xI) =

{
1

|{i:Q(x1)=Q(xi)}| if Q(x1) > 0, Q(x1) ≥ Q(xi) ∀i
0 otherwise

is dominant-strategy incentive compatible and Ex−1q = Q.

Proof. Since q is nondecreasing in x1 for any given x−1, q satisfies dominant-strategy incen-

tive compatibility. We must prove that Ex−1q = Q.

Pick an arbitrary x1. If Q(x1) = 0, then Ex−1q(x1) = 0.

Suppose then that Q(x1) = β̄k > 0. By direct calculation,

Ex−1q(x1) =
I∑

n=1

1

n

(
I − 1

n− 1

)(
k−1∑
j=1

bj

)I−1−(n−1)

bn−1
k

To see this note that Ex−1q(x1) is the integral of q(x1, . . . , xI) over all xi with i 6= 1. Since

q takes finitely many values, its integral is a summation. Each term in the expression above

corresponds to a value of q(x1, x−1) as x−1 varies. The first factor in a typical term, 1
n
, is the

value of q. The second factor is the number of ways in which q may take the value 1
n
: there

are I − 1 variables xi and exactly n− 1 of them must be in Q−1(βk). The last two factors

represent the probabilities:
∑k−1

j=1 bj is the probability that a given xi is in
⋃k−1
j=1 Q

−1(βj)

and therefore
(∑k−1

j=1 bj

)I−1−(n−1)

is the probability that I − 1− (n− 1) of them will be in⋃k−1
j=1 Q

−1(βj). Similarly bn−1
k is the probability that n− 1 variables xi will be in Q−1(βk).

To show that x1 ∈ Q(β̄k) =⇒ Ex−1q(x1) = β̄k, we must prove that

I∑
n=1

1

n

(
I − 1

n− 1

)(k−1∑
j=1

bj

)I−n

bn−1
k =

(∑k−1
j=1 bj + bk

)I
−
(∑k−1

j=1 bj

)I
Ibk

Multiply both sides by Ibk, note that I
n

(
I−1
n−1

)
=
(
I
n

)
, and add

(∑k−1
j=1 bj

)I
to both sides, to

obtain
I∑

n=1

(
I

n

)(k−1∑
j=1

bj

)I−n

bnk +

(
k−1∑
j=1

bj

)I

=

(
k−1∑
j=1

bj + bk

)I

This is the binomial formula since
(∑k−1

j=1 bj

)I
corresponds to the term, missing in the

summation, for n = 0. �
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That the type of mechanism employed in Lemma 4.3 can achieve the bounds in Lemma 4.1

was recognized by Border (1991), Lemma 5.2, page 1180.

The proof of Theorem 1 now follows from Lemmas 4.1, 4.2 and 4.3 plus a convergence

argument. (See Border (1991), Lemma 5.4, for related material.) To develop the convergence

argument we define the class of monotone dominant-strategy mechanisms (Definition 4.2)

and prove Lemmas 4.4 and 4.5. Lemmas 4.4 identifies the set of monotone mechanisms as a

subset of L∞. Lemma 4.5 demonstrates that the set of monotone mechanisms is compact,

thus contributing a convergent subsequence of dominant-strategy mechanisms to the proof

of Theorem 1. After proving both lemmas, the convergence argument is presented in the

proof of Theorem 1.

Definition 4.2. A symmetric mechanism q : XI → [0, 1] is monotone if q(x′) ≤ q(x) for

every x′,x ∈ X with x′1 ≤ x1 and x′i ≥ xi for every i > 1.

Remark 4.3. The mechanism q in Lemma 4.3 is monotone. Monotone mechanisms are

nondecreasing in x1—hence dominant-strategy incentive compatible—and nonincreasing in

xi for i > 1.

Definition 4.3. For x′,x ∈ RI , let x′ � x if x′1 ≤ x1 and x′i ≥ xi for i > 1; and let

x′ f x = (x′1 ∧ x1, x
′
2 ∨ x2, x

′
3 ∨ x3, . . . , x

′
I ∨ xI).

The lemma below defines a subset D of L∞ and demonstrates that it is the set of monotone

mechanisms: The elements of D are equivalence classes. Two functions that differ only on a

set of λIb-measure zero belong to the same equivalence class. Monotone mechanisms belong

to the set because they satisfy its defining conditions everywhere. Lemma 4.4 proves that

every equivalence class in the set contains a monotone mechanism. This is necessary for the

intended interpretation of D. (For instance, the set of continuous functions as a subset of

L∞ does not contain all functions continuous a.e.)
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Lemma 4.4. Let

D =

{
q ∈ L∞(λIb) : ∃B ⊆ [x, x]I with λIb(B) = 1, and ∀x′,x ∈ B

(∀i ∈ I, q(σi(x)) ∈ [0, 1]) ,∑
i∈I

q(σi(x)) ≤ 1, and

[σi(x
′) � σi(x)] =⇒ q(σi(x

′)) ≤ q(σi(x))

}
Suppose supp[λb] = X. Then, q̃ ∈ D if and only if there is a monotone symmetric mechanism

q such that q = q̃ a.e.

Proof. One direction is trivial: Monotone mechanisms satisfy the defining conditions of D
everywhere. We prove the converse, i.e. that every function in D belongs to the equivalence

class of a monotone mechanism.

Let q̃ ∈ D and let B be its corresponding set of full-measure as specified in the definition

of D. The restriction of q̃ to B is monotone and therefore the set of its discontinuity points

has Lebesgue measure zero (Lavric̆ (1993)). Let B′ ⊆ B be the set of its continuity points.

Since λb is absolutely continuous with respect to the Lebesgue measure, λIb(B
′) = λIb(B) = 1.

Let B′′ = B′ ⊆ {x : ∃i ∈ I, σi(x) /∈ B′}. Then λIb(B
′′) = λIb(B

′) = 1. Since supp[λIb ] =

XI , B′′ is dense in XI .

We will construct a monotone mechanism q such that q = q̃ a.e. Let

ϕ(x) = {r ∈ [0, 1] : ∃{xn} in B′′, {(xn, q̃(xn)} → (x, r)}

For every x ∈ XI , ϕ(x) is nonempty (because B′′ is dense in XI) and closed (because it is

the set of limit points). For x ∈ XI , define

(5) q(x) =

{
0 if int ({x′ : x′ � x}) = ∅
min{r : r ∈ ϕ(x)} otherwise

where for any set A, int (A) is the interior of A.

By construction, q takes values in [0, 1] and q = q̃ a.e. (because every x ∈ B′′ is a

continuity point of the restriction of q̃ to B and therefore, ϕ(x) is a singleton and q̃(x) =

q(x)).
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We prove that ∀x ∈ XI ,
∑

i q(σi(x)) ≤ 1. Pick any x ∈ XI . Let {xn} be a sequence

in B′′ such that {xn} → x. (Such a sequence exists because B′′ is dense.) The sequence

{(xn, q̃(σ1(x
n)), . . . , q̃(σI(x

n)))} takes values in XI × [0, 1]I and thus has a convergent sub-

sequence, indexed by nk, whose limit point we denote by (x, q̄) = (x, q̄1, . . . , q̄I). Since∑
i∈I q̃(σi(x

nk)) ≤ 1 for all nk,
∑

i∈I q̄i ≤ 1. By construction, q̄i ∈ ϕ(σi(x̄)). By (5),

q(σi(x̄)) ≤ q̄i. Therefore,
∑

i∈I q(σi(x)) ≤
∑

i∈I q̄i ≤ 1.

