
Risk Aversion and the Labor Margin

in Dynamic Equilibrium Models

Eric T. Swanson
Federal Reserve Bank of San Francisco

eric.swanson@sf.frb.org

http://www.ericswanson.us

Abstract

The household’s labor margin has a substantial effect on risk aversion, and
hence asset prices, in dynamic equilibrium models even when utility is addi-
tively separable between consumption and labor. This paper derives simple,
closed-form expressions for risk aversion that take into account the house-
hold’s labor margin. Ignoring this margin can wildly overstate the house-
hold’s true aversion to risk. Risk premia on assets priced with the stochastic
discount factor increase essentially linearly with risk aversion, so measuring
risk aversion correctly is crucial for asset pricing in the model. Closed-form
expressions for risk aversion in models with generalized recursive preferences
and internal and external habits are also derived.
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1. Introduction

In a static, one-period model with household utility u(·) defined over a single consumption

good, Arrow (1964) and Pratt (1965) defined the coefficients of absolute and relative risk

aversion, −u′′(c)/u′(c) and −c u′′(c)/u′(c). Difficulties immediately arise, however, when

one attempts to generalize these concepts to the case of many periods or many goods (e.g.,

Kihlstrom and Mirman, 1974). These difficulties are particularly pronounced in a dynamic

equilibrium model with labor, in which there is a double infinity of goods to consider—

consumption and labor in every future period and state of nature—all of which may vary in

response to a typical shock to household income or wealth.

The present paper shows how to compute risk aversion in dynamic equilibrium models

in general. First, we verify that risk aversion depends on the partial derivatives of the

household’s value function V with respect to wealth a—that is, the coefficients of absolute

and relative risk aversion are essentially −Vaa/Va and −aVaa/Va, respectively. Even though

closed-form solutions for the value function do not exist in general, we nevertheless can derive

simple, closed-form expressions for risk aversion because derivatives of the value function are

much easier to compute than the value function itself. For example, in many dynamic models

the derivative of the value function with respect to wealth equals the current-period marginal

utility of consumption (Benveniste and Scheinkman, 1979).

The main result of the paper is that the household’s labor margin has substantial

effects on risk aversion, and hence asset prices. Even when labor and consumption are ad-

ditively separable in utility, they remain connected by the household’s budget constraint: in

particular, the household can absorb income shocks either through changes in consumption,

changes in hours worked, or some combination of the two. This ability to absorb shocks

along either or both margins greatly alters the household’s attitudes toward risk. For exam-

ple, if the household’s utility kernel is given by u(ct, lt) = c1−γ
t /(1 − γ) − ηlt, the quantity

−c u11/u1 = γ is often referred to as the household’s coefficient of relative risk aversion, but

in fact the household is risk neutral with respect to gambles over income or wealth—the

proper measure of risk aversion for asset pricing, as we show in Section 2. Intuitively, the

household is indifferent at the margin between using labor or consumption to absorb a shock

to income or assets, and the household in this example is clearly risk neutral with respect to

gambles over hours. More generally, when u(ct, lt) = c1−γ
t /(1−γ)−ηl1+χ

t /(1+χ), risk aver-
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sion equals (γ−1 +χ−1)−1, a combination of the parameters on the household’s consumption

and labor margins, reflecting that the household absorbs shocks using both margins.1

While modeling risk neutrality is not a main goal of the present paper, risk neutrality

nevertheless can be a desirable feature for some applications, such as labor market search

or financial frictions, since it allows for closed-form solutions to key features of the model.2

Thus, an additional contribution of the present paper is to show ways of modeling risk

neutrality that do not require utility to be linear in consumption, which has undesirable

implications for interest rates and consumption growth. Instead, any utility kernel with a

singular Hessian matrix can be used.

A final result of the paper is that risk premia computed using the Lucas-Breeden

stochastic discounting framework are essentially linear in risk aversion. That is, measuring

risk aversion correctly—taking into account the household’s labor margin—is necessary for

understanding asset prices in the model. Since much recent research has focused on bringing

dynamic stochastic general equilibrium (DSGE) models into closer agreement with asset

prices,3 it is surprising that so little attention has been paid to measuring risk aversion

correctly in these models. The present paper aims to fill that void.

There are a few previous studies that extend the Arrow-Pratt definition beyond the

one-good, one-period case. In a static, multiple-good setting, Stiglitz (1969) measures risk

aversion using the household’s indirect utility function rather than utility itself, essentially

a special case of Proposition 1 of the present paper. Constantinides (1990) measures risk

aversion in a dynamic, consumption-only (endowment) economy using the household’s value

function, another special case of Proposition 1. Boldrin, Christiano, and Fisher (1997) apply

Constantinides’ definition to some very simple endowment economy models for which they

can compute closed-form expressions for the value function, and hence risk aversion. The

present paper builds on these studies by deriving closed-form solutions for risk aversion in

dynamic equilibrium models in general, demonstrating the importance of the labor margin,

1Note that the intertemporal elasticity of substitution in this example is still 1/γ, so a corollary of this
result is that risk aversion and the intertemporal elasticity of substitution are nonreciprocal when labor
supply can vary.

2See, e.g., Mortensen and Pissarides (1994), and Bernanke, Gertler, and Gilchrist (1999).

3See, e.g., Boldrin, Christiano, and Fisher (2001), Tallarini (2000), Rudebusch and Swanson (2008, 2009),
Van Binsbergen, Fernandez-Villaverde, Koijen, and Rubio-Ramirez (2010), and Backus, Routledge, and Zin
(2009).
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and showing the tight link between risk aversion and asset prices in these models.

The remainder of the paper proceeds as follows. Section 2 presents the main ideas of

the paper, deriving Arrow-Pratt risk aversion in dynamic equilibrium models for the time-

separable expected utility case and demonstrating the importance of risk aversion for asset

pricing. Section 3 extends the analysis to the case of generalized recursive preferences (Ep-

stein and Zin, 1989), which have been the focus of much recent research at the boundary

between macroeconomics and finance. Section 4 extends the analysis to the case of internal

and external habits, two of the most common intertemporal nonseperabilities in preferences

in both the macroeconomics and finance literatures. Section 5 discusses some general im-

plications and concludes. An Appendix provides details of derivations and proofs that are

outlined in the main text.

2. Time-Separable Expected Utility Preferences

To highlight the intuition and methods of the paper, we consider first the case where the

household has additively time-separable expected utility preferences.

2.1 The Household’s Optimization Problem and Value Function

Time is discrete and continues forever. At each time t, the household seeks to maximize the

expected present discounted value of utility flows:

Et

∞∑
τ=t

βτ−tu(cτ , lτ ), (1)

subject to the sequence of asset accumulation equations:

aτ+1 = (1 + rτ )aτ + wτ lτ + dτ − cτ , τ = t, t + 1, . . . (2)

and the no-Ponzi-scheme condition:

lim
T→∞

T∏
τ=t

(1 + rτ+1)−1aT+1 ≥ 0, (3)

where Et denotes the mathematical expectation conditional on the household’s information

set at time t, β ∈ (0, 1) is the household’s discount factor, (ct, lt) ∈ Ω ⊆ R
2 denotes the
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household’s choice of consumption and labor in period t, at is the household’s beginning-of-

period assets, and wt, rt, and dt denote the real wage, interest rate, and net transfer payments

at time t. There is a finite-dimensional Markovian state vector θt that is exogenous to the

household and governs the processes for wt, rt, and dt. Conditional on θt, the household

knows the time-t values for wt, rt, and dt. The state vector and information set of the

household’s optimization problem at each date t is thus (at; θt), and we denote the domain

of (at; θt) by X . Let Γ : X → Ω describe the set-valued correspondence of feasible choices

for (ct, lt) for each given (at; θt).

We make the following regularity assumptions regarding the utility kernel u:

Assumption 1. The function u : Ω → R is increasing in its first argument, decreasing in
its second, twice-differentiable, and concave.

In addition to Assumption 1, a few more technical conditions are required to ensure the value

function for the household’s optimization problem exists and satisfies the Bellman equation

(Stokey and Lucas (1990), Rincón-Zapatera and Rodŕıguez-Palmero (2003), and Marinacci

and Montrucchio (2010) give different sets of such sufficient conditions). The details of these

conditions are tangential to the present paper, so we simply assume:

Assumption 2. The value function V : X → R for the household’s optimization problem
exists and satisfies the Bellman equation:

V (at; θt) = max
(ct,lt)∈Γ(at;θt)

u(ct, lt) + βEtV (at+1; θt+1), (4)

where at+1 is given by (2).

Together, Assumptions 1–2 guarantee the existence of a unique optimal choice for

(ct, lt) at each point in time, given (at; θt). Let c∗t ≡ c∗(at; θt) and l∗t ≡ l∗(at; θt) denote the

household’s optimal choices of ct and lt as functions of the state (at; θt). Then V can be

written as:

V (at; θt) = u(c∗t , l
∗
t ) + βEtV (a∗

t+1; θt+1), (5)

where a∗
t+1 ≡ (1 + rt)at + wtl

∗
t + dt − c∗t .

To avoid having to consider boundary solutions, we make the following standard as-

sumption:
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Assumption 3. For any (at; θt) ∈ X, the household’s optimal choice (c∗t , l
∗
t ) lies in the

interior of Γ(at; θt).

Intuitively, Assumption 3 requires the partial derivatives of u to grow sufficiently large toward

the boundary that only interior solutions for c∗t and l∗t are optimal for all (at; θt) ∈ X .

Assumptions 1–3 guarantee that V is continuously differentiable and satisfies the

Benveniste-Scheinkman equation, but we will require slightly more than this below:

Assumption 4. The value function V (·; ·) is twice-differentiable.

Assumption 4 also implies differentiability of the optimal policy functions, c∗ and l∗. San-

tos (1991) provides relatively mild sufficient conditions for Assumption 4 to be satisfied;

intuitively, u must be strongly concave.

2.2 Representative Household and Steady State Assumptions

Up to this point, we have considered the case of a single household in isolation, leaving the

other households of the model and the production side of the economy unspecified. Implicitly,

the other households and production sector jointly determine the process for θt (and hence

wt, rt, and dt), and much of the analysis below does not need to be any more specific about

these processes than this. However, to move from general expressions for risk aversion to

more concrete, closed-form expressions, we adopt two standard assumptions from the DSGE

literature.4

Assumption 5. The household is atomistic and representative.

Assumption 5 implies that the individual household’s choices for ct and lt have no effect on

the aggregate quantities wt, rt, dt, and θt. It also implies that, when the economy is at the

nonstochastic steady state (described shortly), any individual household finds it optimal to

choose the steady-state values of c and l given a and θ.

Assumption 6. The model has a nonstochastic steady state, or a balanced growth path that
can be renormalized to a nonstochastic steady state after a suitable change of variables. At

4Alternative assumptions about the nature of the other households in the model or the production sector
may also allow for closed-form expressions for risk aversion. However, the assumptions used here are standard
and thus the most natural to pursue.
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the nonstochastic steady state, xt = xt+1 = xt+k for k = 1, 2, . . . , and x ∈ {c, l, a, w, r, d, θ},
and we drop the subscript t to denote the steady-state value.

