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1 Introduction

This paper uses inflation expectations as an observable in the estimation of a DSGE

model, along with a standard set of macro variables. Observed inflation expectations

are rarely included among the observables in estimating DSGE model, but arguably

contain information that is valuable in discriminating across models. We compare

the fit of two variants of a standard DSGE model with with several nominal and real

rigidities along the lines of Christiano et al. (2005), Smets and Wouters (2003), and

Smets and Wouters (2007), where the different lies in the agents’ information set.

In the first model (Perfect Information) agents have perfect information about the

Central Bank’s inflation target, while in the second model (Imperfect Information)

agents need to infer the target from the behavior of interest rates, as in (Erceg

and Levin (2003)). We find that a standard set of macro variables over a standard

estimation period (the post-Volcker disinflation period: 1982Q2-2008Q2) is unable

to discriminate among the two models. Observed inflation expectations instead

provide strong evidence as to which model fits the data best. This is perhaps the

least plausible of the two models: the Perfect Information one. We provide evidence

that the relative failure of the Imperfect Information model to fit observed inflation

expectations is due to the fact that this model imposes much more stringent cross-

equation restriction on the law of motion of the perceived inflation target than the

Perfect Information model.

There are several reasons for including measured inflation expectations among

the set of observables in the estimation of DSGE models. First, as our study shows,

inflation expectations help discriminate across models, especially when these mod-

els differ in the way agents form expectations. Yet observed expectations are rarely

formally used in previous literature, even when comparing rational expectations

with learning models (e.g., Milani (2007); a recent paper by Ormeno (2009) is an

exception). In fact, we know very little on the extent to which DSGE models can ac-

curately describe the behavior of observed inflation expectations. Second, inflation

expectations are allegedly important in determining the term structure of interest

rates. While this paper makes no attempt to explain the term structure directly
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since we use a linear model, the model comparison exercise done here can be helpful

indirectly in investigating how one should formulate expectation formation.1 Mod-

els that have a hard time generating observed inflation expectations may not be too

helpful in understanding the term structure of interest rates. A third reasons to add

observed expectations (for inflation as well as other variables) to the econometri-

cian’s information set is that agents in the real economy have a richer information

set than the econometrician using a standard set of macro variables. Including

measured expectations among the observables is a way to exploit such information

set.2 This information can be exploited for both forecasting and estimating latent

variables, such as shocks. We show for instance that the estimated process for the

inflation target changes whether we include or not inflation expectations among the

observables.

There are several issues with using measured expectations as observables in

DSGE models, which we discuss in section 4: data revisions, timing, choice of the

expectation measures. This paper shows that the results are robust to different

choices of measurement and timing assumptions, but does not really address many

of these difficult issues. By pointing out the information content from measured

expectations, we hope we have shown that it is worthwhile for future research to

address these issues more thoroughly than we have. Also, there are several other

mechanism of expectation formations, notably learning, that we do not consider in

this paper. It is interesting to ask whether learning models provide a better descrip-

tion of observed inflation expectations than rational expectation models (Ormeno

(2009) contains some preliminary results on this question).

Our results, while negative for the Imperfect Information model, are not nec-

essarily in contrast with Erceg and Levin (2003)’s. Erceg and Levin (2003) focus
1There are attempts to use DSGE models to explain the terms structure, e.g. Rudebusch and

Swanson (2008).
2Following the FAVAR methodology (Bernanke et al. (2005)) there are some attempts to combine

factor and DSGE models with the goal of incorporating as much of the available data as possible

(Boivin and Giannoni (2006), Giannone et al. (2008)). We take a different route and incorporate

this information by adding agent’s expectations to the list of observables.
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on the Great Deflation (81− 85), while we are interesting in assessing which model

best describes the evolution of inflation expectation in the post deflation period – a

period where allegedly the policy regime has not changed. Investigating the Great

Deflation, while very interesting, involves issues of changes in policy regimes that

we do not address at this stage.

The next section briefly discusses the econometric framework for evaluating how

a model estimated to fit a baseline set of time series – here, the standard macro

variables – fares in fitting an additional time series – here, inflation expectations.

This is a straightforward application of Bayesian updating, which is routinely done

in the DSGE estimation literature in the time series dimension, to the cross-sectional

dimension. Section 3 describes the model, with particular emphasis on the difference

between perfect and imperfect information. Section 5 discusses our findings.

2 Training-Sample Priors in the Cross-Section

A natural question in the DSGE model estimation literature is the following: How

does a model that is estimated to fit time series y1,T through yJ,T fare in fitting time

series yJ+1,T through yJ+K,T (where yi,T = {yit}Tt=1)? In this paper, for instance,

we ask how the Christiano et al. (2005)/Smets and Wouters (2003) model, which

allegedly fits standard macro time series well, fare in describing observed inflation

expectations. The same question can be posed for asset prices, the yield curve, and

several other time series.

One can of course compute the marginal likelihood for the model at hand (which

we call Mi) using series y1,T though yK+J,T , which we denote by p(Y 0,T , Y 1,T |Mi)

where Y 0,T and Y 1,T are shorthand notations for {y1,T , . . . , yJ,T } and {yJ+1,T , . . . , yJ+K,T },

respectively. While the quantity p(Y 0,T , Y 1,T |Mi) is certainly of interest, it may not

necessarily address the researcher’s question. This is for two reasons. First, by con-

struction, the marginal likelihood depends on the prior chosen:

p(Y 0,T , Y 1,T |Mi) =
∫
p(Y 0,T , Y 1,T |θ,Mi)p(θ|Mi)dθ, (1)
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where p(Y 0,T , Y 1,T |Mi) denotes the likelihood function for model Mi, θ the vector

of DSGE model parameters, and p(θ|Mi) the prior chosen for θ. Prior elicitation

for some of the DSGE model parameters can be challenging, and the choice of

prior – not surprisingly given the above definition – affects the marginal likelihood

computation and therefore the outcome of model comparisons (see Del Negro and

Schorfheide (2008)). The researcher who is interested in knowing how well the model

fits the time series yJ+1,T through yJ+K,T may want to use as a prior the posterior

obtained from estimating the model on time series y1,T through yJ,T . This posterior

– p(θ|Y 0,T ,Mi) – will be far less dependent on the initial prior p(θ|Mi) chosen. In

our case, the exercise would be to use the posterior obtained from fitting standard

macro time series in order to evaluate the model’s ability to fit expectations. The

object of interest would then be:

p(Y 1,T |Y 0,T ,Mi) =
∫
p(Y 1,T |θ, Y 0,T ,Mi)p(θ|Y 0,T ,Mi)dθ. (2)

In expression (2) the set of time series Y 0,T represents the training sample in

Bayesian parlance, and p(θ|Y 0,T ,Mi) is the training sample prior, whence the title

of the section. While training sample priors are often used in Bayesian macroe-

conometrics along the time series dimension (that is, using {yit}0
t=−P as a training

sample and then estimating the model over yi,T = {yit}Tt=1 for the same set of time

series i = 1, .., J), here we apply the approach to the cross sectional dimension.

The second reason why we may be interested in p(Y 1,T |Y 0,T ,Mi), rather than in

p(Y T |Mi), is that p(Y T |Mi) provides information on how well model Mi fits both

Y 0,T and Y 1,T , while the researcher may want to disentangle the goodness of fit of

one set of time series versus the other. The quantity p(Y 1,T |Y 0,T ,Mi) tells us how

well model Mi fits Y 1,T only, conditional on the parameter distribution delivering

the best possible fit for Y 0,T . This quantity easily obtains as the ratio of two objects

we know how to compute, p(Y 0,T , Y 1,T |Mi) and p(Y 0,T |Mi), since:

p(Y 1,T |Y 0,T ,Mi) =
p(Y 0,T , Y 1,T |Mi)
p(Y 0,T |Mi)

. (3)
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3 Model

The economy is described by a medium-scale New Keynesian model with price and

wage rigidities, capital accumulation, investment adjustment costs, variable capital

utilization, and habit formation. The model is based on work of Smets and Wouters

(2003), Smets and Wouters (2007), and Christiano et al. (2005). The specific version

is taken from Del Negro et al. (2007). For brevity we only present the log-linearized

equilibrium conditions and refer the reader to the above referenced papers for the

derivation of these conditions from assumptions on preferences and technologies.