It remains to show that q is monotone. Let x � y, x 6= y. If int ({x′ : x′ � x}) = ∅,
then q(x) = 0 and hence q(x) � q(y).

If int ({x′ : x′ � x}) 6= ∅ then int ({y′ : y′ � y}) 6= ∅, and for sufficiently large n,

int ({y′ : y′ � yn}) 6= ∅. To prove that q(x) ≤ q(y) it suffices to establish that for any

r ∈ ϕ(y), ∃r′ ∈ ϕ(x), r′ ≤ r. Since r ∈ ϕ(y),∃{yn} in B′′ such that {(yn, q̃(yn))} → (y, r).

For each yn, pick xn ∈ {x′ ∈ B′′ : x′ � (yn f x)} and ‖xn − (yn f x)‖ ≤ 1/n. Then

{xn} converges to x and xn � yn for every n. Let (x, r′) be any accumulation point of

(xn, q̃(xn)). Then r′ ≤ r. �

Lemma 4.5. The set D defined in Lemma 4.4 is weak∗ compact.

Proof. We now show that D is weak∗ compact. If q ∈ D, q takes values in [0, 1] a.e. and

thus D is L∞-bounded. If in addition D is weak∗ closed, D is weak∗ compact (Banach-

Alaoglu Theorem). Let {qn} be a sequence in D such that {qn} w∗−→ q̄. (Since in this case

L1 is separable, the weak∗ topology on the unit ball in L∞ is metrizable and hence we may

restrict attention to sequences.) We must prove that q̄ belongs to (an equivalence class in)

D.

Let A1 = {x :
∑

i∈I q̄(σi(x)) ≤ 1} and suppose λ(A1) < 1. For any qn ∈ D,∑
i∈I

∫
χAc

1
qn(σi(x)) dλIb ≤

∫
χAc

1
dλIb = λIb(A

c
1)

Taking limits,
∑

i∈I
∫
χAc

1
q̄(σi(x)) dλIb ≤ λIb(A

c
1), a contradiction. Hence, λIb(A

c
1) = 0.

Let B′, B be subsets of XI , λb(B
′) > 0, λb(B) > 0, such that [x′ ∈ B′,x ∈ B] =⇒ x′ �

x. By Lemma A.3,

qn ∈ D =⇒ 1

λIb(B
′)

∫
χB′q

n dλIb ≤
1

λIb(B)

∫
χBq

n dλIb
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Taking limits: 1
λI

b(B′)

∫
χB′ q̄ dλ

I
b ≤ 1

λI
b(B)

∫
χB q̄ dλ

I
b . Lemma A.3 implies

∃A2, λ
I
b(A2) = 1 : [∀x′,x ∈ A2,x

′ � x] =⇒ q̄(x′) ≤ q̄(x)

Let

A = A1 ∩ A2

Since λIb(A1) = λIb(A2) = 1, λIb(A) = 1. Similar arguments show that q̄ takes values in [0, 1]

a.e. This proves that D is weak∗ closed and hence weak∗ compact. �

Combining Lemmas 4.4 and 4.5 we obtain

Corollary 4.5.1. The set of monotone symmetric mechanisms, as a subset of L∞(λIb), is

weak∗ compact.

Proof of Theorem 1. We divide the proof in steps. Fix any Q in W .

a. There exists a sequence of step functions {Qn} in W such that {Qn} L∞−−→ Q.

Proof. For n = 1, 2, . . ., define

Qn(x1) = sup
{
k2−n : k ∈ N, k2−n ≤ Q(x1), λb(Q

−1([k2−n, (k + 1)2−n))) > 0
}

where the supremum over the empty set is defined to be zero. By construction,

λb
({
x1 : |Qn(x1)−Q(x1)| ≤ 2−n

})
= 1

and therefore {Qn} L∞−−→ Q. Also Qn is a nondecreasing step function in the sense of

Definition 2.1. Finally, since Qn ≤ Q, it satisfies the inequality in (1). Thus, Qn ∈ W .

b. For n = 1, 2, . . ., the step function Qn is a convex combination of step functions that are

extreme points of W .

Proof. Suppose, without loss of generality, that Qn has K steps. By Definition 2.1,

Qn = (b,β), b,β ∈ RK . Let W (b) =
{
β′ ∈ [0, 1]K : (b,β′) ∈ W

}
. The set W (b) is a

convex, compact, subset of RK . Then, W (b) equals the convex hull of its extreme points

(see for instance, Grünbaum (2003), page 18.) Every extreme point of W (b) is an extreme

point of W (Corollary A.2.1).

c. For n = 1, 2, . . ., there exists a monotone mechanism qn such that Ex−1q
n = Qn.
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Proof. Apply Lemmas 4.2 and 4.3, Remark 4.3, and the fact that the convex combi-

nation of monotone symmetric mechanisms is a monotone symmetric mechanism. Using

(b) the claim is established.

d. The sequence {qn} has a subsequence {qnk} such that {qnk} w∗−→ q′, and (a member of

the equivalence class of) q′ is a monotone mechanism with Ex−1q
′ = Q a.e.

Proof. By Lemma 4.5, the sequence {qn} in D has a convergent subsequence, {qnk} w∗−→
q′, q′ ∈ D. (Since L1 is separable, the weak∗ topology on the unit ball in L∞ is metrizable

and we may use sequences without loss of generality.) By Lemma 4.4, q′ can be considered

a monotone mechanism.

The map qnk 7→ Ex−1q
nk is continuous when domain and range are endowed with their

weak∗ topologies; therefore {Ex−1q
nk} w∗−→ Ex−1q

′. Since {Qnk} is a subsequence of {Qn}
in (a), {Qnk} L∞−−→ Q. By (c), Ex−1q

nk = Qnk ∀nk; hence Ex−1q
′ = Q a.e.

�

It follows from Manelli and Vincent (2007), Theorem 21 and Corollary 21.1, that the set

of Bayesian incentive-compatible mechanisms is the closed convex hull of the set of extreme

points that are step functions (and that the set of extreme points that are step functions

is norm dense in the set of extreme points). Thus (a) and (b) in the proof of Theorem 1

could be replaced by the cited results. We provide a direct proof for completeness, and

because the results in Manelli and Vincent (2007) are expressed in terms of interim utilities

in multiunit environments.

The example below illustrates Lemmas 4.2 and 4.3.

Example 1. There are two bidders, i = 1, 2, K1 = K2 = 4, and for every i, xi is uniformly

distributed in X = [0, 1].

