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Online Appendix: Assessing DSGE Model

Nonlinearities

S. Borağan Aruoba, Luigi Bocola, and Frank Schorfheide

A QAR(1,1) Model

This section shows how to derive important moments for the QAR(1,1) model given by

yt = φ1yt−1 + φ2s
2
t−1 + (1 + γst−1)σut, ut ∼ iidN(0, 1) (A.1)

st = φ1st−1 + σut, |φ1| < 1 (A.2)

by exploiting the recursively linear structure of the model. The model corresponds to (9) in

the main text. To simplify the presentation, we dropped the tildes for φ2, γ, and s.

A.1 Moments

We now derive the time-invariant mean and autocovariances for yt, assuming the process is

stationary and was initialized in the infinite past. Due to the recursively linear structure of

the model we begin with the derivation of the moments of st.

Moments of st. The process st in (A.2) is linear and has a moving average representation

of the from

st = σ
∞∑
j=0

φj1ut−j.

The mean and the autocovariances of st are given by

E[st] = 0, µs2 = E[s2t ] =
σ2

1− φ2
1

, E[stst−h] = φh1µs2 .

Since the innovations ut are iid standard normal variates, we obtain the following third and

fourth moments:

E[s3t ] =
∞∑
j=0

φ3j
1 E[u3t−j] = 0, E[s4t ] =

∞∑
j=0

φ4j
1 E[u4t−j] =

3σ4

1− φ4
1

.
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Mean of yt. Taking expectations on both sides of (A.1) we obtain

E[yt] = φ1E[yt−1] + φ2µs2 + (1 + γE[st−1])σE[ut] = φ1E[yt] +
φ2σ

2

1− φ2
1

.

Here we used the expression for µs2 obtained previously as well as the fact that ut and st−1

are independent. In turn,

µy = E[yt] =
φ2σ

2

(1− φ1)(1− φ2
1)
. (A.3)

Variance of yt. Consider the centered second moment of yt:

V[yt] = E
[
(φ1(yt−1 − µy) + φ2(s

2
t−1 − µs2) + σ(1 + γst−1)ut)

2
]

= E
[
φ2
1(yt−1 − µy)2 + φ2

2(s
2
t−1 − µs2)2 + σ2(1 + γst−1)

2u2t

2φ1φ2(yt−1 − µy)(s2t−1 − µs2) + 2φ2σ(s2t−1 − µs2)(1 + γst−1)ut

+2φ1σ(1 + γst−1)(yt−1 − µy)ut
]

= φ2
1E[(yt−1 − µy)2] + φ2

2E[(s2t−1 − µs2)2] + σ2(1 + γ2µs2)

+2φ1φ2E[(yt−1 − µy)(s2t−1 − µs2)].

The time-invariant solution is

V[yt] =
1

1− φ2
1

[
φ2
2V[s2t ] + σ2(1 + γ2E[s2t ]) + 2φ1φ2Cov[yt, s

2
t ]

]
,

where

Cov[yt, s
2
t ] = E

[
(φ1(yt−1 − µy) + φ2(s

2
t−1 − µs2) + (1 + γst−1)σut)

×(φ2
1(s

2
t−1 − µs2) + 2φ1σst−1ut + σ2(u2t − 1))

]
= φ3

1E[(yt−1 − µy)(s2t−1 − µs2)] + φ2
1φ2E[(s2t−1 − µs2)2]

+2φ1γσ
2µs2 ,

which implies

Cov[yt, s
2
t ] =

1

1− φ3
1

[
φ2
1φ2V[s2t ] + 2φ1γσ

2E[s2t ]

]
.

Interestingly,

Cov[yt, st] = E
[
(φ1(yt−1 − µy) + φ2(s

2
t−1 − µs2) + (1 + γst−1)σut)(φ1st−1 + σut)

]
= φ2

1Cov[yt−1, st−1] + σ2
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All other terms drop out because E[ut] = E[st] = E[s3t ] = 0. Thus, solving for the time-

invariant solution leads to the “first-order” variance expression

Cov[yt, st] = E[s2t ] =
σ2

1− φ2
1

.