Monetary Policy: Perfect versus Imperfect Information The central

bank follows a standard feedback rule:

Rt = ρRRt−1 + (1− ρR) (ψ1πt − ψ1π
∗
t + ψ2ŷt) + σrεR,t, (4)

where ŷt captures some measure of economic activity in log-deviations from its

steady state (in the baseline specification ŷt coincides with the growth rate of out-

put), and εR,t is an i.i.d. shock. The inflation target π∗t , defined in log-deviations

from its non-stochastic steady state π∗, evolves according to

π∗t = ρπ∗π
∗
t−1 + σP εP,t, (5)

where 0 < ρπ∗ < 1 and εP,t is an i.i.d. shock. Under perfect information, agents

observe π∗t . Under imperfect information they need to infer the inflation target

from the observed interest rate behavior (see Erceg and Levin (2003)). Call π̃t the

residual in the feedback rule, defined as:

π̃t = (ρrRt−1 + (1− ρr)(ψ1πt + ψ2ŷt)−Rt)/(1− ρr)ψ1. (6)

Agents solve a signal extraction problem using

π̃t = π∗t + σT εR,t (7)

as the measurement equation (where σT = σr
(1−ρR)ψ1

) and (5) as the transition equa-

tion. The law of motion of π∗t+1|t is obtained using the steady state Kalman filter

π∗t+1|t = ρπ∗π
∗
t|t−1 + ρπ∗K

(
π̃t − π∗t|t−1

)
, (8)
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whereK =
V (

σP
σT

,ρπ∗ )

1+V (
σP
σT

,ρπ∗ )
is the steady state Kalman gain coefficient and σ2

TV (σP
σT
, ρπ∗)

is the steady state uncertainty regarding the inflation target. V solves:

V = ρ2
π∗

[
V − V (V + 1)−1 V

]
+ (

σP
σT

)2.

We also consider the alternative law of motion for inflation target π∗t proposed

in Gurkaynak et al. (2005):

π∗t = ρπ∗π
∗
t−1 + χπt−1 + σP εP,t. (9)

As above agents know the policy rule and the evolution of the unobserved inflation

target. The forecast of the unobserved inflation target π∗t+1|t (10 ) now becomes:

steady state Kalman filter

π∗t+1|t = ρπ∗π
∗
t|t−1 + ρπ∗K

(
π̃t − π∗t|t−1

)
+ χπt (10)

where K is defined as before.

Firms. The economy is populated by a continuum of firms that combine capital

and labor to produce differentiated intermediate goods. These firms have access to

the same Cobb-Douglas production function with capital elasticity α and total factor

productivity Zt. Total factor productivity is assumed to be non-stationary, and its

growth rate zt = ln(Zt/Zt−1) follows the autoregressive process:

zt = (1− ρz)γ + ρzzt−1 + σzεz,t. (11)

Output, consumption, investment, capital, and the real wage can be detrended by

Zt. In terms of the detrended variables the model has a well-defined steady state.

All variables that appear subsequently are expressed as log-deviations from this

steady state.

The intermediate goods producers hire labor and rent capital in competitive

markets and face identical real wages, wt, and rental rates for capital, rkt . Cost

minimization implies that all firms produce with the same capital-labor ratio

kt − Lt = wt − rkt (12)
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and have marginal costs

mct = (1− α)wt + αrkt . (13)

The intermediate goods producers sell their output to perfectly competitive final

good producers, which aggregate the inputs according to a CES function. Profit

maximization of the final good producers implies the following demand curve

ŷt(j)− ŷt = −
(

1 +
1

λfe
eλf,t

)
(pt(j)− pt). (14)

Here ŷt(j)− ŷt and pt(j)− pt are quantity and price for good j relative to quantity

and price of the final good. The price pt of the final good is determined from a zero-

profit condition for the final good producers. We assume that the price elasticity of

the intermediate goods is time-varying. Since this price elasticity affects the mark-

up that intermediate goods producers can charge over marginal costs, we refer to

λ̃f,t as mark-up shock. Following Calvo (1983), we assume that in every period a

fraction of the intermediate goods producers ζp is unable to re-optimize their prices.

A fraction ιp of these firms adjust their prices mechanically according to lagged

inflation, while the remaining fraction 1− ιp adjusts to steady state inflation π∗. All

other firms choose prices to maximize the expected discounted sum of future profits,

which leads to the Phillips curve:

πt =
β

1 + ιpβ
IEt[πt+1] +

ιp
1 + ιpβ

πt−1 +
(1− ζpβ)(1− ζp)
ζp(1 + ιpβ)

mct +
1
ζp
λf,t, (15)

where πt is inflation and β is the discount rate.3 Our assumption on the behavior

of firms that are unable to re-optimize their prices implies the absence of price

dispersion in the steady state. As a consequence, we obtain a log-linearized aggregate

production function of the form

ŷt = (1− α)Lt + αkt. (16)

Equations (13), (12), and (16) imply that the labor share lsht equals marginal costs

in terms of log-deviations: lsht = mct.

3We used the following re-parameterization: λf,t = [(1− ζpβ)(1− ζp)λf/(1 + λf )(1 + ιpβ)]eλf,t.
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Households. There is a continuum of households with identical preferences,

which are separable in consumption, leisure, and real money balances. Households’

preferences display (internal) habit formation in consumption, that is, period t util-

ity is a function of ln(Ct−hCt−1). Households supply monopolistically differentiated

labor services. These services are aggregated according to a CES function that leads

to a demand elasticity 1 + 1/λw (see Equation (14)). The composite labor services

are then supplied to the intermediate goods producers at real wage wt. To introduce

nominal wage rigidity, we assume that in each period a fraction ζw of households

is unable to re-optimize their wages. A fraction ιw of these households adjust their

t − 1 nominal wage by πt−1e
γ , where γ represents the average growth rate of the

economy, while the remaining fraction 1 − ιp adjusts to steady state wage growth

π∗eγ . All other households re-optimize their wages. First-order conditions imply

that

w̃t = ζwβIEt

[
w̃t+1 + ∆wt+1 + πt+1 + zt+1 − ιwπt−1

]
+

1− ζwβ

1 + νl(1 + λw)/λw

(
νlLt − wt − ξt +

1
1− ζwβ

φt

)
, (17)

where w̃t is the optimal real wage relative to the real wage for aggregate labor

services, wt, and νl would be the inverse Frisch labor supply elasticity in a model

without wage rigidity (ζw = 0) and differentiated labor. Moreover, ξt denotes the

marginal marginal utility of consumption defined below and φt is a preference shock

that affects the intratemporal substitution between consumption and leisure. The

real wage paid by intermediate goods producers evolves according to

wt = wt−1 − πt − zt + ιwπt−1 +
1− ζw
ζw

w̃t. (18)

Households are able to insure the idiosyncratic wage adjustment shocks with

state contingent claims. As a consequence they all share the same marginal utility

of consumption ξt, which is given by the expression:

(eγ − hβ)(eγ − h)ξt = −(e2γ + βh2)ct + βheγIEt[ct+1 + zt+1] + heγ(ct−1 − zt), (19)

where ct is consumption. In addition to state-contingent claims households accu-

mulate three types of assets: one-period nominal bonds that yield the return Rt,
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capital k̄t, and real money balances.4

The first order condition with respect to bond holdings delivers the standard

Euler equation:

ξt = IEt[ξt+1] +Rt − IEt[πt+1]− IEt[zt+1]. (20)