Lemma 4.2 states that there are at most two extreme points for any given partition. Fix

a partition of [0, 1], say [0, 1/4], (1/4, 2/4], (2/4, 3/4], (3/4, 1]. The step function

Q = {(1/4, 1/8), (1/4, 3/8), (1/4, 5/8), (1/4, 7/8)}

is one extreme point of W for the proposed partition. The level sets of Q are the elements of

the partition. The second extreme point of W (for the same partition), say Q′, is obtained

from Q by setting Q′(x1) = 0 for all x1 ∈ [0, 1/4], and Q′(x1) = Q(x1) elsewhere.
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Figure 2 illustrates Lemma 4.3 as it applies to Q. The numbers in the cells of the figure

indicate the values of q(x1, x2); empty cells indicate q(x1, x2) = 0 for (x1, x2) in the cell.

Note that Ex−1q = Q.

The mechanism that implements the second extreme point is q′(x1, x2) = 0 for (x1, x2) ∈
[0, 1/4]× [0, 1/4] and q′ = q elsewhere; then Ex−1q

′ = Q′.

-
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Ex−2q2

1
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1
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1

1

1

1

1

1

Figure 2. An extreme point and its dominant-strategy mechanism

5. Heterogeneous bidders

In this section, agents are potentially heterogeneous and therefore mechanisms are not

required to be symmetric.

Theorem 2. If {q′i}i∈I is a Bayesian incentive-compatible mechanism, then there exists a

dominant-strategy, incentive-compatible mechanism {qi}i∈I that generates the same expected

probability of trade, i.e. Ex−i
q′i = Ex−i

qi a.e. for i ∈ I.

Remark 5.1. Theorem 1 is not implied by Theorem 2. Theorem 2 establishes the existence

of an equivalent dominant-strategy mechanism but does not ensure that it is symmetric, even

if the original Bayesian mechanism is symmetric. Note that nonsymmetric mechanisms may

yield symmetric expected probabilities of trade. See also Remark 4.2 following Theorem 1.

The proof of Theorem 2 follows closely the proof of Theorem 1. It proceeds in three

lemmas, the analogues of Lemmas 4.1, 4.2, and 4.3.
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Lemma 5.1. If {qi}i∈I is Bayesian incentive compatible, then {Ex−i
qi}i∈I is in

(6) W ′′ =

{
{Qi}i∈I | ∀i, Qi : Xi → [0, 1] is nondecreasing and

∏
i∈I

Bi ⊆
I∏
i=1

Xi =⇒
∑
i∈I

∫
Bi

Qi dλi ≤ 1−
∏
i∈I

λi(B
c
i )

}

Since the proof is analogous to that of Lemma 4.1, we provide only a sketch. Because

of Bayesian incentive compatibility Ex−i
qi must be nondecreasing. The probability that

bidder i has type in Bi and wins the object is
∫
Bi
Ex−i

qi dλi. Hence the left-hand side of

the inequality is the probability that one buyer’s type is in her specified set and the buyer

wins the object. The right-hand side is the probability that at least one buyer has type in

her specified set. Therefore the inequality in (6) must hold.

Lemma 5.2 below serves the same purpose as Lemma 4.2 did in the symmetric environment

of Section 4. Given a partition of the type space, the lemma identifies all the step functions

(relative to that partition) that are extreme points of W ′′. Similar arguments are used in

the proofs of both lemmas: Identifying the extreme points of W ′′ is equivalent to finding

the solution to a system of equations obtained from the feasibility condition in (6). This is

what the proof of Lemma 4.2 accomplished.

The differences in details between Lemmas 5.2 and 4.2 arise from the selection of the

system of equations and the number of unknowns to be determined. Generally there are

more inequalities than necessary to determine an extreme point. To see this, imagine that

W ′′ is a rectangle in R2. Four inequalities suffice to define the rectangle but each of its

extreme points, i.e. each vertex, is determined by only two inequalities; each vertex is a

point were two inequalities become binding. To identify a vertex, the inequalities must be

chosen judiciously: if two inequalities represented by parallel lines are chosen, an extreme

point will not be identified.

In Lemma 4.2, because the I ex ante identical bidders must be treated symmetrically,

the selection of equations to determine the unknowns is trivial: For a fixed partition of the

type space, Lemma 4.2 identifies a single “family” of extreme points containing one main

extreme point and another one obtained through a small variation (i.e. β̄1 = 0).

In Lemma 5.2, the situation is more involved. Since bidders need not be treated sym-

metrically, even for a fixed partition of the type spaces, the feasible set has many extreme
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points. Each one of them is identified by a different system of equations. Modulus the

selection of the system of equations, however, the arguments used to prove Lemma 5.2 are

the same as those used to prove Lemma 4.2. To characterize the different extreme points

without listing them individually, we use a labeling system. The labeling system identifies

the equations that determine the extreme points of W ′′. This allows us to prove Lemma 5.2

for a canonical extreme point.

Definition 5.1. Let {Ki}Ii=1 be a collection of I nonnegative integers. A labeling relative

to {Ki}i∈I is a function g : {0, 1, . . . ,
∑

i∈I Ki} →
∏

i∈I{1, . . . , Ki + 1} such that

(a) g(0) = (K1 + 1, . . . , KI + 1),

(b) for n ≥ 1, g(n)− g(n− 1) = −ei for some i ∈ {1, . . . I}.

For k ∈ {0, . . . ,
∑

i∈I Ki}, define g−1
i (k) = min{n : gi(n) = k}.5

Let I = 2. Intuitively, a labeling is a collection of multi-indices ordered from highest

(K1 + 1, K2 + 1) to lowest (1, 1) with the restriction that each element in the collection is

obtained from the previous one by decreasing a single index by one unit. (We use the term

multi-index because, as we will see after Example 2, each g(n) is used in Lemma 5.2 to

index a feasibility constraint.) For instance, if K1 = K2 = 3, one possible labeling is g(0) =

(4, 4), g(1) = (3, 4), g(2) = (3, 3), g(3) = (2, 3), g(4) = (2, 2), g(5) = (1, 2), g(6) = (1, 1).

The collection g(0) = (4, 4), g(1) = (3, 4), g(2) = (3, 2), g(3) = (2, 2), g(4) = (1, 2), g(5) =

(1, 1), g(6) = (1, 1) is not a labeling.

More generally, consider the set
∏

i∈I{1, . . . , Ki+1} with the partial order defined by the

standard vector inequality, i.e. k′ < k if k′i ≤ ki for every i with strict inequality for some i.

A labeling g selects
∑

i∈I Ki vectors in decreasing order (i.e. g(n) < g(n− 1)) and at each

step n only one component decreases by the minimum possible (i.e.g(n) − g(n − 1) = −ei
for some i). Thus, a labeling determines a finite, ordered sequence of multi-indices.

Example 2 contains three labelings that we also use in Example 3.