Autocovariances of yt. Consider E[(yt − µy)(yt−1 − µy)]:

Cov[yt, yt−1] = E
[
(φ1(yt−1 − µy) + φ2(s

2
t−1 − µs2) + (1 + γst−1)σut)(yt−1 − µy)

]
= φ1V[yt−1] + φ2Cov[yt−1, s

2
t−1].

In general, higher-order autocovariances can be computed recursively:

Cov[yt, yt−h] = E
[
(φ1(yt−1 − µy) + φ2(s

2
t−1 − µs2) + (1 + γst−1)σut)(yt−h − µy)

]
= φ1Cov[yt−1, yt−h] + φ2Cov[yt−h, s

2
t−1].

The term Cov[yt−h, s
2
t−1] can also be calculated recursively:

Cov[yt−h, s
2
t−1] = E

[
(yt−h − µy)(φ2

1(st−2 − E[s2t−2]) + 2φ1st−2σut−1 + σ(ut−1)
2 − 1)

]
= φ2

1Cov[yt−h, s
2
t−2].

A.2 Initialization and Identification

In order to compute the likelihood function recursively, it is necessary to initialize s0. We

write the joint distribution of observables, initial state, and parameters as:

p(Y0:T , θ, s0) = p(Y1:T |y0, s0, θ)p(y0, s0|θ)p(θ)

and use MCMC methods to generate draws from the posterior

p(θ, s0|Y0:T ) ∝ p(Y1:T |y0, s0, θ)p(y0, s0|θ)p(θ).

We will approximate the distribution of (y0, s0) using a normal distribution y0

s0

 ∣∣∣∣θ ∼ N

 µy

µs

 ,
 Σyy Σys

Σsy Σss

 . (A.4)
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The moments of this normal distribution are calculated as follows. We will assume that the

system was in its steady state in period t = −T∗, i.e. s−T∗ = 0 and y−T∗ = φ0. In principle,

T∗ could be infinite, but this will create some problems if φ1 = 1. In order to simplify the

time subscripts a bit, we shift the time index by T∗ periods. Starting from s0 = 0 and y0 = φ0

we will calculate the first and second moments of yt, st, and s2t recursively, starting with

E[s0] = 0, E[y0] = φ0, V[s0] = 0, V[y0] = 0, (A.5)

Cov[y0, s0] = 0, Cov[y0, s
2
0], V[s20] = 0.

The process for st is linear autoregressive of order one and we obtain

E[st] = φ1E[st−1], V[st] = φ2
1V[st−1] + σ2. (A.6)

Since the innovations εt are iid standard normal variates, we obtain that the third moment

is zero:

E[s3t ] =
t−1∑
j=0

φ3j
1 E[ε3t−j] = 0.

Now consider

V[s2t ] = E[(s2t − V[st])
2] (A.7)

= E[(φ2
1(s

2
t−1 − V[st−1]) + 2φ1st−1σεt + σ2(ε2t − 1))2]

= φ4
1V[s2t−1] + 4φ2

1σ
2V[st−1] + 2σ4.

A formula for the mean of yt is obtained by taking expectations of the observation

equation:

E[yt] = φ0(1− φ1) + φ1E[yt−1] + φ2V[st−1]. (A.8)

The covariance between yt and st is given by

Cov[yt, st] = E[(yt − E[yt])st] (A.9)

= E
[(
φ1(yt−1 − E[yt−1]) + φ2(s

2
t−1 − E[s2t−1]) + (1 + γst−1)σεt

)(
φ1st−1 + σεt

)]
= φ2

1Cov[yt−1, st−1] + σ2.
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All other terms drop out because the first and third moments of st−1 and εt are equal to

zero. The covariance between yt and s2t is given by

Cov[yt, s
2
t ] = E[(yt − E[yt])(s

2
t − V[st])] (A.10)

= E
[
(φ1(yt−1 − E[yt−1]) + φ2(s

2
t−1 − V[st−1]) + (1 + γst−1)σεt)

×(φ2
1(s

2
t−1 − V[st−1]) + 2φ1σst−1εt + σ2(ε2t − 1))

]
= φ3

1Cov[yt−1, s
2
t−1] + φ2

1φ2V[s2t−1] + 2φ1γσ
2E[s2t−1].