Capital accumulates according to the following law of motion:

k̄t = (2− eγ − δ)
[
k̄t−1 − zt

]
+ (eγ + δ − 1)it, (21)

where it is investment, δ is the depreciation rate of capital. Investment in our

model is subject to adjustment costs, and S′′ denotes the second derivative of the

investment adjustment cost function at steady state. Optimal investment satisfies

the following first-order condition:

it =
1

1 + β

[
it−1 − zt

]
+

β

1 + β
IEt[it+1 + zt+1] +

1
(1 + β)S′′e2γ

(ξkt − ξt), (22)

where ξkt is the value of installed capital and evolves according to:

ξkt −ξt = βe−γ(1−δ)IEt
[
ξkt+1−ξt+1

]
+IEt

[
(1−(1−δ)βe−γ)rkt+1−(Rt−πt+1)

]
. (23)

Capital utilization ut in our model is variable and rkt in the previous equation rep-

resents the rental rate of effective capital kt = ut + k̄t−1. The optimal degree of

utilization is determined by

ut =
rk∗
a′′
rkt . (24)

Here a′′ is the derivative of the per-unit-of-capital cost function a(ut) evaluated at

the steady state utilization rate. The aggregate resource constraint is given by:

ŷt = (1 + g∗)
[
c∗
y∗
ct +

i∗
y∗

(
it +

rk∗
eγ − 1 + δ

ut

)]
+ gt. (25)

Here c∗/y∗ and i∗/y∗ are the steady state consumption-output and investment-

output ratios, respectively, and g∗/(1 + g∗) corresponds to the government share

of aggregate output. The process gt can be interpreted as exogenous government
4Since preferences for real money balances are assumed to be additively separable and monetary

policy is conducted through a nominal interest rate feedback rule, money is block exogenous and

we will not use the households’ money demand equation in our empirical analysis.
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spending shock. It is assumed that fiscal policy is passive in the sense that the

government uses lump-sum taxes to satisfy its period budget constraint. Finally,

all stochastic processes described above are assumed to be AR(1) processes with

normally distributed errors.

State-Space Representation of the DSGE Model. We use the method in

Sims (2002) to solve the log-linear approximation of the DSGE model. We collect

all the DSGE model parameters in the vector θ, stack the structural shocks in the

vector εt, and derive a state-space representation for our vector of observables yt,

which is composed of the transition equation:

st = T (θ)st−1 +R(θ)εt, (26)

which summarizes the evolution of the states st, and of the measurement equations:

Real output growth (%, annualized) 400(lnYt − lnYt−1) = 400(ŷt − ŷt−1 + zt)

Hours (%) 100 lnLt = 100(Lt + lnLadj)

Labor Share (%) 100 ln lsht = 100(Lt + wt − ŷt + ln lsh∗)

Inflation (%,annualized) 400(lnPt − lnPt−1) = 400(πt + lnπ∗)

Interest Rates (%,annualized) 400 lnRt = 400(Rt + lnR∗),

Inflation Expectations (%,annualized) πO,t+kt = 400(IEdsget [πt+k] + lnπ∗)

where LS∗, π∗, and R∗ are the steady states of the labor share, the inflation rate,

and the nominal interest rate, respectively, and where in the last equation πO,t+kt

represents the observed k periods ahead (in the benchmark specification k = 4) infla-

tion expectations and IEdsget [.] are the expectations obtained from the DSGE model.

The parameter Ladj captures the units of measured hours. It can be viewed as a

re-parameterization of the steady state associated with the time-varying preference

parameter φt that appears in the households’ utility function.
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4 Measurement and Issues with Modeling Inflation Ex-

pectations

Several issues arise in using inflation expectations as observables in the estimation of

DSGE models. First, there are several measures of inflation expectations available,

for different inflation measures, and at different horizons. Our measurement choice of

inflation expectations for the benchmark specification coincides with that of Erceg

and Levin (2003): we use four-quarter ahead expectations for the GDP deflator

obtained from the Survey of Professional Forecasters. We check for the robustness

of the results using different sources of expectations (Blue Chip versus SPF), and

different inflation measures (CPI versus GDP deflator). An alternative source of

inflation expectations is the Michigan Survey of households, which are available

at the one and ten years horizons. However in that Survey households are asked

about inflation in general, as opposed to any specific measure, and that may create

measurement error when matched with specific measures of inflation, especially at

the one year horizon. In terms of forecast horizons, we choose the longest forecast

horizon for which data are available since the 1980s, since arguably longer forecast

horizons are more informative on agents’ views about the plicymakers’ inflation

target.5

Second, forecasters (SPF or Blue Chip) have only the latest vintage of data

available, while the econometrician often uses the final vintage. This is potentially

a large issue, especially for revision in the inflation measure itself, which will heavily
5In principle we could use shorter horizons forecasts along with 4-quarter ahead expectations,

but we have not done that yet. Measures of inflation expectations for forecasting horizon longer

than 4 quarters ahead are available but with limitations in terms of sample length and frequency.

SPF provides 10-years ahead CPI inflation forecasts but the sample starts in 1990Q4. Bluechip

and the Philadelphia Fed’s Livingston survey also provide 10-years CPI inflation forecast staring

1979Q4 but the forecasts are taken only twice a year. Concerning the 5-years horizon, Bluechip

includes forecasts which are also taken twice a year, while SPF produces quarterly forecast starting

only in 2005Q3. SPF also provides quarterly 5 and 10 years forecast for PCE inflation but those

start in 2007Q1. Finally, SPF produces 2 year forecasts for CPI (core and total) and PCE (core

and total) inflation but they are available since 2007Q1 (CPI is available since 2005Q3).
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condition the forecasts. We do not fully address this issue, and we believe this may be

a worthwhile exercise for future research. We do however show the robustness of the

results when we use CPI as a measure of inflation, as opposed to the more heavily

revised GDP deflator. Non-seasonally CPI is never revised. Seasonally adjusted

CPI adjusted has revisions, but these are fairly small compared to those for the

GDP deflator. See Figure 1. Of course, measured expectations are also function of

measures of economic activity. In this sense our results, even those obtained with

CPI, are still open to the issue of data revisions.

Third, there is an issue of information synchronization. SPF forecasters pro-

vide their forecasts in the middle of the quarter, and hence have partial information

about the state of the economy in the current quarter. We deal with this issue by

checking the robustness of the results to different assumptions regarding the tim-

ing of the agents’ information set. The benchmark results are obtained assuming

that observed expectations are formed using current quarter information. The al-

ternative assumption, which we call “Lagged Information” specification, is that the

forecasters are only endowed with information up to the previous quarter. Last,

forecasts are heterogeneous, and our model cannot account for such heterogeneity

(sticky information models can produce heterogeneous expectations, see Mankiw et

al. (2003)). Again, this is an interesting avenue for future research.

Finally, the standard set of macro data used in the estimation includes the

following variables: Output growth (log differences, quarter-to-quarter, in %); hours

worked (log, in %); labor share (log, in %); inflation (annualized, in %, we use either

GDP deflator and CPI, depending on the the corresponding inflation expectation

measure); nominal interest rate (annualized, in %). See Appendix A for details. We

use 97 quarters of data spanning the Volcker-Greenspan period: 1984Q2 to 2008Q2.



This Version: October 7, 2009, First version: April 2009 13

5 Comparing Perfect and Imperfect Information Mod-

els of Time-Varying Inflation Target

5.1 Prior Choice and Prior Predictive Checks

Table 1 shows the priors for the parameters of the policy rule (4) and the associated

law of motion for the inflation target π∗t (5), which are the key parameters for the

exercise conducted here. Priors for the responses to inflation (ψ1) and the measure

of economic activity (ψ2) – output growth in the baseline specification – in the policy

rule, persistence (ρr), and steady state inflation target (π∗) are as chosen as follows.