Example 2. There are two bidders, i = 1, 2, and K1 = K2 = 3. Three labeling systems are

described in the table below:

5Note that g−1
i (k) is well defined: gi(0) = Ki + 1 and g(

∑
i∈I Ki) = 1; therefore gi(

∑
i∈I Ki) = 1 and there

must be an n′ such that gi(n′) = k.
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Labeling (a) Labeling (b) Labeling (c)

g(0) (4, 4) (4, 4) (4, 4)

g(1) (3, 4) (4, 3) (4, 3)

g(2) (3, 3) (3, 3) (4, 2)

g(3) (2, 3) (3, 2) (4, 1)

g(4) (2, 2) (2, 2) (3, 1)

g(5) (1, 2) (2, 1) (2, 1)

g(6) (1, 1) (1, 1) (1, 1)

Figures 3 and 4 may be used to visualize the labelings in Example 2. Let the lattice formed

by the intersections of the solid lines represent the set
∏

i∈I{1, . . . , Ki + 1} = {1, 2, 3, 4} ×
{1, 2, 3, 4}: Then g(0) = (4, 4) is the north-east corner of the diagram; if g(1) = (3, 4) then

g(1) − g(0) = (−1, 0) is the horizontal arrow with origin at g(0). Thus, the arrows in the

diagram indicate the finite sequence of multi-indices and their order.

The set of all step functions relative to a fixed partition in W ′′ is determined by a system

of finitely many inequalities derived from the feasibility inequality in (6). The role of the

labeling is to select sufficiently many, linear-independent inequalities so that when binding,

they determine an extreme point.

Before stating Lemma 5.2, we offer an example. Example 3 shows that, given a partition

of the type space, labelings (a) and (b) in Example 2 correspond to extreme points.

Example 3. There are two bidders, i = 1, 2, K1 = K2 = 3, and for every i, xi is uniformly

distributed in Xi = [0, 1]. Although bidders are ex ante identical, mechanisms are not

required to be symmetric.

Fix a partition of [0, 1], say [0, 1/3], (1/3, 2/3], (2/3, 1] and index its elements by ki =

1, 2, 3 respectively when referring to Xi.

Each diagram in Figure 3 corresponds to a pair of step functions (Q1, Q2) in W ′′. Each

pair is an extreme point of W ′′.

The left-hand-side diagram is associated with

Q1 = {(b1k, β1
k)}3k=1 = {(1/3, 1/3), (1/3, 2/3), (1/3, 3/3)}

Q2 = {(b2k, β2
k)}3k=1 = {(1/3, 0), (1/3, 1/3), (1/3, 2/3)}.
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The right-hand-side diagram illustrates the reciprocal extreme point. (See Lemma 5.2.)

Numbers in the cells of the diagrams indicate the values of the mechanism q1(x1, x2);

empty cells signify q1 = 0. (See Lemma 5.3.) Note that in both diagrams Ex−i
qi = Qi

-

6

x1

x2

?

g(1)

R

g(4)

�

�

�

?

?

?

Ex−2q2

0

1
3

2
3

1
3

2
3

3
3

Ex−1q1

(a)

1

1

1

1

1

1
-

6

x1

x2

?

?

?

�

�

�

0 1
3

2
3

Ex−1q1

(b)

1

1

1

�

g(1)

R

g(4)

Figure 3. Labelings (a) and (b), two extreme points

Labelings (a) and (b) in Example 2 correspond to the extreme points in Example 3.

Figure 3 is helpful to see this. We associate each index ki with a set as follows: If ki = 3,

then let Bi = (2/3, 3/3]; if ki = 2, then let Bi = (1/3, 2/3] ∪ (2/3, 3/3]; if ki = 1, then let

Bi = [0, 1/3) ∪ (1/3, 2/3] ∪ (2/3, 3/3]. Therefore to any multi-index (k1, k2) corresponds a

set B1 ×B2. Applying the feasibility inequality in (6) to this set yields a linear constraint

2∑
i=1

Ki∑
k=ki

bikβ
i
k ≤ 1−

2∏
i=1

ki−1∑
k=1

bik

Every labeling thus determines
∑

i∈I Ki equations (i.e. binding inequalities), six in the

example. If the equations are linearly independent, the solution to the equations is an

extreme point. Similarly, for each extreme point there is an implicit labeling. Lemma 5.2

makes this precise.

Consider, as an illustration, labeling (a). Since g(1) = (3, 4), the inequality in (6) becomes

(1/3)β1
3 ≤ 1− [(1/3 + 1/3)× 1]. (When binding, the solution is β1

3 = 1.) From g(2) = (3, 3),

the inequality in (6) becomes (1/3)β1
3 + (1/3)β2

3 ≤ 1 − [(1/3 + 1/3) × (1/3 + 1/3)]. When
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binding and using the found β1
3 = 1, the solution is β2

3 = 2/3. The process continues until

all βiki
have been identified. It is not difficult to verify that the six equations selected by

labeling (a) are linearly independent. Thus labeling (a) corresponds to an extreme point.

A similar argument will show that labeling (b) also corresponds to an extreme point.

Applying the same argument to labeling (c), however, yields as solution, a function with

fewer than three steps. Thus, labeling (c) does not correspond to an extreme point with

three steps (Figure 4).

-

6

x1

x2

?

?

?����

�

g(1)

	

g(3)

Figure 4. Labeling (c)

In a first reading of Lemma 5.2, it may be useful to assume that K1 = K2 = . . . = KI ,

and that for n ≥ 1 the difference g(n) − g(n − 1) = −e(n mod I). Under this assumption,

the labeling is the natural one, i.e. g(1) = (K1, K2 + 1, . . . , KI + 1), g(2) = (K1, K2, K3 +

1, . . . , KI + 1), etc.

The proof of Theorem 2 only uses one direction in Lemma 5.2: If a step function is an

extreme point, it must be one of those identified by the Lemma.

Lemma 5.2. Let {{(bik, β̄ik)}
Ki
k=1}i∈I be a collection of step functions in W ′′. The collection

{{(bik, β̄ik)}
Ki
k=1}i∈I is an extreme point of W ′′ if and only if there exists a labeling g relative

to {Ki}i∈I such that either

(a) ∀i ∈ I and k ∈ {1, . . . , Ki}, β̄ik =
∏

j∈I\{i}
∑gj(g

−1
i (k))−1

`=1 bj` or

(b) β̄ik is defined as above for all i and k with the following exceptions: there is i′ such that

β̄i
′

1 = 0, and for every i and k with k > gi(g
−1
i′ (1)), β̄ik = 0.
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Proof (⇒). We prove that if a step function is an extreme point of W ′′, then it is one of

those identified by the Lemma. Its converse, not used in the proof of Theorem 2, is proven

in Appendix A.

Fix {{bik}
Ki
k=1}i∈I as in the Lemma’s statement, define

K =
∏
i∈I

{1, . . . , Ki + 1}

K =

{
1, 2, . . . ,

∑
i∈I

Ki

}
and note that g maps K ∪ {0} into K.

Any family of step functions {{(bik, βik)}
Ki
k=1}i∈I ∈ W ′′ must satisfy the inequality in (6),

and therefore

(7) ∀k = (k1, . . . , kI) ∈ K,
∑
i∈I

Ki∑
k=ki

bikβ
i
k ≤ 1−

∏
i∈I

ki−1∑
k=1

bik

where sums with no terms are defined to be zero.