It is important to note that Assumptions 5–6 do not prohibit us from offering an

individual household a hypothetical gamble of the type described below. The steady state

of the model serves only as a reference point around which the aggregate variables w, r,

d, and θ and the other households’ choices of c, l, and a can be predicted with certainty.

This reference point is important because it makes it much easier to compute closed-form

expressions for many features of the model.

2.3 The Coefficient of Absolute Risk Aversion

The household’s risk aversion at time t generally depends on the household’s state vector

at time t, (at; θt). Given this state, we consider the household’s aversion to a hypothetical

one-shot gamble in period t of the form:

at+1 = (1 + rt)at + wtlt + dt − ct + σεt+1, (6)

where εt+1 ∈ [ε, ε] is a random variable, representing the gamble, that has mean zero, unit

variance, is independent of θτ for all τ , and is independent of aτ , cτ , and lτ for all τ ≤ t.

A few words about (6) are in order: First, the gamble is dated t + 1 to clarify that its

outcome is not in the household’s information set at time t. Second, ct cannot be made

the subject of the gamble without substantial modifications to the household’s optimization

problem, because ct is a choice variable under control of the household at time t. However,

(6) is clearly equivalent to a one-shot gamble over net transfers dt or asset returns rt, both

of which are exogenous to the household. Indeed, thinking of the gamble as being over rt

helps to illuminate the connection between (6) and the price of risky assets, to which we

will return in Section 2.6. As shown there, the household’s aversion to the gamble in (6) is

directly linked to the premium households require to hold risky assets.

Following Arrow (1964) and Pratt (1965), we can ask what one-time fee μ the household

would be willing to pay in period t to avoid the gamble in (6):

at+1 = (1 + rt)at + wtlt + dt − ct − μ. (7)
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The quantity μ that makes the household just indifferent between (6) and (7), for infitesimal

μ and σ, is the household’s coefficient of absolute risk aversion:5

Definition 1. Let (at; θt) be an interior point of X. The household’s coefficient of absolute
risk aversion is given by limσ→0 2μ(σ)/σ2, where μ(σ) denotes the value of μ that satis-
fies V (at− μ

1+rt
; θt) = Ṽ (at; θt; σ), and where Ṽ (at; θt; σ) denotes the value function of the

household’s optimization problem inclusive of the one-shot gamble (6).

The following proposition verifies that the coefficient of absolute risk aversion is well-

defined and equals the “folk wisdom” value of −V11/V1:6

Proposition 1. The household’s coefficient of absolute risk aversion in Definition 1 exists
and is given by: −EtV11(a∗

t+1; θt+1)
EtV1(a∗

t+1; θt+1)
, (8)

where V1 and V11 denote the first and second partial derivatives of V with respect to its first
argument. Evaluated at the steady state, (8) simplifies to:

−V11(a; θ)
V1(a; θ)

. (9)

Proof: See Appendix.

Equations (8)–(9) are essentially Constantinides’ (1990) definition of risk aversion, and

have obvious similarities to Arrow (1964) and Pratt (1965). Here, of course, it is the curvature

of the value function V with respect to assets that matters, rather than the curvature of the

utility kernel u with respect to consumption.7

Deriving the coefficient of absolute risk aversion in Proposition 1 is simple enough, but

the problem with (8)–(9) is that closed-form expressions for V (and hence V1 and V11) do

not exist in general, even for the simplest dynamic models with labor. This difficulty may

help to explain the popularity of “shortcut” approaches to measuring risk aversion, notably

−u11(c∗t , l∗t )/ u1(c∗t , l∗t ), which has no clear relationship to (8)–(9) except in the one-good one-

period case. Boldrin, Christiano, and Fisher (1997) derive closed-form solutions for V —and

5We defer discussion of relative risk aversion until the next subsection because defining total household
wealth is complicated by the presence of human capital—that is, the household’s labor income.

6See, e.g., Constantinides (1990), Farmer (1990), Cochrane (2001), and Flavin and Nakagawa (2008).
7Arrow (1964) and Pratt (1965) occasionally refer to utility as being defined over “money”, so one could

argue that they always intended for risk aversion to be measured using indirect utility or the value function.
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hence risk aversion—for some very simple, consumption-only endowment economy models.

This approach is a nonstarter for even the simplest dynamic models with labor.

We solve this problem by observing that V1 and V11 often can be computed even when

closed-form solutions for V cannot be. For example, the Benveniste-Scheinkman equation:

V1(at; θt) = (1 + rt) u1(c∗t , l
∗
t ), (10)

states that the marginal value of a dollar of assets equals the marginal utility of consumption

times 1 + rt (the interest rate appears here because beginning-of-period assets in the model

generate income in period t). In (10), u1 is a known function. Although closed-form solutions

for the functions c∗ and l∗ are not known in general, the points c∗t and l∗t often are known—

for example, when they are evaluated at the nonstochastic steady state, c and l. Thus, we

can compute V1 at the nonstochastic steady state by evaluating (10) at that point.

We compute V11 by noting that (10) holds for general at; hence we can differentiate

(10) to yield:

V11(at; θt) = (1 + rt)
[
u11(c∗t , l

∗
t )

∂c∗t
∂at

+ u12(c∗t , l
∗
t )

∂l∗t
∂at

]
. (11)

All that remains is to find the derivatives ∂c∗t /∂at and ∂l∗t /∂at.

We solve for ∂l∗t /∂at by differentiating the household’s intratemporal optimality con-

dition:
−u2(c∗t , l

∗
t ) = wt u1(c∗t , l

∗
t ), (12)

with respect to at, and rearranging terms to yield:

∂l∗t
∂at

= −λt
∂c∗t
∂at

, (13)

where

λt ≡ wtu11(c∗t , l
∗
t ) + u12(c∗t , l

∗
t )

u22(c∗t , l∗t ) + wtu12(c∗t , l∗t )
=

u1(c∗t , l
∗
t )u12(c∗t , l

∗
t ) − u2(c∗t , l

∗
t )u11(c∗t , l

∗
t )

u1(c∗t , l∗t )u22(c∗t , l∗t ) − u2(c∗t , l∗t )u12(c∗t , l∗t )
. (14)

Note that, if consumption and leisure in period t are normal goods, then λt > 0, although we

do not require this restriction below. It now only remains to solve for the derivative ∂c∗t /∂at.

Intuitively, ∂c∗t /∂at should not be too difficult to compute: it is just the household’s

marginal propensity to consume today out of a change in assets, which we can deduce from

the household’s Euler equation and budget constraint. Differentiating the Euler equation:

u1(c∗t , l
∗
t ) = βEt(1 + rt+1) u1(c∗t+1, l

∗
t+1), (15)
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with respect to at yields:8

u11(c∗t , l
∗
t )

∂c∗t
∂at

+ u12(c∗t , l
∗
t )

∂l∗t
∂at

= βEt(1 + rt+1)
[
u11(c∗t+1, l

∗
t+1)

∂c∗t+1

∂at
+ u12(c∗t+1, l

∗
t+1)

∂l∗t+1

∂at

]
(16)

Substituting in for ∂l∗t /∂at gives:

(u11(c∗t , l
∗
t )− λtu12(c∗t , l

∗
t ))

∂c∗t
∂at

= βEt(1 + rt+1) (u11(c∗t+1, l
∗
t+1)− λt+1u12(c∗t+1, l

∗
t+1))

∂c∗t+1

∂at
.

(17)

Evaluating (17) at steady state, β = (1 + r)−1, λt = λt+1 = λ, and the uij cancel, giving:

∂c∗t
∂at

= Et
∂c∗t+1

∂at
= Et

∂c∗t+k

∂at
, k = 1, 2, . . . (18)

∂l∗t
∂at

= Et
∂l∗t+1

∂at
= Et

∂l∗t+k

∂at
, k = 1, 2, . . . (19)

In other words, whatever the change in the household’s consumption today, it must be

the same as the expected change in consumption tomorrow, and the expected change in

consumption at each future date t + k.9

The household’s budget constraint is implied by asset accumulation equation (2) and

transversality condition (3). Differentiating (2) with respect to at, evaluating at steady state,

and applying (3), (18), and (19) gives:

1 + r

r

∂c∗t
∂at

= (1 + r) +
1 + r

r
w

∂l∗t
∂at

. (20)

That is, the expected present value of changes in household consumption must equal the

change in assets (times 1 + r) plus the expected present value of changes in labor income.

Combining (20) with (13), we can solve for ∂c∗t /∂at evaluated at the steady state:

∂c∗t
∂at

=
r

1 + wλ
. (21)

In response to a unit increase in assets, the household raises consumption in every period by

the extra asset income, r, adjusted downward by the amount 1+wλ that takes into account

the household’s decrease in hours worked.

8By ∂c∗t+1/∂at we mean:

∂c∗t+1

∂at
=

∂c∗t+1

∂at+1

da∗
t+1

dat
=

∂c∗t+1

∂at+1

[
1 + rt+1 + wt

∂l∗t
∂at

− ∂c∗t
∂at

]
,

and analogously for ∂l∗t+1/∂at, ∂c∗t+2/∂at, ∂l∗t+2/∂at, etc.
9Note that this equality does not follow from the steady state assumption. For example, in a model with

internal habits, which we will consider in Section 4, the individual household’s optimal consumption response
to a change in assets increases with time, even starting from steady state.
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We can now compute the household’s coefficient of absolute risk aversion. Substituting

(10), (11), (13)–(14), and (21) into (9), we have proved:

Proposition 2. The household’s coefficient of absolute risk aversion in Proposition 1, eval-
uated at steady state, satisfies:

−V11(a; θ)
V1(a; θ)

=
−u11 + λu12

u1

r

1 + wλ
, (22)

where u1, u11, and u12 denote the corresponding partial derivatives of u evaluated at the
steady state (c, l), and λ is given by (14) evaluated at steady state.

When there is no labor margin in the model, Proposition 2 has the following corollary:

Corollary 3. Suppose that lt is fixed exogenously at l ≥ 0 for all t and the household chooses
ct optimally at each t given this constraint. Then the household’s coefficient of absolute risk
aversion (22), evaluated at steady state, is given by:

−V11(a; θ)
V1(a; θ)

=
−u11

u1
r. (23)

Proof: The assumptions and steps leading up to Proposition 2, adjusted to the one-
dimensional case, are essentially the same as the above with λt = 0.

Proposition 2 and Corollary 3 are remarkable. First, the household’s coefficient of ab-

solute risk aversion in (23) is just the traditional measure, −u11/u1, times r, which translates

assets into current-period consumption. In other words, for any utility kernel u, the tradi-

tional, static measure of risk aversion is also the correct measure in the dynamic context,

regardless of whether u or the rest of the model is homothetic, whether or not we can solve

for V , and no matter what the functional forms of u and V .

More generally, when households have a labor margin, Proposition 2 shows that risk

aversion is less than the traditional measure by the factor 1 + wλ, even when consumption

and labor are additively separable in u (i.e. u12 = 0). Even in the additively separable

case, households can partially absorb shocks to income through changes in hours worked.

As a result, c∗t depends on household labor supply, so labor and consumption are indirectly

connected through the budget constraint. When u12 �= 0, risk aversion in Proposition 2 is

further attenuated or amplified by the direct interaction between consumption and labor in

utility, u12.
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The household’s labor margin can have dramatic effects on risk aversion. For example,

no matter how large the traditional measure −u11/u1, the household can still be risk neutral:

Corollary 4. Let Δ denote the discriminant of u, Δ = u11u22 − u2
12. The household’s

coefficient of absolute risk aversion (22) vanishes as Δ → 0, so long as either u1 �= −u2 or
u12 < max{|u11|, |u22|} in the limit.