The variance of yt can be computed as follows:

V[yt] = E
[
(φ1(yt−1 − E[yt−1] + φ2(s

2
t−1 − V[st−1]) + σ(1 + γst−1)εt)

2
]

(A.11)

= φ2
1V[yt−1] + φ2

2V[s2t−1] + σ2(1 + γ2V[st−1])

+2φ1φ2Cov[yt−1, s
2
t−1].

We can iterate Equations (A.6) to (A.11) forward for T∗ periods to obtain the moments for

the initial distribution of (y0, s0) in (A.4).

Note that for γ = φ2 = 0 s0 and y0 become perfectly correlated conditional on θ since for

a linear model y0 = s0 + φ0. This may affect our posterior sampler when we include s0 into

the parameter vector. To avoid the singularity we add a small constant to the covariance

matrix of (y0, s0).

A.3 MCMC Implementation

The RWMH algorithm mentioned in Section 3.3 is used to implement the posterior inference.

Using a preliminary covariance for the proposal distribution in the RWMH algorithm that

is constructed from the prior variance of the QAR parameters we generate an initial 100,000

draws from the posterior. Based on the last 50,000 draws we compute a covariance matrix

that replaces the preliminary covariance matrix of the proposal distribution. We then con-

tinue the chain, generating an additional 60,000 draws, retaining the last 50,000 to construct

summary statistics for the posterior.
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A.4 Detailed Estimation Results

The tables in this subsection summarize the posterior estimates for the QAR(1,1) models for

output growth, wage growth, inflation, and the federal funds rate. Each table corresponds

to a different estimation sample.

Table A-1: Posterior Estimates for QAR(1,1) Model, 1960:Q1-1983:Q4

Data φ0 φ1 φ2 γ σ s0

GDP 0.42 0.28 -0.02 -0.05 1.16 1.42

[0.11 , 0.69] [0.11 , 0.46] [-0.14 , 0.09] [-0.17 , 0.06] [0.91 , 1.53] [1.02 , 1.85]

WAGE 1.75 0.41 -0.05 0.04 0.52 0.89

[1.49 , 1.98] [0.23 , 0.58] [-0.13 , 0.04] [-0.05 , 0.15] [0.40 , 0.68] [0.63 , 1.15]

INFL 4.24 0.87 -0.01 0.16 1.52 -1.97

[2.28 , 5.84] [0.80 , 0.95] [-0.08 , 0.07] [0.04 , 0.27] [1.08 , 2.12] [-4.68 , 0.79]

FFR 4.84 0.92 0.02 0.38 0.62 -1.56

[0.86 , 6.75] [0.88 , 0.96] [-0.05 , 0.05] [0.30 , 0.47] [0.41 , 1.00] [-4.21 , 0.14]

Notes: We report posterior means and 90% equal-tail-probability credible sets in brackets.

Table A-2: Posterior Estimates for QAR(1,1) Model, 1960:Q1-2007:Q4

Data φ0 φ1 φ2 γ σ s0

GDP 0.48 0.29 -0.02 -0.06 0.69 1.37

[0.33 , 0.63] [0.16 , 0.41] [-0.07 , 0.04] [-0.13 , 0.01] [0.58 , 0.82] [1.19 , 1.56]

WAGE 1.41 0.44 -0.03 0.12 0.48 1.22

[1.25 , 1.59] [0.33 , 0.55] [-0.09 , 0.02] [0.05 , 0.20] [0.40 , 0.57] [1.00 , 1.42]

INFL 3.51 0.85 -0.01 0.23 1.06 -1.31

[2.74 , 4.47] [0.79 , 0.91] [-0.06 , 0.05] [0.16 , 0.31] [0.81 , 1.38] [-2.90 , 0.31]

FFR 2.96 0.96 0.04 0.44 0.28 -0.74

[2.16 , 4.16] [0.95 , 0.97] [0.02 , 0.06] [0.37 , 0.52] [0.22 , 0.42] [-1.27 , 0.45]

Notes: We report posterior means and 90% equal-tail-probability credible sets in brackets.
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Table A-3: Posterior Estimates for QAR(1,1) Model, 1960:Q1-2012:Q4

Data φ0 φ1 φ2 γ σ s0

GDP 0.45 0.33 -0.03 -0.07 0.68 1.41

[0.28 , 0.60] [0.22 , 0.44] [-0.08 , 0.03] [-0.14 , 0.00] [0.58 , 0.81] [1.19 , 1.61]