In particular, The prior on π∗ is centered using pre-sample information on inflation,

as in Del Negro and Schorfheide (2008). The prior on ψ1 and ψ2 are centered at

2 and .2 respectively, and imply a fairly strong response to inflation and a much

moderate response to output. Priors on variance of i.i.d. policy shocks σr is centered

at .15. In general the priors on the standard deviations of the shocks are chosen

so that overall variance of endogenous variables is roughly close to that observed

in the pre-sample 1959Q3-1984Q1, informally following the approach in Del Negro

and Schorfheide (2008). Key priors are those on persistence and standard deviation

of the innovation to π∗t process, as they determine, together with the prior on σr,

the agents’ Kalman gain in the Imperfect Information model. We follow Erceg and

Levin (2003) and make the process followed by π∗t very persistent: The prior for ρπ∗

is centered at .95 and the 90% bands range from about .91 to .99.

In the Benchmark prior the prior on σπ∗ , centered at .05, is independent from

all other parameters, and is fairly loose.6 An alternative prior (“Signal-to-Noise

Ratio Prior”) places a prior directly on the Signal-to-Noise ratio (and hence induces

dependence between σπ∗ and σr) and is centered at the value that delivers a Kalman

gain of approximately .13, the value calibrated by Erceg and Levin (2003).

Priors on nominal rigidities parameters are shown in the top panel of Table 2).

To check robustness to the degree of nominal rigidities in the economy we consider
6In this and all other tables the standard deviations σπ∗ and σr are not annualized.
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two priors, as in Del Negro and Schorfheide (2008): “Low Rigidities” (loosely cali-

brated at Bils and Klenow (2004) values of average duration less than 2 quarters),

and “High Rigidities” (duration about 4 quarters).

Priors on remaining parameters are shown in the bottom panel of Table 2). The

priors on “Endogenous Propagation and Steady State” are all chosen as in Del Negro

and Schorfheide (2008). Specifically, the prior for the habit persistence parameter

h is centered at 0.7, which is the value used by Boldrin et al. (2001). The prior

for a′ implies that in response to a 1% increase in the return to capital, utilization

rates rise by 0.1 to 0.3%. These numbers are considerably smaller than the one used

by Christiano et al. (2005). The 90% interval for the prior distribution on νl implies

that the Frisch labor supply elasticity lies between 0.3 and 1.3, reflecting the micro-

level estimates at the lower end, and the estimates of Kimball and Shapiro (2003)

and Chang and Kim (2006) at the upper end. We use a pre-sample of observations

from 1959Q3-1984Q1 to choose the prior means for the parameters that determine

steady states.

The priors on standard deviations and autocorrelations are chosen so that over-

all variance and autocorrelations of endogenous variables is roughly close to that

observed in the pre-sample 1959Q3-1984Q1 (see Table 3). Table 3 also shows that

although we use the same prior for both the models under consideration – the Im-

perfect and Perfect Information models – the prior predictive statistics are fairly

similar across models.

5.2 Model Comparison Results

Table 4 shows the log marginal likelihood for three models: Imperfect Information,

Perfect Information, and the model with constant inflation target (Fixed-π∗). For

all models we use the Benchmark prior. The Dataset with Expectations uses the

SPF 4-quarters ahead median forecast for the GDP deflator. For these results we

assume that the expectations are generated using current quarter information. In

the remainder of the paper we condition on two lags of the variables included in Y 0

when computing both marginal likelihoods and posteriors.
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Table 4 shows that for the dataset without expectations (column (1)) all three

models perform about the same, with the Fixed-π∗ model performing slightly worse.

The difference in lnp(Y 0,T |Mi) for the Imperfect and Perfect Information models is

.69, which implies a posterior odd of roughly 2 in favor of the Imperfect Information

model. The difference in ln p(Y 0,T |Mi) for the Fixed-π∗ is larger, about 5. Although

this difference implies that the posterior odds are heavily against the Fixed-π∗ model,

Del Negro and Schorfheide (2008) show that for marginal likelihoods for DSGE

models are quite sensitive to the choice of priors, so that a difference of 5 can in

principle be overturned by choosing a slightly different prior.

When SPF inflation expectations are included among the observables, the Per-

fect Information model with time-varying π∗ performs significantly better than both

the Fixed-π∗ and, most importantly, the Imperfect Information model. The differ-

ence in the log marginal likelihoods ln p(Y 0,T , Y 1,T |Mi) between the Perfect and Im-

perfect Information models is about 25 in favor of the latter. The data disfavors the

Fixed-π∗ even more strongly. Since the marginal likelihoods ln p(Y 0,T |Mi) are simi-

lar across models, these differences translate into differences in ln p(Y 1,T |Y 0,T ,Mi).

They imply that the Perfect Information model fits observed inflation expectations

much better than either the Imperfect Information or the Fixed-π∗ model. The

fact that the differences are large indicates that the extra observable included in

Y 1,T contains quite a lot of information as to which model describes it best. In

the remainder of the section we will provide additional evidence that the Imperfect

Information model has a much harder time at explaining observed inflation expec-

tations than the Perfect Information one. Next, we will provide the intuition as to

why this is the case.

Table 5 shows the median in-sample forecast errors for the Imperfect and Per-

fect Information models computed using the Kalman filter. In the top panel we

compute the RMSEs using for each model the respective parameter values that

maximize the posterior for the dataset without expectations (that is, the value of

θ that maximizes p(θ|Y 0,T ,Mi)). Columns (1) and (2) show the errors for the two

models computed without providing the econometrician with the information about
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observed inflation expectations. Specifically, for each variable xt we show the av-

erage value of (xt − IE[xt|Y 0,t−1,Mi])2. The next column shows the ratio of the

RMSEs for the two models. These figures are all in the neighborhood of one, indi-

cating that the forecasting performance of the models is roughly equal. In fact, the

log likelihood ln p(Y 0,T |Mi, θ) is quite similar for the two models. Interestingly, the

ratio of RMSEs is about one also for observed inflation expectations, which are not

part of the econometrician’s information set (the numbers for inflation expectations

are in parenthesis to emphasize that the corresponding forecast errors are computed

without including this variable in the information set).

For the same set of parameters the forecast performance of the two models for

the variables in Y 0,T worsens considerably when inflation expectations are included

into the econometrician’s information set, and this is particularly the case for the

Imperfect Information model. This is apparent from columns (3) and (4), which

show (xt − IE[xt|Y 0,t−1, Y 1,t−1,Mi])2 for the two models. The last two columns of

Table 5 show the ratio of the RMSEs with and without including inflation expec-

tations among the observables for the Imperfect and Perfect Information models,

respectively. All these figures are larger than one for both models for all the vari-

ables included in Y 0,T (of course, for inflation expectations the RMSEs decrease).

The worsening of in-sample forecasting performance is particularly large for the Im-

perfect Information model, where the increase in RMSEs range from 7% to 46%.

As a consequence, when inflation expectations are included in the set of observables

the Perfect Information model performs better than the Imperfect Information one:

The ratios between the figures in column (3) and (4) are all larger than one (and

the log likelihood ln p(Y 0,T , Y 1,T |Mi, θ) is much larger for the Perfect Information

model).

The values of θ that maximizes p(θ|Y 0,T ,Mi) for the two models are of partic-

ular interest because it is the mode of the prior in formula (2). Nonetheless, such

value may overemphasize the effect of including inflation expectations among the

observables, since it maximizes the model’s fit (adjusting for the prior) when this

variable is excluded. Therefore the bottom panel of Table 5 repeats the exercise
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using the value of θ that maximizes p(θ|Y 0,T , Y 1,T ,Mi)) for each of the two models,

respectively. For these parameters it is still the case that the ratios of the RMSEs

in column (3) and (4) are all larger than one, except for inflation expectations were

the in-sample forecasting performance is the same. Moreover, for the Imperfect In-

formation model it is also still the case that forecasting performance worsens for all

variables when inflation expectations are included into the econometrician’s infor-

mation set. For the Perfect Information model this is the case only for some of the

variables, notably for inflation.