Proof: The corollary is stated as a limiting result to respect concavity in Assumption 1.
Substituting out λ and w, (22) vanishes as Δ → 0 except for the special case u1 = −u2

and u11 = −u12 = u22—that is, the special case u(c, l) = ũ(c − l) to second order for some
function ũ. The corollary rules out that case by assumption.

In other words, risk aversion depends on the concavity of u in all dimensions rather

than just in one dimension. Even when u11 is very large, the household still can be risk

neutral if u22 is small or the cross-effect u12 is sufficiently large. Geometrically, if there

exists any direction in (c, l)-space along which u is flat, the household will optimally choose

to absorb shocks to income along that line, resulting in risk-neutral behavior.

We provide some more concrete examples of risk aversion calculations in Section 2.5,

below, after first defining relative risk aversion.

2.4 The Coefficient of Relative Risk Aversion

The difference between absolute and relative risk aversion is the size of the hypothetical

gamble faced by the household. If the household faces a one-shot gamble of size At in

period t, that is:

at+1 = (1 + rt)at + wtlt + dt − ct + Atσεt+1, (24)

or the household can pay a one-time fee Atμ in period t to avoid this gamble, then it follows

from Proposition 1 that the household’s coefficient of risk aversion, limσ→0 2μ(σ)/σ2, for this

gamble is given by: −AtEtV11(a∗
t+1; θt+1)

EtV1(a∗
t+1; θt+1)

. (25)

The natural definition of At, considered by Arrow (1964) and Pratt (1965), is the household’s

wealth at time t. The gamble in (24) is then over a fraction of the household’s wealth and

(25) is referred to as the household’s coefficient of relative risk aversion.

In models with labor, however, household wealth can be more difficult to define because

of the presence of human capital. In these models, there are two natural definitions of human
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capital, so we consequently define two measures of household wealth At and two coefficients

of relative risk aversion (25).

First, when the household’s time endowment is not well-defined—as when u(ct, lt) =

c1−γ
t /(1−γ)−ηl1+χ

t and no upper bound l̄ on lt is specified, or l̄ is specified but is completely

arbitrary—it is most natural to define human capital as the present discounted value of labor

income, wtl
∗
t . Equivalently, total household wealth At equals the present discounted value of

consumption, which follows from the budget constraint (2)–(3). We state this formally as:

Definition 2. The household’s consumption-based coefficient of relative risk aversion is
given by (25), with At ≡ (1+rt)−1Et

∑∞
τ=t mt,τ c∗τ , the present discounted value of household

consumption, and where mt,τ denotes the stochastic discount factor βτ−tu1(c∗τ , l∗τ )/u1(c∗t , l
∗
t ).

The factor (1 + rt)−1 in the definition expresses wealth At in beginning- rather than end-

of-period-t units, so that in steady state A = c/r and the consumption-based coefficient of

relative risk aversion is given by:

−A V11(a; θ)
V1(a; θ)

=
−u11 + λu12

u1

c

1 + wλ
. (26)

Alternatively, when the household’s time endowment l̄ is well specified, we can define

human capital to be the present discounted value of the household’s time endowment, wt l̄. In

thise case, total household wealth Ãt equals the present discounted value of leisure wt(l̄− l∗t )

plus consumption c∗t , from (2)–(3). We thus have:

Definition 3. The household’s leisure-and-consumption-based coefficient of relative risk
aversion is given by (25), with At = Ãt ≡ (1 + rt)−1Et

∑∞
τ=t mt,τ

(
c∗τ + wτ (l̄ − l∗τ )

)
.

In steady state, Ã =
(
c + w(l̄ − l)

)
/r, and the leisure-and-consumption-based coefficient of

relative risk aversion is given by:

−Ã V11(a; θ)
V1(a; θ)

=
−u11 + λu12

u1

c + w(l̄ − l)
1 + wλ

. (27)

Of course, (26) and (27) are related by the ratio of the two gambles, (c + w(l̄ − l))/c.

Other definitions of relative risk aversion, corresponding to alternative definitions of

wealth and the size of the gamble At, are also possible, but Definitions 2–3 are the most

natural for several reasons. First, both definitions reduce to the usual present discounted

value of income or consumption when there is no human capital in the model. Second, both
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measures of risk aversion reduce to the traditional −c u11/u1 when there is no labor margin

in the model—that is, when λ = 0. Third, in steady state the household consumes exactly

the flow of income from its wealth, rA, consistent with standard permanent income theory

(where one must include the value of leisure w(l̄ − l) as part of consumption when the value

of leisure is included in wealth).

We close this section by noting that neither measure of relative risk aversion is recip-

rocal to the intertemporal elasticity of substitution:

Corollary 5. Evaluated at steady state: i) the consumption-based coefficient of relative
risk aversion and intertemporal elasticity of substitution are reciprocal if and only if λ = 0;
ii) the leisure-and-consumption-based coefficient of relative risk aversion and intertemporal
elasticity of substitution are reciprocal if and only if λ = (l̄ − l)/c.

Proof: Note that the case w = 0 is ruled out by Assumptions 1 and 3. The house-
hold’s intertemporal elasticity of substitution, evaluated at steady state, is given by

(
dc∗t+1−

dc∗t
)
/d log(1+rt+1), which equals −u1/

(
c(u11−λu12)

)
by a calculation along the lines of (17),

holding wt fixed but allowing l∗t and l∗t+1 to vary endogenously. The corollary follows from
comparing this expression to (26) and (27).

2.5 Examples

Some simple examples illustrate how ignoring the household’s labor margin can lead to wildly

inaccurate measures of the household’s true attitudes toward risk.

Example 2.1. Consider the additively separable utility kernel:

u(ct, lt) =
c1−γ
t

1 − γ
− η

l1+χ
t

1 + χ
, (28)

where γ, χ, η > 0. The traditional measure of risk aversion for this utility kernel is

−c u11/u1 = γ, but the household’s consumption-based coefficient of relative risk aversion is

given by (26):
−AV11

V1
=

−cu11

u1

1
1 + w wu11

u22

=
γ

1 + γ
χ

wl
c

. (29)

The household’s leisure-and-consumption-based coefficient of relative risk aversion (27) is

not well defined in this example (the household’s risk aversion can be made arbitrarily

large or small just by varying the household’s time endowment l̄), so we focus only on

the consumption-based measure (29).
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Figure 1. Consumption-based coefficient of relative risk aversion for the utility kernel u(ct, lt) =
c1−γ

t /(1−γ)−ηl1+χ
t /(1+χ) in Example 2.1, as a function of the traditional measure γ, for different

values of χ. See text for details.

In steady state, c ≈ wl,10 so (29) can be written as:

−AV11

V1
≈ 1

1
γ + 1

χ

. (30)

Note that (30) is less than the traditional measure of risk aversion by a factor of 1 + γ/χ.

Thus, if γ = 2 and χ = 1—parameter values that are well within the range of estimates in

the literature—then the household’s true risk aversion is less than the traditional measure by

a factor of about three. This point is illustrated in Figure 1, which graphs the coefficient of

relative risk aversion for this example as a function of the traditional measure, γ, for several

different values of χ. If χ is very large, then the bias from using the traditional measure is

small because household labor supply is essentially fixed.11 However, as χ approaches 0, a

10 In steady state, c = ra + wl + d, so c = wl holds exactly if there is neither capital nor transfers in the
model. In any case, ra + d is typically small for standard calibrations in the literature.

11Similarly, if γ is very small, the bias from using the traditional measure is small because the household
chooses to absorb income shocks almost entirely along its consumption margin. As a result, the labor margin
is again almost inoperative.
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common benchmark in the literature, the bias explodes and true risk aversion approaches

zero—the household becomes risk neutral. Intuitively, households with linear disutility of

work are risk neutral with respect to gambles over wealth because they can completely offset

those gambles at the margin by working more or fewer hours, and households with linear

disutility of work are clearly risk neutral with respect to gambles over hours.

Expression (30) also helps to clarify several points. First, risk aversion in the model

is a combination of both parameters γ and χ, reflecting that the household absorbs income

gambles along both of its margins, consumption and labor. Second, for any given γ, actual

risk aversion in the model can lie anywhere between 0 and γ, depending on χ. That is,

having an additional margin with which to absorb income gambles reduces the household’s

aversion to risk. Third, (30) is symmetric in γ and χ, reflecting that labor and consumption

enter symmetrically into u in this example and play an essentially equal role in absorbing

income shocks. Put another way, ignoring the labor margin in this example would be just

as erroneous as ignoring the consumption margin.

Example 2.2. Consider the King-Plosser-Rebelo-type (1988) utility kernel:

u(ct, lt) =
c1−γ
t (1 − lt)χ(1−γ)

1 − γ
, (31)

where γ > 0, γ �= 1, χ > 0, l̄ = 1, and χ(1 − γ) < γ for concavity. The traditional

measure of risk aversion for (31) is γ, but the household’s actual leisure-and-consumption-

based coefficient of relative risk aversion is given by:

−Ã V11

V1
=

−u11 + λu12

u1

c + w(1 − l)
1 + wλ

= γ − χ(1 − γ). (32)

Note that concavity of (31) implies that (32) is positive. As in the previous example, (32)

depends on both γ and χ, and can lie anywhere between 0 and the traditional measure γ,

depending on χ. In this example, risk aversion is less than the traditional measure by the

amount χ(1−γ). As χ approaches γ/(1−γ)—that is, as utility approaches Cobb-Douglas—

the household becomes risk neutral; in this case, household utility along the line ct = wt(1−lt)

is linear, so the household finds it optimal to absorb shocks to wealth along that line.

The household’s consumption-based coefficient of relative risk aversion is a bit more

complicated than (32):

−A V11

V1
=

−u11 + λu12

u1

c

1 + wλ
=

γ − χ(1 − γ)
1 + χ

. (33)
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Again, (33) is a combination of the parameters γ and χ, and can lie anywhere between 0

and γ, depending on χ. Neither (32) nor (33) equals the traditional measure γ, except for

the special case χ = 0.

2.6 Risk Aversion and Asset Pricing

In the preceding sections, we showed that the labor margin has important implications for

Arrow-Pratt risk aversion with respect to gambles over income or wealth. We now show that

risk aversion with respect to these gambles is also the right concept for asset pricing.

2.6.1 Measuring Risk Aversion with V As Opposed to u

Some comparison of the expressions −V11/V1 and −u11/u1 helps to clarify why the former

measure is the relevant one for pricing assets, such as stocks or bonds, in the model. From

Proposition 1, −V11/V1 is the Arrow-Pratt coefficient of absolute risk aversion for gambles

over income or wealth in period t. In contrast, the expression −u11/u1 is the risk aversion

coefficient for a hypothetical gamble in which the household is forced to consume immediately

the outcome of the gamble. Clearly, it is the former concept that corresponds to the stochastic

payoffs of a standard asset, such as a stock or bond, in a DSGE model. In order for −u11/u1

to be the relevant measure for pricing a security, it is not enough that the security pay off in

units of consumption in period t+1. The household would additionally have to be prevented

from adjusting its consumption and labor choices in period t+1 in response to the security’s

payoffs, so that the household is forced to absorb those payoffs into period t+1 consumption.