We find it convenient to use vector notation. To that end, define for i = 1, . . . , I,

bi = (bi1, . . . , b
i
Ki) and b = (b1, . . . , bI)

biki
= (0, . . . , 0, biki

, biki+1, . . . , b
i
Ki) and bk = (b1

k1
, . . . , bIkI

)

βi = (βi1, . . . , β
i
Ki) and β = (β1, . . . ,βI)

and let biKi+1 = 0, the null vector in RKi . Also for every k ∈ K, define

r(k) =
∏
i∈I

ki−1∑
k=1

bik

In vector notation, inequality (7) becomes

(8) ∀k ∈ K, bk · β ≤ 1− r(k)

Note that β is a vector in R
P

i∈I Ki . To express nonnegativity constraints in vector form,

for any i ∈ I and k ∈ {1, . . . , Ki}, let eik ∈ R
P

i∈I Ki such that

eik = (0, . . . , 0, 1, 0, . . . , 0)
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where the 1 corresponds to the element k of bidder i. Thus writing eik · β ≥ 0 is equivalent

to writing βik ≥ 0.

Define the set containing all nonnegative vectors β such that (b,β) satisfies (8).

P ′′ =
{
β : [k ∈ K =⇒ bk · β ≤ 1− r(k)] and [i ∈ I, k ∈ {1, . . . , Ki} =⇒ eik · β ≥ 0]

}
An element (b,β) in W ′′ is an extreme point of W ′′ if and only if β is an extreme point

of P ′′ (Lemma A.2). In turn β is an extreme point of P ′′ if and only if

(9) R(β) = {bk : bk · β = 1− r(k), k ∈ K} ∪
{
eik : eik · β = 0, i ∈ I, k ∈ {1, . . . , Ki}

}
contains

∑I
i=1K

i linearly independent vectors (Lemma A.1).

In summary, fix b and let (b, β̄) be an extreme point of W ′′. Then β̄ is an extreme point

of P ′′. Therefore the set R(β̄) must have
∑

i∈I Ki linearly independent vectors.

First, suppose that β̄ is strictly positive, i.e. β̄ik > 0 for every i and k. Let {bk} be the

collection, with
∑

i∈I Ki elements, of linearly independent vectors in R(β̄). Each vector bk

in the collection satisfies

(10) bk · β̄ = 1− r(k)

Order the
∑

i∈I Ki indices of these vectors from largest to smallest so that k > k′ > . . ..

We will show below that it is always possible to order indices strictly as described. Then

define the labeling g as follows: g(0) = (K1 + 1, . . . , KI + 1) and g(n) is the nth element in

the ordered sequence.

We now prove that the strict ordering of indices is possible. Arguing by contradiction,

suppose it is not. Then ∃k,k′ ∈ K, k 6= (k ∧ k′) 6= k′ such that bk · β̄ = 1 − r(k),

bk′ · β̄ = 1− r(k′), and bk∧k′ · β̄ = 1− r(k∧k′). Note that k∨k′ = k + k′−k∧k′ and thus

bk + bk′ − bk∧k′ = bk∨k′ . Therefore

1− r(k) + 1− r(k′)− 1 + r(k ∧ k′) = bk∨k′ · β̄ ≤ 1− r(k ∨ k′)

This implies that r(k ∨ k′) + r(k ∧ k′) ≤ r(k) + r(k′). This is a contradiction because

r(k∨k′) + r(k∧k′) ≥ r(k) + r(k′), and the inequality is strict except when k′∧k ∈ {k′,k}.
This establishes that ordering the indices strictly is possible.
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We now demonstrate that β̄ is item (a) in the Lemma’s statement relative to the labeling

g defined above.

Using the labeling, (10) can be rewritten as bg(n) · β̄ = 1 − r(g(n)) ∀n ∈ K. Pick any

i ∈ I and k ∈ {1, . . . , Ki}, and let n′ = g−1
i (k). Subtracting bg(n′−1) · β̄ = 1 − r(g(n′ − 1))

from bg(n′) · β̄ = 1− r(g(n′)) yields

[bg(n′) − bg(n′−1)] · β̄ = r(g(n′ − 1))− r(g(n′))

By definition of n′, gi(n
′) = k, gi(n

′ − 1) = k + 1 and for all j 6= i, gj(n
′) = gj(n

′ − 1).

Therefore [bg(n′) − bg(n′−1)] · β̄ = bikβ̄
i
k and the expression above becomes

bikβ̄
i
k = r(g(n′ − 1))− r(g(n′))

=
∏

j∈I
∑gj(n

′−1)−1
`=1 bj` −

∏
j∈I
∑gj(n

′)−1
`=1 bj`

=
(∏

j∈I\{i}
∑gj(n

′)−1
`=1 bj`

) [∑gi(n
′−1)−1

`=1 bi` −
∑gi(n

′)−1
`=1 bi`

]
=

(∏
j∈I\{i}

∑gj(n
′)−1

`=1 bj`

) [∑k+1−1
`=1 bi` −

∑k−1
`=1 b

i
`

]
=

(∏
j∈I\{i}

∑gj(n
′)−1

`=1 bj`

)
bik

Therefore, β̄ik =
∏

j∈I\{i}
∑gj(n

′)−1
`=1 bj`. This establishes that β̄ is item (a) in the Lemma’s

statement.

Second, suppose that β̄ik = 0 for some i and k, i.e. eik · β̃ = 0 and thus eik ∈ R(β̄) is

one of the linearly independent vectors. Note that β̄ik = 0 implies β̄ik−1 = 0. Therefore,

unless k = 1 the function will not have the required number of steps. A similar argument

to the one we used above (when assuming β̄ik > 0) yields that β̄ is item (b) in the Lemma’s

statement. �

Lemma 5.3. Let {{(bik, β̄ik)}
Ki
k=1}i∈I be an extreme point of W ′′ and let g be its labeling. The

two mechanisms {qi}Ii=1 defined below satisfy dominant-strategy incentive compatibility and

for every i Ex−i
qi = {(bik, β̄ik)}

Ki
k=1.
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For i = 1, . . . , I, let ιi(xi) = k : xi ∈ Q−1
i (β̄ik). For alternative (a) in Lemma 5.2, the

implementing mechanism is

qi(x1, . . . , xI) =

{
1 if ιj(xj) ≤ gj(g

−1
i (ιi(xi)))− 1 ∀j 6= i

0 otherwise

For alternative (b) in Lemma 5.2, the implementing mechanism is

qi′(x1, . . . , xI) =

{
1 if ιj(xj) ≤ gj(g

−1
i′ (ιi′(xi′)))− 1 ∀j 6= i′ and ιi′(xi′) 6= 1

0 otherwise

qi(x1, . . . , xI) =


1 if ιj(xj) ≤ gj(g

−1
i (ιi(xi)))− 1 ∀j 6= i and

ιi(xi) = gi(n), for n ≤ min{n′ : n′ ∈ g−1
i (1)}

0 otherwise

The proof is by direct calculation.

Proof. For alternative (a) in Lemma 5.2, pick i and xi. Let ιi(xi) = k and g−1
i (ι(xi)) = n′.

We must show that Ex−i
qi(xi) = β̄ik, i.e, that Ex−i

qi(xi) =
∏

j∈I\{i}
∑gj(n

′)−1
k′=1 bjk′ . Using

definitions,

Ex−i
qi(xi) =

∫
X−i

qi(xi, x−i) dλ−i =
∏

j∈I\{i}

∫ gj(n
′)−1

xj

dλj =
∏

j∈I\{i}

gj(n
′)−1∑

k′=1

bjk′ .