WAGE 1.29 0.43 -0.01 0.08 0.54 1.31

[1.12 , 1.46] [0.32 , 0.53] [-0.06 , 0.04] [0.01 , 0.15] [0.46 , 0.63] [1.11 , 1.50]

INFL 3.23 0.84 0.02 0.22 1.09 -1.26

[2.55 , 4.16] [0.78 , 0.90] [-0.04 , 0.09] [0.15 , 0.30] [0.87 , 1.36] [-2.82 , 0.22]

FFR 3.54 0.96 -0.01 0.41 0.22 0.43

[2.29 , 5.06] [0.94 , 0.97] [-0.02 , 0.00] [0.33 , 0.50] [0.13 , 0.37] [-0.94 , 1.47]

Notes: We report posterior means and 90% equal-tail-probability credible sets in brackets.

Table A-4: Posterior Estimates for QAR(1,1) Model, 1984:Q1-2007:Q4

Data φ0 φ1 φ2 γ σ s0

GDP 0.57 0.26 -0.07 0.01 0.25 1.06

[0.44, 0.70] [0.10 , 0.44] [-0.13 , -0.02] [-0.10 , 0.11] [0.20 , 0.32] [0.91,1.21]

WAGE 1.09 0.24 -0.06 0.07 0.41 0.10

[0.93,1.21] [0.06,0.42] [-0.12,0.02] [-0.03,0.17] [0.32,0.53] [-0.09,0.29]

INFL 2.72 0.63 -0.06 0.07 0.68 2.42

[2.30,3.13] [0.48,0.78] [-0.14,0.04] [-0.06,0.19] [0.52,0.89] [1.76,2.93]

FFR 9.80 0.91 -0.16 0.08 0.22 0.79

[8.68,11.56] [0.87,0.93] [-.23,-.10] [-0.03,0.17] [0.15,0.32] [-0.26,1.64]

Notes: We report posterior means and 90% equal-tail-probability credible sets in brackets.
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Table A-5: Posterior Estimates for QAR(1,1) Model, 1984:Q1-2012:Q4

Data φ0 φ1 φ2 γ σ s0

GDP 0.53 0.36 -0.09 -0.07 0.28 1.09

[0.38 , 0.66] [0.22 , 0.52] [-0.15 , -0.03] [-0.17 , -0.00] [0.23 , 0.35] [0.87 , 1.28]

WAGE 0.98 0.18 -0.04 0.03 0.48 0.20

[0.83 , 1.14] [0.02 , 0.36] [-0.10 , 0.04] [-0.06 , 0.12] [0.38 , 0.60] [0.03 , 0.37]

INFL 2.51 0.63 -0.02 0.07 0.76 2.54

[2.12 , 2.93] [0.48 , 0.77] [-0.10 , 0.06] [-0.03 , 0.19] [0.61 , 0.97] [1.80 , 3.00]

FFR 10.00 0.92 -0.17 0.01 0.19 1.00

[8.72 , 11.43] [0.90 , 0.94] [-0.25 , -0.12] [-0.05 , 0.11] [0.15 , 0.29] [0.05 , 1.40]

Notes: We report posterior means and 90% equal-tail-probability credible sets in brackets.
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B The DSGE Model

B.1 First-Order Conditions

Intermediate Goods Producers. Taking as given nominal wages, final good prices, the

demand schedule for intermediate products and technological constraints, firm j chooses its

labor inputs Ht(j) and the price Pt(j) to maximize the present value of future profits. After

using the production function to substitute our Yt(j) from the present value of future profits

in (27) (see main text) we can write the objective function of the firm as

IEt

[ ∞∑
s=0

βsQt+s|t

(
Pt+s(j)

Pt+s

(
1− Φp

(
Pt+s(j)

Pt+s−1(j)

))
At+sHt+s(j)−

1

Pt+s
Wt+sHt+s(j)

)]
.

(A.12)

This objective function is maximized with respect to Ht(j) and Pt(j) subject to

At+sHt+s(j) =

(
Pt(j)

Pt

)−1/λp,t
Yt+s.