It is difficult to imagine such a security in the real world—all standard securities in financial

markets correspond to gambles over income or wealth, for which the −V11/V1 measure of

risk aversion is the appropriate one.

2.6.2 Risk Aversion, the Stochastic Discount Factor, and Risk Premia

Arrow-Pratt risk aversion, and hence the labor margin, is also closely tied to asset prices in

the standard Lucas-Breeden stochastic discounting framework.

Let mt+1 = βu1(c∗t+1, l
∗
t+1)/u1(c∗t , l∗t ) denote the household’s stochastic discount factor

and let pt denote the cum-dividend price of a risky asset at time t, with Etpt+1 normalized
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to unity. The percentage difference between the risk-neutral price of the asset and its actual

price—the risk premium on the asset—is given by:(
Etmt+1Etpt+1 − Etmt+1pt+1

)
/Etmt+1 = −Covt(dmt+1, dpt+1)/Etmt+1 (34)

where Covt denotes the covariance conditional on information at time t, and dx ≡ xt+1 −
Etxt+1, x ∈ {m, p}. For small changes dc∗t+1 and dl∗t+1, we have, to first order:

dmt+1 =
β

u1(c∗t , l∗t )
[
u11(c∗t+1, l

∗
t+1)dc∗t+1 + u12(c∗t+1, l

∗
t+1)dl∗t+1

]
, (35)

conditional on information at time t. In (35), the household’s labor margin affects mt+1

and hence asset prices for two reasons: First, if u12 �= 0, changes in lt+1 directly affect the

household’s marginal utility of consumption. Second, even if u12 = 0, the presence of the

labor margin affects how the household responds to shocks and hence affects dc∗t+1.

Intuitively, one can already see the relationship between risk aversion and dmt+1 in (35):

if dl∗t+1 = −λdc∗t+1 and dc∗t+1 = rdat+1/(1 + wλ), as in Section 2.3, then dmt+1 equals the

coefficient of absolute risk aversion times dat+1. In actuality, the relationship is slightly

more complicated than this because θ (and hence w, r, and d) may change as well as a. For

example, differentiating (12) and evaluating at steady state, we have, to first order:

dl∗t+1 = −λdc∗t+1 −
u1

u22 + wu12
dwt+1, (36)

Similarly, combining (2), (3), and (15), differentiating, and evaluating at steady state, we

show in the Appendix that:

dc∗t+1 =
r

1 + wλ

[
dat+1 + Et+1

∞∑
k=1

1
(1 + r)k

(l dwt+k + ddt+k + adrt+k)
]

(37)

+
u1

u11u22 − u2
12

dwt+1 +
−ru1

u11 − λu12
Et+1

∞∑
k=1

1
(1 + r)k

(
λ

1 + wλ
dwt+k − d logRt+1,t+k

)
,

where Rt+1,t+k ≡ ∏k
i=2(1+rt+i). Note that for the Arrow-Pratt one-shot gamble considered

in Section 2.3, the aggregate variables w, r, and d were all held constant, so (36)–(37) reduce

to (13) and (21) in that case. The term in square brackets in (37) describes the change in

the present value of household income, and thus the first line of (37) describes the income

effect on consumption. The last line of (37) describes the substitution effect: changes in

consumption due to changes in current and future interest rates and wages. (Recall that

−u1/
(
c(u11 − λu12)

)
is the intertemporal elasticity of substitution.)
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Substituting (36)–(37) into (35) yields:

dmt+1 = β
u11 − λu12

u1

r

1 + wλ

[
dat+1 + Et+1

∞∑
k=1

1
(1 + r)k

(l dwt+k + ddt+k + adrt+k)
]

− βr Et+1

∞∑
k=1

1
(1 + r)k

(
λ

1 + wλ
dwt+k − d log Rt+1,t+k

)
. (38)

The risk premium (34), evaluated at steady state, is then given by:

−u11 + λu12

u1

r

1 + wλ
Covt(dpt+1, dAt+1) + r Covt(dpt+1, dΨt+1), (39)

where dAt+1 denotes the quantity in square brackets in (38)—the change in household

wealth—and dΨt+1 denotes the summation on the second line of (38)—the change in cur-

rent and future wages and interest rates. Equations (38)–(39) are essentially Merton’s (1973)

ICAPM, generalized to include labor. In (39), the first term is the covariance of the asset

price with household wealth, multiplied by the coefficient of absolute risk aversion, while the

second term captures the asset’s ability to hedge what Merton calls “changes in investment

opportunities.” Intuitively, even for households that are Arrow-Pratt risk neutral, an asset

that pays off well when future interest rates are high or wages are low—and hence future

consumption is low—is preferable to an asset that has no correlation with future r or w.

Equation (39) shows the importance of risk aversion—and hence the labor margin—for

asset pricing in the model. Risk premia are essentially linear in the coefficient of absolute risk

aversion, a relationship which also holds for the more general cases of Epstein-Zin preferences

and habits, considered below.12 This link between risk aversion and risk premia should not

be too surprising: Arrow-Pratt risk aversion describes the risk premium for the most basic

gambles over household income or wealth. Here we have shown that the same coefficient

also appears for completely general gambles that may be correlated with aggregate variables

such as interest rates, wages, and net transfers.13 The risk premia on these gambles are

determined by the household’s stochastic discount factor, but the stochastic discount factor

is itself directly linked to risk aversion and the household’s labor margin.

12See the Appendix. For an example of this linearity, see Figure 1 of Rudebusch and Swanson (2009).
13Boldrin, Christiano, and Fisher (1997) argue that it is u11/u1 rather than V11/V1 that matters for the

equity premium in their Figure 2. As shown above, it is in fact V11/V1 that is crucial. What explains Boldrin
et al.’s Figure 2 is that the covariance of equity prices with the short-term interest rate is not being held
constant in their model—in particular, the variance of the risk-free rate in their model changes tremendously
over the points in their Figure 2.
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3. Generalized Recursive Preferences

We now turn to the case of generalized recursive preferences, as in Epstein and Zin (1989) and

Weil (1989). The household’s asset accumulation equation (2) and transversality condition

(3) are the same as in Section 2, but now instead of maximizing (1), the household chooses

ct and lt to maximize the recursive expression:14

V (at; θt) = max
(ct,lt)∈Γ(at;θt)

u(ct, lt) + β
(
Et V (at+1; θt+1)1−α

)1/(1−α)
, (40)

where α ∈ R, α �= 1.15 Note that (40) is the same as (4), but with the value function

“twisted” and “untwisted” by the coefficient 1 − α. When α = 0, the preferences given by

(40) reduce to the special case of expected utility.

If u ≥ 0 everywhere, then the proof of Theorem 3.1 in Epstein and Zin (1989) shows

that there exists a solution V to (40) with V ≥ 0. If u ≤ 0 everywhere, then it is natural to

let V ≤ 0 and reformulate the recursion as:

V (at; θt) = max
(ct,lt)∈Γ(at;θt)

u(ct, lt) − β
(
Et(−V (at+1; θt+1))1−α

)1/(1−α)
. (41)

The proof in Epstein and Zin (1989) also demonstrates the existence of a solution V to (41)

with V ≤ 0 in this case.

To avoid the possibility of complex numbers arising in the maximand of (40) or (41),

we restrict the range of u to be either R+ or R−:16

Assumption 7. Either u : Ω → R+, or u : Ω → R−.

The main advantage of generalized recursive preferences (40) is that they allow for

greater flexibility in modeling risk aversion and the intertemporal elasticity of substitution.

In (40), the intertemporal elasticity of substitution over deterministic consumption paths is

exactly the same as in (4), but the household’s risk aversion to gambles can be amplified (or

attenuated) by the additional parameter α.

14Note that, traditionally, Epstein-Zin preferences over consumption streams have been written as:

Ṽ (at; θt) = max
ct

[
cρ
t + β

(
EtṼ (at+1; θt+1)

α̃
)ρ/α̃

]1/ρ

,

but by setting V = Ṽ ρ and α = 1 − α̃/ρ, this can be seen to correspond to (40).
15We exclude the case α = 1 here for simplicity.
16Alternatively, one can restrict the domain of u to ensure u ≥ 0 or u ≤ 0; e.g., by requiring c ≥ 1 for

u(c, l) = log c + χ(̄l − l).
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3.1 Coefficients of Absolute and Relative Risk Aversion

We consider the household’s aversion to the same hypothetical gamble as in (6):

Proposition 6. With generalized recursive preferences (40) or (41), the household’s coeffi-
cient of absolute risk aversion with respect to the gamble described by (6) is given by:

−EtV (a∗
t+1; θt+1)−α

[
V11(a∗

t+1; θt+1) − α
V1(a∗

t+1; θt+1)2

V (a∗
t+1; θt+1)

]
EtV (a∗

t+1; θt+1)−αV1(a∗
t+1; θt+1)

. (42)

Evaluated at steady state, (42) simplifies to:

−V11(a; θ)
V1(a; θ)

+ α
V1(a; θ)
V (a; θ)

. (43)

Proof: See Appendix.

The first term in (43) is the same as the expected utility case (9), while the second

term in (43) reflects the amplification or attenuation of risk aversion from the additional

curvature parameter α. When α = 0, (42)–(43) reduce to (8)–(9). When u ≥ 0 and hence

V ≥ 0, higher values of α correspond to greater degrees of risk aversion; when u and V ≤ 0,

the opposite is true: higher values of α correspond to lesser degrees of risk aversion.

The household’s coefficient of relative risk aversion is given by At times (42), which,

evaluated at steady state, simplifies to:

−AV11(a; θ)
V1(a; θ)

+ α
AV1(a; θ)
V (a; θ)

. (44)

We define the household’s total wealth At based on the present discounted value of its lifetime

consumption or lifetime leisure and consumption, as in Section 2.4, and we refer to (44) as

the consumption-based or leisure-and-consumption-based coeffcient of relative risk aversion,

depending on the definition of A.17

Expressions (43) and (44) highlight an important feature of risk aversion with general-

ized recursive preferences: it is not invariant with respect to level shifts of the utility kernel,

17Note that, with generalized recursive preferences, the household’s stochastic discount factor is given by:

βu1(c∗t+1, l∗t+1)

u1(c∗t , l∗t )

⎛⎝ V (a∗
t+1; θt+1)

(EtV (a∗
t+1; θt+1)1−α)1/(1−α)

⎞⎠−α

,

which must be used to compute household wealth. At steady state, however, this simplifies to the usual β.
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except for the special case of expected utility (α = 0). That is, the utility kernels u(·, ·) and

u(·, ·)+k, where k is a constant, lead to different household attitudes toward risk. The house-

hold’s preferences are invariant, however, with respect to multiplicative transformations of

the utility kernel.