For alternative (b), apply the same argument. �

6. Bilateral differential information

The environment in this section has I ex ante identical buyers plus a distinct agent that

we call the seller. (We discuss the interpretation of the distinct agent as a seller after

Definition 6.1.)

All agents, including the seller, have private information. To emphasize the difference

between the seller and the bidders, the seller’s private information is denoted by y ∈ Y ,

distributed according to a probability distribution λs. (Every buyer’s private information

x ∈ X is independently distributed according to the same distribution λb.)

We require that mechanisms be symmetric with respect to the ex ante identical buyers

as in Section 4. After stating the definition, we explain its content. To avoid cumbersome
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notation, we will use Eq or Eq(x1)—i.e the expectation of q(x, y) taken over x−1 and y—

instead of Ey,x−1q.

Definition 6.1. Let q : Y × XI → [0, 1], qs : Y × XI → [0, 1] be such that for every

(y,x) ∈ Y ×XI ,
∑I

i=1 q(y, σi(x)) + qs(y,x) ≤ 1.

If q(y,x) and qs(y,x) are nondecreasing in x1 and y respectively, then (q, qs) is a sym-

metric, dominant-strategy incentive-compatible mechanism with I bidders and a seller.

If Eq(x1) and Exqs(y) are nondecreasing, then (q, qs) is a symmetric, Bayesian incentive

compatible mechanism with I bidders and a seller.

The omitted transfer functions are recovered, up to a constant, using the corresponding

incentive compatibility characterizations. (See Section 3 and the paragraph following this

definition.)

To interpret the distinct agent as a seller, it suffices to set Y = [y, y] ⊆ R−. A nonde-

creasing Exqs(y) becomes nonincreasing as a function of |y|.6

Fix a profile (y,x). While qs(y,x) is the probability that the seller ends up with the

object, it is not the probability that the object is not given to some buyer. If the probability

sum (for the given type profile) is strictly less than one, then the object might not be

assigned to either buyers or the seller. This flexibility in the definition of a mechanism

increases the set of mechanisms for which the equivalence (between dominant-strategy and

Bayesian implementation) is obtained. Since we show the equivalence of any mechanism,

not just a revenue maximizing one, the additional generality is valuable.

Theorem 3. If (q′, q′s) is a symmetric, Bayesian incentive-compatible mechanism with I bid-

ders and a seller, then there is a symmetric dominant-strategy, incentive-compatible mecha-

nism (q, qs) with I bidders and a seller that generates the same expected probability of trade,

i.e. Eq′(x1) = Eq(x1) a.e. and Exq
′
s = Exqs a.e.

If there is a single buyer, Theorem 3 is a particular case of Theorem 2 (with two agents,

a buyer and a seller). If there are at least two ex ante identical buyers that must be treated

symmetrically, Theorem 3 does not follow from Theorem 2. The proof, however, is similar

6The seller’s preferences, defined as us(y,x) = qs(y,x)y − ts(y,x) (where ts(y,x) ≥ 0 represents transfers
from the agent to the mechanism designer) can be written as us(y,x) = −ts(y,x)− qs(y,x)|y|.
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to the proofs of Theorems 1 and 2. The nontrivial direction also proceeds in three lemmas.

Given the similarities, we state them without proof in Appendix B.

7. Concluding comments

a. An outcome in a game is customarily defined as a distribution on the terminal nodes

that results from a strategy profile and nature’s moves. For conciseness, suppose there

are only two agents in our model and consider the implicit game in a direct revelation

mechanism. An outcome is a distribution µ on

X1 ×X2 ×X1 ×X2 × [0, 1]× [0, 1]× R× R

where from left to right we have the type spaces, the action spaces, the probabilities of

trade, and the transfers. The linearity of preferences imply that the marginal distribution

of µ on the first, fifth and seventh space (µX1×[0,1]×R) suffices to determine player 1’s

payoff. (This is the marginal distribution on player 1’s own type, own probability of

trade and own transfer.) If two outcomes µ and ν generate the same relevant marginal

distributions (i.e. µXi×[0,1]×R = νXi×[0,1]×R) for all players), they are equivalent in the

sense that players are indifferent between them. We have proved that for any Bayesian

Nash equilibrium outcome µ, there is a dominant-strategy equilibrium outcome ν such

that the relevant marginal distributions of µ and ν are the same. The actual outcomes µ

and ν will generally be different.

A mechanism design problem is often cast in terms of the maximization of an objective

function subject to constraints. If the objective function and constraints depend only on

the expected probabilities of trade as is often the case, then, per our equivalence theorems,

there is no loss in requiring dominant-strategy over Bayesian incentive compatibility.

b. Our work is related to Border (1991) and (2007). Border (1991)’s objective is to identify

the functions Q : X → [0, 1] for which there is a symmetric mechanism q : XI → [0, 1]

(with I identical bidders) and Ex−1q = Q. He demonstrates that a necessary and sufficient

condition for this is that Q satisfy the feasibility inequality in Lemma 4.1). (From that

characterization, we only use the simple part (Lemma 4.1.) Border (1991) assumes ex

ante identical bidders and considers only symmetric mechanisms. He does not require

incentive compatibility and therefore his expected probabilities of trade Ex−1q need not be
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nondecreasing. Border (2007) extends his own characterization to general nonsymmetric

environments but assumes finite types.

As a byproduct, Theorem 2 extends Border’s result in that it applies to heterogeneous

agents (and thus, to bilateral trade) and to nonsymmetric mechanisms with a continuum

of types (but assuming nondecreasing Q).
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Appendix A

We complete the proof of Lemma 5.2.

Proof of Lemma 5.2 (⇐). We now prove that for β̄ defined in Lemma 5.2-(a), (b, β̄) is

an extreme point of W ′′. By hypothesis, (b, β̄) belongs to W ′′. Therefore, it suffices to

demonstrate that R(β̄) has
∑I

i=1Ki linearly independent vectors. We do so in two steps.
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First, simple inspection shows that the
∑

i∈I Ki vectors {bg(n)}n∈K are linearly indepen-

dent where g is the labeling used to defined β̄.

Second, we demonstrate that {bg(n)}n∈K ⊆ R(β̄). We must show that

(11) n ∈ K =⇒ bg(n) · β̄ = 1− r(g(n))

Let β̃ be a solution to the system of equations bg(n) · β̃ = 1 − r(g(n)) ∀n ∈ K. (Such a

solution always exists because the vectors {bg(n)}n∈K are linearly independent.) We will

show that β̃ = β̄. Pick any i ∈ I and k ∈ {1, . . . , Ki}, and let n′ = g−1
i (k).

Subtracting bg(n′−1) · β̃ = 1− r(g(n′ − 1)) from bg(n′) · β̃ = 1− r(g(n′)) yields

[bg(n′) − bg(n′−1)] · β̃ = r(g(n′ − 1))− r(g(n′))

By definition of n′, gi(n
′) = k, gi(n

′ − 1) = k + 1 and for all j 6= i, gj(n
′) = gj(n

′ − 1).