Including inflation expectations among the observables worsens the fit of Im-

perfect Information model relative to that of the Perfect Information, consistently

with the marginal likelihood results in Table 4. In order to understand this result

we ask what kind of inflation expectations the two models generate whenever actual

inflation expectations are not among the observables. Figure 3 plots the projections

for the 4-quarter ahead inflation forecasts generated by the Imperfect (black solid)

and Perfect (gray solid) Information models. This exercise is performed using the

value of θ that maximizes p(θ|Y 0,T ,Mi) for the two models – the mode of the prior

in formula (2).

To the extent that the inflation expectations generated by the model are roughly

in line with the observed data, including measured expectations among the observ-

ables is unlikely to change the estimates of the states, and hence the forecasts of the

other variables. However, if there is a large discrepancy between a model’s forecasts

of inflation expectations and what we observe in the data, we expect both the esti-

mates of the states and the forecasts of the other variables to change substantially

following the addition of measured expectations to econometrician’s information set.

Figure 3 also plots the actual inflation expectation data – namely, the SPF 4-quarters

ahead median forecast for the GDP deflator (red dashed-and-dotted) – along with

the projections. It is clear that the inflation forecasts generated by the both models

are at odds with the data. They are too low in the early part of the sample, and

too high in the later part. Interestingly, the inflation expectations generated by the

two models are very similar.
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The top panel of Figure 4 plots the mean estimate of the latent variable π∗t|t for

the Imperfect Information model for the dataset without (black line) and with (gray

line) inflation expectations. Similarly, the middle panel shows the mean estimate

of the latent variable π∗t for the Perfect Information model for the dataset without

(black line) and with (gray line) inflation expectations. Since in the Imperfect

Information model agents do not observe the actual π∗t , these two latent variables

are conceptually equivalent in that in each model they drive the agents’ beliefs

about the inflation target.7 In both panels these figures are computed using the

value of θ that maximizes p(θ|Y 0,T ,Mi). Both panels also show observed inflation

expectations (dashed-and-dotted line).

The time series for π∗t|t and π∗t look very similar across the two models when

the econometrician does not have information about inflation expectations (black

lines in top and middle panels). Not surprisingly, for both models the movement

in these time series mirrors that of the model-generated inflation expectations in

Figure 3. When inflation expectations are included among the observables, the path

for π∗t in the Perfect Information model moves closer to that of observed inflation

expectations. Very loosely speaking, the filtering procedure realizes that the model

is failing to match the new observable, and adjusts the latent state π∗t accordingly.

For the Imperfect Information model the path for π∗t|t barely move, and only at the

very beginning. The law of motion of the agents’ perception of the inflation target

π∗t|t is given by:

π∗t|t = (1−K)ρπ∗π∗t−1|t−1 +Kπ̃t, (27)

which obtains rearranging equation (10). As we iterate this law of motion forward

starting from the initial condition π∗0|0, we realize that the econometricians only

degree of freedom lies in the choice of this initial condition. After that, the path

for π∗t|t is pinned down by that of the interest feedback rule residual π̃t, defined in

equation (6). In the baseline model where the interest rate responds to inflation

and output growth this residual is pinned down by the data, for given parameters
7In the Imperfect Information model all the econometrician can infer from the data is the agents’

belief about π∗t .
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(the bottom panel of Figure 4 plots π̃t, and shows that its fluctuations are consistent

with the evolution of π∗t|t). Hence the filtering procedure cannot adjust π∗t|t to match

inflation expectations, and needs to rely on large, and likely persistent, shocks to fill

the gap between π∗t|t and observed expectations. These large shocks negatively affect

the fit for the other observables. In conclusion, the Imperfect Information model

imposes tighter cross-equation restrictions than the Perfect Information model, in

the sense that it cannot rely on adjusting the latent variable π∗t to fit the data.

5.3 Robustness to the Choice of Priors, Datasets, Timing Conven-

tions, and Policy Rules

This section investigates the robustness of the model comparison results to the choice

of priors, datasets, timing conventions, and policy rules. Lines (1) and (2) of Table 6

report the model comparison results under the “‘High Nominal Rigidities” prior and

“Signal-to-Noise Ratio” prior described in section 5.1, respectively. We find that

the “High Nominal Rigidities” prior favors the Perfect Information relative to the

Imperfect Information model, in that the difference in ln p(Y 1,T |Y 0,T |Mi) is larger

in favor of the Perfect Information model (we use the “Low Nominal Rigidities” prior

precisely because it gives the Imperfect Information model the best shot). Using

the “Signal-to-Noise Ratio” prior makes little difference.

Lines (3) through (8) show the log marginal likelihoods for the two models

under different timing assumptions (“Lagged Information” specification), source for

inflation expectations (“Blue Chip” versus SPF), and inflation measure (CPI versus

GDP deflator), and measures of the short term interest rate (3 Month T-Bill versus

the Fed Funds rate). Under the “Lagged Information” specification the forecasters

in the SPF Survey are only endowed with information up to the previous quarter.

Results are robust to both timing assumptions and measurement choices. The gap in

ln p(Y 1,T |Y 0,T |Mi) between the Perfect and Imperfect Information models varies

among the different specifications, but is always larger than 20. The gap widens

substantially whenever we use CPI (which is less subject to revisions) as opposed

to the GDP Deflator.
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Lines (9) through (11) report the model comparison results under different speci-

fications of the policy rule, where the policy makers target output growth as opposed

to the output gap (“Output Growth”), a four-quarter moving average of inflation

as opposed to current inflation (“4Q Inflation”), or where the the law of motion for

the inflation target follows the rule suggested by Gurkaynak et al. (2005) (“GSS”).

Under this rule the marginal likelihood gap between the Imperfect and Perfect In-

formation models stays roughly constant or increases. Under the rule proposed

by Gurkaynak et al. (2005) the gap narrows, but it is still larger than 17.8 The last

two rows of Table 6 show the marginal likelihoods for the models where we allow

for measurement error in expectations. We discuss this case in detail in section 6.

5.4 Posterior Estimates and Variance Decomposition

Table 7 shows the posterior mean and standard deviation (in parenthesis) of the

parameters. The differences in parameter estimates between the posterior without

(p(θ|Y 0,T ,Mi)) and with inflation expectations (p(θ|Y 0,T , Y 1,T ,Mi)) are not par-

ticularly noticeable for the Imperfect Information model. The ratio of σπ∗ to σr de-

creases from .13 to .11 between columns 1 (p(θ|Y 0,T ,Mi)) and 2 (p(θ|Y 0,T , Y 1,T ,Mi))

, and the estimates of ρπ∗ and ρrdecrease as well. The importance of nominal rigidi-

ties decreases, consistently with the results in line (1) of Table 6. The importance

of investment adjustment increases by about 60%, which implies that investment

specific shocks become much more powerful when inflation expectations are used

in the estimation. The persistence of shocks all increase, except for productivity

shocks, and the increase is particularly noticeable for preference shocks to leisure φt

(recall that hours is the variable for which the RMSE in Table 5 worsens the most

when inflation expectations become part of the econometrician’s information set).

The shocks standard deviations generally rise, and particularly that of government

spending shocks gt.

Changes in parameters for the Perfect Information model are even less dramatic.
8In the estimation of the GSS model we used the value of χ = .02 in expression (9), which is

the value used by Gurkaynak et al. (2005).
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The curvature of the dis-utility from working nul decreases between columns 1

(p(θ|Y 0,T ,Mi)) and 2 (p(θ|Y 0,T , Y 1,T ,Mi)), thereby making hours more elastic,

and the persistence of φt shock decreases (with a more elastic labor supply the

reliance on φt shocks to explain movements in hours decreases). Movements in the

inflation target become larger and more persistent (both σπ∗ and ρπ∗ increase).

Table 8 shows the (unconditional) variance decomposition computed using the

posterior distribution for the Imperfect and Perfect Information models obtained

using the dataset that includes observed inflation expectations. The time -varying

inflation target π∗t is the main driver of inflation expectations in the Perfect Infor-

mation model, while it explains very little under Imperfect Information, consistently

with the intuition discussed in section 5.2.