When it comes to computing the risk aversion coefficients (43)–(44), expressions (10)–

(21) for V1, V11, ∂l∗t /∂at, and ∂c∗t /∂at continue to apply in the current context. Moreover,

V = u(c, l)
/
(1 − β) at the steady state. Substituting these into (43)–(44) gives:

Proposition 7. The household’s coefficient of absolute risk aversion in Proposition 6, eval-
uated at steady state, is given by:

−V11

V1
+ α

V1

V
=

−u11 + λu12

u1

r

1 + wλ
+ α

r u1

u
. (45)

The household’s consumption-based coefficient of relative risk aversion, evaluated at steady
state, is given by:

−AV11

V1
+ α

AV1

V
=

−u11 + λu12

u1

c

1 + wλ
+ α

c u1

u
. (46)

The household’s leisure-and-consumption-based coefficient of relative risk aversion, evaluated
at steady state, is given by (c + w(l̄ − l))/c times (46).

Proposition 7 is important because risk aversion for Epstein-Zin preferences has only

been computed previously in homothetic, isoelastic, consumption-only models, where the

value function can be computed in closed form. Proposition 7 does not require homotheticity,

is valid for general functional forms u, unknown functional forms V , and allows for the

presence of labor.

3.2 Examples

Example 3.1. Consider the additively separable utility kernel:

u(ct, lt) =
c1−γ
t

1 − γ
− η

l1+χ
t

1 + χ
, (47)

with generalized recursive preferences (41) and χ > 0, η > 0, and γ > 1, which was used by

Rudebusch and Swanson (2009).18 In this case, where u(·, ·) < 0, risk aversion is decreasing

in α, and α < 0 corresponds to preferences that are more risk averse than expected utility.

18We restrict attention here to the case γ > 1, consistent with Assumption 7. The case γ ≤ 1 can be
considered if we place restrictions on the domain of ct and lt such that u(·, ·) < 0; one can always choose
units for ct and lt such that this doesn’t represent much of a constraint in practice. Of course, one can also
consider alternative utility kernels with γ ≤ 1 for which u(·, ·) > 0.
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In models without labor, period utility u(ct, lt) = c1−γ
t /(1 − γ) implies a coefficient

of relative risk aversion of γ + α(1 − γ), which we will refer to as the traditional mea-

sure.19 Taking into account both the consumption and labor margins of (47), the household’s

consumption-based coefficient of relative risk aversion (46) is given by:

−AV11

V1
+ α

AV1

V
=

γ

1 + γ
χ

wl
c

+
α(1 − γ)

1 + γ−1
1+χ

wl
c

,

≈ γ

1 + γ
χ

+
α(1 − γ)
1 + γ−1

1+χ

, (48)

using c ≈ wl. As in Example 2.1, the household’s leisure-and-consumption-based coefficient

of relative risk aversion is not well defined in this example, so we restrict attention to the

consumption-based measure (48).

As χ becomes large, household labor becomes less flexible and the bias from ignoring

the labor margin shrinks to zero ((48) approaches γ + α(1− γ)). As χ approaches zero, (48)

decreases to α(1−γ)/γ, which is close to zero if we think of γ as being small (close to unity).

Thus, for given values of γ and α, actual household risk aversion can lie anywhere between

about zero and γ + α(1 − γ), depending on the value of χ.

Example 3.2. Van Binsbergen et al. (2010) and Backus, Routledge, and Zin (2008) consider

generalized recursive preferences with:

u(ct, lt) =

(
cν
t (1 − lt)1−ν

)1−γ

1 − γ
, (49)

where γ > 0, γ �= 1, and ν ∈ (0, 1). Van Binsbergen et al. call γ + α(1 − γ) the coefficient

of relative risk aversion, while Backus et al. use γν + α(1 − γ)ν + (1 − ν), after mapping

each study’s notation over to the present paper’s. The former measure effectively treats

consumption and leisure as a single composite commodity, while the latter measure allows ν—

the importance of the labor margin—to affect the household’s attitudes toward risk.

Substituting (49) into (46), the household’s consumption-based coefficient of relative

risk aversion is:
−AV11

V1
+ α

AV1

V
= γν + α(1 − γ)ν, (50)

19Set η = 0 and λ = 0 and substitute (47) into (46). This is the case, for example, in Epstein and Zin
(1989) and Boldrin, Christiano, and Fisher (1997), which do not have labor. In models with variable labor,
Rudebusch and Swanson (2009) refer to γ + α(1 − γ) as the quasi coefficient of relative risk aversion.
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while the leisure-and-consumption-based coefficient of relative risk aversion is:

−ÃV11

V1
+ α

ÃV1

V
= γ + α(1 − γ). (51)

The latter agrees with the Van Binsbergen et al. (2010) measure of risk aversion, while the

former is similar to (though not quite the same as) the Backus et al. (2008) measure. In

this paper, we have provided the formal justification for both measures, (50) and (51).20

Again, the leisure-and-consumption-based measure of risk aversion corresponds to treating

the Cobb-Douglas aggregate of consumption and leisure as a single, composite good.

Example 3.3. Tallarini (2000) considers an alternative Epstein-Zin specification:

Ṽ (at; θt) ≡ u(c∗t , l
∗
t ) +

β(1 + θ)
(1 − β)(1 − χ)

log Et exp
[
(1 − β)(1 − χ)

1 + θ
Ṽ (a∗

t+1; θt+1)
]
, (52)

with utility kernel:

u(ct, lt) = log ct + θ log(l̄ − lt). (53)

We can compute the coefficient of absolute risk aversion for (52) by following along the steps

in the proof of Proposition 6, which yields:

−Ṽ11(a; θ)
Ṽ1(a; θ)

− (1 − β)(1 − χ)
1 + θ

Ṽ1(a; θ). (54)

The other steps leading up to Proposition 7 are all the same, so substituting in for Ṽ1 and

Ṽ11 in (54) yields a consumption-based coefficient of relative risk aversion of:

−u11 + λu12

u1

c

1 + wλ
− 1 − χ

1 + θ
cu1 =

χ

1 + θ
. (55)

The leisure-and-consumption-based coefficient of relative risk aversion is χ, which again

corresponds to treating consumption and leisure as a single, composite good.

Both coefficients of relative risk aversion differ from the value (χ+θ)/(1+θ) emphasized

by Tallarini (2000). Tallarini applies the traditional, one-good measure of risk aversion for

Epstein-Zin preferences, −cu11
u1

− 1−χ
1+θ cu1, to the case where θ > 0 but labor is held fixed. This

ignores the fact that, when θ > 0, households will vary their labor endogenously in response

to shocks. As a result, Tallarini’s measure lies somewhere in between the consumption-based

and the leisure-and-consumption-based relative risk aversion coefficients.

20As ν → 0, w/c → ∞, so consumption becomes trivial to insure with variations in labor supply. This
explains why the consumption-based coefficient of relative risk aversion in (50) vanishes as ν → 0.
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4. Internal and External Habits

Many studies in macroeconomics and finance assume that households derive utility not from

consumption itself, but from consumption relative to some reference level, or habit stock.

Habits, in turn, can have substantial effects on the household’s attitudes toward risk (e.g.,

Campbell and Cochrane, 1999, Boldrin, Christiano, and Fisher, 1997). In this section, we

investigate how habits affect risk aversion in the DSGE framework.

We generalize the household’s utility kernel in this section to u(ct − ht, lt), where ht

denotes the household’s reference level of consumption, or habits. We focus on an additive

rather than multiplicative specification for habits because the implications for risk aversion

are typically more interesting in the additive case.

If the habit stock ht is external to the household (“keeping up with the Joneses” utility),

then the parameters that govern the process for ht can be incorporated into the exogenous

state vector θt, and the analysis proceeds much as in the previous sections. However, if the

habit stock ht is a function of the household’s own past levels of consumption, then the state

variables of the household’s optimization problem must be augmented to include the state

variables that govern ht. We consider each of these cases in turn.

4.1 External Habits

When the reference consumption level ht in the utility kernel u(ct − ht, lt) is external to

the household, then the parameters that govern ht can be incorporated into the exogenous

state vector θt and the analysis of the previous sections carries over essentially as before. In

particular, the coefficient of absolute risk aversion continues to be given by (9) in the case

of expected utility and (43) in the case of generalized recursive preferences. The household’s

intratemporal optimality condition (12) still implies:

∂l∗t
∂at

= −λt
∂c∗t
∂at

, (56)

where λt is given by (14), and the household’s Euler equation (15) still implies:

∂c∗t
∂at

= Et
∂c∗t+1

∂at
= Et

∂c∗t+k

∂at
, k = 1, 2, . . . (57)

∂l∗t
∂at

= Et
∂l∗t+1

∂at
= Et

∂l∗t+k

∂at
, k = 1, 2, . . . (58)
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evaluated at steady state. Together with the budget constraint (2)–(3), (56)–(58) imply:

∂c∗t
∂at

=
r

1 + wλ
. (59)

The only real differences that arise relative to the case without habits is, first, that the

steady-state point at which the derivatives of u(·, ·) are evaluated is (c − h, l) rather than

(c, l), and second, that relative risk aversion confronts the household with a hypothetical

gamble over c rather than c − h, which has a tendency to make the household more risk

averse for a given functional form u(·, ·), because the stakes are effectively larger.

Example 4.1. Consider the case of expected utility with additively separable utility kernel:

u(ct − ht, lt) =
(ct − ht)1−γ

1 − γ
− η

l1+χ
t

1 + χ
, (60)

where γ, χ, η > 0. The traditional measure of risk aversion for this example is −cu11/u1 =

γc/(c−h), which exceeds γ by a factor that depends on the importance of habits relative to

consumption. The consumption-based coefficient of relative risk aversion is:

−AV11

V1
=

−cu11

u1

1
1 + w wu11

u22

,

=
γc

(c − h)
1

1 + γc
χ(c−h)

wl
c

. (61)

When there is no labor margin in the model (λ = 0), the consumption-based measure agrees

with the traditional measure. When there is a labor margin, the household’s consumption-

based coefficient of relative risk aversion (61) is less than the traditional measure by the

factor 1 + γc
χ(c−h)

, using wl ≈ c. Ignoring the labor margin in (61) thus leads to an even

greater bias in the model with habits (h > 0) than in the model without habits (h = 0).

If γ = 2, χ = 1, and h = .8c, then the household’s true risk aversion is smaller than the

traditional measure by a factor of more than ten.

When the household has generalized recursive preferences rather than expected utility

preferences, the consumption-based coefficient of relative risk aversion for (60) is:

γc

(c − h)
1

1 + γc
χ(c−h)

wl
c

+
α(1 − γ)c
(c − h)

1
1 + c

(c−h)
γ−1
1+χ

wl
c

. (62)

Again, the bias from ignoring the labor margin in (62) is even greater in the model with

habits (h > 0) than without habits (h = 0).
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4.2 Internal Habits

When habits are internal to the household, we must specify how the household’s actions

affect its future habits. In order to minimize notation and emphasize intuition, in the present

section we focus on the case where habits are proportional to last period’s consumption:

ht = bct−1, (63)

b ∈ (0, 1), and we assume the household has expected utility preferences. In the Appendix,

we derive the corresopnding closed-form expressions for the more complicated case where the

habit stock evolves according to the longer-memory process:

ht = ρht−1 + bct−1, (64)

with ρ ∈ (−1, 1).