We use µt+sβ
sQt+s|t to denote the Lagrange multiplier associated with this constraint. Set-

ting Qt|t = 1, the first-order condition with respect to Pt(j) is given by

0 =
1

Pt

(
1− Φp

(
Pt(j)

Pt−1(j)

))
AtHt(j)−

Pt(j)

PtPt−1(j)
Φ′p

(
Pt(j)

Pt−1(j)

)
AtHt(j) (A.13)

− µt
λp,tPt

(
Pt(j)

Pt

)−1/λp,t−1
Yt + βEt

[
Qt+1|t

P 2
t+1(j)

Pt+1P 2
t (j)

Φ′p

(
Pt+1(j)

Pt(j)

)
At+1Ht+1(j)

]
.

Taking first-order conditions with respect to Ht(j) yields

Wt

Pt
=
Pt(j)

Pt

(
1− Φp

(
Pt(j)

Pt−1(j)

))
At − µtAt. (A.14)

Households. The first-order condition with respect to consumption is given by

Ptλt =

(
Ct(k)

At

)−τ
1

At
. (A.15)

We define

Qt+1|t =
λt+1Pt+1

λtPt
. (A.16)

Using this definition, the first-order condition for bond holdings becomes

1 = βEt
[
Qt+1|t

Rt

πt+1

]
. (A.17)
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Member k is a monopolistic competitor with respect to his wage choice. Taking into account

the demand for labor of type k the relevant portion of the utility function for the wage

decision is

IEt

[
∞∑
s=0

βs

(
· · · − χH

1

1 + 1/ν

(
Wt+s(k)

Wt+s

)−(1+1/ν)/λw

H
1+1/ν
t

)]
,

The relevant portion of the budget constraint after substituting Ht+s(k) by the labor demand

schedule is

· · · = Wt+s(k)

(
Wt+s(k)

Wt+s

)−1/λw
Ht+s

(
1− Φw

(
Wt+s(k)

Wt+s−1(k)

))
+ · · · ,

where the demand for aggregated labor services Ht+s is taken as given. Taking first-order

conditions with respect to Wt(k) yields

0 =
χH
λwWt

(
Wt(k)

Wt

)− 1+1/ν
λw
−1

H
1+1/ν
t + λt

(
Wt(k)

Wt

)−1/λw
Ht

(
1− Φw

(
Wt(k)

Wt−1(k)

))
(A.18)

− λt
λw

Wt(k)

Wt

(
Wt(k)

Wt

)−1/λw−1
Ht

(
1− Φw

(
Wt(k)

Wt−1(k)

))
−λt

Wt(k)

Wt−1(k)

(
Wt(k)

Wt

)−1/λw
HtΦ

′
w

(
Wt(k)

Wt−1(k)

)
+βEt

[
λt+1

W 2
t+1(k)

W 2
t (k)

(
Wt+1(k)

Wt+1

)−1/λw
Ht+1Φ

′
w

(
Wt+1(k)

Wt(k)

)]
.

B.2 Equilibrium Relationships

We consider the symmetric equilibrium in which all intermediate goods producing firms, as

well as households, make identical choices when solving their optimization problem. There-

fore, we can drop the index k and j. In slight abuse of notation let ∆Xt = Xt/Xt−1 and

πt = ∆Pt. We use wt = Wt/Pt to denote the real wage. Since the non-stationary technology

process At induces a stochastic trend in output, consumption and real wages, it is convenient

to express the model in terms of detrended variables yt = Yt/At, ct = Ct/At and w̃t = wt/At.

Intermediate Goods Producers. Using the above notation, multiplying (A.13) by Pt,

and replacing Yt by Atyt we can simplify the first-order condition for Pt(j) as follows

0 =
(
1− Φp(πt)

)
Atyt − πtΦ′p(πt)Atyt −

µt
λp,t

Atyt + βEt
[
Qt+1|tπt+1Φ

′
p(πt+1)At+1yt+1

]
.
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Dividing by Atyt and replacing At+1/At by γ exp(zt+1) we obtain

0 =
(
1− Φp(πt)

)
− πtΦ′p(πt)−

µt
λp,t

+ βEt
[
Qt+1|tπt+1Φ

′
p(πt+1)∆yt+1γ exp(zt+1)

]
.