6 Introducing Measurement Error in Observed Infla-

tion Expectations

Rows (9) and (10) of Table 6 show the marginal likelihoods for the models where we

allow for measurement error in expectations. The measurement error is either i.i.d.

(“i.i.d. Meas. Error”) or follows and AR(1) process (“AR(1) Meas. Error”). The

Perfect Information model is still superior to the specification with Imperfect Infor-

mation when the measurement error is i.i.d.. The difference in ln p(Y 1,T |Y 0,T |Mi)

is about 16, which is smaller than in Table 4 but still substantial. The fit of the two

models are essentially the same under AR(1) measurement error.

We conjecture that the autoregressive measurement error largely “takes care”

of the misspecification in the Imperfect (and to some extent also in the Perfect)

Information model, so we revert to the original result that when the dataset does

not include inflation expectations the fit of the two models is about the same. We

substantiate this conjecture using the variance decomposition for observed inflation

expectations – both unconditional and 10-quarters ahead – shown in Table 9. We

find that i.i.d. measurement error is not all that important for both the Imperfect
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and Perfect Information models. Its contribution is small for the unconditional vari-

ance, and between 30 and 45% at the 10-quarters ahead horizon. The AR(1) mea-

surement error is the most important source of variation for observed expectations

in both models, however. Measurement error explains about 60 and 40-45 percent of

the variance for the Imperfect and Perfect Information models, respectively. While

issues of data revisions and data synchronization are likely to introduce a mismatch

between measured and model-generated inflation expectations, our prior would be

that this mismatch is relatively short-lived. The results for the AR(1) measurement

error show otherwise. We certainly do not claim that the measurement error results

fully address the issues mentioned above (we assume that measurement error is in-

dependent from the state of the economy, while there is evidence that data revisions

are not). But these results, together with the intuition developed in section 5.2,

suggest that there may be more to the discrepancy between measured and model-

generated inflation expectations than just issues of data revisions, especially for the

Imperfect Information model.

7 Conclusions

TBW
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A Data

The data set is obtained from Haver Analytics (Haver mnemonics are in italics). We

compile observations for the variables that appear in the measurement equation (27).

Real output is obtained by dividing the nominal series (GDP) by population 16 years

and older (LN16N), and deflating using the chained-price GDP deflator (JGDP).

We compute quarter-to-quarter output growth as log difference of real GDP per

capita and multiply the growth rates by 100 to convert them into percentages. Our

measure of hours worked is computed by taking total hours worked reported in the

National Income and Product Accounts (NIPA), which is at annual frequency, and

interpolating it using growth rates computed from hours of all persons in the non-

farm business sector (LXNFH). We divide hours worked by LN16N to convert them

into per capita terms. We then take the log of the series multiplied by 100 so that all

figures can be interpreted as percentage changes in hours worked. The labor share

is computed by dividing total compensation of employees (YCOMP) obtained from

the NIPA by nominal GDP. We then take the log of the labor share multiplied by

100. Inflation rates are defined as log differences of the GDP deflator and converted

into annualized percentages. The nominal rate corresponds to the effective Federal

Funds Rate (FFED), also in percent. As an alternative measure of the nominal rate

we use the three months Tbill (FTBS3),

We use Survey of Professional Forecasters (SPF) quarterly measures of expected

inflation. We consider both expectations for GDP deflator9 and for CPI inflation.

In particular, we use the median four -quarters-ahead forecast of inflation in annu-

alized terms. Concerning the information available to the forecasters, the survey

is sent out at the end of the first month of each quarter and responses deadlines

occur in the middle month of each quarter. Therefore, respondents have knowl-

edge about the BEA advance report of the National Income and Product Accounts.

We also compute the revisions in GDP deflator and CPI occurred since 1982 us-

ing the real time dataset available from the Federal Reserve Bank of Philadelphia.
9In more detail, the forecast are for the GDP price index, seasonally adjusted (base year varies).

Prior to 1996, the forecast variable was the GDP implicit deflator. Prior to 1992, the GNP deflator.
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(http://www.philadelphiafed.org/research-and-data/real-time-center/real-time-data/)

As an alternative measure of inflation expectations, we use Bluechip monthly

forecasts of CPI inflation. We choose forecast horizons of 3 and 4 quarters ahead.

In order to compare Bluechip and SPF quarterly forecast of CPI inflation, we use

the Bluechip forecasts available in the middle month of each quarter. This roughly

corresponds to the time period when SPF participants provide their forecasts.
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Table 1: Priors on Policy Parameters

Parameter Domain Density Para (1) Para (2) 5% 95%

ψ1 R+ Gamma 2.00 0.25 1.592 2.408

ψ2 R+ Gamma 0.20 0.10 0.049 0.349

ρr [0,1) Beta 0.50 0.200 0.170 0.827

π∗ R Normal 4.3 2.5 0.520 8.17

σr R+ InvGamma 0.150 4.00 0.080 0.298

ρπ∗ [0,1) Beta 0.950 0.025 0.913 0.989

Benchmark Prior

σπ∗ R+ InvGamma 0.050 8.000 0.032 0.078

Signal-to-Noise Ratio Prior

σNR = σP
σT

R+ Gamma 0.180 0.150 0.001 0.380

Notes: Para (1) and Para (2) correspond to means and standard deviations for the Beta, Gamma, and Nor-

mal distributions and to s and ν for the Inverse Gamma distribution, where pIG(σ|ν, s) ∝ σ−ν−1e−νs2/2σ2
.

The last two columns report the 5th and 95th quintile of the prior distribution.
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Table 2: Priors on Non-Policy Parameters

Parameter Domain Density Para (1) Para (2) 5% 95%

Priors on Nominal Rigidities Parameters

Low Rigidities (Benchmark)

ζp [0,1) Beta 0.450 0.100 0.285 0.614
ζw [0,1) Beta 0.450 0.100 0.285 0.614

High Rigidities

ζp [0,1) Beta 0.750 0.100 0.590 0.913
ζw [0,1) Beta 0.750 0.100 0.590 0.913

Priors on “Endogenous Propagation and Steady State” Parameters
α [0,1) Beta 0.330 0.020 0.297 0.362
s′ ′ R+ Gamma 4 1.500 1.614 6.303
h [0,1) Beta 0.700 0.050 0.619 0.782
a′ R+ Gamma 0.200 0.100 0.049 0.349
νl R+ Gamma 2 0.75 0.787 3.137
r∗ R+ Gamma 1.5 1 0.106 2.883
γ R+ Gamma 1.650 1 0.204 3.073
g∗ R+ Gamma 0.300 0.100 0.143 0.459
ιp [0,1) Beta 0.5 0.280 0.043 0.922
ιw [0,1) Beta 0.5 0.280 0.049 0.932

Priors on ρs and σs
ρz [0,1) Beta 0.400 0.250 0.000 0.764
ρφ [0,1) Beta 0.750 0.150 0.530 0.982
ρλf

[0,1) Beta 0.750 0.150 0.530 0.982
ρµ [0,1) Beta 0.750 0.150 0.530 0.982
ρg [0,1) Beta 0.750 0.150 0.530 0.982
σz R+ InvGamma 0.200 4.000 0.107 0.395
σφ R+ InvGamma 2.500 4.000 1.326 4.930
σλf

R+ InvGamma 0.300 4.000 0.161 0.596
σµ R+ InvGamma 0.500 4.000 0.264 0.99
σg R+ InvGamma 0.300 4.000 0.159 0.594

Notes: Para (1) and Para (2) correspond to means and standard deviations for the Beta, Gamma, and Nor-

mal distributions and to s and ν for the Inverse Gamma distribution, where pIG(σ|ν, s) ∝ σ−ν−1e−νs2/2σ2
.

The last two columns report the 5th and 95th quintile of the prior distribution.
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Table 3: Prior Implications for Moments of the Endogenous Variables

Variables St. Dev. Autocorr.