With internal habits, the value of ht+1 depends on the household’s choices in period t,

so we write out the dependence of the household’s value function on ht explicitly:

V (at, ht; θt) = u(c∗t − ht, l
∗
t ) + β

(
EtV (a∗

t+1, h
∗
t+1; θt+1)1−α

)1/(1−α)
, (65)

where c∗t ≡ c∗(at, ht; θt) and l∗t ≡ l∗(at, ht; θt) denote the household’s optimal choices for

consumption and labor in period t as functions of the household’s state vector, and a∗
t+1 and

h∗
t+1 denote the optimal stocks of assets and habits in period t + 1 that are implied by c∗t

and l∗t ; that is, a∗
t+1 ≡ (1 + rt)at + wtl

∗
t + dt − c∗t and h∗

t+1 ≡ bc∗t .

The household’s coefficient of absolute risk aversion can be derived in the same manner

as in Propositions 1 and 6:

Proposition 8. With generalized recursive preferences (40) or (41), utility kernel u(ct −
ht, lt), and internal habits ht given by (63), the household’s coefficient of absolute risk aver-
sion with respect to the gamble (6) is given by:

−EtV (a∗
t+1, h

∗
t+1; θt+1)−α

[
V11(a∗

t+1, h
∗
t+1; θt+1) − α

V1(a∗
t+1, h

∗
t+1; θt+1)2

V (a∗
t+1, h

∗
t+1; θt+1)

]
EtV (a∗

t+1, h
∗
t+1; θt+1)−αV1(a∗

t+1, h
∗
t+1; θt+1)

. (66)

Evaluated at steady state, (66) simplifies to:

−V11(a, h; θ)
V1(a, h; θ)

+ α
V1(a, h; θ)
V (a, h; θ)

. (67)
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Proof: Essentially identical to the proof of Proposition 6.

Computing closed-form expressions for V1 and V11 in (67) is substantially more compli-

cated for the case of internal habits, however, because of the dynamic relationship between

the household’s current consumption and its future habits. In order to minimize notation

and simplify this derivation as much as possible, we restrict attention in the main text to the

case of expected utility preferences (α = 0). In the Appendix, we derive the corresponding

closed-form expressions for the more complicated case of generalized recursive preferences.

The household’s first-order conditions for (65) with respect to consumption and labor

(and imposing α = 0) are given by:

u1(c∗t − ht, l
∗
t ) = βEtV1(a∗

t+1, h
∗
t+1; θt+1) − βbEtV2(a∗

t+1, h
∗
t+1; θt+1), (68)

u2(c∗t − ht, l
∗
t ) = −βwtEtV1(a∗

t+1, h
∗
t+1; θt+1). (69)

Equation (69) is essentially the same as in the case without habits. The first-order condi-

tion (68), however, includes the future effect of consumption on habits in the second term

on the right-hand side.

Differentiating (65) with respect to its first two arguments and applying the envelope

theorem yields:

V1(at, ht; θt) = β(1 + rt) EtV1(a∗
t+1, h

∗
t+1; θt+1), (70)

V2(at, ht; θt) = −u1(c∗t − ht, l
∗
t ). (71)

Equations (69) and (70) can be used to solve for V1 in terms of current-period utility:

V1(at, ht; θt) = −(1 + rt)
wt

u2(c∗t − ht, l
∗
t ), (72)

which states that the marginal value of wealth equals the marginal utility of working fewer

hours.21 This solves for V1.

To solve for V11, differentiate (72) with respect to at to yield:

V11(at, ht; θt) = −(1 + rt)
wt

(
u12

∂c∗t
∂at

+ u22
∂l∗t
∂at

)
, (73)

21 Using the marginal utility of labor is simpler than the marginal utility of consumption in (72) because it
avoids having to keep track of future habits and the value function next period. However, in steady state it
is also true that V1 = u1(1− βb)/β, which we will use to express risk aversion in terms of u1 and u11 below.
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where we drop the arguments of the uij to reduce notation. It now remains to solve for

∂c∗t /∂at and ∂l∗t /∂at, which we do in the same manner as before, except that the dynamics

of internal habits require us to solve for ∂c∗τ/∂at and ∂l∗τ/∂at for all dates τ ≥ t at the

same time. To better keep track of these dynamics, we henceforth let a time subscript τ ≥ t

denote a generic future date and reserve the subscript t to denote the date of the current

period—the period in which the household faces the hypothetical one-shot gamble.

We solve for ∂l∗τ/∂at in terms of ∂c∗τ/∂at in much the same way as without habits.

The household’s intratemporal optimality condition ((68) combined with (69)) implies:

−u2(c∗τ − h∗
τ , l∗τ ) = wτ

[
u1(c∗τ − h∗

τ , l∗τ) + bβEτV2(a∗
τ+1, h

∗
τ+1; θτ+1)

]
, (74)

= wτ (1 − βbF ) u1(c∗τ − h∗
τ , l∗τ ), (75)

where F denotes the forward operator, that is Fxτ ≡ Eτxτ+1 for any expression x dated τ .

Differentiating (75) with respect to at yields:

−u12

(∂c∗τ
∂at

− ∂h∗
τ

∂at

)
− u22

∂l∗τ
∂at

= wτ (1 − βbF )
[
u11

(∂c∗τ
∂at

− ∂h∗
τ

∂at

)
+ u12

∂l∗τ
∂at

]
, (76)

where Fu11 ∂c∗τ/∂at denotes Eτu11(c∗τ+1 −h∗
τ+1, l

∗
τ+1) ∂c∗τ+1/∂at, and ∂h∗

τ/∂at = 0 for τ = t

since ht is given. Evaluating (76) at steady state and solving for ∂l∗τ/∂at yields:

∂l∗τ
∂at

= −u12 + wu11 − βbwu11F

u22 + wu12

[
1 − βbwu12

u22 + wu12
F

]−1

(1 − bL)
∂c∗τ
∂at

. (77)

where the uij are evaluated at steady state, L denotes the lag operator—that is, Lxτ ≡ xτ−1

for any expression x dated τ—and we assume |βbwu12/(u22 + wu12)| < 1 in order to ensure

convergence. Note that when b = 0, (77) reduces to −wu11+u12
u22+wu12

∂c∗τ
∂at

, as in Section 2. This

solves for ∂l∗τ/∂at in terms of (current and future) ∂c∗τ/∂at.

As before, we solve for ∂c∗τ/∂at using the household’s Euler equation and budget con-

straint. Differentiating the household’s Euler equation:

1
wτ

u2(c∗τ − h∗
τ , l∗τ ) = βEτ

1 + rτ+1

wτ+1
u2(c∗τ+1 − h∗

τ+1, l
∗
τ+1), (78)

with respect to at and evaluating at steady state yields:

u12

[
(1 + b) − F − bL

] ∂c∗τ
∂at

= −u22(1 − F )
∂l∗τ
∂at

. (79)
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Substituting (77) into (79) yields the following difference equation for cτ :[
u12

(
u22 + wu12 − βbwu12F

)[
(1 + b) − F − bL

]−
u22(1 − F )

(
u12 + wu11 − βbwu11F

)
(1 − bL)

]∂c∗τ
∂at

= 0. (80)

Since FL = 1,22 equation (80) simplifies to:

(1 − βbF )(1 − F )(1 − bL)
∂c∗τ
∂at

= 0, (81)

which, from (79), also implies:

(1 − βbF )(1 − F )
∂l∗τ
∂at

= 0. (82)

Equations (81) and (82) hold for all τ ≥ t, hence we can invert the (1 − βbF ) operator

forward to get:

(1 − F )(1 − bL)
∂c∗τ
∂at

= 0, (83)

(1 − F )
∂l∗τ
∂at

= 0. (84)

In other words, whatever the initial responses ∂c∗t /∂at and ∂l∗t /∂at are, we must have:

Et
∂c∗t+1

∂at
= (1 + b)

∂c∗t
∂at

,

Et

∂c∗t+k

∂at
= (1 + b + · · · + bk)

∂c∗t
∂at

, (85)

and Et

∂l∗t+k

∂at
=

∂l∗t
∂at

, k = 1, 2, . . . (86)

evaluated at steady state. Because of habits, consumption responds only gradually to a

surprise change in wealth, asymptoting over time to its new steady-state level, but labor

moves immediately to its new steady-state level in response to surprises in wealth.

From (85), we can now solve (79) to get:

∂l∗t
∂at

= −λ
∂c∗t
∂at

, (87)

where

λ ≡ w(1 − βb)u11 + u12

u22 + w(1 − βb)u12
=

u1u12 − u2u11

u1u22 − u2u12
, (88)

22To be precise, FLxτ = Eτ−1xτ , but since the household evaluates these expressions from the perspective
of the initial period t, EtFLxτ = Etxτ . Formally, take the expectation of (80) at time t and then apply
EtFL = Et to get (81).
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and where the latter equality follows because w = −(1 − βb)−1u2/u1 in steady state. Thus,

that (87)–(88) are essentially identical to (13)–(14).23 Again, λ must be positive if leisure

and consumption are normal goods.

It now remains to solve for ∂c∗t /∂at. From the household’s budget constraint and

condition (86), we have:

Et

∞∑
τ=t

(1 + r)−(τ−t) ∂c∗τ
∂at

= (1 + r) + w
1 + r

r

∂l∗t
∂at

. (89)

Substituting (85)–(87) into (89) and solving for ∂c∗t /∂at yields:

∂c∗t
∂at

=
(1 − βb)r

1 + (1 − βb)wλ
. (90)

Without habits or labor, an increase in assets would cause consumption to rise by the amount

of the income flow from the change in assets, r. The presence of habits attenuates this change

by the amount βb in the numerator of (90), and the consumption response is further attenu-

ated by the household’s change in hours worked, which is accounted for by the denominator.

Substituting (72), (73), (87), (88), and (90) into (67), we have established:24

Proposition 9. The household’s coefficient of absolute risk aversion in Proposition 8, eval-
uated at steady state, is given by:

−V11

V1
=

−u11 + λu12

u1

(1 − βb)r
1 + (1 − βb)wλ

. (91)

The household’s consumption-based coefficient of relative risk aversion, evaluated at steady
state, is given by: −AV11

V1
=

−u11 + λu12

u1

(1 − βb)c
1 + (1 − βb)wλ

. (92)

The household’s leisure-and-consumption-based coefficient of relative risk aversion, evaluated
at steady state, is given by (c + w(l̄ − l))/c times (92).

Equations (91)–(92) have essentially the same form as the corresponding expressions

in the model without habits.

23However, unlike the model without habits, (87)–(88) only hold here in steady state.
24 In order to express (91) in terms of u1 and u11 instead of u2 and u22, we use V1 = (1 − βb)u1/β and

differentiate the first-order condition:

u1(c∗t − ht, l
∗
t ) =

1

1 + rt
V1(at, ht; θt) + βbEtu1(c∗t+1 − h∗

t+1, l∗t+1),

with respect to at to solve for V11 using (85)–(88) and (90).
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Example 4.2. Consider the utility kernel of example 4.1:

u(ct − ht, lt) =
(ct − ht)1−γ

1 − γ
− η

l1+χ
t

1 + χ
, (93)

where γ, χ, η > 0, but now with habits ht = bct−1 internal to the household rather than

external. In thise case, the household’s consumption-based coefficient of relative risk aversion

is given by:

−AV11

V1
=

−cu11

u1

1 − βb

1 + (1 − βb)wλ
,

= γ
1 − βb

1 − b

1
1 + γ

χ
1−βb
1−b

wl
c

,

≈ γ

1 + γ
χ

, (94)

where the last line uses β ≈ 1 and wl ≈ c.