Therefore [bg(n′) − bg(n′−1)] · β̃ = bikβ̃
i
k and the expression above becomes

bikβ̃
i
k = r(g(n′ − 1))− r(g(n′))

=
∏

j∈I
∑gj(n

′−1)−1
`=1 bj` −

∏
j∈I
∑gj(n

′)−1
`=1 bj`

=
(∏

j∈I\{i}
∑gj(n

′)−1
`=1 bj`

) [∑gi(n
′−1)−1

`=1 bi` −
∑gi(n

′)−1
`=1 bi`

]
=

(∏
j∈I\{i}

∑gj(n
′)−1

`=1 bj`

) [∑k+1−1
`=1 bi` −

∑k−1
`=1 b

i
`

]
=

(∏
j∈I\{i}

∑gj(n
′)−1

`=1 bj`

)
bik

Therefore, β̃ik =
∏

j∈I\{i}
∑gj(n

′)−1
`=1 bj` = β̄ik. This establishes (11).

We have proved that R(β̄) has
∑

i∈I Ki linearly independent vectors and therefore (b, β̄)

is an extreme point of W ′′.

We now prove that for β̄ defined in Lemma 5.2 (b), (b, β̄) is an extreme point of W ′′.

Once again, we need to show that R(β̄) has
∑

i∈I Ki linearly independent vectors.

Let β̄i
′

1 = 0 <
∏

j∈I\{i′}
∑gj(g

−1
i′ (1))−1

`=1 bj`. (If there is no i′ for which this holds, then β̄ is as

in Lemma 5.2 (a) and we are done.)

Define n′ = g−1
i′ (1).
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For n < n′, β̄igi(n) is as defined in Lemma 5.2 (a) and therefore, by (11),

bg(n) · β̄ =
∑
i∈I

Ki∑
k=gi(n)

bikβ̄
i
k = 1− r(g(n))

Therefore for every n < n′, bg(n) ∈ R(β̄).

For n ≥ n′,

bg(n) · β̄ =
∑
i∈I

Ki∑
k=gi(n)

bikβ̄
i
k < 1− r(g(n))

This is so because β̄i
′

gi′ (n
′) = β̄i

′
1 = 0 and this variable was strictly positive when (11) applied.

Therefore, bg(n′) does not belong to R(β̄) but ei
′
i does. For every n > n′ the same argument

applies: β̄ik = 0 if k > gi(n
′), bg(n) /∈ R(β̄), and eik ∈ R(β̄).

It is immediate that all vectors in R(β̄) are linearly independent. Hence β̄ is an extreme

point of P ′′. Since (b, β̃) ∈ W ′′, (b, β̃) is an extreme point of W ′′. �

The following well-known property is included here for the reader’s convenience.

Lemma A.1. For j = 1, . . . , J , let aj ∈ RK and let rj ∈ R. Let P = {β ∈ RK : aj · β ≤
rj, j = 1, . . . , J}. Then a vector β ∈ P is an extreme point of P if and only if the set

Aβ = {aj : aj · β = rj, j ∈ {1, . . . , J}} contains K linearly independent vectors.

Proof. See for instance Bertsekas (2003), Proposition 3.3.3, page 184. �

The following lemma adds detail to the proof of Lemmas 4.2 and 5.2. We state it and

prove it using W and P used in Lemma 4.2. The result and its proof remain valid for W ′′

and P ′′ as used in Lemma 5.2.7

Lemma A.2. Let W be defined as in Lemma 4.1. Let (b,β) ∈ W be a step function with

K steps and let P be as defined in (3). Then, (b,β) is an extreme point of W if and only

if β is an extreme point of P .

Proof. First, if (b,β) is not an extreme point of W , β is not an extreme point of P . If Q =

(b,β) is not an extreme point of W , then there are Q1, Q2 ∈ W such that Q = 1
2
Q1 + 1

2
Q2.

Let βk be the kth component of β and pick any x′, x ∈ Q−1(βk) with x′ > x. For i = 1, 2, Qi

7Manelli and Vincent (2007), Theorems 17 and 19, observe that the domain partition defining a step function
determines a face of W . Lemma A.2 and its corollary are based on this observation.
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is nondecreasing (because Qi ∈ W ) and therefore Qi(x′) ≥ Qi(x). Suppose this inequality is

strict for some i. Then, βk = 1
2
Q1(x′) + 1

2
Q2(x′) > 1

2
Q1(x) + 1

2
Q2(x) = βk, a contradiction.

We conclude that for i = 1, 2, Qi is constant in Q−1(βk). Since k was chosen arbitrarily, Qi

is constant in every interval in which Q is constant. Therefore, we may write Qi = (b,βi).

Then, β = 1
2
β1 + 1

2
β2 and β is not an extreme point of P .

Second, if β is not an extreme point of P , then β = β′/2 + β′′/2 for some β′,β′′ ∈ P . If

β′,β′′ are both nondecreasing, then (b,β′), (b,β′′) ∈ W and the proof is complete.

For every α ∈ (0, 1), β = [αβ′+(1−α)β]/2+[αβ′′+(1−α)β]/2. For every α sufficiently

small, αβ′ + (1 − α)β and αβ′′ + (1 − α)β are nondecreasing members of P . Hence, β is

not an extreme point of W . �

Corollary A.2.1. Let (b,β) ∈ W be a step function with K steps and let W (b) ={
β′ ∈ [0, 1]K : (b,β′) ∈ W

}
. Then (b,β) is an extreme point of W if and only if β is

an extreme point of W (b).

Proof. Since β1,β2 in the proof of the lemma are nondecreasing, if (b,β) is not an extreme

point of W , β is not an extreme point of W (b). The converse—if (b,β) is an extreme point

of W , then it is an extreme point of W (b)—is trivial. �

The following lemma, used in the proof of Theorem 1, provides a convenient characteri-

zation of functions that are monotone almost everywhere.

Lemma A.3. Let X = [x, x] ⊆ R, λb be a probability measure on the Borel σ-algebra of X.

Define an order � on XI by x′ � x if x′1 ≤ x1 and x′i ≥ xi for i > 1. Let f : XI → [0, 1] be

a measurable function. The following statements are equivalent.

(i) ∃A ⊆ X, λIb(A) = 1 : [x′, x ∈ A, x′ � x] =⇒ f(x′) ≤ f(x).

(ii) ∀B :=
∏I

i=1Bi and B′ :=
∏I

i=1B
′
i, [B

′
i, Bi ⊆ X], λb(Bi) > 0, λb(B

′
i) > 0, such that

[x′ ∈ B′, x ∈ B =⇒ x′ � x],

1

λIb(B
′)

∫
B′
f dλIb ≤

1

λIb(B)

∫
B

f dλIb

Proof. (i) =⇒ (ii).

[x′ ∈ (B′ ∩ A), x ∈ B ∩ A] =⇒ f(x′) ≤ f(x)
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Therefore E[f |B′ ∩ A] ≤ E[f |B ∩ A]. Since λIb(B ∩ A) = λIb(B) and similarly for B′,

E[f |B′] ≤ E[f |B].