Imperfect

Information

Perfect

Information
Data

Imperfect

Information

Perfect

Information
Data

OutputGrowth 3.48 3.47 4.33 0.39 0.39 0.28

LaborSupply 2.98 2.98 3.20 0.93 0.93 0.96

LaborShare 1.39 1.39 2.24 0.86 0.86 0.95

Inflation 3.13 3.15 2.77 0.71 0.72 0.88

InterestRate 4.34 4.38 4.30 0.85 0.85 0.87

Exp. Inflation 1.37 1.40 0.86 0.85

Notes: II: imperfect information; PI: perfect information. The pre-sample statistics (column Data) are

in italics. These statistics are computed over the sample 1959Q3-1984Q1. Inflation expectations are not

available during most of the pre-sample. The in-sample standard deviation and first-order autocorrelation

of inflation expectations are 1.21, and 0.86, respectively.



This Version: October 7, 2009, First version: April 2009 31

Table 4: Model Comparison

ln p(Y 0,T ) ln p(Y 0,T , Y 1,T ) ln p(Y 1,T |Y 0,T )

Dataset Dataset

without with

Expectations Expectations

(1) (2) (2) - (1)

Imperfect Information -703.62 -811.04 -107.42

Perfect Information -704.31 -786.35 -82.04

Fixed π∗ -709.29 -821.84 -112.55

Notes: The Table shows the log marginal likelihood for three models: Imperfect Information, Perfect

Information, and the model with constant inflation target (Fixed-π∗). For all models we use the Benchmark

prior. The Dataset with Expectations uses the SPF 4-quarters ahead median forecast for the GDP deflator.

We assume that the expectations are generated using current quarter information.
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Table 5: In-sample RMSEs

Dataset without
Expectations

Dataset with
Expectations

Increase/Decrease

in RMSE

Imperfect

Info.

Perfect

Info.

Imperfect

Info.

Perfect

Info.

(1) (2) (1)/(2) (3) (4) (3)/(4) (1)/(3) (2)/(4)

Posterior mode estimates for the dataset without expectations

Output Growth 2.221 2.258 0.984 3.056 2.374 1.287 1.376 1.052

Labor Supply 0.573 0.563 1.017 0.838 0.660 1.271 1.463 1.171

Labor Share 0.537 0.540 0.994 0.575 0.559 1.029 1.071 1.036

Inflation 0.869 0.895 0.971 1.014 0.996 1.018 1.167 1.114

Interest Rate 1.526 1.543 0.989 1.758 1.673 1.051 1.152 1.084

Exp. Inflation (0.987) (.959) (1.029) 0.512 0.487 1.051 0.518 0.507

Likelihood -656.7 -660.3 -1088.4 -791.7

Posterior mode estimates for the dataset with expectations

Output Growth 2.271 2.166 1.048 2.370 2.119 1.119 1.044 0.978

Labor Supply 0.580 0.556 1.043 0.654 0.554 1.182 1.129 0.996

Labor Share 0.544 0.530 1.025 0.563 0.539 1.044 1.035 1.016

Inflation 1.010 0.922 1.096 1.030 0.977 1.054 1.020 1.060

Interest Rate 1.583 1.487 1.064 1.635 1.499 1.090 1.033 1.008

Exp. Inflation (0.774) (0.703) (1.101) 0.477 0.479 0.996 0.616 0.682

Likelihood -685.2 -668.7 -760.9 -732.4

Notes: The table shows the in-sample Root Mean Square Errors (RMSEs) for the Imperfect and Perfect

Information models computed using the Kalman filter. The top panel shows the RMSEs using for each

model the respective posterior mode for the dataset without expectations. The bottom panel shows the

RMSEs using for each model the respective posterior mode for the dataset with expectations.
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Table 6: Robustness of Model Comparison Results

Imperfect Information Perfect Information

ln p(Y 0,T ) ln p(Y 0,T , Y 1,T ) ln p(Y 1,T |Y 0,T ) ln p(Y 0,T ) ln p(Y 0,T , Y 1,T ) ln p(Y 1,T |Y 0,T )

Dataset Dataset Dataset Dataset

without with without with

Expectations Expectations Expectations Expectations

(1) (2) (2) - (1) (3) (4) (4) - (3)

Robustness to Priors

(1) High Nominal Rigidities Prior
-701.65 -820.84 -119.19 -705.39 -789.26 -83.87

(2) Signal-to-Noise Ratio Prior
-703.86 -811.97 -108.11 -709.66 -786.59 -76.93

Robustness to Data Sets and Timing Assumptions

(3) Lagged Information
-703.62 -800.74 -97.12 -704.31 -780.53 -76.22

(4) Blue Chip Expectations
-703.62 -761.68 -58.06 -704.31 -742.11 -37.80

(5) CPI and SPF expectations
-761.28 -844.98 -83.70 -763.72 -771.38 -7.66

(6) CPI and Blue Chip expectations
-761.28 -865.04 -103.76 -763.72 -779.31 -15.59

(7) Tbill
-587.31 -679.80 -92.49 -587.99 -638.89 -50.90

(8) Tbill, CPI
-643.71 -735.99 -92.28 -644.22 -661.41 -17.19

Notes: The table shows the log marginal likelihood for the Imperfect Information and Perfect Information

models under different choices of priors, datasets, timing conventions, and policy rules. Lines (1) and (2)

report the results under the “High Nominal Rigidities” prior and “Signal-to-Noise Ratio” prior, respectively.

Lines (3) to (6) show the log marginal likelihood for the two models under different timing assumptions

(“Lagged Information” specification), measures of inflation and measures of inflation expectations (“Blue

Chip Expectations”, “CPI and SPF Expectations”, “CPI and Blue Chip Expectations”). Lines(7) and (8)

report the results under different measures of nominal interest rate and inflation (“Tbill”,“CPI and Tbill”).

Lines (9)-(11) report the results under different specifications of the policy rule, where the policy makers

target output growth as opposed to the output gap (“Output Growth”), a four-quarter moving average of

inflation as opposed to current inflation (“4Q Inflation”), or where the the law of motion for the inflation

target follows the rule suggested by Gurkaynak et al. (2005) (“GSS”). Finally, lines (12) and (13) report the

log marginal likelihood for the two models measurement errors are added (“i.i.d. Measurement Error”, and

“AR(1) Measurement Error”).
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Table 6: Robustness of Model Comparison Results – Continued

Imperfect Information Perfect Information

ln p(Y 0,T ) ln p(Y 0,T , Y 1,T ) ln p(Y 1,T |Y 0,T ) ln p(Y 0,T ) ln p(Y 0,T , Y 1,T ) ln p(Y 1,T |Y 0,T )

Dataset Dataset Dataset Dataset

without with without with

Expectations Expectations Expectations Expectations

(1) (2) (2) - (1) (3) (4) (4) - (3)

Robustness Policy Rule Specification

(9) Output Level
-715.46 -816.23 -100.77 -709.17 -791.74 -82.57

(10) 4Q Inflation
-703.74 -820.96 -117.22 -698.88 -790.42 -91.5

(11) GSS
-707.79 -805.64 -97.85 -709.45 -789.99 -80.54

Measurement Error

(12) i.i.d. Measurement Error
-703.62 -796.31 -92.69 -704.31 -780.89 -76.58

(13) AR(1) Measurement Error
-703.62 -775.31 -71.69 -704.31 -775.21 -70.90
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Table 7: Posterior Estimates for Selected Parameters

Parameters

Imperfect
Information

Dataset without
Expectations

(1)

Imperfect
Information

Dataset with
Expectations

(2)

Perfect
Information

Dataset without
Expectations

(3)

Perfect
Information

Dataset with
Expectations

(4)

Policy Parameters
ψ1 2.442 ( 0.225) 1.915 ( 0.123) 2.497 ( 0.247) 2.324 ( 0.191)

ψ2 0.282 ( 0.112) 0.255 ( 0.106) 0.232 ( 0.093) 0.264 ( 0.110)

ρr 0.407 ( 0.077) 0.375 ( 0.065) 0.454 ( 0.067) 0.592 ( 0.043)