The most striking feature of equation (94) is that it is independent of b, the importance

of habits. This is in sharp contrast to the case of external habits, where risk aversion is

strongly increasing in b (cf. equation (61)).

5. Discussion and Conclusions

The ability to vary labor supply has dramatic effects on household risk aversion and asset

prices in dynamic equilibrium models. The traditional measure of risk aversion, −cu11/u1,

ignores the household’s ability to partially offset shocks to income with changes in hours

worked. For reasonable parameterizations, the traditional measure can easily overstate risk

aversion by a factor of three or more. Indeed, households can even be risk neutral when the

traditional measure of risk aversion is far from zero. Many studies in the macroeconomics,

macro-finance, and international literatures thus may be overstating the actual degree of risk

aversion in their models by a substantial degree.

Risk aversion matters for asset pricing. Risk premia on assets computed using the

stochastic discount factor are essentially linear in the degree of risk aversion. As a result,

asset prices in DSGE models can be very different and can behave very differently depending

on how the household’s labor margin is specified. Understanding how labor supply affects

asset prices is thus important for bringing DSGE-type models closer to financial market data.



32

If risk aversion is measured incorrectly because the labor margin is ignored, then risk premia

in the model are also more likely to be surprising or puzzling. An extreme example of this

is when household utility has a zero discriminant—implying risk neutrality—even when the

traditional measure of risk aversion is large.

Risk neutrality itself can be a desirable feature for some applications, such as labor

market search or financial frictions. In these applications, risk neutrality allows for much

simpler or even closed-form solutions to key aspects of the model. The present paper suggests

new ways of modeling risk neutrality in a dynamic framework. The traditional approach—

linearity of utility in consumption—has undesirable implications for interest rates and con-

sumption growth, but the present paper shows that any utility kernel with a singular Hessian

can be used instead.

A related observation is that risk aversion and the intertemporal elasticity of substitu-

tion are nonreciprocal, even for expected utility preferences. There is a wedge between the

two concepts that depends on the household’s labor margin.

The simple, closed-form expressions for risk aversion that this paper derives, and the

methods of the paper more generally, should be useful to researchers interested in pricing any

asset—stocks, bonds, or futures, in foreign or domestic currency—within the framework of

dynamic equilibrium models. Since these models are a mainstay of research in academia, at

central banks, and international financial institutions, the applicability of the results should

be widespread.
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Appendix: Mathematical Derivations

Proof of Proposition 1

Since (at; θt) is an interior point of X, V (at + σε
1+rt

; θt) and V (at + σε
1+rt

; θt) exist for sufficiently

small σ, and V (at+
σε

1+rt
; θt) ≤ Ṽ (at; θt; σ) ≤ V (at+

σε
1+rt

; θt), hence Ṽ (at; θt; σ) exists. Moreover,
since V (·; ·) is continuous and increasing in its first argument, the intermediate value theorem implies

there exists a unique −μ(σ) ∈ [σε, σε] with V (at− μ(σ)
1+rt

; θt) = Ṽ (at; θt; σ).
For a sufficiently small fee μ in (7), the change in household welfare (5) is given to first order

by: −V1(at; θt)

1 + rt
dμ . (A1)

Using the envelope theroem, we can rewrite (A1) as:

−βEtV1(a
∗
t+1; θt+1) dμ . (A2)

Turning now to the gamble in (6), note that the household’s optimal choices for consumption
and labor in period t, c∗t and l∗t , will generally depend on the size of the gamble σ—for example, the
household may undertake precautionary saving when faced with this gamble. Thus, in this section
we write c∗t ≡ c∗(at; θt; σ) and l∗t ≡ l∗(at; θt; σ) to emphasize this dependence on σ. The household’s
value function, inclusive of the one-shot gamble in (6), satisfies:

Ṽ (at; θt; σ) = u(c∗t , l∗t ) + βEtV (a∗
t+1; θt+1), (A3)

where a∗
t+1 ≡ (1 + rt)at + wtl

∗
t + dt − c∗t . Because (6) describes a one-shot gamble in period t, it

affects assets a∗
t+1 in period t+1 but otherwise does not affect the household’s optimization problem

from period t +1 onward; as a result, the household’s value-to-go at time t+1 is just V (a∗
t+1; θt+1),

which does not depend on σ except through a∗
t+1.

Differentiating (A3) with respect to σ, the first-order effect of the gamble on household welfare
is: [

u1
∂c∗

∂σ
+ u2

∂l∗

∂σ
+ βEtV1 · (wt

∂l∗

∂σ
− ∂c∗

∂σ
+ εt+1)

]
dσ, (A4)

where the arguments of u1, u2, and V1 are suppressed to reduce notation. Optimality of c∗t and
l∗t implies that the terms involving ∂c∗/∂σ and ∂l∗/∂σ in (A4) cancel, as in the usual envelope
theorem (these derivatives vanish at σ = 0 anyway, for the reasons discussed below). Moreover,
EtV1(a

∗
t+1; θt+1)εt+1 = 0 because εt+1 is independent of θt+1 and a∗

t+1, evaluating the latter at
σ = 0. Thus, the first-order cost of the gamble is zero, as in Arrow (1964) and Pratt (1965).

To second order, the effect of the gamble on household welfare is:[
u11

(
∂c∗

∂σ

)2

+ 2u12
∂c∗

∂σ

∂l∗

∂σ
+ u22

(
∂l∗

∂σ

)2

+ u1
∂2c∗

∂σ2
+ u2

∂2l∗

∂σ2

+ βEtV11 ·
(

wt
∂l∗

∂σ
− ∂c∗

∂σ
+ εt+1

)2

+ βEtV1 ·
(

wt
∂2l∗

∂σ2
− ∂2c∗

∂σ2

)]
dσ2

2
. (A5)

The terms involving ∂2c∗/∂σ2 and ∂2l∗/∂σ2 cancel due to the optimality of c∗t and l∗t . The derivatives
∂c∗/∂σ and ∂l∗/∂σ vanish at σ = 0 (there are two ways to see this: first, the linearized version
of the model is certainty equivalent; alternatively, the gamble in (6) is isomorphic for positive and
negative σ, hence c∗ and l∗ must be symmetric about σ = 0, implying the derivatives vanish). Thus,
for infinitesimal gambles, (A5) simplifies to:

βEtV11(a
∗
t+1; θt+1) ε2

t+1
dσ2

2
. (A6)
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Finally, εt+1 is independent of θt+1 and a∗
t+1, evaluating the latter at σ = 0. Since εt+1 has unit

variance, (A6) reduces to:

βEtV11(a
∗
t+1; θt+1)

dσ2

2
. (A7)

Equating (A2) to (A7) allows us to solve for dμ as a function of dσ2. Thus, the limit limσ→0 2μ(σ)/σ2

exists and is given by: −EtV11(a
∗
t+1; θt+1)

EtV1(a∗
t+1; θt+1)

. (A8)

To evaluate (A8) at the nonstochastic steady state, set at+1 = a and θt+1 = θ to get:

−V11(a; θ)

V1(a; θ)
. (A9)

Derivation of Risk Aversion, the Stochastic Discount Factor, and Risk Premia

Differentiating the household’s Euler equation (15) and evaluating at steady state yields:

u11(dc∗t − Etdc∗t+1) + u12(dl∗t − Etdl∗t+1) = βEtu1drt+1, (A10)

which, applying (36), becomes:

(u11 − λu12)(dc∗t − Etdc∗t+1) − u1u12

u22 + wu12
(dwt − Etdwt+1) = βEtu1drt+1. (A11)

Note that (A11) implies, for each k = 1, 2, . . .,

Etdc∗t+k = dc∗t − u1u12

u11u22 − u2
12

(dwt − Etdwt+k) − βu1

u11 − λu12
Et

k∑
i=1

drt+i. (A12)

Combining (2)–(3), differentiating, and evaluating at steady state yields:

Et

∞∑
k=0

1

(1 + r)k
(dc∗t+k − wdl∗t+k − ldwt+k − ddt+k − adrt+k) = (1 + r)dat. (A13)

Substituting (36) and (A12) into (A13), and solving for dc∗t , yields:

dc∗t =
r

1 + r

1

1 + wλ

[
(1 + r)dat + Et

∞∑
k=0

1

(1 + r)k
(l dwt+k + ddt+k + adrt+k)

]

+
u1u12

u11u22 − u2
12

dwt +
r

1 + r

−u1

u11 − λu12
Et

∞∑
k=0

1

(1 + r)k

[
λ

1 + wλ
dwt+k − d log Rt,t+k

]
, (A14)

where Rt,t+k ≡ ∏k
i=1(1 + rt+i). Combining (35), (36), and (A14) gives:

dmt+1 = βr
u11 − λu12

u1

1

1 + wλ

[
dat+1 + Et+1

∞∑
k=1

1

(1 + r)k
(l dwt+k + ddt+k + adrt+k)

]

− βr Et+1

∞∑
k=1

1

(1 + r)k

[
λ

1 + wλ
dwt+k − d log Rt+1,t+k

]
, (A15)

as in the main text. Equation (A15) also holds for the case of external habits (cf. Section 4.1).
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For generalized recursive preferences, equations (A10)–(A14) still hold, but dmt+1 has extra
terms related to dVt+1. In this case, we get the more general expression:

dmt+1 = βr

(
u11 − λu12

u1

1

1 + wλ
− αu1

u

)[
dat+1 + Et+1

∞∑
k=1

1

(1 + r)k
(l dwt+k + ddt+k + adrt+k)

]

− βr Et+1

∞∑
k=1

1

(1 + r)k

[
λ

1 + wλ
dwt+k − d log Rt+1,t+k

]
. (A16)

Proof of Proposition 6

For generalized recursive preferences, the hypothetical one-shot gamble and one-time fee faced by
the household are the same as for the case of expected utility. However, the household’s optimality
conditions for c∗t and l∗t (and, implicitly, a∗

t+1) are slightly more complicated:

u1(c
∗
t , l∗t ) = β(EtV (a∗

t+1; θt+1)
1−α)α/(1−α)

EtV (a∗
t+1; θt+1)

−αV1(a
∗
t+1; θt+1), (A17)

u2(c
∗
t , l∗t ) = −βwt(EtV (a∗

t+1; θt+1)
1−α)α/(1−α)

EtV (a∗
t+1; θt+1)

−αV1(a
∗
t+1; θt+1). (A18)

Note that (A17) and (A18) are related by the usual u2(c
∗
t , l∗t ) = −wtu1(c

∗
t ; l

∗
t ), and when α = 0,

(A17) and (A18) reduce to the standard optimality conditions for expected utility.
For an infinitesimal fee dμ in (7), the change in welfare for the household with generalized

recursive preferences is:

−V1(at; θt)
dμ

1 + rt
= −β(EtV (a∗

t+1; θt+1)
1−α)α/(1−α)

EtV (a∗
t+1; θt+1)

−αV1(a
∗
t+1; θt+1) dμ , (A19)

where the right-hand side of (A19) follows from the envelope theorem.
Turning now to the gamble in (6), the first-order effect of the gamble on household welfare is:[

u1
∂c∗

∂σ
+ u2

∂l∗

∂σ
+ β(EtV

1−α)α/(1−α)
EtV

−αV1 · (wt
∂l∗

∂σ
− ∂c∗

∂σ
+ εt+1)

]
dσ, (A20)

where we have dropped the arguments of u1, u2, V , and V1 to simplify notation. As before, optimality
of c∗t and l∗t implies that the terms involving ∂c∗/∂σ and ∂l∗/∂σ cancel, and EtV

−αV1εt+1 = 0
because εt+1 is independent of θt+1 and a∗

t+1, evaluating the latter at σ = 0. Thus, the first-order
cost of the gamble is zero.