We proceed by rewriting (A.14) as

w̃t =
(
1− Φp(πt)

)
− µt. (A.19)

Households. In terms of detrended consumption we can express Qt+1|t as

Qt+1|t =

(
ct+1

ct

)−τ
1

γ
exp(−zt+1). (A.20)

The consumption Euler equation remains unchanged:

1 = βEt
[
Qt+1|t

Rt

πt+1

]
. (A.21)

We now divide (A.18) by λt and replace λt by c−τt /(AtPt):

0 =
χH
λw

1

w̃t
cτtH

1+1/ν
t +Ht

(
1− Φw(πt∆wt)

)
− 1

λw
Ht

(
1− Φw(πt∆wt)

)
−πt∆wtHtΦ

′
w(πt∆wt) + βEt

[
Qt+1|tπt+1∆w

2
t+1Ht+1Φ

′
w(πt+1∆wt+1)

]
.

Aggregate Resource Constraint. The aggregate production function (in terms of de-

trended output) is

yt = Ht. (A.22)

The intermediate goods producers’ dividend payments to the households are given by

Dt =
(
1− Φp(πt)

)
Yt − wtHt. (A.23)

Combining the household budget constraint and the government budget constraint and de-

trending all variables leads to aggregate resource constraint

ct + ζyt =
(
1− Φp(πt)

)
yt − w̃tytΦw(πt∆wt),

where ∆wt = ∆w̃tγ exp(zt).

The model economy has a unique steady state in terms of the detrended variables that is

attained if the innovations εR,t, εg,t, and εz,t are zero at all times. The steady state inflation

π equals the target rate π∗ and

R =
γ

β
π∗, µ = λp, c =

(
(1− λp)(1− λw)g−

1
ν

χH

) 1
τ+1/ν

, y = gc̃, H = y, w̃ = (1− λp).
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B.3 Posterior Simulator

We first estimate a log-linearized version of the DSGE model using the Random-Walk

Metropolis (RWMH) algorithm described in An and Schorfheide (2007) and Herbst and

Schorfheide (2015). Using the same covariance matrix for the proposal distribution as for

the linearized DSGE model, we then run the RWMH algorithm based on the likelihood func-

tion associated with the second-order approximation of the DSGE model. The covariance

matrix of the proposal distribution is scaled such that the RWMH algorithm has an accep-

tance rate of approximately 50%. We use 80,000 particles to approximate the likelihood

function of the nonlinear DSGE model, while the variance of measurement errors is set to

10% of the sample variance of the observables. We generate 120,000 draws from the posterior

distribution of the nonlinear DSGE model. The summary statistics reported in Table 3 in

the main paper are based on the last 100,000 draws of this sequence.
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Table A-6: Posterior Estimates for DSGE Model Parameters: Linear Model

1960:Q1-2007:Q4 1984:Q1-2007:Q4

Parameter Mean 90% Interval Mean 90% Interval

400
(

1
β
− 1
)

0.48 [0.06, 1.01] 1.31 [0.60, 2.17]

πA 3.46 [2.94, 3.97] 2.80 [2.33, 3.29]

γA 1.86 [1.39, 2.34] 1.88 [1.53, 2.24]

τ 6.54 [4.37, 9.24] 4.78 [2.57, 8.70]

ν 0.09 [0.06, 0.13] 0.08 [0.03, 0.15]

κ(ϕp) 0.01 [0.01, 0.02] 0.18 [0.09, 0.30]

ϕw 62.33 [44.48, 83.14] 14.89 [6.15, 25.88]

ψw N/A

ψp N/A

ψ1 1.45 [1.24, 1.68] 2.67 [2.10, 3.30]

ψ2 0.80 [0.54, 1.09] 0.76 [0.41, 1.11]

ρr 0.77 [0.73, 0.82] 0.71 [0.61, 0.79]

ρg 0.97 [0.96, 0.98] 0.96 [0.93, 0.98]

ρz 0.26 [0.10, 0.41] 0.07 [0.01, 0.19]

ρp 0.99 [0.98, 0.99] 0.93 [0.87, 0.98]

100σr 0.18 [0.14, 0.22] 0.18 [0.13, 0.25]

100σg 0.65 [0.44, 0.95] 0.76 [0.39, 1.34]

100σz 0.75 [0.64, 0.85] 0.47 [0.37, 0.56]

100σp 15.28 [12.66, 18.18] 7.63 [5.96, 9.48]

Notes: As 90% credible interval we are reporting the 5th and 95th percentile of the posterior

distribution.