ρπ? 0.945 ( 0.025) 0.907 ( 0.021) 0.943 ( 0.025) 0.974 ( 0.011)

σr 0.404 ( 0.037) 0.422 ( 0.033) 0.389 ( 0.036) 0.435 ( 0.035)

σπ∗ 0.054 ( 0.010) 0.048 ( 0.009) 0.058 ( 0.012) 0.066 ( 0.009)

Nominal Rigidities Parameters
ζp 0.579 ( 0.061) 0.530 ( 0.057) 0.558 ( 0.051) 0.580 ( 0.061)

ιp 0.285 ( 0.182) 0.494 ( 0.202) 0.346 ( 0.181) 0.317 ( 0.167)

ζw 0.249 ( 0.069) 0.186 ( 0.031) 0.238 ( 0.061) 0.353 ( 0.098)

ιw 0.400 ( 0.251) 0.540 ( 0.257) 0.375 ( 0.253) 0.370 ( 0.236)

Other “Endogenous Propagation and Steady State” Parameters
α 0.340 ( 0.003) 0.340 ( 0.004) 0.340 ( 0.003) 0.341 ( 0.003)

s′ ′ 2.831 ( 0.880) 4.529 ( 1.152) 3.002 ( 0.902) 3.543 ( 1.205)

h 0.649 ( 0.047) 0.636 ( 0.053) 0.658 ( 0.049) 0.640 ( 0.046)

a′ 0.291 ( 0.112) 0.212 ( 0.097) 0.275 ( 0.102) 0.274 ( 0.095)

νl 2.153 ( 0.534) 2.690 ( 0.649) 2.271 ( 0.588) 1.327 ( 0.510)

r∗ 1.000 ( 0.423) 1.424 ( 0.541) 1.019 ( 0.452) 1.259 ( 0.471)

π∗ 2.470 ( 0.996) 3.068 ( 0.574) 2.106 ( 0.759) 3.662 ( 1.134)

γ 1.629 ( 0.333) 1.511 ( 0.330) 1.646 ( 0.362) 1.454 ( 0.314)

g∗ 0.272 ( 0.090) 0.304 ( 0.100) 0.287 ( 0.092) 0.306 ( 0.107)

ρs and σs
ρz 0.203 ( 0.094) 0.200 ( 0.095) 0.247 ( 0.090) 0.177 ( 0.098)

ρφ 0.837 ( 0.071) 0.980 ( 0.013) 0.850 ( 0.062) 0.569 ( 0.218)

ρλf
0.823 ( 0.073) 0.838 ( 0.059) 0.840 ( 0.058) 0.803 ( 0.071)

ρµ 0.885 ( 0.050) 0.910 ( 0.025) 0.897 ( 0.044) 0.894 ( 0.051)

ρg 0.810 ( 0.116) 0.824 ( 0.056) 0.798 ( 0.140) 0.982 ( 0.016)

σz 0.699 ( 0.055) 0.693 ( 0.052) 0.709 ( 0.055) 0.689 ( 0.047)

σφ 3.008 ( 0.516) 3.327 ( 0.589) 3.055 ( 0.638) 2.656 ( 0.660)

σλf
0.146 ( 0.031) 0.175 ( 0.031) 0.156 ( 0.026) 0.149 ( 0.023)

σµ 0.468 ( 0.115) 0.410 ( 0.083) 0.464 ( 0.111) 0.398 ( 0.099)

σg 0.291 ( 0.050) 0.426 ( 0.047) 0.267 ( 0.050) 0.410 ( 0.050)

Notes: The table reports the posterior mean and standard deviation (in parenthesis) of the parameters for

the Imperfect and Perfect Information models obtained from both the datasets with and without inflation

expectations.
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Table 8: Variance Decomposition

Variables Tech φ µ g λf π∗ Money

Imperfect Information

Output Growth 0.25 0.35 0.11 0.22 0.05 0.00 0.01

Labor Supply 0.00 0.94 0.05 0.01 0.01 0.00 0.00

Labor Share 0.05 0.03 0.00 0.02 0.88 0.00 0.01

Inflation 0.13 0.15 0.44 0.07 0.08 0.03 0.07

Interest Rate 0.08 0.09 0.60 0.08 0.05 0.00 0.00

Exp. Inflation 0.01 0.01 0.90 0.00 0.00 0.05 0.00

Perfect Information

Output Growth 0.29 0.12 0.17 0.20 0.10 0.00 0.04

Labor Supply 0.03 0.09 0.31 0.3 0.06 0.00 0.01

Labor Share 0.06 0.07 0.00 0.01 0.83 0.00 0.02

Inflation 0.06 0.08 0.11 0.01 0.08 0.59 0.05

Interest Rate 0.05 0.08 0.35 0.01 0.06 0.28 0.14

Exp. Inflation 0.01 0.00 0.14 0.00 0.00 0.84 0.00

Notes: The Table shows the (unconditional) variance decomposition computed using the posterior distri-

bution for the Imperfect and Perfect Information models obtained using the dataset that includes observed

inflation expectations.
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Table 9: Variance Decomposition for Observed Inflation Expectations: Models with

Measurement Errors

Variables Tech φ µ g λf π∗ meas. Money

Unconditional

Imperfect Information
i.i.d.

Meas. Error
0.02 0.02 0.63 0.00 0.01 0.16 0.14 0.01

AR(1)

Meas. Error
0.01 0.01 0.26 0.00 0.01 0.12 0.57 0.00

Perfect Information
i.i.d.

Meas. Error
0.01 0.01 0.21 0.00 0.01 0.67 0.07 0.00

AR(1)

Meas. Error
0.01 0.00 0.25 0.00 0.00 0.27 0.41 0.00

10 Quarters Ahead

Imperfect Information
i.i.d.

Meas. Error
0.01 0.01 0.39 0.00 0.01 0.12 0.44 0.01

AR(1)

Meas. Error
0.01 0.00 0.25 0.00 0.01 0.08 0.63 0.01

Perfect Information
i.i.d.

Meas. Error
0.01 0.02 0.23 0.00 0.02 0.41 0.28 0.00

AR(1)

Meas. Error
0.01 0.00 0.26 0.00 0.01 0.24 0.46 0.00

Notes: The Table shows the posterior means of the variance decomposition for observed inflation expecta-

tions – both unconditional and 10 quarters ahead – for the Imperfect Information and Perfect Information

models with both i.i.d. and AR(1) measurement error. The posteriors are obtained using the dataset that

includes observed inflation expectations.



This Version: October 7, 2009, First version: April 2009 38

Figure 1: Revisions in Inflation Data: Real Time vs Last Vintage
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Notes: The figure plots data revisions for two measures of inflation: GDP deflator and CPI. The solid line

shows the real time measure (that is, first vintage available) while the dashed-dotted line shows the most

recent vintage.
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Figure 2: Inflation Expectations: SPF vs Blue Chip
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Three quarters ahead
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Notes: The figure plots inflation expectations from Blue Chip (solid line) and SPF (dashed line). The top

panel shows quarterly (annualized) inflation expectations four quarters ahead, while the bottom panel shows

expectations three-quarters ahead.
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Figure 3: Inflation Expectations: Data vs Model Prediction
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Notes: The figure plots SPF 4-quarters ahead median forecast for the GDP deflator (red dashed-and-dotted),

together with the projections for the 4-quarter ahead inflation forecasts generated by the Imperfect (black

solid) and the Perfect (gray solid) information models. The projections are computed using for each model

the respective posterior mode for the dataset without expectations.
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Figure 4: π∗t

π∗t|t – Imperfect Information
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π∗t – Perfect Information
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Notes: The top panel of the figure plots the mean estimate of the latent variable π∗
t|t for the Imperfect

Information model for the dataset without (black line) and with (gray line) inflation expectations. The

middle panel shows the mean estimate of the latent variable π∗t for the Perfect Information model for the

dataset without (black line) and with (gray line) inflation expectations. The bottom line shows the interest

feedback rule residual p̃it.