To second order, the effect of the gamble on household welfare is:⎧⎨⎩u11

(
∂c∗

∂σ

)2

+ 2u12
∂c∗

∂σ

∂l∗

∂σ
+ u22

(
∂l∗

∂σ

)2

+ u1
∂2c∗

∂σ2
+ u2

∂2l∗

∂σ2

+ αβ(EtV
1−α)(2α−1)/(1−α)

[
EtV

−αV1 ·
(

wt
∂l∗

∂σ
− ∂c∗

∂σ
+ εt+1

)]2

− αβ(EtV
1−α)α/(1−α)

EtV
−α−1

[
V1 ·

(
wt

∂l∗

∂σ
− ∂c∗

∂σ
+ εt+1

)]2

+ β(EtV
1−α)α/(1−α)

EtV
−αV11 ·

(
wt

∂l∗

∂σ
− ∂c∗

∂σ
+ εt+1

)2

+ β(EtV
1−α)α/(1−α)

EtV
−αV1 ·

(
wt

∂2l∗

∂σ2
− ∂2c∗

∂σ2

)⎫⎬⎭ dσ2

2
. (A21)
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The derivatives ∂c∗/∂σ and ∂l∗/∂σ vanish at σ = 0, the terms involving ∂2c∗/∂σ2 and ∂2l∗/∂σ2

cancel due to the optimality of c∗t and l∗t , and εt+1 is independent of θt+1 and a∗
t+1 (evaluating the

latter at σ = 0). Thus, (A21) simplifies to:

β(EtV
1−α)α/(1−α) (

EtV
−αV11 − αEtV

−α−1V 2
1

) dσ2

2
. (A22)

Equating (A19) to (A22), the Arrow-Pratt coefficient of absolute risk aversion is:

−EtV
−αV11 + αEtV

−α−1V 2
1

EtV −αV1

. (A23)

Since (A23) is already evaluated at σ = 0, to evaluate it at the nonstochastic steady state, set
at+1 = a, θt+1 = θ to get: −V11(a; θ)

V1(a; θ)
+ α

V1(a; θ)

V (a; θ)
. (A24)

Derivation of Risk Aversion with Long-Memory Internal Habits and EZ Preferences

We consider here the case of generalized recursive preferences:

V (at, ht; θt) = u(c∗t − ht, l
∗
t ) + β

(
Et V (a∗

t+1, h
∗
t+1; θt+1)

1−α
)1/(1−α)

, (A25)

and a longer-memory specification for habits:

ht = ρht−1 + bct−1, (A26)

with |ρ| < 1, and we assume ρ + b < 1 in order to ensure h < c.
We wish to compute V1 and V11. The household’s first-order conditions for (A25) with respect

to consumption and labor are given by:

u1 = β(EtV
1−α)α/(1−α)

EtV
−α[V1 − bV2], (A27)

u2 = −βwt(EtV
1−α)α/(1−α)

EtV
−αV1, (A28)

where we drop the arguments of u and V to reduce notation. Equations (A27) and (A28) are the
same as in the main text except that the discounting of future periods involves the value function
V when α �= 0.

Differentiating (A25) with respect to its first two arguments and applying the envelope theorem
yields:

V1 = β(1 + rt) (EtV
1−α)α/(1−α)

EtV
−αV1, (A29)

V2 = −u1 + ρβ(EtV
1−α)α/(1−α)

EtV
−αV2. (A30)

As in the main text, (A28) and (A29) can be used to solve for V1 in terms of current-period
utility:

V1(at, ht; θt) = − (1 + rt)

wt
u2(c

∗
t − ht, l

∗
t ). (A31)

To solve for V11, differentiate (A31) with respect to at to yield:

V11(at, ht; θt) = − (1 + rt)

wt

(
u12

∂c∗t
∂at

+ u22
∂l∗t
∂at

)
, (A32)
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It remains to solve for ∂c∗t /∂at and ∂l∗t /∂at. As in the main text, we solve for ∂c∗τ/∂at and ∂l∗τ/∂at

for all dates τ ≥ t at the same time. We henceforth let a time subscript τ ≥ t denote a generic
future date and reserve the subscript t to denote the date of the current period—the period in which
the household faces the hypothetical one-shot gamble.

We solve for ∂l∗τ/∂at in terms of ∂c∗τ/∂at in the same manner as in the main text, except that
the expressions are more complicated due to the persistence of habits and the household’s more
complicated discounting of future periods. Note first that (A30) can be used to solve for V2 in terms
of current and future marginal utility:

V2 = −(1 − ρβF )−1 u1, (A33)

where now F denotes the “generalized recursive” forward operator; that is,

Fxτ ≡ (EτV 1−α)α/(1−α)
EτV −αxτ+1. (A34)

The household’s intratemporal optimality condition ((A29) combined with (A30)) implies:

−u2(c
∗
τ − h∗

τ , l∗τ ) = wτ [u1(c
∗
τ − h∗

τ , l∗τ ) + bβEτV2(a
∗
τ+1, h

∗
τ+1; θτ+1)]. (A35)

= wτ (1 − βbF (1 − βρF )−1)u1(c
∗
τ − h∗

τ , l∗τ ), (A36)

Differentiating (A36) with respect to at and evaluating at steady state yields:

−u12

(
∂c∗τ
∂at

− ∂h∗
τ

∂at

)
− u22

∂l∗τ
∂at

= w (1 − βbF (1 − βρF )−1)
[
u11

(
∂c∗τ
∂at

− ∂h∗
τ

∂at

)
+ u12

∂l∗τ
∂at

]
, (A37)

where we have used the fact that:
∂

∂at
Fxτ = F

∂xτ

∂at
, (A38)

when the derivative is evaluated at steady state. Solving (A37) for ∂l∗τ/∂at yields:

∂l∗τ
∂at

= −u12 + wu11 − β(ρu12 + (ρ + b)wu11)F
u22 + wu12

×[
1 − β(ρu22 + (ρ + b)wu12)

u22 + wu12
F

]−1

(1 − bL(1 − ρL)−1) ∂c∗τ
∂at

. (A39)

where we’ve used hτ = bL(1 − ρL)−1cτ and we assume
∣∣β(ρu22 + (ρ + b)wu12)/(u22 + wu12)

∣∣ < 1
to ensure convergence. This solves for ∂l∗t /∂at in terms of (current and future) ∂c∗τ/∂at.

We now turn to solving for ∂c∗τ/∂at. The household’s intertemporal optimality (Euler) condi-
tion is given by:

1

wτ
u2(c

∗
τ − h∗

τ , l∗τ ) = βF
1 + rτ

wτ
u2(c

∗
τ − h∗

τ , l∗τ ). (A40)

Differentiating (A40) with respect to at and evaluating at steady state yields:

u12(1 − F ) [1 − bL(1 − ρL)−1] ∂c∗τ
∂at

= −u22(1 − F )
∂l∗τ
∂at

. (A41)

Using (A39) and noting FL = 1 at steady state, (A41) simplifies to:

[1 − β(ρ + b)F ] (1 − F ) [1 − bL(1 − ρL)−1] ∂c∗τ
∂at

= 0, (A42)
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which, from (A41), also implies:

[1 − β(ρ + b)F ] (1 − F )
∂l∗τ
∂at

= 0. (A43)

Equations (A42) and (A43) hold for all τ ≥ t, hence we can invert the [1 − β(ρ + b)F ] operator
forward to get:

(1 − F ) [1 − bL(1 − ρL)−1] ∂c∗τ
∂at

= 0, (A44)

(1 − F )
∂l∗τ
∂at

= 0. (A45)

Finally, we can apply (1 − ρL) to both sides of (A44) to get:

(1 − F ) [1 − (ρ + b)L] ∂c∗τ
∂at

= 0, (A46)

which then holds for all τ ≥ t + 1. Thus, whatever the initial responses ∂c∗t /∂at and ∂l∗t /∂at, we
must have:

Et
∂c∗t+1

∂at
= (1 + b)

∂c∗t
∂at

,

Et
∂c∗t+k

∂at
= (1 + b(ρ + b)k−1) ∂c∗t

∂at
, (A47)

and Et
∂l∗t+k

∂at
=

∂l∗t
∂at

, k = 1, 2, . . . (A48)

Consumption responds gradually to a surprise change in wealth, while labor moves immediately to
its new steady-state level.

From (A47), we can now solve (A41) to get:

∂l∗t
∂at

= −λ
∂c∗t
∂at

. (A49)

where

λ ≡ w(1 − β(ρ + b))u11 + (1 − βρ)u12

(1 − βρ)u22 + w(1 − β(ρ + b))u12

=
u1u12 − u2u11

u1u22 − u2u12
, (A50)

where the latter equaltiy follows because w = −u2
u1

1−βρ
1−β(ρ+b)

in steady state.

It remains to solve for ∂c∗t /∂at. The household’s intertemporal budget constraint implies:

Et

∞∑
τ=t

(1 + r)−(τ−t) ∂c∗τ
∂at

= (1 + r) + w
1 + r

r

∂l∗t
∂at

. (A51)

Substituting (A47) and (A49) into (A51) and solving for ∂c∗t /∂at yields:

∂c∗t
∂at

=
(1 − βb

1−βρ
) r

1 + (1 − βb
1−βρ

)wλ
. (A52)

Without habits or labor, an increase in assets would cause consumption to rise by the amount of the
income flow from the change in assets—the first term on the right-hand side of (A52). The presence
of habits attenuates this change by the amount βb/(1 − βρ) in the numerator of the second term,
and the consumption response is further attenuated by the household’s change in hours worked,
which is accounted for by the denominator of the second term in (A52).
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Together, (A49) and (A52) allow us to compute the household’s coefficient of absolute risk
aversion (63) in Proposition 7:25

−V11

V1
+ α

V1

V
=

−u11 + λu12

u1

(1 − βb
1−βρ

) r

1 + (1 − βb
1−βρ

)wλ
+ α

r u1

u

(
1 − βb

1 − βρ

)
. (A53)

The consumption-based coefficient of relative risk aversion is given by:

−AV11

V1
+ α

AV1

V
=

−u11 + λu12

u1

(1 − βb
1−βρ

) c

1 + (1 − βb
1−βρ

)wλ
+ α

c u1

u

(
1 − βb

1 − βρ

)
. (A54)

Equations (A53) and (A54) have obvious similarities to the corresponding expressions without habits
and with expected utility preferences.

25In order to express (A53) in terms of u1 and u11 instead of u2 and u22, we use V1 = (1−β(ρ+b))u1/(β(1−
βρ)) and differentiate the first-order condition:

V1(at, ht; θt) = (1 + rt) (1 − βbF (1 − βρF )−1)u1(c
∗
τ − hτ , l∗τ ),

with respect to at to solve for V11.
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