(ii) =⇒ (i). Without loss of generality, let X = [0, 1]. For n = 1, 2, . . ., let

Gn = {[0, 1/2n), [1/2n, 2/2n), . . . , [k/2n, (k + 1)/2n), . . . , [(2n − 1)/2n, 2n/2n]}

Then {Gn} is a sequence of increasingly finer, nested partitions of [0, 1]; each partition is a

collection of disjoint intervals of [0, 1]. Define

fn(x) =

 1
λI

b(B)

∫
B
f dλIb if x ∈ B ∈ GI

n, and λIb(B) > 0

0 otherwise

By construction fn satisfies (ii), and it is simple to verify that there is An ⊆ XI , λIb(An) = 1

such that fn satisfies (i) in An. Also by construction, fn = E[f |σ(GI
n)]. Since σ(

⋃∞
n=1 σ(GI

n))

is the Borel σ-field, ∃A′ ⊆ XI , λIb(A
′) = 1 such that ∀x ∈ A′, {fn(x)} → f(x) (see for

instance, Shiryaev (1991), Theorem 3, page 510).

Finally, let A =
⋂∞
n=1An ∩ A′. Since A is the countable intersection of sets of measure

one, λIb(A) = 1. Suppose ∃x′, x ∈ A, x′ � x and f(x′) > f(x). Then, for sufficiently large

n, fn(x′) > fn(x), a contradiction since fn satisfies (i) with respect to An and A ⊆ An.

Therefore, f satisfies (i). �

Appendix B

We discuss here the three Lemmas leading to the proof of Theorem 3. Lemma B.1 follows

as a corollary to Lemma 5.1.

Lemma B.1. If (q, qs) is a Bayesian incentive-compatible, symmetric mechanism with I

bidders and a seller, then (Eq,Exqs) is in W ′, where

W ′ =

{
(Qb, Qs)| Qb : X → [0, 1], Qs : Y → [0, 1] are nondecreasing and

[B ⊆ X,S ⊆ Y ] =⇒ I

∫
B

Qb dλb +

∫
S

Qs dλs ≤ 1− λb(Bc)Iλs(S
c)

}(12)

Ex ante identical buyers must be treated symmetrically by the mechanism.

We proceed to identify the extreme points of W ′. Lemma B.2 is the analogue of Lem-

mas 4.2 and 5.2.8 Once the domain’s partition (for the step function) is determined, these

8In reading the Lemma’s statement, recall that summations with no terms are assumed to be zero.
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lemmas identify all the step functions (defined by the partition) that are extreme points of

the feasible set.

Lemma B.2. Let ({bk, β̄k}Kb
k=1, {bsk, β̄sk}

Ks
k=1) be a pair of step functions in W ′. The pair

({bk, β̄k}Kb
k=1, {bsk, β̄sk}

Ks
k=1) is an extreme point of W ′ if there exists a labeling g relative to

(Kb, Ks), such that for every (kb, ks) ∈ {1, . . . , Kb} × {1, . . . , Ks} either

(1)


β̄bkb

= 1
Ibkb

[(∑kb

k=1 bk

)I
−
(∑kb−1

k=1 bk

)I] ∑gs(g
−1
b (kb))−1

k=1 bsk

β̄sks
=

(∑gb(g
−1
s (ks))−1

k=1 bk

)I
or

(2) one or both of β̄1 and β̄s1 are zero, and all other (β̄kb
, β̄sks

) are as in (1).

A direct proof of Lemma B.2 can be obtained following the same steps employed in

Lemmas 4.2 and 5.2. Instead of repeating those steps, we make a few heuristic observations

that lead to the result.

Suppose that there are only two heterogeneous agents, a buyer and a seller, i ∈ {b, s}.
From Lemma 5.2 (a), the extreme point mechanism for the buyer is

(13) β̄bkb
=

gs(g
−1
b (kb))−1∑
k=1

bsk

for some labeling g.

Suppose instead that there is no seller but that there are I ex ante identical bidders.

From Lemma 4.2 (a), the symmetric extreme point mechanism is

(14) β̄kb
=

(∑kb

k=1 bj

)I
−
(∑kb−1

k=1 bj

)I
Ibkb

This mechanism assigns the object to one of the I bidders.

Finally, suppose that there are I ex ante identical bidders plus a seller, a heteroge-

neous agent. The probability that one of the I bidders gets the object is given by (13),∑gs(g
−1
b (kb))−1

k=1 bsk. This probability must be distributed among the I symmetric bidders; this

is done according to (14). The result is precisely Lemma B.2 (1). Similar arguments lead

to Lemma B.2 (2).

Lemma B.3. Let the pair of step functions (Qb, Qs) = ({bk, β̄k}Kb
k=1, {bsk, β̄sk}

Ks
k=1) be an

extreme point of W ′ and let g be its labeling. The symmetric, mechanism (q, qs) defined
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below satisfies dominant-strategy incentive compatibility and (Eq,Exqs) = (Qb, Qs).

q(y,x) =


1

|{i:ιb(xi)=ιb(x1)}| if Qb(x1) = max{Qb(xi)}Ii=1 > 0 and

ιs(y) ≤ gs(g
−1
b (ιb(x1)))− 1

0 otherwise

qs(y,x) =

{
1−

∑
i∈I q(y, σi(x)) if Qs(y) > 0

0 otherwise

where ιb(xi) = k : xi ∈ Q−1
b (β̄k) and ιs(y) = k : y ∈ Q−1

s (β̄sk).

Proof. We first show that Eq = Qb. If ιb(x1) = 1 and β̄1 = 0, then Eq(x1) = 0 trivially and

we are done. Suppose then ιb(x1) = kb and β̄kb
6= 0. By direct calculation, the expected

probability of trade is

(15) Eq(x1) =

 I∑
i=1

1

i

(
I − 1

i− 1

)(
kb−1∑
k=1

bk

)I−1−(i−1)

(bK−`)
i−1

 gs(g
−1
b (kb))−1∑
k=1

bsk

The argument in Lemma 4.3 yields the desired result.

We now show that Exqs = Qs. If ιs(y) = 1 and β̄s1 = 0, then Exqs(y) = 0 trivially.

Suppose then ιs(y) = ks and β̄sks
6= 0.

Note then that qs(y,x) 6= 0 ⇐⇒
∑

i∈I q(y, σi(x)) 6= 1 ⇐⇒ ∀i, q(y, σi(x)) = 0. It

follows from the definition of q(y,x) in the Lemma’s statement, that q(y, σi(x)) = 0, ∀i ⇐⇒
ks > gs(g

−1
b (ιb(xi)))− 1, or equivalently, ks ≥ gs(g

−1
b (ιb(xi))). In turn, this is so if and only

if g−1
s (ks) < g−1

b (ιb(xi)) ⇐⇒ gb(g
−1
s (ks)) > ιb(xi) ⇐⇒ gb(g

−1
s (ks)) − 1 ≥ ιb(xi). The

probability that xi is such that ιb(xi) ≤ gb(g
−1
s (ks))− 1 is

∑gb(g
−1
s (ks))−1

k=1 bk. This occurs for

the I bidders with probability (
∑gb(g

−1
s (ks))−1

k=1 bk)
I . �
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